1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68 #include <linux/zswapd.h>
69
70 #include <trace/events/vmscan.h>
71
72 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
73 EXPORT_SYMBOL(memory_cgrp_subsys);
74
75 struct mem_cgroup *root_mem_cgroup __read_mostly;
76
77 /* Active memory cgroup to use from an interrupt context */
78 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
79
80 /* Socket memory accounting disabled? */
81 static bool cgroup_memory_nosocket;
82
83 /* Kernel memory accounting disabled */
84 static bool cgroup_memory_nokmem = true;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 bool cgroup_memory_noswap __read_mostly;
89 #else
90 #define cgroup_memory_noswap 1
91 #endif
92
93 #ifdef CONFIG_CGROUP_WRITEBACK
94 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
101 }
102
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105
106 /*
107 * Cgroups above their limits are maintained in a RB-Tree, independent of
108 * their hierarchy representation
109 */
110
111 struct mem_cgroup_tree_per_node {
112 struct rb_root rb_root;
113 struct rb_node *rb_rightmost;
114 spinlock_t lock;
115 };
116
117 struct mem_cgroup_tree {
118 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 };
120
121 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122
123 /* for OOM */
124 struct mem_cgroup_eventfd_list {
125 struct list_head list;
126 struct eventfd_ctx *eventfd;
127 };
128
129 /*
130 * cgroup_event represents events which userspace want to receive.
131 */
132 struct mem_cgroup_event {
133 /*
134 * memcg which the event belongs to.
135 */
136 struct mem_cgroup *memcg;
137 /*
138 * eventfd to signal userspace about the event.
139 */
140 struct eventfd_ctx *eventfd;
141 /*
142 * Each of these stored in a list by the cgroup.
143 */
144 struct list_head list;
145 /*
146 * register_event() callback will be used to add new userspace
147 * waiter for changes related to this event. Use eventfd_signal()
148 * on eventfd to send notification to userspace.
149 */
150 int (*register_event)(struct mem_cgroup *memcg,
151 struct eventfd_ctx *eventfd, const char *args);
152 /*
153 * unregister_event() callback will be called when userspace closes
154 * the eventfd or on cgroup removing. This callback must be set,
155 * if you want provide notification functionality.
156 */
157 void (*unregister_event)(struct mem_cgroup *memcg,
158 struct eventfd_ctx *eventfd);
159 /*
160 * All fields below needed to unregister event when
161 * userspace closes eventfd.
162 */
163 poll_table pt;
164 wait_queue_head_t *wqh;
165 wait_queue_entry_t wait;
166 struct work_struct remove;
167 };
168
169 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
170 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
171
172 /* Stuffs for move charges at task migration. */
173 /*
174 * Types of charges to be moved.
175 */
176 #define MOVE_ANON 0x1U
177 #define MOVE_FILE 0x2U
178 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
179
180 /* "mc" and its members are protected by cgroup_mutex */
181 static struct move_charge_struct {
182 spinlock_t lock; /* for from, to */
183 struct mm_struct *mm;
184 struct mem_cgroup *from;
185 struct mem_cgroup *to;
186 unsigned long flags;
187 unsigned long precharge;
188 unsigned long moved_charge;
189 unsigned long moved_swap;
190 struct task_struct *moving_task; /* a task moving charges */
191 wait_queue_head_t waitq; /* a waitq for other context */
192 } mc = {
193 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
194 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
195 };
196
197 /*
198 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
199 * limit reclaim to prevent infinite loops, if they ever occur.
200 */
201 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
202 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203
204 /* for encoding cft->private value on file */
205 enum res_type {
206 _MEM,
207 _MEMSWAP,
208 _OOM_TYPE,
209 _KMEM,
210 _TCP,
211 };
212
213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
214 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val) ((val) & 0xffff)
216 /* Used for OOM nofiier */
217 #define OOM_CONTROL (0)
218
219 /*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238 }
239
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246 }
247
vmpressure_to_css(struct vmpressure * vmpr)248 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
249 {
250 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
251 }
252
253 #ifdef CONFIG_MEMCG_KMEM
254 static DEFINE_SPINLOCK(objcg_lock);
255
obj_cgroup_release(struct percpu_ref * ref)256 static void obj_cgroup_release(struct percpu_ref *ref)
257 {
258 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
259 struct mem_cgroup *memcg;
260 unsigned int nr_bytes;
261 unsigned int nr_pages;
262 unsigned long flags;
263
264 /*
265 * At this point all allocated objects are freed, and
266 * objcg->nr_charged_bytes can't have an arbitrary byte value.
267 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
268 *
269 * The following sequence can lead to it:
270 * 1) CPU0: objcg == stock->cached_objcg
271 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
272 * PAGE_SIZE bytes are charged
273 * 3) CPU1: a process from another memcg is allocating something,
274 * the stock if flushed,
275 * objcg->nr_charged_bytes = PAGE_SIZE - 92
276 * 5) CPU0: we do release this object,
277 * 92 bytes are added to stock->nr_bytes
278 * 6) CPU0: stock is flushed,
279 * 92 bytes are added to objcg->nr_charged_bytes
280 *
281 * In the result, nr_charged_bytes == PAGE_SIZE.
282 * This page will be uncharged in obj_cgroup_release().
283 */
284 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
285 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
286 nr_pages = nr_bytes >> PAGE_SHIFT;
287
288 spin_lock_irqsave(&objcg_lock, flags);
289 memcg = obj_cgroup_memcg(objcg);
290 if (nr_pages)
291 __memcg_kmem_uncharge(memcg, nr_pages);
292 list_del(&objcg->list);
293 mem_cgroup_put(memcg);
294 spin_unlock_irqrestore(&objcg_lock, flags);
295
296 percpu_ref_exit(ref);
297 kfree_rcu(objcg, rcu);
298 }
299
obj_cgroup_alloc(void)300 static struct obj_cgroup *obj_cgroup_alloc(void)
301 {
302 struct obj_cgroup *objcg;
303 int ret;
304
305 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
306 if (!objcg)
307 return NULL;
308
309 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
310 GFP_KERNEL);
311 if (ret) {
312 kfree(objcg);
313 return NULL;
314 }
315 INIT_LIST_HEAD(&objcg->list);
316 return objcg;
317 }
318
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)319 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
320 struct mem_cgroup *parent)
321 {
322 struct obj_cgroup *objcg, *iter;
323
324 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
325
326 spin_lock_irq(&objcg_lock);
327
328 /* Move active objcg to the parent's list */
329 xchg(&objcg->memcg, parent);
330 css_get(&parent->css);
331 list_add(&objcg->list, &parent->objcg_list);
332
333 /* Move already reparented objcgs to the parent's list */
334 list_for_each_entry(iter, &memcg->objcg_list, list) {
335 css_get(&parent->css);
336 xchg(&iter->memcg, parent);
337 css_put(&memcg->css);
338 }
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347 * This will be used as a shrinker list's index.
348 * The main reason for not using cgroup id for this:
349 * this works better in sparse environments, where we have a lot of memcgs,
350 * but only a few kmem-limited. Or also, if we have, for instance, 200
351 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
352 * 200 entry array for that.
353 *
354 * The current size of the caches array is stored in memcg_nr_cache_ids. It
355 * will double each time we have to increase it.
356 */
357 static DEFINE_IDA(memcg_cache_ida);
358 int memcg_nr_cache_ids;
359
360 /* Protects memcg_nr_cache_ids */
361 static DECLARE_RWSEM(memcg_cache_ids_sem);
362
memcg_get_cache_ids(void)363 void memcg_get_cache_ids(void)
364 {
365 down_read(&memcg_cache_ids_sem);
366 }
367
memcg_put_cache_ids(void)368 void memcg_put_cache_ids(void)
369 {
370 up_read(&memcg_cache_ids_sem);
371 }
372
373 /*
374 * MIN_SIZE is different than 1, because we would like to avoid going through
375 * the alloc/free process all the time. In a small machine, 4 kmem-limited
376 * cgroups is a reasonable guess. In the future, it could be a parameter or
377 * tunable, but that is strictly not necessary.
378 *
379 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
380 * this constant directly from cgroup, but it is understandable that this is
381 * better kept as an internal representation in cgroup.c. In any case, the
382 * cgrp_id space is not getting any smaller, and we don't have to necessarily
383 * increase ours as well if it increases.
384 */
385 #define MEMCG_CACHES_MIN_SIZE 4
386 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
387
388 /*
389 * A lot of the calls to the cache allocation functions are expected to be
390 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
391 * conditional to this static branch, we'll have to allow modules that does
392 * kmem_cache_alloc and the such to see this symbol as well
393 */
394 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
395 EXPORT_SYMBOL(memcg_kmem_enabled_key);
396 #endif
397
398 static int memcg_shrinker_map_size;
399 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
400
memcg_free_shrinker_map_rcu(struct rcu_head * head)401 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
402 {
403 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
404 }
405
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)406 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
407 int size, int old_size)
408 {
409 struct memcg_shrinker_map *new, *old;
410 int nid;
411
412 lockdep_assert_held(&memcg_shrinker_map_mutex);
413
414 for_each_node(nid) {
415 old = rcu_dereference_protected(
416 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
417 /* Not yet online memcg */
418 if (!old)
419 return 0;
420
421 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
422 if (!new)
423 return -ENOMEM;
424
425 /* Set all old bits, clear all new bits */
426 memset(new->map, (int)0xff, old_size);
427 memset((void *)new->map + old_size, 0, size - old_size);
428
429 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
430 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
431 }
432
433 return 0;
434 }
435
memcg_free_shrinker_maps(struct mem_cgroup * memcg)436 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
437 {
438 struct mem_cgroup_per_node *pn;
439 struct memcg_shrinker_map *map;
440 int nid;
441
442 if (mem_cgroup_is_root(memcg))
443 return;
444
445 for_each_node(nid) {
446 pn = mem_cgroup_nodeinfo(memcg, nid);
447 map = rcu_dereference_protected(pn->shrinker_map, true);
448 if (map)
449 kvfree(map);
450 rcu_assign_pointer(pn->shrinker_map, NULL);
451 }
452 }
453
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)454 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
455 {
456 struct memcg_shrinker_map *map;
457 int nid, size, ret = 0;
458
459 if (mem_cgroup_is_root(memcg))
460 return 0;
461
462 mutex_lock(&memcg_shrinker_map_mutex);
463 size = memcg_shrinker_map_size;
464 for_each_node(nid) {
465 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
466 if (!map) {
467 memcg_free_shrinker_maps(memcg);
468 ret = -ENOMEM;
469 break;
470 }
471 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
472 }
473 mutex_unlock(&memcg_shrinker_map_mutex);
474
475 return ret;
476 }
477
memcg_expand_shrinker_maps(int new_id)478 int memcg_expand_shrinker_maps(int new_id)
479 {
480 int size, old_size, ret = 0;
481 struct mem_cgroup *memcg;
482
483 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
484 old_size = memcg_shrinker_map_size;
485 if (size <= old_size)
486 return 0;
487
488 mutex_lock(&memcg_shrinker_map_mutex);
489 if (!root_mem_cgroup)
490 goto unlock;
491
492 for_each_mem_cgroup(memcg) {
493 if (mem_cgroup_is_root(memcg))
494 continue;
495 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
496 if (ret) {
497 mem_cgroup_iter_break(NULL, memcg);
498 goto unlock;
499 }
500 }
501 unlock:
502 if (!ret)
503 memcg_shrinker_map_size = size;
504 mutex_unlock(&memcg_shrinker_map_mutex);
505 return ret;
506 }
507
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)508 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
509 {
510 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
511 struct memcg_shrinker_map *map;
512
513 rcu_read_lock();
514 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
515 /* Pairs with smp mb in shrink_slab() */
516 smp_mb__before_atomic();
517 set_bit(shrinker_id, map->map);
518 rcu_read_unlock();
519 }
520 }
521
522 /**
523 * mem_cgroup_css_from_page - css of the memcg associated with a page
524 * @page: page of interest
525 *
526 * If memcg is bound to the default hierarchy, css of the memcg associated
527 * with @page is returned. The returned css remains associated with @page
528 * until it is released.
529 *
530 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
531 * is returned.
532 */
mem_cgroup_css_from_page(struct page * page)533 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
534 {
535 struct mem_cgroup *memcg;
536
537 memcg = page->mem_cgroup;
538
539 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
540 memcg = root_mem_cgroup;
541
542 return &memcg->css;
543 }
544
545 /**
546 * page_cgroup_ino - return inode number of the memcg a page is charged to
547 * @page: the page
548 *
549 * Look up the closest online ancestor of the memory cgroup @page is charged to
550 * and return its inode number or 0 if @page is not charged to any cgroup. It
551 * is safe to call this function without holding a reference to @page.
552 *
553 * Note, this function is inherently racy, because there is nothing to prevent
554 * the cgroup inode from getting torn down and potentially reallocated a moment
555 * after page_cgroup_ino() returns, so it only should be used by callers that
556 * do not care (such as procfs interfaces).
557 */
page_cgroup_ino(struct page * page)558 ino_t page_cgroup_ino(struct page *page)
559 {
560 struct mem_cgroup *memcg;
561 unsigned long ino = 0;
562
563 rcu_read_lock();
564 memcg = page->mem_cgroup;
565
566 /*
567 * The lowest bit set means that memcg isn't a valid
568 * memcg pointer, but a obj_cgroups pointer.
569 * In this case the page is shared and doesn't belong
570 * to any specific memory cgroup.
571 */
572 if ((unsigned long) memcg & 0x1UL)
573 memcg = NULL;
574
575 while (memcg && !(memcg->css.flags & CSS_ONLINE))
576 memcg = parent_mem_cgroup(memcg);
577 if (memcg)
578 ino = cgroup_ino(memcg->css.cgroup);
579 rcu_read_unlock();
580 return ino;
581 }
582
583 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)584 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
585 {
586 int nid = page_to_nid(page);
587
588 return memcg->nodeinfo[nid];
589 }
590
591 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)592 soft_limit_tree_node(int nid)
593 {
594 return soft_limit_tree.rb_tree_per_node[nid];
595 }
596
597 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)598 soft_limit_tree_from_page(struct page *page)
599 {
600 int nid = page_to_nid(page);
601
602 return soft_limit_tree.rb_tree_per_node[nid];
603 }
604
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)605 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
606 struct mem_cgroup_tree_per_node *mctz,
607 unsigned long new_usage_in_excess)
608 {
609 struct rb_node **p = &mctz->rb_root.rb_node;
610 struct rb_node *parent = NULL;
611 struct mem_cgroup_per_node *mz_node;
612 bool rightmost = true;
613
614 if (mz->on_tree)
615 return;
616
617 mz->usage_in_excess = new_usage_in_excess;
618 if (!mz->usage_in_excess)
619 return;
620 while (*p) {
621 parent = *p;
622 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
623 tree_node);
624 if (mz->usage_in_excess < mz_node->usage_in_excess) {
625 p = &(*p)->rb_left;
626 rightmost = false;
627 }
628
629 /*
630 * We can't avoid mem cgroups that are over their soft
631 * limit by the same amount
632 */
633 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
634 p = &(*p)->rb_right;
635 }
636
637 if (rightmost)
638 mctz->rb_rightmost = &mz->tree_node;
639
640 rb_link_node(&mz->tree_node, parent, p);
641 rb_insert_color(&mz->tree_node, &mctz->rb_root);
642 mz->on_tree = true;
643 }
644
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)645 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
646 struct mem_cgroup_tree_per_node *mctz)
647 {
648 if (!mz->on_tree)
649 return;
650
651 if (&mz->tree_node == mctz->rb_rightmost)
652 mctz->rb_rightmost = rb_prev(&mz->tree_node);
653
654 rb_erase(&mz->tree_node, &mctz->rb_root);
655 mz->on_tree = false;
656 }
657
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)658 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
659 struct mem_cgroup_tree_per_node *mctz)
660 {
661 unsigned long flags;
662
663 spin_lock_irqsave(&mctz->lock, flags);
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 spin_unlock_irqrestore(&mctz->lock, flags);
666 }
667
soft_limit_excess(struct mem_cgroup * memcg)668 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
669 {
670 #ifdef CONFIG_HYPERHOLD_FILE_LRU
671 struct mem_cgroup_per_node *mz = mem_cgroup_nodeinfo(memcg, 0);
672 struct lruvec *lruvec = &mz->lruvec;
673 unsigned long nr_pages = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON,
674 MAX_NR_ZONES) + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON,
675 MAX_NR_ZONES);
676 #else
677 unsigned long nr_pages = page_counter_read(&memcg->memory);
678 #endif
679 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
680 unsigned long excess = 0;
681
682 if (nr_pages > soft_limit)
683 excess = nr_pages - soft_limit;
684
685 return excess;
686 }
687
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)688 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
689 {
690 unsigned long excess;
691 struct mem_cgroup_per_node *mz;
692 struct mem_cgroup_tree_per_node *mctz;
693
694 mctz = soft_limit_tree_from_page(page);
695 if (!mctz)
696 return;
697 /*
698 * Necessary to update all ancestors when hierarchy is used.
699 * because their event counter is not touched.
700 */
701 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
702 mz = mem_cgroup_page_nodeinfo(memcg, page);
703 excess = soft_limit_excess(memcg);
704 /*
705 * We have to update the tree if mz is on RB-tree or
706 * mem is over its softlimit.
707 */
708 if (excess || mz->on_tree) {
709 unsigned long flags;
710
711 spin_lock_irqsave(&mctz->lock, flags);
712 /* if on-tree, remove it */
713 if (mz->on_tree)
714 __mem_cgroup_remove_exceeded(mz, mctz);
715 /*
716 * Insert again. mz->usage_in_excess will be updated.
717 * If excess is 0, no tree ops.
718 */
719 __mem_cgroup_insert_exceeded(mz, mctz, excess);
720 spin_unlock_irqrestore(&mctz->lock, flags);
721 }
722 }
723 }
724
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)725 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
726 {
727 struct mem_cgroup_tree_per_node *mctz;
728 struct mem_cgroup_per_node *mz;
729 int nid;
730
731 for_each_node(nid) {
732 mz = mem_cgroup_nodeinfo(memcg, nid);
733 mctz = soft_limit_tree_node(nid);
734 if (mctz)
735 mem_cgroup_remove_exceeded(mz, mctz);
736 }
737 }
738
739 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)740 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
741 {
742 struct mem_cgroup_per_node *mz;
743
744 retry:
745 mz = NULL;
746 if (!mctz->rb_rightmost)
747 goto done; /* Nothing to reclaim from */
748
749 mz = rb_entry(mctz->rb_rightmost,
750 struct mem_cgroup_per_node, tree_node);
751 /*
752 * Remove the node now but someone else can add it back,
753 * we will to add it back at the end of reclaim to its correct
754 * position in the tree.
755 */
756 __mem_cgroup_remove_exceeded(mz, mctz);
757 if (!soft_limit_excess(mz->memcg) ||
758 !css_tryget(&mz->memcg->css))
759 goto retry;
760 done:
761 return mz;
762 }
763
764 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)765 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
766 {
767 struct mem_cgroup_per_node *mz;
768
769 spin_lock_irq(&mctz->lock);
770 mz = __mem_cgroup_largest_soft_limit_node(mctz);
771 spin_unlock_irq(&mctz->lock);
772 return mz;
773 }
774
775 /**
776 * __mod_memcg_state - update cgroup memory statistics
777 * @memcg: the memory cgroup
778 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
779 * @val: delta to add to the counter, can be negative
780 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)781 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
782 {
783 long x, threshold = MEMCG_CHARGE_BATCH;
784
785 if (mem_cgroup_disabled())
786 return;
787
788 if (memcg_stat_item_in_bytes(idx))
789 threshold <<= PAGE_SHIFT;
790
791 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
792 if (unlikely(abs(x) > threshold)) {
793 struct mem_cgroup *mi;
794
795 /*
796 * Batch local counters to keep them in sync with
797 * the hierarchical ones.
798 */
799 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
800 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
801 atomic_long_add(x, &mi->vmstats[idx]);
802 x = 0;
803 }
804 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
805 }
806
807 static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node * pn,int nid)808 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
809 {
810 struct mem_cgroup *parent;
811
812 parent = parent_mem_cgroup(pn->memcg);
813 if (!parent)
814 return NULL;
815 return mem_cgroup_nodeinfo(parent, nid);
816 }
817
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)818 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
819 int val)
820 {
821 struct mem_cgroup_per_node *pn;
822 struct mem_cgroup *memcg;
823 long x, threshold = MEMCG_CHARGE_BATCH;
824
825 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
826 memcg = pn->memcg;
827
828 /* Update memcg */
829 __mod_memcg_state(memcg, idx, val);
830
831 /* Update lruvec */
832 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
833
834 if (vmstat_item_in_bytes(idx))
835 threshold <<= PAGE_SHIFT;
836
837 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
838 if (unlikely(abs(x) > threshold)) {
839 pg_data_t *pgdat = lruvec_pgdat(lruvec);
840 struct mem_cgroup_per_node *pi;
841
842 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
843 atomic_long_add(x, &pi->lruvec_stat[idx]);
844 x = 0;
845 }
846 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
847 }
848
849 /**
850 * __mod_lruvec_state - update lruvec memory statistics
851 * @lruvec: the lruvec
852 * @idx: the stat item
853 * @val: delta to add to the counter, can be negative
854 *
855 * The lruvec is the intersection of the NUMA node and a cgroup. This
856 * function updates the all three counters that are affected by a
857 * change of state at this level: per-node, per-cgroup, per-lruvec.
858 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)859 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
860 int val)
861 {
862 /* Update node */
863 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
864
865 /* Update memcg and lruvec */
866 if (!mem_cgroup_disabled()) {
867 #ifdef CONFIG_HYPERHOLD_FILE_LRU
868 if (is_node_lruvec(lruvec))
869 return;
870 #endif
871 __mod_memcg_lruvec_state(lruvec, idx, val);
872 }
873 }
874
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)875 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
876 {
877 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 struct mem_cgroup *memcg;
879 struct lruvec *lruvec;
880
881 rcu_read_lock();
882 memcg = mem_cgroup_from_obj(p);
883
884 /*
885 * Untracked pages have no memcg, no lruvec. Update only the
886 * node. If we reparent the slab objects to the root memcg,
887 * when we free the slab object, we need to update the per-memcg
888 * vmstats to keep it correct for the root memcg.
889 */
890 if (!memcg) {
891 __mod_node_page_state(pgdat, idx, val);
892 } else {
893 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 __mod_lruvec_state(lruvec, idx, val);
895 }
896 rcu_read_unlock();
897 }
898
mod_memcg_obj_state(void * p,int idx,int val)899 void mod_memcg_obj_state(void *p, int idx, int val)
900 {
901 struct mem_cgroup *memcg;
902
903 rcu_read_lock();
904 memcg = mem_cgroup_from_obj(p);
905 if (memcg)
906 mod_memcg_state(memcg, idx, val);
907 rcu_read_unlock();
908 }
909
910 /**
911 * __count_memcg_events - account VM events in a cgroup
912 * @memcg: the memory cgroup
913 * @idx: the event item
914 * @count: the number of events that occured
915 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)916 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
917 unsigned long count)
918 {
919 unsigned long x;
920
921 if (mem_cgroup_disabled())
922 return;
923 #ifdef CONFIG_HYPERHOLD_FILE_LRU
924 if (!memcg)
925 return;
926 #endif
927
928 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
929 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
930 struct mem_cgroup *mi;
931
932 /*
933 * Batch local counters to keep them in sync with
934 * the hierarchical ones.
935 */
936 __this_cpu_add(memcg->vmstats_local->events[idx], x);
937 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
938 atomic_long_add(x, &mi->vmevents[idx]);
939 x = 0;
940 }
941 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
942 }
943
memcg_events(struct mem_cgroup * memcg,int event)944 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
945 {
946 return atomic_long_read(&memcg->vmevents[event]);
947 }
948
memcg_events_local(struct mem_cgroup * memcg,int event)949 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950 {
951 long x = 0;
952 int cpu;
953
954 for_each_possible_cpu(cpu)
955 x += per_cpu(memcg->vmstats_local->events[event], cpu);
956 return x;
957 }
958
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)959 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
960 struct page *page,
961 int nr_pages)
962 {
963 /* pagein of a big page is an event. So, ignore page size */
964 if (nr_pages > 0)
965 __count_memcg_events(memcg, PGPGIN, 1);
966 else {
967 __count_memcg_events(memcg, PGPGOUT, 1);
968 nr_pages = -nr_pages; /* for event */
969 }
970
971 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
972 }
973
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)974 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
975 enum mem_cgroup_events_target target)
976 {
977 unsigned long val, next;
978
979 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
980 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
981 /* from time_after() in jiffies.h */
982 if ((long)(next - val) < 0) {
983 switch (target) {
984 case MEM_CGROUP_TARGET_THRESH:
985 next = val + THRESHOLDS_EVENTS_TARGET;
986 break;
987 case MEM_CGROUP_TARGET_SOFTLIMIT:
988 next = val + SOFTLIMIT_EVENTS_TARGET;
989 break;
990 default:
991 break;
992 }
993 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
994 return true;
995 }
996 return false;
997 }
998
999 /*
1000 * Check events in order.
1001 *
1002 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)1003 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004 {
1005 /* threshold event is triggered in finer grain than soft limit */
1006 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 MEM_CGROUP_TARGET_THRESH))) {
1008 bool do_softlimit;
1009
1010 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1011 MEM_CGROUP_TARGET_SOFTLIMIT);
1012 mem_cgroup_threshold(memcg);
1013 if (unlikely(do_softlimit))
1014 mem_cgroup_update_tree(memcg, page);
1015 }
1016 }
1017
mem_cgroup_from_task(struct task_struct * p)1018 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1019 {
1020 /*
1021 * mm_update_next_owner() may clear mm->owner to NULL
1022 * if it races with swapoff, page migration, etc.
1023 * So this can be called with p == NULL.
1024 */
1025 if (unlikely(!p))
1026 return NULL;
1027
1028 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1029 }
1030 EXPORT_SYMBOL(mem_cgroup_from_task);
1031
1032 /**
1033 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1034 * @mm: mm from which memcg should be extracted. It can be NULL.
1035 *
1036 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1037 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1038 * returned.
1039 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1040 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1041 {
1042 struct mem_cgroup *memcg;
1043
1044 if (mem_cgroup_disabled())
1045 return NULL;
1046
1047 rcu_read_lock();
1048 do {
1049 /*
1050 * Page cache insertions can happen withou an
1051 * actual mm context, e.g. during disk probing
1052 * on boot, loopback IO, acct() writes etc.
1053 */
1054 if (unlikely(!mm))
1055 memcg = root_mem_cgroup;
1056 else {
1057 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1058 if (unlikely(!memcg))
1059 memcg = root_mem_cgroup;
1060 }
1061 } while (!css_tryget(&memcg->css));
1062 rcu_read_unlock();
1063 return memcg;
1064 }
1065 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1066
1067 /**
1068 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1069 * @page: page from which memcg should be extracted.
1070 *
1071 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1072 * root_mem_cgroup is returned.
1073 */
get_mem_cgroup_from_page(struct page * page)1074 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1075 {
1076 struct mem_cgroup *memcg = page->mem_cgroup;
1077
1078 if (mem_cgroup_disabled())
1079 return NULL;
1080
1081 rcu_read_lock();
1082 /* Page should not get uncharged and freed memcg under us. */
1083 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1084 memcg = root_mem_cgroup;
1085 rcu_read_unlock();
1086 return memcg;
1087 }
1088 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1089
active_memcg(void)1090 static __always_inline struct mem_cgroup *active_memcg(void)
1091 {
1092 if (in_interrupt())
1093 return this_cpu_read(int_active_memcg);
1094 else
1095 return current->active_memcg;
1096 }
1097
get_active_memcg(void)1098 static __always_inline struct mem_cgroup *get_active_memcg(void)
1099 {
1100 struct mem_cgroup *memcg;
1101
1102 rcu_read_lock();
1103 memcg = active_memcg();
1104 /* remote memcg must hold a ref. */
1105 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1106 memcg = root_mem_cgroup;
1107 rcu_read_unlock();
1108
1109 return memcg;
1110 }
1111
memcg_kmem_bypass(void)1112 static __always_inline bool memcg_kmem_bypass(void)
1113 {
1114 /* Allow remote memcg charging from any context. */
1115 if (unlikely(active_memcg()))
1116 return false;
1117
1118 /* Memcg to charge can't be determined. */
1119 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1120 return true;
1121
1122 return false;
1123 }
1124
1125 /**
1126 * If active memcg is set, do not fallback to current->mm->memcg.
1127 */
get_mem_cgroup_from_current(void)1128 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1129 {
1130 if (memcg_kmem_bypass())
1131 return NULL;
1132
1133 if (unlikely(active_memcg()))
1134 return get_active_memcg();
1135
1136 return get_mem_cgroup_from_mm(current->mm);
1137 }
1138
1139 /**
1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141 * @root: hierarchy root
1142 * @prev: previously returned memcg, NULL on first invocation
1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144 *
1145 * Returns references to children of the hierarchy below @root, or
1146 * @root itself, or %NULL after a full round-trip.
1147 *
1148 * Caller must pass the return value in @prev on subsequent
1149 * invocations for reference counting, or use mem_cgroup_iter_break()
1150 * to cancel a hierarchy walk before the round-trip is complete.
1151 *
1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153 * in the hierarchy among all concurrent reclaimers operating on the
1154 * same node.
1155 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1156 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157 struct mem_cgroup *prev,
1158 struct mem_cgroup_reclaim_cookie *reclaim)
1159 {
1160 struct mem_cgroup_reclaim_iter *iter;
1161 struct cgroup_subsys_state *css = NULL;
1162 struct mem_cgroup *memcg = NULL;
1163 struct mem_cgroup *pos = NULL;
1164
1165 if (mem_cgroup_disabled())
1166 return NULL;
1167
1168 if (!root)
1169 root = root_mem_cgroup;
1170
1171 if (prev && !reclaim)
1172 pos = prev;
1173
1174 if (!root->use_hierarchy && root != root_mem_cgroup) {
1175 if (prev)
1176 goto out;
1177 return root;
1178 }
1179
1180 rcu_read_lock();
1181
1182 if (reclaim) {
1183 struct mem_cgroup_per_node *mz;
1184
1185 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1186 iter = &mz->iter;
1187
1188 if (prev && reclaim->generation != iter->generation)
1189 goto out_unlock;
1190
1191 while (1) {
1192 pos = READ_ONCE(iter->position);
1193 if (!pos || css_tryget(&pos->css))
1194 break;
1195 /*
1196 * css reference reached zero, so iter->position will
1197 * be cleared by ->css_released. However, we should not
1198 * rely on this happening soon, because ->css_released
1199 * is called from a work queue, and by busy-waiting we
1200 * might block it. So we clear iter->position right
1201 * away.
1202 */
1203 (void)cmpxchg(&iter->position, pos, NULL);
1204 }
1205 }
1206
1207 if (pos)
1208 css = &pos->css;
1209
1210 for (;;) {
1211 css = css_next_descendant_pre(css, &root->css);
1212 if (!css) {
1213 /*
1214 * Reclaimers share the hierarchy walk, and a
1215 * new one might jump in right at the end of
1216 * the hierarchy - make sure they see at least
1217 * one group and restart from the beginning.
1218 */
1219 if (!prev)
1220 continue;
1221 break;
1222 }
1223
1224 /*
1225 * Verify the css and acquire a reference. The root
1226 * is provided by the caller, so we know it's alive
1227 * and kicking, and don't take an extra reference.
1228 */
1229 memcg = mem_cgroup_from_css(css);
1230
1231 if (css == &root->css)
1232 break;
1233
1234 if (css_tryget(css))
1235 break;
1236
1237 memcg = NULL;
1238 }
1239
1240 if (reclaim) {
1241 /*
1242 * The position could have already been updated by a competing
1243 * thread, so check that the value hasn't changed since we read
1244 * it to avoid reclaiming from the same cgroup twice.
1245 */
1246 (void)cmpxchg(&iter->position, pos, memcg);
1247
1248 if (pos)
1249 css_put(&pos->css);
1250
1251 if (!memcg)
1252 iter->generation++;
1253 else if (!prev)
1254 reclaim->generation = iter->generation;
1255 }
1256
1257 out_unlock:
1258 rcu_read_unlock();
1259 out:
1260 if (prev && prev != root)
1261 css_put(&prev->css);
1262
1263 return memcg;
1264 }
1265
1266 /**
1267 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1268 * @root: hierarchy root
1269 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1270 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1271 void mem_cgroup_iter_break(struct mem_cgroup *root,
1272 struct mem_cgroup *prev)
1273 {
1274 if (!root)
1275 root = root_mem_cgroup;
1276 if (prev && prev != root)
1277 css_put(&prev->css);
1278 }
1279
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1280 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1281 struct mem_cgroup *dead_memcg)
1282 {
1283 struct mem_cgroup_reclaim_iter *iter;
1284 struct mem_cgroup_per_node *mz;
1285 int nid;
1286
1287 for_each_node(nid) {
1288 mz = mem_cgroup_nodeinfo(from, nid);
1289 iter = &mz->iter;
1290 cmpxchg(&iter->position, dead_memcg, NULL);
1291 }
1292 }
1293
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1294 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1295 {
1296 struct mem_cgroup *memcg = dead_memcg;
1297 struct mem_cgroup *last;
1298
1299 do {
1300 __invalidate_reclaim_iterators(memcg, dead_memcg);
1301 last = memcg;
1302 } while ((memcg = parent_mem_cgroup(memcg)));
1303
1304 /*
1305 * When cgruop1 non-hierarchy mode is used,
1306 * parent_mem_cgroup() does not walk all the way up to the
1307 * cgroup root (root_mem_cgroup). So we have to handle
1308 * dead_memcg from cgroup root separately.
1309 */
1310 if (last != root_mem_cgroup)
1311 __invalidate_reclaim_iterators(root_mem_cgroup,
1312 dead_memcg);
1313 }
1314
1315 /**
1316 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1317 * @memcg: hierarchy root
1318 * @fn: function to call for each task
1319 * @arg: argument passed to @fn
1320 *
1321 * This function iterates over tasks attached to @memcg or to any of its
1322 * descendants and calls @fn for each task. If @fn returns a non-zero
1323 * value, the function breaks the iteration loop and returns the value.
1324 * Otherwise, it will iterate over all tasks and return 0.
1325 *
1326 * This function must not be called for the root memory cgroup.
1327 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1328 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1329 int (*fn)(struct task_struct *, void *), void *arg)
1330 {
1331 struct mem_cgroup *iter;
1332 int ret = 0;
1333
1334 BUG_ON(memcg == root_mem_cgroup);
1335
1336 for_each_mem_cgroup_tree(iter, memcg) {
1337 struct css_task_iter it;
1338 struct task_struct *task;
1339
1340 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1341 while (!ret && (task = css_task_iter_next(&it)))
1342 ret = fn(task, arg);
1343 css_task_iter_end(&it);
1344 if (ret) {
1345 mem_cgroup_iter_break(memcg, iter);
1346 break;
1347 }
1348 }
1349 return ret;
1350 }
1351
1352 /**
1353 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1354 * @page: the page
1355 * @pgdat: pgdat of the page
1356 *
1357 * This function relies on page->mem_cgroup being stable - see the
1358 * access rules in commit_charge().
1359 */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1360 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1361 {
1362 struct mem_cgroup_per_node *mz;
1363 struct mem_cgroup *memcg;
1364 struct lruvec *lruvec;
1365
1366 if (mem_cgroup_disabled()) {
1367 lruvec = &pgdat->__lruvec;
1368 goto out;
1369 }
1370
1371 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1372 if (page_is_file_lru(page) &&
1373 !is_prot_page(page)) {
1374 lruvec = node_lruvec(pgdat);
1375 goto out;
1376 }
1377 #endif
1378 memcg = page->mem_cgroup;
1379 /*
1380 * Swapcache readahead pages are added to the LRU - and
1381 * possibly migrated - before they are charged.
1382 */
1383 if (!memcg)
1384 memcg = root_mem_cgroup;
1385
1386 mz = mem_cgroup_page_nodeinfo(memcg, page);
1387 lruvec = &mz->lruvec;
1388 out:
1389 /*
1390 * Since a node can be onlined after the mem_cgroup was created,
1391 * we have to be prepared to initialize lruvec->zone here;
1392 * and if offlined then reonlined, we need to reinitialize it.
1393 */
1394 if (unlikely(lruvec->pgdat != pgdat))
1395 lruvec->pgdat = pgdat;
1396 return lruvec;
1397 }
1398
1399 /**
1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401 * @lruvec: mem_cgroup per zone lru vector
1402 * @lru: index of lru list the page is sitting on
1403 * @zid: zone id of the accounted pages
1404 * @nr_pages: positive when adding or negative when removing
1405 *
1406 * This function must be called under lru_lock, just before a page is added
1407 * to or just after a page is removed from an lru list (that ordering being
1408 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1409 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1410 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411 int zid, int nr_pages)
1412 {
1413 struct mem_cgroup_per_node *mz;
1414 unsigned long *lru_size;
1415 long size;
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
1420 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1421 if (is_node_lruvec(lruvec))
1422 return;
1423 #endif
1424 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1425 lru_size = &mz->lru_zone_size[zid][lru];
1426
1427 if (nr_pages < 0)
1428 *lru_size += nr_pages;
1429
1430 size = *lru_size;
1431 if (WARN_ONCE(size < 0,
1432 "%s(%p, %d, %d): lru_size %ld\n",
1433 __func__, lruvec, lru, nr_pages, size)) {
1434 VM_BUG_ON(1);
1435 *lru_size = 0;
1436 }
1437
1438 if (nr_pages > 0)
1439 *lru_size += nr_pages;
1440 }
1441
1442 /**
1443 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1444 * @memcg: the memory cgroup
1445 *
1446 * Returns the maximum amount of memory @mem can be charged with, in
1447 * pages.
1448 */
mem_cgroup_margin(struct mem_cgroup * memcg)1449 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1450 {
1451 unsigned long margin = 0;
1452 unsigned long count;
1453 unsigned long limit;
1454
1455 count = page_counter_read(&memcg->memory);
1456 limit = READ_ONCE(memcg->memory.max);
1457 if (count < limit)
1458 margin = limit - count;
1459
1460 if (do_memsw_account()) {
1461 count = page_counter_read(&memcg->memsw);
1462 limit = READ_ONCE(memcg->memsw.max);
1463 if (count < limit)
1464 margin = min(margin, limit - count);
1465 else
1466 margin = 0;
1467 }
1468
1469 return margin;
1470 }
1471
1472 /*
1473 * A routine for checking "mem" is under move_account() or not.
1474 *
1475 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1476 * moving cgroups. This is for waiting at high-memory pressure
1477 * caused by "move".
1478 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1479 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *from;
1482 struct mem_cgroup *to;
1483 bool ret = false;
1484 /*
1485 * Unlike task_move routines, we access mc.to, mc.from not under
1486 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1487 */
1488 spin_lock(&mc.lock);
1489 from = mc.from;
1490 to = mc.to;
1491 if (!from)
1492 goto unlock;
1493
1494 ret = mem_cgroup_is_descendant(from, memcg) ||
1495 mem_cgroup_is_descendant(to, memcg);
1496 unlock:
1497 spin_unlock(&mc.lock);
1498 return ret;
1499 }
1500
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1501 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1502 {
1503 if (mc.moving_task && current != mc.moving_task) {
1504 if (mem_cgroup_under_move(memcg)) {
1505 DEFINE_WAIT(wait);
1506 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1507 /* moving charge context might have finished. */
1508 if (mc.moving_task)
1509 schedule();
1510 finish_wait(&mc.waitq, &wait);
1511 return true;
1512 }
1513 }
1514 return false;
1515 }
1516
1517 struct memory_stat {
1518 const char *name;
1519 unsigned int ratio;
1520 unsigned int idx;
1521 };
1522
1523 static struct memory_stat memory_stats[] = {
1524 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1525 { "file", PAGE_SIZE, NR_FILE_PAGES },
1526 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1527 { "percpu", 1, MEMCG_PERCPU_B },
1528 { "sock", PAGE_SIZE, MEMCG_SOCK },
1529 { "shmem", PAGE_SIZE, NR_SHMEM },
1530 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1531 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1532 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1534 /*
1535 * The ratio will be initialized in memory_stats_init(). Because
1536 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1537 * constant(e.g. powerpc).
1538 */
1539 { "anon_thp", 0, NR_ANON_THPS },
1540 #endif
1541 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1542 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1543 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1544 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1545 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1546
1547 /*
1548 * Note: The slab_reclaimable and slab_unreclaimable must be
1549 * together and slab_reclaimable must be in front.
1550 */
1551 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1552 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1553
1554 /* The memory events */
1555 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1556 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1557 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1558 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1559 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1560 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1561 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1562 };
1563
memory_stats_init(void)1564 static int __init memory_stats_init(void)
1565 {
1566 int i;
1567
1568 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1570 if (memory_stats[i].idx == NR_ANON_THPS)
1571 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1572 #endif
1573 VM_BUG_ON(!memory_stats[i].ratio);
1574 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1575 }
1576
1577 return 0;
1578 }
1579 pure_initcall(memory_stats_init);
1580
memory_stat_format(struct mem_cgroup * memcg)1581 static char *memory_stat_format(struct mem_cgroup *memcg)
1582 {
1583 struct seq_buf s;
1584 int i;
1585
1586 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1587 if (!s.buffer)
1588 return NULL;
1589
1590 /*
1591 * Provide statistics on the state of the memory subsystem as
1592 * well as cumulative event counters that show past behavior.
1593 *
1594 * This list is ordered following a combination of these gradients:
1595 * 1) generic big picture -> specifics and details
1596 * 2) reflecting userspace activity -> reflecting kernel heuristics
1597 *
1598 * Current memory state:
1599 */
1600
1601 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1602 u64 size;
1603
1604 size = memcg_page_state(memcg, memory_stats[i].idx);
1605 size *= memory_stats[i].ratio;
1606 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1607
1608 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1609 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1610 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1611 seq_buf_printf(&s, "slab %llu\n", size);
1612 }
1613 }
1614
1615 /* Accumulated memory events */
1616
1617 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1618 memcg_events(memcg, PGFAULT));
1619 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1620 memcg_events(memcg, PGMAJFAULT));
1621 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1622 memcg_events(memcg, PGREFILL));
1623 seq_buf_printf(&s, "pgscan %lu\n",
1624 memcg_events(memcg, PGSCAN_KSWAPD) +
1625 memcg_events(memcg, PGSCAN_DIRECT));
1626 seq_buf_printf(&s, "pgsteal %lu\n",
1627 memcg_events(memcg, PGSTEAL_KSWAPD) +
1628 memcg_events(memcg, PGSTEAL_DIRECT));
1629 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1630 memcg_events(memcg, PGACTIVATE));
1631 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1632 memcg_events(memcg, PGDEACTIVATE));
1633 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1634 memcg_events(memcg, PGLAZYFREE));
1635 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1636 memcg_events(memcg, PGLAZYFREED));
1637
1638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1639 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1640 memcg_events(memcg, THP_FAULT_ALLOC));
1641 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1642 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1644
1645 /* The above should easily fit into one page */
1646 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1647
1648 return s.buffer;
1649 }
1650
1651 #define K(x) ((x) << (PAGE_SHIFT-10))
1652 /**
1653 * mem_cgroup_print_oom_context: Print OOM information relevant to
1654 * memory controller.
1655 * @memcg: The memory cgroup that went over limit
1656 * @p: Task that is going to be killed
1657 *
1658 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1659 * enabled
1660 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1661 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1662 {
1663 rcu_read_lock();
1664
1665 if (memcg) {
1666 pr_cont(",oom_memcg=");
1667 pr_cont_cgroup_path(memcg->css.cgroup);
1668 } else
1669 pr_cont(",global_oom");
1670 if (p) {
1671 pr_cont(",task_memcg=");
1672 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1673 }
1674 rcu_read_unlock();
1675 }
1676
1677 /**
1678 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1679 * memory controller.
1680 * @memcg: The memory cgroup that went over limit
1681 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1682 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1683 {
1684 char *buf;
1685
1686 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1687 K((u64)page_counter_read(&memcg->memory)),
1688 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1689 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1690 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1691 K((u64)page_counter_read(&memcg->swap)),
1692 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1693 else {
1694 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1695 K((u64)page_counter_read(&memcg->memsw)),
1696 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1697 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1698 K((u64)page_counter_read(&memcg->kmem)),
1699 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1700 }
1701
1702 pr_info("Memory cgroup stats for ");
1703 pr_cont_cgroup_path(memcg->css.cgroup);
1704 pr_cont(":");
1705 buf = memory_stat_format(memcg);
1706 if (!buf)
1707 return;
1708 pr_info("%s", buf);
1709 kfree(buf);
1710 }
1711
1712 /*
1713 * Return the memory (and swap, if configured) limit for a memcg.
1714 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1715 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1716 {
1717 unsigned long max = READ_ONCE(memcg->memory.max);
1718
1719 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1720 if (mem_cgroup_swappiness(memcg))
1721 max += min(READ_ONCE(memcg->swap.max),
1722 (unsigned long)total_swap_pages);
1723 } else { /* v1 */
1724 if (mem_cgroup_swappiness(memcg)) {
1725 /* Calculate swap excess capacity from memsw limit */
1726 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1727
1728 max += min(swap, (unsigned long)total_swap_pages);
1729 }
1730 }
1731 return max;
1732 }
1733
mem_cgroup_size(struct mem_cgroup * memcg)1734 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1735 {
1736 return page_counter_read(&memcg->memory);
1737 }
1738
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1739 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1740 int order)
1741 {
1742 struct oom_control oc = {
1743 .zonelist = NULL,
1744 .nodemask = NULL,
1745 .memcg = memcg,
1746 .gfp_mask = gfp_mask,
1747 .order = order,
1748 };
1749 bool ret = true;
1750
1751 if (mutex_lock_killable(&oom_lock))
1752 return true;
1753
1754 if (mem_cgroup_margin(memcg) >= (1 << order))
1755 goto unlock;
1756
1757 /*
1758 * A few threads which were not waiting at mutex_lock_killable() can
1759 * fail to bail out. Therefore, check again after holding oom_lock.
1760 */
1761 ret = task_is_dying() || out_of_memory(&oc);
1762
1763 unlock:
1764 mutex_unlock(&oom_lock);
1765 return ret;
1766 }
1767
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1768 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1769 pg_data_t *pgdat,
1770 gfp_t gfp_mask,
1771 unsigned long *total_scanned)
1772 {
1773 struct mem_cgroup *victim = NULL;
1774 int total = 0;
1775 int loop = 0;
1776 unsigned long excess;
1777 unsigned long nr_scanned;
1778 struct mem_cgroup_reclaim_cookie reclaim = {
1779 .pgdat = pgdat,
1780 };
1781
1782 excess = soft_limit_excess(root_memcg);
1783
1784 while (1) {
1785 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1786 if (!victim) {
1787 loop++;
1788 if (loop >= 2) {
1789 /*
1790 * If we have not been able to reclaim
1791 * anything, it might because there are
1792 * no reclaimable pages under this hierarchy
1793 */
1794 if (!total)
1795 break;
1796 /*
1797 * We want to do more targeted reclaim.
1798 * excess >> 2 is not to excessive so as to
1799 * reclaim too much, nor too less that we keep
1800 * coming back to reclaim from this cgroup
1801 */
1802 if (total >= (excess >> 2) ||
1803 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1804 break;
1805 }
1806 continue;
1807 }
1808 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1809 pgdat, &nr_scanned);
1810 *total_scanned += nr_scanned;
1811 if (!soft_limit_excess(root_memcg))
1812 break;
1813 }
1814 mem_cgroup_iter_break(root_memcg, victim);
1815 return total;
1816 }
1817
1818 #ifdef CONFIG_LOCKDEP
1819 static struct lockdep_map memcg_oom_lock_dep_map = {
1820 .name = "memcg_oom_lock",
1821 };
1822 #endif
1823
1824 static DEFINE_SPINLOCK(memcg_oom_lock);
1825
1826 /*
1827 * Check OOM-Killer is already running under our hierarchy.
1828 * If someone is running, return false.
1829 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1830 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1831 {
1832 struct mem_cgroup *iter, *failed = NULL;
1833
1834 spin_lock(&memcg_oom_lock);
1835
1836 for_each_mem_cgroup_tree(iter, memcg) {
1837 if (iter->oom_lock) {
1838 /*
1839 * this subtree of our hierarchy is already locked
1840 * so we cannot give a lock.
1841 */
1842 failed = iter;
1843 mem_cgroup_iter_break(memcg, iter);
1844 break;
1845 } else
1846 iter->oom_lock = true;
1847 }
1848
1849 if (failed) {
1850 /*
1851 * OK, we failed to lock the whole subtree so we have
1852 * to clean up what we set up to the failing subtree
1853 */
1854 for_each_mem_cgroup_tree(iter, memcg) {
1855 if (iter == failed) {
1856 mem_cgroup_iter_break(memcg, iter);
1857 break;
1858 }
1859 iter->oom_lock = false;
1860 }
1861 } else
1862 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1863
1864 spin_unlock(&memcg_oom_lock);
1865
1866 return !failed;
1867 }
1868
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1869 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1870 {
1871 struct mem_cgroup *iter;
1872
1873 spin_lock(&memcg_oom_lock);
1874 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1875 for_each_mem_cgroup_tree(iter, memcg)
1876 iter->oom_lock = false;
1877 spin_unlock(&memcg_oom_lock);
1878 }
1879
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1880 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1881 {
1882 struct mem_cgroup *iter;
1883
1884 spin_lock(&memcg_oom_lock);
1885 for_each_mem_cgroup_tree(iter, memcg)
1886 iter->under_oom++;
1887 spin_unlock(&memcg_oom_lock);
1888 }
1889
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1890 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1891 {
1892 struct mem_cgroup *iter;
1893
1894 /*
1895 * Be careful about under_oom underflows becase a child memcg
1896 * could have been added after mem_cgroup_mark_under_oom.
1897 */
1898 spin_lock(&memcg_oom_lock);
1899 for_each_mem_cgroup_tree(iter, memcg)
1900 if (iter->under_oom > 0)
1901 iter->under_oom--;
1902 spin_unlock(&memcg_oom_lock);
1903 }
1904
1905 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1906
1907 struct oom_wait_info {
1908 struct mem_cgroup *memcg;
1909 wait_queue_entry_t wait;
1910 };
1911
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1912 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1913 unsigned mode, int sync, void *arg)
1914 {
1915 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1916 struct mem_cgroup *oom_wait_memcg;
1917 struct oom_wait_info *oom_wait_info;
1918
1919 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1920 oom_wait_memcg = oom_wait_info->memcg;
1921
1922 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1923 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1924 return 0;
1925 return autoremove_wake_function(wait, mode, sync, arg);
1926 }
1927
memcg_oom_recover(struct mem_cgroup * memcg)1928 static void memcg_oom_recover(struct mem_cgroup *memcg)
1929 {
1930 /*
1931 * For the following lockless ->under_oom test, the only required
1932 * guarantee is that it must see the state asserted by an OOM when
1933 * this function is called as a result of userland actions
1934 * triggered by the notification of the OOM. This is trivially
1935 * achieved by invoking mem_cgroup_mark_under_oom() before
1936 * triggering notification.
1937 */
1938 if (memcg && memcg->under_oom)
1939 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1940 }
1941
1942 enum oom_status {
1943 OOM_SUCCESS,
1944 OOM_FAILED,
1945 OOM_ASYNC,
1946 OOM_SKIPPED
1947 };
1948
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1949 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1950 {
1951 enum oom_status ret;
1952 bool locked;
1953
1954 if (order > PAGE_ALLOC_COSTLY_ORDER)
1955 return OOM_SKIPPED;
1956
1957 memcg_memory_event(memcg, MEMCG_OOM);
1958
1959 /*
1960 * We are in the middle of the charge context here, so we
1961 * don't want to block when potentially sitting on a callstack
1962 * that holds all kinds of filesystem and mm locks.
1963 *
1964 * cgroup1 allows disabling the OOM killer and waiting for outside
1965 * handling until the charge can succeed; remember the context and put
1966 * the task to sleep at the end of the page fault when all locks are
1967 * released.
1968 *
1969 * On the other hand, in-kernel OOM killer allows for an async victim
1970 * memory reclaim (oom_reaper) and that means that we are not solely
1971 * relying on the oom victim to make a forward progress and we can
1972 * invoke the oom killer here.
1973 *
1974 * Please note that mem_cgroup_out_of_memory might fail to find a
1975 * victim and then we have to bail out from the charge path.
1976 */
1977 if (memcg->oom_kill_disable) {
1978 if (!current->in_user_fault)
1979 return OOM_SKIPPED;
1980 css_get(&memcg->css);
1981 current->memcg_in_oom = memcg;
1982 current->memcg_oom_gfp_mask = mask;
1983 current->memcg_oom_order = order;
1984
1985 return OOM_ASYNC;
1986 }
1987
1988 mem_cgroup_mark_under_oom(memcg);
1989
1990 locked = mem_cgroup_oom_trylock(memcg);
1991
1992 if (locked)
1993 mem_cgroup_oom_notify(memcg);
1994
1995 mem_cgroup_unmark_under_oom(memcg);
1996 if (mem_cgroup_out_of_memory(memcg, mask, order))
1997 ret = OOM_SUCCESS;
1998 else
1999 ret = OOM_FAILED;
2000
2001 if (locked)
2002 mem_cgroup_oom_unlock(memcg);
2003
2004 return ret;
2005 }
2006
2007 /**
2008 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2009 * @handle: actually kill/wait or just clean up the OOM state
2010 *
2011 * This has to be called at the end of a page fault if the memcg OOM
2012 * handler was enabled.
2013 *
2014 * Memcg supports userspace OOM handling where failed allocations must
2015 * sleep on a waitqueue until the userspace task resolves the
2016 * situation. Sleeping directly in the charge context with all kinds
2017 * of locks held is not a good idea, instead we remember an OOM state
2018 * in the task and mem_cgroup_oom_synchronize() has to be called at
2019 * the end of the page fault to complete the OOM handling.
2020 *
2021 * Returns %true if an ongoing memcg OOM situation was detected and
2022 * completed, %false otherwise.
2023 */
mem_cgroup_oom_synchronize(bool handle)2024 bool mem_cgroup_oom_synchronize(bool handle)
2025 {
2026 struct mem_cgroup *memcg = current->memcg_in_oom;
2027 struct oom_wait_info owait;
2028 bool locked;
2029
2030 /* OOM is global, do not handle */
2031 if (!memcg)
2032 return false;
2033
2034 if (!handle)
2035 goto cleanup;
2036
2037 owait.memcg = memcg;
2038 owait.wait.flags = 0;
2039 owait.wait.func = memcg_oom_wake_function;
2040 owait.wait.private = current;
2041 INIT_LIST_HEAD(&owait.wait.entry);
2042
2043 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2044 mem_cgroup_mark_under_oom(memcg);
2045
2046 locked = mem_cgroup_oom_trylock(memcg);
2047
2048 if (locked)
2049 mem_cgroup_oom_notify(memcg);
2050
2051 if (locked && !memcg->oom_kill_disable) {
2052 mem_cgroup_unmark_under_oom(memcg);
2053 finish_wait(&memcg_oom_waitq, &owait.wait);
2054 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2055 current->memcg_oom_order);
2056 } else {
2057 schedule();
2058 mem_cgroup_unmark_under_oom(memcg);
2059 finish_wait(&memcg_oom_waitq, &owait.wait);
2060 }
2061
2062 if (locked) {
2063 mem_cgroup_oom_unlock(memcg);
2064 /*
2065 * There is no guarantee that an OOM-lock contender
2066 * sees the wakeups triggered by the OOM kill
2067 * uncharges. Wake any sleepers explicitely.
2068 */
2069 memcg_oom_recover(memcg);
2070 }
2071 cleanup:
2072 current->memcg_in_oom = NULL;
2073 css_put(&memcg->css);
2074 return true;
2075 }
2076
2077 /**
2078 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2079 * @victim: task to be killed by the OOM killer
2080 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2081 *
2082 * Returns a pointer to a memory cgroup, which has to be cleaned up
2083 * by killing all belonging OOM-killable tasks.
2084 *
2085 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2086 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2087 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2088 struct mem_cgroup *oom_domain)
2089 {
2090 struct mem_cgroup *oom_group = NULL;
2091 struct mem_cgroup *memcg;
2092
2093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2094 return NULL;
2095
2096 if (!oom_domain)
2097 oom_domain = root_mem_cgroup;
2098
2099 rcu_read_lock();
2100
2101 memcg = mem_cgroup_from_task(victim);
2102 if (memcg == root_mem_cgroup)
2103 goto out;
2104
2105 /*
2106 * If the victim task has been asynchronously moved to a different
2107 * memory cgroup, we might end up killing tasks outside oom_domain.
2108 * In this case it's better to ignore memory.group.oom.
2109 */
2110 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2111 goto out;
2112
2113 /*
2114 * Traverse the memory cgroup hierarchy from the victim task's
2115 * cgroup up to the OOMing cgroup (or root) to find the
2116 * highest-level memory cgroup with oom.group set.
2117 */
2118 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2119 if (memcg->oom_group)
2120 oom_group = memcg;
2121
2122 if (memcg == oom_domain)
2123 break;
2124 }
2125
2126 if (oom_group)
2127 css_get(&oom_group->css);
2128 out:
2129 rcu_read_unlock();
2130
2131 return oom_group;
2132 }
2133
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2134 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2135 {
2136 pr_info("Tasks in ");
2137 pr_cont_cgroup_path(memcg->css.cgroup);
2138 pr_cont(" are going to be killed due to memory.oom.group set\n");
2139 }
2140
2141 /**
2142 * lock_page_memcg - lock a page->mem_cgroup binding
2143 * @page: the page
2144 *
2145 * This function protects unlocked LRU pages from being moved to
2146 * another cgroup.
2147 *
2148 * It ensures lifetime of the returned memcg. Caller is responsible
2149 * for the lifetime of the page; __unlock_page_memcg() is available
2150 * when @page might get freed inside the locked section.
2151 */
lock_page_memcg(struct page * page)2152 struct mem_cgroup *lock_page_memcg(struct page *page)
2153 {
2154 struct page *head = compound_head(page); /* rmap on tail pages */
2155 struct mem_cgroup *memcg;
2156 unsigned long flags;
2157
2158 /*
2159 * The RCU lock is held throughout the transaction. The fast
2160 * path can get away without acquiring the memcg->move_lock
2161 * because page moving starts with an RCU grace period.
2162 *
2163 * The RCU lock also protects the memcg from being freed when
2164 * the page state that is going to change is the only thing
2165 * preventing the page itself from being freed. E.g. writeback
2166 * doesn't hold a page reference and relies on PG_writeback to
2167 * keep off truncation, migration and so forth.
2168 */
2169 rcu_read_lock();
2170
2171 if (mem_cgroup_disabled())
2172 return NULL;
2173 again:
2174 memcg = head->mem_cgroup;
2175 if (unlikely(!memcg))
2176 return NULL;
2177
2178 if (atomic_read(&memcg->moving_account) <= 0)
2179 return memcg;
2180
2181 spin_lock_irqsave(&memcg->move_lock, flags);
2182 if (memcg != head->mem_cgroup) {
2183 spin_unlock_irqrestore(&memcg->move_lock, flags);
2184 goto again;
2185 }
2186
2187 /*
2188 * When charge migration first begins, we can have locked and
2189 * unlocked page stat updates happening concurrently. Track
2190 * the task who has the lock for unlock_page_memcg().
2191 */
2192 memcg->move_lock_task = current;
2193 memcg->move_lock_flags = flags;
2194
2195 return memcg;
2196 }
2197 EXPORT_SYMBOL(lock_page_memcg);
2198
2199 /**
2200 * __unlock_page_memcg - unlock and unpin a memcg
2201 * @memcg: the memcg
2202 *
2203 * Unlock and unpin a memcg returned by lock_page_memcg().
2204 */
__unlock_page_memcg(struct mem_cgroup * memcg)2205 void __unlock_page_memcg(struct mem_cgroup *memcg)
2206 {
2207 if (memcg && memcg->move_lock_task == current) {
2208 unsigned long flags = memcg->move_lock_flags;
2209
2210 memcg->move_lock_task = NULL;
2211 memcg->move_lock_flags = 0;
2212
2213 spin_unlock_irqrestore(&memcg->move_lock, flags);
2214 }
2215
2216 rcu_read_unlock();
2217 }
2218
2219 /**
2220 * unlock_page_memcg - unlock a page->mem_cgroup binding
2221 * @page: the page
2222 */
unlock_page_memcg(struct page * page)2223 void unlock_page_memcg(struct page *page)
2224 {
2225 struct page *head = compound_head(page);
2226
2227 __unlock_page_memcg(head->mem_cgroup);
2228 }
2229 EXPORT_SYMBOL(unlock_page_memcg);
2230
2231 struct memcg_stock_pcp {
2232 struct mem_cgroup *cached; /* this never be root cgroup */
2233 unsigned int nr_pages;
2234
2235 #ifdef CONFIG_MEMCG_KMEM
2236 struct obj_cgroup *cached_objcg;
2237 unsigned int nr_bytes;
2238 #endif
2239
2240 struct work_struct work;
2241 unsigned long flags;
2242 #define FLUSHING_CACHED_CHARGE 0
2243 };
2244 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2245 static DEFINE_MUTEX(percpu_charge_mutex);
2246
2247 #ifdef CONFIG_MEMCG_KMEM
2248 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2249 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2250 struct mem_cgroup *root_memcg);
2251
2252 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2253 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2254 {
2255 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2256 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2257 struct mem_cgroup *root_memcg)
2258 {
2259 return false;
2260 }
2261 #endif
2262
2263 /**
2264 * consume_stock: Try to consume stocked charge on this cpu.
2265 * @memcg: memcg to consume from.
2266 * @nr_pages: how many pages to charge.
2267 *
2268 * The charges will only happen if @memcg matches the current cpu's memcg
2269 * stock, and at least @nr_pages are available in that stock. Failure to
2270 * service an allocation will refill the stock.
2271 *
2272 * returns true if successful, false otherwise.
2273 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2274 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2275 {
2276 struct memcg_stock_pcp *stock;
2277 unsigned long flags;
2278 bool ret = false;
2279
2280 if (nr_pages > MEMCG_CHARGE_BATCH)
2281 return ret;
2282
2283 local_irq_save(flags);
2284
2285 stock = this_cpu_ptr(&memcg_stock);
2286 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2287 stock->nr_pages -= nr_pages;
2288 ret = true;
2289 }
2290
2291 local_irq_restore(flags);
2292
2293 return ret;
2294 }
2295
2296 /*
2297 * Returns stocks cached in percpu and reset cached information.
2298 */
drain_stock(struct memcg_stock_pcp * stock)2299 static void drain_stock(struct memcg_stock_pcp *stock)
2300 {
2301 struct mem_cgroup *old = stock->cached;
2302
2303 if (!old)
2304 return;
2305
2306 if (stock->nr_pages) {
2307 page_counter_uncharge(&old->memory, stock->nr_pages);
2308 if (do_memsw_account())
2309 page_counter_uncharge(&old->memsw, stock->nr_pages);
2310 stock->nr_pages = 0;
2311 }
2312
2313 css_put(&old->css);
2314 stock->cached = NULL;
2315 }
2316
drain_local_stock(struct work_struct * dummy)2317 static void drain_local_stock(struct work_struct *dummy)
2318 {
2319 struct memcg_stock_pcp *stock;
2320 unsigned long flags;
2321
2322 /*
2323 * The only protection from memory hotplug vs. drain_stock races is
2324 * that we always operate on local CPU stock here with IRQ disabled
2325 */
2326 local_irq_save(flags);
2327
2328 stock = this_cpu_ptr(&memcg_stock);
2329 drain_obj_stock(stock);
2330 drain_stock(stock);
2331 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2332
2333 local_irq_restore(flags);
2334 }
2335
2336 /*
2337 * Cache charges(val) to local per_cpu area.
2338 * This will be consumed by consume_stock() function, later.
2339 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2340 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2341 {
2342 struct memcg_stock_pcp *stock;
2343 unsigned long flags;
2344
2345 local_irq_save(flags);
2346
2347 stock = this_cpu_ptr(&memcg_stock);
2348 if (stock->cached != memcg) { /* reset if necessary */
2349 drain_stock(stock);
2350 css_get(&memcg->css);
2351 stock->cached = memcg;
2352 }
2353 stock->nr_pages += nr_pages;
2354
2355 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2356 drain_stock(stock);
2357
2358 local_irq_restore(flags);
2359 }
2360
2361 /*
2362 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363 * of the hierarchy under it.
2364 */
drain_all_stock(struct mem_cgroup * root_memcg)2365 static void drain_all_stock(struct mem_cgroup *root_memcg)
2366 {
2367 int cpu, curcpu;
2368
2369 /* If someone's already draining, avoid adding running more workers. */
2370 if (!mutex_trylock(&percpu_charge_mutex))
2371 return;
2372 /*
2373 * Notify other cpus that system-wide "drain" is running
2374 * We do not care about races with the cpu hotplug because cpu down
2375 * as well as workers from this path always operate on the local
2376 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377 */
2378 curcpu = get_cpu();
2379 for_each_online_cpu(cpu) {
2380 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2381 struct mem_cgroup *memcg;
2382 bool flush = false;
2383
2384 rcu_read_lock();
2385 memcg = stock->cached;
2386 if (memcg && stock->nr_pages &&
2387 mem_cgroup_is_descendant(memcg, root_memcg))
2388 flush = true;
2389 if (obj_stock_flush_required(stock, root_memcg))
2390 flush = true;
2391 rcu_read_unlock();
2392
2393 if (flush &&
2394 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2395 if (cpu == curcpu)
2396 drain_local_stock(&stock->work);
2397 else
2398 schedule_work_on(cpu, &stock->work);
2399 }
2400 }
2401 put_cpu();
2402 mutex_unlock(&percpu_charge_mutex);
2403 }
2404
memcg_hotplug_cpu_dead(unsigned int cpu)2405 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2406 {
2407 struct memcg_stock_pcp *stock;
2408 struct mem_cgroup *memcg, *mi;
2409
2410 stock = &per_cpu(memcg_stock, cpu);
2411 drain_stock(stock);
2412
2413 for_each_mem_cgroup(memcg) {
2414 int i;
2415
2416 for (i = 0; i < MEMCG_NR_STAT; i++) {
2417 int nid;
2418 long x;
2419
2420 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2421 if (x)
2422 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2423 atomic_long_add(x, &memcg->vmstats[i]);
2424
2425 if (i >= NR_VM_NODE_STAT_ITEMS)
2426 continue;
2427
2428 for_each_node(nid) {
2429 struct mem_cgroup_per_node *pn;
2430
2431 pn = mem_cgroup_nodeinfo(memcg, nid);
2432 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2433 if (x)
2434 do {
2435 atomic_long_add(x, &pn->lruvec_stat[i]);
2436 } while ((pn = parent_nodeinfo(pn, nid)));
2437 }
2438 }
2439
2440 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2441 long x;
2442
2443 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2444 if (x)
2445 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2446 atomic_long_add(x, &memcg->vmevents[i]);
2447 }
2448 }
2449
2450 return 0;
2451 }
2452
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2453 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2454 unsigned int nr_pages,
2455 gfp_t gfp_mask)
2456 {
2457 unsigned long nr_reclaimed = 0;
2458
2459 do {
2460 unsigned long pflags;
2461
2462 if (page_counter_read(&memcg->memory) <=
2463 READ_ONCE(memcg->memory.high))
2464 continue;
2465
2466 memcg_memory_event(memcg, MEMCG_HIGH);
2467
2468 psi_memstall_enter(&pflags);
2469 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2470 gfp_mask, true);
2471 psi_memstall_leave(&pflags);
2472 } while ((memcg = parent_mem_cgroup(memcg)) &&
2473 !mem_cgroup_is_root(memcg));
2474
2475 return nr_reclaimed;
2476 }
2477
high_work_func(struct work_struct * work)2478 static void high_work_func(struct work_struct *work)
2479 {
2480 struct mem_cgroup *memcg;
2481
2482 memcg = container_of(work, struct mem_cgroup, high_work);
2483 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2484 }
2485
2486 /*
2487 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2488 * enough to still cause a significant slowdown in most cases, while still
2489 * allowing diagnostics and tracing to proceed without becoming stuck.
2490 */
2491 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2492
2493 /*
2494 * When calculating the delay, we use these either side of the exponentiation to
2495 * maintain precision and scale to a reasonable number of jiffies (see the table
2496 * below.
2497 *
2498 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2499 * overage ratio to a delay.
2500 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2501 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2502 * to produce a reasonable delay curve.
2503 *
2504 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2505 * reasonable delay curve compared to precision-adjusted overage, not
2506 * penalising heavily at first, but still making sure that growth beyond the
2507 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2508 * example, with a high of 100 megabytes:
2509 *
2510 * +-------+------------------------+
2511 * | usage | time to allocate in ms |
2512 * +-------+------------------------+
2513 * | 100M | 0 |
2514 * | 101M | 6 |
2515 * | 102M | 25 |
2516 * | 103M | 57 |
2517 * | 104M | 102 |
2518 * | 105M | 159 |
2519 * | 106M | 230 |
2520 * | 107M | 313 |
2521 * | 108M | 409 |
2522 * | 109M | 518 |
2523 * | 110M | 639 |
2524 * | 111M | 774 |
2525 * | 112M | 921 |
2526 * | 113M | 1081 |
2527 * | 114M | 1254 |
2528 * | 115M | 1439 |
2529 * | 116M | 1638 |
2530 * | 117M | 1849 |
2531 * | 118M | 2000 |
2532 * | 119M | 2000 |
2533 * | 120M | 2000 |
2534 * +-------+------------------------+
2535 */
2536 #define MEMCG_DELAY_PRECISION_SHIFT 20
2537 #define MEMCG_DELAY_SCALING_SHIFT 14
2538
calculate_overage(unsigned long usage,unsigned long high)2539 static u64 calculate_overage(unsigned long usage, unsigned long high)
2540 {
2541 u64 overage;
2542
2543 if (usage <= high)
2544 return 0;
2545
2546 /*
2547 * Prevent division by 0 in overage calculation by acting as if
2548 * it was a threshold of 1 page
2549 */
2550 high = max(high, 1UL);
2551
2552 overage = usage - high;
2553 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2554 return div64_u64(overage, high);
2555 }
2556
mem_find_max_overage(struct mem_cgroup * memcg)2557 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2558 {
2559 u64 overage, max_overage = 0;
2560
2561 do {
2562 overage = calculate_overage(page_counter_read(&memcg->memory),
2563 READ_ONCE(memcg->memory.high));
2564 max_overage = max(overage, max_overage);
2565 } while ((memcg = parent_mem_cgroup(memcg)) &&
2566 !mem_cgroup_is_root(memcg));
2567
2568 return max_overage;
2569 }
2570
swap_find_max_overage(struct mem_cgroup * memcg)2571 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2572 {
2573 u64 overage, max_overage = 0;
2574
2575 do {
2576 overage = calculate_overage(page_counter_read(&memcg->swap),
2577 READ_ONCE(memcg->swap.high));
2578 if (overage)
2579 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2580 max_overage = max(overage, max_overage);
2581 } while ((memcg = parent_mem_cgroup(memcg)) &&
2582 !mem_cgroup_is_root(memcg));
2583
2584 return max_overage;
2585 }
2586
2587 /*
2588 * Get the number of jiffies that we should penalise a mischievous cgroup which
2589 * is exceeding its memory.high by checking both it and its ancestors.
2590 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2591 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2592 unsigned int nr_pages,
2593 u64 max_overage)
2594 {
2595 unsigned long penalty_jiffies;
2596
2597 if (!max_overage)
2598 return 0;
2599
2600 /*
2601 * We use overage compared to memory.high to calculate the number of
2602 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2603 * fairly lenient on small overages, and increasingly harsh when the
2604 * memcg in question makes it clear that it has no intention of stopping
2605 * its crazy behaviour, so we exponentially increase the delay based on
2606 * overage amount.
2607 */
2608 penalty_jiffies = max_overage * max_overage * HZ;
2609 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2610 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2611
2612 /*
2613 * Factor in the task's own contribution to the overage, such that four
2614 * N-sized allocations are throttled approximately the same as one
2615 * 4N-sized allocation.
2616 *
2617 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2618 * larger the current charge patch is than that.
2619 */
2620 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2621 }
2622
2623 /*
2624 * Scheduled by try_charge() to be executed from the userland return path
2625 * and reclaims memory over the high limit.
2626 */
mem_cgroup_handle_over_high(void)2627 void mem_cgroup_handle_over_high(void)
2628 {
2629 unsigned long penalty_jiffies;
2630 unsigned long pflags;
2631 unsigned long nr_reclaimed;
2632 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2633 int nr_retries = MAX_RECLAIM_RETRIES;
2634 struct mem_cgroup *memcg;
2635 bool in_retry = false;
2636
2637 if (likely(!nr_pages))
2638 return;
2639
2640 memcg = get_mem_cgroup_from_mm(current->mm);
2641 current->memcg_nr_pages_over_high = 0;
2642
2643 retry_reclaim:
2644 /*
2645 * The allocating task should reclaim at least the batch size, but for
2646 * subsequent retries we only want to do what's necessary to prevent oom
2647 * or breaching resource isolation.
2648 *
2649 * This is distinct from memory.max or page allocator behaviour because
2650 * memory.high is currently batched, whereas memory.max and the page
2651 * allocator run every time an allocation is made.
2652 */
2653 nr_reclaimed = reclaim_high(memcg,
2654 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2655 GFP_KERNEL);
2656
2657 /*
2658 * memory.high is breached and reclaim is unable to keep up. Throttle
2659 * allocators proactively to slow down excessive growth.
2660 */
2661 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2662 mem_find_max_overage(memcg));
2663
2664 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2665 swap_find_max_overage(memcg));
2666
2667 /*
2668 * Clamp the max delay per usermode return so as to still keep the
2669 * application moving forwards and also permit diagnostics, albeit
2670 * extremely slowly.
2671 */
2672 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2673
2674 /*
2675 * Don't sleep if the amount of jiffies this memcg owes us is so low
2676 * that it's not even worth doing, in an attempt to be nice to those who
2677 * go only a small amount over their memory.high value and maybe haven't
2678 * been aggressively reclaimed enough yet.
2679 */
2680 if (penalty_jiffies <= HZ / 100)
2681 goto out;
2682
2683 /*
2684 * If reclaim is making forward progress but we're still over
2685 * memory.high, we want to encourage that rather than doing allocator
2686 * throttling.
2687 */
2688 if (nr_reclaimed || nr_retries--) {
2689 in_retry = true;
2690 goto retry_reclaim;
2691 }
2692
2693 /*
2694 * If we exit early, we're guaranteed to die (since
2695 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2696 * need to account for any ill-begotten jiffies to pay them off later.
2697 */
2698 psi_memstall_enter(&pflags);
2699 schedule_timeout_killable(penalty_jiffies);
2700 psi_memstall_leave(&pflags);
2701
2702 out:
2703 css_put(&memcg->css);
2704 }
2705
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2706 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2707 unsigned int nr_pages)
2708 {
2709 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2710 int nr_retries = MAX_RECLAIM_RETRIES;
2711 struct mem_cgroup *mem_over_limit;
2712 struct page_counter *counter;
2713 enum oom_status oom_status;
2714 unsigned long nr_reclaimed;
2715 bool passed_oom = false;
2716 bool may_swap = true;
2717 bool drained = false;
2718 unsigned long pflags;
2719
2720 if (mem_cgroup_is_root(memcg))
2721 return 0;
2722 retry:
2723 if (consume_stock(memcg, nr_pages))
2724 return 0;
2725
2726 if (!do_memsw_account() ||
2727 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2728 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2729 goto done_restock;
2730 if (do_memsw_account())
2731 page_counter_uncharge(&memcg->memsw, batch);
2732 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2733 } else {
2734 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2735 may_swap = false;
2736 }
2737
2738 if (batch > nr_pages) {
2739 batch = nr_pages;
2740 goto retry;
2741 }
2742
2743 /*
2744 * Memcg doesn't have a dedicated reserve for atomic
2745 * allocations. But like the global atomic pool, we need to
2746 * put the burden of reclaim on regular allocation requests
2747 * and let these go through as privileged allocations.
2748 */
2749 if (gfp_mask & __GFP_ATOMIC)
2750 goto force;
2751
2752 /*
2753 * Prevent unbounded recursion when reclaim operations need to
2754 * allocate memory. This might exceed the limits temporarily,
2755 * but we prefer facilitating memory reclaim and getting back
2756 * under the limit over triggering OOM kills in these cases.
2757 */
2758 if (unlikely(current->flags & PF_MEMALLOC))
2759 goto force;
2760
2761 if (unlikely(task_in_memcg_oom(current)))
2762 goto nomem;
2763
2764 if (!gfpflags_allow_blocking(gfp_mask))
2765 goto nomem;
2766
2767 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2768
2769 psi_memstall_enter(&pflags);
2770 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2771 gfp_mask, may_swap);
2772 psi_memstall_leave(&pflags);
2773
2774 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2775 goto retry;
2776
2777 if (!drained) {
2778 drain_all_stock(mem_over_limit);
2779 drained = true;
2780 goto retry;
2781 }
2782
2783 if (gfp_mask & __GFP_NORETRY)
2784 goto nomem;
2785 /*
2786 * Even though the limit is exceeded at this point, reclaim
2787 * may have been able to free some pages. Retry the charge
2788 * before killing the task.
2789 *
2790 * Only for regular pages, though: huge pages are rather
2791 * unlikely to succeed so close to the limit, and we fall back
2792 * to regular pages anyway in case of failure.
2793 */
2794 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2795 goto retry;
2796 /*
2797 * At task move, charge accounts can be doubly counted. So, it's
2798 * better to wait until the end of task_move if something is going on.
2799 */
2800 if (mem_cgroup_wait_acct_move(mem_over_limit))
2801 goto retry;
2802
2803 if (nr_retries--)
2804 goto retry;
2805
2806 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2807 goto nomem;
2808
2809 if (gfp_mask & __GFP_NOFAIL)
2810 goto force;
2811
2812 /* Avoid endless loop for tasks bypassed by the oom killer */
2813 if (passed_oom && task_is_dying())
2814 goto nomem;
2815
2816 /*
2817 * keep retrying as long as the memcg oom killer is able to make
2818 * a forward progress or bypass the charge if the oom killer
2819 * couldn't make any progress.
2820 */
2821 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2822 get_order(nr_pages * PAGE_SIZE));
2823 if (oom_status == OOM_SUCCESS) {
2824 passed_oom = true;
2825 nr_retries = MAX_RECLAIM_RETRIES;
2826 goto retry;
2827 }
2828 nomem:
2829 if (!(gfp_mask & __GFP_NOFAIL))
2830 return -ENOMEM;
2831 force:
2832 /*
2833 * The allocation either can't fail or will lead to more memory
2834 * being freed very soon. Allow memory usage go over the limit
2835 * temporarily by force charging it.
2836 */
2837 page_counter_charge(&memcg->memory, nr_pages);
2838 if (do_memsw_account())
2839 page_counter_charge(&memcg->memsw, nr_pages);
2840
2841 return 0;
2842
2843 done_restock:
2844 if (batch > nr_pages)
2845 refill_stock(memcg, batch - nr_pages);
2846
2847 /*
2848 * If the hierarchy is above the normal consumption range, schedule
2849 * reclaim on returning to userland. We can perform reclaim here
2850 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2851 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2852 * not recorded as it most likely matches current's and won't
2853 * change in the meantime. As high limit is checked again before
2854 * reclaim, the cost of mismatch is negligible.
2855 */
2856 do {
2857 bool mem_high, swap_high;
2858
2859 mem_high = page_counter_read(&memcg->memory) >
2860 READ_ONCE(memcg->memory.high);
2861 swap_high = page_counter_read(&memcg->swap) >
2862 READ_ONCE(memcg->swap.high);
2863
2864 /* Don't bother a random interrupted task */
2865 if (in_interrupt()) {
2866 if (mem_high) {
2867 schedule_work(&memcg->high_work);
2868 break;
2869 }
2870 continue;
2871 }
2872
2873 if (mem_high || swap_high) {
2874 /*
2875 * The allocating tasks in this cgroup will need to do
2876 * reclaim or be throttled to prevent further growth
2877 * of the memory or swap footprints.
2878 *
2879 * Target some best-effort fairness between the tasks,
2880 * and distribute reclaim work and delay penalties
2881 * based on how much each task is actually allocating.
2882 */
2883 current->memcg_nr_pages_over_high += batch;
2884 set_notify_resume(current);
2885 break;
2886 }
2887 } while ((memcg = parent_mem_cgroup(memcg)));
2888
2889 return 0;
2890 }
2891
2892 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2893 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2894 {
2895 if (mem_cgroup_is_root(memcg))
2896 return;
2897
2898 page_counter_uncharge(&memcg->memory, nr_pages);
2899 if (do_memsw_account())
2900 page_counter_uncharge(&memcg->memsw, nr_pages);
2901 }
2902 #endif
2903
commit_charge(struct page * page,struct mem_cgroup * memcg)2904 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2905 {
2906 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2907 /*
2908 * Any of the following ensures page->mem_cgroup stability:
2909 *
2910 * - the page lock
2911 * - LRU isolation
2912 * - lock_page_memcg()
2913 * - exclusive reference
2914 */
2915 page->mem_cgroup = memcg;
2916 }
2917
2918 #ifdef CONFIG_MEMCG_KMEM
2919 /*
2920 * The allocated objcg pointers array is not accounted directly.
2921 * Moreover, it should not come from DMA buffer and is not readily
2922 * reclaimable. So those GFP bits should be masked off.
2923 */
2924 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2925
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)2926 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2927 gfp_t gfp)
2928 {
2929 unsigned int objects = objs_per_slab_page(s, page);
2930 void *vec;
2931
2932 gfp &= ~OBJCGS_CLEAR_MASK;
2933 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2934 page_to_nid(page));
2935 if (!vec)
2936 return -ENOMEM;
2937
2938 if (cmpxchg(&page->obj_cgroups, NULL,
2939 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2940 kfree(vec);
2941 else
2942 kmemleak_not_leak(vec);
2943
2944 return 0;
2945 }
2946
2947 /*
2948 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2949 *
2950 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2951 * cgroup_mutex, etc.
2952 */
mem_cgroup_from_obj(void * p)2953 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2954 {
2955 struct page *page;
2956
2957 if (mem_cgroup_disabled())
2958 return NULL;
2959
2960 page = virt_to_head_page(p);
2961
2962 /*
2963 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2964 * or a pointer to obj_cgroup vector. In the latter case the lowest
2965 * bit of the pointer is set.
2966 * The page->mem_cgroup pointer can be asynchronously changed
2967 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2968 * from a valid memcg pointer to objcg vector or back.
2969 */
2970 if (!page->mem_cgroup)
2971 return NULL;
2972
2973 /*
2974 * Slab objects are accounted individually, not per-page.
2975 * Memcg membership data for each individual object is saved in
2976 * the page->obj_cgroups.
2977 */
2978 if (page_has_obj_cgroups(page)) {
2979 struct obj_cgroup *objcg;
2980 unsigned int off;
2981
2982 off = obj_to_index(page->slab_cache, page, p);
2983 objcg = page_obj_cgroups(page)[off];
2984 if (objcg)
2985 return obj_cgroup_memcg(objcg);
2986
2987 return NULL;
2988 }
2989
2990 /* All other pages use page->mem_cgroup */
2991 return page->mem_cgroup;
2992 }
2993
get_obj_cgroup_from_current(void)2994 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2995 {
2996 struct obj_cgroup *objcg = NULL;
2997 struct mem_cgroup *memcg;
2998
2999 if (memcg_kmem_bypass())
3000 return NULL;
3001
3002 rcu_read_lock();
3003 if (unlikely(active_memcg()))
3004 memcg = active_memcg();
3005 else
3006 memcg = mem_cgroup_from_task(current);
3007
3008 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3009 objcg = rcu_dereference(memcg->objcg);
3010 if (objcg && obj_cgroup_tryget(objcg))
3011 break;
3012 objcg = NULL;
3013 }
3014 rcu_read_unlock();
3015
3016 return objcg;
3017 }
3018
memcg_alloc_cache_id(void)3019 static int memcg_alloc_cache_id(void)
3020 {
3021 int id, size;
3022 int err;
3023
3024 id = ida_simple_get(&memcg_cache_ida,
3025 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3026 if (id < 0)
3027 return id;
3028
3029 if (id < memcg_nr_cache_ids)
3030 return id;
3031
3032 /*
3033 * There's no space for the new id in memcg_caches arrays,
3034 * so we have to grow them.
3035 */
3036 down_write(&memcg_cache_ids_sem);
3037
3038 size = 2 * (id + 1);
3039 if (size < MEMCG_CACHES_MIN_SIZE)
3040 size = MEMCG_CACHES_MIN_SIZE;
3041 else if (size > MEMCG_CACHES_MAX_SIZE)
3042 size = MEMCG_CACHES_MAX_SIZE;
3043
3044 err = memcg_update_all_list_lrus(size);
3045 if (!err)
3046 memcg_nr_cache_ids = size;
3047
3048 up_write(&memcg_cache_ids_sem);
3049
3050 if (err) {
3051 ida_simple_remove(&memcg_cache_ida, id);
3052 return err;
3053 }
3054 return id;
3055 }
3056
memcg_free_cache_id(int id)3057 static void memcg_free_cache_id(int id)
3058 {
3059 ida_simple_remove(&memcg_cache_ida, id);
3060 }
3061
3062 /**
3063 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3064 * @memcg: memory cgroup to charge
3065 * @gfp: reclaim mode
3066 * @nr_pages: number of pages to charge
3067 *
3068 * Returns 0 on success, an error code on failure.
3069 */
__memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)3070 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3071 unsigned int nr_pages)
3072 {
3073 struct page_counter *counter;
3074 int ret;
3075
3076 ret = try_charge(memcg, gfp, nr_pages);
3077 if (ret)
3078 return ret;
3079
3080 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3081 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3082
3083 /*
3084 * Enforce __GFP_NOFAIL allocation because callers are not
3085 * prepared to see failures and likely do not have any failure
3086 * handling code.
3087 */
3088 if (gfp & __GFP_NOFAIL) {
3089 page_counter_charge(&memcg->kmem, nr_pages);
3090 return 0;
3091 }
3092 cancel_charge(memcg, nr_pages);
3093 return -ENOMEM;
3094 }
3095 return 0;
3096 }
3097
3098 /**
3099 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3100 * @memcg: memcg to uncharge
3101 * @nr_pages: number of pages to uncharge
3102 */
__memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)3103 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3104 {
3105 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3106 page_counter_uncharge(&memcg->kmem, nr_pages);
3107
3108 refill_stock(memcg, nr_pages);
3109 }
3110
3111 /**
3112 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3113 * @page: page to charge
3114 * @gfp: reclaim mode
3115 * @order: allocation order
3116 *
3117 * Returns 0 on success, an error code on failure.
3118 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3119 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3120 {
3121 struct mem_cgroup *memcg;
3122 int ret = 0;
3123
3124 memcg = get_mem_cgroup_from_current();
3125 if (memcg && !mem_cgroup_is_root(memcg)) {
3126 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3127 if (!ret) {
3128 page->mem_cgroup = memcg;
3129 __SetPageKmemcg(page);
3130 return 0;
3131 }
3132 css_put(&memcg->css);
3133 }
3134 return ret;
3135 }
3136
3137 /**
3138 * __memcg_kmem_uncharge_page: uncharge a kmem page
3139 * @page: page to uncharge
3140 * @order: allocation order
3141 */
__memcg_kmem_uncharge_page(struct page * page,int order)3142 void __memcg_kmem_uncharge_page(struct page *page, int order)
3143 {
3144 struct mem_cgroup *memcg = page->mem_cgroup;
3145 unsigned int nr_pages = 1 << order;
3146
3147 if (!memcg)
3148 return;
3149
3150 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3151 __memcg_kmem_uncharge(memcg, nr_pages);
3152 page->mem_cgroup = NULL;
3153 css_put(&memcg->css);
3154
3155 /* slab pages do not have PageKmemcg flag set */
3156 if (PageKmemcg(page))
3157 __ClearPageKmemcg(page);
3158 }
3159
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3160 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3161 {
3162 struct memcg_stock_pcp *stock;
3163 unsigned long flags;
3164 bool ret = false;
3165
3166 local_irq_save(flags);
3167
3168 stock = this_cpu_ptr(&memcg_stock);
3169 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3170 stock->nr_bytes -= nr_bytes;
3171 ret = true;
3172 }
3173
3174 local_irq_restore(flags);
3175
3176 return ret;
3177 }
3178
drain_obj_stock(struct memcg_stock_pcp * stock)3179 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3180 {
3181 struct obj_cgroup *old = stock->cached_objcg;
3182
3183 if (!old)
3184 return;
3185
3186 if (stock->nr_bytes) {
3187 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3188 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3189
3190 if (nr_pages) {
3191 struct mem_cgroup *memcg;
3192
3193 rcu_read_lock();
3194 retry:
3195 memcg = obj_cgroup_memcg(old);
3196 if (unlikely(!css_tryget(&memcg->css)))
3197 goto retry;
3198 rcu_read_unlock();
3199
3200 __memcg_kmem_uncharge(memcg, nr_pages);
3201 css_put(&memcg->css);
3202 }
3203
3204 /*
3205 * The leftover is flushed to the centralized per-memcg value.
3206 * On the next attempt to refill obj stock it will be moved
3207 * to a per-cpu stock (probably, on an other CPU), see
3208 * refill_obj_stock().
3209 *
3210 * How often it's flushed is a trade-off between the memory
3211 * limit enforcement accuracy and potential CPU contention,
3212 * so it might be changed in the future.
3213 */
3214 atomic_add(nr_bytes, &old->nr_charged_bytes);
3215 stock->nr_bytes = 0;
3216 }
3217
3218 obj_cgroup_put(old);
3219 stock->cached_objcg = NULL;
3220 }
3221
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3222 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3223 struct mem_cgroup *root_memcg)
3224 {
3225 struct mem_cgroup *memcg;
3226
3227 if (stock->cached_objcg) {
3228 memcg = obj_cgroup_memcg(stock->cached_objcg);
3229 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3230 return true;
3231 }
3232
3233 return false;
3234 }
3235
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3236 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3237 {
3238 struct memcg_stock_pcp *stock;
3239 unsigned long flags;
3240
3241 local_irq_save(flags);
3242
3243 stock = this_cpu_ptr(&memcg_stock);
3244 if (stock->cached_objcg != objcg) { /* reset if necessary */
3245 drain_obj_stock(stock);
3246 obj_cgroup_get(objcg);
3247 stock->cached_objcg = objcg;
3248 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3249 }
3250 stock->nr_bytes += nr_bytes;
3251
3252 if (stock->nr_bytes > PAGE_SIZE)
3253 drain_obj_stock(stock);
3254
3255 local_irq_restore(flags);
3256 }
3257
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3258 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3259 {
3260 struct mem_cgroup *memcg;
3261 unsigned int nr_pages, nr_bytes;
3262 int ret;
3263
3264 if (consume_obj_stock(objcg, size))
3265 return 0;
3266
3267 /*
3268 * In theory, memcg->nr_charged_bytes can have enough
3269 * pre-charged bytes to satisfy the allocation. However,
3270 * flushing memcg->nr_charged_bytes requires two atomic
3271 * operations, and memcg->nr_charged_bytes can't be big,
3272 * so it's better to ignore it and try grab some new pages.
3273 * memcg->nr_charged_bytes will be flushed in
3274 * refill_obj_stock(), called from this function or
3275 * independently later.
3276 */
3277 rcu_read_lock();
3278 retry:
3279 memcg = obj_cgroup_memcg(objcg);
3280 if (unlikely(!css_tryget(&memcg->css)))
3281 goto retry;
3282 rcu_read_unlock();
3283
3284 nr_pages = size >> PAGE_SHIFT;
3285 nr_bytes = size & (PAGE_SIZE - 1);
3286
3287 if (nr_bytes)
3288 nr_pages += 1;
3289
3290 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3291 if (!ret && nr_bytes)
3292 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3293
3294 css_put(&memcg->css);
3295 return ret;
3296 }
3297
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3298 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3299 {
3300 refill_obj_stock(objcg, size);
3301 }
3302
3303 #endif /* CONFIG_MEMCG_KMEM */
3304
3305 /*
3306 * Because head->mem_cgroup is not set on tails, set it now.
3307 */
split_page_memcg(struct page * head,unsigned int nr)3308 void split_page_memcg(struct page *head, unsigned int nr)
3309 {
3310 struct mem_cgroup *memcg = head->mem_cgroup;
3311 int kmemcg = PageKmemcg(head);
3312 int i;
3313
3314 if (mem_cgroup_disabled() || !memcg)
3315 return;
3316
3317 for (i = 1; i < nr; i++) {
3318 head[i].mem_cgroup = memcg;
3319 if (kmemcg)
3320 __SetPageKmemcg(head + i);
3321 }
3322 css_get_many(&memcg->css, nr - 1);
3323 }
3324
3325 #ifdef CONFIG_MEMCG_SWAP
3326 /**
3327 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3328 * @entry: swap entry to be moved
3329 * @from: mem_cgroup which the entry is moved from
3330 * @to: mem_cgroup which the entry is moved to
3331 *
3332 * It succeeds only when the swap_cgroup's record for this entry is the same
3333 * as the mem_cgroup's id of @from.
3334 *
3335 * Returns 0 on success, -EINVAL on failure.
3336 *
3337 * The caller must have charged to @to, IOW, called page_counter_charge() about
3338 * both res and memsw, and called css_get().
3339 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3340 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3341 struct mem_cgroup *from, struct mem_cgroup *to)
3342 {
3343 unsigned short old_id, new_id;
3344
3345 old_id = mem_cgroup_id(from);
3346 new_id = mem_cgroup_id(to);
3347
3348 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3349 mod_memcg_state(from, MEMCG_SWAP, -1);
3350 mod_memcg_state(to, MEMCG_SWAP, 1);
3351 return 0;
3352 }
3353 return -EINVAL;
3354 }
3355 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3356 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3357 struct mem_cgroup *from, struct mem_cgroup *to)
3358 {
3359 return -EINVAL;
3360 }
3361 #endif
3362
3363 static DEFINE_MUTEX(memcg_max_mutex);
3364
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3365 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3366 unsigned long max, bool memsw)
3367 {
3368 bool enlarge = false;
3369 bool drained = false;
3370 int ret;
3371 bool limits_invariant;
3372 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3373
3374 do {
3375 if (signal_pending(current)) {
3376 ret = -EINTR;
3377 break;
3378 }
3379
3380 mutex_lock(&memcg_max_mutex);
3381 /*
3382 * Make sure that the new limit (memsw or memory limit) doesn't
3383 * break our basic invariant rule memory.max <= memsw.max.
3384 */
3385 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3386 max <= memcg->memsw.max;
3387 if (!limits_invariant) {
3388 mutex_unlock(&memcg_max_mutex);
3389 ret = -EINVAL;
3390 break;
3391 }
3392 if (max > counter->max)
3393 enlarge = true;
3394 ret = page_counter_set_max(counter, max);
3395 mutex_unlock(&memcg_max_mutex);
3396
3397 if (!ret)
3398 break;
3399
3400 if (!drained) {
3401 drain_all_stock(memcg);
3402 drained = true;
3403 continue;
3404 }
3405
3406 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3407 GFP_KERNEL, !memsw)) {
3408 ret = -EBUSY;
3409 break;
3410 }
3411 } while (true);
3412
3413 if (!ret && enlarge)
3414 memcg_oom_recover(memcg);
3415
3416 return ret;
3417 }
3418
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3419 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3420 gfp_t gfp_mask,
3421 unsigned long *total_scanned)
3422 {
3423 unsigned long nr_reclaimed = 0;
3424 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3425 unsigned long reclaimed;
3426 int loop = 0;
3427 struct mem_cgroup_tree_per_node *mctz;
3428 unsigned long excess;
3429 unsigned long nr_scanned;
3430
3431 if (order > 0)
3432 return 0;
3433
3434 mctz = soft_limit_tree_node(pgdat->node_id);
3435
3436 /*
3437 * Do not even bother to check the largest node if the root
3438 * is empty. Do it lockless to prevent lock bouncing. Races
3439 * are acceptable as soft limit is best effort anyway.
3440 */
3441 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3442 return 0;
3443
3444 /*
3445 * This loop can run a while, specially if mem_cgroup's continuously
3446 * keep exceeding their soft limit and putting the system under
3447 * pressure
3448 */
3449 do {
3450 if (next_mz)
3451 mz = next_mz;
3452 else
3453 mz = mem_cgroup_largest_soft_limit_node(mctz);
3454 if (!mz)
3455 break;
3456
3457 nr_scanned = 0;
3458 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3459 gfp_mask, &nr_scanned);
3460 nr_reclaimed += reclaimed;
3461 *total_scanned += nr_scanned;
3462 spin_lock_irq(&mctz->lock);
3463 __mem_cgroup_remove_exceeded(mz, mctz);
3464
3465 /*
3466 * If we failed to reclaim anything from this memory cgroup
3467 * it is time to move on to the next cgroup
3468 */
3469 next_mz = NULL;
3470 if (!reclaimed)
3471 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3472
3473 excess = soft_limit_excess(mz->memcg);
3474 /*
3475 * One school of thought says that we should not add
3476 * back the node to the tree if reclaim returns 0.
3477 * But our reclaim could return 0, simply because due
3478 * to priority we are exposing a smaller subset of
3479 * memory to reclaim from. Consider this as a longer
3480 * term TODO.
3481 */
3482 /* If excess == 0, no tree ops */
3483 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3484 spin_unlock_irq(&mctz->lock);
3485 css_put(&mz->memcg->css);
3486 loop++;
3487 /*
3488 * Could not reclaim anything and there are no more
3489 * mem cgroups to try or we seem to be looping without
3490 * reclaiming anything.
3491 */
3492 if (!nr_reclaimed &&
3493 (next_mz == NULL ||
3494 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3495 break;
3496 } while (!nr_reclaimed);
3497 if (next_mz)
3498 css_put(&next_mz->memcg->css);
3499 return nr_reclaimed;
3500 }
3501
3502 /*
3503 * Test whether @memcg has children, dead or alive. Note that this
3504 * function doesn't care whether @memcg has use_hierarchy enabled and
3505 * returns %true if there are child csses according to the cgroup
3506 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3507 */
memcg_has_children(struct mem_cgroup * memcg)3508 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3509 {
3510 bool ret;
3511
3512 rcu_read_lock();
3513 ret = css_next_child(NULL, &memcg->css);
3514 rcu_read_unlock();
3515 return ret;
3516 }
3517
3518 /*
3519 * Reclaims as many pages from the given memcg as possible.
3520 *
3521 * Caller is responsible for holding css reference for memcg.
3522 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3523 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3524 {
3525 int nr_retries = MAX_RECLAIM_RETRIES;
3526
3527 /* we call try-to-free pages for make this cgroup empty */
3528 lru_add_drain_all();
3529
3530 drain_all_stock(memcg);
3531
3532 /* try to free all pages in this cgroup */
3533 while (nr_retries && page_counter_read(&memcg->memory)) {
3534 int progress;
3535
3536 if (signal_pending(current))
3537 return -EINTR;
3538
3539 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3540 GFP_KERNEL, true);
3541 if (!progress) {
3542 nr_retries--;
3543 /* maybe some writeback is necessary */
3544 congestion_wait(BLK_RW_ASYNC, HZ/10);
3545 }
3546
3547 }
3548
3549 return 0;
3550 }
3551
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3552 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3553 char *buf, size_t nbytes,
3554 loff_t off)
3555 {
3556 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3557
3558 if (mem_cgroup_is_root(memcg))
3559 return -EINVAL;
3560 return mem_cgroup_force_empty(memcg) ?: nbytes;
3561 }
3562
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3563 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3564 struct cftype *cft)
3565 {
3566 return mem_cgroup_from_css(css)->use_hierarchy;
3567 }
3568
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3569 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3570 struct cftype *cft, u64 val)
3571 {
3572 int retval = 0;
3573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3574 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3575
3576 if (memcg->use_hierarchy == val)
3577 return 0;
3578
3579 /*
3580 * If parent's use_hierarchy is set, we can't make any modifications
3581 * in the child subtrees. If it is unset, then the change can
3582 * occur, provided the current cgroup has no children.
3583 *
3584 * For the root cgroup, parent_mem is NULL, we allow value to be
3585 * set if there are no children.
3586 */
3587 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3588 (val == 1 || val == 0)) {
3589 if (!memcg_has_children(memcg))
3590 memcg->use_hierarchy = val;
3591 else
3592 retval = -EBUSY;
3593 } else
3594 retval = -EINVAL;
3595
3596 return retval;
3597 }
3598
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3599 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3600 {
3601 unsigned long val;
3602
3603 if (mem_cgroup_is_root(memcg)) {
3604 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3605 memcg_page_state(memcg, NR_ANON_MAPPED);
3606 if (swap)
3607 val += memcg_page_state(memcg, MEMCG_SWAP);
3608 } else {
3609 if (!swap)
3610 val = page_counter_read(&memcg->memory);
3611 else
3612 val = page_counter_read(&memcg->memsw);
3613 }
3614 return val;
3615 }
3616
3617 enum {
3618 RES_USAGE,
3619 RES_LIMIT,
3620 RES_MAX_USAGE,
3621 RES_FAILCNT,
3622 RES_SOFT_LIMIT,
3623 };
3624
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3625 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3626 struct cftype *cft)
3627 {
3628 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3629 struct page_counter *counter;
3630
3631 switch (MEMFILE_TYPE(cft->private)) {
3632 case _MEM:
3633 counter = &memcg->memory;
3634 break;
3635 case _MEMSWAP:
3636 counter = &memcg->memsw;
3637 break;
3638 case _KMEM:
3639 counter = &memcg->kmem;
3640 break;
3641 case _TCP:
3642 counter = &memcg->tcpmem;
3643 break;
3644 default:
3645 BUG();
3646 }
3647
3648 switch (MEMFILE_ATTR(cft->private)) {
3649 case RES_USAGE:
3650 if (counter == &memcg->memory)
3651 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3652 if (counter == &memcg->memsw)
3653 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3654 return (u64)page_counter_read(counter) * PAGE_SIZE;
3655 case RES_LIMIT:
3656 return (u64)counter->max * PAGE_SIZE;
3657 case RES_MAX_USAGE:
3658 return (u64)counter->watermark * PAGE_SIZE;
3659 case RES_FAILCNT:
3660 return counter->failcnt;
3661 case RES_SOFT_LIMIT:
3662 return (u64)memcg->soft_limit * PAGE_SIZE;
3663 default:
3664 BUG();
3665 }
3666 }
3667
memcg_flush_percpu_vmstats(struct mem_cgroup * memcg)3668 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3669 {
3670 unsigned long stat[MEMCG_NR_STAT] = {0};
3671 struct mem_cgroup *mi;
3672 int node, cpu, i;
3673
3674 for_each_online_cpu(cpu)
3675 for (i = 0; i < MEMCG_NR_STAT; i++)
3676 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3677
3678 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3679 for (i = 0; i < MEMCG_NR_STAT; i++)
3680 atomic_long_add(stat[i], &mi->vmstats[i]);
3681
3682 for_each_node(node) {
3683 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3684 struct mem_cgroup_per_node *pi;
3685
3686 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3687 stat[i] = 0;
3688
3689 for_each_online_cpu(cpu)
3690 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3691 stat[i] += per_cpu(
3692 pn->lruvec_stat_cpu->count[i], cpu);
3693
3694 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3695 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3696 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3697 }
3698 }
3699
memcg_flush_percpu_vmevents(struct mem_cgroup * memcg)3700 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3701 {
3702 unsigned long events[NR_VM_EVENT_ITEMS];
3703 struct mem_cgroup *mi;
3704 int cpu, i;
3705
3706 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3707 events[i] = 0;
3708
3709 for_each_online_cpu(cpu)
3710 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3711 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3712 cpu);
3713
3714 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3715 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3716 atomic_long_add(events[i], &mi->vmevents[i]);
3717 }
3718
3719 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3720 static int memcg_online_kmem(struct mem_cgroup *memcg)
3721 {
3722 struct obj_cgroup *objcg;
3723 int memcg_id;
3724
3725 if (cgroup_memory_nokmem)
3726 return 0;
3727
3728 BUG_ON(memcg->kmemcg_id >= 0);
3729 BUG_ON(memcg->kmem_state);
3730
3731 memcg_id = memcg_alloc_cache_id();
3732 if (memcg_id < 0)
3733 return memcg_id;
3734
3735 objcg = obj_cgroup_alloc();
3736 if (!objcg) {
3737 memcg_free_cache_id(memcg_id);
3738 return -ENOMEM;
3739 }
3740 objcg->memcg = memcg;
3741 rcu_assign_pointer(memcg->objcg, objcg);
3742
3743 static_branch_enable(&memcg_kmem_enabled_key);
3744
3745 /*
3746 * A memory cgroup is considered kmem-online as soon as it gets
3747 * kmemcg_id. Setting the id after enabling static branching will
3748 * guarantee no one starts accounting before all call sites are
3749 * patched.
3750 */
3751 memcg->kmemcg_id = memcg_id;
3752 memcg->kmem_state = KMEM_ONLINE;
3753
3754 return 0;
3755 }
3756
memcg_offline_kmem(struct mem_cgroup * memcg)3757 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3758 {
3759 struct cgroup_subsys_state *css;
3760 struct mem_cgroup *parent, *child;
3761 int kmemcg_id;
3762
3763 if (memcg->kmem_state != KMEM_ONLINE)
3764 return;
3765
3766 memcg->kmem_state = KMEM_ALLOCATED;
3767
3768 parent = parent_mem_cgroup(memcg);
3769 if (!parent)
3770 parent = root_mem_cgroup;
3771
3772 memcg_reparent_objcgs(memcg, parent);
3773
3774 kmemcg_id = memcg->kmemcg_id;
3775 BUG_ON(kmemcg_id < 0);
3776
3777 /*
3778 * Change kmemcg_id of this cgroup and all its descendants to the
3779 * parent's id, and then move all entries from this cgroup's list_lrus
3780 * to ones of the parent. After we have finished, all list_lrus
3781 * corresponding to this cgroup are guaranteed to remain empty. The
3782 * ordering is imposed by list_lru_node->lock taken by
3783 * memcg_drain_all_list_lrus().
3784 */
3785 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3786 css_for_each_descendant_pre(css, &memcg->css) {
3787 child = mem_cgroup_from_css(css);
3788 BUG_ON(child->kmemcg_id != kmemcg_id);
3789 child->kmemcg_id = parent->kmemcg_id;
3790 if (!memcg->use_hierarchy)
3791 break;
3792 }
3793 rcu_read_unlock();
3794
3795 memcg_drain_all_list_lrus(kmemcg_id, parent);
3796
3797 memcg_free_cache_id(kmemcg_id);
3798 }
3799
memcg_free_kmem(struct mem_cgroup * memcg)3800 static void memcg_free_kmem(struct mem_cgroup *memcg)
3801 {
3802 /* css_alloc() failed, offlining didn't happen */
3803 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3804 memcg_offline_kmem(memcg);
3805 }
3806 #else
memcg_online_kmem(struct mem_cgroup * memcg)3807 static int memcg_online_kmem(struct mem_cgroup *memcg)
3808 {
3809 return 0;
3810 }
memcg_offline_kmem(struct mem_cgroup * memcg)3811 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3812 {
3813 }
memcg_free_kmem(struct mem_cgroup * memcg)3814 static void memcg_free_kmem(struct mem_cgroup *memcg)
3815 {
3816 }
3817 #endif /* CONFIG_MEMCG_KMEM */
3818
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3819 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3820 unsigned long max)
3821 {
3822 int ret;
3823
3824 mutex_lock(&memcg_max_mutex);
3825 ret = page_counter_set_max(&memcg->kmem, max);
3826 mutex_unlock(&memcg_max_mutex);
3827 return ret;
3828 }
3829
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3830 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3831 {
3832 int ret;
3833
3834 mutex_lock(&memcg_max_mutex);
3835
3836 ret = page_counter_set_max(&memcg->tcpmem, max);
3837 if (ret)
3838 goto out;
3839
3840 if (!memcg->tcpmem_active) {
3841 /*
3842 * The active flag needs to be written after the static_key
3843 * update. This is what guarantees that the socket activation
3844 * function is the last one to run. See mem_cgroup_sk_alloc()
3845 * for details, and note that we don't mark any socket as
3846 * belonging to this memcg until that flag is up.
3847 *
3848 * We need to do this, because static_keys will span multiple
3849 * sites, but we can't control their order. If we mark a socket
3850 * as accounted, but the accounting functions are not patched in
3851 * yet, we'll lose accounting.
3852 *
3853 * We never race with the readers in mem_cgroup_sk_alloc(),
3854 * because when this value change, the code to process it is not
3855 * patched in yet.
3856 */
3857 static_branch_inc(&memcg_sockets_enabled_key);
3858 memcg->tcpmem_active = true;
3859 }
3860 out:
3861 mutex_unlock(&memcg_max_mutex);
3862 return ret;
3863 }
3864
3865 /*
3866 * The user of this function is...
3867 * RES_LIMIT.
3868 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3869 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3870 char *buf, size_t nbytes, loff_t off)
3871 {
3872 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3873 unsigned long nr_pages;
3874 int ret;
3875
3876 buf = strstrip(buf);
3877 ret = page_counter_memparse(buf, "-1", &nr_pages);
3878 if (ret)
3879 return ret;
3880
3881 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3882 case RES_LIMIT:
3883 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3884 ret = -EINVAL;
3885 break;
3886 }
3887 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3888 case _MEM:
3889 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3890 break;
3891 case _MEMSWAP:
3892 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3893 break;
3894 case _KMEM:
3895 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3896 "Please report your usecase to linux-mm@kvack.org if you "
3897 "depend on this functionality.\n");
3898 ret = memcg_update_kmem_max(memcg, nr_pages);
3899 break;
3900 case _TCP:
3901 ret = memcg_update_tcp_max(memcg, nr_pages);
3902 break;
3903 }
3904 break;
3905 case RES_SOFT_LIMIT:
3906 memcg->soft_limit = nr_pages;
3907 ret = 0;
3908 break;
3909 }
3910 return ret ?: nbytes;
3911 }
3912
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3913 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3914 size_t nbytes, loff_t off)
3915 {
3916 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3917 struct page_counter *counter;
3918
3919 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3920 case _MEM:
3921 counter = &memcg->memory;
3922 break;
3923 case _MEMSWAP:
3924 counter = &memcg->memsw;
3925 break;
3926 case _KMEM:
3927 counter = &memcg->kmem;
3928 break;
3929 case _TCP:
3930 counter = &memcg->tcpmem;
3931 break;
3932 default:
3933 BUG();
3934 }
3935
3936 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3937 case RES_MAX_USAGE:
3938 page_counter_reset_watermark(counter);
3939 break;
3940 case RES_FAILCNT:
3941 counter->failcnt = 0;
3942 break;
3943 default:
3944 BUG();
3945 }
3946
3947 return nbytes;
3948 }
3949
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3950 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3951 struct cftype *cft)
3952 {
3953 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3954 }
3955
3956 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3957 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3958 struct cftype *cft, u64 val)
3959 {
3960 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3961
3962 if (val & ~MOVE_MASK)
3963 return -EINVAL;
3964
3965 /*
3966 * No kind of locking is needed in here, because ->can_attach() will
3967 * check this value once in the beginning of the process, and then carry
3968 * on with stale data. This means that changes to this value will only
3969 * affect task migrations starting after the change.
3970 */
3971 memcg->move_charge_at_immigrate = val;
3972 return 0;
3973 }
3974 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3975 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3976 struct cftype *cft, u64 val)
3977 {
3978 return -ENOSYS;
3979 }
3980 #endif
3981
3982 #ifdef CONFIG_NUMA
3983
3984 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3985 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3986 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3987
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3988 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3989 int nid, unsigned int lru_mask, bool tree)
3990 {
3991 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3992 unsigned long nr = 0;
3993 enum lru_list lru;
3994
3995 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3996
3997 for_each_lru(lru) {
3998 if (!(BIT(lru) & lru_mask))
3999 continue;
4000 if (tree)
4001 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4002 else
4003 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4004 }
4005 return nr;
4006 }
4007
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)4008 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4009 unsigned int lru_mask,
4010 bool tree)
4011 {
4012 unsigned long nr = 0;
4013 enum lru_list lru;
4014
4015 for_each_lru(lru) {
4016 if (!(BIT(lru) & lru_mask))
4017 continue;
4018 if (tree)
4019 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4020 else
4021 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4022 }
4023 return nr;
4024 }
4025
memcg_numa_stat_show(struct seq_file * m,void * v)4026 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4027 {
4028 struct numa_stat {
4029 const char *name;
4030 unsigned int lru_mask;
4031 };
4032
4033 static const struct numa_stat stats[] = {
4034 { "total", LRU_ALL },
4035 { "file", LRU_ALL_FILE },
4036 { "anon", LRU_ALL_ANON },
4037 { "unevictable", BIT(LRU_UNEVICTABLE) },
4038 };
4039 const struct numa_stat *stat;
4040 int nid;
4041 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4042
4043 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4044 seq_printf(m, "%s=%lu", stat->name,
4045 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4046 false));
4047 for_each_node_state(nid, N_MEMORY)
4048 seq_printf(m, " N%d=%lu", nid,
4049 mem_cgroup_node_nr_lru_pages(memcg, nid,
4050 stat->lru_mask, false));
4051 seq_putc(m, '\n');
4052 }
4053
4054 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4055
4056 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4057 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4058 true));
4059 for_each_node_state(nid, N_MEMORY)
4060 seq_printf(m, " N%d=%lu", nid,
4061 mem_cgroup_node_nr_lru_pages(memcg, nid,
4062 stat->lru_mask, true));
4063 seq_putc(m, '\n');
4064 }
4065
4066 return 0;
4067 }
4068 #endif /* CONFIG_NUMA */
4069
4070 static const unsigned int memcg1_stats[] = {
4071 NR_FILE_PAGES,
4072 NR_ANON_MAPPED,
4073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4074 NR_ANON_THPS,
4075 #endif
4076 NR_SHMEM,
4077 NR_FILE_MAPPED,
4078 NR_FILE_DIRTY,
4079 NR_WRITEBACK,
4080 MEMCG_SWAP,
4081 };
4082
4083 static const char *const memcg1_stat_names[] = {
4084 "cache",
4085 "rss",
4086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4087 "rss_huge",
4088 #endif
4089 "shmem",
4090 "mapped_file",
4091 "dirty",
4092 "writeback",
4093 "swap",
4094 };
4095
4096 /* Universal VM events cgroup1 shows, original sort order */
4097 static const unsigned int memcg1_events[] = {
4098 PGPGIN,
4099 PGPGOUT,
4100 PGFAULT,
4101 PGMAJFAULT,
4102 };
4103
memcg_stat_show(struct seq_file * m,void * v)4104 static int memcg_stat_show(struct seq_file *m, void *v)
4105 {
4106 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4107 unsigned long memory, memsw;
4108 struct mem_cgroup *mi;
4109 unsigned int i;
4110
4111 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4112
4113 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4114 unsigned long nr;
4115
4116 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4117 continue;
4118 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4120 if (memcg1_stats[i] == NR_ANON_THPS)
4121 nr *= HPAGE_PMD_NR;
4122 #endif
4123 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4124 }
4125
4126 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4127 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4128 memcg_events_local(memcg, memcg1_events[i]));
4129
4130 for (i = 0; i < NR_LRU_LISTS; i++) {
4131 #ifdef CONFIG_MEM_PURGEABLE
4132 if (i == LRU_INACTIVE_PURGEABLE || i == LRU_ACTIVE_PURGEABLE)
4133 continue;
4134 #endif
4135 seq_printf(m, "%s %lu\n", lru_list_name(i),
4136 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4137 PAGE_SIZE);
4138 }
4139
4140 /* Hierarchical information */
4141 memory = memsw = PAGE_COUNTER_MAX;
4142 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4143 memory = min(memory, READ_ONCE(mi->memory.max));
4144 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4145 }
4146 seq_printf(m, "hierarchical_memory_limit %llu\n",
4147 (u64)memory * PAGE_SIZE);
4148 if (do_memsw_account())
4149 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4150 (u64)memsw * PAGE_SIZE);
4151
4152 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4153 unsigned long nr;
4154
4155 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4156 continue;
4157 nr = memcg_page_state(memcg, memcg1_stats[i]);
4158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4159 if (memcg1_stats[i] == NR_ANON_THPS)
4160 nr *= HPAGE_PMD_NR;
4161 #endif
4162 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4163 (u64)nr * PAGE_SIZE);
4164 }
4165
4166 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4167 seq_printf(m, "total_%s %llu\n",
4168 vm_event_name(memcg1_events[i]),
4169 (u64)memcg_events(memcg, memcg1_events[i]));
4170
4171 for (i = 0; i < NR_LRU_LISTS; i++) {
4172 #ifdef CONFIG_MEM_PURGEABLE
4173 if (i == LRU_INACTIVE_PURGEABLE || i == LRU_ACTIVE_PURGEABLE)
4174 continue;
4175 #endif
4176 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4177 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4178 PAGE_SIZE);
4179 }
4180
4181 #ifdef CONFIG_DEBUG_VM
4182 {
4183 pg_data_t *pgdat;
4184 struct mem_cgroup_per_node *mz;
4185 unsigned long anon_cost = 0;
4186 unsigned long file_cost = 0;
4187
4188 for_each_online_pgdat(pgdat) {
4189 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4190
4191 anon_cost += mz->lruvec.anon_cost;
4192 file_cost += mz->lruvec.file_cost;
4193 }
4194 seq_printf(m, "anon_cost %lu\n", anon_cost);
4195 seq_printf(m, "file_cost %lu\n", file_cost);
4196 }
4197 #endif
4198
4199 #ifdef CONFIG_HYPERHOLD_DEBUG
4200 memcg_eswap_info_show(m);
4201 #endif
4202 return 0;
4203 }
4204
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4205 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4206 struct cftype *cft)
4207 {
4208 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4209
4210 return mem_cgroup_swappiness(memcg);
4211 }
4212
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4213 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4214 struct cftype *cft, u64 val)
4215 {
4216 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4217
4218 if (val > 200)
4219 return -EINVAL;
4220
4221 if (css->parent)
4222 memcg->swappiness = val;
4223 else
4224 vm_swappiness = val;
4225
4226 return 0;
4227 }
4228
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4229 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4230 {
4231 struct mem_cgroup_threshold_ary *t;
4232 unsigned long usage;
4233 int i;
4234
4235 rcu_read_lock();
4236 if (!swap)
4237 t = rcu_dereference(memcg->thresholds.primary);
4238 else
4239 t = rcu_dereference(memcg->memsw_thresholds.primary);
4240
4241 if (!t)
4242 goto unlock;
4243
4244 usage = mem_cgroup_usage(memcg, swap);
4245
4246 /*
4247 * current_threshold points to threshold just below or equal to usage.
4248 * If it's not true, a threshold was crossed after last
4249 * call of __mem_cgroup_threshold().
4250 */
4251 i = t->current_threshold;
4252
4253 /*
4254 * Iterate backward over array of thresholds starting from
4255 * current_threshold and check if a threshold is crossed.
4256 * If none of thresholds below usage is crossed, we read
4257 * only one element of the array here.
4258 */
4259 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4260 eventfd_signal(t->entries[i].eventfd, 1);
4261
4262 /* i = current_threshold + 1 */
4263 i++;
4264
4265 /*
4266 * Iterate forward over array of thresholds starting from
4267 * current_threshold+1 and check if a threshold is crossed.
4268 * If none of thresholds above usage is crossed, we read
4269 * only one element of the array here.
4270 */
4271 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4272 eventfd_signal(t->entries[i].eventfd, 1);
4273
4274 /* Update current_threshold */
4275 t->current_threshold = i - 1;
4276 unlock:
4277 rcu_read_unlock();
4278 }
4279
mem_cgroup_threshold(struct mem_cgroup * memcg)4280 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4281 {
4282 while (memcg) {
4283 __mem_cgroup_threshold(memcg, false);
4284 if (do_memsw_account())
4285 __mem_cgroup_threshold(memcg, true);
4286
4287 memcg = parent_mem_cgroup(memcg);
4288 }
4289 }
4290
compare_thresholds(const void * a,const void * b)4291 static int compare_thresholds(const void *a, const void *b)
4292 {
4293 const struct mem_cgroup_threshold *_a = a;
4294 const struct mem_cgroup_threshold *_b = b;
4295
4296 if (_a->threshold > _b->threshold)
4297 return 1;
4298
4299 if (_a->threshold < _b->threshold)
4300 return -1;
4301
4302 return 0;
4303 }
4304
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4305 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4306 {
4307 struct mem_cgroup_eventfd_list *ev;
4308
4309 spin_lock(&memcg_oom_lock);
4310
4311 list_for_each_entry(ev, &memcg->oom_notify, list)
4312 eventfd_signal(ev->eventfd, 1);
4313
4314 spin_unlock(&memcg_oom_lock);
4315 return 0;
4316 }
4317
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4318 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4319 {
4320 struct mem_cgroup *iter;
4321
4322 for_each_mem_cgroup_tree(iter, memcg)
4323 mem_cgroup_oom_notify_cb(iter);
4324 }
4325
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4326 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4327 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4328 {
4329 struct mem_cgroup_thresholds *thresholds;
4330 struct mem_cgroup_threshold_ary *new;
4331 unsigned long threshold;
4332 unsigned long usage;
4333 int i, size, ret;
4334
4335 ret = page_counter_memparse(args, "-1", &threshold);
4336 if (ret)
4337 return ret;
4338
4339 mutex_lock(&memcg->thresholds_lock);
4340
4341 if (type == _MEM) {
4342 thresholds = &memcg->thresholds;
4343 usage = mem_cgroup_usage(memcg, false);
4344 } else if (type == _MEMSWAP) {
4345 thresholds = &memcg->memsw_thresholds;
4346 usage = mem_cgroup_usage(memcg, true);
4347 } else
4348 BUG();
4349
4350 /* Check if a threshold crossed before adding a new one */
4351 if (thresholds->primary)
4352 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4353
4354 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4355
4356 /* Allocate memory for new array of thresholds */
4357 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4358 if (!new) {
4359 ret = -ENOMEM;
4360 goto unlock;
4361 }
4362 new->size = size;
4363
4364 /* Copy thresholds (if any) to new array */
4365 if (thresholds->primary)
4366 memcpy(new->entries, thresholds->primary->entries,
4367 flex_array_size(new, entries, size - 1));
4368
4369 /* Add new threshold */
4370 new->entries[size - 1].eventfd = eventfd;
4371 new->entries[size - 1].threshold = threshold;
4372
4373 /* Sort thresholds. Registering of new threshold isn't time-critical */
4374 sort(new->entries, size, sizeof(*new->entries),
4375 compare_thresholds, NULL);
4376
4377 /* Find current threshold */
4378 new->current_threshold = -1;
4379 for (i = 0; i < size; i++) {
4380 if (new->entries[i].threshold <= usage) {
4381 /*
4382 * new->current_threshold will not be used until
4383 * rcu_assign_pointer(), so it's safe to increment
4384 * it here.
4385 */
4386 ++new->current_threshold;
4387 } else
4388 break;
4389 }
4390
4391 /* Free old spare buffer and save old primary buffer as spare */
4392 kfree(thresholds->spare);
4393 thresholds->spare = thresholds->primary;
4394
4395 rcu_assign_pointer(thresholds->primary, new);
4396
4397 /* To be sure that nobody uses thresholds */
4398 synchronize_rcu();
4399
4400 unlock:
4401 mutex_unlock(&memcg->thresholds_lock);
4402
4403 return ret;
4404 }
4405
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4406 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4407 struct eventfd_ctx *eventfd, const char *args)
4408 {
4409 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4410 }
4411
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4412 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4413 struct eventfd_ctx *eventfd, const char *args)
4414 {
4415 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4416 }
4417
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4418 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4419 struct eventfd_ctx *eventfd, enum res_type type)
4420 {
4421 struct mem_cgroup_thresholds *thresholds;
4422 struct mem_cgroup_threshold_ary *new;
4423 unsigned long usage;
4424 int i, j, size, entries;
4425
4426 mutex_lock(&memcg->thresholds_lock);
4427
4428 if (type == _MEM) {
4429 thresholds = &memcg->thresholds;
4430 usage = mem_cgroup_usage(memcg, false);
4431 } else if (type == _MEMSWAP) {
4432 thresholds = &memcg->memsw_thresholds;
4433 usage = mem_cgroup_usage(memcg, true);
4434 } else
4435 BUG();
4436
4437 if (!thresholds->primary)
4438 goto unlock;
4439
4440 /* Check if a threshold crossed before removing */
4441 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4442
4443 /* Calculate new number of threshold */
4444 size = entries = 0;
4445 for (i = 0; i < thresholds->primary->size; i++) {
4446 if (thresholds->primary->entries[i].eventfd != eventfd)
4447 size++;
4448 else
4449 entries++;
4450 }
4451
4452 new = thresholds->spare;
4453
4454 /* If no items related to eventfd have been cleared, nothing to do */
4455 if (!entries)
4456 goto unlock;
4457
4458 /* Set thresholds array to NULL if we don't have thresholds */
4459 if (!size) {
4460 kfree(new);
4461 new = NULL;
4462 goto swap_buffers;
4463 }
4464
4465 new->size = size;
4466
4467 /* Copy thresholds and find current threshold */
4468 new->current_threshold = -1;
4469 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4470 if (thresholds->primary->entries[i].eventfd == eventfd)
4471 continue;
4472
4473 new->entries[j] = thresholds->primary->entries[i];
4474 if (new->entries[j].threshold <= usage) {
4475 /*
4476 * new->current_threshold will not be used
4477 * until rcu_assign_pointer(), so it's safe to increment
4478 * it here.
4479 */
4480 ++new->current_threshold;
4481 }
4482 j++;
4483 }
4484
4485 swap_buffers:
4486 /* Swap primary and spare array */
4487 thresholds->spare = thresholds->primary;
4488
4489 rcu_assign_pointer(thresholds->primary, new);
4490
4491 /* To be sure that nobody uses thresholds */
4492 synchronize_rcu();
4493
4494 /* If all events are unregistered, free the spare array */
4495 if (!new) {
4496 kfree(thresholds->spare);
4497 thresholds->spare = NULL;
4498 }
4499 unlock:
4500 mutex_unlock(&memcg->thresholds_lock);
4501 }
4502
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4503 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4504 struct eventfd_ctx *eventfd)
4505 {
4506 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4507 }
4508
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4509 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4510 struct eventfd_ctx *eventfd)
4511 {
4512 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4513 }
4514
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4515 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4516 struct eventfd_ctx *eventfd, const char *args)
4517 {
4518 struct mem_cgroup_eventfd_list *event;
4519
4520 event = kmalloc(sizeof(*event), GFP_KERNEL);
4521 if (!event)
4522 return -ENOMEM;
4523
4524 spin_lock(&memcg_oom_lock);
4525
4526 event->eventfd = eventfd;
4527 list_add(&event->list, &memcg->oom_notify);
4528
4529 /* already in OOM ? */
4530 if (memcg->under_oom)
4531 eventfd_signal(eventfd, 1);
4532 spin_unlock(&memcg_oom_lock);
4533
4534 return 0;
4535 }
4536
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4537 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4538 struct eventfd_ctx *eventfd)
4539 {
4540 struct mem_cgroup_eventfd_list *ev, *tmp;
4541
4542 spin_lock(&memcg_oom_lock);
4543
4544 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4545 if (ev->eventfd == eventfd) {
4546 list_del(&ev->list);
4547 kfree(ev);
4548 }
4549 }
4550
4551 spin_unlock(&memcg_oom_lock);
4552 }
4553
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4554 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4555 {
4556 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4557
4558 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4559 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4560 seq_printf(sf, "oom_kill %lu\n",
4561 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4562 return 0;
4563 }
4564
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4565 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4566 struct cftype *cft, u64 val)
4567 {
4568 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4569
4570 /* cannot set to root cgroup and only 0 and 1 are allowed */
4571 if (!css->parent || !((val == 0) || (val == 1)))
4572 return -EINVAL;
4573
4574 memcg->oom_kill_disable = val;
4575 if (!val)
4576 memcg_oom_recover(memcg);
4577
4578 return 0;
4579 }
4580
4581 #ifdef CONFIG_CGROUP_WRITEBACK
4582
4583 #include <trace/events/writeback.h>
4584
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4585 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4586 {
4587 return wb_domain_init(&memcg->cgwb_domain, gfp);
4588 }
4589
memcg_wb_domain_exit(struct mem_cgroup * memcg)4590 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4591 {
4592 wb_domain_exit(&memcg->cgwb_domain);
4593 }
4594
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4595 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4596 {
4597 wb_domain_size_changed(&memcg->cgwb_domain);
4598 }
4599
mem_cgroup_wb_domain(struct bdi_writeback * wb)4600 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4601 {
4602 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4603
4604 if (!memcg->css.parent)
4605 return NULL;
4606
4607 return &memcg->cgwb_domain;
4608 }
4609
4610 /*
4611 * idx can be of type enum memcg_stat_item or node_stat_item.
4612 * Keep in sync with memcg_exact_page().
4613 */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)4614 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4615 {
4616 long x = atomic_long_read(&memcg->vmstats[idx]);
4617 int cpu;
4618
4619 for_each_online_cpu(cpu)
4620 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4621 if (x < 0)
4622 x = 0;
4623 return x;
4624 }
4625
4626 /**
4627 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4628 * @wb: bdi_writeback in question
4629 * @pfilepages: out parameter for number of file pages
4630 * @pheadroom: out parameter for number of allocatable pages according to memcg
4631 * @pdirty: out parameter for number of dirty pages
4632 * @pwriteback: out parameter for number of pages under writeback
4633 *
4634 * Determine the numbers of file, headroom, dirty, and writeback pages in
4635 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4636 * is a bit more involved.
4637 *
4638 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4639 * headroom is calculated as the lowest headroom of itself and the
4640 * ancestors. Note that this doesn't consider the actual amount of
4641 * available memory in the system. The caller should further cap
4642 * *@pheadroom accordingly.
4643 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4645 unsigned long *pheadroom, unsigned long *pdirty,
4646 unsigned long *pwriteback)
4647 {
4648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4649 struct mem_cgroup *parent;
4650
4651 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4652
4653 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4654 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4655 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4656 *pheadroom = PAGE_COUNTER_MAX;
4657
4658 while ((parent = parent_mem_cgroup(memcg))) {
4659 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4660 READ_ONCE(memcg->memory.high));
4661 unsigned long used = page_counter_read(&memcg->memory);
4662
4663 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4664 memcg = parent;
4665 }
4666 }
4667
4668 /*
4669 * Foreign dirty flushing
4670 *
4671 * There's an inherent mismatch between memcg and writeback. The former
4672 * trackes ownership per-page while the latter per-inode. This was a
4673 * deliberate design decision because honoring per-page ownership in the
4674 * writeback path is complicated, may lead to higher CPU and IO overheads
4675 * and deemed unnecessary given that write-sharing an inode across
4676 * different cgroups isn't a common use-case.
4677 *
4678 * Combined with inode majority-writer ownership switching, this works well
4679 * enough in most cases but there are some pathological cases. For
4680 * example, let's say there are two cgroups A and B which keep writing to
4681 * different but confined parts of the same inode. B owns the inode and
4682 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4683 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4684 * triggering background writeback. A will be slowed down without a way to
4685 * make writeback of the dirty pages happen.
4686 *
4687 * Conditions like the above can lead to a cgroup getting repatedly and
4688 * severely throttled after making some progress after each
4689 * dirty_expire_interval while the underyling IO device is almost
4690 * completely idle.
4691 *
4692 * Solving this problem completely requires matching the ownership tracking
4693 * granularities between memcg and writeback in either direction. However,
4694 * the more egregious behaviors can be avoided by simply remembering the
4695 * most recent foreign dirtying events and initiating remote flushes on
4696 * them when local writeback isn't enough to keep the memory clean enough.
4697 *
4698 * The following two functions implement such mechanism. When a foreign
4699 * page - a page whose memcg and writeback ownerships don't match - is
4700 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4701 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4702 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4703 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4704 * foreign bdi_writebacks which haven't expired. Both the numbers of
4705 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4706 * limited to MEMCG_CGWB_FRN_CNT.
4707 *
4708 * The mechanism only remembers IDs and doesn't hold any object references.
4709 * As being wrong occasionally doesn't matter, updates and accesses to the
4710 * records are lockless and racy.
4711 */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4712 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4713 struct bdi_writeback *wb)
4714 {
4715 struct mem_cgroup *memcg = page->mem_cgroup;
4716 struct memcg_cgwb_frn *frn;
4717 u64 now = get_jiffies_64();
4718 u64 oldest_at = now;
4719 int oldest = -1;
4720 int i;
4721
4722 trace_track_foreign_dirty(page, wb);
4723
4724 /*
4725 * Pick the slot to use. If there is already a slot for @wb, keep
4726 * using it. If not replace the oldest one which isn't being
4727 * written out.
4728 */
4729 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4730 frn = &memcg->cgwb_frn[i];
4731 if (frn->bdi_id == wb->bdi->id &&
4732 frn->memcg_id == wb->memcg_css->id)
4733 break;
4734 if (time_before64(frn->at, oldest_at) &&
4735 atomic_read(&frn->done.cnt) == 1) {
4736 oldest = i;
4737 oldest_at = frn->at;
4738 }
4739 }
4740
4741 if (i < MEMCG_CGWB_FRN_CNT) {
4742 /*
4743 * Re-using an existing one. Update timestamp lazily to
4744 * avoid making the cacheline hot. We want them to be
4745 * reasonably up-to-date and significantly shorter than
4746 * dirty_expire_interval as that's what expires the record.
4747 * Use the shorter of 1s and dirty_expire_interval / 8.
4748 */
4749 unsigned long update_intv =
4750 min_t(unsigned long, HZ,
4751 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4752
4753 if (time_before64(frn->at, now - update_intv))
4754 frn->at = now;
4755 } else if (oldest >= 0) {
4756 /* replace the oldest free one */
4757 frn = &memcg->cgwb_frn[oldest];
4758 frn->bdi_id = wb->bdi->id;
4759 frn->memcg_id = wb->memcg_css->id;
4760 frn->at = now;
4761 }
4762 }
4763
4764 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4765 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4766 {
4767 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4768 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4769 u64 now = jiffies_64;
4770 int i;
4771
4772 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4773 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4774
4775 /*
4776 * If the record is older than dirty_expire_interval,
4777 * writeback on it has already started. No need to kick it
4778 * off again. Also, don't start a new one if there's
4779 * already one in flight.
4780 */
4781 if (time_after64(frn->at, now - intv) &&
4782 atomic_read(&frn->done.cnt) == 1) {
4783 frn->at = 0;
4784 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4785 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4786 WB_REASON_FOREIGN_FLUSH,
4787 &frn->done);
4788 }
4789 }
4790 }
4791
4792 #else /* CONFIG_CGROUP_WRITEBACK */
4793
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4794 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4795 {
4796 return 0;
4797 }
4798
memcg_wb_domain_exit(struct mem_cgroup * memcg)4799 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4800 {
4801 }
4802
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4803 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4804 {
4805 }
4806
4807 #endif /* CONFIG_CGROUP_WRITEBACK */
4808
4809 /*
4810 * DO NOT USE IN NEW FILES.
4811 *
4812 * "cgroup.event_control" implementation.
4813 *
4814 * This is way over-engineered. It tries to support fully configurable
4815 * events for each user. Such level of flexibility is completely
4816 * unnecessary especially in the light of the planned unified hierarchy.
4817 *
4818 * Please deprecate this and replace with something simpler if at all
4819 * possible.
4820 */
4821
4822 /*
4823 * Unregister event and free resources.
4824 *
4825 * Gets called from workqueue.
4826 */
memcg_event_remove(struct work_struct * work)4827 static void memcg_event_remove(struct work_struct *work)
4828 {
4829 struct mem_cgroup_event *event =
4830 container_of(work, struct mem_cgroup_event, remove);
4831 struct mem_cgroup *memcg = event->memcg;
4832
4833 remove_wait_queue(event->wqh, &event->wait);
4834
4835 event->unregister_event(memcg, event->eventfd);
4836
4837 /* Notify userspace the event is going away. */
4838 eventfd_signal(event->eventfd, 1);
4839
4840 eventfd_ctx_put(event->eventfd);
4841 kfree(event);
4842 css_put(&memcg->css);
4843 }
4844
4845 /*
4846 * Gets called on EPOLLHUP on eventfd when user closes it.
4847 *
4848 * Called with wqh->lock held and interrupts disabled.
4849 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4850 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4851 int sync, void *key)
4852 {
4853 struct mem_cgroup_event *event =
4854 container_of(wait, struct mem_cgroup_event, wait);
4855 struct mem_cgroup *memcg = event->memcg;
4856 __poll_t flags = key_to_poll(key);
4857
4858 if (flags & EPOLLHUP) {
4859 /*
4860 * If the event has been detached at cgroup removal, we
4861 * can simply return knowing the other side will cleanup
4862 * for us.
4863 *
4864 * We can't race against event freeing since the other
4865 * side will require wqh->lock via remove_wait_queue(),
4866 * which we hold.
4867 */
4868 spin_lock(&memcg->event_list_lock);
4869 if (!list_empty(&event->list)) {
4870 list_del_init(&event->list);
4871 /*
4872 * We are in atomic context, but cgroup_event_remove()
4873 * may sleep, so we have to call it in workqueue.
4874 */
4875 schedule_work(&event->remove);
4876 }
4877 spin_unlock(&memcg->event_list_lock);
4878 }
4879
4880 return 0;
4881 }
4882
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4883 static void memcg_event_ptable_queue_proc(struct file *file,
4884 wait_queue_head_t *wqh, poll_table *pt)
4885 {
4886 struct mem_cgroup_event *event =
4887 container_of(pt, struct mem_cgroup_event, pt);
4888
4889 event->wqh = wqh;
4890 add_wait_queue(wqh, &event->wait);
4891 }
4892
4893 /*
4894 * DO NOT USE IN NEW FILES.
4895 *
4896 * Parse input and register new cgroup event handler.
4897 *
4898 * Input must be in format '<event_fd> <control_fd> <args>'.
4899 * Interpretation of args is defined by control file implementation.
4900 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4901 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4902 char *buf, size_t nbytes, loff_t off)
4903 {
4904 struct cgroup_subsys_state *css = of_css(of);
4905 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4906 struct mem_cgroup_event *event;
4907 struct cgroup_subsys_state *cfile_css;
4908 unsigned int efd, cfd;
4909 struct fd efile;
4910 struct fd cfile;
4911 struct dentry *cdentry;
4912 const char *name;
4913 char *endp;
4914 int ret;
4915
4916 buf = strstrip(buf);
4917
4918 efd = simple_strtoul(buf, &endp, 10);
4919 if (*endp != ' ')
4920 return -EINVAL;
4921 buf = endp + 1;
4922
4923 cfd = simple_strtoul(buf, &endp, 10);
4924 if ((*endp != ' ') && (*endp != '\0'))
4925 return -EINVAL;
4926 buf = endp + 1;
4927
4928 event = kzalloc(sizeof(*event), GFP_KERNEL);
4929 if (!event)
4930 return -ENOMEM;
4931
4932 event->memcg = memcg;
4933 INIT_LIST_HEAD(&event->list);
4934 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4935 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4936 INIT_WORK(&event->remove, memcg_event_remove);
4937
4938 efile = fdget(efd);
4939 if (!efile.file) {
4940 ret = -EBADF;
4941 goto out_kfree;
4942 }
4943
4944 event->eventfd = eventfd_ctx_fileget(efile.file);
4945 if (IS_ERR(event->eventfd)) {
4946 ret = PTR_ERR(event->eventfd);
4947 goto out_put_efile;
4948 }
4949
4950 cfile = fdget(cfd);
4951 if (!cfile.file) {
4952 ret = -EBADF;
4953 goto out_put_eventfd;
4954 }
4955
4956 /* the process need read permission on control file */
4957 /* AV: shouldn't we check that it's been opened for read instead? */
4958 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4959 if (ret < 0)
4960 goto out_put_cfile;
4961
4962 /*
4963 * The control file must be a regular cgroup1 file. As a regular cgroup
4964 * file can't be renamed, it's safe to access its name afterwards.
4965 */
4966 cdentry = cfile.file->f_path.dentry;
4967 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4968 ret = -EINVAL;
4969 goto out_put_cfile;
4970 }
4971
4972 /*
4973 * Determine the event callbacks and set them in @event. This used
4974 * to be done via struct cftype but cgroup core no longer knows
4975 * about these events. The following is crude but the whole thing
4976 * is for compatibility anyway.
4977 *
4978 * DO NOT ADD NEW FILES.
4979 */
4980 name = cdentry->d_name.name;
4981
4982 if (!strcmp(name, "memory.usage_in_bytes")) {
4983 event->register_event = mem_cgroup_usage_register_event;
4984 event->unregister_event = mem_cgroup_usage_unregister_event;
4985 } else if (!strcmp(name, "memory.oom_control")) {
4986 event->register_event = mem_cgroup_oom_register_event;
4987 event->unregister_event = mem_cgroup_oom_unregister_event;
4988 } else if (!strcmp(name, "memory.pressure_level")) {
4989 event->register_event = vmpressure_register_event;
4990 event->unregister_event = vmpressure_unregister_event;
4991 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4992 event->register_event = memsw_cgroup_usage_register_event;
4993 event->unregister_event = memsw_cgroup_usage_unregister_event;
4994 } else {
4995 ret = -EINVAL;
4996 goto out_put_cfile;
4997 }
4998
4999 /*
5000 * Verify @cfile should belong to @css. Also, remaining events are
5001 * automatically removed on cgroup destruction but the removal is
5002 * asynchronous, so take an extra ref on @css.
5003 */
5004 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5005 &memory_cgrp_subsys);
5006 ret = -EINVAL;
5007 if (IS_ERR(cfile_css))
5008 goto out_put_cfile;
5009 if (cfile_css != css) {
5010 css_put(cfile_css);
5011 goto out_put_cfile;
5012 }
5013
5014 ret = event->register_event(memcg, event->eventfd, buf);
5015 if (ret)
5016 goto out_put_css;
5017
5018 vfs_poll(efile.file, &event->pt);
5019
5020 spin_lock(&memcg->event_list_lock);
5021 list_add(&event->list, &memcg->event_list);
5022 spin_unlock(&memcg->event_list_lock);
5023
5024 fdput(cfile);
5025 fdput(efile);
5026
5027 return nbytes;
5028
5029 out_put_css:
5030 css_put(css);
5031 out_put_cfile:
5032 fdput(cfile);
5033 out_put_eventfd:
5034 eventfd_ctx_put(event->eventfd);
5035 out_put_efile:
5036 fdput(efile);
5037 out_kfree:
5038 kfree(event);
5039
5040 return ret;
5041 }
5042
5043 static struct cftype mem_cgroup_legacy_files[] = {
5044 {
5045 .name = "usage_in_bytes",
5046 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5047 .read_u64 = mem_cgroup_read_u64,
5048 },
5049 {
5050 .name = "max_usage_in_bytes",
5051 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5052 .write = mem_cgroup_reset,
5053 .read_u64 = mem_cgroup_read_u64,
5054 },
5055 {
5056 .name = "limit_in_bytes",
5057 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5058 .write = mem_cgroup_write,
5059 .read_u64 = mem_cgroup_read_u64,
5060 },
5061 {
5062 .name = "soft_limit_in_bytes",
5063 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5064 .write = mem_cgroup_write,
5065 .read_u64 = mem_cgroup_read_u64,
5066 },
5067 {
5068 .name = "failcnt",
5069 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5070 .write = mem_cgroup_reset,
5071 .read_u64 = mem_cgroup_read_u64,
5072 },
5073 {
5074 .name = "stat",
5075 .seq_show = memcg_stat_show,
5076 },
5077 {
5078 .name = "force_empty",
5079 .write = mem_cgroup_force_empty_write,
5080 },
5081 {
5082 .name = "use_hierarchy",
5083 .write_u64 = mem_cgroup_hierarchy_write,
5084 .read_u64 = mem_cgroup_hierarchy_read,
5085 },
5086 {
5087 .name = "cgroup.event_control", /* XXX: for compat */
5088 .write = memcg_write_event_control,
5089 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5090 },
5091 {
5092 .name = "swappiness",
5093 .read_u64 = mem_cgroup_swappiness_read,
5094 .write_u64 = mem_cgroup_swappiness_write,
5095 },
5096 {
5097 .name = "move_charge_at_immigrate",
5098 .read_u64 = mem_cgroup_move_charge_read,
5099 .write_u64 = mem_cgroup_move_charge_write,
5100 },
5101 {
5102 .name = "oom_control",
5103 .seq_show = mem_cgroup_oom_control_read,
5104 .write_u64 = mem_cgroup_oom_control_write,
5105 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5106 },
5107 {
5108 .name = "pressure_level",
5109 },
5110 #ifdef CONFIG_NUMA
5111 {
5112 .name = "numa_stat",
5113 .seq_show = memcg_numa_stat_show,
5114 },
5115 #endif
5116 {
5117 .name = "kmem.limit_in_bytes",
5118 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5119 .write = mem_cgroup_write,
5120 .read_u64 = mem_cgroup_read_u64,
5121 },
5122 {
5123 .name = "kmem.usage_in_bytes",
5124 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5125 .read_u64 = mem_cgroup_read_u64,
5126 },
5127 {
5128 .name = "kmem.failcnt",
5129 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5130 .write = mem_cgroup_reset,
5131 .read_u64 = mem_cgroup_read_u64,
5132 },
5133 {
5134 .name = "kmem.max_usage_in_bytes",
5135 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5136 .write = mem_cgroup_reset,
5137 .read_u64 = mem_cgroup_read_u64,
5138 },
5139 #if defined(CONFIG_MEMCG_KMEM) && \
5140 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5141 {
5142 .name = "kmem.slabinfo",
5143 .seq_show = memcg_slab_show,
5144 },
5145 #endif
5146 {
5147 .name = "kmem.tcp.limit_in_bytes",
5148 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5149 .write = mem_cgroup_write,
5150 .read_u64 = mem_cgroup_read_u64,
5151 },
5152 {
5153 .name = "kmem.tcp.usage_in_bytes",
5154 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5155 .read_u64 = mem_cgroup_read_u64,
5156 },
5157 {
5158 .name = "kmem.tcp.failcnt",
5159 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5160 .write = mem_cgroup_reset,
5161 .read_u64 = mem_cgroup_read_u64,
5162 },
5163 {
5164 .name = "kmem.tcp.max_usage_in_bytes",
5165 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5166 .write = mem_cgroup_reset,
5167 .read_u64 = mem_cgroup_read_u64,
5168 },
5169 { }, /* terminate */
5170 };
5171
5172 /*
5173 * Private memory cgroup IDR
5174 *
5175 * Swap-out records and page cache shadow entries need to store memcg
5176 * references in constrained space, so we maintain an ID space that is
5177 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5178 * memory-controlled cgroups to 64k.
5179 *
5180 * However, there usually are many references to the offline CSS after
5181 * the cgroup has been destroyed, such as page cache or reclaimable
5182 * slab objects, that don't need to hang on to the ID. We want to keep
5183 * those dead CSS from occupying IDs, or we might quickly exhaust the
5184 * relatively small ID space and prevent the creation of new cgroups
5185 * even when there are much fewer than 64k cgroups - possibly none.
5186 *
5187 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5188 * be freed and recycled when it's no longer needed, which is usually
5189 * when the CSS is offlined.
5190 *
5191 * The only exception to that are records of swapped out tmpfs/shmem
5192 * pages that need to be attributed to live ancestors on swapin. But
5193 * those references are manageable from userspace.
5194 */
5195
5196 static DEFINE_IDR(mem_cgroup_idr);
5197
mem_cgroup_id_remove(struct mem_cgroup * memcg)5198 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5199 {
5200 if (memcg->id.id > 0) {
5201 idr_remove(&mem_cgroup_idr, memcg->id.id);
5202 memcg->id.id = 0;
5203 }
5204 }
5205
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5206 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5207 unsigned int n)
5208 {
5209 refcount_add(n, &memcg->id.ref);
5210 }
5211
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5212 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5213 {
5214 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5215 mem_cgroup_id_remove(memcg);
5216
5217 /* Memcg ID pins CSS */
5218 css_put(&memcg->css);
5219 }
5220 }
5221
mem_cgroup_id_put(struct mem_cgroup * memcg)5222 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5223 {
5224 mem_cgroup_id_put_many(memcg, 1);
5225 }
5226
5227 /**
5228 * mem_cgroup_from_id - look up a memcg from a memcg id
5229 * @id: the memcg id to look up
5230 *
5231 * Caller must hold rcu_read_lock().
5232 */
mem_cgroup_from_id(unsigned short id)5233 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5234 {
5235 WARN_ON_ONCE(!rcu_read_lock_held());
5236 #ifdef CONFIG_HYPERHOLD_FILE_LRU
5237 if (id == -1)
5238 return NULL;
5239 #endif
5240 return idr_find(&mem_cgroup_idr, id);
5241 }
5242
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5243 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5244 {
5245 struct mem_cgroup_per_node *pn;
5246 int tmp = node;
5247 /*
5248 * This routine is called against possible nodes.
5249 * But it's BUG to call kmalloc() against offline node.
5250 *
5251 * TODO: this routine can waste much memory for nodes which will
5252 * never be onlined. It's better to use memory hotplug callback
5253 * function.
5254 */
5255 if (!node_state(node, N_NORMAL_MEMORY))
5256 tmp = -1;
5257 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5258 if (!pn)
5259 return 1;
5260
5261 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5262 GFP_KERNEL_ACCOUNT);
5263 if (!pn->lruvec_stat_local) {
5264 kfree(pn);
5265 return 1;
5266 }
5267
5268 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5269 GFP_KERNEL_ACCOUNT);
5270 if (!pn->lruvec_stat_cpu) {
5271 free_percpu(pn->lruvec_stat_local);
5272 kfree(pn);
5273 return 1;
5274 }
5275
5276 lruvec_init(&pn->lruvec);
5277 pn->usage_in_excess = 0;
5278 pn->lruvec.pgdat = NODE_DATA(node);
5279 pn->on_tree = false;
5280 pn->memcg = memcg;
5281
5282 memcg->nodeinfo[node] = pn;
5283 return 0;
5284 }
5285
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5286 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5287 {
5288 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5289
5290 if (!pn)
5291 return;
5292
5293 free_percpu(pn->lruvec_stat_cpu);
5294 free_percpu(pn->lruvec_stat_local);
5295 kfree(pn);
5296 }
5297
__mem_cgroup_free(struct mem_cgroup * memcg)5298 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5299 {
5300 int node;
5301
5302 for_each_node(node)
5303 free_mem_cgroup_per_node_info(memcg, node);
5304 free_percpu(memcg->vmstats_percpu);
5305 free_percpu(memcg->vmstats_local);
5306 kfree(memcg);
5307 }
5308
mem_cgroup_free(struct mem_cgroup * memcg)5309 static void mem_cgroup_free(struct mem_cgroup *memcg)
5310 {
5311 memcg_wb_domain_exit(memcg);
5312 /*
5313 * Flush percpu vmstats and vmevents to guarantee the value correctness
5314 * on parent's and all ancestor levels.
5315 */
5316 memcg_flush_percpu_vmstats(memcg);
5317 memcg_flush_percpu_vmevents(memcg);
5318 __mem_cgroup_free(memcg);
5319 }
5320
mem_cgroup_alloc(void)5321 static struct mem_cgroup *mem_cgroup_alloc(void)
5322 {
5323 struct mem_cgroup *memcg;
5324 unsigned int size;
5325 int node;
5326 int __maybe_unused i;
5327 long error = -ENOMEM;
5328
5329 size = sizeof(struct mem_cgroup);
5330 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5331
5332 memcg = kzalloc(size, GFP_KERNEL);
5333 if (!memcg)
5334 return ERR_PTR(error);
5335
5336 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5337 1, MEM_CGROUP_ID_MAX,
5338 GFP_KERNEL);
5339 if (memcg->id.id < 0) {
5340 error = memcg->id.id;
5341 goto fail;
5342 }
5343
5344 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5345 GFP_KERNEL_ACCOUNT);
5346 if (!memcg->vmstats_local)
5347 goto fail;
5348
5349 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5350 GFP_KERNEL_ACCOUNT);
5351 if (!memcg->vmstats_percpu)
5352 goto fail;
5353
5354 for_each_node(node)
5355 if (alloc_mem_cgroup_per_node_info(memcg, node))
5356 goto fail;
5357
5358 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5359 goto fail;
5360
5361 INIT_WORK(&memcg->high_work, high_work_func);
5362 INIT_LIST_HEAD(&memcg->oom_notify);
5363 mutex_init(&memcg->thresholds_lock);
5364 spin_lock_init(&memcg->move_lock);
5365 vmpressure_init(&memcg->vmpressure);
5366 INIT_LIST_HEAD(&memcg->event_list);
5367 spin_lock_init(&memcg->event_list_lock);
5368 memcg->socket_pressure = jiffies;
5369 #ifdef CONFIG_MEMCG_KMEM
5370 memcg->kmemcg_id = -1;
5371 INIT_LIST_HEAD(&memcg->objcg_list);
5372 #endif
5373 #ifdef CONFIG_CGROUP_WRITEBACK
5374 INIT_LIST_HEAD(&memcg->cgwb_list);
5375 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5376 memcg->cgwb_frn[i].done =
5377 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5378 #endif
5379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5380 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5381 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5382 memcg->deferred_split_queue.split_queue_len = 0;
5383 #endif
5384
5385 #ifdef CONFIG_HYPERHOLD_MEMCG
5386 if (unlikely(!score_head_inited)) {
5387 INIT_LIST_HEAD(&score_head);
5388 score_head_inited = true;
5389 }
5390 #endif
5391
5392 #ifdef CONFIG_HYPERHOLD_MEMCG
5393 INIT_LIST_HEAD(&memcg->score_node);
5394 #endif
5395 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5396 return memcg;
5397 fail:
5398 mem_cgroup_id_remove(memcg);
5399 __mem_cgroup_free(memcg);
5400 return ERR_PTR(error);
5401 }
5402
5403 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5404 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5405 {
5406 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5407 struct mem_cgroup *memcg, *old_memcg;
5408 long error = -ENOMEM;
5409
5410 old_memcg = set_active_memcg(parent);
5411 memcg = mem_cgroup_alloc();
5412 set_active_memcg(old_memcg);
5413 if (IS_ERR(memcg))
5414 return ERR_CAST(memcg);
5415
5416 #ifdef CONFIG_HYPERHOLD_MEMCG
5417 atomic64_set(&memcg->memcg_reclaimed.app_score, 300);
5418 #endif
5419 #ifdef CONFIG_HYPERHOLD_ZSWAPD
5420 atomic_set(&memcg->memcg_reclaimed.ub_zram2ufs_ratio, 10);
5421 atomic_set(&memcg->memcg_reclaimed.ub_mem2zram_ratio, 60);
5422 atomic_set(&memcg->memcg_reclaimed.refault_threshold, 50);
5423 #endif
5424 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5425 memcg->soft_limit = PAGE_COUNTER_MAX;
5426 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5427 if (parent) {
5428 memcg->swappiness = mem_cgroup_swappiness(parent);
5429 memcg->oom_kill_disable = parent->oom_kill_disable;
5430 }
5431 if (!parent) {
5432 page_counter_init(&memcg->memory, NULL);
5433 page_counter_init(&memcg->swap, NULL);
5434 page_counter_init(&memcg->kmem, NULL);
5435 page_counter_init(&memcg->tcpmem, NULL);
5436 } else if (parent->use_hierarchy) {
5437 memcg->use_hierarchy = true;
5438 page_counter_init(&memcg->memory, &parent->memory);
5439 page_counter_init(&memcg->swap, &parent->swap);
5440 page_counter_init(&memcg->kmem, &parent->kmem);
5441 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5442 } else {
5443 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5444 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5445 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5446 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5447 /*
5448 * Deeper hierachy with use_hierarchy == false doesn't make
5449 * much sense so let cgroup subsystem know about this
5450 * unfortunate state in our controller.
5451 */
5452 if (parent != root_mem_cgroup)
5453 memory_cgrp_subsys.broken_hierarchy = true;
5454 }
5455
5456 /* The following stuff does not apply to the root */
5457 if (!parent) {
5458 root_mem_cgroup = memcg;
5459 return &memcg->css;
5460 }
5461
5462 error = memcg_online_kmem(memcg);
5463 if (error)
5464 goto fail;
5465
5466 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5467 static_branch_inc(&memcg_sockets_enabled_key);
5468
5469 return &memcg->css;
5470 fail:
5471 mem_cgroup_id_remove(memcg);
5472 mem_cgroup_free(memcg);
5473 return ERR_PTR(error);
5474 }
5475
mem_cgroup_css_online(struct cgroup_subsys_state * css)5476 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5477 {
5478 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5479
5480 /*
5481 * A memcg must be visible for memcg_expand_shrinker_maps()
5482 * by the time the maps are allocated. So, we allocate maps
5483 * here, when for_each_mem_cgroup() can't skip it.
5484 */
5485 if (memcg_alloc_shrinker_maps(memcg)) {
5486 mem_cgroup_id_remove(memcg);
5487 return -ENOMEM;
5488 }
5489
5490 #ifdef CONFIG_HYPERHOLD_MEMCG
5491 memcg_app_score_update(memcg);
5492 css_get(css);
5493 #endif
5494
5495 /* Online state pins memcg ID, memcg ID pins CSS */
5496 refcount_set(&memcg->id.ref, 1);
5497 css_get(css);
5498 return 0;
5499 }
5500
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5501 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5502 {
5503 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5504 struct mem_cgroup_event *event, *tmp;
5505
5506 #ifdef CONFIG_HYPERHOLD_MEMCG
5507 unsigned long flags;
5508
5509 write_lock_irqsave(&score_list_lock, flags);
5510 list_del_init(&memcg->score_node);
5511 write_unlock_irqrestore(&score_list_lock, flags);
5512 css_put(css);
5513 #endif
5514
5515 /*
5516 * Unregister events and notify userspace.
5517 * Notify userspace about cgroup removing only after rmdir of cgroup
5518 * directory to avoid race between userspace and kernelspace.
5519 */
5520 spin_lock(&memcg->event_list_lock);
5521 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5522 list_del_init(&event->list);
5523 schedule_work(&event->remove);
5524 }
5525 spin_unlock(&memcg->event_list_lock);
5526
5527 page_counter_set_min(&memcg->memory, 0);
5528 page_counter_set_low(&memcg->memory, 0);
5529
5530 memcg_offline_kmem(memcg);
5531 wb_memcg_offline(memcg);
5532
5533 drain_all_stock(memcg);
5534
5535 mem_cgroup_id_put(memcg);
5536 }
5537
mem_cgroup_css_released(struct cgroup_subsys_state * css)5538 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5539 {
5540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5541
5542 invalidate_reclaim_iterators(memcg);
5543 }
5544
mem_cgroup_css_free(struct cgroup_subsys_state * css)5545 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5546 {
5547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5548 int __maybe_unused i;
5549
5550 #ifdef CONFIG_CGROUP_WRITEBACK
5551 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5552 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5553 #endif
5554 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5555 static_branch_dec(&memcg_sockets_enabled_key);
5556
5557 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5558 static_branch_dec(&memcg_sockets_enabled_key);
5559
5560 vmpressure_cleanup(&memcg->vmpressure);
5561 cancel_work_sync(&memcg->high_work);
5562 mem_cgroup_remove_from_trees(memcg);
5563 memcg_free_shrinker_maps(memcg);
5564 memcg_free_kmem(memcg);
5565 mem_cgroup_free(memcg);
5566 }
5567
5568 /**
5569 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5570 * @css: the target css
5571 *
5572 * Reset the states of the mem_cgroup associated with @css. This is
5573 * invoked when the userland requests disabling on the default hierarchy
5574 * but the memcg is pinned through dependency. The memcg should stop
5575 * applying policies and should revert to the vanilla state as it may be
5576 * made visible again.
5577 *
5578 * The current implementation only resets the essential configurations.
5579 * This needs to be expanded to cover all the visible parts.
5580 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5581 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5582 {
5583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5584
5585 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5586 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5587 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5588 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5589 page_counter_set_min(&memcg->memory, 0);
5590 page_counter_set_low(&memcg->memory, 0);
5591 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5592 memcg->soft_limit = PAGE_COUNTER_MAX;
5593 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5594 memcg_wb_domain_size_changed(memcg);
5595 }
5596
5597 #ifdef CONFIG_MMU
5598 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5599 static int mem_cgroup_do_precharge(unsigned long count)
5600 {
5601 int ret;
5602
5603 /* Try a single bulk charge without reclaim first, kswapd may wake */
5604 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5605 if (!ret) {
5606 mc.precharge += count;
5607 return ret;
5608 }
5609
5610 /* Try charges one by one with reclaim, but do not retry */
5611 while (count--) {
5612 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5613 if (ret)
5614 return ret;
5615 mc.precharge++;
5616 cond_resched();
5617 }
5618 return 0;
5619 }
5620
5621 union mc_target {
5622 struct page *page;
5623 swp_entry_t ent;
5624 };
5625
5626 enum mc_target_type {
5627 MC_TARGET_NONE = 0,
5628 MC_TARGET_PAGE,
5629 MC_TARGET_SWAP,
5630 MC_TARGET_DEVICE,
5631 };
5632
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5633 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5634 unsigned long addr, pte_t ptent)
5635 {
5636 struct page *page = vm_normal_page(vma, addr, ptent);
5637
5638 if (!page || !page_mapped(page))
5639 return NULL;
5640 if (PageAnon(page)) {
5641 if (!(mc.flags & MOVE_ANON))
5642 return NULL;
5643 } else {
5644 if (!(mc.flags & MOVE_FILE))
5645 return NULL;
5646 }
5647 if (!get_page_unless_zero(page))
5648 return NULL;
5649
5650 return page;
5651 }
5652
5653 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5654 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5655 pte_t ptent, swp_entry_t *entry)
5656 {
5657 struct page *page = NULL;
5658 swp_entry_t ent = pte_to_swp_entry(ptent);
5659
5660 if (!(mc.flags & MOVE_ANON))
5661 return NULL;
5662
5663 /*
5664 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5665 * a device and because they are not accessible by CPU they are store
5666 * as special swap entry in the CPU page table.
5667 */
5668 if (is_device_private_entry(ent)) {
5669 page = device_private_entry_to_page(ent);
5670 /*
5671 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5672 * a refcount of 1 when free (unlike normal page)
5673 */
5674 if (!page_ref_add_unless(page, 1, 1))
5675 return NULL;
5676 return page;
5677 }
5678
5679 if (non_swap_entry(ent))
5680 return NULL;
5681
5682 /*
5683 * Because lookup_swap_cache() updates some statistics counter,
5684 * we call find_get_page() with swapper_space directly.
5685 */
5686 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5687 entry->val = ent.val;
5688
5689 return page;
5690 }
5691 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5692 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5693 pte_t ptent, swp_entry_t *entry)
5694 {
5695 return NULL;
5696 }
5697 #endif
5698
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5699 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5700 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5701 {
5702 if (!vma->vm_file) /* anonymous vma */
5703 return NULL;
5704 if (!(mc.flags & MOVE_FILE))
5705 return NULL;
5706
5707 /* page is moved even if it's not RSS of this task(page-faulted). */
5708 /* shmem/tmpfs may report page out on swap: account for that too. */
5709 return find_get_incore_page(vma->vm_file->f_mapping,
5710 linear_page_index(vma, addr));
5711 }
5712
5713 /**
5714 * mem_cgroup_move_account - move account of the page
5715 * @page: the page
5716 * @compound: charge the page as compound or small page
5717 * @from: mem_cgroup which the page is moved from.
5718 * @to: mem_cgroup which the page is moved to. @from != @to.
5719 *
5720 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5721 *
5722 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5723 * from old cgroup.
5724 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5725 static int mem_cgroup_move_account(struct page *page,
5726 bool compound,
5727 struct mem_cgroup *from,
5728 struct mem_cgroup *to)
5729 {
5730 struct lruvec *from_vec, *to_vec;
5731 struct pglist_data *pgdat;
5732 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5733 int ret;
5734
5735 VM_BUG_ON(from == to);
5736 VM_BUG_ON_PAGE(PageLRU(page), page);
5737 VM_BUG_ON(compound && !PageTransHuge(page));
5738
5739 /*
5740 * Prevent mem_cgroup_migrate() from looking at
5741 * page->mem_cgroup of its source page while we change it.
5742 */
5743 ret = -EBUSY;
5744 if (!trylock_page(page))
5745 goto out;
5746
5747 ret = -EINVAL;
5748 if (page->mem_cgroup != from)
5749 goto out_unlock;
5750
5751 pgdat = page_pgdat(page);
5752 from_vec = mem_cgroup_lruvec(from, pgdat);
5753 to_vec = mem_cgroup_lruvec(to, pgdat);
5754
5755 lock_page_memcg(page);
5756
5757 if (PageAnon(page)) {
5758 if (page_mapped(page)) {
5759 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5760 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5761 if (PageTransHuge(page)) {
5762 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5763 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5764 }
5765
5766 }
5767 } else {
5768 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5769 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5770
5771 if (PageSwapBacked(page)) {
5772 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5774 }
5775
5776 if (page_mapped(page)) {
5777 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5778 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5779 }
5780
5781 if (PageDirty(page)) {
5782 struct address_space *mapping = page_mapping(page);
5783
5784 if (mapping_can_writeback(mapping)) {
5785 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5786 -nr_pages);
5787 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5788 nr_pages);
5789 }
5790 }
5791 }
5792
5793 if (PageWriteback(page)) {
5794 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5795 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5796 }
5797
5798 /*
5799 * All state has been migrated, let's switch to the new memcg.
5800 *
5801 * It is safe to change page->mem_cgroup here because the page
5802 * is referenced, charged, isolated, and locked: we can't race
5803 * with (un)charging, migration, LRU putback, or anything else
5804 * that would rely on a stable page->mem_cgroup.
5805 *
5806 * Note that lock_page_memcg is a memcg lock, not a page lock,
5807 * to save space. As soon as we switch page->mem_cgroup to a
5808 * new memcg that isn't locked, the above state can change
5809 * concurrently again. Make sure we're truly done with it.
5810 */
5811 smp_mb();
5812
5813 css_get(&to->css);
5814 css_put(&from->css);
5815
5816 page->mem_cgroup = to;
5817
5818 __unlock_page_memcg(from);
5819
5820 ret = 0;
5821
5822 local_irq_disable();
5823 mem_cgroup_charge_statistics(to, page, nr_pages);
5824 memcg_check_events(to, page);
5825 mem_cgroup_charge_statistics(from, page, -nr_pages);
5826 memcg_check_events(from, page);
5827 local_irq_enable();
5828 out_unlock:
5829 unlock_page(page);
5830 out:
5831 return ret;
5832 }
5833
5834 /**
5835 * get_mctgt_type - get target type of moving charge
5836 * @vma: the vma the pte to be checked belongs
5837 * @addr: the address corresponding to the pte to be checked
5838 * @ptent: the pte to be checked
5839 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5840 *
5841 * Returns
5842 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5843 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5844 * move charge. if @target is not NULL, the page is stored in target->page
5845 * with extra refcnt got(Callers should handle it).
5846 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5847 * target for charge migration. if @target is not NULL, the entry is stored
5848 * in target->ent.
5849 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5850 * (so ZONE_DEVICE page and thus not on the lru).
5851 * For now we such page is charge like a regular page would be as for all
5852 * intent and purposes it is just special memory taking the place of a
5853 * regular page.
5854 *
5855 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5856 *
5857 * Called with pte lock held.
5858 */
5859
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5860 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5861 unsigned long addr, pte_t ptent, union mc_target *target)
5862 {
5863 struct page *page = NULL;
5864 enum mc_target_type ret = MC_TARGET_NONE;
5865 swp_entry_t ent = { .val = 0 };
5866
5867 if (pte_present(ptent))
5868 page = mc_handle_present_pte(vma, addr, ptent);
5869 else if (is_swap_pte(ptent))
5870 page = mc_handle_swap_pte(vma, ptent, &ent);
5871 else if (pte_none(ptent))
5872 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5873
5874 if (!page && !ent.val)
5875 return ret;
5876 if (page) {
5877 /*
5878 * Do only loose check w/o serialization.
5879 * mem_cgroup_move_account() checks the page is valid or
5880 * not under LRU exclusion.
5881 */
5882 if (page->mem_cgroup == mc.from) {
5883 ret = MC_TARGET_PAGE;
5884 if (is_device_private_page(page))
5885 ret = MC_TARGET_DEVICE;
5886 if (target)
5887 target->page = page;
5888 }
5889 if (!ret || !target)
5890 put_page(page);
5891 }
5892 /*
5893 * There is a swap entry and a page doesn't exist or isn't charged.
5894 * But we cannot move a tail-page in a THP.
5895 */
5896 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5897 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5898 ret = MC_TARGET_SWAP;
5899 if (target)
5900 target->ent = ent;
5901 }
5902 return ret;
5903 }
5904
5905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5906 /*
5907 * We don't consider PMD mapped swapping or file mapped pages because THP does
5908 * not support them for now.
5909 * Caller should make sure that pmd_trans_huge(pmd) is true.
5910 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5911 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5912 unsigned long addr, pmd_t pmd, union mc_target *target)
5913 {
5914 struct page *page = NULL;
5915 enum mc_target_type ret = MC_TARGET_NONE;
5916
5917 if (unlikely(is_swap_pmd(pmd))) {
5918 VM_BUG_ON(thp_migration_supported() &&
5919 !is_pmd_migration_entry(pmd));
5920 return ret;
5921 }
5922 page = pmd_page(pmd);
5923 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5924 if (!(mc.flags & MOVE_ANON))
5925 return ret;
5926 if (page->mem_cgroup == mc.from) {
5927 ret = MC_TARGET_PAGE;
5928 if (target) {
5929 get_page(page);
5930 target->page = page;
5931 }
5932 }
5933 return ret;
5934 }
5935 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5936 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5937 unsigned long addr, pmd_t pmd, union mc_target *target)
5938 {
5939 return MC_TARGET_NONE;
5940 }
5941 #endif
5942
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5943 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5944 unsigned long addr, unsigned long end,
5945 struct mm_walk *walk)
5946 {
5947 struct vm_area_struct *vma = walk->vma;
5948 pte_t *pte;
5949 spinlock_t *ptl;
5950
5951 ptl = pmd_trans_huge_lock(pmd, vma);
5952 if (ptl) {
5953 /*
5954 * Note their can not be MC_TARGET_DEVICE for now as we do not
5955 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5956 * this might change.
5957 */
5958 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5959 mc.precharge += HPAGE_PMD_NR;
5960 spin_unlock(ptl);
5961 return 0;
5962 }
5963
5964 if (pmd_trans_unstable(pmd))
5965 return 0;
5966 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5967 for (; addr != end; pte++, addr += PAGE_SIZE)
5968 if (get_mctgt_type(vma, addr, *pte, NULL))
5969 mc.precharge++; /* increment precharge temporarily */
5970 pte_unmap_unlock(pte - 1, ptl);
5971 cond_resched();
5972
5973 return 0;
5974 }
5975
5976 static const struct mm_walk_ops precharge_walk_ops = {
5977 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5978 };
5979
mem_cgroup_count_precharge(struct mm_struct * mm)5980 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5981 {
5982 unsigned long precharge;
5983
5984 mmap_read_lock(mm);
5985 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5986 mmap_read_unlock(mm);
5987
5988 precharge = mc.precharge;
5989 mc.precharge = 0;
5990
5991 return precharge;
5992 }
5993
mem_cgroup_precharge_mc(struct mm_struct * mm)5994 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5995 {
5996 unsigned long precharge = mem_cgroup_count_precharge(mm);
5997
5998 VM_BUG_ON(mc.moving_task);
5999 mc.moving_task = current;
6000 return mem_cgroup_do_precharge(precharge);
6001 }
6002
6003 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6004 static void __mem_cgroup_clear_mc(void)
6005 {
6006 struct mem_cgroup *from = mc.from;
6007 struct mem_cgroup *to = mc.to;
6008
6009 /* we must uncharge all the leftover precharges from mc.to */
6010 if (mc.precharge) {
6011 cancel_charge(mc.to, mc.precharge);
6012 mc.precharge = 0;
6013 }
6014 /*
6015 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6016 * we must uncharge here.
6017 */
6018 if (mc.moved_charge) {
6019 cancel_charge(mc.from, mc.moved_charge);
6020 mc.moved_charge = 0;
6021 }
6022 /* we must fixup refcnts and charges */
6023 if (mc.moved_swap) {
6024 /* uncharge swap account from the old cgroup */
6025 if (!mem_cgroup_is_root(mc.from))
6026 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6027
6028 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6029
6030 /*
6031 * we charged both to->memory and to->memsw, so we
6032 * should uncharge to->memory.
6033 */
6034 if (!mem_cgroup_is_root(mc.to))
6035 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6036
6037 mc.moved_swap = 0;
6038 }
6039 memcg_oom_recover(from);
6040 memcg_oom_recover(to);
6041 wake_up_all(&mc.waitq);
6042 }
6043
mem_cgroup_clear_mc(void)6044 static void mem_cgroup_clear_mc(void)
6045 {
6046 struct mm_struct *mm = mc.mm;
6047
6048 /*
6049 * we must clear moving_task before waking up waiters at the end of
6050 * task migration.
6051 */
6052 mc.moving_task = NULL;
6053 __mem_cgroup_clear_mc();
6054 spin_lock(&mc.lock);
6055 mc.from = NULL;
6056 mc.to = NULL;
6057 mc.mm = NULL;
6058 spin_unlock(&mc.lock);
6059
6060 mmput(mm);
6061 }
6062
mem_cgroup_can_attach(struct cgroup_taskset * tset)6063 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6064 {
6065 struct cgroup_subsys_state *css;
6066 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6067 struct mem_cgroup *from;
6068 struct task_struct *leader, *p;
6069 struct mm_struct *mm;
6070 unsigned long move_flags;
6071 int ret = 0;
6072
6073 /* charge immigration isn't supported on the default hierarchy */
6074 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6075 return 0;
6076
6077 /*
6078 * Multi-process migrations only happen on the default hierarchy
6079 * where charge immigration is not used. Perform charge
6080 * immigration if @tset contains a leader and whine if there are
6081 * multiple.
6082 */
6083 p = NULL;
6084 cgroup_taskset_for_each_leader(leader, css, tset) {
6085 WARN_ON_ONCE(p);
6086 p = leader;
6087 memcg = mem_cgroup_from_css(css);
6088 }
6089 if (!p)
6090 return 0;
6091
6092 /*
6093 * We are now commited to this value whatever it is. Changes in this
6094 * tunable will only affect upcoming migrations, not the current one.
6095 * So we need to save it, and keep it going.
6096 */
6097 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6098 if (!move_flags)
6099 return 0;
6100
6101 from = mem_cgroup_from_task(p);
6102
6103 VM_BUG_ON(from == memcg);
6104
6105 mm = get_task_mm(p);
6106 if (!mm)
6107 return 0;
6108 /* We move charges only when we move a owner of the mm */
6109 if (mm->owner == p) {
6110 VM_BUG_ON(mc.from);
6111 VM_BUG_ON(mc.to);
6112 VM_BUG_ON(mc.precharge);
6113 VM_BUG_ON(mc.moved_charge);
6114 VM_BUG_ON(mc.moved_swap);
6115
6116 spin_lock(&mc.lock);
6117 mc.mm = mm;
6118 mc.from = from;
6119 mc.to = memcg;
6120 mc.flags = move_flags;
6121 spin_unlock(&mc.lock);
6122 /* We set mc.moving_task later */
6123
6124 ret = mem_cgroup_precharge_mc(mm);
6125 if (ret)
6126 mem_cgroup_clear_mc();
6127 } else {
6128 mmput(mm);
6129 }
6130 return ret;
6131 }
6132
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6133 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6134 {
6135 if (mc.to)
6136 mem_cgroup_clear_mc();
6137 }
6138
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6139 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6140 unsigned long addr, unsigned long end,
6141 struct mm_walk *walk)
6142 {
6143 int ret = 0;
6144 struct vm_area_struct *vma = walk->vma;
6145 pte_t *pte;
6146 spinlock_t *ptl;
6147 enum mc_target_type target_type;
6148 union mc_target target;
6149 struct page *page;
6150
6151 ptl = pmd_trans_huge_lock(pmd, vma);
6152 if (ptl) {
6153 if (mc.precharge < HPAGE_PMD_NR) {
6154 spin_unlock(ptl);
6155 return 0;
6156 }
6157 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6158 if (target_type == MC_TARGET_PAGE) {
6159 page = target.page;
6160 if (!isolate_lru_page(page)) {
6161 if (!mem_cgroup_move_account(page, true,
6162 mc.from, mc.to)) {
6163 mc.precharge -= HPAGE_PMD_NR;
6164 mc.moved_charge += HPAGE_PMD_NR;
6165 }
6166 putback_lru_page(page);
6167 }
6168 put_page(page);
6169 } else if (target_type == MC_TARGET_DEVICE) {
6170 page = target.page;
6171 if (!mem_cgroup_move_account(page, true,
6172 mc.from, mc.to)) {
6173 mc.precharge -= HPAGE_PMD_NR;
6174 mc.moved_charge += HPAGE_PMD_NR;
6175 }
6176 put_page(page);
6177 }
6178 spin_unlock(ptl);
6179 return 0;
6180 }
6181
6182 if (pmd_trans_unstable(pmd))
6183 return 0;
6184 retry:
6185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6186 for (; addr != end; addr += PAGE_SIZE) {
6187 pte_t ptent = *(pte++);
6188 bool device = false;
6189 swp_entry_t ent;
6190
6191 if (!mc.precharge)
6192 break;
6193
6194 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6195 case MC_TARGET_DEVICE:
6196 device = true;
6197 fallthrough;
6198 case MC_TARGET_PAGE:
6199 page = target.page;
6200 /*
6201 * We can have a part of the split pmd here. Moving it
6202 * can be done but it would be too convoluted so simply
6203 * ignore such a partial THP and keep it in original
6204 * memcg. There should be somebody mapping the head.
6205 */
6206 if (PageTransCompound(page))
6207 goto put;
6208 if (!device && isolate_lru_page(page))
6209 goto put;
6210 if (!mem_cgroup_move_account(page, false,
6211 mc.from, mc.to)) {
6212 mc.precharge--;
6213 /* we uncharge from mc.from later. */
6214 mc.moved_charge++;
6215 }
6216 if (!device)
6217 putback_lru_page(page);
6218 put: /* get_mctgt_type() gets the page */
6219 put_page(page);
6220 break;
6221 case MC_TARGET_SWAP:
6222 ent = target.ent;
6223 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6224 mc.precharge--;
6225 mem_cgroup_id_get_many(mc.to, 1);
6226 /* we fixup other refcnts and charges later. */
6227 mc.moved_swap++;
6228 }
6229 break;
6230 default:
6231 break;
6232 }
6233 }
6234 pte_unmap_unlock(pte - 1, ptl);
6235 cond_resched();
6236
6237 if (addr != end) {
6238 /*
6239 * We have consumed all precharges we got in can_attach().
6240 * We try charge one by one, but don't do any additional
6241 * charges to mc.to if we have failed in charge once in attach()
6242 * phase.
6243 */
6244 ret = mem_cgroup_do_precharge(1);
6245 if (!ret)
6246 goto retry;
6247 }
6248
6249 return ret;
6250 }
6251
6252 static const struct mm_walk_ops charge_walk_ops = {
6253 .pmd_entry = mem_cgroup_move_charge_pte_range,
6254 };
6255
mem_cgroup_move_charge(void)6256 static void mem_cgroup_move_charge(void)
6257 {
6258 lru_add_drain_all();
6259 /*
6260 * Signal lock_page_memcg() to take the memcg's move_lock
6261 * while we're moving its pages to another memcg. Then wait
6262 * for already started RCU-only updates to finish.
6263 */
6264 atomic_inc(&mc.from->moving_account);
6265 synchronize_rcu();
6266 retry:
6267 if (unlikely(!mmap_read_trylock(mc.mm))) {
6268 /*
6269 * Someone who are holding the mmap_lock might be waiting in
6270 * waitq. So we cancel all extra charges, wake up all waiters,
6271 * and retry. Because we cancel precharges, we might not be able
6272 * to move enough charges, but moving charge is a best-effort
6273 * feature anyway, so it wouldn't be a big problem.
6274 */
6275 __mem_cgroup_clear_mc();
6276 cond_resched();
6277 goto retry;
6278 }
6279 /*
6280 * When we have consumed all precharges and failed in doing
6281 * additional charge, the page walk just aborts.
6282 */
6283 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6284 NULL);
6285
6286 mmap_read_unlock(mc.mm);
6287 atomic_dec(&mc.from->moving_account);
6288 }
6289
mem_cgroup_move_task(void)6290 static void mem_cgroup_move_task(void)
6291 {
6292 if (mc.to) {
6293 mem_cgroup_move_charge();
6294 mem_cgroup_clear_mc();
6295 }
6296 }
6297 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6298 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6299 {
6300 return 0;
6301 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6302 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6303 {
6304 }
mem_cgroup_move_task(void)6305 static void mem_cgroup_move_task(void)
6306 {
6307 }
6308 #endif
6309
6310 /*
6311 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6312 * to verify whether we're attached to the default hierarchy on each mount
6313 * attempt.
6314 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6315 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6316 {
6317 /*
6318 * use_hierarchy is forced on the default hierarchy. cgroup core
6319 * guarantees that @root doesn't have any children, so turning it
6320 * on for the root memcg is enough.
6321 */
6322 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6323 root_mem_cgroup->use_hierarchy = true;
6324 else
6325 root_mem_cgroup->use_hierarchy = false;
6326 }
6327
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6328 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6329 {
6330 if (value == PAGE_COUNTER_MAX)
6331 seq_puts(m, "max\n");
6332 else
6333 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6334
6335 return 0;
6336 }
6337
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6338 static u64 memory_current_read(struct cgroup_subsys_state *css,
6339 struct cftype *cft)
6340 {
6341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6342
6343 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6344 }
6345
memory_min_show(struct seq_file * m,void * v)6346 static int memory_min_show(struct seq_file *m, void *v)
6347 {
6348 return seq_puts_memcg_tunable(m,
6349 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6350 }
6351
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6352 static ssize_t memory_min_write(struct kernfs_open_file *of,
6353 char *buf, size_t nbytes, loff_t off)
6354 {
6355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6356 unsigned long min;
6357 int err;
6358
6359 buf = strstrip(buf);
6360 err = page_counter_memparse(buf, "max", &min);
6361 if (err)
6362 return err;
6363
6364 page_counter_set_min(&memcg->memory, min);
6365
6366 return nbytes;
6367 }
6368
memory_low_show(struct seq_file * m,void * v)6369 static int memory_low_show(struct seq_file *m, void *v)
6370 {
6371 return seq_puts_memcg_tunable(m,
6372 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6373 }
6374
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6375 static ssize_t memory_low_write(struct kernfs_open_file *of,
6376 char *buf, size_t nbytes, loff_t off)
6377 {
6378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6379 unsigned long low;
6380 int err;
6381
6382 buf = strstrip(buf);
6383 err = page_counter_memparse(buf, "max", &low);
6384 if (err)
6385 return err;
6386
6387 page_counter_set_low(&memcg->memory, low);
6388
6389 return nbytes;
6390 }
6391
memory_high_show(struct seq_file * m,void * v)6392 static int memory_high_show(struct seq_file *m, void *v)
6393 {
6394 return seq_puts_memcg_tunable(m,
6395 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6396 }
6397
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6398 static ssize_t memory_high_write(struct kernfs_open_file *of,
6399 char *buf, size_t nbytes, loff_t off)
6400 {
6401 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6402 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6403 bool drained = false;
6404 unsigned long high;
6405 int err;
6406
6407 buf = strstrip(buf);
6408 err = page_counter_memparse(buf, "max", &high);
6409 if (err)
6410 return err;
6411
6412 page_counter_set_high(&memcg->memory, high);
6413
6414 for (;;) {
6415 unsigned long nr_pages = page_counter_read(&memcg->memory);
6416 unsigned long reclaimed;
6417
6418 if (nr_pages <= high)
6419 break;
6420
6421 if (signal_pending(current))
6422 break;
6423
6424 if (!drained) {
6425 drain_all_stock(memcg);
6426 drained = true;
6427 continue;
6428 }
6429
6430 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6431 GFP_KERNEL, true);
6432
6433 if (!reclaimed && !nr_retries--)
6434 break;
6435 }
6436
6437 memcg_wb_domain_size_changed(memcg);
6438 return nbytes;
6439 }
6440
memory_max_show(struct seq_file * m,void * v)6441 static int memory_max_show(struct seq_file *m, void *v)
6442 {
6443 return seq_puts_memcg_tunable(m,
6444 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6445 }
6446
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6447 static ssize_t memory_max_write(struct kernfs_open_file *of,
6448 char *buf, size_t nbytes, loff_t off)
6449 {
6450 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6451 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6452 bool drained = false;
6453 unsigned long max;
6454 int err;
6455
6456 buf = strstrip(buf);
6457 err = page_counter_memparse(buf, "max", &max);
6458 if (err)
6459 return err;
6460
6461 xchg(&memcg->memory.max, max);
6462
6463 for (;;) {
6464 unsigned long nr_pages = page_counter_read(&memcg->memory);
6465
6466 if (nr_pages <= max)
6467 break;
6468
6469 if (signal_pending(current))
6470 break;
6471
6472 if (!drained) {
6473 drain_all_stock(memcg);
6474 drained = true;
6475 continue;
6476 }
6477
6478 if (nr_reclaims) {
6479 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6480 GFP_KERNEL, true))
6481 nr_reclaims--;
6482 continue;
6483 }
6484
6485 memcg_memory_event(memcg, MEMCG_OOM);
6486 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6487 break;
6488 }
6489
6490 memcg_wb_domain_size_changed(memcg);
6491 return nbytes;
6492 }
6493
__memory_events_show(struct seq_file * m,atomic_long_t * events)6494 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6495 {
6496 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6497 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6498 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6499 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6500 seq_printf(m, "oom_kill %lu\n",
6501 atomic_long_read(&events[MEMCG_OOM_KILL]));
6502 }
6503
memory_events_show(struct seq_file * m,void * v)6504 static int memory_events_show(struct seq_file *m, void *v)
6505 {
6506 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6507
6508 __memory_events_show(m, memcg->memory_events);
6509 return 0;
6510 }
6511
memory_events_local_show(struct seq_file * m,void * v)6512 static int memory_events_local_show(struct seq_file *m, void *v)
6513 {
6514 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6515
6516 __memory_events_show(m, memcg->memory_events_local);
6517 return 0;
6518 }
6519
memory_stat_show(struct seq_file * m,void * v)6520 static int memory_stat_show(struct seq_file *m, void *v)
6521 {
6522 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6523 char *buf;
6524
6525 buf = memory_stat_format(memcg);
6526 if (!buf)
6527 return -ENOMEM;
6528 seq_puts(m, buf);
6529 kfree(buf);
6530 return 0;
6531 }
6532
6533 #ifdef CONFIG_NUMA
memory_numa_stat_show(struct seq_file * m,void * v)6534 static int memory_numa_stat_show(struct seq_file *m, void *v)
6535 {
6536 int i;
6537 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6538
6539 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6540 int nid;
6541
6542 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6543 continue;
6544
6545 seq_printf(m, "%s", memory_stats[i].name);
6546 for_each_node_state(nid, N_MEMORY) {
6547 u64 size;
6548 struct lruvec *lruvec;
6549
6550 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6551 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6552 size *= memory_stats[i].ratio;
6553 seq_printf(m, " N%d=%llu", nid, size);
6554 }
6555 seq_putc(m, '\n');
6556 }
6557
6558 return 0;
6559 }
6560 #endif
6561
memory_oom_group_show(struct seq_file * m,void * v)6562 static int memory_oom_group_show(struct seq_file *m, void *v)
6563 {
6564 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6565
6566 seq_printf(m, "%d\n", memcg->oom_group);
6567
6568 return 0;
6569 }
6570
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6571 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6572 char *buf, size_t nbytes, loff_t off)
6573 {
6574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6575 int ret, oom_group;
6576
6577 buf = strstrip(buf);
6578 if (!buf)
6579 return -EINVAL;
6580
6581 ret = kstrtoint(buf, 0, &oom_group);
6582 if (ret)
6583 return ret;
6584
6585 if (oom_group != 0 && oom_group != 1)
6586 return -EINVAL;
6587
6588 memcg->oom_group = oom_group;
6589
6590 return nbytes;
6591 }
6592
6593 static struct cftype memory_files[] = {
6594 {
6595 .name = "current",
6596 .flags = CFTYPE_NOT_ON_ROOT,
6597 .read_u64 = memory_current_read,
6598 },
6599 {
6600 .name = "min",
6601 .flags = CFTYPE_NOT_ON_ROOT,
6602 .seq_show = memory_min_show,
6603 .write = memory_min_write,
6604 },
6605 {
6606 .name = "low",
6607 .flags = CFTYPE_NOT_ON_ROOT,
6608 .seq_show = memory_low_show,
6609 .write = memory_low_write,
6610 },
6611 {
6612 .name = "high",
6613 .flags = CFTYPE_NOT_ON_ROOT,
6614 .seq_show = memory_high_show,
6615 .write = memory_high_write,
6616 },
6617 {
6618 .name = "max",
6619 .flags = CFTYPE_NOT_ON_ROOT,
6620 .seq_show = memory_max_show,
6621 .write = memory_max_write,
6622 },
6623 {
6624 .name = "events",
6625 .flags = CFTYPE_NOT_ON_ROOT,
6626 .file_offset = offsetof(struct mem_cgroup, events_file),
6627 .seq_show = memory_events_show,
6628 },
6629 {
6630 .name = "events.local",
6631 .flags = CFTYPE_NOT_ON_ROOT,
6632 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6633 .seq_show = memory_events_local_show,
6634 },
6635 {
6636 .name = "stat",
6637 .seq_show = memory_stat_show,
6638 },
6639 #ifdef CONFIG_NUMA
6640 {
6641 .name = "numa_stat",
6642 .seq_show = memory_numa_stat_show,
6643 },
6644 #endif
6645 {
6646 .name = "oom.group",
6647 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6648 .seq_show = memory_oom_group_show,
6649 .write = memory_oom_group_write,
6650 },
6651 { } /* terminate */
6652 };
6653
6654 struct cgroup_subsys memory_cgrp_subsys = {
6655 .css_alloc = mem_cgroup_css_alloc,
6656 .css_online = mem_cgroup_css_online,
6657 .css_offline = mem_cgroup_css_offline,
6658 .css_released = mem_cgroup_css_released,
6659 .css_free = mem_cgroup_css_free,
6660 .css_reset = mem_cgroup_css_reset,
6661 .can_attach = mem_cgroup_can_attach,
6662 .cancel_attach = mem_cgroup_cancel_attach,
6663 .post_attach = mem_cgroup_move_task,
6664 .bind = mem_cgroup_bind,
6665 .dfl_cftypes = memory_files,
6666 .legacy_cftypes = mem_cgroup_legacy_files,
6667 .early_init = 0,
6668 };
6669
6670 /*
6671 * This function calculates an individual cgroup's effective
6672 * protection which is derived from its own memory.min/low, its
6673 * parent's and siblings' settings, as well as the actual memory
6674 * distribution in the tree.
6675 *
6676 * The following rules apply to the effective protection values:
6677 *
6678 * 1. At the first level of reclaim, effective protection is equal to
6679 * the declared protection in memory.min and memory.low.
6680 *
6681 * 2. To enable safe delegation of the protection configuration, at
6682 * subsequent levels the effective protection is capped to the
6683 * parent's effective protection.
6684 *
6685 * 3. To make complex and dynamic subtrees easier to configure, the
6686 * user is allowed to overcommit the declared protection at a given
6687 * level. If that is the case, the parent's effective protection is
6688 * distributed to the children in proportion to how much protection
6689 * they have declared and how much of it they are utilizing.
6690 *
6691 * This makes distribution proportional, but also work-conserving:
6692 * if one cgroup claims much more protection than it uses memory,
6693 * the unused remainder is available to its siblings.
6694 *
6695 * 4. Conversely, when the declared protection is undercommitted at a
6696 * given level, the distribution of the larger parental protection
6697 * budget is NOT proportional. A cgroup's protection from a sibling
6698 * is capped to its own memory.min/low setting.
6699 *
6700 * 5. However, to allow protecting recursive subtrees from each other
6701 * without having to declare each individual cgroup's fixed share
6702 * of the ancestor's claim to protection, any unutilized -
6703 * "floating" - protection from up the tree is distributed in
6704 * proportion to each cgroup's *usage*. This makes the protection
6705 * neutral wrt sibling cgroups and lets them compete freely over
6706 * the shared parental protection budget, but it protects the
6707 * subtree as a whole from neighboring subtrees.
6708 *
6709 * Note that 4. and 5. are not in conflict: 4. is about protecting
6710 * against immediate siblings whereas 5. is about protecting against
6711 * neighboring subtrees.
6712 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6713 static unsigned long effective_protection(unsigned long usage,
6714 unsigned long parent_usage,
6715 unsigned long setting,
6716 unsigned long parent_effective,
6717 unsigned long siblings_protected)
6718 {
6719 unsigned long protected;
6720 unsigned long ep;
6721
6722 protected = min(usage, setting);
6723 /*
6724 * If all cgroups at this level combined claim and use more
6725 * protection then what the parent affords them, distribute
6726 * shares in proportion to utilization.
6727 *
6728 * We are using actual utilization rather than the statically
6729 * claimed protection in order to be work-conserving: claimed
6730 * but unused protection is available to siblings that would
6731 * otherwise get a smaller chunk than what they claimed.
6732 */
6733 if (siblings_protected > parent_effective)
6734 return protected * parent_effective / siblings_protected;
6735
6736 /*
6737 * Ok, utilized protection of all children is within what the
6738 * parent affords them, so we know whatever this child claims
6739 * and utilizes is effectively protected.
6740 *
6741 * If there is unprotected usage beyond this value, reclaim
6742 * will apply pressure in proportion to that amount.
6743 *
6744 * If there is unutilized protection, the cgroup will be fully
6745 * shielded from reclaim, but we do return a smaller value for
6746 * protection than what the group could enjoy in theory. This
6747 * is okay. With the overcommit distribution above, effective
6748 * protection is always dependent on how memory is actually
6749 * consumed among the siblings anyway.
6750 */
6751 ep = protected;
6752
6753 /*
6754 * If the children aren't claiming (all of) the protection
6755 * afforded to them by the parent, distribute the remainder in
6756 * proportion to the (unprotected) memory of each cgroup. That
6757 * way, cgroups that aren't explicitly prioritized wrt each
6758 * other compete freely over the allowance, but they are
6759 * collectively protected from neighboring trees.
6760 *
6761 * We're using unprotected memory for the weight so that if
6762 * some cgroups DO claim explicit protection, we don't protect
6763 * the same bytes twice.
6764 *
6765 * Check both usage and parent_usage against the respective
6766 * protected values. One should imply the other, but they
6767 * aren't read atomically - make sure the division is sane.
6768 */
6769 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6770 return ep;
6771 if (parent_effective > siblings_protected &&
6772 parent_usage > siblings_protected &&
6773 usage > protected) {
6774 unsigned long unclaimed;
6775
6776 unclaimed = parent_effective - siblings_protected;
6777 unclaimed *= usage - protected;
6778 unclaimed /= parent_usage - siblings_protected;
6779
6780 ep += unclaimed;
6781 }
6782
6783 return ep;
6784 }
6785
6786 /**
6787 * mem_cgroup_protected - check if memory consumption is in the normal range
6788 * @root: the top ancestor of the sub-tree being checked
6789 * @memcg: the memory cgroup to check
6790 *
6791 * WARNING: This function is not stateless! It can only be used as part
6792 * of a top-down tree iteration, not for isolated queries.
6793 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6794 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6795 struct mem_cgroup *memcg)
6796 {
6797 unsigned long usage, parent_usage;
6798 struct mem_cgroup *parent;
6799
6800 if (mem_cgroup_disabled())
6801 return;
6802
6803 if (!root)
6804 root = root_mem_cgroup;
6805
6806 /*
6807 * Effective values of the reclaim targets are ignored so they
6808 * can be stale. Have a look at mem_cgroup_protection for more
6809 * details.
6810 * TODO: calculation should be more robust so that we do not need
6811 * that special casing.
6812 */
6813 if (memcg == root)
6814 return;
6815
6816 usage = page_counter_read(&memcg->memory);
6817 if (!usage)
6818 return;
6819
6820 parent = parent_mem_cgroup(memcg);
6821 /* No parent means a non-hierarchical mode on v1 memcg */
6822 if (!parent)
6823 return;
6824
6825 if (parent == root) {
6826 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6827 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6828 return;
6829 }
6830
6831 parent_usage = page_counter_read(&parent->memory);
6832
6833 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6834 READ_ONCE(memcg->memory.min),
6835 READ_ONCE(parent->memory.emin),
6836 atomic_long_read(&parent->memory.children_min_usage)));
6837
6838 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6839 READ_ONCE(memcg->memory.low),
6840 READ_ONCE(parent->memory.elow),
6841 atomic_long_read(&parent->memory.children_low_usage)));
6842 }
6843
6844 /**
6845 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6846 * @page: page to charge
6847 * @mm: mm context of the victim
6848 * @gfp_mask: reclaim mode
6849 *
6850 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6851 * pages according to @gfp_mask if necessary.
6852 *
6853 * Returns 0 on success. Otherwise, an error code is returned.
6854 */
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)6855 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6856 {
6857 unsigned int nr_pages = thp_nr_pages(page);
6858 struct mem_cgroup *memcg = NULL;
6859 int ret = 0;
6860
6861 if (mem_cgroup_disabled())
6862 goto out;
6863
6864 if (PageSwapCache(page)) {
6865 swp_entry_t ent = { .val = page_private(page), };
6866 unsigned short id;
6867
6868 /*
6869 * Every swap fault against a single page tries to charge the
6870 * page, bail as early as possible. shmem_unuse() encounters
6871 * already charged pages, too. page->mem_cgroup is protected
6872 * by the page lock, which serializes swap cache removal, which
6873 * in turn serializes uncharging.
6874 */
6875 VM_BUG_ON_PAGE(!PageLocked(page), page);
6876 if (compound_head(page)->mem_cgroup)
6877 goto out;
6878
6879 id = lookup_swap_cgroup_id(ent);
6880 rcu_read_lock();
6881 memcg = mem_cgroup_from_id(id);
6882 if (memcg && !css_tryget_online(&memcg->css))
6883 memcg = NULL;
6884 rcu_read_unlock();
6885 }
6886
6887 if (!memcg)
6888 memcg = get_mem_cgroup_from_mm(mm);
6889
6890 ret = try_charge(memcg, gfp_mask, nr_pages);
6891 if (ret)
6892 goto out_put;
6893
6894 css_get(&memcg->css);
6895 commit_charge(page, memcg);
6896
6897 local_irq_disable();
6898 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6899 memcg_check_events(memcg, page);
6900 local_irq_enable();
6901
6902 /*
6903 * Cgroup1's unified memory+swap counter has been charged with the
6904 * new swapcache page, finish the transfer by uncharging the swap
6905 * slot. The swap slot would also get uncharged when it dies, but
6906 * it can stick around indefinitely and we'd count the page twice
6907 * the entire time.
6908 *
6909 * Cgroup2 has separate resource counters for memory and swap,
6910 * so this is a non-issue here. Memory and swap charge lifetimes
6911 * correspond 1:1 to page and swap slot lifetimes: we charge the
6912 * page to memory here, and uncharge swap when the slot is freed.
6913 */
6914 if (do_memsw_account() && PageSwapCache(page)) {
6915 swp_entry_t entry = { .val = page_private(page) };
6916 /*
6917 * The swap entry might not get freed for a long time,
6918 * let's not wait for it. The page already received a
6919 * memory+swap charge, drop the swap entry duplicate.
6920 */
6921 mem_cgroup_uncharge_swap(entry, nr_pages);
6922 }
6923
6924 out_put:
6925 css_put(&memcg->css);
6926 out:
6927 return ret;
6928 }
6929
6930 struct uncharge_gather {
6931 struct mem_cgroup *memcg;
6932 unsigned long nr_pages;
6933 unsigned long pgpgout;
6934 unsigned long nr_kmem;
6935 struct page *dummy_page;
6936 };
6937
uncharge_gather_clear(struct uncharge_gather * ug)6938 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6939 {
6940 memset(ug, 0, sizeof(*ug));
6941 }
6942
uncharge_batch(const struct uncharge_gather * ug)6943 static void uncharge_batch(const struct uncharge_gather *ug)
6944 {
6945 unsigned long flags;
6946
6947 if (!mem_cgroup_is_root(ug->memcg)) {
6948 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6949 if (do_memsw_account())
6950 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6951 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6952 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6953 memcg_oom_recover(ug->memcg);
6954 }
6955
6956 local_irq_save(flags);
6957 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6958 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6959 memcg_check_events(ug->memcg, ug->dummy_page);
6960 local_irq_restore(flags);
6961
6962 /* drop reference from uncharge_page */
6963 css_put(&ug->memcg->css);
6964 }
6965
uncharge_page(struct page * page,struct uncharge_gather * ug)6966 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6967 {
6968 unsigned long nr_pages;
6969
6970 VM_BUG_ON_PAGE(PageLRU(page), page);
6971
6972 if (!page->mem_cgroup)
6973 return;
6974
6975 /*
6976 * Nobody should be changing or seriously looking at
6977 * page->mem_cgroup at this point, we have fully
6978 * exclusive access to the page.
6979 */
6980
6981 if (ug->memcg != page->mem_cgroup) {
6982 if (ug->memcg) {
6983 uncharge_batch(ug);
6984 uncharge_gather_clear(ug);
6985 }
6986 ug->memcg = page->mem_cgroup;
6987
6988 /* pairs with css_put in uncharge_batch */
6989 css_get(&ug->memcg->css);
6990 }
6991
6992 nr_pages = compound_nr(page);
6993 ug->nr_pages += nr_pages;
6994
6995 if (!PageKmemcg(page)) {
6996 ug->pgpgout++;
6997 } else {
6998 ug->nr_kmem += nr_pages;
6999 __ClearPageKmemcg(page);
7000 }
7001
7002 ug->dummy_page = page;
7003 page->mem_cgroup = NULL;
7004 css_put(&ug->memcg->css);
7005 }
7006
uncharge_list(struct list_head * page_list)7007 static void uncharge_list(struct list_head *page_list)
7008 {
7009 struct uncharge_gather ug;
7010 struct list_head *next;
7011
7012 uncharge_gather_clear(&ug);
7013
7014 /*
7015 * Note that the list can be a single page->lru; hence the
7016 * do-while loop instead of a simple list_for_each_entry().
7017 */
7018 next = page_list->next;
7019 do {
7020 struct page *page;
7021
7022 page = list_entry(next, struct page, lru);
7023 next = page->lru.next;
7024
7025 uncharge_page(page, &ug);
7026 } while (next != page_list);
7027
7028 if (ug.memcg)
7029 uncharge_batch(&ug);
7030 }
7031
7032 /**
7033 * mem_cgroup_uncharge - uncharge a page
7034 * @page: page to uncharge
7035 *
7036 * Uncharge a page previously charged with mem_cgroup_charge().
7037 */
mem_cgroup_uncharge(struct page * page)7038 void mem_cgroup_uncharge(struct page *page)
7039 {
7040 struct uncharge_gather ug;
7041
7042 if (mem_cgroup_disabled())
7043 return;
7044
7045 /* Don't touch page->lru of any random page, pre-check: */
7046 if (!page->mem_cgroup)
7047 return;
7048
7049 uncharge_gather_clear(&ug);
7050 uncharge_page(page, &ug);
7051 uncharge_batch(&ug);
7052 }
7053
7054 /**
7055 * mem_cgroup_uncharge_list - uncharge a list of page
7056 * @page_list: list of pages to uncharge
7057 *
7058 * Uncharge a list of pages previously charged with
7059 * mem_cgroup_charge().
7060 */
mem_cgroup_uncharge_list(struct list_head * page_list)7061 void mem_cgroup_uncharge_list(struct list_head *page_list)
7062 {
7063 if (mem_cgroup_disabled())
7064 return;
7065
7066 if (!list_empty(page_list))
7067 uncharge_list(page_list);
7068 }
7069
7070 /**
7071 * mem_cgroup_migrate - charge a page's replacement
7072 * @oldpage: currently circulating page
7073 * @newpage: replacement page
7074 *
7075 * Charge @newpage as a replacement page for @oldpage. @oldpage will
7076 * be uncharged upon free.
7077 *
7078 * Both pages must be locked, @newpage->mapping must be set up.
7079 */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)7080 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7081 {
7082 struct mem_cgroup *memcg;
7083 unsigned int nr_pages;
7084 unsigned long flags;
7085
7086 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7087 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7088 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7089 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7090 newpage);
7091
7092 if (mem_cgroup_disabled())
7093 return;
7094
7095 /* Page cache replacement: new page already charged? */
7096 if (newpage->mem_cgroup)
7097 return;
7098
7099 /* Swapcache readahead pages can get replaced before being charged */
7100 memcg = oldpage->mem_cgroup;
7101 if (!memcg)
7102 return;
7103
7104 /* Force-charge the new page. The old one will be freed soon */
7105 nr_pages = thp_nr_pages(newpage);
7106
7107 page_counter_charge(&memcg->memory, nr_pages);
7108 if (do_memsw_account())
7109 page_counter_charge(&memcg->memsw, nr_pages);
7110
7111 css_get(&memcg->css);
7112 commit_charge(newpage, memcg);
7113
7114 local_irq_save(flags);
7115 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7116 memcg_check_events(memcg, newpage);
7117 local_irq_restore(flags);
7118 }
7119
7120 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7121 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7122
mem_cgroup_sk_alloc(struct sock * sk)7123 void mem_cgroup_sk_alloc(struct sock *sk)
7124 {
7125 struct mem_cgroup *memcg;
7126
7127 if (!mem_cgroup_sockets_enabled)
7128 return;
7129
7130 /* Do not associate the sock with unrelated interrupted task's memcg. */
7131 if (in_interrupt())
7132 return;
7133
7134 rcu_read_lock();
7135 memcg = mem_cgroup_from_task(current);
7136 if (memcg == root_mem_cgroup)
7137 goto out;
7138 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7139 goto out;
7140 if (css_tryget(&memcg->css))
7141 sk->sk_memcg = memcg;
7142 out:
7143 rcu_read_unlock();
7144 }
7145
mem_cgroup_sk_free(struct sock * sk)7146 void mem_cgroup_sk_free(struct sock *sk)
7147 {
7148 if (sk->sk_memcg)
7149 css_put(&sk->sk_memcg->css);
7150 }
7151
7152 /**
7153 * mem_cgroup_charge_skmem - charge socket memory
7154 * @memcg: memcg to charge
7155 * @nr_pages: number of pages to charge
7156 *
7157 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7158 * @memcg's configured limit, %false if the charge had to be forced.
7159 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7160 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7161 {
7162 gfp_t gfp_mask = GFP_KERNEL;
7163
7164 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7165 struct page_counter *fail;
7166
7167 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7168 memcg->tcpmem_pressure = 0;
7169 return true;
7170 }
7171 page_counter_charge(&memcg->tcpmem, nr_pages);
7172 memcg->tcpmem_pressure = 1;
7173 return false;
7174 }
7175
7176 /* Don't block in the packet receive path */
7177 if (in_softirq())
7178 gfp_mask = GFP_NOWAIT;
7179
7180 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7181
7182 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7183 return true;
7184
7185 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7186 return false;
7187 }
7188
7189 /**
7190 * mem_cgroup_uncharge_skmem - uncharge socket memory
7191 * @memcg: memcg to uncharge
7192 * @nr_pages: number of pages to uncharge
7193 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7194 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7195 {
7196 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7197 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7198 return;
7199 }
7200
7201 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7202
7203 refill_stock(memcg, nr_pages);
7204 }
7205
cgroup_memory(char * s)7206 static int __init cgroup_memory(char *s)
7207 {
7208 char *token;
7209
7210 while ((token = strsep(&s, ",")) != NULL) {
7211 if (!*token)
7212 continue;
7213 if (!strcmp(token, "nosocket"))
7214 cgroup_memory_nosocket = true;
7215 if (!strcmp(token, "nokmem"))
7216 cgroup_memory_nokmem = true;
7217 else if (!strcmp(token, "kmem"))
7218 cgroup_memory_nokmem = false;
7219 }
7220 return 1;
7221 }
7222 __setup("cgroup.memory=", cgroup_memory);
7223
7224 /*
7225 * subsys_initcall() for memory controller.
7226 *
7227 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7228 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7229 * basically everything that doesn't depend on a specific mem_cgroup structure
7230 * should be initialized from here.
7231 */
mem_cgroup_init(void)7232 static int __init mem_cgroup_init(void)
7233 {
7234 int cpu, node;
7235
7236 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7237 memcg_hotplug_cpu_dead);
7238
7239 for_each_possible_cpu(cpu)
7240 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7241 drain_local_stock);
7242
7243 for_each_node(node) {
7244 struct mem_cgroup_tree_per_node *rtpn;
7245
7246 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7247 node_online(node) ? node : NUMA_NO_NODE);
7248
7249 rtpn->rb_root = RB_ROOT;
7250 rtpn->rb_rightmost = NULL;
7251 spin_lock_init(&rtpn->lock);
7252 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7253 }
7254
7255 return 0;
7256 }
7257 subsys_initcall(mem_cgroup_init);
7258
7259 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7260 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7261 {
7262 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7263 /*
7264 * The root cgroup cannot be destroyed, so it's refcount must
7265 * always be >= 1.
7266 */
7267 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7268 VM_BUG_ON(1);
7269 break;
7270 }
7271 memcg = parent_mem_cgroup(memcg);
7272 if (!memcg)
7273 memcg = root_mem_cgroup;
7274 }
7275 return memcg;
7276 }
7277
7278 /**
7279 * mem_cgroup_swapout - transfer a memsw charge to swap
7280 * @page: page whose memsw charge to transfer
7281 * @entry: swap entry to move the charge to
7282 *
7283 * Transfer the memsw charge of @page to @entry.
7284 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7285 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7286 {
7287 struct mem_cgroup *memcg, *swap_memcg;
7288 unsigned int nr_entries;
7289 unsigned short oldid;
7290
7291 VM_BUG_ON_PAGE(PageLRU(page), page);
7292 VM_BUG_ON_PAGE(page_count(page), page);
7293
7294 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7295 return;
7296
7297 memcg = page->mem_cgroup;
7298
7299 /* Readahead page, never charged */
7300 if (!memcg)
7301 return;
7302
7303 /*
7304 * In case the memcg owning these pages has been offlined and doesn't
7305 * have an ID allocated to it anymore, charge the closest online
7306 * ancestor for the swap instead and transfer the memory+swap charge.
7307 */
7308 swap_memcg = mem_cgroup_id_get_online(memcg);
7309 nr_entries = thp_nr_pages(page);
7310 /* Get references for the tail pages, too */
7311 if (nr_entries > 1)
7312 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7313 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7314 nr_entries);
7315 VM_BUG_ON_PAGE(oldid, page);
7316 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7317
7318 page->mem_cgroup = NULL;
7319
7320 if (!mem_cgroup_is_root(memcg))
7321 page_counter_uncharge(&memcg->memory, nr_entries);
7322
7323 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7324 if (!mem_cgroup_is_root(swap_memcg))
7325 page_counter_charge(&swap_memcg->memsw, nr_entries);
7326 page_counter_uncharge(&memcg->memsw, nr_entries);
7327 }
7328
7329 /*
7330 * Interrupts should be disabled here because the caller holds the
7331 * i_pages lock which is taken with interrupts-off. It is
7332 * important here to have the interrupts disabled because it is the
7333 * only synchronisation we have for updating the per-CPU variables.
7334 */
7335 VM_BUG_ON(!irqs_disabled());
7336 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7337 memcg_check_events(memcg, page);
7338
7339 css_put(&memcg->css);
7340 }
7341
7342 /**
7343 * mem_cgroup_try_charge_swap - try charging swap space for a page
7344 * @page: page being added to swap
7345 * @entry: swap entry to charge
7346 *
7347 * Try to charge @page's memcg for the swap space at @entry.
7348 *
7349 * Returns 0 on success, -ENOMEM on failure.
7350 */
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7351 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7352 {
7353 unsigned int nr_pages = thp_nr_pages(page);
7354 struct page_counter *counter;
7355 struct mem_cgroup *memcg;
7356 unsigned short oldid;
7357
7358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7359 return 0;
7360
7361 memcg = page->mem_cgroup;
7362
7363 /* Readahead page, never charged */
7364 if (!memcg)
7365 return 0;
7366
7367 if (!entry.val) {
7368 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7369 return 0;
7370 }
7371
7372 memcg = mem_cgroup_id_get_online(memcg);
7373
7374 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7375 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7376 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7377 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7378 mem_cgroup_id_put(memcg);
7379 return -ENOMEM;
7380 }
7381
7382 /* Get references for the tail pages, too */
7383 if (nr_pages > 1)
7384 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7385 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7386 VM_BUG_ON_PAGE(oldid, page);
7387 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7388
7389 return 0;
7390 }
7391
7392 /**
7393 * mem_cgroup_uncharge_swap - uncharge swap space
7394 * @entry: swap entry to uncharge
7395 * @nr_pages: the amount of swap space to uncharge
7396 */
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7397 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7398 {
7399 struct mem_cgroup *memcg;
7400 unsigned short id;
7401
7402 id = swap_cgroup_record(entry, 0, nr_pages);
7403 rcu_read_lock();
7404 memcg = mem_cgroup_from_id(id);
7405 if (memcg) {
7406 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7407 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7408 page_counter_uncharge(&memcg->swap, nr_pages);
7409 else
7410 page_counter_uncharge(&memcg->memsw, nr_pages);
7411 }
7412 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7413 mem_cgroup_id_put_many(memcg, nr_pages);
7414 }
7415 rcu_read_unlock();
7416 }
7417
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7418 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7419 {
7420 long nr_swap_pages = get_nr_swap_pages();
7421
7422 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7423 return nr_swap_pages;
7424 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7425 nr_swap_pages = min_t(long, nr_swap_pages,
7426 READ_ONCE(memcg->swap.max) -
7427 page_counter_read(&memcg->swap));
7428 return nr_swap_pages;
7429 }
7430
mem_cgroup_swap_full(struct page * page)7431 bool mem_cgroup_swap_full(struct page *page)
7432 {
7433 struct mem_cgroup *memcg;
7434
7435 VM_BUG_ON_PAGE(!PageLocked(page), page);
7436
7437 if (vm_swap_full())
7438 return true;
7439 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7440 return false;
7441
7442 memcg = page->mem_cgroup;
7443 if (!memcg)
7444 return false;
7445
7446 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7447 unsigned long usage = page_counter_read(&memcg->swap);
7448
7449 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7450 usage * 2 >= READ_ONCE(memcg->swap.max))
7451 return true;
7452 }
7453
7454 return false;
7455 }
7456
setup_swap_account(char * s)7457 static int __init setup_swap_account(char *s)
7458 {
7459 if (!strcmp(s, "1"))
7460 cgroup_memory_noswap = 0;
7461 else if (!strcmp(s, "0"))
7462 cgroup_memory_noswap = 1;
7463 return 1;
7464 }
7465 __setup("swapaccount=", setup_swap_account);
7466
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7467 static u64 swap_current_read(struct cgroup_subsys_state *css,
7468 struct cftype *cft)
7469 {
7470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7471
7472 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7473 }
7474
swap_high_show(struct seq_file * m,void * v)7475 static int swap_high_show(struct seq_file *m, void *v)
7476 {
7477 return seq_puts_memcg_tunable(m,
7478 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7479 }
7480
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7481 static ssize_t swap_high_write(struct kernfs_open_file *of,
7482 char *buf, size_t nbytes, loff_t off)
7483 {
7484 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7485 unsigned long high;
7486 int err;
7487
7488 buf = strstrip(buf);
7489 err = page_counter_memparse(buf, "max", &high);
7490 if (err)
7491 return err;
7492
7493 page_counter_set_high(&memcg->swap, high);
7494
7495 return nbytes;
7496 }
7497
swap_max_show(struct seq_file * m,void * v)7498 static int swap_max_show(struct seq_file *m, void *v)
7499 {
7500 return seq_puts_memcg_tunable(m,
7501 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7502 }
7503
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7504 static ssize_t swap_max_write(struct kernfs_open_file *of,
7505 char *buf, size_t nbytes, loff_t off)
7506 {
7507 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7508 unsigned long max;
7509 int err;
7510
7511 buf = strstrip(buf);
7512 err = page_counter_memparse(buf, "max", &max);
7513 if (err)
7514 return err;
7515
7516 xchg(&memcg->swap.max, max);
7517
7518 return nbytes;
7519 }
7520
swap_events_show(struct seq_file * m,void * v)7521 static int swap_events_show(struct seq_file *m, void *v)
7522 {
7523 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7524
7525 seq_printf(m, "high %lu\n",
7526 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7527 seq_printf(m, "max %lu\n",
7528 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7529 seq_printf(m, "fail %lu\n",
7530 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7531
7532 return 0;
7533 }
7534
7535 static struct cftype swap_files[] = {
7536 {
7537 .name = "swap.current",
7538 .flags = CFTYPE_NOT_ON_ROOT,
7539 .read_u64 = swap_current_read,
7540 },
7541 {
7542 .name = "swap.high",
7543 .flags = CFTYPE_NOT_ON_ROOT,
7544 .seq_show = swap_high_show,
7545 .write = swap_high_write,
7546 },
7547 {
7548 .name = "swap.max",
7549 .flags = CFTYPE_NOT_ON_ROOT,
7550 .seq_show = swap_max_show,
7551 .write = swap_max_write,
7552 },
7553 {
7554 .name = "swap.events",
7555 .flags = CFTYPE_NOT_ON_ROOT,
7556 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7557 .seq_show = swap_events_show,
7558 },
7559 { } /* terminate */
7560 };
7561
7562 static struct cftype memsw_files[] = {
7563 {
7564 .name = "memsw.usage_in_bytes",
7565 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7566 .read_u64 = mem_cgroup_read_u64,
7567 },
7568 {
7569 .name = "memsw.max_usage_in_bytes",
7570 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7571 .write = mem_cgroup_reset,
7572 .read_u64 = mem_cgroup_read_u64,
7573 },
7574 {
7575 .name = "memsw.limit_in_bytes",
7576 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7577 .write = mem_cgroup_write,
7578 .read_u64 = mem_cgroup_read_u64,
7579 },
7580 {
7581 .name = "memsw.failcnt",
7582 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7583 .write = mem_cgroup_reset,
7584 .read_u64 = mem_cgroup_read_u64,
7585 },
7586 { }, /* terminate */
7587 };
7588
7589 /*
7590 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7591 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7592 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7593 * boot parameter. This may result in premature OOPS inside
7594 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7595 */
mem_cgroup_swap_init(void)7596 static int __init mem_cgroup_swap_init(void)
7597 {
7598 /* No memory control -> no swap control */
7599 if (mem_cgroup_disabled())
7600 cgroup_memory_noswap = true;
7601
7602 if (cgroup_memory_noswap)
7603 return 0;
7604
7605 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7606 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7607
7608 return 0;
7609 }
7610 core_initcall(mem_cgroup_swap_init);
7611
7612 #endif /* CONFIG_MEMCG_SWAP */
7613