1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 #include "clockid.h"
50
51 #include <linux/ctype.h>
52 #include <internal/lib.h>
53
54 /*
55 * magic2 = "PERFILE2"
56 * must be a numerical value to let the endianness
57 * determine the memory layout. That way we are able
58 * to detect endianness when reading the perf.data file
59 * back.
60 *
61 * we check for legacy (PERFFILE) format.
62 */
63 static const char *__perf_magic1 = "PERFFILE";
64 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
65 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66
67 #define PERF_MAGIC __perf_magic2
68
69 const char perf_version_string[] = PERF_VERSION;
70
71 struct perf_file_attr {
72 struct perf_event_attr attr;
73 struct perf_file_section ids;
74 };
75
perf_header__set_feat(struct perf_header * header,int feat)76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78 set_bit(feat, header->adds_features);
79 }
80
perf_header__clear_feat(struct perf_header * header,int feat)81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83 clear_bit(feat, header->adds_features);
84 }
85
perf_header__has_feat(const struct perf_header * header,int feat)86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88 return test_bit(feat, header->adds_features);
89 }
90
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93 ssize_t ret = writen(ff->fd, buf, size);
94
95 if (ret != (ssize_t)size)
96 return ret < 0 ? (int)ret : -1;
97 return 0;
98 }
99
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)100 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
101 {
102 /* struct perf_event_header::size is u16 */
103 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 size_t new_size = ff->size;
105 void *addr;
106
107 if (size + ff->offset > max_size)
108 return -E2BIG;
109
110 while (size > (new_size - ff->offset))
111 new_size <<= 1;
112 new_size = min(max_size, new_size);
113
114 if (ff->size < new_size) {
115 addr = realloc(ff->buf, new_size);
116 if (!addr)
117 return -ENOMEM;
118 ff->buf = addr;
119 ff->size = new_size;
120 }
121
122 memcpy(ff->buf + ff->offset, buf, size);
123 ff->offset += size;
124
125 return 0;
126 }
127
128 /* Return: 0 if succeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131 if (!ff->buf)
132 return __do_write_fd(ff, buf, size);
133 return __do_write_buf(ff, buf, size);
134 }
135
136 /* Return: 0 if succeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139 u64 *p = (u64 *) set;
140 int i, ret;
141
142 ret = do_write(ff, &size, sizeof(size));
143 if (ret < 0)
144 return ret;
145
146 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 ret = do_write(ff, p + i, sizeof(*p));
148 if (ret < 0)
149 return ret;
150 }
151
152 return 0;
153 }
154
155 /* Return: 0 if succeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)156 int write_padded(struct feat_fd *ff, const void *bf,
157 size_t count, size_t count_aligned)
158 {
159 static const char zero_buf[NAME_ALIGN];
160 int err = do_write(ff, bf, count);
161
162 if (!err)
163 err = do_write(ff, zero_buf, count_aligned - count);
164
165 return err;
166 }
167
168 #define string_size(str) \
169 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171 /* Return: 0 if succeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174 u32 len, olen;
175 int ret;
176
177 olen = strlen(str) + 1;
178 len = PERF_ALIGN(olen, NAME_ALIGN);
179
180 /* write len, incl. \0 */
181 ret = do_write(ff, &len, sizeof(len));
182 if (ret < 0)
183 return ret;
184
185 return write_padded(ff, str, olen, len);
186 }
187
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190 ssize_t ret = readn(ff->fd, addr, size);
191
192 if (ret != size)
193 return ret < 0 ? (int)ret : -1;
194 return 0;
195 }
196
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 if (size > (ssize_t)ff->size - ff->offset)
200 return -1;
201
202 memcpy(addr, ff->buf + ff->offset, size);
203 ff->offset += size;
204
205 return 0;
206
207 }
208
__do_read(struct feat_fd * ff,void * addr,ssize_t size)209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 if (!ff->buf)
212 return __do_read_fd(ff, addr, size);
213 return __do_read_buf(ff, addr, size);
214 }
215
do_read_u32(struct feat_fd * ff,u32 * addr)216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218 int ret;
219
220 ret = __do_read(ff, addr, sizeof(*addr));
221 if (ret)
222 return ret;
223
224 if (ff->ph->needs_swap)
225 *addr = bswap_32(*addr);
226 return 0;
227 }
228
do_read_u64(struct feat_fd * ff,u64 * addr)229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231 int ret;
232
233 ret = __do_read(ff, addr, sizeof(*addr));
234 if (ret)
235 return ret;
236
237 if (ff->ph->needs_swap)
238 *addr = bswap_64(*addr);
239 return 0;
240 }
241
do_read_string(struct feat_fd * ff)242 static char *do_read_string(struct feat_fd *ff)
243 {
244 u32 len;
245 char *buf;
246
247 if (do_read_u32(ff, &len))
248 return NULL;
249
250 buf = malloc(len);
251 if (!buf)
252 return NULL;
253
254 if (!__do_read(ff, buf, len)) {
255 /*
256 * strings are padded by zeroes
257 * thus the actual strlen of buf
258 * may be less than len
259 */
260 return buf;
261 }
262
263 free(buf);
264 return NULL;
265 }
266
267 /* Return: 0 if succeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270 unsigned long *set;
271 u64 size, *p;
272 int i, ret;
273
274 ret = do_read_u64(ff, &size);
275 if (ret)
276 return ret;
277
278 set = bitmap_alloc(size);
279 if (!set)
280 return -ENOMEM;
281
282 p = (u64 *) set;
283
284 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285 ret = do_read_u64(ff, p + i);
286 if (ret < 0) {
287 free(set);
288 return ret;
289 }
290 }
291
292 *pset = set;
293 *psize = size;
294 return 0;
295 }
296
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)297 static int write_tracing_data(struct feat_fd *ff,
298 struct evlist *evlist)
299 {
300 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301 return -1;
302
303 return read_tracing_data(ff->fd, &evlist->core.entries);
304 }
305
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)306 static int write_build_id(struct feat_fd *ff,
307 struct evlist *evlist __maybe_unused)
308 {
309 struct perf_session *session;
310 int err;
311
312 session = container_of(ff->ph, struct perf_session, header);
313
314 if (!perf_session__read_build_ids(session, true))
315 return -1;
316
317 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318 return -1;
319
320 err = perf_session__write_buildid_table(session, ff);
321 if (err < 0) {
322 pr_debug("failed to write buildid table\n");
323 return err;
324 }
325 perf_session__cache_build_ids(session);
326
327 return 0;
328 }
329
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)330 static int write_hostname(struct feat_fd *ff,
331 struct evlist *evlist __maybe_unused)
332 {
333 struct utsname uts;
334 int ret;
335
336 ret = uname(&uts);
337 if (ret < 0)
338 return -1;
339
340 return do_write_string(ff, uts.nodename);
341 }
342
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)343 static int write_osrelease(struct feat_fd *ff,
344 struct evlist *evlist __maybe_unused)
345 {
346 struct utsname uts;
347 int ret;
348
349 ret = uname(&uts);
350 if (ret < 0)
351 return -1;
352
353 return do_write_string(ff, uts.release);
354 }
355
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)356 static int write_arch(struct feat_fd *ff,
357 struct evlist *evlist __maybe_unused)
358 {
359 struct utsname uts;
360 int ret;
361
362 ret = uname(&uts);
363 if (ret < 0)
364 return -1;
365
366 return do_write_string(ff, uts.machine);
367 }
368
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)369 static int write_version(struct feat_fd *ff,
370 struct evlist *evlist __maybe_unused)
371 {
372 return do_write_string(ff, perf_version_string);
373 }
374
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377 FILE *file;
378 char *buf = NULL;
379 char *s, *p;
380 const char *search = cpuinfo_proc;
381 size_t len = 0;
382 int ret = -1;
383
384 if (!search)
385 return -1;
386
387 file = fopen("/proc/cpuinfo", "r");
388 if (!file)
389 return -1;
390
391 while (getline(&buf, &len, file) > 0) {
392 ret = strncmp(buf, search, strlen(search));
393 if (!ret)
394 break;
395 }
396
397 if (ret) {
398 ret = -1;
399 goto done;
400 }
401
402 s = buf;
403
404 p = strchr(buf, ':');
405 if (p && *(p+1) == ' ' && *(p+2))
406 s = p + 2;
407 p = strchr(s, '\n');
408 if (p)
409 *p = '\0';
410
411 /* squash extra space characters (branding string) */
412 p = s;
413 while (*p) {
414 if (isspace(*p)) {
415 char *r = p + 1;
416 char *q = skip_spaces(r);
417 *p = ' ';
418 if (q != (p+1))
419 while ((*r++ = *q++));
420 }
421 p++;
422 }
423 ret = do_write_string(ff, s);
424 done:
425 free(buf);
426 fclose(file);
427 return ret;
428 }
429
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)430 static int write_cpudesc(struct feat_fd *ff,
431 struct evlist *evlist __maybe_unused)
432 {
433 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
434 #define CPUINFO_PROC { "cpu", }
435 #elif defined(__s390__)
436 #define CPUINFO_PROC { "vendor_id", }
437 #elif defined(__sh__)
438 #define CPUINFO_PROC { "cpu type", }
439 #elif defined(__alpha__) || defined(__mips__)
440 #define CPUINFO_PROC { "cpu model", }
441 #elif defined(__arm__)
442 #define CPUINFO_PROC { "model name", "Processor", }
443 #elif defined(__arc__)
444 #define CPUINFO_PROC { "Processor", }
445 #elif defined(__xtensa__)
446 #define CPUINFO_PROC { "core ID", }
447 #else
448 #define CPUINFO_PROC { "model name", }
449 #endif
450 const char *cpuinfo_procs[] = CPUINFO_PROC;
451 #undef CPUINFO_PROC
452 unsigned int i;
453
454 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
455 int ret;
456 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457 if (ret >= 0)
458 return ret;
459 }
460 return -1;
461 }
462
463
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)464 static int write_nrcpus(struct feat_fd *ff,
465 struct evlist *evlist __maybe_unused)
466 {
467 long nr;
468 u32 nrc, nra;
469 int ret;
470
471 nrc = cpu__max_present_cpu();
472
473 nr = sysconf(_SC_NPROCESSORS_ONLN);
474 if (nr < 0)
475 return -1;
476
477 nra = (u32)(nr & UINT_MAX);
478
479 ret = do_write(ff, &nrc, sizeof(nrc));
480 if (ret < 0)
481 return ret;
482
483 return do_write(ff, &nra, sizeof(nra));
484 }
485
write_event_desc(struct feat_fd * ff,struct evlist * evlist)486 static int write_event_desc(struct feat_fd *ff,
487 struct evlist *evlist)
488 {
489 struct evsel *evsel;
490 u32 nre, nri, sz;
491 int ret;
492
493 nre = evlist->core.nr_entries;
494
495 /*
496 * write number of events
497 */
498 ret = do_write(ff, &nre, sizeof(nre));
499 if (ret < 0)
500 return ret;
501
502 /*
503 * size of perf_event_attr struct
504 */
505 sz = (u32)sizeof(evsel->core.attr);
506 ret = do_write(ff, &sz, sizeof(sz));
507 if (ret < 0)
508 return ret;
509
510 evlist__for_each_entry(evlist, evsel) {
511 ret = do_write(ff, &evsel->core.attr, sz);
512 if (ret < 0)
513 return ret;
514 /*
515 * write number of unique id per event
516 * there is one id per instance of an event
517 *
518 * copy into an nri to be independent of the
519 * type of ids,
520 */
521 nri = evsel->core.ids;
522 ret = do_write(ff, &nri, sizeof(nri));
523 if (ret < 0)
524 return ret;
525
526 /*
527 * write event string as passed on cmdline
528 */
529 ret = do_write_string(ff, evsel__name(evsel));
530 if (ret < 0)
531 return ret;
532 /*
533 * write unique ids for this event
534 */
535 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536 if (ret < 0)
537 return ret;
538 }
539 return 0;
540 }
541
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)542 static int write_cmdline(struct feat_fd *ff,
543 struct evlist *evlist __maybe_unused)
544 {
545 char pbuf[MAXPATHLEN], *buf;
546 int i, ret, n;
547
548 /* actual path to perf binary */
549 buf = perf_exe(pbuf, MAXPATHLEN);
550
551 /* account for binary path */
552 n = perf_env.nr_cmdline + 1;
553
554 ret = do_write(ff, &n, sizeof(n));
555 if (ret < 0)
556 return ret;
557
558 ret = do_write_string(ff, buf);
559 if (ret < 0)
560 return ret;
561
562 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564 if (ret < 0)
565 return ret;
566 }
567 return 0;
568 }
569
570
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)571 static int write_cpu_topology(struct feat_fd *ff,
572 struct evlist *evlist __maybe_unused)
573 {
574 struct cpu_topology *tp;
575 u32 i;
576 int ret, j;
577
578 tp = cpu_topology__new();
579 if (!tp)
580 return -1;
581
582 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583 if (ret < 0)
584 goto done;
585
586 for (i = 0; i < tp->core_sib; i++) {
587 ret = do_write_string(ff, tp->core_siblings[i]);
588 if (ret < 0)
589 goto done;
590 }
591 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592 if (ret < 0)
593 goto done;
594
595 for (i = 0; i < tp->thread_sib; i++) {
596 ret = do_write_string(ff, tp->thread_siblings[i]);
597 if (ret < 0)
598 break;
599 }
600
601 ret = perf_env__read_cpu_topology_map(&perf_env);
602 if (ret < 0)
603 goto done;
604
605 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606 ret = do_write(ff, &perf_env.cpu[j].core_id,
607 sizeof(perf_env.cpu[j].core_id));
608 if (ret < 0)
609 return ret;
610 ret = do_write(ff, &perf_env.cpu[j].socket_id,
611 sizeof(perf_env.cpu[j].socket_id));
612 if (ret < 0)
613 return ret;
614 }
615
616 if (!tp->die_sib)
617 goto done;
618
619 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
620 if (ret < 0)
621 goto done;
622
623 for (i = 0; i < tp->die_sib; i++) {
624 ret = do_write_string(ff, tp->die_siblings[i]);
625 if (ret < 0)
626 goto done;
627 }
628
629 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
630 ret = do_write(ff, &perf_env.cpu[j].die_id,
631 sizeof(perf_env.cpu[j].die_id));
632 if (ret < 0)
633 return ret;
634 }
635
636 done:
637 cpu_topology__delete(tp);
638 return ret;
639 }
640
641
642
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)643 static int write_total_mem(struct feat_fd *ff,
644 struct evlist *evlist __maybe_unused)
645 {
646 char *buf = NULL;
647 FILE *fp;
648 size_t len = 0;
649 int ret = -1, n;
650 uint64_t mem;
651
652 fp = fopen("/proc/meminfo", "r");
653 if (!fp)
654 return -1;
655
656 while (getline(&buf, &len, fp) > 0) {
657 ret = strncmp(buf, "MemTotal:", 9);
658 if (!ret)
659 break;
660 }
661 if (!ret) {
662 n = sscanf(buf, "%*s %"PRIu64, &mem);
663 if (n == 1)
664 ret = do_write(ff, &mem, sizeof(mem));
665 } else
666 ret = -1;
667 free(buf);
668 fclose(fp);
669 return ret;
670 }
671
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)672 static int write_numa_topology(struct feat_fd *ff,
673 struct evlist *evlist __maybe_unused)
674 {
675 struct numa_topology *tp;
676 int ret = -1;
677 u32 i;
678
679 tp = numa_topology__new();
680 if (!tp)
681 return -ENOMEM;
682
683 ret = do_write(ff, &tp->nr, sizeof(u32));
684 if (ret < 0)
685 goto err;
686
687 for (i = 0; i < tp->nr; i++) {
688 struct numa_topology_node *n = &tp->nodes[i];
689
690 ret = do_write(ff, &n->node, sizeof(u32));
691 if (ret < 0)
692 goto err;
693
694 ret = do_write(ff, &n->mem_total, sizeof(u64));
695 if (ret)
696 goto err;
697
698 ret = do_write(ff, &n->mem_free, sizeof(u64));
699 if (ret)
700 goto err;
701
702 ret = do_write_string(ff, n->cpus);
703 if (ret < 0)
704 goto err;
705 }
706
707 ret = 0;
708
709 err:
710 numa_topology__delete(tp);
711 return ret;
712 }
713
714 /*
715 * File format:
716 *
717 * struct pmu_mappings {
718 * u32 pmu_num;
719 * struct pmu_map {
720 * u32 type;
721 * char name[];
722 * }[pmu_num];
723 * };
724 */
725
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)726 static int write_pmu_mappings(struct feat_fd *ff,
727 struct evlist *evlist __maybe_unused)
728 {
729 struct perf_pmu *pmu = NULL;
730 u32 pmu_num = 0;
731 int ret;
732
733 /*
734 * Do a first pass to count number of pmu to avoid lseek so this
735 * works in pipe mode as well.
736 */
737 while ((pmu = perf_pmu__scan(pmu))) {
738 if (!pmu->name)
739 continue;
740 pmu_num++;
741 }
742
743 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744 if (ret < 0)
745 return ret;
746
747 while ((pmu = perf_pmu__scan(pmu))) {
748 if (!pmu->name)
749 continue;
750
751 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752 if (ret < 0)
753 return ret;
754
755 ret = do_write_string(ff, pmu->name);
756 if (ret < 0)
757 return ret;
758 }
759
760 return 0;
761 }
762
763 /*
764 * File format:
765 *
766 * struct group_descs {
767 * u32 nr_groups;
768 * struct group_desc {
769 * char name[];
770 * u32 leader_idx;
771 * u32 nr_members;
772 * }[nr_groups];
773 * };
774 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)775 static int write_group_desc(struct feat_fd *ff,
776 struct evlist *evlist)
777 {
778 u32 nr_groups = evlist->nr_groups;
779 struct evsel *evsel;
780 int ret;
781
782 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783 if (ret < 0)
784 return ret;
785
786 evlist__for_each_entry(evlist, evsel) {
787 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
791
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
795
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
803 }
804 }
805 return 0;
806 }
807
808 /*
809 * Return the CPU id as a raw string.
810 *
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
813 */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816 return NULL;
817 }
818
819 /* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
822 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
828
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
833 }
834
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
843 }
844 return 1;
845 }
846
847 /*
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853 return ENOSYS; /* Not implemented */
854 }
855
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)856 static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
858 {
859 char buffer[64];
860 int ret;
861
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
865
866 return do_write_string(ff, buffer);
867 }
868
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
871 {
872 return 0;
873 }
874
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)875 static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
877 {
878 struct perf_session *session;
879 int err;
880
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
883
884 session = container_of(ff->ph, struct perf_session, header);
885
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
890 }
891
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)892 static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
894 {
895 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
896 sizeof(ff->ph->env.clock.clockid_res_ns));
897 }
898
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)899 static int write_clock_data(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
901 {
902 u64 *data64;
903 u32 data32;
904 int ret;
905
906 /* version */
907 data32 = 1;
908
909 ret = do_write(ff, &data32, sizeof(data32));
910 if (ret < 0)
911 return ret;
912
913 /* clockid */
914 data32 = ff->ph->env.clock.clockid;
915
916 ret = do_write(ff, &data32, sizeof(data32));
917 if (ret < 0)
918 return ret;
919
920 /* TOD ref time */
921 data64 = &ff->ph->env.clock.tod_ns;
922
923 ret = do_write(ff, data64, sizeof(*data64));
924 if (ret < 0)
925 return ret;
926
927 /* clockid ref time */
928 data64 = &ff->ph->env.clock.clockid_ns;
929
930 return do_write(ff, data64, sizeof(*data64));
931 }
932
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)933 static int write_dir_format(struct feat_fd *ff,
934 struct evlist *evlist __maybe_unused)
935 {
936 struct perf_session *session;
937 struct perf_data *data;
938
939 session = container_of(ff->ph, struct perf_session, header);
940 data = session->data;
941
942 if (WARN_ON(!perf_data__is_dir(data)))
943 return -1;
944
945 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
946 }
947
948 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)949 static int write_bpf_prog_info(struct feat_fd *ff,
950 struct evlist *evlist __maybe_unused)
951 {
952 struct perf_env *env = &ff->ph->env;
953 struct rb_root *root;
954 struct rb_node *next;
955 int ret;
956
957 down_read(&env->bpf_progs.lock);
958
959 ret = do_write(ff, &env->bpf_progs.infos_cnt,
960 sizeof(env->bpf_progs.infos_cnt));
961 if (ret < 0)
962 goto out;
963
964 root = &env->bpf_progs.infos;
965 next = rb_first(root);
966 while (next) {
967 struct bpf_prog_info_node *node;
968 size_t len;
969
970 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
971 next = rb_next(&node->rb_node);
972 len = sizeof(struct bpf_prog_info_linear) +
973 node->info_linear->data_len;
974
975 /* before writing to file, translate address to offset */
976 bpf_program__bpil_addr_to_offs(node->info_linear);
977 ret = do_write(ff, node->info_linear, len);
978 /*
979 * translate back to address even when do_write() fails,
980 * so that this function never changes the data.
981 */
982 bpf_program__bpil_offs_to_addr(node->info_linear);
983 if (ret < 0)
984 goto out;
985 }
986 out:
987 up_read(&env->bpf_progs.lock);
988 return ret;
989 }
990 #else // HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)991 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992 struct evlist *evlist __maybe_unused)
993 {
994 return 0;
995 }
996 #endif // HAVE_LIBBPF_SUPPORT
997
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)998 static int write_bpf_btf(struct feat_fd *ff,
999 struct evlist *evlist __maybe_unused)
1000 {
1001 struct perf_env *env = &ff->ph->env;
1002 struct rb_root *root;
1003 struct rb_node *next;
1004 int ret;
1005
1006 down_read(&env->bpf_progs.lock);
1007
1008 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009 sizeof(env->bpf_progs.btfs_cnt));
1010
1011 if (ret < 0)
1012 goto out;
1013
1014 root = &env->bpf_progs.btfs;
1015 next = rb_first(root);
1016 while (next) {
1017 struct btf_node *node;
1018
1019 node = rb_entry(next, struct btf_node, rb_node);
1020 next = rb_next(&node->rb_node);
1021 ret = do_write(ff, &node->id,
1022 sizeof(u32) * 2 + node->data_size);
1023 if (ret < 0)
1024 goto out;
1025 }
1026 out:
1027 up_read(&env->bpf_progs.lock);
1028 return ret;
1029 }
1030
cpu_cache_level__sort(const void * a,const void * b)1031 static int cpu_cache_level__sort(const void *a, const void *b)
1032 {
1033 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035
1036 return cache_a->level - cache_b->level;
1037 }
1038
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1039 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040 {
1041 if (a->level != b->level)
1042 return false;
1043
1044 if (a->line_size != b->line_size)
1045 return false;
1046
1047 if (a->sets != b->sets)
1048 return false;
1049
1050 if (a->ways != b->ways)
1051 return false;
1052
1053 if (strcmp(a->type, b->type))
1054 return false;
1055
1056 if (strcmp(a->size, b->size))
1057 return false;
1058
1059 if (strcmp(a->map, b->map))
1060 return false;
1061
1062 return true;
1063 }
1064
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1065 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066 {
1067 char path[PATH_MAX], file[PATH_MAX];
1068 struct stat st;
1069 size_t len;
1070
1071 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073
1074 if (stat(file, &st))
1075 return 1;
1076
1077 scnprintf(file, PATH_MAX, "%s/level", path);
1078 if (sysfs__read_int(file, (int *) &cache->level))
1079 return -1;
1080
1081 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082 if (sysfs__read_int(file, (int *) &cache->line_size))
1083 return -1;
1084
1085 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086 if (sysfs__read_int(file, (int *) &cache->sets))
1087 return -1;
1088
1089 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090 if (sysfs__read_int(file, (int *) &cache->ways))
1091 return -1;
1092
1093 scnprintf(file, PATH_MAX, "%s/type", path);
1094 if (sysfs__read_str(file, &cache->type, &len))
1095 return -1;
1096
1097 cache->type[len] = 0;
1098 cache->type = strim(cache->type);
1099
1100 scnprintf(file, PATH_MAX, "%s/size", path);
1101 if (sysfs__read_str(file, &cache->size, &len)) {
1102 zfree(&cache->type);
1103 return -1;
1104 }
1105
1106 cache->size[len] = 0;
1107 cache->size = strim(cache->size);
1108
1109 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110 if (sysfs__read_str(file, &cache->map, &len)) {
1111 zfree(&cache->size);
1112 zfree(&cache->type);
1113 return -1;
1114 }
1115
1116 cache->map[len] = 0;
1117 cache->map = strim(cache->map);
1118 return 0;
1119 }
1120
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1121 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122 {
1123 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124 }
1125
1126 #define MAX_CACHE_LVL 4
1127
build_caches(struct cpu_cache_level caches[],u32 * cntp)1128 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129 {
1130 u32 i, cnt = 0;
1131 u32 nr, cpu;
1132 u16 level;
1133
1134 nr = cpu__max_cpu();
1135
1136 for (cpu = 0; cpu < nr; cpu++) {
1137 for (level = 0; level < MAX_CACHE_LVL; level++) {
1138 struct cpu_cache_level c;
1139 int err;
1140
1141 err = cpu_cache_level__read(&c, cpu, level);
1142 if (err < 0)
1143 return err;
1144
1145 if (err == 1)
1146 break;
1147
1148 for (i = 0; i < cnt; i++) {
1149 if (cpu_cache_level__cmp(&c, &caches[i]))
1150 break;
1151 }
1152
1153 if (i == cnt)
1154 caches[cnt++] = c;
1155 else
1156 cpu_cache_level__free(&c);
1157 }
1158 }
1159 *cntp = cnt;
1160 return 0;
1161 }
1162
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1163 static int write_cache(struct feat_fd *ff,
1164 struct evlist *evlist __maybe_unused)
1165 {
1166 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167 struct cpu_cache_level caches[max_caches];
1168 u32 cnt = 0, i, version = 1;
1169 int ret;
1170
1171 ret = build_caches(caches, &cnt);
1172 if (ret)
1173 goto out;
1174
1175 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176
1177 ret = do_write(ff, &version, sizeof(u32));
1178 if (ret < 0)
1179 goto out;
1180
1181 ret = do_write(ff, &cnt, sizeof(u32));
1182 if (ret < 0)
1183 goto out;
1184
1185 for (i = 0; i < cnt; i++) {
1186 struct cpu_cache_level *c = &caches[i];
1187
1188 #define _W(v) \
1189 ret = do_write(ff, &c->v, sizeof(u32)); \
1190 if (ret < 0) \
1191 goto out;
1192
1193 _W(level)
1194 _W(line_size)
1195 _W(sets)
1196 _W(ways)
1197 #undef _W
1198
1199 #define _W(v) \
1200 ret = do_write_string(ff, (const char *) c->v); \
1201 if (ret < 0) \
1202 goto out;
1203
1204 _W(type)
1205 _W(size)
1206 _W(map)
1207 #undef _W
1208 }
1209
1210 out:
1211 for (i = 0; i < cnt; i++)
1212 cpu_cache_level__free(&caches[i]);
1213 return ret;
1214 }
1215
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1216 static int write_stat(struct feat_fd *ff __maybe_unused,
1217 struct evlist *evlist __maybe_unused)
1218 {
1219 return 0;
1220 }
1221
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1222 static int write_sample_time(struct feat_fd *ff,
1223 struct evlist *evlist)
1224 {
1225 int ret;
1226
1227 ret = do_write(ff, &evlist->first_sample_time,
1228 sizeof(evlist->first_sample_time));
1229 if (ret < 0)
1230 return ret;
1231
1232 return do_write(ff, &evlist->last_sample_time,
1233 sizeof(evlist->last_sample_time));
1234 }
1235
1236
memory_node__read(struct memory_node * n,unsigned long idx)1237 static int memory_node__read(struct memory_node *n, unsigned long idx)
1238 {
1239 unsigned int phys, size = 0;
1240 char path[PATH_MAX];
1241 struct dirent *ent;
1242 DIR *dir;
1243
1244 #define for_each_memory(mem, dir) \
1245 while ((ent = readdir(dir))) \
1246 if (strcmp(ent->d_name, ".") && \
1247 strcmp(ent->d_name, "..") && \
1248 sscanf(ent->d_name, "memory%u", &mem) == 1)
1249
1250 scnprintf(path, PATH_MAX,
1251 "%s/devices/system/node/node%lu",
1252 sysfs__mountpoint(), idx);
1253
1254 dir = opendir(path);
1255 if (!dir) {
1256 pr_warning("failed: cant' open memory sysfs data\n");
1257 return -1;
1258 }
1259
1260 for_each_memory(phys, dir) {
1261 size = max(phys, size);
1262 }
1263
1264 size++;
1265
1266 n->set = bitmap_alloc(size);
1267 if (!n->set) {
1268 closedir(dir);
1269 return -ENOMEM;
1270 }
1271
1272 n->node = idx;
1273 n->size = size;
1274
1275 rewinddir(dir);
1276
1277 for_each_memory(phys, dir) {
1278 set_bit(phys, n->set);
1279 }
1280
1281 closedir(dir);
1282 return 0;
1283 }
1284
memory_node__sort(const void * a,const void * b)1285 static int memory_node__sort(const void *a, const void *b)
1286 {
1287 const struct memory_node *na = a;
1288 const struct memory_node *nb = b;
1289
1290 return na->node - nb->node;
1291 }
1292
build_mem_topology(struct memory_node * nodes,u64 size,u64 * cntp)1293 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294 {
1295 char path[PATH_MAX];
1296 struct dirent *ent;
1297 DIR *dir;
1298 u64 cnt = 0;
1299 int ret = 0;
1300
1301 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302 sysfs__mountpoint());
1303
1304 dir = opendir(path);
1305 if (!dir) {
1306 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307 __func__, path);
1308 return -1;
1309 }
1310
1311 while (!ret && (ent = readdir(dir))) {
1312 unsigned int idx;
1313 int r;
1314
1315 if (!strcmp(ent->d_name, ".") ||
1316 !strcmp(ent->d_name, ".."))
1317 continue;
1318
1319 r = sscanf(ent->d_name, "node%u", &idx);
1320 if (r != 1)
1321 continue;
1322
1323 if (WARN_ONCE(cnt >= size,
1324 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325 closedir(dir);
1326 return -1;
1327 }
1328
1329 ret = memory_node__read(&nodes[cnt++], idx);
1330 }
1331
1332 *cntp = cnt;
1333 closedir(dir);
1334
1335 if (!ret)
1336 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337
1338 return ret;
1339 }
1340
1341 #define MAX_MEMORY_NODES 2000
1342
1343 /*
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1346 *
1347 * 0 - version | for future changes
1348 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count | number of nodes
1350 *
1351 * For each node we store map of physical indexes for
1352 * each node:
1353 *
1354 * 32 - node id | node index
1355 * 40 - size | size of bitmap
1356 * 48 - bitmap | bitmap of memory indexes that belongs to node
1357 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1358 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359 struct evlist *evlist __maybe_unused)
1360 {
1361 static struct memory_node nodes[MAX_MEMORY_NODES];
1362 u64 bsize, version = 1, i, nr;
1363 int ret;
1364
1365 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366 (unsigned long long *) &bsize);
1367 if (ret)
1368 return ret;
1369
1370 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371 if (ret)
1372 return ret;
1373
1374 ret = do_write(ff, &version, sizeof(version));
1375 if (ret < 0)
1376 goto out;
1377
1378 ret = do_write(ff, &bsize, sizeof(bsize));
1379 if (ret < 0)
1380 goto out;
1381
1382 ret = do_write(ff, &nr, sizeof(nr));
1383 if (ret < 0)
1384 goto out;
1385
1386 for (i = 0; i < nr; i++) {
1387 struct memory_node *n = &nodes[i];
1388
1389 #define _W(v) \
1390 ret = do_write(ff, &n->v, sizeof(n->v)); \
1391 if (ret < 0) \
1392 goto out;
1393
1394 _W(node)
1395 _W(size)
1396
1397 #undef _W
1398
1399 ret = do_write_bitmap(ff, n->set, n->size);
1400 if (ret < 0)
1401 goto out;
1402 }
1403
1404 out:
1405 return ret;
1406 }
1407
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1408 static int write_compressed(struct feat_fd *ff __maybe_unused,
1409 struct evlist *evlist __maybe_unused)
1410 {
1411 int ret;
1412
1413 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414 if (ret)
1415 return ret;
1416
1417 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418 if (ret)
1419 return ret;
1420
1421 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422 if (ret)
1423 return ret;
1424
1425 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426 if (ret)
1427 return ret;
1428
1429 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430 }
1431
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1432 static int write_cpu_pmu_caps(struct feat_fd *ff,
1433 struct evlist *evlist __maybe_unused)
1434 {
1435 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436 struct perf_pmu_caps *caps = NULL;
1437 int nr_caps;
1438 int ret;
1439
1440 if (!cpu_pmu)
1441 return -ENOENT;
1442
1443 nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444 if (nr_caps < 0)
1445 return nr_caps;
1446
1447 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448 if (ret < 0)
1449 return ret;
1450
1451 list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452 ret = do_write_string(ff, caps->name);
1453 if (ret < 0)
1454 return ret;
1455
1456 ret = do_write_string(ff, caps->value);
1457 if (ret < 0)
1458 return ret;
1459 }
1460
1461 return ret;
1462 }
1463
print_hostname(struct feat_fd * ff,FILE * fp)1464 static void print_hostname(struct feat_fd *ff, FILE *fp)
1465 {
1466 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467 }
1468
print_osrelease(struct feat_fd * ff,FILE * fp)1469 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470 {
1471 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472 }
1473
print_arch(struct feat_fd * ff,FILE * fp)1474 static void print_arch(struct feat_fd *ff, FILE *fp)
1475 {
1476 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477 }
1478
print_cpudesc(struct feat_fd * ff,FILE * fp)1479 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480 {
1481 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482 }
1483
print_nrcpus(struct feat_fd * ff,FILE * fp)1484 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485 {
1486 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488 }
1489
print_version(struct feat_fd * ff,FILE * fp)1490 static void print_version(struct feat_fd *ff, FILE *fp)
1491 {
1492 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493 }
1494
print_cmdline(struct feat_fd * ff,FILE * fp)1495 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496 {
1497 int nr, i;
1498
1499 nr = ff->ph->env.nr_cmdline;
1500
1501 fprintf(fp, "# cmdline : ");
1502
1503 for (i = 0; i < nr; i++) {
1504 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505 if (!argv_i) {
1506 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507 } else {
1508 char *mem = argv_i;
1509 do {
1510 char *quote = strchr(argv_i, '\'');
1511 if (!quote)
1512 break;
1513 *quote++ = '\0';
1514 fprintf(fp, "%s\\\'", argv_i);
1515 argv_i = quote;
1516 } while (1);
1517 fprintf(fp, "%s ", argv_i);
1518 free(mem);
1519 }
1520 }
1521 fputc('\n', fp);
1522 }
1523
print_cpu_topology(struct feat_fd * ff,FILE * fp)1524 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525 {
1526 struct perf_header *ph = ff->ph;
1527 int cpu_nr = ph->env.nr_cpus_avail;
1528 int nr, i;
1529 char *str;
1530
1531 nr = ph->env.nr_sibling_cores;
1532 str = ph->env.sibling_cores;
1533
1534 for (i = 0; i < nr; i++) {
1535 fprintf(fp, "# sibling sockets : %s\n", str);
1536 str += strlen(str) + 1;
1537 }
1538
1539 if (ph->env.nr_sibling_dies) {
1540 nr = ph->env.nr_sibling_dies;
1541 str = ph->env.sibling_dies;
1542
1543 for (i = 0; i < nr; i++) {
1544 fprintf(fp, "# sibling dies : %s\n", str);
1545 str += strlen(str) + 1;
1546 }
1547 }
1548
1549 nr = ph->env.nr_sibling_threads;
1550 str = ph->env.sibling_threads;
1551
1552 for (i = 0; i < nr; i++) {
1553 fprintf(fp, "# sibling threads : %s\n", str);
1554 str += strlen(str) + 1;
1555 }
1556
1557 if (ph->env.nr_sibling_dies) {
1558 if (ph->env.cpu != NULL) {
1559 for (i = 0; i < cpu_nr; i++)
1560 fprintf(fp, "# CPU %d: Core ID %d, "
1561 "Die ID %d, Socket ID %d\n",
1562 i, ph->env.cpu[i].core_id,
1563 ph->env.cpu[i].die_id,
1564 ph->env.cpu[i].socket_id);
1565 } else
1566 fprintf(fp, "# Core ID, Die ID and Socket ID "
1567 "information is not available\n");
1568 } else {
1569 if (ph->env.cpu != NULL) {
1570 for (i = 0; i < cpu_nr; i++)
1571 fprintf(fp, "# CPU %d: Core ID %d, "
1572 "Socket ID %d\n",
1573 i, ph->env.cpu[i].core_id,
1574 ph->env.cpu[i].socket_id);
1575 } else
1576 fprintf(fp, "# Core ID and Socket ID "
1577 "information is not available\n");
1578 }
1579 }
1580
print_clockid(struct feat_fd * ff,FILE * fp)1581 static void print_clockid(struct feat_fd *ff, FILE *fp)
1582 {
1583 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584 ff->ph->env.clock.clockid_res_ns * 1000);
1585 }
1586
print_clock_data(struct feat_fd * ff,FILE * fp)1587 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588 {
1589 struct timespec clockid_ns;
1590 char tstr[64], date[64];
1591 struct timeval tod_ns;
1592 clockid_t clockid;
1593 struct tm ltime;
1594 u64 ref;
1595
1596 if (!ff->ph->env.clock.enabled) {
1597 fprintf(fp, "# reference time disabled\n");
1598 return;
1599 }
1600
1601 /* Compute TOD time. */
1602 ref = ff->ph->env.clock.tod_ns;
1603 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606
1607 /* Compute clockid time. */
1608 ref = ff->ph->env.clock.clockid_ns;
1609 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611 clockid_ns.tv_nsec = ref;
1612
1613 clockid = ff->ph->env.clock.clockid;
1614
1615 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1616 snprintf(tstr, sizeof(tstr), "<error>");
1617 else {
1618 strftime(date, sizeof(date), "%F %T", <ime);
1619 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620 date, (int) tod_ns.tv_usec);
1621 }
1622
1623 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625 tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626 clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627 clockid_name(clockid));
1628 }
1629
print_dir_format(struct feat_fd * ff,FILE * fp)1630 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631 {
1632 struct perf_session *session;
1633 struct perf_data *data;
1634
1635 session = container_of(ff->ph, struct perf_session, header);
1636 data = session->data;
1637
1638 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639 }
1640
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1641 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642 {
1643 struct perf_env *env = &ff->ph->env;
1644 struct rb_root *root;
1645 struct rb_node *next;
1646
1647 down_read(&env->bpf_progs.lock);
1648
1649 root = &env->bpf_progs.infos;
1650 next = rb_first(root);
1651
1652 while (next) {
1653 struct bpf_prog_info_node *node;
1654
1655 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656 next = rb_next(&node->rb_node);
1657
1658 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659 env, fp);
1660 }
1661
1662 up_read(&env->bpf_progs.lock);
1663 }
1664
print_bpf_btf(struct feat_fd * ff,FILE * fp)1665 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666 {
1667 struct perf_env *env = &ff->ph->env;
1668 struct rb_root *root;
1669 struct rb_node *next;
1670
1671 down_read(&env->bpf_progs.lock);
1672
1673 root = &env->bpf_progs.btfs;
1674 next = rb_first(root);
1675
1676 while (next) {
1677 struct btf_node *node;
1678
1679 node = rb_entry(next, struct btf_node, rb_node);
1680 next = rb_next(&node->rb_node);
1681 fprintf(fp, "# btf info of id %u\n", node->id);
1682 }
1683
1684 up_read(&env->bpf_progs.lock);
1685 }
1686
free_event_desc(struct evsel * events)1687 static void free_event_desc(struct evsel *events)
1688 {
1689 struct evsel *evsel;
1690
1691 if (!events)
1692 return;
1693
1694 for (evsel = events; evsel->core.attr.size; evsel++) {
1695 zfree(&evsel->name);
1696 zfree(&evsel->core.id);
1697 }
1698
1699 free(events);
1700 }
1701
perf_attr_check(struct perf_event_attr * attr)1702 static bool perf_attr_check(struct perf_event_attr *attr)
1703 {
1704 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705 pr_warning("Reserved bits are set unexpectedly. "
1706 "Please update perf tool.\n");
1707 return false;
1708 }
1709
1710 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711 pr_warning("Unknown sample type (0x%llx) is detected. "
1712 "Please update perf tool.\n",
1713 attr->sample_type);
1714 return false;
1715 }
1716
1717 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718 pr_warning("Unknown read format (0x%llx) is detected. "
1719 "Please update perf tool.\n",
1720 attr->read_format);
1721 return false;
1722 }
1723
1724 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727 "Please update perf tool.\n",
1728 attr->branch_sample_type);
1729
1730 return false;
1731 }
1732
1733 return true;
1734 }
1735
read_event_desc(struct feat_fd * ff)1736 static struct evsel *read_event_desc(struct feat_fd *ff)
1737 {
1738 struct evsel *evsel, *events = NULL;
1739 u64 *id;
1740 void *buf = NULL;
1741 u32 nre, sz, nr, i, j;
1742 size_t msz;
1743
1744 /* number of events */
1745 if (do_read_u32(ff, &nre))
1746 goto error;
1747
1748 if (do_read_u32(ff, &sz))
1749 goto error;
1750
1751 /* buffer to hold on file attr struct */
1752 buf = malloc(sz);
1753 if (!buf)
1754 goto error;
1755
1756 /* the last event terminates with evsel->core.attr.size == 0: */
1757 events = calloc(nre + 1, sizeof(*events));
1758 if (!events)
1759 goto error;
1760
1761 msz = sizeof(evsel->core.attr);
1762 if (sz < msz)
1763 msz = sz;
1764
1765 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766 evsel->idx = i;
1767
1768 /*
1769 * must read entire on-file attr struct to
1770 * sync up with layout.
1771 */
1772 if (__do_read(ff, buf, sz))
1773 goto error;
1774
1775 if (ff->ph->needs_swap)
1776 perf_event__attr_swap(buf);
1777
1778 memcpy(&evsel->core.attr, buf, msz);
1779
1780 if (!perf_attr_check(&evsel->core.attr))
1781 goto error;
1782
1783 if (do_read_u32(ff, &nr))
1784 goto error;
1785
1786 if (ff->ph->needs_swap)
1787 evsel->needs_swap = true;
1788
1789 evsel->name = do_read_string(ff);
1790 if (!evsel->name)
1791 goto error;
1792
1793 if (!nr)
1794 continue;
1795
1796 id = calloc(nr, sizeof(*id));
1797 if (!id)
1798 goto error;
1799 evsel->core.ids = nr;
1800 evsel->core.id = id;
1801
1802 for (j = 0 ; j < nr; j++) {
1803 if (do_read_u64(ff, id))
1804 goto error;
1805 id++;
1806 }
1807 }
1808 out:
1809 free(buf);
1810 return events;
1811 error:
1812 free_event_desc(events);
1813 events = NULL;
1814 goto out;
1815 }
1816
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1817 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818 void *priv __maybe_unused)
1819 {
1820 return fprintf(fp, ", %s = %s", name, val);
1821 }
1822
print_event_desc(struct feat_fd * ff,FILE * fp)1823 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824 {
1825 struct evsel *evsel, *events;
1826 u32 j;
1827 u64 *id;
1828
1829 if (ff->events)
1830 events = ff->events;
1831 else
1832 events = read_event_desc(ff);
1833
1834 if (!events) {
1835 fprintf(fp, "# event desc: not available or unable to read\n");
1836 return;
1837 }
1838
1839 for (evsel = events; evsel->core.attr.size; evsel++) {
1840 fprintf(fp, "# event : name = %s, ", evsel->name);
1841
1842 if (evsel->core.ids) {
1843 fprintf(fp, ", id = {");
1844 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 if (j)
1846 fputc(',', fp);
1847 fprintf(fp, " %"PRIu64, *id);
1848 }
1849 fprintf(fp, " }");
1850 }
1851
1852 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853
1854 fputc('\n', fp);
1855 }
1856
1857 free_event_desc(events);
1858 ff->events = NULL;
1859 }
1860
print_total_mem(struct feat_fd * ff,FILE * fp)1861 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862 {
1863 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864 }
1865
print_numa_topology(struct feat_fd * ff,FILE * fp)1866 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867 {
1868 int i;
1869 struct numa_node *n;
1870
1871 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872 n = &ff->ph->env.numa_nodes[i];
1873
1874 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1875 " free = %"PRIu64" kB\n",
1876 n->node, n->mem_total, n->mem_free);
1877
1878 fprintf(fp, "# node%u cpu list : ", n->node);
1879 cpu_map__fprintf(n->map, fp);
1880 }
1881 }
1882
print_cpuid(struct feat_fd * ff,FILE * fp)1883 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884 {
1885 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886 }
1887
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)1888 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889 {
1890 fprintf(fp, "# contains samples with branch stack\n");
1891 }
1892
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)1893 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894 {
1895 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896 }
1897
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)1898 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899 {
1900 fprintf(fp, "# contains stat data\n");
1901 }
1902
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)1903 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904 {
1905 int i;
1906
1907 fprintf(fp, "# CPU cache info:\n");
1908 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909 fprintf(fp, "# ");
1910 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911 }
1912 }
1913
print_compressed(struct feat_fd * ff,FILE * fp)1914 static void print_compressed(struct feat_fd *ff, FILE *fp)
1915 {
1916 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919 }
1920
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)1921 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922 {
1923 const char *delimiter = "# cpu pmu capabilities: ";
1924 u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925 char *str;
1926
1927 if (!nr_caps) {
1928 fprintf(fp, "# cpu pmu capabilities: not available\n");
1929 return;
1930 }
1931
1932 str = ff->ph->env.cpu_pmu_caps;
1933 while (nr_caps--) {
1934 fprintf(fp, "%s%s", delimiter, str);
1935 delimiter = ", ";
1936 str += strlen(str) + 1;
1937 }
1938
1939 fprintf(fp, "\n");
1940 }
1941
print_pmu_mappings(struct feat_fd * ff,FILE * fp)1942 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943 {
1944 const char *delimiter = "# pmu mappings: ";
1945 char *str, *tmp;
1946 u32 pmu_num;
1947 u32 type;
1948
1949 pmu_num = ff->ph->env.nr_pmu_mappings;
1950 if (!pmu_num) {
1951 fprintf(fp, "# pmu mappings: not available\n");
1952 return;
1953 }
1954
1955 str = ff->ph->env.pmu_mappings;
1956
1957 while (pmu_num) {
1958 type = strtoul(str, &tmp, 0);
1959 if (*tmp != ':')
1960 goto error;
1961
1962 str = tmp + 1;
1963 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964
1965 delimiter = ", ";
1966 str += strlen(str) + 1;
1967 pmu_num--;
1968 }
1969
1970 fprintf(fp, "\n");
1971
1972 if (!pmu_num)
1973 return;
1974 error:
1975 fprintf(fp, "# pmu mappings: unable to read\n");
1976 }
1977
print_group_desc(struct feat_fd * ff,FILE * fp)1978 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979 {
1980 struct perf_session *session;
1981 struct evsel *evsel;
1982 u32 nr = 0;
1983
1984 session = container_of(ff->ph, struct perf_session, header);
1985
1986 evlist__for_each_entry(session->evlist, evsel) {
1987 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989
1990 nr = evsel->core.nr_members - 1;
1991 } else if (nr) {
1992 fprintf(fp, ",%s", evsel__name(evsel));
1993
1994 if (--nr == 0)
1995 fprintf(fp, "}\n");
1996 }
1997 }
1998 }
1999
print_sample_time(struct feat_fd * ff,FILE * fp)2000 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001 {
2002 struct perf_session *session;
2003 char time_buf[32];
2004 double d;
2005
2006 session = container_of(ff->ph, struct perf_session, header);
2007
2008 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009 time_buf, sizeof(time_buf));
2010 fprintf(fp, "# time of first sample : %s\n", time_buf);
2011
2012 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013 time_buf, sizeof(time_buf));
2014 fprintf(fp, "# time of last sample : %s\n", time_buf);
2015
2016 d = (double)(session->evlist->last_sample_time -
2017 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018
2019 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020 }
2021
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2022 static void memory_node__fprintf(struct memory_node *n,
2023 unsigned long long bsize, FILE *fp)
2024 {
2025 char buf_map[100], buf_size[50];
2026 unsigned long long size;
2027
2028 size = bsize * bitmap_weight(n->set, n->size);
2029 unit_number__scnprintf(buf_size, 50, size);
2030
2031 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033 }
2034
print_mem_topology(struct feat_fd * ff,FILE * fp)2035 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036 {
2037 struct memory_node *nodes;
2038 int i, nr;
2039
2040 nodes = ff->ph->env.memory_nodes;
2041 nr = ff->ph->env.nr_memory_nodes;
2042
2043 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044 nr, ff->ph->env.memory_bsize);
2045
2046 for (i = 0; i < nr; i++) {
2047 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048 }
2049 }
2050
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2051 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052 char *filename,
2053 struct perf_session *session)
2054 {
2055 int err = -1;
2056 struct machine *machine;
2057 u16 cpumode;
2058 struct dso *dso;
2059 enum dso_space_type dso_space;
2060
2061 machine = perf_session__findnew_machine(session, bev->pid);
2062 if (!machine)
2063 goto out;
2064
2065 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066
2067 switch (cpumode) {
2068 case PERF_RECORD_MISC_KERNEL:
2069 dso_space = DSO_SPACE__KERNEL;
2070 break;
2071 case PERF_RECORD_MISC_GUEST_KERNEL:
2072 dso_space = DSO_SPACE__KERNEL_GUEST;
2073 break;
2074 case PERF_RECORD_MISC_USER:
2075 case PERF_RECORD_MISC_GUEST_USER:
2076 dso_space = DSO_SPACE__USER;
2077 break;
2078 default:
2079 goto out;
2080 }
2081
2082 dso = machine__findnew_dso(machine, filename);
2083 if (dso != NULL) {
2084 char sbuild_id[SBUILD_ID_SIZE];
2085 struct build_id bid;
2086 size_t size = BUILD_ID_SIZE;
2087
2088 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2089 size = bev->size;
2090
2091 build_id__init(&bid, bev->data, size);
2092 dso__set_build_id(dso, &bid);
2093
2094 if (dso_space != DSO_SPACE__USER) {
2095 struct kmod_path m = { .name = NULL, };
2096
2097 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2098 dso__set_module_info(dso, &m, machine);
2099
2100 dso->kernel = dso_space;
2101 free(m.name);
2102 }
2103
2104 build_id__sprintf(&dso->bid, sbuild_id);
2105 pr_debug("build id event received for %s: %s [%zu]\n",
2106 dso->long_name, sbuild_id, size);
2107 dso__put(dso);
2108 }
2109
2110 err = 0;
2111 out:
2112 return err;
2113 }
2114
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2115 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2116 int input, u64 offset, u64 size)
2117 {
2118 struct perf_session *session = container_of(header, struct perf_session, header);
2119 struct {
2120 struct perf_event_header header;
2121 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2122 char filename[0];
2123 } old_bev;
2124 struct perf_record_header_build_id bev;
2125 char filename[PATH_MAX];
2126 u64 limit = offset + size;
2127
2128 while (offset < limit) {
2129 ssize_t len;
2130
2131 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2132 return -1;
2133
2134 if (header->needs_swap)
2135 perf_event_header__bswap(&old_bev.header);
2136
2137 len = old_bev.header.size - sizeof(old_bev);
2138 if (readn(input, filename, len) != len)
2139 return -1;
2140
2141 bev.header = old_bev.header;
2142
2143 /*
2144 * As the pid is the missing value, we need to fill
2145 * it properly. The header.misc value give us nice hint.
2146 */
2147 bev.pid = HOST_KERNEL_ID;
2148 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2149 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2150 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2151
2152 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2153 __event_process_build_id(&bev, filename, session);
2154
2155 offset += bev.header.size;
2156 }
2157
2158 return 0;
2159 }
2160
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2161 static int perf_header__read_build_ids(struct perf_header *header,
2162 int input, u64 offset, u64 size)
2163 {
2164 struct perf_session *session = container_of(header, struct perf_session, header);
2165 struct perf_record_header_build_id bev;
2166 char filename[PATH_MAX];
2167 u64 limit = offset + size, orig_offset = offset;
2168 int err = -1;
2169
2170 while (offset < limit) {
2171 ssize_t len;
2172
2173 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2174 goto out;
2175
2176 if (header->needs_swap)
2177 perf_event_header__bswap(&bev.header);
2178
2179 len = bev.header.size - sizeof(bev);
2180 if (readn(input, filename, len) != len)
2181 goto out;
2182 /*
2183 * The a1645ce1 changeset:
2184 *
2185 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2186 *
2187 * Added a field to struct perf_record_header_build_id that broke the file
2188 * format.
2189 *
2190 * Since the kernel build-id is the first entry, process the
2191 * table using the old format if the well known
2192 * '[kernel.kallsyms]' string for the kernel build-id has the
2193 * first 4 characters chopped off (where the pid_t sits).
2194 */
2195 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2196 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2197 return -1;
2198 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2199 }
2200
2201 __event_process_build_id(&bev, filename, session);
2202
2203 offset += bev.header.size;
2204 }
2205 err = 0;
2206 out:
2207 return err;
2208 }
2209
2210 /* Macro for features that simply need to read and store a string. */
2211 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2212 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2213 {\
2214 ff->ph->env.__feat_env = do_read_string(ff); \
2215 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2216 }
2217
2218 FEAT_PROCESS_STR_FUN(hostname, hostname);
2219 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2220 FEAT_PROCESS_STR_FUN(version, version);
2221 FEAT_PROCESS_STR_FUN(arch, arch);
2222 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2223 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2224
process_tracing_data(struct feat_fd * ff,void * data)2225 static int process_tracing_data(struct feat_fd *ff, void *data)
2226 {
2227 ssize_t ret = trace_report(ff->fd, data, false);
2228
2229 return ret < 0 ? -1 : 0;
2230 }
2231
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2232 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2233 {
2234 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2235 pr_debug("Failed to read buildids, continuing...\n");
2236 return 0;
2237 }
2238
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2239 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2240 {
2241 int ret;
2242 u32 nr_cpus_avail, nr_cpus_online;
2243
2244 ret = do_read_u32(ff, &nr_cpus_avail);
2245 if (ret)
2246 return ret;
2247
2248 ret = do_read_u32(ff, &nr_cpus_online);
2249 if (ret)
2250 return ret;
2251 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2252 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2253 return 0;
2254 }
2255
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2256 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2257 {
2258 u64 total_mem;
2259 int ret;
2260
2261 ret = do_read_u64(ff, &total_mem);
2262 if (ret)
2263 return -1;
2264 ff->ph->env.total_mem = (unsigned long long)total_mem;
2265 return 0;
2266 }
2267
2268 static struct evsel *
perf_evlist__find_by_index(struct evlist * evlist,int idx)2269 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2270 {
2271 struct evsel *evsel;
2272
2273 evlist__for_each_entry(evlist, evsel) {
2274 if (evsel->idx == idx)
2275 return evsel;
2276 }
2277
2278 return NULL;
2279 }
2280
2281 static void
perf_evlist__set_event_name(struct evlist * evlist,struct evsel * event)2282 perf_evlist__set_event_name(struct evlist *evlist,
2283 struct evsel *event)
2284 {
2285 struct evsel *evsel;
2286
2287 if (!event->name)
2288 return;
2289
2290 evsel = perf_evlist__find_by_index(evlist, event->idx);
2291 if (!evsel)
2292 return;
2293
2294 if (evsel->name)
2295 return;
2296
2297 evsel->name = strdup(event->name);
2298 }
2299
2300 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2301 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2302 {
2303 struct perf_session *session;
2304 struct evsel *evsel, *events = read_event_desc(ff);
2305
2306 if (!events)
2307 return 0;
2308
2309 session = container_of(ff->ph, struct perf_session, header);
2310
2311 if (session->data->is_pipe) {
2312 /* Save events for reading later by print_event_desc,
2313 * since they can't be read again in pipe mode. */
2314 ff->events = events;
2315 }
2316
2317 for (evsel = events; evsel->core.attr.size; evsel++)
2318 perf_evlist__set_event_name(session->evlist, evsel);
2319
2320 if (!session->data->is_pipe)
2321 free_event_desc(events);
2322
2323 return 0;
2324 }
2325
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2326 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2327 {
2328 char *str, *cmdline = NULL, **argv = NULL;
2329 u32 nr, i, len = 0;
2330
2331 if (do_read_u32(ff, &nr))
2332 return -1;
2333
2334 ff->ph->env.nr_cmdline = nr;
2335
2336 cmdline = zalloc(ff->size + nr + 1);
2337 if (!cmdline)
2338 return -1;
2339
2340 argv = zalloc(sizeof(char *) * (nr + 1));
2341 if (!argv)
2342 goto error;
2343
2344 for (i = 0; i < nr; i++) {
2345 str = do_read_string(ff);
2346 if (!str)
2347 goto error;
2348
2349 argv[i] = cmdline + len;
2350 memcpy(argv[i], str, strlen(str) + 1);
2351 len += strlen(str) + 1;
2352 free(str);
2353 }
2354 ff->ph->env.cmdline = cmdline;
2355 ff->ph->env.cmdline_argv = (const char **) argv;
2356 return 0;
2357
2358 error:
2359 free(argv);
2360 free(cmdline);
2361 return -1;
2362 }
2363
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2364 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2365 {
2366 u32 nr, i;
2367 char *str;
2368 struct strbuf sb;
2369 int cpu_nr = ff->ph->env.nr_cpus_avail;
2370 u64 size = 0;
2371 struct perf_header *ph = ff->ph;
2372 bool do_core_id_test = true;
2373
2374 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2375 if (!ph->env.cpu)
2376 return -1;
2377
2378 if (do_read_u32(ff, &nr))
2379 goto free_cpu;
2380
2381 ph->env.nr_sibling_cores = nr;
2382 size += sizeof(u32);
2383 if (strbuf_init(&sb, 128) < 0)
2384 goto free_cpu;
2385
2386 for (i = 0; i < nr; i++) {
2387 str = do_read_string(ff);
2388 if (!str)
2389 goto error;
2390
2391 /* include a NULL character at the end */
2392 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2393 goto error;
2394 size += string_size(str);
2395 free(str);
2396 }
2397 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2398
2399 if (do_read_u32(ff, &nr))
2400 return -1;
2401
2402 ph->env.nr_sibling_threads = nr;
2403 size += sizeof(u32);
2404
2405 for (i = 0; i < nr; i++) {
2406 str = do_read_string(ff);
2407 if (!str)
2408 goto error;
2409
2410 /* include a NULL character at the end */
2411 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2412 goto error;
2413 size += string_size(str);
2414 free(str);
2415 }
2416 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2417
2418 /*
2419 * The header may be from old perf,
2420 * which doesn't include core id and socket id information.
2421 */
2422 if (ff->size <= size) {
2423 zfree(&ph->env.cpu);
2424 return 0;
2425 }
2426
2427 /* On s390 the socket_id number is not related to the numbers of cpus.
2428 * The socket_id number might be higher than the numbers of cpus.
2429 * This depends on the configuration.
2430 * AArch64 is the same.
2431 */
2432 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2433 || !strncmp(ph->env.arch, "aarch64", 7)))
2434 do_core_id_test = false;
2435
2436 for (i = 0; i < (u32)cpu_nr; i++) {
2437 if (do_read_u32(ff, &nr))
2438 goto free_cpu;
2439
2440 ph->env.cpu[i].core_id = nr;
2441 size += sizeof(u32);
2442
2443 if (do_read_u32(ff, &nr))
2444 goto free_cpu;
2445
2446 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2447 pr_debug("socket_id number is too big."
2448 "You may need to upgrade the perf tool.\n");
2449 goto free_cpu;
2450 }
2451
2452 ph->env.cpu[i].socket_id = nr;
2453 size += sizeof(u32);
2454 }
2455
2456 /*
2457 * The header may be from old perf,
2458 * which doesn't include die information.
2459 */
2460 if (ff->size <= size)
2461 return 0;
2462
2463 if (do_read_u32(ff, &nr))
2464 return -1;
2465
2466 ph->env.nr_sibling_dies = nr;
2467 size += sizeof(u32);
2468
2469 for (i = 0; i < nr; i++) {
2470 str = do_read_string(ff);
2471 if (!str)
2472 goto error;
2473
2474 /* include a NULL character at the end */
2475 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2476 goto error;
2477 size += string_size(str);
2478 free(str);
2479 }
2480 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2481
2482 for (i = 0; i < (u32)cpu_nr; i++) {
2483 if (do_read_u32(ff, &nr))
2484 goto free_cpu;
2485
2486 ph->env.cpu[i].die_id = nr;
2487 }
2488
2489 return 0;
2490
2491 error:
2492 strbuf_release(&sb);
2493 free_cpu:
2494 zfree(&ph->env.cpu);
2495 return -1;
2496 }
2497
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2498 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2499 {
2500 struct numa_node *nodes, *n;
2501 u32 nr, i;
2502 char *str;
2503
2504 /* nr nodes */
2505 if (do_read_u32(ff, &nr))
2506 return -1;
2507
2508 nodes = zalloc(sizeof(*nodes) * nr);
2509 if (!nodes)
2510 return -ENOMEM;
2511
2512 for (i = 0; i < nr; i++) {
2513 n = &nodes[i];
2514
2515 /* node number */
2516 if (do_read_u32(ff, &n->node))
2517 goto error;
2518
2519 if (do_read_u64(ff, &n->mem_total))
2520 goto error;
2521
2522 if (do_read_u64(ff, &n->mem_free))
2523 goto error;
2524
2525 str = do_read_string(ff);
2526 if (!str)
2527 goto error;
2528
2529 n->map = perf_cpu_map__new(str);
2530 if (!n->map)
2531 goto error;
2532
2533 free(str);
2534 }
2535 ff->ph->env.nr_numa_nodes = nr;
2536 ff->ph->env.numa_nodes = nodes;
2537 return 0;
2538
2539 error:
2540 free(nodes);
2541 return -1;
2542 }
2543
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2544 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2545 {
2546 char *name;
2547 u32 pmu_num;
2548 u32 type;
2549 struct strbuf sb;
2550
2551 if (do_read_u32(ff, &pmu_num))
2552 return -1;
2553
2554 if (!pmu_num) {
2555 pr_debug("pmu mappings not available\n");
2556 return 0;
2557 }
2558
2559 ff->ph->env.nr_pmu_mappings = pmu_num;
2560 if (strbuf_init(&sb, 128) < 0)
2561 return -1;
2562
2563 while (pmu_num) {
2564 if (do_read_u32(ff, &type))
2565 goto error;
2566
2567 name = do_read_string(ff);
2568 if (!name)
2569 goto error;
2570
2571 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2572 goto error;
2573 /* include a NULL character at the end */
2574 if (strbuf_add(&sb, "", 1) < 0)
2575 goto error;
2576
2577 if (!strcmp(name, "msr"))
2578 ff->ph->env.msr_pmu_type = type;
2579
2580 free(name);
2581 pmu_num--;
2582 }
2583 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2584 return 0;
2585
2586 error:
2587 strbuf_release(&sb);
2588 return -1;
2589 }
2590
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2591 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2592 {
2593 size_t ret = -1;
2594 u32 i, nr, nr_groups;
2595 struct perf_session *session;
2596 struct evsel *evsel, *leader = NULL;
2597 struct group_desc {
2598 char *name;
2599 u32 leader_idx;
2600 u32 nr_members;
2601 } *desc;
2602
2603 if (do_read_u32(ff, &nr_groups))
2604 return -1;
2605
2606 ff->ph->env.nr_groups = nr_groups;
2607 if (!nr_groups) {
2608 pr_debug("group desc not available\n");
2609 return 0;
2610 }
2611
2612 desc = calloc(nr_groups, sizeof(*desc));
2613 if (!desc)
2614 return -1;
2615
2616 for (i = 0; i < nr_groups; i++) {
2617 desc[i].name = do_read_string(ff);
2618 if (!desc[i].name)
2619 goto out_free;
2620
2621 if (do_read_u32(ff, &desc[i].leader_idx))
2622 goto out_free;
2623
2624 if (do_read_u32(ff, &desc[i].nr_members))
2625 goto out_free;
2626 }
2627
2628 /*
2629 * Rebuild group relationship based on the group_desc
2630 */
2631 session = container_of(ff->ph, struct perf_session, header);
2632 session->evlist->nr_groups = nr_groups;
2633
2634 i = nr = 0;
2635 evlist__for_each_entry(session->evlist, evsel) {
2636 if (evsel->idx == (int) desc[i].leader_idx) {
2637 evsel->leader = evsel;
2638 /* {anon_group} is a dummy name */
2639 if (strcmp(desc[i].name, "{anon_group}")) {
2640 evsel->group_name = desc[i].name;
2641 desc[i].name = NULL;
2642 }
2643 evsel->core.nr_members = desc[i].nr_members;
2644
2645 if (i >= nr_groups || nr > 0) {
2646 pr_debug("invalid group desc\n");
2647 goto out_free;
2648 }
2649
2650 leader = evsel;
2651 nr = evsel->core.nr_members - 1;
2652 i++;
2653 } else if (nr) {
2654 /* This is a group member */
2655 evsel->leader = leader;
2656
2657 nr--;
2658 }
2659 }
2660
2661 if (i != nr_groups || nr != 0) {
2662 pr_debug("invalid group desc\n");
2663 goto out_free;
2664 }
2665
2666 ret = 0;
2667 out_free:
2668 for (i = 0; i < nr_groups; i++)
2669 zfree(&desc[i].name);
2670 free(desc);
2671
2672 return ret;
2673 }
2674
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2675 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2676 {
2677 struct perf_session *session;
2678 int err;
2679
2680 session = container_of(ff->ph, struct perf_session, header);
2681
2682 err = auxtrace_index__process(ff->fd, ff->size, session,
2683 ff->ph->needs_swap);
2684 if (err < 0)
2685 pr_err("Failed to process auxtrace index\n");
2686 return err;
2687 }
2688
process_cache(struct feat_fd * ff,void * data __maybe_unused)2689 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2690 {
2691 struct cpu_cache_level *caches;
2692 u32 cnt, i, version;
2693
2694 if (do_read_u32(ff, &version))
2695 return -1;
2696
2697 if (version != 1)
2698 return -1;
2699
2700 if (do_read_u32(ff, &cnt))
2701 return -1;
2702
2703 caches = zalloc(sizeof(*caches) * cnt);
2704 if (!caches)
2705 return -1;
2706
2707 for (i = 0; i < cnt; i++) {
2708 struct cpu_cache_level c;
2709
2710 #define _R(v) \
2711 if (do_read_u32(ff, &c.v))\
2712 goto out_free_caches; \
2713
2714 _R(level)
2715 _R(line_size)
2716 _R(sets)
2717 _R(ways)
2718 #undef _R
2719
2720 #define _R(v) \
2721 c.v = do_read_string(ff); \
2722 if (!c.v) \
2723 goto out_free_caches;
2724
2725 _R(type)
2726 _R(size)
2727 _R(map)
2728 #undef _R
2729
2730 caches[i] = c;
2731 }
2732
2733 ff->ph->env.caches = caches;
2734 ff->ph->env.caches_cnt = cnt;
2735 return 0;
2736 out_free_caches:
2737 free(caches);
2738 return -1;
2739 }
2740
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2741 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2742 {
2743 struct perf_session *session;
2744 u64 first_sample_time, last_sample_time;
2745 int ret;
2746
2747 session = container_of(ff->ph, struct perf_session, header);
2748
2749 ret = do_read_u64(ff, &first_sample_time);
2750 if (ret)
2751 return -1;
2752
2753 ret = do_read_u64(ff, &last_sample_time);
2754 if (ret)
2755 return -1;
2756
2757 session->evlist->first_sample_time = first_sample_time;
2758 session->evlist->last_sample_time = last_sample_time;
2759 return 0;
2760 }
2761
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2762 static int process_mem_topology(struct feat_fd *ff,
2763 void *data __maybe_unused)
2764 {
2765 struct memory_node *nodes;
2766 u64 version, i, nr, bsize;
2767 int ret = -1;
2768
2769 if (do_read_u64(ff, &version))
2770 return -1;
2771
2772 if (version != 1)
2773 return -1;
2774
2775 if (do_read_u64(ff, &bsize))
2776 return -1;
2777
2778 if (do_read_u64(ff, &nr))
2779 return -1;
2780
2781 nodes = zalloc(sizeof(*nodes) * nr);
2782 if (!nodes)
2783 return -1;
2784
2785 for (i = 0; i < nr; i++) {
2786 struct memory_node n;
2787
2788 #define _R(v) \
2789 if (do_read_u64(ff, &n.v)) \
2790 goto out; \
2791
2792 _R(node)
2793 _R(size)
2794
2795 #undef _R
2796
2797 if (do_read_bitmap(ff, &n.set, &n.size))
2798 goto out;
2799
2800 nodes[i] = n;
2801 }
2802
2803 ff->ph->env.memory_bsize = bsize;
2804 ff->ph->env.memory_nodes = nodes;
2805 ff->ph->env.nr_memory_nodes = nr;
2806 ret = 0;
2807
2808 out:
2809 if (ret)
2810 free(nodes);
2811 return ret;
2812 }
2813
process_clockid(struct feat_fd * ff,void * data __maybe_unused)2814 static int process_clockid(struct feat_fd *ff,
2815 void *data __maybe_unused)
2816 {
2817 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2818 return -1;
2819
2820 return 0;
2821 }
2822
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)2823 static int process_clock_data(struct feat_fd *ff,
2824 void *_data __maybe_unused)
2825 {
2826 u32 data32;
2827 u64 data64;
2828
2829 /* version */
2830 if (do_read_u32(ff, &data32))
2831 return -1;
2832
2833 if (data32 != 1)
2834 return -1;
2835
2836 /* clockid */
2837 if (do_read_u32(ff, &data32))
2838 return -1;
2839
2840 ff->ph->env.clock.clockid = data32;
2841
2842 /* TOD ref time */
2843 if (do_read_u64(ff, &data64))
2844 return -1;
2845
2846 ff->ph->env.clock.tod_ns = data64;
2847
2848 /* clockid ref time */
2849 if (do_read_u64(ff, &data64))
2850 return -1;
2851
2852 ff->ph->env.clock.clockid_ns = data64;
2853 ff->ph->env.clock.enabled = true;
2854 return 0;
2855 }
2856
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)2857 static int process_dir_format(struct feat_fd *ff,
2858 void *_data __maybe_unused)
2859 {
2860 struct perf_session *session;
2861 struct perf_data *data;
2862
2863 session = container_of(ff->ph, struct perf_session, header);
2864 data = session->data;
2865
2866 if (WARN_ON(!perf_data__is_dir(data)))
2867 return -1;
2868
2869 return do_read_u64(ff, &data->dir.version);
2870 }
2871
2872 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)2873 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2874 {
2875 struct bpf_prog_info_linear *info_linear;
2876 struct bpf_prog_info_node *info_node;
2877 struct perf_env *env = &ff->ph->env;
2878 u32 count, i;
2879 int err = -1;
2880
2881 if (ff->ph->needs_swap) {
2882 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2883 return 0;
2884 }
2885
2886 if (do_read_u32(ff, &count))
2887 return -1;
2888
2889 down_write(&env->bpf_progs.lock);
2890
2891 for (i = 0; i < count; ++i) {
2892 u32 info_len, data_len;
2893
2894 info_linear = NULL;
2895 info_node = NULL;
2896 if (do_read_u32(ff, &info_len))
2897 goto out;
2898 if (do_read_u32(ff, &data_len))
2899 goto out;
2900
2901 if (info_len > sizeof(struct bpf_prog_info)) {
2902 pr_warning("detected invalid bpf_prog_info\n");
2903 goto out;
2904 }
2905
2906 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2907 data_len);
2908 if (!info_linear)
2909 goto out;
2910 info_linear->info_len = sizeof(struct bpf_prog_info);
2911 info_linear->data_len = data_len;
2912 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2913 goto out;
2914 if (__do_read(ff, &info_linear->info, info_len))
2915 goto out;
2916 if (info_len < sizeof(struct bpf_prog_info))
2917 memset(((void *)(&info_linear->info)) + info_len, 0,
2918 sizeof(struct bpf_prog_info) - info_len);
2919
2920 if (__do_read(ff, info_linear->data, data_len))
2921 goto out;
2922
2923 info_node = malloc(sizeof(struct bpf_prog_info_node));
2924 if (!info_node)
2925 goto out;
2926
2927 /* after reading from file, translate offset to address */
2928 bpf_program__bpil_offs_to_addr(info_linear);
2929 info_node->info_linear = info_linear;
2930 perf_env__insert_bpf_prog_info(env, info_node);
2931 }
2932
2933 up_write(&env->bpf_progs.lock);
2934 return 0;
2935 out:
2936 free(info_linear);
2937 free(info_node);
2938 up_write(&env->bpf_progs.lock);
2939 return err;
2940 }
2941 #else // HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff __maybe_unused,void * data __maybe_unused)2942 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2943 {
2944 return 0;
2945 }
2946 #endif // HAVE_LIBBPF_SUPPORT
2947
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)2948 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2949 {
2950 struct perf_env *env = &ff->ph->env;
2951 struct btf_node *node = NULL;
2952 u32 count, i;
2953 int err = -1;
2954
2955 if (ff->ph->needs_swap) {
2956 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2957 return 0;
2958 }
2959
2960 if (do_read_u32(ff, &count))
2961 return -1;
2962
2963 down_write(&env->bpf_progs.lock);
2964
2965 for (i = 0; i < count; ++i) {
2966 u32 id, data_size;
2967
2968 if (do_read_u32(ff, &id))
2969 goto out;
2970 if (do_read_u32(ff, &data_size))
2971 goto out;
2972
2973 node = malloc(sizeof(struct btf_node) + data_size);
2974 if (!node)
2975 goto out;
2976
2977 node->id = id;
2978 node->data_size = data_size;
2979
2980 if (__do_read(ff, node->data, data_size))
2981 goto out;
2982
2983 perf_env__insert_btf(env, node);
2984 node = NULL;
2985 }
2986
2987 err = 0;
2988 out:
2989 up_write(&env->bpf_progs.lock);
2990 free(node);
2991 return err;
2992 }
2993
process_compressed(struct feat_fd * ff,void * data __maybe_unused)2994 static int process_compressed(struct feat_fd *ff,
2995 void *data __maybe_unused)
2996 {
2997 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2998 return -1;
2999
3000 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3001 return -1;
3002
3003 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3004 return -1;
3005
3006 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3007 return -1;
3008
3009 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3010 return -1;
3011
3012 return 0;
3013 }
3014
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3015 static int process_cpu_pmu_caps(struct feat_fd *ff,
3016 void *data __maybe_unused)
3017 {
3018 char *name, *value;
3019 struct strbuf sb;
3020 u32 nr_caps;
3021
3022 if (do_read_u32(ff, &nr_caps))
3023 return -1;
3024
3025 if (!nr_caps) {
3026 pr_debug("cpu pmu capabilities not available\n");
3027 return 0;
3028 }
3029
3030 ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3031
3032 if (strbuf_init(&sb, 128) < 0)
3033 return -1;
3034
3035 while (nr_caps--) {
3036 name = do_read_string(ff);
3037 if (!name)
3038 goto error;
3039
3040 value = do_read_string(ff);
3041 if (!value)
3042 goto free_name;
3043
3044 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3045 goto free_value;
3046
3047 /* include a NULL character at the end */
3048 if (strbuf_add(&sb, "", 1) < 0)
3049 goto free_value;
3050
3051 if (!strcmp(name, "branches"))
3052 ff->ph->env.max_branches = atoi(value);
3053
3054 free(value);
3055 free(name);
3056 }
3057 ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3058 return 0;
3059
3060 free_value:
3061 free(value);
3062 free_name:
3063 free(name);
3064 error:
3065 strbuf_release(&sb);
3066 return -1;
3067 }
3068
3069 #define FEAT_OPR(n, func, __full_only) \
3070 [HEADER_##n] = { \
3071 .name = __stringify(n), \
3072 .write = write_##func, \
3073 .print = print_##func, \
3074 .full_only = __full_only, \
3075 .process = process_##func, \
3076 .synthesize = true \
3077 }
3078
3079 #define FEAT_OPN(n, func, __full_only) \
3080 [HEADER_##n] = { \
3081 .name = __stringify(n), \
3082 .write = write_##func, \
3083 .print = print_##func, \
3084 .full_only = __full_only, \
3085 .process = process_##func \
3086 }
3087
3088 /* feature_ops not implemented: */
3089 #define print_tracing_data NULL
3090 #define print_build_id NULL
3091
3092 #define process_branch_stack NULL
3093 #define process_stat NULL
3094
3095 // Only used in util/synthetic-events.c
3096 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3097
3098 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3099 FEAT_OPN(TRACING_DATA, tracing_data, false),
3100 FEAT_OPN(BUILD_ID, build_id, false),
3101 FEAT_OPR(HOSTNAME, hostname, false),
3102 FEAT_OPR(OSRELEASE, osrelease, false),
3103 FEAT_OPR(VERSION, version, false),
3104 FEAT_OPR(ARCH, arch, false),
3105 FEAT_OPR(NRCPUS, nrcpus, false),
3106 FEAT_OPR(CPUDESC, cpudesc, false),
3107 FEAT_OPR(CPUID, cpuid, false),
3108 FEAT_OPR(TOTAL_MEM, total_mem, false),
3109 FEAT_OPR(EVENT_DESC, event_desc, false),
3110 FEAT_OPR(CMDLINE, cmdline, false),
3111 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3112 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3113 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3114 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3115 FEAT_OPR(GROUP_DESC, group_desc, false),
3116 FEAT_OPN(AUXTRACE, auxtrace, false),
3117 FEAT_OPN(STAT, stat, false),
3118 FEAT_OPN(CACHE, cache, true),
3119 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3120 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3121 FEAT_OPR(CLOCKID, clockid, false),
3122 FEAT_OPN(DIR_FORMAT, dir_format, false),
3123 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3124 FEAT_OPR(BPF_BTF, bpf_btf, false),
3125 FEAT_OPR(COMPRESSED, compressed, false),
3126 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3127 FEAT_OPR(CLOCK_DATA, clock_data, false),
3128 };
3129
3130 struct header_print_data {
3131 FILE *fp;
3132 bool full; /* extended list of headers */
3133 };
3134
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3135 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3136 struct perf_header *ph,
3137 int feat, int fd, void *data)
3138 {
3139 struct header_print_data *hd = data;
3140 struct feat_fd ff;
3141
3142 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3143 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3144 "%d, continuing...\n", section->offset, feat);
3145 return 0;
3146 }
3147 if (feat >= HEADER_LAST_FEATURE) {
3148 pr_warning("unknown feature %d\n", feat);
3149 return 0;
3150 }
3151 if (!feat_ops[feat].print)
3152 return 0;
3153
3154 ff = (struct feat_fd) {
3155 .fd = fd,
3156 .ph = ph,
3157 };
3158
3159 if (!feat_ops[feat].full_only || hd->full)
3160 feat_ops[feat].print(&ff, hd->fp);
3161 else
3162 fprintf(hd->fp, "# %s info available, use -I to display\n",
3163 feat_ops[feat].name);
3164
3165 return 0;
3166 }
3167
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3168 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3169 {
3170 struct header_print_data hd;
3171 struct perf_header *header = &session->header;
3172 int fd = perf_data__fd(session->data);
3173 struct stat st;
3174 time_t stctime;
3175 int ret, bit;
3176
3177 hd.fp = fp;
3178 hd.full = full;
3179
3180 ret = fstat(fd, &st);
3181 if (ret == -1)
3182 return -1;
3183
3184 stctime = st.st_mtime;
3185 fprintf(fp, "# captured on : %s", ctime(&stctime));
3186
3187 fprintf(fp, "# header version : %u\n", header->version);
3188 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3189 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3190 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3191
3192 perf_header__process_sections(header, fd, &hd,
3193 perf_file_section__fprintf_info);
3194
3195 if (session->data->is_pipe)
3196 return 0;
3197
3198 fprintf(fp, "# missing features: ");
3199 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3200 if (bit)
3201 fprintf(fp, "%s ", feat_ops[bit].name);
3202 }
3203
3204 fprintf(fp, "\n");
3205 return 0;
3206 }
3207
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist)3208 static int do_write_feat(struct feat_fd *ff, int type,
3209 struct perf_file_section **p,
3210 struct evlist *evlist)
3211 {
3212 int err;
3213 int ret = 0;
3214
3215 if (perf_header__has_feat(ff->ph, type)) {
3216 if (!feat_ops[type].write)
3217 return -1;
3218
3219 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3220 return -1;
3221
3222 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3223
3224 err = feat_ops[type].write(ff, evlist);
3225 if (err < 0) {
3226 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3227
3228 /* undo anything written */
3229 lseek(ff->fd, (*p)->offset, SEEK_SET);
3230
3231 return -1;
3232 }
3233 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3234 (*p)++;
3235 }
3236 return ret;
3237 }
3238
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd)3239 static int perf_header__adds_write(struct perf_header *header,
3240 struct evlist *evlist, int fd)
3241 {
3242 int nr_sections;
3243 struct feat_fd ff;
3244 struct perf_file_section *feat_sec, *p;
3245 int sec_size;
3246 u64 sec_start;
3247 int feat;
3248 int err;
3249
3250 ff = (struct feat_fd){
3251 .fd = fd,
3252 .ph = header,
3253 };
3254
3255 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3256 if (!nr_sections)
3257 return 0;
3258
3259 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3260 if (feat_sec == NULL)
3261 return -ENOMEM;
3262
3263 sec_size = sizeof(*feat_sec) * nr_sections;
3264
3265 sec_start = header->feat_offset;
3266 lseek(fd, sec_start + sec_size, SEEK_SET);
3267
3268 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3269 if (do_write_feat(&ff, feat, &p, evlist))
3270 perf_header__clear_feat(header, feat);
3271 }
3272
3273 lseek(fd, sec_start, SEEK_SET);
3274 /*
3275 * may write more than needed due to dropped feature, but
3276 * this is okay, reader will skip the missing entries
3277 */
3278 err = do_write(&ff, feat_sec, sec_size);
3279 if (err < 0)
3280 pr_debug("failed to write feature section\n");
3281 free(feat_sec);
3282 return err;
3283 }
3284
perf_header__write_pipe(int fd)3285 int perf_header__write_pipe(int fd)
3286 {
3287 struct perf_pipe_file_header f_header;
3288 struct feat_fd ff;
3289 int err;
3290
3291 ff = (struct feat_fd){ .fd = fd };
3292
3293 f_header = (struct perf_pipe_file_header){
3294 .magic = PERF_MAGIC,
3295 .size = sizeof(f_header),
3296 };
3297
3298 err = do_write(&ff, &f_header, sizeof(f_header));
3299 if (err < 0) {
3300 pr_debug("failed to write perf pipe header\n");
3301 return err;
3302 }
3303
3304 return 0;
3305 }
3306
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3307 int perf_session__write_header(struct perf_session *session,
3308 struct evlist *evlist,
3309 int fd, bool at_exit)
3310 {
3311 struct perf_file_header f_header;
3312 struct perf_file_attr f_attr;
3313 struct perf_header *header = &session->header;
3314 struct evsel *evsel;
3315 struct feat_fd ff;
3316 u64 attr_offset;
3317 int err;
3318
3319 ff = (struct feat_fd){ .fd = fd};
3320 lseek(fd, sizeof(f_header), SEEK_SET);
3321
3322 evlist__for_each_entry(session->evlist, evsel) {
3323 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3324 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3325 if (err < 0) {
3326 pr_debug("failed to write perf header\n");
3327 return err;
3328 }
3329 }
3330
3331 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3332
3333 evlist__for_each_entry(evlist, evsel) {
3334 f_attr = (struct perf_file_attr){
3335 .attr = evsel->core.attr,
3336 .ids = {
3337 .offset = evsel->id_offset,
3338 .size = evsel->core.ids * sizeof(u64),
3339 }
3340 };
3341 err = do_write(&ff, &f_attr, sizeof(f_attr));
3342 if (err < 0) {
3343 pr_debug("failed to write perf header attribute\n");
3344 return err;
3345 }
3346 }
3347
3348 if (!header->data_offset)
3349 header->data_offset = lseek(fd, 0, SEEK_CUR);
3350 header->feat_offset = header->data_offset + header->data_size;
3351
3352 if (at_exit) {
3353 err = perf_header__adds_write(header, evlist, fd);
3354 if (err < 0)
3355 return err;
3356 }
3357
3358 f_header = (struct perf_file_header){
3359 .magic = PERF_MAGIC,
3360 .size = sizeof(f_header),
3361 .attr_size = sizeof(f_attr),
3362 .attrs = {
3363 .offset = attr_offset,
3364 .size = evlist->core.nr_entries * sizeof(f_attr),
3365 },
3366 .data = {
3367 .offset = header->data_offset,
3368 .size = header->data_size,
3369 },
3370 /* event_types is ignored, store zeros */
3371 };
3372
3373 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3374
3375 lseek(fd, 0, SEEK_SET);
3376 err = do_write(&ff, &f_header, sizeof(f_header));
3377 if (err < 0) {
3378 pr_debug("failed to write perf header\n");
3379 return err;
3380 }
3381 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3382
3383 return 0;
3384 }
3385
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3386 static int perf_header__getbuffer64(struct perf_header *header,
3387 int fd, void *buf, size_t size)
3388 {
3389 if (readn(fd, buf, size) <= 0)
3390 return -1;
3391
3392 if (header->needs_swap)
3393 mem_bswap_64(buf, size);
3394
3395 return 0;
3396 }
3397
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3398 int perf_header__process_sections(struct perf_header *header, int fd,
3399 void *data,
3400 int (*process)(struct perf_file_section *section,
3401 struct perf_header *ph,
3402 int feat, int fd, void *data))
3403 {
3404 struct perf_file_section *feat_sec, *sec;
3405 int nr_sections;
3406 int sec_size;
3407 int feat;
3408 int err;
3409
3410 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3411 if (!nr_sections)
3412 return 0;
3413
3414 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3415 if (!feat_sec)
3416 return -1;
3417
3418 sec_size = sizeof(*feat_sec) * nr_sections;
3419
3420 lseek(fd, header->feat_offset, SEEK_SET);
3421
3422 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3423 if (err < 0)
3424 goto out_free;
3425
3426 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3427 err = process(sec++, header, feat, fd, data);
3428 if (err < 0)
3429 goto out_free;
3430 }
3431 err = 0;
3432 out_free:
3433 free(feat_sec);
3434 return err;
3435 }
3436
3437 static const int attr_file_abi_sizes[] = {
3438 [0] = PERF_ATTR_SIZE_VER0,
3439 [1] = PERF_ATTR_SIZE_VER1,
3440 [2] = PERF_ATTR_SIZE_VER2,
3441 [3] = PERF_ATTR_SIZE_VER3,
3442 [4] = PERF_ATTR_SIZE_VER4,
3443 0,
3444 };
3445
3446 /*
3447 * In the legacy file format, the magic number is not used to encode endianness.
3448 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3449 * on ABI revisions, we need to try all combinations for all endianness to
3450 * detect the endianness.
3451 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3452 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3453 {
3454 uint64_t ref_size, attr_size;
3455 int i;
3456
3457 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3458 ref_size = attr_file_abi_sizes[i]
3459 + sizeof(struct perf_file_section);
3460 if (hdr_sz != ref_size) {
3461 attr_size = bswap_64(hdr_sz);
3462 if (attr_size != ref_size)
3463 continue;
3464
3465 ph->needs_swap = true;
3466 }
3467 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3468 i,
3469 ph->needs_swap);
3470 return 0;
3471 }
3472 /* could not determine endianness */
3473 return -1;
3474 }
3475
3476 #define PERF_PIPE_HDR_VER0 16
3477
3478 static const size_t attr_pipe_abi_sizes[] = {
3479 [0] = PERF_PIPE_HDR_VER0,
3480 0,
3481 };
3482
3483 /*
3484 * In the legacy pipe format, there is an implicit assumption that endiannesss
3485 * between host recording the samples, and host parsing the samples is the
3486 * same. This is not always the case given that the pipe output may always be
3487 * redirected into a file and analyzed on a different machine with possibly a
3488 * different endianness and perf_event ABI revsions in the perf tool itself.
3489 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3490 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3491 {
3492 u64 attr_size;
3493 int i;
3494
3495 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3496 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3497 attr_size = bswap_64(hdr_sz);
3498 if (attr_size != hdr_sz)
3499 continue;
3500
3501 ph->needs_swap = true;
3502 }
3503 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3504 return 0;
3505 }
3506 return -1;
3507 }
3508
is_perf_magic(u64 magic)3509 bool is_perf_magic(u64 magic)
3510 {
3511 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3512 || magic == __perf_magic2
3513 || magic == __perf_magic2_sw)
3514 return true;
3515
3516 return false;
3517 }
3518
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3519 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3520 bool is_pipe, struct perf_header *ph)
3521 {
3522 int ret;
3523
3524 /* check for legacy format */
3525 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3526 if (ret == 0) {
3527 ph->version = PERF_HEADER_VERSION_1;
3528 pr_debug("legacy perf.data format\n");
3529 if (is_pipe)
3530 return try_all_pipe_abis(hdr_sz, ph);
3531
3532 return try_all_file_abis(hdr_sz, ph);
3533 }
3534 /*
3535 * the new magic number serves two purposes:
3536 * - unique number to identify actual perf.data files
3537 * - encode endianness of file
3538 */
3539 ph->version = PERF_HEADER_VERSION_2;
3540
3541 /* check magic number with one endianness */
3542 if (magic == __perf_magic2)
3543 return 0;
3544
3545 /* check magic number with opposite endianness */
3546 if (magic != __perf_magic2_sw)
3547 return -1;
3548
3549 ph->needs_swap = true;
3550
3551 return 0;
3552 }
3553
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3554 int perf_file_header__read(struct perf_file_header *header,
3555 struct perf_header *ph, int fd)
3556 {
3557 ssize_t ret;
3558
3559 lseek(fd, 0, SEEK_SET);
3560
3561 ret = readn(fd, header, sizeof(*header));
3562 if (ret <= 0)
3563 return -1;
3564
3565 if (check_magic_endian(header->magic,
3566 header->attr_size, false, ph) < 0) {
3567 pr_debug("magic/endian check failed\n");
3568 return -1;
3569 }
3570
3571 if (ph->needs_swap) {
3572 mem_bswap_64(header, offsetof(struct perf_file_header,
3573 adds_features));
3574 }
3575
3576 if (header->size != sizeof(*header)) {
3577 /* Support the previous format */
3578 if (header->size == offsetof(typeof(*header), adds_features))
3579 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3580 else
3581 return -1;
3582 } else if (ph->needs_swap) {
3583 /*
3584 * feature bitmap is declared as an array of unsigned longs --
3585 * not good since its size can differ between the host that
3586 * generated the data file and the host analyzing the file.
3587 *
3588 * We need to handle endianness, but we don't know the size of
3589 * the unsigned long where the file was generated. Take a best
3590 * guess at determining it: try 64-bit swap first (ie., file
3591 * created on a 64-bit host), and check if the hostname feature
3592 * bit is set (this feature bit is forced on as of fbe96f2).
3593 * If the bit is not, undo the 64-bit swap and try a 32-bit
3594 * swap. If the hostname bit is still not set (e.g., older data
3595 * file), punt and fallback to the original behavior --
3596 * clearing all feature bits and setting buildid.
3597 */
3598 mem_bswap_64(&header->adds_features,
3599 BITS_TO_U64(HEADER_FEAT_BITS));
3600
3601 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3602 /* unswap as u64 */
3603 mem_bswap_64(&header->adds_features,
3604 BITS_TO_U64(HEADER_FEAT_BITS));
3605
3606 /* unswap as u32 */
3607 mem_bswap_32(&header->adds_features,
3608 BITS_TO_U32(HEADER_FEAT_BITS));
3609 }
3610
3611 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3612 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3613 set_bit(HEADER_BUILD_ID, header->adds_features);
3614 }
3615 }
3616
3617 memcpy(&ph->adds_features, &header->adds_features,
3618 sizeof(ph->adds_features));
3619
3620 ph->data_offset = header->data.offset;
3621 ph->data_size = header->data.size;
3622 ph->feat_offset = header->data.offset + header->data.size;
3623 return 0;
3624 }
3625
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3626 static int perf_file_section__process(struct perf_file_section *section,
3627 struct perf_header *ph,
3628 int feat, int fd, void *data)
3629 {
3630 struct feat_fd fdd = {
3631 .fd = fd,
3632 .ph = ph,
3633 .size = section->size,
3634 .offset = section->offset,
3635 };
3636
3637 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3638 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3639 "%d, continuing...\n", section->offset, feat);
3640 return 0;
3641 }
3642
3643 if (feat >= HEADER_LAST_FEATURE) {
3644 pr_debug("unknown feature %d, continuing...\n", feat);
3645 return 0;
3646 }
3647
3648 if (!feat_ops[feat].process)
3649 return 0;
3650
3651 return feat_ops[feat].process(&fdd, data);
3652 }
3653
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,int fd,bool repipe)3654 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3655 struct perf_header *ph, int fd,
3656 bool repipe)
3657 {
3658 struct feat_fd ff = {
3659 .fd = STDOUT_FILENO,
3660 .ph = ph,
3661 };
3662 ssize_t ret;
3663
3664 ret = readn(fd, header, sizeof(*header));
3665 if (ret <= 0)
3666 return -1;
3667
3668 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3669 pr_debug("endian/magic failed\n");
3670 return -1;
3671 }
3672
3673 if (ph->needs_swap)
3674 header->size = bswap_64(header->size);
3675
3676 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3677 return -1;
3678
3679 return 0;
3680 }
3681
perf_header__read_pipe(struct perf_session * session)3682 static int perf_header__read_pipe(struct perf_session *session)
3683 {
3684 struct perf_header *header = &session->header;
3685 struct perf_pipe_file_header f_header;
3686
3687 if (perf_file_header__read_pipe(&f_header, header,
3688 perf_data__fd(session->data),
3689 session->repipe) < 0) {
3690 pr_debug("incompatible file format\n");
3691 return -EINVAL;
3692 }
3693
3694 return f_header.size == sizeof(f_header) ? 0 : -1;
3695 }
3696
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)3697 static int read_attr(int fd, struct perf_header *ph,
3698 struct perf_file_attr *f_attr)
3699 {
3700 struct perf_event_attr *attr = &f_attr->attr;
3701 size_t sz, left;
3702 size_t our_sz = sizeof(f_attr->attr);
3703 ssize_t ret;
3704
3705 memset(f_attr, 0, sizeof(*f_attr));
3706
3707 /* read minimal guaranteed structure */
3708 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3709 if (ret <= 0) {
3710 pr_debug("cannot read %d bytes of header attr\n",
3711 PERF_ATTR_SIZE_VER0);
3712 return -1;
3713 }
3714
3715 /* on file perf_event_attr size */
3716 sz = attr->size;
3717
3718 if (ph->needs_swap)
3719 sz = bswap_32(sz);
3720
3721 if (sz == 0) {
3722 /* assume ABI0 */
3723 sz = PERF_ATTR_SIZE_VER0;
3724 } else if (sz > our_sz) {
3725 pr_debug("file uses a more recent and unsupported ABI"
3726 " (%zu bytes extra)\n", sz - our_sz);
3727 return -1;
3728 }
3729 /* what we have not yet read and that we know about */
3730 left = sz - PERF_ATTR_SIZE_VER0;
3731 if (left) {
3732 void *ptr = attr;
3733 ptr += PERF_ATTR_SIZE_VER0;
3734
3735 ret = readn(fd, ptr, left);
3736 }
3737 /* read perf_file_section, ids are read in caller */
3738 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3739
3740 return ret <= 0 ? -1 : 0;
3741 }
3742
perf_evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)3743 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3744 struct tep_handle *pevent)
3745 {
3746 struct tep_event *event;
3747 char bf[128];
3748
3749 /* already prepared */
3750 if (evsel->tp_format)
3751 return 0;
3752
3753 if (pevent == NULL) {
3754 pr_debug("broken or missing trace data\n");
3755 return -1;
3756 }
3757
3758 event = tep_find_event(pevent, evsel->core.attr.config);
3759 if (event == NULL) {
3760 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3761 return -1;
3762 }
3763
3764 if (!evsel->name) {
3765 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3766 evsel->name = strdup(bf);
3767 if (evsel->name == NULL)
3768 return -1;
3769 }
3770
3771 evsel->tp_format = event;
3772 return 0;
3773 }
3774
perf_evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)3775 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3776 struct tep_handle *pevent)
3777 {
3778 struct evsel *pos;
3779
3780 evlist__for_each_entry(evlist, pos) {
3781 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3782 perf_evsel__prepare_tracepoint_event(pos, pevent))
3783 return -1;
3784 }
3785
3786 return 0;
3787 }
3788
perf_session__read_header(struct perf_session * session)3789 int perf_session__read_header(struct perf_session *session)
3790 {
3791 struct perf_data *data = session->data;
3792 struct perf_header *header = &session->header;
3793 struct perf_file_header f_header;
3794 struct perf_file_attr f_attr;
3795 u64 f_id;
3796 int nr_attrs, nr_ids, i, j, err;
3797 int fd = perf_data__fd(data);
3798
3799 session->evlist = evlist__new();
3800 if (session->evlist == NULL)
3801 return -ENOMEM;
3802
3803 session->evlist->env = &header->env;
3804 session->machines.host.env = &header->env;
3805
3806 /*
3807 * We can read 'pipe' data event from regular file,
3808 * check for the pipe header regardless of source.
3809 */
3810 err = perf_header__read_pipe(session);
3811 if (!err || (err && perf_data__is_pipe(data))) {
3812 data->is_pipe = true;
3813 return err;
3814 }
3815
3816 if (perf_file_header__read(&f_header, header, fd) < 0)
3817 return -EINVAL;
3818
3819 /*
3820 * Sanity check that perf.data was written cleanly; data size is
3821 * initialized to 0 and updated only if the on_exit function is run.
3822 * If data size is still 0 then the file contains only partial
3823 * information. Just warn user and process it as much as it can.
3824 */
3825 if (f_header.data.size == 0) {
3826 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3827 "Was the 'perf record' command properly terminated?\n",
3828 data->file.path);
3829 }
3830
3831 if (f_header.attr_size == 0) {
3832 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3833 "Was the 'perf record' command properly terminated?\n",
3834 data->file.path);
3835 return -EINVAL;
3836 }
3837
3838 nr_attrs = f_header.attrs.size / f_header.attr_size;
3839 lseek(fd, f_header.attrs.offset, SEEK_SET);
3840
3841 for (i = 0; i < nr_attrs; i++) {
3842 struct evsel *evsel;
3843 off_t tmp;
3844
3845 if (read_attr(fd, header, &f_attr) < 0)
3846 goto out_errno;
3847
3848 if (header->needs_swap) {
3849 f_attr.ids.size = bswap_64(f_attr.ids.size);
3850 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3851 perf_event__attr_swap(&f_attr.attr);
3852 }
3853
3854 tmp = lseek(fd, 0, SEEK_CUR);
3855 evsel = evsel__new(&f_attr.attr);
3856
3857 if (evsel == NULL)
3858 goto out_delete_evlist;
3859
3860 evsel->needs_swap = header->needs_swap;
3861 /*
3862 * Do it before so that if perf_evsel__alloc_id fails, this
3863 * entry gets purged too at evlist__delete().
3864 */
3865 evlist__add(session->evlist, evsel);
3866
3867 nr_ids = f_attr.ids.size / sizeof(u64);
3868 /*
3869 * We don't have the cpu and thread maps on the header, so
3870 * for allocating the perf_sample_id table we fake 1 cpu and
3871 * hattr->ids threads.
3872 */
3873 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3874 goto out_delete_evlist;
3875
3876 lseek(fd, f_attr.ids.offset, SEEK_SET);
3877
3878 for (j = 0; j < nr_ids; j++) {
3879 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3880 goto out_errno;
3881
3882 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3883 }
3884
3885 lseek(fd, tmp, SEEK_SET);
3886 }
3887
3888 perf_header__process_sections(header, fd, &session->tevent,
3889 perf_file_section__process);
3890
3891 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3892 session->tevent.pevent))
3893 goto out_delete_evlist;
3894
3895 return 0;
3896 out_errno:
3897 return -errno;
3898
3899 out_delete_evlist:
3900 evlist__delete(session->evlist);
3901 session->evlist = NULL;
3902 return -ENOMEM;
3903 }
3904
perf_event__process_feature(struct perf_session * session,union perf_event * event)3905 int perf_event__process_feature(struct perf_session *session,
3906 union perf_event *event)
3907 {
3908 struct perf_tool *tool = session->tool;
3909 struct feat_fd ff = { .fd = 0 };
3910 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3911 int type = fe->header.type;
3912 u64 feat = fe->feat_id;
3913
3914 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3915 pr_warning("invalid record type %d in pipe-mode\n", type);
3916 return 0;
3917 }
3918 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3919 pr_warning("invalid record type %d in pipe-mode\n", type);
3920 return -1;
3921 }
3922
3923 if (!feat_ops[feat].process)
3924 return 0;
3925
3926 ff.buf = (void *)fe->data;
3927 ff.size = event->header.size - sizeof(*fe);
3928 ff.ph = &session->header;
3929
3930 if (feat_ops[feat].process(&ff, NULL))
3931 return -1;
3932
3933 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3934 return 0;
3935
3936 if (!feat_ops[feat].full_only ||
3937 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3938 feat_ops[feat].print(&ff, stdout);
3939 } else {
3940 fprintf(stdout, "# %s info available, use -I to display\n",
3941 feat_ops[feat].name);
3942 }
3943
3944 return 0;
3945 }
3946
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)3947 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3948 {
3949 struct perf_record_event_update *ev = &event->event_update;
3950 struct perf_record_event_update_scale *ev_scale;
3951 struct perf_record_event_update_cpus *ev_cpus;
3952 struct perf_cpu_map *map;
3953 size_t ret;
3954
3955 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3956
3957 switch (ev->type) {
3958 case PERF_EVENT_UPDATE__SCALE:
3959 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3960 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3961 break;
3962 case PERF_EVENT_UPDATE__UNIT:
3963 ret += fprintf(fp, "... unit: %s\n", ev->data);
3964 break;
3965 case PERF_EVENT_UPDATE__NAME:
3966 ret += fprintf(fp, "... name: %s\n", ev->data);
3967 break;
3968 case PERF_EVENT_UPDATE__CPUS:
3969 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3970 ret += fprintf(fp, "... ");
3971
3972 map = cpu_map__new_data(&ev_cpus->cpus);
3973 if (map)
3974 ret += cpu_map__fprintf(map, fp);
3975 else
3976 ret += fprintf(fp, "failed to get cpus\n");
3977 break;
3978 default:
3979 ret += fprintf(fp, "... unknown type\n");
3980 break;
3981 }
3982
3983 return ret;
3984 }
3985
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)3986 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3987 union perf_event *event,
3988 struct evlist **pevlist)
3989 {
3990 u32 i, ids, n_ids;
3991 struct evsel *evsel;
3992 struct evlist *evlist = *pevlist;
3993
3994 if (evlist == NULL) {
3995 *pevlist = evlist = evlist__new();
3996 if (evlist == NULL)
3997 return -ENOMEM;
3998 }
3999
4000 evsel = evsel__new(&event->attr.attr);
4001 if (evsel == NULL)
4002 return -ENOMEM;
4003
4004 evlist__add(evlist, evsel);
4005
4006 ids = event->header.size;
4007 ids -= (void *)&event->attr.id - (void *)event;
4008 n_ids = ids / sizeof(u64);
4009 /*
4010 * We don't have the cpu and thread maps on the header, so
4011 * for allocating the perf_sample_id table we fake 1 cpu and
4012 * hattr->ids threads.
4013 */
4014 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4015 return -ENOMEM;
4016
4017 for (i = 0; i < n_ids; i++) {
4018 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4019 }
4020
4021 return 0;
4022 }
4023
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4024 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4025 union perf_event *event,
4026 struct evlist **pevlist)
4027 {
4028 struct perf_record_event_update *ev = &event->event_update;
4029 struct perf_record_event_update_scale *ev_scale;
4030 struct perf_record_event_update_cpus *ev_cpus;
4031 struct evlist *evlist;
4032 struct evsel *evsel;
4033 struct perf_cpu_map *map;
4034
4035 if (!pevlist || *pevlist == NULL)
4036 return -EINVAL;
4037
4038 evlist = *pevlist;
4039
4040 evsel = perf_evlist__id2evsel(evlist, ev->id);
4041 if (evsel == NULL)
4042 return -EINVAL;
4043
4044 switch (ev->type) {
4045 case PERF_EVENT_UPDATE__UNIT:
4046 evsel->unit = strdup(ev->data);
4047 break;
4048 case PERF_EVENT_UPDATE__NAME:
4049 evsel->name = strdup(ev->data);
4050 break;
4051 case PERF_EVENT_UPDATE__SCALE:
4052 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4053 evsel->scale = ev_scale->scale;
4054 break;
4055 case PERF_EVENT_UPDATE__CPUS:
4056 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4057
4058 map = cpu_map__new_data(&ev_cpus->cpus);
4059 if (map)
4060 evsel->core.own_cpus = map;
4061 else
4062 pr_err("failed to get event_update cpus\n");
4063 default:
4064 break;
4065 }
4066
4067 return 0;
4068 }
4069
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4070 int perf_event__process_tracing_data(struct perf_session *session,
4071 union perf_event *event)
4072 {
4073 ssize_t size_read, padding, size = event->tracing_data.size;
4074 int fd = perf_data__fd(session->data);
4075 char buf[BUFSIZ];
4076
4077 /*
4078 * The pipe fd is already in proper place and in any case
4079 * we can't move it, and we'd screw the case where we read
4080 * 'pipe' data from regular file. The trace_report reads
4081 * data from 'fd' so we need to set it directly behind the
4082 * event, where the tracing data starts.
4083 */
4084 if (!perf_data__is_pipe(session->data)) {
4085 off_t offset = lseek(fd, 0, SEEK_CUR);
4086
4087 /* setup for reading amidst mmap */
4088 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4089 SEEK_SET);
4090 }
4091
4092 size_read = trace_report(fd, &session->tevent,
4093 session->repipe);
4094 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4095
4096 if (readn(fd, buf, padding) < 0) {
4097 pr_err("%s: reading input file", __func__);
4098 return -1;
4099 }
4100 if (session->repipe) {
4101 int retw = write(STDOUT_FILENO, buf, padding);
4102 if (retw <= 0 || retw != padding) {
4103 pr_err("%s: repiping tracing data padding", __func__);
4104 return -1;
4105 }
4106 }
4107
4108 if (size_read + padding != size) {
4109 pr_err("%s: tracing data size mismatch", __func__);
4110 return -1;
4111 }
4112
4113 perf_evlist__prepare_tracepoint_events(session->evlist,
4114 session->tevent.pevent);
4115
4116 return size_read + padding;
4117 }
4118
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4119 int perf_event__process_build_id(struct perf_session *session,
4120 union perf_event *event)
4121 {
4122 __event_process_build_id(&event->build_id,
4123 event->build_id.filename,
4124 session);
4125 return 0;
4126 }
4127