• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2021 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include <algorithm>
29 #include <array>
30 #include <bitset>
31 #include <vector>
32 
33 namespace aco {
34 namespace {
35 
36 constexpr const size_t max_reg_cnt = 512;
37 constexpr const size_t max_sgpr_cnt = 128;
38 constexpr const size_t min_vgpr = 256;
39 constexpr const size_t max_vgpr_cnt = 256;
40 
41 struct Idx {
operator ==aco::__anond7fdc5ed0111::Idx42    bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; }
operator !=aco::__anond7fdc5ed0111::Idx43    bool operator!=(const Idx& other) const { return !operator==(other); }
44 
foundaco::__anond7fdc5ed0111::Idx45    bool found() const { return block != UINT32_MAX; }
46 
47    uint32_t block;
48    uint32_t instr;
49 };
50 
51 Idx not_written_in_block{UINT32_MAX, 0};
52 Idx clobbered{UINT32_MAX, 1};
53 Idx const_or_undef{UINT32_MAX, 2};
54 Idx written_by_multiple_instrs{UINT32_MAX, 3};
55 
56 struct pr_opt_ctx {
57    Program* program;
58    Block* current_block;
59    uint32_t current_instr_idx;
60    std::vector<uint16_t> uses;
61    std::vector<std::array<Idx, max_reg_cnt>> instr_idx_by_regs;
62 
reset_blockaco::__anond7fdc5ed0111::pr_opt_ctx63    void reset_block(Block* block)
64    {
65       current_block = block;
66       current_instr_idx = 0;
67 
68       if ((block->kind & block_kind_loop_header) || block->linear_preds.empty()) {
69          std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
70                    not_written_in_block);
71       } else {
72          const uint32_t first_linear_pred = block->linear_preds[0];
73          const std::vector<uint32_t>& linear_preds = block->linear_preds;
74 
75          for (unsigned i = 0; i < max_sgpr_cnt; i++) {
76             const bool all_same = std::all_of(
77                std::next(linear_preds.begin()), linear_preds.end(),
78                [=](unsigned pred)
79                { return instr_idx_by_regs[pred][i] == instr_idx_by_regs[first_linear_pred][i]; });
80 
81             if (all_same)
82                instr_idx_by_regs[block->index][i] = instr_idx_by_regs[first_linear_pred][i];
83             else
84                instr_idx_by_regs[block->index][i] = written_by_multiple_instrs;
85          }
86 
87          if (!block->logical_preds.empty()) {
88             /* We assume that VGPRs are only read by blocks which have a logical predecessor,
89              * ie. any block that reads any VGPR has at least 1 logical predecessor.
90              */
91             const unsigned first_logical_pred = block->logical_preds[0];
92             const std::vector<uint32_t>& logical_preds = block->logical_preds;
93 
94             for (unsigned i = min_vgpr; i < (min_vgpr + max_vgpr_cnt); i++) {
95                const bool all_same = std::all_of(
96                   std::next(logical_preds.begin()), logical_preds.end(),
97                   [=](unsigned pred) {
98                      return instr_idx_by_regs[pred][i] == instr_idx_by_regs[first_logical_pred][i];
99                   });
100 
101                if (all_same)
102                   instr_idx_by_regs[block->index][i] = instr_idx_by_regs[first_logical_pred][i];
103                else
104                   instr_idx_by_regs[block->index][i] = written_by_multiple_instrs;
105             }
106          } else {
107             /* If a block has no logical predecessors, it is not part of the
108              * logical CFG and therefore it also won't have any logical successors.
109              * Such a block does not write any VGPRs ever.
110              */
111             assert(block->logical_succs.empty());
112          }
113       }
114    }
115 
getaco::__anond7fdc5ed0111::pr_opt_ctx116    Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); }
117 };
118 
119 void
save_reg_writes(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)120 save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
121 {
122    for (const Definition& def : instr->definitions) {
123       assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255);
124       assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256);
125 
126       unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u);
127       unsigned r = def.physReg().reg();
128       Idx idx{ctx.current_block->index, ctx.current_instr_idx};
129 
130       if (def.regClass().is_subdword())
131          idx = clobbered;
132 
133       assert((r + dw_size) <= max_reg_cnt);
134       assert(def.size() == dw_size || def.regClass().is_subdword());
135       std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
136                 ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx);
137    }
138 }
139 
140 Idx
last_writer_idx(pr_opt_ctx & ctx,PhysReg physReg,RegClass rc)141 last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc)
142 {
143    /* Verify that all of the operand's registers are written by the same instruction. */
144    assert(physReg.reg() < max_reg_cnt);
145    Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()];
146    unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u);
147    unsigned r = physReg.reg();
148    bool all_same =
149       std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
150                   ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size,
151                   [instr_idx](Idx i) { return i == instr_idx; });
152 
153    return all_same ? instr_idx : written_by_multiple_instrs;
154 }
155 
156 Idx
last_writer_idx(pr_opt_ctx & ctx,const Operand & op)157 last_writer_idx(pr_opt_ctx& ctx, const Operand& op)
158 {
159    if (op.isConstant() || op.isUndefined())
160       return const_or_undef;
161 
162    return last_writer_idx(ctx, op.physReg(), op.regClass());
163 }
164 
165 bool
is_clobbered_since(pr_opt_ctx & ctx,PhysReg reg,RegClass rc,const Idx & idx)166 is_clobbered_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& idx)
167 {
168    /* If we didn't find an instruction, assume that the register is clobbered. */
169    if (!idx.found())
170       return true;
171 
172    /* TODO: We currently can't keep track of subdword registers. */
173    if (rc.is_subdword())
174       return true;
175 
176    unsigned begin_reg = reg.reg();
177    unsigned end_reg = begin_reg + rc.size();
178    unsigned current_block_idx = ctx.current_block->index;
179 
180    for (unsigned r = begin_reg; r < end_reg; ++r) {
181       Idx& i = ctx.instr_idx_by_regs[current_block_idx][r];
182       if (i == clobbered || i == written_by_multiple_instrs)
183          return true;
184       else if (i == not_written_in_block)
185          continue;
186 
187       assert(i.found());
188 
189       if (i.block > idx.block || (i.block == idx.block && i.instr > idx.instr))
190          return true;
191    }
192 
193    return false;
194 }
195 
196 template <typename T>
197 bool
is_clobbered_since(pr_opt_ctx & ctx,const T & t,const Idx & idx)198 is_clobbered_since(pr_opt_ctx& ctx, const T& t, const Idx& idx)
199 {
200    return is_clobbered_since(ctx, t.physReg(), t.regClass(), idx);
201 }
202 
203 void
try_apply_branch_vcc(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)204 try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
205 {
206    /* We are looking for the following pattern:
207     *
208     * vcc = ...                      ; last_vcc_wr
209     * sX, scc = s_and_bXX vcc, exec  ; op0_instr
210     * (...vcc and exec must not be clobbered inbetween...)
211     * s_cbranch_XX scc               ; instr
212     *
213     * If possible, the above is optimized into:
214     *
215     * vcc = ...                      ; last_vcc_wr
216     * s_cbranch_XX vcc               ; instr modified to use vcc
217     */
218 
219    /* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */
220    if (ctx.program->gfx_level < GFX8)
221       return;
222 
223    if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 ||
224        instr->operands[0].physReg() != scc)
225       return;
226 
227    Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]);
228    Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask);
229 
230    /* We need to make sure:
231     * - the instructions that wrote the operand register and VCC are both found
232     * - the operand register used by the branch, and VCC were both written in the current block
233     * - EXEC hasn't been clobbered since the last VCC write
234     * - VCC hasn't been clobbered since the operand register was written
235     *   (ie. the last VCC writer precedes the op0 writer)
236     */
237    if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() ||
238        op0_instr_idx.block != ctx.current_block->index ||
239        last_vcc_wr_idx.block != ctx.current_block->index ||
240        is_clobbered_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) ||
241        is_clobbered_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx))
242       return;
243 
244    Instruction* op0_instr = ctx.get(op0_instr_idx);
245    Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx);
246 
247    if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ &&
248         op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) ||
249        op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec ||
250        !last_vcc_wr->isVOPC())
251       return;
252 
253    assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId());
254 
255    /* Reduce the uses of the SCC def */
256    ctx.uses[instr->operands[0].tempId()]--;
257    /* Use VCC instead of SCC in the branch */
258    instr->operands[0] = op0_instr->operands[0];
259 }
260 
261 void
try_optimize_scc_nocompare(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)262 try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
263 {
264    /* We are looking for the following pattern:
265     *
266     * s_bfe_u32 s0, s3, 0x40018  ; outputs SGPR and SCC if the SGPR != 0
267     * s_cmp_eq_i32 s0, 0         ; comparison between the SGPR and 0
268     * s_cbranch_scc0 BB3         ; use the result of the comparison, eg. branch or cselect
269     *
270     * If possible, the above is optimized into:
271     *
272     * s_bfe_u32 s0, s3, 0x40018  ; original instruction
273     * s_cbranch_scc1 BB3         ; modified to use SCC directly rather than the SGPR with comparison
274     *
275     */
276 
277    if (!instr->isSALU() && !instr->isBranch())
278       return;
279 
280    if (instr->isSOPC() &&
281        (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
282         instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 ||
283         instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) &&
284        (instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) &&
285        (instr->operands[0].isTemp() || instr->operands[1].isTemp())) {
286       /* Make sure the constant is always in operand 1 */
287       if (instr->operands[0].isConstant())
288          std::swap(instr->operands[0], instr->operands[1]);
289 
290       if (ctx.uses[instr->operands[0].tempId()] > 1)
291          return;
292 
293       /* Make sure both SCC and Operand 0 are written by the same instruction. */
294       Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
295       Idx sccwr_idx = last_writer_idx(ctx, scc, s1);
296       if (!wr_idx.found() || wr_idx != sccwr_idx)
297          return;
298 
299       Instruction* wr_instr = ctx.get(wr_idx);
300       if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 ||
301           wr_instr->definitions[1].physReg() != scc)
302          return;
303 
304       /* Look for instructions which set SCC := (D != 0) */
305       switch (wr_instr->opcode) {
306       case aco_opcode::s_bfe_i32:
307       case aco_opcode::s_bfe_i64:
308       case aco_opcode::s_bfe_u32:
309       case aco_opcode::s_bfe_u64:
310       case aco_opcode::s_and_b32:
311       case aco_opcode::s_and_b64:
312       case aco_opcode::s_andn2_b32:
313       case aco_opcode::s_andn2_b64:
314       case aco_opcode::s_or_b32:
315       case aco_opcode::s_or_b64:
316       case aco_opcode::s_orn2_b32:
317       case aco_opcode::s_orn2_b64:
318       case aco_opcode::s_xor_b32:
319       case aco_opcode::s_xor_b64:
320       case aco_opcode::s_not_b32:
321       case aco_opcode::s_not_b64:
322       case aco_opcode::s_nor_b32:
323       case aco_opcode::s_nor_b64:
324       case aco_opcode::s_xnor_b32:
325       case aco_opcode::s_xnor_b64:
326       case aco_opcode::s_nand_b32:
327       case aco_opcode::s_nand_b64:
328       case aco_opcode::s_lshl_b32:
329       case aco_opcode::s_lshl_b64:
330       case aco_opcode::s_lshr_b32:
331       case aco_opcode::s_lshr_b64:
332       case aco_opcode::s_ashr_i32:
333       case aco_opcode::s_ashr_i64:
334       case aco_opcode::s_abs_i32:
335       case aco_opcode::s_absdiff_i32: break;
336       default: return;
337       }
338 
339       /* Use the SCC def from wr_instr */
340       ctx.uses[instr->operands[0].tempId()]--;
341       instr->operands[0] = Operand(wr_instr->definitions[1].getTemp(), scc);
342       ctx.uses[instr->operands[0].tempId()]++;
343 
344       /* Set the opcode and operand to 32-bit */
345       instr->operands[1] = Operand::zero();
346       instr->opcode =
347          (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
348           instr->opcode == aco_opcode::s_cmp_eq_u64)
349             ? aco_opcode::s_cmp_eq_u32
350             : aco_opcode::s_cmp_lg_u32;
351    } else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 &&
352                instr->operands[0].physReg() == scc) ||
353               instr->opcode == aco_opcode::s_cselect_b32) {
354 
355       /* For cselect, operand 2 is the SCC condition */
356       unsigned scc_op_idx = 0;
357       if (instr->opcode == aco_opcode::s_cselect_b32) {
358          scc_op_idx = 2;
359       }
360 
361       Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]);
362       if (!wr_idx.found())
363          return;
364 
365       Instruction* wr_instr = ctx.get(wr_idx);
366 
367       /* Check if we found the pattern above. */
368       if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 &&
369           wr_instr->opcode != aco_opcode::s_cmp_lg_u32)
370          return;
371       if (wr_instr->operands[0].physReg() != scc)
372          return;
373       if (!wr_instr->operands[1].constantEquals(0))
374          return;
375 
376       /* The optimization can be unsafe when there are other users. */
377       if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1)
378          return;
379 
380       if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) {
381          /* Flip the meaning of the instruction to correctly use the SCC. */
382          if (instr->format == Format::PSEUDO_BRANCH)
383             instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz
384                                                                      : aco_opcode::p_cbranch_z;
385          else if (instr->opcode == aco_opcode::s_cselect_b32)
386             std::swap(instr->operands[0], instr->operands[1]);
387          else
388             unreachable(
389                "scc_nocompare optimization is only implemented for p_cbranch and s_cselect");
390       }
391 
392       /* Use the SCC def from the original instruction, not the comparison */
393       ctx.uses[instr->operands[scc_op_idx].tempId()]--;
394       instr->operands[scc_op_idx] = wr_instr->operands[0];
395    }
396 }
397 
398 void
try_combine_dpp(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)399 try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
400 {
401    /* We are looking for the following pattern:
402     *
403     * v_mov_dpp vA, vB, ...      ; move instruction with DPP
404     * v_xxx vC, vA, ...          ; current instr that uses the result from the move
405     *
406     * If possible, the above is optimized into:
407     *
408     * v_xxx_dpp vC, vB, ...      ; current instr modified to use DPP directly
409     *
410     */
411 
412    if (!instr->isVALU() || instr->isDPP())
413       return;
414 
415    for (unsigned i = 0; i < MIN2(2, instr->operands.size()); i++) {
416       Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]);
417       if (!op_instr_idx.found())
418          continue;
419 
420       const Instruction* mov = ctx.get(op_instr_idx);
421       if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP())
422          continue;
423       bool dpp8 = mov->isDPP8();
424       if (!can_use_DPP(instr, false, dpp8))
425          return;
426 
427       /* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite
428        * it's own operand before we use it.
429        */
430       if (mov->definitions[0].physReg() == mov->operands[0].physReg() &&
431           (!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1))
432          continue;
433 
434       /* Don't propagate DPP if the source register is overwritten since the move. */
435       if (is_clobbered_since(ctx, mov->operands[0], op_instr_idx))
436          continue;
437 
438       if (i && !can_swap_operands(instr, &instr->opcode))
439          continue;
440 
441       if (!dpp8) /* anything else doesn't make sense in SSA */
442          assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf);
443 
444       if (--ctx.uses[mov->definitions[0].tempId()])
445          ctx.uses[mov->operands[0].tempId()]++;
446 
447       convert_to_DPP(instr, dpp8);
448 
449       if (dpp8) {
450          DPP8_instruction* dpp = &instr->dpp8();
451          if (i) {
452             std::swap(dpp->operands[0], dpp->operands[1]);
453          }
454          dpp->operands[0] = mov->operands[0];
455          memcpy(dpp->lane_sel, mov->dpp8().lane_sel, sizeof(dpp->lane_sel));
456       } else {
457          DPP16_instruction* dpp = &instr->dpp16();
458          if (i) {
459             std::swap(dpp->operands[0], dpp->operands[1]);
460             std::swap(dpp->neg[0], dpp->neg[1]);
461             std::swap(dpp->abs[0], dpp->abs[1]);
462          }
463          dpp->operands[0] = mov->operands[0];
464          dpp->dpp_ctrl = mov->dpp16().dpp_ctrl;
465          dpp->bound_ctrl = true;
466          dpp->neg[0] ^= mov->dpp16().neg[0] && !dpp->abs[0];
467          dpp->abs[0] |= mov->dpp16().abs[0];
468       }
469       return;
470    }
471 }
472 
473 void
process_instruction(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)474 process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
475 {
476    try_apply_branch_vcc(ctx, instr);
477 
478    try_optimize_scc_nocompare(ctx, instr);
479 
480    try_combine_dpp(ctx, instr);
481 
482    if (instr)
483       save_reg_writes(ctx, instr);
484 
485    ctx.current_instr_idx++;
486 }
487 
488 } // namespace
489 
490 void
optimize_postRA(Program * program)491 optimize_postRA(Program* program)
492 {
493    pr_opt_ctx ctx;
494    ctx.program = program;
495    ctx.uses = dead_code_analysis(program);
496    ctx.instr_idx_by_regs.resize(program->blocks.size());
497 
498    /* Forward pass
499     * Goes through each instruction exactly once, and can transform
500     * instructions or adjust the use counts of temps.
501     */
502    for (auto& block : program->blocks) {
503       ctx.reset_block(&block);
504 
505       for (aco_ptr<Instruction>& instr : block.instructions)
506          process_instruction(ctx, instr);
507    }
508 
509    /* Cleanup pass
510     * Gets rid of instructions which are manually deleted or
511     * no longer have any uses.
512     */
513    for (auto& block : program->blocks) {
514       auto new_end = std::remove_if(block.instructions.begin(), block.instructions.end(),
515                                     [&ctx](const aco_ptr<Instruction>& instr)
516                                     { return !instr || is_dead(ctx.uses, instr.get()); });
517       block.instructions.resize(new_end - block.instructions.begin());
518    }
519 }
520 
521 } // namespace aco
522