1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
4 */
5
6 #ifndef __MTD_MTD_H__
7 #define __MTD_MTD_H__
8
9 #include <linux/types.h>
10 #include <linux/uio.h>
11 #include <linux/list.h>
12 #include <linux/notifier.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/nvmem-provider.h>
16
17 #include <mtd/mtd-abi.h>
18
19 #include <asm/div64.h>
20
21 #define MTD_FAIL_ADDR_UNKNOWN -1LL
22
23 struct mtd_info;
24
25 /*
26 * If the erase fails, fail_addr might indicate exactly which block failed. If
27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
28 * or was not specific to any particular block.
29 */
30 struct erase_info {
31 uint64_t addr;
32 uint64_t len;
33 uint64_t fail_addr;
34 };
35
36 struct mtd_erase_region_info {
37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
38 uint32_t erasesize; /* For this region */
39 uint32_t numblocks; /* Number of blocks of erasesize in this region */
40 unsigned long *lockmap; /* If keeping bitmap of locks */
41 };
42
43 /**
44 * struct mtd_oob_ops - oob operation operands
45 * @mode: operation mode
46 *
47 * @len: number of data bytes to write/read
48 *
49 * @retlen: number of data bytes written/read
50 *
51 * @ooblen: number of oob bytes to write/read
52 * @oobretlen: number of oob bytes written/read
53 * @ooboffs: offset of oob data in the oob area (only relevant when
54 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
55 * @datbuf: data buffer - if NULL only oob data are read/written
56 * @oobbuf: oob data buffer
57 *
58 * Note, some MTD drivers do not allow you to write more than one OOB area at
59 * one go. If you try to do that on such an MTD device, -EINVAL will be
60 * returned. If you want to make your implementation portable on all kind of MTD
61 * devices you should split the write request into several sub-requests when the
62 * request crosses a page boundary.
63 */
64 struct mtd_oob_ops {
65 unsigned int mode;
66 size_t len;
67 size_t retlen;
68 size_t ooblen;
69 size_t oobretlen;
70 uint32_t ooboffs;
71 uint8_t *datbuf;
72 uint8_t *oobbuf;
73 };
74
75 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
76 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640
77 /**
78 * struct mtd_oob_region - oob region definition
79 * @offset: region offset
80 * @length: region length
81 *
82 * This structure describes a region of the OOB area, and is used
83 * to retrieve ECC or free bytes sections.
84 * Each section is defined by an offset within the OOB area and a
85 * length.
86 */
87 struct mtd_oob_region {
88 u32 offset;
89 u32 length;
90 };
91
92 /*
93 * struct mtd_ooblayout_ops - NAND OOB layout operations
94 * @ecc: function returning an ECC region in the OOB area.
95 * Should return -ERANGE if %section exceeds the total number of
96 * ECC sections.
97 * @free: function returning a free region in the OOB area.
98 * Should return -ERANGE if %section exceeds the total number of
99 * free sections.
100 */
101 struct mtd_ooblayout_ops {
102 int (*ecc)(struct mtd_info *mtd, int section,
103 struct mtd_oob_region *oobecc);
104 int (*free)(struct mtd_info *mtd, int section,
105 struct mtd_oob_region *oobfree);
106 };
107
108 /**
109 * struct mtd_pairing_info - page pairing information
110 *
111 * @pair: pair id
112 * @group: group id
113 *
114 * The term "pair" is used here, even though TLC NANDs might group pages by 3
115 * (3 bits in a single cell). A pair should regroup all pages that are sharing
116 * the same cell. Pairs are then indexed in ascending order.
117 *
118 * @group is defining the position of a page in a given pair. It can also be
119 * seen as the bit position in the cell: page attached to bit 0 belongs to
120 * group 0, page attached to bit 1 belongs to group 1, etc.
121 *
122 * Example:
123 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
124 *
125 * group-0 group-1
126 *
127 * pair-0 page-0 page-4
128 * pair-1 page-1 page-5
129 * pair-2 page-2 page-8
130 * ...
131 * pair-127 page-251 page-255
132 *
133 *
134 * Note that the "group" and "pair" terms were extracted from Samsung and
135 * Hynix datasheets, and might be referenced under other names in other
136 * datasheets (Micron is describing this concept as "shared pages").
137 */
138 struct mtd_pairing_info {
139 int pair;
140 int group;
141 };
142
143 /**
144 * struct mtd_pairing_scheme - page pairing scheme description
145 *
146 * @ngroups: number of groups. Should be related to the number of bits
147 * per cell.
148 * @get_info: converts a write-unit (page number within an erase block) into
149 * mtd_pairing information (pair + group). This function should
150 * fill the info parameter based on the wunit index or return
151 * -EINVAL if the wunit parameter is invalid.
152 * @get_wunit: converts pairing information into a write-unit (page) number.
153 * This function should return the wunit index pointed by the
154 * pairing information described in the info argument. It should
155 * return -EINVAL, if there's no wunit corresponding to the
156 * passed pairing information.
157 *
158 * See mtd_pairing_info documentation for a detailed explanation of the
159 * pair and group concepts.
160 *
161 * The mtd_pairing_scheme structure provides a generic solution to represent
162 * NAND page pairing scheme. Instead of exposing two big tables to do the
163 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
164 * implement the ->get_info() and ->get_wunit() functions.
165 *
166 * MTD users will then be able to query these information by using the
167 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
168 *
169 * @ngroups is here to help MTD users iterating over all the pages in a
170 * given pair. This value can be retrieved by MTD users using the
171 * mtd_pairing_groups() helper.
172 *
173 * Examples are given in the mtd_pairing_info_to_wunit() and
174 * mtd_wunit_to_pairing_info() documentation.
175 */
176 struct mtd_pairing_scheme {
177 int ngroups;
178 int (*get_info)(struct mtd_info *mtd, int wunit,
179 struct mtd_pairing_info *info);
180 int (*get_wunit)(struct mtd_info *mtd,
181 const struct mtd_pairing_info *info);
182 };
183
184 struct module; /* only needed for owner field in mtd_info */
185
186 /**
187 * struct mtd_debug_info - debugging information for an MTD device.
188 *
189 * @dfs_dir: direntry object of the MTD device debugfs directory
190 */
191 struct mtd_debug_info {
192 struct dentry *dfs_dir;
193
194 const char *partname;
195 const char *partid;
196 };
197
198 /**
199 * struct mtd_part - MTD partition specific fields
200 *
201 * @node: list node used to add an MTD partition to the parent partition list
202 * @offset: offset of the partition relatively to the parent offset
203 * @size: partition size. Should be equal to mtd->size unless
204 * MTD_SLC_ON_MLC_EMULATION is set
205 * @flags: original flags (before the mtdpart logic decided to tweak them based
206 * on flash constraints, like eraseblock/pagesize alignment)
207 *
208 * This struct is embedded in mtd_info and contains partition-specific
209 * properties/fields.
210 */
211 struct mtd_part {
212 struct list_head node;
213 u64 offset;
214 u64 size;
215 u32 flags;
216 };
217
218 /**
219 * struct mtd_master - MTD master specific fields
220 *
221 * @partitions_lock: lock protecting accesses to the partition list. Protects
222 * not only the master partition list, but also all
223 * sub-partitions.
224 * @suspended: et to 1 when the device is suspended, 0 otherwise
225 *
226 * This struct is embedded in mtd_info and contains master-specific
227 * properties/fields. The master is the root MTD device from the MTD partition
228 * point of view.
229 */
230 struct mtd_master {
231 struct mutex partitions_lock;
232 unsigned int suspended : 1;
233 };
234
235 struct mtd_info {
236 u_char type;
237 uint32_t flags;
238 uint64_t size; // Total size of the MTD
239
240 /* "Major" erase size for the device. Naïve users may take this
241 * to be the only erase size available, or may use the more detailed
242 * information below if they desire
243 */
244 uint32_t erasesize;
245 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
246 * though individual bits can be cleared), in case of NAND flash it is
247 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
248 * it is of ECC block size, etc. It is illegal to have writesize = 0.
249 * Any driver registering a struct mtd_info must ensure a writesize of
250 * 1 or larger.
251 */
252 uint32_t writesize;
253
254 /*
255 * Size of the write buffer used by the MTD. MTD devices having a write
256 * buffer can write multiple writesize chunks at a time. E.g. while
257 * writing 4 * writesize bytes to a device with 2 * writesize bytes
258 * buffer the MTD driver can (but doesn't have to) do 2 writesize
259 * operations, but not 4. Currently, all NANDs have writebufsize
260 * equivalent to writesize (NAND page size). Some NOR flashes do have
261 * writebufsize greater than writesize.
262 */
263 uint32_t writebufsize;
264
265 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
266 uint32_t oobavail; // Available OOB bytes per block
267
268 /*
269 * If erasesize is a power of 2 then the shift is stored in
270 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
271 */
272 unsigned int erasesize_shift;
273 unsigned int writesize_shift;
274 /* Masks based on erasesize_shift and writesize_shift */
275 unsigned int erasesize_mask;
276 unsigned int writesize_mask;
277
278 /*
279 * read ops return -EUCLEAN if max number of bitflips corrected on any
280 * one region comprising an ecc step equals or exceeds this value.
281 * Settable by driver, else defaults to ecc_strength. User can override
282 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
283 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
284 */
285 unsigned int bitflip_threshold;
286
287 /* Kernel-only stuff starts here. */
288 const char *name;
289 int index;
290
291 /* OOB layout description */
292 const struct mtd_ooblayout_ops *ooblayout;
293
294 /* NAND pairing scheme, only provided for MLC/TLC NANDs */
295 const struct mtd_pairing_scheme *pairing;
296
297 /* the ecc step size. */
298 unsigned int ecc_step_size;
299
300 /* max number of correctible bit errors per ecc step */
301 unsigned int ecc_strength;
302
303 /* Data for variable erase regions. If numeraseregions is zero,
304 * it means that the whole device has erasesize as given above.
305 */
306 int numeraseregions;
307 struct mtd_erase_region_info *eraseregions;
308
309 /*
310 * Do not call via these pointers, use corresponding mtd_*()
311 * wrappers instead.
312 */
313 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
314 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
315 size_t *retlen, void **virt, resource_size_t *phys);
316 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
317 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
318 size_t *retlen, u_char *buf);
319 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
320 size_t *retlen, const u_char *buf);
321 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
322 size_t *retlen, const u_char *buf);
323 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
324 struct mtd_oob_ops *ops);
325 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
326 struct mtd_oob_ops *ops);
327 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
328 size_t *retlen, struct otp_info *buf);
329 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
330 size_t len, size_t *retlen, u_char *buf);
331 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
332 size_t *retlen, struct otp_info *buf);
333 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
334 size_t len, size_t *retlen, u_char *buf);
335 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
336 size_t len, size_t *retlen, u_char *buf);
337 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
338 size_t len);
339 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
340 unsigned long count, loff_t to, size_t *retlen);
341 void (*_sync) (struct mtd_info *mtd);
342 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
343 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
344 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
345 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
346 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
347 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
348 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
349 int (*_suspend) (struct mtd_info *mtd);
350 void (*_resume) (struct mtd_info *mtd);
351 void (*_reboot) (struct mtd_info *mtd);
352 /*
353 * If the driver is something smart, like UBI, it may need to maintain
354 * its own reference counting. The below functions are only for driver.
355 */
356 int (*_get_device) (struct mtd_info *mtd);
357 void (*_put_device) (struct mtd_info *mtd);
358
359 /*
360 * flag indicates a panic write, low level drivers can take appropriate
361 * action if required to ensure writes go through
362 */
363 bool oops_panic_write;
364
365 struct notifier_block reboot_notifier; /* default mode before reboot */
366
367 /* ECC status information */
368 struct mtd_ecc_stats ecc_stats;
369 /* Subpage shift (NAND) */
370 int subpage_sft;
371
372 void *priv;
373
374 struct module *owner;
375 struct device dev;
376 int usecount;
377 struct mtd_debug_info dbg;
378 struct nvmem_device *nvmem;
379
380 /*
381 * Parent device from the MTD partition point of view.
382 *
383 * MTD masters do not have any parent, MTD partitions do. The parent
384 * MTD device can itself be a partition.
385 */
386 struct mtd_info *parent;
387
388 /* List of partitions attached to this MTD device */
389 struct list_head partitions;
390
391 struct mtd_part part;
392 struct mtd_master master;
393 };
394
mtd_get_master(struct mtd_info * mtd)395 static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
396 {
397 while (mtd->parent)
398 mtd = mtd->parent;
399
400 return mtd;
401 }
402
mtd_get_master_ofs(struct mtd_info * mtd,u64 ofs)403 static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
404 {
405 while (mtd->parent) {
406 ofs += mtd->part.offset;
407 mtd = mtd->parent;
408 }
409
410 return ofs;
411 }
412
mtd_is_partition(const struct mtd_info * mtd)413 static inline bool mtd_is_partition(const struct mtd_info *mtd)
414 {
415 return mtd->parent;
416 }
417
mtd_has_partitions(const struct mtd_info * mtd)418 static inline bool mtd_has_partitions(const struct mtd_info *mtd)
419 {
420 return !list_empty(&mtd->partitions);
421 }
422
423 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
424 struct mtd_oob_region *oobecc);
425 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
426 int *section,
427 struct mtd_oob_region *oobregion);
428 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
429 const u8 *oobbuf, int start, int nbytes);
430 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
431 u8 *oobbuf, int start, int nbytes);
432 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
433 struct mtd_oob_region *oobfree);
434 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
435 const u8 *oobbuf, int start, int nbytes);
436 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
437 u8 *oobbuf, int start, int nbytes);
438 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
439 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
440
mtd_set_ooblayout(struct mtd_info * mtd,const struct mtd_ooblayout_ops * ooblayout)441 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
442 const struct mtd_ooblayout_ops *ooblayout)
443 {
444 mtd->ooblayout = ooblayout;
445 }
446
mtd_set_pairing_scheme(struct mtd_info * mtd,const struct mtd_pairing_scheme * pairing)447 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
448 const struct mtd_pairing_scheme *pairing)
449 {
450 mtd->pairing = pairing;
451 }
452
mtd_set_of_node(struct mtd_info * mtd,struct device_node * np)453 static inline void mtd_set_of_node(struct mtd_info *mtd,
454 struct device_node *np)
455 {
456 mtd->dev.of_node = np;
457 if (!mtd->name)
458 of_property_read_string(np, "label", &mtd->name);
459 }
460
mtd_get_of_node(struct mtd_info * mtd)461 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
462 {
463 return dev_of_node(&mtd->dev);
464 }
465
mtd_oobavail(struct mtd_info * mtd,struct mtd_oob_ops * ops)466 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
467 {
468 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
469 }
470
mtd_max_bad_blocks(struct mtd_info * mtd,loff_t ofs,size_t len)471 static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
472 loff_t ofs, size_t len)
473 {
474 struct mtd_info *master = mtd_get_master(mtd);
475
476 if (!master->_max_bad_blocks)
477 return -ENOTSUPP;
478
479 if (mtd->size < (len + ofs) || ofs < 0)
480 return -EINVAL;
481
482 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
483 len);
484 }
485
486 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
487 struct mtd_pairing_info *info);
488 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
489 const struct mtd_pairing_info *info);
490 int mtd_pairing_groups(struct mtd_info *mtd);
491 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
492 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
493 void **virt, resource_size_t *phys);
494 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
495 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
496 unsigned long offset, unsigned long flags);
497 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
498 u_char *buf);
499 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
500 const u_char *buf);
501 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
502 const u_char *buf);
503
504 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
505 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
506
507 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
508 struct otp_info *buf);
509 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
510 size_t *retlen, u_char *buf);
511 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
512 struct otp_info *buf);
513 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
514 size_t *retlen, u_char *buf);
515 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
516 size_t *retlen, u_char *buf);
517 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
518
519 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
520 unsigned long count, loff_t to, size_t *retlen);
521
mtd_sync(struct mtd_info * mtd)522 static inline void mtd_sync(struct mtd_info *mtd)
523 {
524 struct mtd_info *master = mtd_get_master(mtd);
525
526 if (master->_sync)
527 master->_sync(master);
528 }
529
530 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
531 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
532 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
533 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
534 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
535 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
536
mtd_suspend(struct mtd_info * mtd)537 static inline int mtd_suspend(struct mtd_info *mtd)
538 {
539 struct mtd_info *master = mtd_get_master(mtd);
540 int ret;
541
542 if (master->master.suspended)
543 return 0;
544
545 ret = master->_suspend ? master->_suspend(master) : 0;
546 if (ret)
547 return ret;
548
549 master->master.suspended = 1;
550 return 0;
551 }
552
mtd_resume(struct mtd_info * mtd)553 static inline void mtd_resume(struct mtd_info *mtd)
554 {
555 struct mtd_info *master = mtd_get_master(mtd);
556
557 if (!master->master.suspended)
558 return;
559
560 if (master->_resume)
561 master->_resume(master);
562
563 master->master.suspended = 0;
564 }
565
mtd_div_by_eb(uint64_t sz,struct mtd_info * mtd)566 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
567 {
568 if (mtd->erasesize_shift)
569 return sz >> mtd->erasesize_shift;
570 do_div(sz, mtd->erasesize);
571 return sz;
572 }
573
mtd_mod_by_eb(uint64_t sz,struct mtd_info * mtd)574 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
575 {
576 if (mtd->erasesize_shift)
577 return sz & mtd->erasesize_mask;
578 return do_div(sz, mtd->erasesize);
579 }
580
581 /**
582 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
583 * boundaries.
584 * @mtd: the MTD device this erase request applies on
585 * @req: the erase request to adjust
586 *
587 * This function will adjust @req->addr and @req->len to align them on
588 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
589 */
mtd_align_erase_req(struct mtd_info * mtd,struct erase_info * req)590 static inline void mtd_align_erase_req(struct mtd_info *mtd,
591 struct erase_info *req)
592 {
593 u32 mod;
594
595 if (WARN_ON(!mtd->erasesize))
596 return;
597
598 mod = mtd_mod_by_eb(req->addr, mtd);
599 if (mod) {
600 req->addr -= mod;
601 req->len += mod;
602 }
603
604 mod = mtd_mod_by_eb(req->addr + req->len, mtd);
605 if (mod)
606 req->len += mtd->erasesize - mod;
607 }
608
mtd_div_by_ws(uint64_t sz,struct mtd_info * mtd)609 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
610 {
611 if (mtd->writesize_shift)
612 return sz >> mtd->writesize_shift;
613 do_div(sz, mtd->writesize);
614 return sz;
615 }
616
mtd_mod_by_ws(uint64_t sz,struct mtd_info * mtd)617 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
618 {
619 if (mtd->writesize_shift)
620 return sz & mtd->writesize_mask;
621 return do_div(sz, mtd->writesize);
622 }
623
mtd_wunit_per_eb(struct mtd_info * mtd)624 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
625 {
626 struct mtd_info *master = mtd_get_master(mtd);
627
628 return master->erasesize / mtd->writesize;
629 }
630
mtd_offset_to_wunit(struct mtd_info * mtd,loff_t offs)631 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
632 {
633 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
634 }
635
mtd_wunit_to_offset(struct mtd_info * mtd,loff_t base,int wunit)636 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
637 int wunit)
638 {
639 return base + (wunit * mtd->writesize);
640 }
641
642
mtd_has_oob(const struct mtd_info * mtd)643 static inline int mtd_has_oob(const struct mtd_info *mtd)
644 {
645 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
646
647 return master->_read_oob && master->_write_oob;
648 }
649
mtd_type_is_nand(const struct mtd_info * mtd)650 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
651 {
652 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
653 }
654
mtd_can_have_bb(const struct mtd_info * mtd)655 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
656 {
657 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
658
659 return !!master->_block_isbad;
660 }
661
662 /* Kernel-side ioctl definitions */
663
664 struct mtd_partition;
665 struct mtd_part_parser_data;
666
667 extern int mtd_device_parse_register(struct mtd_info *mtd,
668 const char * const *part_probe_types,
669 struct mtd_part_parser_data *parser_data,
670 const struct mtd_partition *defparts,
671 int defnr_parts);
672 #define mtd_device_register(master, parts, nr_parts) \
673 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
674 extern int mtd_device_unregister(struct mtd_info *master);
675 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
676 extern int __get_mtd_device(struct mtd_info *mtd);
677 extern void __put_mtd_device(struct mtd_info *mtd);
678 extern struct mtd_info *get_mtd_device_nm(const char *name);
679 extern void put_mtd_device(struct mtd_info *mtd);
680
681
682 struct mtd_notifier {
683 void (*add)(struct mtd_info *mtd);
684 void (*remove)(struct mtd_info *mtd);
685 struct list_head list;
686 };
687
688
689 extern void register_mtd_user (struct mtd_notifier *new);
690 extern int unregister_mtd_user (struct mtd_notifier *old);
691 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
692
mtd_is_bitflip(int err)693 static inline int mtd_is_bitflip(int err) {
694 return err == -EUCLEAN;
695 }
696
mtd_is_eccerr(int err)697 static inline int mtd_is_eccerr(int err) {
698 return err == -EBADMSG;
699 }
700
mtd_is_bitflip_or_eccerr(int err)701 static inline int mtd_is_bitflip_or_eccerr(int err) {
702 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
703 }
704
705 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
706
707 #endif /* __MTD_MTD_H__ */
708