• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29  *           anon_vma->rwsem
30  *             mm->page_table_lock or pte_lock
31  *               pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
32  *               swap_lock (in swap_duplicate, swap_info_get)
33  *                 mmlist_lock (in mmput, drain_mmlist and others)
34  *                 mapping->private_lock (in __set_page_dirty_buffers)
35  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
36  *                     i_pages lock (widely used)
37  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                   i_pages lock (widely used, in set_page_dirty,
41  *                             in arch-dependent flush_dcache_mmap_lock,
42  *                             within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * * hugetlbfs PageHuge() pages take locks in this order:
49  *         mapping->i_mmap_rwsem
50  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *             page->flags PG_locked (lock_page)
52  */
53 
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/mm_purgeable.h>
76 
77 #include <asm/tlbflush.h>
78 
79 #include <trace/events/tlb.h>
80 
81 #include "internal.h"
82 
83 static struct kmem_cache *anon_vma_cachep;
84 static struct kmem_cache *anon_vma_chain_cachep;
85 
anon_vma_alloc(void)86 static inline struct anon_vma *anon_vma_alloc(void)
87 {
88 	struct anon_vma *anon_vma;
89 
90 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 	if (anon_vma) {
92 		atomic_set(&anon_vma->refcount, 1);
93 		anon_vma->num_children = 0;
94 		anon_vma->num_active_vmas = 0;
95 		anon_vma->parent = anon_vma;
96 		/*
97 		 * Initialise the anon_vma root to point to itself. If called
98 		 * from fork, the root will be reset to the parents anon_vma.
99 		 */
100 		anon_vma->root = anon_vma;
101 	}
102 
103 	return anon_vma;
104 }
105 
anon_vma_free(struct anon_vma * anon_vma)106 static inline void anon_vma_free(struct anon_vma *anon_vma)
107 {
108 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
109 
110 	/*
111 	 * Synchronize against page_lock_anon_vma_read() such that
112 	 * we can safely hold the lock without the anon_vma getting
113 	 * freed.
114 	 *
115 	 * Relies on the full mb implied by the atomic_dec_and_test() from
116 	 * put_anon_vma() against the acquire barrier implied by
117 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
118 	 *
119 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
120 	 *   down_read_trylock()		  atomic_dec_and_test()
121 	 *   LOCK				  MB
122 	 *   atomic_read()			  rwsem_is_locked()
123 	 *
124 	 * LOCK should suffice since the actual taking of the lock must
125 	 * happen _before_ what follows.
126 	 */
127 	might_sleep();
128 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
129 		anon_vma_lock_write(anon_vma);
130 		anon_vma_unlock_write(anon_vma);
131 	}
132 
133 	kmem_cache_free(anon_vma_cachep, anon_vma);
134 }
135 
anon_vma_chain_alloc(gfp_t gfp)136 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
137 {
138 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
139 }
140 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)141 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
142 {
143 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
144 }
145 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)146 static void anon_vma_chain_link(struct vm_area_struct *vma,
147 				struct anon_vma_chain *avc,
148 				struct anon_vma *anon_vma)
149 {
150 	avc->vma = vma;
151 	avc->anon_vma = anon_vma;
152 	list_add(&avc->same_vma, &vma->anon_vma_chain);
153 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
154 }
155 
156 /**
157  * __anon_vma_prepare - attach an anon_vma to a memory region
158  * @vma: the memory region in question
159  *
160  * This makes sure the memory mapping described by 'vma' has
161  * an 'anon_vma' attached to it, so that we can associate the
162  * anonymous pages mapped into it with that anon_vma.
163  *
164  * The common case will be that we already have one, which
165  * is handled inline by anon_vma_prepare(). But if
166  * not we either need to find an adjacent mapping that we
167  * can re-use the anon_vma from (very common when the only
168  * reason for splitting a vma has been mprotect()), or we
169  * allocate a new one.
170  *
171  * Anon-vma allocations are very subtle, because we may have
172  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
173  * and that may actually touch the spinlock even in the newly
174  * allocated vma (it depends on RCU to make sure that the
175  * anon_vma isn't actually destroyed).
176  *
177  * As a result, we need to do proper anon_vma locking even
178  * for the new allocation. At the same time, we do not want
179  * to do any locking for the common case of already having
180  * an anon_vma.
181  *
182  * This must be called with the mmap_lock held for reading.
183  */
__anon_vma_prepare(struct vm_area_struct * vma)184 int __anon_vma_prepare(struct vm_area_struct *vma)
185 {
186 	struct mm_struct *mm = vma->vm_mm;
187 	struct anon_vma *anon_vma, *allocated;
188 	struct anon_vma_chain *avc;
189 
190 	might_sleep();
191 
192 	avc = anon_vma_chain_alloc(GFP_KERNEL);
193 	if (!avc)
194 		goto out_enomem;
195 
196 	anon_vma = find_mergeable_anon_vma(vma);
197 	allocated = NULL;
198 	if (!anon_vma) {
199 		anon_vma = anon_vma_alloc();
200 		if (unlikely(!anon_vma))
201 			goto out_enomem_free_avc;
202 		anon_vma->num_children++; /* self-parent link for new root */
203 		allocated = anon_vma;
204 	}
205 
206 	anon_vma_lock_write(anon_vma);
207 	/* page_table_lock to protect against threads */
208 	spin_lock(&mm->page_table_lock);
209 	if (likely(!vma->anon_vma)) {
210 		vma->anon_vma = anon_vma;
211 		anon_vma_chain_link(vma, avc, anon_vma);
212 		anon_vma->num_active_vmas++;
213 		allocated = NULL;
214 		avc = NULL;
215 	}
216 	spin_unlock(&mm->page_table_lock);
217 	anon_vma_unlock_write(anon_vma);
218 
219 	if (unlikely(allocated))
220 		put_anon_vma(allocated);
221 	if (unlikely(avc))
222 		anon_vma_chain_free(avc);
223 
224 	return 0;
225 
226  out_enomem_free_avc:
227 	anon_vma_chain_free(avc);
228  out_enomem:
229 	return -ENOMEM;
230 }
231 
232 /*
233  * This is a useful helper function for locking the anon_vma root as
234  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
235  * have the same vma.
236  *
237  * Such anon_vma's should have the same root, so you'd expect to see
238  * just a single mutex_lock for the whole traversal.
239  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)240 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
241 {
242 	struct anon_vma *new_root = anon_vma->root;
243 	if (new_root != root) {
244 		if (WARN_ON_ONCE(root))
245 			up_write(&root->rwsem);
246 		root = new_root;
247 		down_write(&root->rwsem);
248 	}
249 	return root;
250 }
251 
unlock_anon_vma_root(struct anon_vma * root)252 static inline void unlock_anon_vma_root(struct anon_vma *root)
253 {
254 	if (root)
255 		up_write(&root->rwsem);
256 }
257 
258 /*
259  * Attach the anon_vmas from src to dst.
260  * Returns 0 on success, -ENOMEM on failure.
261  *
262  * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
263  * anon_vma_fork(). The first three want an exact copy of src, while the last
264  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
265  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
266  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
267  *
268  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
269  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
270  * This prevents degradation of anon_vma hierarchy to endless linear chain in
271  * case of constantly forking task. On the other hand, an anon_vma with more
272  * than one child isn't reused even if there was no alive vma, thus rmap
273  * walker has a good chance of avoiding scanning the whole hierarchy when it
274  * searches where page is mapped.
275  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)276 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
277 {
278 	struct anon_vma_chain *avc, *pavc;
279 	struct anon_vma *root = NULL;
280 
281 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
282 		struct anon_vma *anon_vma;
283 
284 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
285 		if (unlikely(!avc)) {
286 			unlock_anon_vma_root(root);
287 			root = NULL;
288 			avc = anon_vma_chain_alloc(GFP_KERNEL);
289 			if (!avc)
290 				goto enomem_failure;
291 		}
292 		anon_vma = pavc->anon_vma;
293 		root = lock_anon_vma_root(root, anon_vma);
294 		anon_vma_chain_link(dst, avc, anon_vma);
295 
296 		/*
297 		 * Reuse existing anon_vma if it has no vma and only one
298 		 * anon_vma child.
299 		 *
300 		 * Root anon_vma is never reused:
301 		 * it has self-parent reference and at least one child.
302 		 */
303 		if (!dst->anon_vma && src->anon_vma &&
304 		    anon_vma->num_children < 2 &&
305 		    anon_vma->num_active_vmas == 0)
306 			dst->anon_vma = anon_vma;
307 	}
308 	if (dst->anon_vma)
309 		dst->anon_vma->num_active_vmas++;
310 	unlock_anon_vma_root(root);
311 	return 0;
312 
313  enomem_failure:
314 	/*
315 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
316 	 * decremented in unlink_anon_vmas().
317 	 * We can safely do this because callers of anon_vma_clone() don't care
318 	 * about dst->anon_vma if anon_vma_clone() failed.
319 	 */
320 	dst->anon_vma = NULL;
321 	unlink_anon_vmas(dst);
322 	return -ENOMEM;
323 }
324 
325 /*
326  * Attach vma to its own anon_vma, as well as to the anon_vmas that
327  * the corresponding VMA in the parent process is attached to.
328  * Returns 0 on success, non-zero on failure.
329  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)330 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
331 {
332 	struct anon_vma_chain *avc;
333 	struct anon_vma *anon_vma;
334 	int error;
335 
336 	/* Don't bother if the parent process has no anon_vma here. */
337 	if (!pvma->anon_vma)
338 		return 0;
339 
340 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
341 	vma->anon_vma = NULL;
342 
343 	/*
344 	 * First, attach the new VMA to the parent VMA's anon_vmas,
345 	 * so rmap can find non-COWed pages in child processes.
346 	 */
347 	error = anon_vma_clone(vma, pvma);
348 	if (error)
349 		return error;
350 
351 	/* An existing anon_vma has been reused, all done then. */
352 	if (vma->anon_vma)
353 		return 0;
354 
355 	/* Then add our own anon_vma. */
356 	anon_vma = anon_vma_alloc();
357 	if (!anon_vma)
358 		goto out_error;
359 	anon_vma->num_active_vmas++;
360 	avc = anon_vma_chain_alloc(GFP_KERNEL);
361 	if (!avc)
362 		goto out_error_free_anon_vma;
363 
364 	/*
365 	 * The root anon_vma's spinlock is the lock actually used when we
366 	 * lock any of the anon_vmas in this anon_vma tree.
367 	 */
368 	anon_vma->root = pvma->anon_vma->root;
369 	anon_vma->parent = pvma->anon_vma;
370 	/*
371 	 * With refcounts, an anon_vma can stay around longer than the
372 	 * process it belongs to. The root anon_vma needs to be pinned until
373 	 * this anon_vma is freed, because the lock lives in the root.
374 	 */
375 	get_anon_vma(anon_vma->root);
376 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
377 	vma->anon_vma = anon_vma;
378 	anon_vma_lock_write(anon_vma);
379 	anon_vma_chain_link(vma, avc, anon_vma);
380 	anon_vma->parent->num_children++;
381 	anon_vma_unlock_write(anon_vma);
382 
383 	return 0;
384 
385  out_error_free_anon_vma:
386 	put_anon_vma(anon_vma);
387  out_error:
388 	unlink_anon_vmas(vma);
389 	return -ENOMEM;
390 }
391 
unlink_anon_vmas(struct vm_area_struct * vma)392 void unlink_anon_vmas(struct vm_area_struct *vma)
393 {
394 	struct anon_vma_chain *avc, *next;
395 	struct anon_vma *root = NULL;
396 
397 	/*
398 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
399 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
400 	 */
401 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
402 		struct anon_vma *anon_vma = avc->anon_vma;
403 
404 		root = lock_anon_vma_root(root, anon_vma);
405 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
406 
407 		/*
408 		 * Leave empty anon_vmas on the list - we'll need
409 		 * to free them outside the lock.
410 		 */
411 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
412 			anon_vma->parent->num_children--;
413 			continue;
414 		}
415 
416 		list_del(&avc->same_vma);
417 		anon_vma_chain_free(avc);
418 	}
419 	if (vma->anon_vma) {
420 		vma->anon_vma->num_active_vmas--;
421 
422 		/*
423 		 * vma would still be needed after unlink, and anon_vma will be prepared
424 		 * when handle fault.
425 		 */
426 		vma->anon_vma = NULL;
427 	}
428 	unlock_anon_vma_root(root);
429 
430 	/*
431 	 * Iterate the list once more, it now only contains empty and unlinked
432 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
433 	 * needing to write-acquire the anon_vma->root->rwsem.
434 	 */
435 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
436 		struct anon_vma *anon_vma = avc->anon_vma;
437 
438 		VM_WARN_ON(anon_vma->num_children);
439 		VM_WARN_ON(anon_vma->num_active_vmas);
440 		put_anon_vma(anon_vma);
441 
442 		list_del(&avc->same_vma);
443 		anon_vma_chain_free(avc);
444 	}
445 }
446 
anon_vma_ctor(void * data)447 static void anon_vma_ctor(void *data)
448 {
449 	struct anon_vma *anon_vma = data;
450 
451 	init_rwsem(&anon_vma->rwsem);
452 	atomic_set(&anon_vma->refcount, 0);
453 	anon_vma->rb_root = RB_ROOT_CACHED;
454 }
455 
anon_vma_init(void)456 void __init anon_vma_init(void)
457 {
458 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
459 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
460 			anon_vma_ctor);
461 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 			SLAB_PANIC|SLAB_ACCOUNT);
463 }
464 
465 /*
466  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467  *
468  * Since there is no serialization what so ever against page_remove_rmap()
469  * the best this function can do is return a locked anon_vma that might
470  * have been relevant to this page.
471  *
472  * The page might have been remapped to a different anon_vma or the anon_vma
473  * returned may already be freed (and even reused).
474  *
475  * In case it was remapped to a different anon_vma, the new anon_vma will be a
476  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477  * ensure that any anon_vma obtained from the page will still be valid for as
478  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479  *
480  * All users of this function must be very careful when walking the anon_vma
481  * chain and verify that the page in question is indeed mapped in it
482  * [ something equivalent to page_mapped_in_vma() ].
483  *
484  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486  * if there is a mapcount, we can dereference the anon_vma after observing
487  * those.
488  */
page_get_anon_vma(struct page * page)489 struct anon_vma *page_get_anon_vma(struct page *page)
490 {
491 	struct anon_vma *anon_vma = NULL;
492 	unsigned long anon_mapping;
493 
494 	rcu_read_lock();
495 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
496 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
497 		goto out;
498 	if (!page_mapped(page))
499 		goto out;
500 
501 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
502 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
503 		anon_vma = NULL;
504 		goto out;
505 	}
506 
507 	/*
508 	 * If this page is still mapped, then its anon_vma cannot have been
509 	 * freed.  But if it has been unmapped, we have no security against the
510 	 * anon_vma structure being freed and reused (for another anon_vma:
511 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
512 	 * above cannot corrupt).
513 	 */
514 	if (!page_mapped(page)) {
515 		rcu_read_unlock();
516 		put_anon_vma(anon_vma);
517 		return NULL;
518 	}
519 out:
520 	rcu_read_unlock();
521 
522 	return anon_vma;
523 }
524 
525 /*
526  * Similar to page_get_anon_vma() except it locks the anon_vma.
527  *
528  * Its a little more complex as it tries to keep the fast path to a single
529  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
530  * reference like with page_get_anon_vma() and then block on the mutex.
531  */
page_lock_anon_vma_read(struct page * page)532 struct anon_vma *page_lock_anon_vma_read(struct page *page)
533 {
534 	struct anon_vma *anon_vma = NULL;
535 	struct anon_vma *root_anon_vma;
536 	unsigned long anon_mapping;
537 
538 	rcu_read_lock();
539 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
540 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
541 		goto out;
542 	if (!page_mapped(page))
543 		goto out;
544 
545 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
546 	root_anon_vma = READ_ONCE(anon_vma->root);
547 	if (down_read_trylock(&root_anon_vma->rwsem)) {
548 		/*
549 		 * If the page is still mapped, then this anon_vma is still
550 		 * its anon_vma, and holding the mutex ensures that it will
551 		 * not go away, see anon_vma_free().
552 		 */
553 		if (!page_mapped(page)) {
554 			up_read(&root_anon_vma->rwsem);
555 			anon_vma = NULL;
556 		}
557 		goto out;
558 	}
559 
560 	/* trylock failed, we got to sleep */
561 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
562 		anon_vma = NULL;
563 		goto out;
564 	}
565 
566 	if (!page_mapped(page)) {
567 		rcu_read_unlock();
568 		put_anon_vma(anon_vma);
569 		return NULL;
570 	}
571 
572 	/* we pinned the anon_vma, its safe to sleep */
573 	rcu_read_unlock();
574 	anon_vma_lock_read(anon_vma);
575 
576 	if (atomic_dec_and_test(&anon_vma->refcount)) {
577 		/*
578 		 * Oops, we held the last refcount, release the lock
579 		 * and bail -- can't simply use put_anon_vma() because
580 		 * we'll deadlock on the anon_vma_lock_write() recursion.
581 		 */
582 		anon_vma_unlock_read(anon_vma);
583 		__put_anon_vma(anon_vma);
584 		anon_vma = NULL;
585 	}
586 
587 	return anon_vma;
588 
589 out:
590 	rcu_read_unlock();
591 	return anon_vma;
592 }
593 
page_unlock_anon_vma_read(struct anon_vma * anon_vma)594 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
595 {
596 	anon_vma_unlock_read(anon_vma);
597 }
598 
599 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
600 /*
601  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
602  * important if a PTE was dirty when it was unmapped that it's flushed
603  * before any IO is initiated on the page to prevent lost writes. Similarly,
604  * it must be flushed before freeing to prevent data leakage.
605  */
try_to_unmap_flush(void)606 void try_to_unmap_flush(void)
607 {
608 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
609 
610 	if (!tlb_ubc->flush_required)
611 		return;
612 
613 	arch_tlbbatch_flush(&tlb_ubc->arch);
614 	tlb_ubc->flush_required = false;
615 	tlb_ubc->writable = false;
616 }
617 
618 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)619 void try_to_unmap_flush_dirty(void)
620 {
621 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
622 
623 	if (tlb_ubc->writable)
624 		try_to_unmap_flush();
625 }
626 
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)627 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
628 {
629 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630 
631 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
632 	tlb_ubc->flush_required = true;
633 
634 	/*
635 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
636 	 * before the PTE is cleared.
637 	 */
638 	barrier();
639 	mm->tlb_flush_batched = true;
640 
641 	/*
642 	 * If the PTE was dirty then it's best to assume it's writable. The
643 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
644 	 * before the page is queued for IO.
645 	 */
646 	if (writable)
647 		tlb_ubc->writable = true;
648 }
649 
650 /*
651  * Returns true if the TLB flush should be deferred to the end of a batch of
652  * unmap operations to reduce IPIs.
653  */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)654 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
655 {
656 	bool should_defer = false;
657 
658 	if (!(flags & TTU_BATCH_FLUSH))
659 		return false;
660 
661 	/* If remote CPUs need to be flushed then defer batch the flush */
662 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
663 		should_defer = true;
664 	put_cpu();
665 
666 	return should_defer;
667 }
668 
669 /*
670  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
671  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
672  * operation such as mprotect or munmap to race between reclaim unmapping
673  * the page and flushing the page. If this race occurs, it potentially allows
674  * access to data via a stale TLB entry. Tracking all mm's that have TLB
675  * batching in flight would be expensive during reclaim so instead track
676  * whether TLB batching occurred in the past and if so then do a flush here
677  * if required. This will cost one additional flush per reclaim cycle paid
678  * by the first operation at risk such as mprotect and mumap.
679  *
680  * This must be called under the PTL so that an access to tlb_flush_batched
681  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
682  * via the PTL.
683  */
flush_tlb_batched_pending(struct mm_struct * mm)684 void flush_tlb_batched_pending(struct mm_struct *mm)
685 {
686 	if (data_race(mm->tlb_flush_batched)) {
687 		flush_tlb_mm(mm);
688 
689 		/*
690 		 * Do not allow the compiler to re-order the clearing of
691 		 * tlb_flush_batched before the tlb is flushed.
692 		 */
693 		barrier();
694 		mm->tlb_flush_batched = false;
695 	}
696 }
697 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)698 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
699 {
700 }
701 
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)702 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
703 {
704 	return false;
705 }
706 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
707 
708 /*
709  * At what user virtual address is page expected in vma?
710  * Caller should check the page is actually part of the vma.
711  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)712 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
713 {
714 	if (PageAnon(page)) {
715 		struct anon_vma *page__anon_vma = page_anon_vma(page);
716 		/*
717 		 * Note: swapoff's unuse_vma() is more efficient with this
718 		 * check, and needs it to match anon_vma when KSM is active.
719 		 */
720 		if (!vma->anon_vma || !page__anon_vma ||
721 		    vma->anon_vma->root != page__anon_vma->root)
722 			return -EFAULT;
723 	} else if (!vma->vm_file) {
724 		return -EFAULT;
725 	} else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
726 		return -EFAULT;
727 	}
728 
729 	return vma_address(page, vma);
730 }
731 
mm_find_pmd(struct mm_struct * mm,unsigned long address)732 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
733 {
734 	pgd_t *pgd;
735 	p4d_t *p4d;
736 	pud_t *pud;
737 	pmd_t *pmd = NULL;
738 	pmd_t pmde;
739 
740 	pgd = pgd_offset(mm, address);
741 	if (!pgd_present(*pgd))
742 		goto out;
743 
744 	p4d = p4d_offset(pgd, address);
745 	if (!p4d_present(*p4d))
746 		goto out;
747 
748 	pud = pud_offset(p4d, address);
749 	if (!pud_present(*pud))
750 		goto out;
751 
752 	pmd = pmd_offset(pud, address);
753 	/*
754 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
755 	 * without holding anon_vma lock for write.  So when looking for a
756 	 * genuine pmde (in which to find pte), test present and !THP together.
757 	 */
758 	pmde = *pmd;
759 	barrier();
760 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
761 		pmd = NULL;
762 out:
763 	return pmd;
764 }
765 
766 struct page_referenced_arg {
767 	int mapcount;
768 	int referenced;
769 	unsigned long vm_flags;
770 	struct mem_cgroup *memcg;
771 };
772 /*
773  * arg: page_referenced_arg will be passed
774  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)775 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
776 			unsigned long address, void *arg)
777 {
778 	struct page_referenced_arg *pra = arg;
779 	struct page_vma_mapped_walk pvmw = {
780 		.page = page,
781 		.vma = vma,
782 		.address = address,
783 	};
784 	int referenced = 0;
785 
786 	while (page_vma_mapped_walk(&pvmw)) {
787 		address = pvmw.address;
788 
789 #ifdef CONFIG_MEM_PURGEABLE
790 		if (!(vma->vm_flags & VM_PURGEABLE))
791 			pra->vm_flags &= ~VM_PURGEABLE;
792 #endif
793 		if (vma->vm_flags & VM_LOCKED) {
794 			page_vma_mapped_walk_done(&pvmw);
795 			pra->vm_flags |= VM_LOCKED;
796 			return false; /* To break the loop */
797 		}
798 
799 		if (pvmw.pte) {
800 			if (ptep_clear_flush_young_notify(vma, address,
801 						pvmw.pte)) {
802 				/*
803 				 * Don't treat a reference through
804 				 * a sequentially read mapping as such.
805 				 * If the page has been used in another mapping,
806 				 * we will catch it; if this other mapping is
807 				 * already gone, the unmap path will have set
808 				 * PG_referenced or activated the page.
809 				 */
810 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
811 					referenced++;
812 			}
813 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
814 			if (pmdp_clear_flush_young_notify(vma, address,
815 						pvmw.pmd))
816 				referenced++;
817 		} else {
818 			/* unexpected pmd-mapped page? */
819 			WARN_ON_ONCE(1);
820 		}
821 
822 		pra->mapcount--;
823 	}
824 
825 	if (referenced)
826 		clear_page_idle(page);
827 	if (test_and_clear_page_young(page))
828 		referenced++;
829 
830 	if (referenced) {
831 		pra->referenced++;
832 		pra->vm_flags |= vma->vm_flags & ~VM_PURGEABLE;
833 	}
834 
835 	if (!pra->mapcount)
836 		return false; /* To break the loop */
837 
838 	return true;
839 }
840 
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)841 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
842 {
843 	struct page_referenced_arg *pra = arg;
844 	struct mem_cgroup *memcg = pra->memcg;
845 
846 	if (!mm_match_cgroup(vma->vm_mm, memcg))
847 		return true;
848 
849 	return false;
850 }
851 
852 /**
853  * page_referenced - test if the page was referenced
854  * @page: the page to test
855  * @is_locked: caller holds lock on the page
856  * @memcg: target memory cgroup
857  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
858  *
859  * Quick test_and_clear_referenced for all mappings to a page,
860  * returns the number of ptes which referenced the page.
861  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)862 int page_referenced(struct page *page,
863 		    int is_locked,
864 		    struct mem_cgroup *memcg,
865 		    unsigned long *vm_flags)
866 {
867 	int we_locked = 0;
868 	struct page_referenced_arg pra = {
869 		.mapcount = total_mapcount(page),
870 		.memcg = memcg,
871 		.vm_flags = VM_PURGEABLE,
872 	};
873 	struct rmap_walk_control rwc = {
874 		.rmap_one = page_referenced_one,
875 		.arg = (void *)&pra,
876 		.anon_lock = page_lock_anon_vma_read,
877 	};
878 
879 	*vm_flags = 0;
880 	if (!pra.mapcount)
881 		return 0;
882 
883 	if (!page_rmapping(page))
884 		return 0;
885 
886 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
887 		we_locked = trylock_page(page);
888 		if (!we_locked)
889 			return 1;
890 	}
891 
892 	/*
893 	 * If we are reclaiming on behalf of a cgroup, skip
894 	 * counting on behalf of references from different
895 	 * cgroups
896 	 */
897 	if (memcg) {
898 		rwc.invalid_vma = invalid_page_referenced_vma;
899 	}
900 
901 	rmap_walk(page, &rwc);
902 	*vm_flags = pra.vm_flags;
903 
904 	if (we_locked)
905 		unlock_page(page);
906 
907 	return pra.referenced;
908 }
909 
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)910 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
911 			    unsigned long address, void *arg)
912 {
913 	struct page_vma_mapped_walk pvmw = {
914 		.page = page,
915 		.vma = vma,
916 		.address = address,
917 		.flags = PVMW_SYNC,
918 	};
919 	struct mmu_notifier_range range;
920 	int *cleaned = arg;
921 
922 	/*
923 	 * We have to assume the worse case ie pmd for invalidation. Note that
924 	 * the page can not be free from this function.
925 	 */
926 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
927 				0, vma, vma->vm_mm, address,
928 				vma_address_end(page, vma));
929 	mmu_notifier_invalidate_range_start(&range);
930 
931 	while (page_vma_mapped_walk(&pvmw)) {
932 		int ret = 0;
933 
934 		address = pvmw.address;
935 		if (pvmw.pte) {
936 			pte_t entry;
937 			pte_t *pte = pvmw.pte;
938 
939 			if (!pte_dirty(*pte) && !pte_write(*pte))
940 				continue;
941 
942 			flush_cache_page(vma, address, pte_pfn(*pte));
943 			entry = ptep_clear_flush(vma, address, pte);
944 			entry = pte_wrprotect(entry);
945 			entry = pte_mkclean(entry);
946 			set_pte_at(vma->vm_mm, address, pte, entry);
947 			ret = 1;
948 		} else {
949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
950 			pmd_t *pmd = pvmw.pmd;
951 			pmd_t entry;
952 
953 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
954 				continue;
955 
956 			flush_cache_page(vma, address, page_to_pfn(page));
957 			entry = pmdp_invalidate(vma, address, pmd);
958 			entry = pmd_wrprotect(entry);
959 			entry = pmd_mkclean(entry);
960 			set_pmd_at(vma->vm_mm, address, pmd, entry);
961 			ret = 1;
962 #else
963 			/* unexpected pmd-mapped page? */
964 			WARN_ON_ONCE(1);
965 #endif
966 		}
967 
968 		/*
969 		 * No need to call mmu_notifier_invalidate_range() as we are
970 		 * downgrading page table protection not changing it to point
971 		 * to a new page.
972 		 *
973 		 * See Documentation/vm/mmu_notifier.rst
974 		 */
975 		if (ret)
976 			(*cleaned)++;
977 	}
978 
979 	mmu_notifier_invalidate_range_end(&range);
980 
981 	return true;
982 }
983 
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)984 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
985 {
986 	if (vma->vm_flags & VM_SHARED)
987 		return false;
988 
989 	return true;
990 }
991 
page_mkclean(struct page * page)992 int page_mkclean(struct page *page)
993 {
994 	int cleaned = 0;
995 	struct address_space *mapping;
996 	struct rmap_walk_control rwc = {
997 		.arg = (void *)&cleaned,
998 		.rmap_one = page_mkclean_one,
999 		.invalid_vma = invalid_mkclean_vma,
1000 	};
1001 
1002 	BUG_ON(!PageLocked(page));
1003 
1004 	if (!page_mapped(page))
1005 		return 0;
1006 
1007 	mapping = page_mapping(page);
1008 	if (!mapping)
1009 		return 0;
1010 
1011 	rmap_walk(page, &rwc);
1012 
1013 	return cleaned;
1014 }
1015 EXPORT_SYMBOL_GPL(page_mkclean);
1016 
1017 /**
1018  * page_move_anon_rmap - move a page to our anon_vma
1019  * @page:	the page to move to our anon_vma
1020  * @vma:	the vma the page belongs to
1021  *
1022  * When a page belongs exclusively to one process after a COW event,
1023  * that page can be moved into the anon_vma that belongs to just that
1024  * process, so the rmap code will not search the parent or sibling
1025  * processes.
1026  */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1027 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1028 {
1029 	struct anon_vma *anon_vma = vma->anon_vma;
1030 
1031 	page = compound_head(page);
1032 
1033 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1034 	VM_BUG_ON_VMA(!anon_vma, vma);
1035 
1036 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1037 	/*
1038 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1039 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1040 	 * PageAnon()) will not see one without the other.
1041 	 */
1042 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1043 }
1044 
1045 /**
1046  * __page_set_anon_rmap - set up new anonymous rmap
1047  * @page:	Page or Hugepage to add to rmap
1048  * @vma:	VM area to add page to.
1049  * @address:	User virtual address of the mapping
1050  * @exclusive:	the page is exclusively owned by the current process
1051  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1052 static void __page_set_anon_rmap(struct page *page,
1053 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1054 {
1055 	struct anon_vma *anon_vma = vma->anon_vma;
1056 
1057 	BUG_ON(!anon_vma);
1058 
1059 	if (PageAnon(page))
1060 		return;
1061 
1062 	/*
1063 	 * If the page isn't exclusively mapped into this vma,
1064 	 * we must use the _oldest_ possible anon_vma for the
1065 	 * page mapping!
1066 	 */
1067 	if (!exclusive)
1068 		anon_vma = anon_vma->root;
1069 
1070 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1071 	page->mapping = (struct address_space *) anon_vma;
1072 	page->index = linear_page_index(vma, address);
1073 }
1074 
1075 /**
1076  * __page_check_anon_rmap - sanity check anonymous rmap addition
1077  * @page:	the page to add the mapping to
1078  * @vma:	the vm area in which the mapping is added
1079  * @address:	the user virtual address mapped
1080  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1081 static void __page_check_anon_rmap(struct page *page,
1082 	struct vm_area_struct *vma, unsigned long address)
1083 {
1084 	/*
1085 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1086 	 * be set up correctly at this point.
1087 	 *
1088 	 * We have exclusion against page_add_anon_rmap because the caller
1089 	 * always holds the page locked, except if called from page_dup_rmap,
1090 	 * in which case the page is already known to be setup.
1091 	 *
1092 	 * We have exclusion against page_add_new_anon_rmap because those pages
1093 	 * are initially only visible via the pagetables, and the pte is locked
1094 	 * over the call to page_add_new_anon_rmap.
1095 	 */
1096 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1097 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1098 		       page);
1099 }
1100 
1101 /**
1102  * page_add_anon_rmap - add pte mapping to an anonymous page
1103  * @page:	the page to add the mapping to
1104  * @vma:	the vm area in which the mapping is added
1105  * @address:	the user virtual address mapped
1106  * @compound:	charge the page as compound or small page
1107  *
1108  * The caller needs to hold the pte lock, and the page must be locked in
1109  * the anon_vma case: to serialize mapping,index checking after setting,
1110  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1111  * (but PageKsm is never downgraded to PageAnon).
1112  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1113 void page_add_anon_rmap(struct page *page,
1114 	struct vm_area_struct *vma, unsigned long address, bool compound)
1115 {
1116 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1117 }
1118 
1119 /*
1120  * Special version of the above for do_swap_page, which often runs
1121  * into pages that are exclusively owned by the current process.
1122  * Everybody else should continue to use page_add_anon_rmap above.
1123  */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1124 void do_page_add_anon_rmap(struct page *page,
1125 	struct vm_area_struct *vma, unsigned long address, int flags)
1126 {
1127 	bool compound = flags & RMAP_COMPOUND;
1128 	bool first;
1129 
1130 	if (unlikely(PageKsm(page)))
1131 		lock_page_memcg(page);
1132 	else
1133 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1134 
1135 	if (compound) {
1136 		atomic_t *mapcount;
1137 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1138 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1139 		mapcount = compound_mapcount_ptr(page);
1140 		first = atomic_inc_and_test(mapcount);
1141 	} else {
1142 		first = atomic_inc_and_test(&page->_mapcount);
1143 	}
1144 
1145 	if (first) {
1146 		int nr = compound ? thp_nr_pages(page) : 1;
1147 		/*
1148 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1149 		 * these counters are not modified in interrupt context, and
1150 		 * pte lock(a spinlock) is held, which implies preemption
1151 		 * disabled.
1152 		 */
1153 		if (compound)
1154 			__inc_lruvec_page_state(page, NR_ANON_THPS);
1155 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1156 	}
1157 
1158 	if (unlikely(PageKsm(page))) {
1159 		unlock_page_memcg(page);
1160 		return;
1161 	}
1162 
1163 	/* address might be in next vma when migration races vma_adjust */
1164 	if (first)
1165 		__page_set_anon_rmap(page, vma, address,
1166 				flags & RMAP_EXCLUSIVE);
1167 	else
1168 		__page_check_anon_rmap(page, vma, address);
1169 }
1170 
1171 /**
1172  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1173  * @page:	the page to add the mapping to
1174  * @vma:	the vm area in which the mapping is added
1175  * @address:	the user virtual address mapped
1176  * @compound:	charge the page as compound or small page
1177  *
1178  * Same as page_add_anon_rmap but must only be called on *new* pages.
1179  * This means the inc-and-test can be bypassed.
1180  * Page does not have to be locked.
1181  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1182 void page_add_new_anon_rmap(struct page *page,
1183 	struct vm_area_struct *vma, unsigned long address, bool compound)
1184 {
1185 	int nr = compound ? thp_nr_pages(page) : 1;
1186 
1187 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1188 	__SetPageSwapBacked(page);
1189 	if (compound) {
1190 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1191 		/* increment count (starts at -1) */
1192 		atomic_set(compound_mapcount_ptr(page), 0);
1193 		if (hpage_pincount_available(page))
1194 			atomic_set(compound_pincount_ptr(page), 0);
1195 
1196 		__inc_lruvec_page_state(page, NR_ANON_THPS);
1197 	} else {
1198 		/* Anon THP always mapped first with PMD */
1199 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1200 		/* increment count (starts at -1) */
1201 		atomic_set(&page->_mapcount, 0);
1202 	}
1203 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1204 	__page_set_anon_rmap(page, vma, address, 1);
1205 }
1206 
1207 /**
1208  * page_add_file_rmap - add pte mapping to a file page
1209  * @page: the page to add the mapping to
1210  * @compound: charge the page as compound or small page
1211  *
1212  * The caller needs to hold the pte lock.
1213  */
page_add_file_rmap(struct page * page,bool compound)1214 void page_add_file_rmap(struct page *page, bool compound)
1215 {
1216 	int i, nr = 1;
1217 
1218 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1219 	lock_page_memcg(page);
1220 	if (compound && PageTransHuge(page)) {
1221 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1222 			if (atomic_inc_and_test(&page[i]._mapcount))
1223 				nr++;
1224 		}
1225 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1226 			goto out;
1227 		if (PageSwapBacked(page))
1228 			__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1229 		else
1230 			__inc_node_page_state(page, NR_FILE_PMDMAPPED);
1231 	} else {
1232 		if (PageTransCompound(page) && page_mapping(page)) {
1233 			VM_WARN_ON_ONCE(!PageLocked(page));
1234 
1235 			SetPageDoubleMap(compound_head(page));
1236 			if (PageMlocked(page))
1237 				clear_page_mlock(compound_head(page));
1238 		}
1239 		if (!atomic_inc_and_test(&page->_mapcount))
1240 			goto out;
1241 	}
1242 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1243 out:
1244 	unlock_page_memcg(page);
1245 }
1246 
page_remove_file_rmap(struct page * page,bool compound)1247 static void page_remove_file_rmap(struct page *page, bool compound)
1248 {
1249 	int i, nr = 1;
1250 
1251 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1252 
1253 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1254 	if (unlikely(PageHuge(page))) {
1255 		/* hugetlb pages are always mapped with pmds */
1256 		atomic_dec(compound_mapcount_ptr(page));
1257 		return;
1258 	}
1259 
1260 	/* page still mapped by someone else? */
1261 	if (compound && PageTransHuge(page)) {
1262 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1263 			if (atomic_add_negative(-1, &page[i]._mapcount))
1264 				nr++;
1265 		}
1266 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1267 			return;
1268 		if (PageSwapBacked(page))
1269 			__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1270 		else
1271 			__dec_node_page_state(page, NR_FILE_PMDMAPPED);
1272 	} else {
1273 		if (!atomic_add_negative(-1, &page->_mapcount))
1274 			return;
1275 	}
1276 
1277 	/*
1278 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1279 	 * these counters are not modified in interrupt context, and
1280 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1281 	 */
1282 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1283 
1284 	if (unlikely(PageMlocked(page)))
1285 		clear_page_mlock(page);
1286 }
1287 
page_remove_anon_compound_rmap(struct page * page)1288 static void page_remove_anon_compound_rmap(struct page *page)
1289 {
1290 	int i, nr;
1291 
1292 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1293 		return;
1294 
1295 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1296 	if (unlikely(PageHuge(page)))
1297 		return;
1298 
1299 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1300 		return;
1301 
1302 	__dec_lruvec_page_state(page, NR_ANON_THPS);
1303 
1304 	if (TestClearPageDoubleMap(page)) {
1305 		/*
1306 		 * Subpages can be mapped with PTEs too. Check how many of
1307 		 * them are still mapped.
1308 		 */
1309 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1310 			if (atomic_add_negative(-1, &page[i]._mapcount))
1311 				nr++;
1312 		}
1313 
1314 		/*
1315 		 * Queue the page for deferred split if at least one small
1316 		 * page of the compound page is unmapped, but at least one
1317 		 * small page is still mapped.
1318 		 */
1319 		if (nr && nr < thp_nr_pages(page))
1320 			deferred_split_huge_page(page);
1321 	} else {
1322 		nr = thp_nr_pages(page);
1323 	}
1324 
1325 	if (unlikely(PageMlocked(page)))
1326 		clear_page_mlock(page);
1327 
1328 	if (nr)
1329 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1330 }
1331 
1332 /**
1333  * page_remove_rmap - take down pte mapping from a page
1334  * @page:	page to remove mapping from
1335  * @compound:	uncharge the page as compound or small page
1336  *
1337  * The caller needs to hold the pte lock.
1338  */
page_remove_rmap(struct page * page,bool compound)1339 void page_remove_rmap(struct page *page, bool compound)
1340 {
1341 	lock_page_memcg(page);
1342 
1343 	if (!PageAnon(page)) {
1344 		page_remove_file_rmap(page, compound);
1345 		goto out;
1346 	}
1347 
1348 	if (compound) {
1349 		page_remove_anon_compound_rmap(page);
1350 		goto out;
1351 	}
1352 
1353 	/* page still mapped by someone else? */
1354 	if (!atomic_add_negative(-1, &page->_mapcount))
1355 		goto out;
1356 
1357 	/*
1358 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1359 	 * these counters are not modified in interrupt context, and
1360 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1361 	 */
1362 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1363 
1364 	if (unlikely(PageMlocked(page)))
1365 		clear_page_mlock(page);
1366 
1367 	if (PageTransCompound(page))
1368 		deferred_split_huge_page(compound_head(page));
1369 
1370 	/*
1371 	 * It would be tidy to reset the PageAnon mapping here,
1372 	 * but that might overwrite a racing page_add_anon_rmap
1373 	 * which increments mapcount after us but sets mapping
1374 	 * before us: so leave the reset to free_unref_page,
1375 	 * and remember that it's only reliable while mapped.
1376 	 * Leaving it set also helps swapoff to reinstate ptes
1377 	 * faster for those pages still in swapcache.
1378 	 */
1379 out:
1380 	unlock_page_memcg(page);
1381 }
1382 
1383 /*
1384  * @arg: enum ttu_flags will be passed to this argument
1385  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1386 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1387 		     unsigned long address, void *arg)
1388 {
1389 	struct mm_struct *mm = vma->vm_mm;
1390 	struct page_vma_mapped_walk pvmw = {
1391 		.page = page,
1392 		.vma = vma,
1393 		.address = address,
1394 	};
1395 	pte_t pteval;
1396 	struct page *subpage;
1397 	bool ret = true;
1398 	struct mmu_notifier_range range;
1399 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1400 
1401 	/*
1402 	 * When racing against e.g. zap_pte_range() on another cpu,
1403 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1404 	 * try_to_unmap() may return false when it is about to become true,
1405 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1406 	 */
1407 	if (flags & TTU_SYNC)
1408 		pvmw.flags = PVMW_SYNC;
1409 
1410 	/* munlock has nothing to gain from examining un-locked vmas */
1411 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1412 		return true;
1413 
1414 	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1415 	    is_zone_device_page(page) && !is_device_private_page(page))
1416 		return true;
1417 
1418 	if (flags & TTU_SPLIT_HUGE_PMD) {
1419 		split_huge_pmd_address(vma, address,
1420 				flags & TTU_SPLIT_FREEZE, page);
1421 	}
1422 
1423 	/*
1424 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1425 	 * For hugetlb, it could be much worse if we need to do pud
1426 	 * invalidation in the case of pmd sharing.
1427 	 *
1428 	 * Note that the page can not be free in this function as call of
1429 	 * try_to_unmap() must hold a reference on the page.
1430 	 */
1431 	range.end = PageKsm(page) ?
1432 			address + PAGE_SIZE : vma_address_end(page, vma);
1433 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1434 				address, range.end);
1435 	if (PageHuge(page)) {
1436 		/*
1437 		 * If sharing is possible, start and end will be adjusted
1438 		 * accordingly.
1439 		 */
1440 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1441 						     &range.end);
1442 	}
1443 	mmu_notifier_invalidate_range_start(&range);
1444 
1445 	while (page_vma_mapped_walk(&pvmw)) {
1446 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1447 		/* PMD-mapped THP migration entry */
1448 		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1449 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1450 
1451 			set_pmd_migration_entry(&pvmw, page);
1452 			continue;
1453 		}
1454 #endif
1455 #ifdef CONFIG_MEM_PURGEABLE
1456 		if ((vma->vm_flags & VM_PURGEABLE) && !lock_uxpte(vma, address)) {
1457 			ret = false;
1458 			page_vma_mapped_walk_done(&pvmw);
1459 			break;
1460 		}
1461 #endif
1462 
1463 		/*
1464 		 * If the page is mlock()d, we cannot swap it out.
1465 		 * If it's recently referenced (perhaps page_referenced
1466 		 * skipped over this mm) then we should reactivate it.
1467 		 */
1468 		if (!(flags & TTU_IGNORE_MLOCK)) {
1469 			if (vma->vm_flags & VM_LOCKED) {
1470 				/* PTE-mapped THP are never mlocked */
1471 				if (!PageTransCompound(page)) {
1472 					/*
1473 					 * Holding pte lock, we do *not* need
1474 					 * mmap_lock here
1475 					 */
1476 					mlock_vma_page(page);
1477 				}
1478 				ret = false;
1479 				page_vma_mapped_walk_done(&pvmw);
1480 				break;
1481 			}
1482 			if (flags & TTU_MUNLOCK)
1483 				continue;
1484 		}
1485 
1486 		/* Unexpected PMD-mapped THP? */
1487 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1488 
1489 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1490 		address = pvmw.address;
1491 
1492 		if (PageHuge(page) && !PageAnon(page)) {
1493 			/*
1494 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1495 			 * held in write mode.  Caller needs to explicitly
1496 			 * do this outside rmap routines.
1497 			 */
1498 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1499 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1500 				/*
1501 				 * huge_pmd_unshare unmapped an entire PMD
1502 				 * page.  There is no way of knowing exactly
1503 				 * which PMDs may be cached for this mm, so
1504 				 * we must flush them all.  start/end were
1505 				 * already adjusted above to cover this range.
1506 				 */
1507 				flush_cache_range(vma, range.start, range.end);
1508 				flush_tlb_range(vma, range.start, range.end);
1509 				mmu_notifier_invalidate_range(mm, range.start,
1510 							      range.end);
1511 
1512 				/*
1513 				 * The ref count of the PMD page was dropped
1514 				 * which is part of the way map counting
1515 				 * is done for shared PMDs.  Return 'true'
1516 				 * here.  When there is no other sharing,
1517 				 * huge_pmd_unshare returns false and we will
1518 				 * unmap the actual page and drop map count
1519 				 * to zero.
1520 				 */
1521 				page_vma_mapped_walk_done(&pvmw);
1522 				break;
1523 			}
1524 		}
1525 
1526 		if (IS_ENABLED(CONFIG_MIGRATION) &&
1527 		    (flags & TTU_MIGRATION) &&
1528 		    is_zone_device_page(page)) {
1529 			swp_entry_t entry;
1530 			pte_t swp_pte;
1531 
1532 			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1533 
1534 			/*
1535 			 * Store the pfn of the page in a special migration
1536 			 * pte. do_swap_page() will wait until the migration
1537 			 * pte is removed and then restart fault handling.
1538 			 */
1539 			entry = make_migration_entry(page, 0);
1540 			swp_pte = swp_entry_to_pte(entry);
1541 
1542 			/*
1543 			 * pteval maps a zone device page and is therefore
1544 			 * a swap pte.
1545 			 */
1546 			if (pte_swp_soft_dirty(pteval))
1547 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1548 			if (pte_swp_uffd_wp(pteval))
1549 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1550 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1551 			/*
1552 			 * No need to invalidate here it will synchronize on
1553 			 * against the special swap migration pte.
1554 			 *
1555 			 * The assignment to subpage above was computed from a
1556 			 * swap PTE which results in an invalid pointer.
1557 			 * Since only PAGE_SIZE pages can currently be
1558 			 * migrated, just set it to page. This will need to be
1559 			 * changed when hugepage migrations to device private
1560 			 * memory are supported.
1561 			 */
1562 			subpage = page;
1563 			goto discard;
1564 		}
1565 
1566 		/* Nuke the page table entry. */
1567 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1568 		if (should_defer_flush(mm, flags)) {
1569 			/*
1570 			 * We clear the PTE but do not flush so potentially
1571 			 * a remote CPU could still be writing to the page.
1572 			 * If the entry was previously clean then the
1573 			 * architecture must guarantee that a clear->dirty
1574 			 * transition on a cached TLB entry is written through
1575 			 * and traps if the PTE is unmapped.
1576 			 */
1577 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1578 
1579 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1580 		} else {
1581 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1582 		}
1583 
1584 		/* Move the dirty bit to the page. Now the pte is gone. */
1585 		if (pte_dirty(pteval))
1586 			set_page_dirty(page);
1587 
1588 		/* Update high watermark before we lower rss */
1589 		update_hiwater_rss(mm);
1590 
1591 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1592 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1593 			if (PageHuge(page)) {
1594 				hugetlb_count_sub(compound_nr(page), mm);
1595 				set_huge_swap_pte_at(mm, address,
1596 						     pvmw.pte, pteval,
1597 						     vma_mmu_pagesize(vma));
1598 			} else {
1599 				dec_mm_counter(mm, mm_counter(page));
1600 				set_pte_at(mm, address, pvmw.pte, pteval);
1601 			}
1602 
1603 		} else if ((vma->vm_flags & VM_PURGEABLE) || (pte_unused(pteval) &&
1604 			   !userfaultfd_armed(vma))) {
1605 			if (vma->vm_flags & VM_PURGEABLE)
1606 				unlock_uxpte(vma, address);
1607 			/*
1608 			 * The guest indicated that the page content is of no
1609 			 * interest anymore. Simply discard the pte, vmscan
1610 			 * will take care of the rest.
1611 			 * A future reference will then fault in a new zero
1612 			 * page. When userfaultfd is active, we must not drop
1613 			 * this page though, as its main user (postcopy
1614 			 * migration) will not expect userfaults on already
1615 			 * copied pages.
1616 			 */
1617 			dec_mm_counter(mm, mm_counter(page));
1618 			/* We have to invalidate as we cleared the pte */
1619 			mmu_notifier_invalidate_range(mm, address,
1620 						      address + PAGE_SIZE);
1621 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1622 				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1623 			swp_entry_t entry;
1624 			pte_t swp_pte;
1625 
1626 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1627 				set_pte_at(mm, address, pvmw.pte, pteval);
1628 				ret = false;
1629 				page_vma_mapped_walk_done(&pvmw);
1630 				break;
1631 			}
1632 
1633 			/*
1634 			 * Store the pfn of the page in a special migration
1635 			 * pte. do_swap_page() will wait until the migration
1636 			 * pte is removed and then restart fault handling.
1637 			 */
1638 			entry = make_migration_entry(subpage,
1639 					pte_write(pteval));
1640 			swp_pte = swp_entry_to_pte(entry);
1641 			if (pte_soft_dirty(pteval))
1642 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1643 			if (pte_uffd_wp(pteval))
1644 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1645 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1646 			/*
1647 			 * No need to invalidate here it will synchronize on
1648 			 * against the special swap migration pte.
1649 			 */
1650 		} else if (PageAnon(page)) {
1651 			swp_entry_t entry = { .val = page_private(subpage) };
1652 			pte_t swp_pte;
1653 			/*
1654 			 * Store the swap location in the pte.
1655 			 * See handle_pte_fault() ...
1656 			 */
1657 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1658 				WARN_ON_ONCE(1);
1659 				ret = false;
1660 				/* We have to invalidate as we cleared the pte */
1661 				mmu_notifier_invalidate_range(mm, address,
1662 							address + PAGE_SIZE);
1663 				page_vma_mapped_walk_done(&pvmw);
1664 				break;
1665 			}
1666 
1667 			/* MADV_FREE page check */
1668 			if (!PageSwapBacked(page)) {
1669 				int ref_count, map_count;
1670 
1671 				/*
1672 				 * Synchronize with gup_pte_range():
1673 				 * - clear PTE; barrier; read refcount
1674 				 * - inc refcount; barrier; read PTE
1675 				 */
1676 				smp_mb();
1677 
1678 				ref_count = page_ref_count(page);
1679 				map_count = page_mapcount(page);
1680 
1681 				/*
1682 				 * Order reads for page refcount and dirty flag
1683 				 * (see comments in __remove_mapping()).
1684 				 */
1685 				smp_rmb();
1686 
1687 				/*
1688 				 * The only page refs must be one from isolation
1689 				 * plus the rmap(s) (dropped by discard:).
1690 				 */
1691 				if (ref_count == 1 + map_count &&
1692 				    !PageDirty(page)) {
1693 					/* Invalidate as we cleared the pte */
1694 					mmu_notifier_invalidate_range(mm,
1695 						address, address + PAGE_SIZE);
1696 					dec_mm_counter(mm, MM_ANONPAGES);
1697 					goto discard;
1698 				}
1699 
1700 				/*
1701 				 * If the page was redirtied, it cannot be
1702 				 * discarded. Remap the page to page table.
1703 				 */
1704 				set_pte_at(mm, address, pvmw.pte, pteval);
1705 				SetPageSwapBacked(page);
1706 				ret = false;
1707 				page_vma_mapped_walk_done(&pvmw);
1708 				break;
1709 			}
1710 
1711 			if (swap_duplicate(entry) < 0) {
1712 				set_pte_at(mm, address, pvmw.pte, pteval);
1713 				ret = false;
1714 				page_vma_mapped_walk_done(&pvmw);
1715 				break;
1716 			}
1717 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1718 				set_pte_at(mm, address, pvmw.pte, pteval);
1719 				ret = false;
1720 				page_vma_mapped_walk_done(&pvmw);
1721 				break;
1722 			}
1723 			if (list_empty(&mm->mmlist)) {
1724 				spin_lock(&mmlist_lock);
1725 				if (list_empty(&mm->mmlist))
1726 					list_add(&mm->mmlist, &init_mm.mmlist);
1727 				spin_unlock(&mmlist_lock);
1728 			}
1729 			dec_mm_counter(mm, MM_ANONPAGES);
1730 			inc_mm_counter(mm, MM_SWAPENTS);
1731 			swp_pte = swp_entry_to_pte(entry);
1732 			if (pte_soft_dirty(pteval))
1733 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1734 			if (pte_uffd_wp(pteval))
1735 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1736 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1737 			/* Invalidate as we cleared the pte */
1738 			mmu_notifier_invalidate_range(mm, address,
1739 						      address + PAGE_SIZE);
1740 		} else {
1741 			/*
1742 			 * This is a locked file-backed page, thus it cannot
1743 			 * be removed from the page cache and replaced by a new
1744 			 * page before mmu_notifier_invalidate_range_end, so no
1745 			 * concurrent thread might update its page table to
1746 			 * point at new page while a device still is using this
1747 			 * page.
1748 			 *
1749 			 * See Documentation/vm/mmu_notifier.rst
1750 			 */
1751 			dec_mm_counter(mm, mm_counter_file(page));
1752 		}
1753 discard:
1754 		/*
1755 		 * No need to call mmu_notifier_invalidate_range() it has be
1756 		 * done above for all cases requiring it to happen under page
1757 		 * table lock before mmu_notifier_invalidate_range_end()
1758 		 *
1759 		 * See Documentation/vm/mmu_notifier.rst
1760 		 */
1761 		page_remove_rmap(subpage, PageHuge(page));
1762 		put_page(page);
1763 	}
1764 
1765 	mmu_notifier_invalidate_range_end(&range);
1766 
1767 	return ret;
1768 }
1769 
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1770 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1771 {
1772 	return vma_is_temporary_stack(vma);
1773 }
1774 
page_not_mapped(struct page * page)1775 static int page_not_mapped(struct page *page)
1776 {
1777 	return !page_mapped(page);
1778 }
1779 
1780 /**
1781  * try_to_unmap - try to remove all page table mappings to a page
1782  * @page: the page to get unmapped
1783  * @flags: action and flags
1784  *
1785  * Tries to remove all the page table entries which are mapping this
1786  * page, used in the pageout path.  Caller must hold the page lock.
1787  *
1788  * If unmap is successful, return true. Otherwise, false.
1789  */
try_to_unmap(struct page * page,enum ttu_flags flags)1790 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1791 {
1792 	struct rmap_walk_control rwc = {
1793 		.rmap_one = try_to_unmap_one,
1794 		.arg = (void *)flags,
1795 		.done = page_not_mapped,
1796 		.anon_lock = page_lock_anon_vma_read,
1797 	};
1798 
1799 	/*
1800 	 * During exec, a temporary VMA is setup and later moved.
1801 	 * The VMA is moved under the anon_vma lock but not the
1802 	 * page tables leading to a race where migration cannot
1803 	 * find the migration ptes. Rather than increasing the
1804 	 * locking requirements of exec(), migration skips
1805 	 * temporary VMAs until after exec() completes.
1806 	 */
1807 	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1808 	    && !PageKsm(page) && PageAnon(page))
1809 		rwc.invalid_vma = invalid_migration_vma;
1810 
1811 	if (flags & TTU_RMAP_LOCKED)
1812 		rmap_walk_locked(page, &rwc);
1813 	else
1814 		rmap_walk(page, &rwc);
1815 
1816 	/*
1817 	 * When racing against e.g. zap_pte_range() on another cpu,
1818 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1819 	 * try_to_unmap() may return false when it is about to become true,
1820 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1821 	 */
1822 	return !page_mapcount(page);
1823 }
1824 
1825 /**
1826  * try_to_munlock - try to munlock a page
1827  * @page: the page to be munlocked
1828  *
1829  * Called from munlock code.  Checks all of the VMAs mapping the page
1830  * to make sure nobody else has this page mlocked. The page will be
1831  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1832  */
1833 
try_to_munlock(struct page * page)1834 void try_to_munlock(struct page *page)
1835 {
1836 	struct rmap_walk_control rwc = {
1837 		.rmap_one = try_to_unmap_one,
1838 		.arg = (void *)TTU_MUNLOCK,
1839 		.done = page_not_mapped,
1840 		.anon_lock = page_lock_anon_vma_read,
1841 
1842 	};
1843 
1844 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1845 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1846 
1847 	rmap_walk(page, &rwc);
1848 }
1849 
__put_anon_vma(struct anon_vma * anon_vma)1850 void __put_anon_vma(struct anon_vma *anon_vma)
1851 {
1852 	struct anon_vma *root = anon_vma->root;
1853 
1854 	anon_vma_free(anon_vma);
1855 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1856 		anon_vma_free(root);
1857 }
1858 
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1859 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1860 					struct rmap_walk_control *rwc)
1861 {
1862 	struct anon_vma *anon_vma;
1863 
1864 	if (rwc->anon_lock)
1865 		return rwc->anon_lock(page);
1866 
1867 	/*
1868 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1869 	 * because that depends on page_mapped(); but not all its usages
1870 	 * are holding mmap_lock. Users without mmap_lock are required to
1871 	 * take a reference count to prevent the anon_vma disappearing
1872 	 */
1873 	anon_vma = page_anon_vma(page);
1874 	if (!anon_vma)
1875 		return NULL;
1876 
1877 	anon_vma_lock_read(anon_vma);
1878 	return anon_vma;
1879 }
1880 
1881 /*
1882  * rmap_walk_anon - do something to anonymous page using the object-based
1883  * rmap method
1884  * @page: the page to be handled
1885  * @rwc: control variable according to each walk type
1886  *
1887  * Find all the mappings of a page using the mapping pointer and the vma chains
1888  * contained in the anon_vma struct it points to.
1889  *
1890  * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1891  * where the page was found will be held for write.  So, we won't recheck
1892  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1893  * LOCKED.
1894  */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)1895 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1896 		bool locked)
1897 {
1898 	struct anon_vma *anon_vma;
1899 	pgoff_t pgoff_start, pgoff_end;
1900 	struct anon_vma_chain *avc;
1901 
1902 	if (locked) {
1903 		anon_vma = page_anon_vma(page);
1904 		/* anon_vma disappear under us? */
1905 		VM_BUG_ON_PAGE(!anon_vma, page);
1906 	} else {
1907 		anon_vma = rmap_walk_anon_lock(page, rwc);
1908 	}
1909 	if (!anon_vma)
1910 		return;
1911 
1912 	pgoff_start = page_to_pgoff(page);
1913 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1914 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1915 			pgoff_start, pgoff_end) {
1916 		struct vm_area_struct *vma = avc->vma;
1917 		unsigned long address = vma_address(page, vma);
1918 
1919 		VM_BUG_ON_VMA(address == -EFAULT, vma);
1920 		cond_resched();
1921 
1922 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1923 			continue;
1924 
1925 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1926 			break;
1927 		if (rwc->done && rwc->done(page))
1928 			break;
1929 	}
1930 
1931 	if (!locked)
1932 		anon_vma_unlock_read(anon_vma);
1933 }
1934 
1935 /*
1936  * rmap_walk_file - do something to file page using the object-based rmap method
1937  * @page: the page to be handled
1938  * @rwc: control variable according to each walk type
1939  *
1940  * Find all the mappings of a page using the mapping pointer and the vma chains
1941  * contained in the address_space struct it points to.
1942  *
1943  * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1944  * where the page was found will be held for write.  So, we won't recheck
1945  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1946  * LOCKED.
1947  */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)1948 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1949 		bool locked)
1950 {
1951 	struct address_space *mapping = page_mapping(page);
1952 	pgoff_t pgoff_start, pgoff_end;
1953 	struct vm_area_struct *vma;
1954 
1955 	/*
1956 	 * The page lock not only makes sure that page->mapping cannot
1957 	 * suddenly be NULLified by truncation, it makes sure that the
1958 	 * structure at mapping cannot be freed and reused yet,
1959 	 * so we can safely take mapping->i_mmap_rwsem.
1960 	 */
1961 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1962 
1963 	if (!mapping)
1964 		return;
1965 
1966 	pgoff_start = page_to_pgoff(page);
1967 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1968 	if (!locked)
1969 		i_mmap_lock_read(mapping);
1970 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1971 			pgoff_start, pgoff_end) {
1972 		unsigned long address = vma_address(page, vma);
1973 
1974 		VM_BUG_ON_VMA(address == -EFAULT, vma);
1975 		cond_resched();
1976 
1977 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1978 			continue;
1979 
1980 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1981 			goto done;
1982 		if (rwc->done && rwc->done(page))
1983 			goto done;
1984 	}
1985 
1986 done:
1987 	if (!locked)
1988 		i_mmap_unlock_read(mapping);
1989 }
1990 
rmap_walk(struct page * page,struct rmap_walk_control * rwc)1991 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1992 {
1993 	if (unlikely(PageKsm(page)))
1994 		rmap_walk_ksm(page, rwc);
1995 	else if (PageAnon(page))
1996 		rmap_walk_anon(page, rwc, false);
1997 	else
1998 		rmap_walk_file(page, rwc, false);
1999 }
2000 
2001 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)2002 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2003 {
2004 	/* no ksm support for now */
2005 	VM_BUG_ON_PAGE(PageKsm(page), page);
2006 	if (PageAnon(page))
2007 		rmap_walk_anon(page, rwc, true);
2008 	else
2009 		rmap_walk_file(page, rwc, true);
2010 }
2011 
2012 #ifdef CONFIG_HUGETLB_PAGE
2013 /*
2014  * The following two functions are for anonymous (private mapped) hugepages.
2015  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2016  * and no lru code, because we handle hugepages differently from common pages.
2017  */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2018 void hugepage_add_anon_rmap(struct page *page,
2019 			    struct vm_area_struct *vma, unsigned long address)
2020 {
2021 	struct anon_vma *anon_vma = vma->anon_vma;
2022 	int first;
2023 
2024 	BUG_ON(!PageLocked(page));
2025 	BUG_ON(!anon_vma);
2026 	/* address might be in next vma when migration races vma_adjust */
2027 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2028 	if (first)
2029 		__page_set_anon_rmap(page, vma, address, 0);
2030 }
2031 
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2032 void hugepage_add_new_anon_rmap(struct page *page,
2033 			struct vm_area_struct *vma, unsigned long address)
2034 {
2035 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2036 	atomic_set(compound_mapcount_ptr(page), 0);
2037 	if (hpage_pincount_available(page))
2038 		atomic_set(compound_pincount_ptr(page), 0);
2039 
2040 	__page_set_anon_rmap(page, vma, address, 1);
2041 }
2042 #endif /* CONFIG_HUGETLB_PAGE */
2043