1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62 struct task_struct *p;
63 remote_function_f func;
64 void *info;
65 int ret;
66 };
67
remote_function(void * data)68 static void remote_function(void *data)
69 {
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly. This will
99 * retry due to any failures in smp_call_function_single(), such as if the
100 * task_cpu() goes offline concurrently.
101 *
102 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
103 */
104 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 struct remote_function_call data = {
108 .p = p,
109 .func = func,
110 .info = info,
111 .ret = -EAGAIN,
112 };
113 int ret;
114
115 for (;;) {
116 ret = smp_call_function_single(task_cpu(p), remote_function,
117 &data, 1);
118 if (!ret)
119 ret = data.ret;
120
121 if (ret != -EAGAIN)
122 break;
123
124 cond_resched();
125 }
126
127 return ret;
128 }
129
130 /**
131 * cpu_function_call - call a function on the cpu
132 * @func: the function to be called
133 * @info: the function call argument
134 *
135 * Calls the function @func on the remote cpu.
136 *
137 * returns: @func return value or -ENXIO when the cpu is offline
138 */
cpu_function_call(int cpu,remote_function_f func,void * info)139 static int cpu_function_call(int cpu, remote_function_f func, void *info)
140 {
141 struct remote_function_call data = {
142 .p = NULL,
143 .func = func,
144 .info = info,
145 .ret = -ENXIO, /* No such CPU */
146 };
147
148 smp_call_function_single(cpu, remote_function, &data, 1);
149
150 return data.ret;
151 }
152
153 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)154 __get_cpu_context(struct perf_event_context *ctx)
155 {
156 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
157 }
158
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)159 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161 {
162 raw_spin_lock(&cpuctx->ctx.lock);
163 if (ctx)
164 raw_spin_lock(&ctx->lock);
165 }
166
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)167 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
168 struct perf_event_context *ctx)
169 {
170 if (ctx)
171 raw_spin_unlock(&ctx->lock);
172 raw_spin_unlock(&cpuctx->ctx.lock);
173 }
174
175 #define TASK_TOMBSTONE ((void *)-1L)
176
is_kernel_event(struct perf_event * event)177 static bool is_kernel_event(struct perf_event *event)
178 {
179 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
180 }
181
182 /*
183 * On task ctx scheduling...
184 *
185 * When !ctx->nr_events a task context will not be scheduled. This means
186 * we can disable the scheduler hooks (for performance) without leaving
187 * pending task ctx state.
188 *
189 * This however results in two special cases:
190 *
191 * - removing the last event from a task ctx; this is relatively straight
192 * forward and is done in __perf_remove_from_context.
193 *
194 * - adding the first event to a task ctx; this is tricky because we cannot
195 * rely on ctx->is_active and therefore cannot use event_function_call().
196 * See perf_install_in_context().
197 *
198 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
199 */
200
201 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
202 struct perf_event_context *, void *);
203
204 struct event_function_struct {
205 struct perf_event *event;
206 event_f func;
207 void *data;
208 };
209
event_function(void * info)210 static int event_function(void *info)
211 {
212 struct event_function_struct *efs = info;
213 struct perf_event *event = efs->event;
214 struct perf_event_context *ctx = event->ctx;
215 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
216 struct perf_event_context *task_ctx = cpuctx->task_ctx;
217 int ret = 0;
218
219 lockdep_assert_irqs_disabled();
220
221 perf_ctx_lock(cpuctx, task_ctx);
222 /*
223 * Since we do the IPI call without holding ctx->lock things can have
224 * changed, double check we hit the task we set out to hit.
225 */
226 if (ctx->task) {
227 if (ctx->task != current) {
228 ret = -ESRCH;
229 goto unlock;
230 }
231
232 /*
233 * We only use event_function_call() on established contexts,
234 * and event_function() is only ever called when active (or
235 * rather, we'll have bailed in task_function_call() or the
236 * above ctx->task != current test), therefore we must have
237 * ctx->is_active here.
238 */
239 WARN_ON_ONCE(!ctx->is_active);
240 /*
241 * And since we have ctx->is_active, cpuctx->task_ctx must
242 * match.
243 */
244 WARN_ON_ONCE(task_ctx != ctx);
245 } else {
246 WARN_ON_ONCE(&cpuctx->ctx != ctx);
247 }
248
249 efs->func(event, cpuctx, ctx, efs->data);
250 unlock:
251 perf_ctx_unlock(cpuctx, task_ctx);
252
253 return ret;
254 }
255
event_function_call(struct perf_event * event,event_f func,void * data)256 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 {
258 struct perf_event_context *ctx = event->ctx;
259 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
260 struct event_function_struct efs = {
261 .event = event,
262 .func = func,
263 .data = data,
264 };
265
266 if (!event->parent) {
267 /*
268 * If this is a !child event, we must hold ctx::mutex to
269 * stabilize the event->ctx relation. See
270 * perf_event_ctx_lock().
271 */
272 lockdep_assert_held(&ctx->mutex);
273 }
274
275 if (!task) {
276 cpu_function_call(event->cpu, event_function, &efs);
277 return;
278 }
279
280 if (task == TASK_TOMBSTONE)
281 return;
282
283 again:
284 if (!task_function_call(task, event_function, &efs))
285 return;
286
287 raw_spin_lock_irq(&ctx->lock);
288 /*
289 * Reload the task pointer, it might have been changed by
290 * a concurrent perf_event_context_sched_out().
291 */
292 task = ctx->task;
293 if (task == TASK_TOMBSTONE) {
294 raw_spin_unlock_irq(&ctx->lock);
295 return;
296 }
297 if (ctx->is_active) {
298 raw_spin_unlock_irq(&ctx->lock);
299 goto again;
300 }
301 func(event, NULL, ctx, data);
302 raw_spin_unlock_irq(&ctx->lock);
303 }
304
305 /*
306 * Similar to event_function_call() + event_function(), but hard assumes IRQs
307 * are already disabled and we're on the right CPU.
308 */
event_function_local(struct perf_event * event,event_f func,void * data)309 static void event_function_local(struct perf_event *event, event_f func, void *data)
310 {
311 struct perf_event_context *ctx = event->ctx;
312 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
313 struct task_struct *task = READ_ONCE(ctx->task);
314 struct perf_event_context *task_ctx = NULL;
315
316 lockdep_assert_irqs_disabled();
317
318 if (task) {
319 if (task == TASK_TOMBSTONE)
320 return;
321
322 task_ctx = ctx;
323 }
324
325 perf_ctx_lock(cpuctx, task_ctx);
326
327 task = ctx->task;
328 if (task == TASK_TOMBSTONE)
329 goto unlock;
330
331 if (task) {
332 /*
333 * We must be either inactive or active and the right task,
334 * otherwise we're screwed, since we cannot IPI to somewhere
335 * else.
336 */
337 if (ctx->is_active) {
338 if (WARN_ON_ONCE(task != current))
339 goto unlock;
340
341 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
342 goto unlock;
343 }
344 } else {
345 WARN_ON_ONCE(&cpuctx->ctx != ctx);
346 }
347
348 func(event, cpuctx, ctx, data);
349 unlock:
350 perf_ctx_unlock(cpuctx, task_ctx);
351 }
352
353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
354 PERF_FLAG_FD_OUTPUT |\
355 PERF_FLAG_PID_CGROUP |\
356 PERF_FLAG_FD_CLOEXEC)
357
358 /*
359 * branch priv levels that need permission checks
360 */
361 #define PERF_SAMPLE_BRANCH_PERM_PLM \
362 (PERF_SAMPLE_BRANCH_KERNEL |\
363 PERF_SAMPLE_BRANCH_HV)
364
365 enum event_type_t {
366 EVENT_FLEXIBLE = 0x1,
367 EVENT_PINNED = 0x2,
368 EVENT_TIME = 0x4,
369 /* see ctx_resched() for details */
370 EVENT_CPU = 0x8,
371 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
372 };
373
374 /*
375 * perf_sched_events : >0 events exist
376 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
377 */
378
379 static void perf_sched_delayed(struct work_struct *work);
380 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
381 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
382 static DEFINE_MUTEX(perf_sched_mutex);
383 static atomic_t perf_sched_count;
384
385 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
386 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
387 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
388
389 static atomic_t nr_mmap_events __read_mostly;
390 static atomic_t nr_comm_events __read_mostly;
391 static atomic_t nr_namespaces_events __read_mostly;
392 static atomic_t nr_task_events __read_mostly;
393 static atomic_t nr_freq_events __read_mostly;
394 static atomic_t nr_switch_events __read_mostly;
395 static atomic_t nr_ksymbol_events __read_mostly;
396 static atomic_t nr_bpf_events __read_mostly;
397 static atomic_t nr_cgroup_events __read_mostly;
398 static atomic_t nr_text_poke_events __read_mostly;
399
400 static LIST_HEAD(pmus);
401 static DEFINE_MUTEX(pmus_lock);
402 static struct srcu_struct pmus_srcu;
403 static cpumask_var_t perf_online_mask;
404
405 /*
406 * perf event paranoia level:
407 * -1 - not paranoid at all
408 * 0 - disallow raw tracepoint access for unpriv
409 * 1 - disallow cpu events for unpriv
410 * 2 - disallow kernel profiling for unpriv
411 */
412 int sysctl_perf_event_paranoid __read_mostly = 2;
413
414 /* Minimum for 512 kiB + 1 user control page */
415 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
416
417 /*
418 * max perf event sample rate
419 */
420 #define DEFAULT_MAX_SAMPLE_RATE 100000
421 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
422 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
423
424 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
425
426 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
427 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
428
429 static int perf_sample_allowed_ns __read_mostly =
430 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
431
update_perf_cpu_limits(void)432 static void update_perf_cpu_limits(void)
433 {
434 u64 tmp = perf_sample_period_ns;
435
436 tmp *= sysctl_perf_cpu_time_max_percent;
437 tmp = div_u64(tmp, 100);
438 if (!tmp)
439 tmp = 1;
440
441 WRITE_ONCE(perf_sample_allowed_ns, tmp);
442 }
443
444 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
445
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)446 int perf_proc_update_handler(struct ctl_table *table, int write,
447 void *buffer, size_t *lenp, loff_t *ppos)
448 {
449 int ret;
450 int perf_cpu = sysctl_perf_cpu_time_max_percent;
451 /*
452 * If throttling is disabled don't allow the write:
453 */
454 if (write && (perf_cpu == 100 || perf_cpu == 0))
455 return -EINVAL;
456
457 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
458 if (ret || !write)
459 return ret;
460
461 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
462 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
463 update_perf_cpu_limits();
464
465 return 0;
466 }
467
468 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
469
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)470 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
471 void *buffer, size_t *lenp, loff_t *ppos)
472 {
473 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
474
475 if (ret || !write)
476 return ret;
477
478 if (sysctl_perf_cpu_time_max_percent == 100 ||
479 sysctl_perf_cpu_time_max_percent == 0) {
480 printk(KERN_WARNING
481 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
482 WRITE_ONCE(perf_sample_allowed_ns, 0);
483 } else {
484 update_perf_cpu_limits();
485 }
486
487 return 0;
488 }
489
490 /*
491 * perf samples are done in some very critical code paths (NMIs).
492 * If they take too much CPU time, the system can lock up and not
493 * get any real work done. This will drop the sample rate when
494 * we detect that events are taking too long.
495 */
496 #define NR_ACCUMULATED_SAMPLES 128
497 static DEFINE_PER_CPU(u64, running_sample_length);
498
499 static u64 __report_avg;
500 static u64 __report_allowed;
501
perf_duration_warn(struct irq_work * w)502 static void perf_duration_warn(struct irq_work *w)
503 {
504 printk_ratelimited(KERN_INFO
505 "perf: interrupt took too long (%lld > %lld), lowering "
506 "kernel.perf_event_max_sample_rate to %d\n",
507 __report_avg, __report_allowed,
508 sysctl_perf_event_sample_rate);
509 }
510
511 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
512
perf_sample_event_took(u64 sample_len_ns)513 void perf_sample_event_took(u64 sample_len_ns)
514 {
515 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
516 u64 running_len;
517 u64 avg_len;
518 u32 max;
519
520 if (max_len == 0)
521 return;
522
523 /* Decay the counter by 1 average sample. */
524 running_len = __this_cpu_read(running_sample_length);
525 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
526 running_len += sample_len_ns;
527 __this_cpu_write(running_sample_length, running_len);
528
529 /*
530 * Note: this will be biased artifically low until we have
531 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
532 * from having to maintain a count.
533 */
534 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
535 if (avg_len <= max_len)
536 return;
537
538 __report_avg = avg_len;
539 __report_allowed = max_len;
540
541 /*
542 * Compute a throttle threshold 25% below the current duration.
543 */
544 avg_len += avg_len / 4;
545 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
546 if (avg_len < max)
547 max /= (u32)avg_len;
548 else
549 max = 1;
550
551 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
552 WRITE_ONCE(max_samples_per_tick, max);
553
554 sysctl_perf_event_sample_rate = max * HZ;
555 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
556
557 if (!irq_work_queue(&perf_duration_work)) {
558 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
559 "kernel.perf_event_max_sample_rate to %d\n",
560 __report_avg, __report_allowed,
561 sysctl_perf_event_sample_rate);
562 }
563 }
564
565 static atomic64_t perf_event_id;
566
567 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
568 enum event_type_t event_type);
569
570 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
571 enum event_type_t event_type,
572 struct task_struct *task);
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
perf_event_print_debug(void)577 void __weak perf_event_print_debug(void) { }
578
perf_pmu_name(void)579 extern __weak const char *perf_pmu_name(void)
580 {
581 return "pmu";
582 }
583
perf_clock(void)584 static inline u64 perf_clock(void)
585 {
586 return local_clock();
587 }
588
perf_event_clock(struct perf_event * event)589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 return event->clock();
592 }
593
594 /*
595 * State based event timekeeping...
596 *
597 * The basic idea is to use event->state to determine which (if any) time
598 * fields to increment with the current delta. This means we only need to
599 * update timestamps when we change state or when they are explicitly requested
600 * (read).
601 *
602 * Event groups make things a little more complicated, but not terribly so. The
603 * rules for a group are that if the group leader is OFF the entire group is
604 * OFF, irrespecive of what the group member states are. This results in
605 * __perf_effective_state().
606 *
607 * A futher ramification is that when a group leader flips between OFF and
608 * !OFF, we need to update all group member times.
609 *
610 *
611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612 * need to make sure the relevant context time is updated before we try and
613 * update our timestamps.
614 */
615
616 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)617 __perf_effective_state(struct perf_event *event)
618 {
619 struct perf_event *leader = event->group_leader;
620
621 if (leader->state <= PERF_EVENT_STATE_OFF)
622 return leader->state;
623
624 return event->state;
625 }
626
627 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 enum perf_event_state state = __perf_effective_state(event);
631 u64 delta = now - event->tstamp;
632
633 *enabled = event->total_time_enabled;
634 if (state >= PERF_EVENT_STATE_INACTIVE)
635 *enabled += delta;
636
637 *running = event->total_time_running;
638 if (state >= PERF_EVENT_STATE_ACTIVE)
639 *running += delta;
640 }
641
perf_event_update_time(struct perf_event * event)642 static void perf_event_update_time(struct perf_event *event)
643 {
644 u64 now = perf_event_time(event);
645
646 __perf_update_times(event, now, &event->total_time_enabled,
647 &event->total_time_running);
648 event->tstamp = now;
649 }
650
perf_event_update_sibling_time(struct perf_event * leader)651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 struct perf_event *sibling;
654
655 for_each_sibling_event(sibling, leader)
656 perf_event_update_time(sibling);
657 }
658
659 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 if (event->state == state)
663 return;
664
665 perf_event_update_time(event);
666 /*
667 * If a group leader gets enabled/disabled all its siblings
668 * are affected too.
669 */
670 if ((event->state < 0) ^ (state < 0))
671 perf_event_update_sibling_time(event);
672
673 WRITE_ONCE(event->state, state);
674 }
675
676 /*
677 * UP store-release, load-acquire
678 */
679
680 #define __store_release(ptr, val) \
681 do { \
682 barrier(); \
683 WRITE_ONCE(*(ptr), (val)); \
684 } while (0)
685
686 #define __load_acquire(ptr) \
687 ({ \
688 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
689 barrier(); \
690 ___p; \
691 })
692
693 #ifdef CONFIG_CGROUP_PERF
694
695 static inline bool
perf_cgroup_match(struct perf_event * event)696 perf_cgroup_match(struct perf_event *event)
697 {
698 struct perf_event_context *ctx = event->ctx;
699 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700
701 /* @event doesn't care about cgroup */
702 if (!event->cgrp)
703 return true;
704
705 /* wants specific cgroup scope but @cpuctx isn't associated with any */
706 if (!cpuctx->cgrp)
707 return false;
708
709 /*
710 * Cgroup scoping is recursive. An event enabled for a cgroup is
711 * also enabled for all its descendant cgroups. If @cpuctx's
712 * cgroup is a descendant of @event's (the test covers identity
713 * case), it's a match.
714 */
715 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
716 event->cgrp->css.cgroup);
717 }
718
perf_detach_cgroup(struct perf_event * event)719 static inline void perf_detach_cgroup(struct perf_event *event)
720 {
721 css_put(&event->cgrp->css);
722 event->cgrp = NULL;
723 }
724
is_cgroup_event(struct perf_event * event)725 static inline int is_cgroup_event(struct perf_event *event)
726 {
727 return event->cgrp != NULL;
728 }
729
perf_cgroup_event_time(struct perf_event * event)730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
731 {
732 struct perf_cgroup_info *t;
733
734 t = per_cpu_ptr(event->cgrp->info, event->cpu);
735 return t->time;
736 }
737
perf_cgroup_event_time_now(struct perf_event * event,u64 now)738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
739 {
740 struct perf_cgroup_info *t;
741
742 t = per_cpu_ptr(event->cgrp->info, event->cpu);
743 if (!__load_acquire(&t->active))
744 return t->time;
745 now += READ_ONCE(t->timeoffset);
746 return now;
747 }
748
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
750 {
751 if (adv)
752 info->time += now - info->timestamp;
753 info->timestamp = now;
754 /*
755 * see update_context_time()
756 */
757 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
758 }
759
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
761 {
762 struct perf_cgroup *cgrp = cpuctx->cgrp;
763 struct cgroup_subsys_state *css;
764 struct perf_cgroup_info *info;
765
766 if (cgrp) {
767 u64 now = perf_clock();
768
769 for (css = &cgrp->css; css; css = css->parent) {
770 cgrp = container_of(css, struct perf_cgroup, css);
771 info = this_cpu_ptr(cgrp->info);
772
773 __update_cgrp_time(info, now, true);
774 if (final)
775 __store_release(&info->active, 0);
776 }
777 }
778 }
779
update_cgrp_time_from_event(struct perf_event * event)780 static inline void update_cgrp_time_from_event(struct perf_event *event)
781 {
782 struct perf_cgroup_info *info;
783 struct perf_cgroup *cgrp;
784
785 /*
786 * ensure we access cgroup data only when needed and
787 * when we know the cgroup is pinned (css_get)
788 */
789 if (!is_cgroup_event(event))
790 return;
791
792 cgrp = perf_cgroup_from_task(current, event->ctx);
793 /*
794 * Do not update time when cgroup is not active
795 */
796 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
797 info = this_cpu_ptr(event->cgrp->info);
798 __update_cgrp_time(info, perf_clock(), true);
799 }
800 }
801
802 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)803 perf_cgroup_set_timestamp(struct task_struct *task,
804 struct perf_event_context *ctx)
805 {
806 struct perf_cgroup *cgrp;
807 struct perf_cgroup_info *info;
808 struct cgroup_subsys_state *css;
809
810 /*
811 * ctx->lock held by caller
812 * ensure we do not access cgroup data
813 * unless we have the cgroup pinned (css_get)
814 */
815 if (!task || !ctx->nr_cgroups)
816 return;
817
818 cgrp = perf_cgroup_from_task(task, ctx);
819
820 for (css = &cgrp->css; css; css = css->parent) {
821 cgrp = container_of(css, struct perf_cgroup, css);
822 info = this_cpu_ptr(cgrp->info);
823 __update_cgrp_time(info, ctx->timestamp, false);
824 __store_release(&info->active, 1);
825 }
826 }
827
828 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
829
830 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
831 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
832
833 /*
834 * reschedule events based on the cgroup constraint of task.
835 *
836 * mode SWOUT : schedule out everything
837 * mode SWIN : schedule in based on cgroup for next
838 */
perf_cgroup_switch(struct task_struct * task,int mode)839 static void perf_cgroup_switch(struct task_struct *task, int mode)
840 {
841 struct perf_cpu_context *cpuctx, *tmp;
842 struct list_head *list;
843 unsigned long flags;
844
845 /*
846 * Disable interrupts and preemption to avoid this CPU's
847 * cgrp_cpuctx_entry to change under us.
848 */
849 local_irq_save(flags);
850
851 list = this_cpu_ptr(&cgrp_cpuctx_list);
852 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
853 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
854
855 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
856 perf_pmu_disable(cpuctx->ctx.pmu);
857
858 if (mode & PERF_CGROUP_SWOUT) {
859 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
860 /*
861 * must not be done before ctxswout due
862 * to event_filter_match() in event_sched_out()
863 */
864 cpuctx->cgrp = NULL;
865 }
866
867 if (mode & PERF_CGROUP_SWIN) {
868 WARN_ON_ONCE(cpuctx->cgrp);
869 /*
870 * set cgrp before ctxsw in to allow
871 * event_filter_match() to not have to pass
872 * task around
873 * we pass the cpuctx->ctx to perf_cgroup_from_task()
874 * because cgorup events are only per-cpu
875 */
876 cpuctx->cgrp = perf_cgroup_from_task(task,
877 &cpuctx->ctx);
878 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
879 }
880 perf_pmu_enable(cpuctx->ctx.pmu);
881 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
882 }
883
884 local_irq_restore(flags);
885 }
886
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)887 static inline void perf_cgroup_sched_out(struct task_struct *task,
888 struct task_struct *next)
889 {
890 struct perf_cgroup *cgrp1;
891 struct perf_cgroup *cgrp2 = NULL;
892
893 rcu_read_lock();
894 /*
895 * we come here when we know perf_cgroup_events > 0
896 * we do not need to pass the ctx here because we know
897 * we are holding the rcu lock
898 */
899 cgrp1 = perf_cgroup_from_task(task, NULL);
900 cgrp2 = perf_cgroup_from_task(next, NULL);
901
902 /*
903 * only schedule out current cgroup events if we know
904 * that we are switching to a different cgroup. Otherwise,
905 * do no touch the cgroup events.
906 */
907 if (cgrp1 != cgrp2)
908 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
909
910 rcu_read_unlock();
911 }
912
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)913 static inline void perf_cgroup_sched_in(struct task_struct *prev,
914 struct task_struct *task)
915 {
916 struct perf_cgroup *cgrp1;
917 struct perf_cgroup *cgrp2 = NULL;
918
919 rcu_read_lock();
920 /*
921 * we come here when we know perf_cgroup_events > 0
922 * we do not need to pass the ctx here because we know
923 * we are holding the rcu lock
924 */
925 cgrp1 = perf_cgroup_from_task(task, NULL);
926 cgrp2 = perf_cgroup_from_task(prev, NULL);
927
928 /*
929 * only need to schedule in cgroup events if we are changing
930 * cgroup during ctxsw. Cgroup events were not scheduled
931 * out of ctxsw out if that was not the case.
932 */
933 if (cgrp1 != cgrp2)
934 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
935
936 rcu_read_unlock();
937 }
938
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)939 static int perf_cgroup_ensure_storage(struct perf_event *event,
940 struct cgroup_subsys_state *css)
941 {
942 struct perf_cpu_context *cpuctx;
943 struct perf_event **storage;
944 int cpu, heap_size, ret = 0;
945
946 /*
947 * Allow storage to have sufficent space for an iterator for each
948 * possibly nested cgroup plus an iterator for events with no cgroup.
949 */
950 for (heap_size = 1; css; css = css->parent)
951 heap_size++;
952
953 for_each_possible_cpu(cpu) {
954 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
955 if (heap_size <= cpuctx->heap_size)
956 continue;
957
958 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
959 GFP_KERNEL, cpu_to_node(cpu));
960 if (!storage) {
961 ret = -ENOMEM;
962 break;
963 }
964
965 raw_spin_lock_irq(&cpuctx->ctx.lock);
966 if (cpuctx->heap_size < heap_size) {
967 swap(cpuctx->heap, storage);
968 if (storage == cpuctx->heap_default)
969 storage = NULL;
970 cpuctx->heap_size = heap_size;
971 }
972 raw_spin_unlock_irq(&cpuctx->ctx.lock);
973
974 kfree(storage);
975 }
976
977 return ret;
978 }
979
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)980 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
981 struct perf_event_attr *attr,
982 struct perf_event *group_leader)
983 {
984 struct perf_cgroup *cgrp;
985 struct cgroup_subsys_state *css;
986 struct fd f = fdget(fd);
987 int ret = 0;
988
989 if (!f.file)
990 return -EBADF;
991
992 css = css_tryget_online_from_dir(f.file->f_path.dentry,
993 &perf_event_cgrp_subsys);
994 if (IS_ERR(css)) {
995 ret = PTR_ERR(css);
996 goto out;
997 }
998
999 ret = perf_cgroup_ensure_storage(event, css);
1000 if (ret)
1001 goto out;
1002
1003 cgrp = container_of(css, struct perf_cgroup, css);
1004 event->cgrp = cgrp;
1005
1006 /*
1007 * all events in a group must monitor
1008 * the same cgroup because a task belongs
1009 * to only one perf cgroup at a time
1010 */
1011 if (group_leader && group_leader->cgrp != cgrp) {
1012 perf_detach_cgroup(event);
1013 ret = -EINVAL;
1014 }
1015 out:
1016 fdput(f);
1017 return ret;
1018 }
1019
1020 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1021 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1022 {
1023 struct perf_cpu_context *cpuctx;
1024
1025 if (!is_cgroup_event(event))
1026 return;
1027
1028 /*
1029 * Because cgroup events are always per-cpu events,
1030 * @ctx == &cpuctx->ctx.
1031 */
1032 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1033
1034 /*
1035 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1036 * matching the event's cgroup, we must do this for every new event,
1037 * because if the first would mismatch, the second would not try again
1038 * and we would leave cpuctx->cgrp unset.
1039 */
1040 if (ctx->is_active && !cpuctx->cgrp) {
1041 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1042
1043 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1044 cpuctx->cgrp = cgrp;
1045 }
1046
1047 if (ctx->nr_cgroups++)
1048 return;
1049
1050 list_add(&cpuctx->cgrp_cpuctx_entry,
1051 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1052 }
1053
1054 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1055 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1056 {
1057 struct perf_cpu_context *cpuctx;
1058
1059 if (!is_cgroup_event(event))
1060 return;
1061
1062 /*
1063 * Because cgroup events are always per-cpu events,
1064 * @ctx == &cpuctx->ctx.
1065 */
1066 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1067
1068 if (--ctx->nr_cgroups)
1069 return;
1070
1071 if (ctx->is_active && cpuctx->cgrp)
1072 cpuctx->cgrp = NULL;
1073
1074 list_del(&cpuctx->cgrp_cpuctx_entry);
1075 }
1076
1077 #else /* !CONFIG_CGROUP_PERF */
1078
1079 static inline bool
perf_cgroup_match(struct perf_event * event)1080 perf_cgroup_match(struct perf_event *event)
1081 {
1082 return true;
1083 }
1084
perf_detach_cgroup(struct perf_event * event)1085 static inline void perf_detach_cgroup(struct perf_event *event)
1086 {}
1087
is_cgroup_event(struct perf_event * event)1088 static inline int is_cgroup_event(struct perf_event *event)
1089 {
1090 return 0;
1091 }
1092
update_cgrp_time_from_event(struct perf_event * event)1093 static inline void update_cgrp_time_from_event(struct perf_event *event)
1094 {
1095 }
1096
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1097 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1098 bool final)
1099 {
1100 }
1101
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1102 static inline void perf_cgroup_sched_out(struct task_struct *task,
1103 struct task_struct *next)
1104 {
1105 }
1106
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1107 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1108 struct task_struct *task)
1109 {
1110 }
1111
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1112 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1113 struct perf_event_attr *attr,
1114 struct perf_event *group_leader)
1115 {
1116 return -EINVAL;
1117 }
1118
1119 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1120 perf_cgroup_set_timestamp(struct task_struct *task,
1121 struct perf_event_context *ctx)
1122 {
1123 }
1124
1125 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1126 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1127 {
1128 }
1129
perf_cgroup_event_time(struct perf_event * event)1130 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1131 {
1132 return 0;
1133 }
1134
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1135 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1136 {
1137 return 0;
1138 }
1139
1140 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1141 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1142 {
1143 }
1144
1145 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1146 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1147 {
1148 }
1149 #endif
1150
1151 /*
1152 * set default to be dependent on timer tick just
1153 * like original code
1154 */
1155 #define PERF_CPU_HRTIMER (1000 / HZ)
1156 /*
1157 * function must be called with interrupts disabled
1158 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1159 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1160 {
1161 struct perf_cpu_context *cpuctx;
1162 bool rotations;
1163
1164 lockdep_assert_irqs_disabled();
1165
1166 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1167 rotations = perf_rotate_context(cpuctx);
1168
1169 raw_spin_lock(&cpuctx->hrtimer_lock);
1170 if (rotations)
1171 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1172 else
1173 cpuctx->hrtimer_active = 0;
1174 raw_spin_unlock(&cpuctx->hrtimer_lock);
1175
1176 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1177 }
1178
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1179 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1180 {
1181 struct hrtimer *timer = &cpuctx->hrtimer;
1182 struct pmu *pmu = cpuctx->ctx.pmu;
1183 u64 interval;
1184
1185 /* no multiplexing needed for SW PMU */
1186 if (pmu->task_ctx_nr == perf_sw_context)
1187 return;
1188
1189 /*
1190 * check default is sane, if not set then force to
1191 * default interval (1/tick)
1192 */
1193 interval = pmu->hrtimer_interval_ms;
1194 if (interval < 1)
1195 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1196
1197 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1198
1199 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1200 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1201 timer->function = perf_mux_hrtimer_handler;
1202 }
1203
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1204 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1205 {
1206 struct hrtimer *timer = &cpuctx->hrtimer;
1207 struct pmu *pmu = cpuctx->ctx.pmu;
1208 unsigned long flags;
1209
1210 /* not for SW PMU */
1211 if (pmu->task_ctx_nr == perf_sw_context)
1212 return 0;
1213
1214 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1215 if (!cpuctx->hrtimer_active) {
1216 cpuctx->hrtimer_active = 1;
1217 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1218 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1219 }
1220 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1221
1222 return 0;
1223 }
1224
perf_pmu_disable(struct pmu * pmu)1225 void perf_pmu_disable(struct pmu *pmu)
1226 {
1227 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1228 if (!(*count)++)
1229 pmu->pmu_disable(pmu);
1230 }
1231
perf_pmu_enable(struct pmu * pmu)1232 void perf_pmu_enable(struct pmu *pmu)
1233 {
1234 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1235 if (!--(*count))
1236 pmu->pmu_enable(pmu);
1237 }
1238
1239 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1240
1241 /*
1242 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1243 * perf_event_task_tick() are fully serialized because they're strictly cpu
1244 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1245 * disabled, while perf_event_task_tick is called from IRQ context.
1246 */
perf_event_ctx_activate(struct perf_event_context * ctx)1247 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1248 {
1249 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1250
1251 lockdep_assert_irqs_disabled();
1252
1253 WARN_ON(!list_empty(&ctx->active_ctx_list));
1254
1255 list_add(&ctx->active_ctx_list, head);
1256 }
1257
perf_event_ctx_deactivate(struct perf_event_context * ctx)1258 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1259 {
1260 lockdep_assert_irqs_disabled();
1261
1262 WARN_ON(list_empty(&ctx->active_ctx_list));
1263
1264 list_del_init(&ctx->active_ctx_list);
1265 }
1266
get_ctx(struct perf_event_context * ctx)1267 static void get_ctx(struct perf_event_context *ctx)
1268 {
1269 refcount_inc(&ctx->refcount);
1270 }
1271
alloc_task_ctx_data(struct pmu * pmu)1272 static void *alloc_task_ctx_data(struct pmu *pmu)
1273 {
1274 if (pmu->task_ctx_cache)
1275 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1276
1277 return NULL;
1278 }
1279
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1280 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1281 {
1282 if (pmu->task_ctx_cache && task_ctx_data)
1283 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1284 }
1285
free_ctx(struct rcu_head * head)1286 static void free_ctx(struct rcu_head *head)
1287 {
1288 struct perf_event_context *ctx;
1289
1290 ctx = container_of(head, struct perf_event_context, rcu_head);
1291 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1292 kfree(ctx);
1293 }
1294
put_ctx(struct perf_event_context * ctx)1295 static void put_ctx(struct perf_event_context *ctx)
1296 {
1297 if (refcount_dec_and_test(&ctx->refcount)) {
1298 if (ctx->parent_ctx)
1299 put_ctx(ctx->parent_ctx);
1300 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1301 put_task_struct(ctx->task);
1302 call_rcu(&ctx->rcu_head, free_ctx);
1303 }
1304 }
1305
1306 /*
1307 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1308 * perf_pmu_migrate_context() we need some magic.
1309 *
1310 * Those places that change perf_event::ctx will hold both
1311 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1312 *
1313 * Lock ordering is by mutex address. There are two other sites where
1314 * perf_event_context::mutex nests and those are:
1315 *
1316 * - perf_event_exit_task_context() [ child , 0 ]
1317 * perf_event_exit_event()
1318 * put_event() [ parent, 1 ]
1319 *
1320 * - perf_event_init_context() [ parent, 0 ]
1321 * inherit_task_group()
1322 * inherit_group()
1323 * inherit_event()
1324 * perf_event_alloc()
1325 * perf_init_event()
1326 * perf_try_init_event() [ child , 1 ]
1327 *
1328 * While it appears there is an obvious deadlock here -- the parent and child
1329 * nesting levels are inverted between the two. This is in fact safe because
1330 * life-time rules separate them. That is an exiting task cannot fork, and a
1331 * spawning task cannot (yet) exit.
1332 *
1333 * But remember that these are parent<->child context relations, and
1334 * migration does not affect children, therefore these two orderings should not
1335 * interact.
1336 *
1337 * The change in perf_event::ctx does not affect children (as claimed above)
1338 * because the sys_perf_event_open() case will install a new event and break
1339 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1340 * concerned with cpuctx and that doesn't have children.
1341 *
1342 * The places that change perf_event::ctx will issue:
1343 *
1344 * perf_remove_from_context();
1345 * synchronize_rcu();
1346 * perf_install_in_context();
1347 *
1348 * to affect the change. The remove_from_context() + synchronize_rcu() should
1349 * quiesce the event, after which we can install it in the new location. This
1350 * means that only external vectors (perf_fops, prctl) can perturb the event
1351 * while in transit. Therefore all such accessors should also acquire
1352 * perf_event_context::mutex to serialize against this.
1353 *
1354 * However; because event->ctx can change while we're waiting to acquire
1355 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1356 * function.
1357 *
1358 * Lock order:
1359 * exec_update_lock
1360 * task_struct::perf_event_mutex
1361 * perf_event_context::mutex
1362 * perf_event::child_mutex;
1363 * perf_event_context::lock
1364 * perf_event::mmap_mutex
1365 * mmap_lock
1366 * perf_addr_filters_head::lock
1367 *
1368 * cpu_hotplug_lock
1369 * pmus_lock
1370 * cpuctx->mutex / perf_event_context::mutex
1371 */
1372 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1373 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1374 {
1375 struct perf_event_context *ctx;
1376
1377 again:
1378 rcu_read_lock();
1379 ctx = READ_ONCE(event->ctx);
1380 if (!refcount_inc_not_zero(&ctx->refcount)) {
1381 rcu_read_unlock();
1382 goto again;
1383 }
1384 rcu_read_unlock();
1385
1386 mutex_lock_nested(&ctx->mutex, nesting);
1387 if (event->ctx != ctx) {
1388 mutex_unlock(&ctx->mutex);
1389 put_ctx(ctx);
1390 goto again;
1391 }
1392
1393 return ctx;
1394 }
1395
1396 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1397 perf_event_ctx_lock(struct perf_event *event)
1398 {
1399 return perf_event_ctx_lock_nested(event, 0);
1400 }
1401
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1402 static void perf_event_ctx_unlock(struct perf_event *event,
1403 struct perf_event_context *ctx)
1404 {
1405 mutex_unlock(&ctx->mutex);
1406 put_ctx(ctx);
1407 }
1408
1409 /*
1410 * This must be done under the ctx->lock, such as to serialize against
1411 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1412 * calling scheduler related locks and ctx->lock nests inside those.
1413 */
1414 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1415 unclone_ctx(struct perf_event_context *ctx)
1416 {
1417 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1418
1419 lockdep_assert_held(&ctx->lock);
1420
1421 if (parent_ctx)
1422 ctx->parent_ctx = NULL;
1423 ctx->generation++;
1424
1425 return parent_ctx;
1426 }
1427
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1428 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1429 enum pid_type type)
1430 {
1431 u32 nr;
1432 /*
1433 * only top level events have the pid namespace they were created in
1434 */
1435 if (event->parent)
1436 event = event->parent;
1437
1438 nr = __task_pid_nr_ns(p, type, event->ns);
1439 /* avoid -1 if it is idle thread or runs in another ns */
1440 if (!nr && !pid_alive(p))
1441 nr = -1;
1442 return nr;
1443 }
1444
perf_event_pid(struct perf_event * event,struct task_struct * p)1445 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1446 {
1447 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1448 }
1449
perf_event_tid(struct perf_event * event,struct task_struct * p)1450 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1451 {
1452 return perf_event_pid_type(event, p, PIDTYPE_PID);
1453 }
1454
1455 /*
1456 * If we inherit events we want to return the parent event id
1457 * to userspace.
1458 */
primary_event_id(struct perf_event * event)1459 static u64 primary_event_id(struct perf_event *event)
1460 {
1461 u64 id = event->id;
1462
1463 if (event->parent)
1464 id = event->parent->id;
1465
1466 return id;
1467 }
1468
1469 /*
1470 * Get the perf_event_context for a task and lock it.
1471 *
1472 * This has to cope with the fact that until it is locked,
1473 * the context could get moved to another task.
1474 */
1475 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1476 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1477 {
1478 struct perf_event_context *ctx;
1479
1480 retry:
1481 /*
1482 * One of the few rules of preemptible RCU is that one cannot do
1483 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1484 * part of the read side critical section was irqs-enabled -- see
1485 * rcu_read_unlock_special().
1486 *
1487 * Since ctx->lock nests under rq->lock we must ensure the entire read
1488 * side critical section has interrupts disabled.
1489 */
1490 local_irq_save(*flags);
1491 rcu_read_lock();
1492 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1493 if (ctx) {
1494 /*
1495 * If this context is a clone of another, it might
1496 * get swapped for another underneath us by
1497 * perf_event_task_sched_out, though the
1498 * rcu_read_lock() protects us from any context
1499 * getting freed. Lock the context and check if it
1500 * got swapped before we could get the lock, and retry
1501 * if so. If we locked the right context, then it
1502 * can't get swapped on us any more.
1503 */
1504 raw_spin_lock(&ctx->lock);
1505 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1506 raw_spin_unlock(&ctx->lock);
1507 rcu_read_unlock();
1508 local_irq_restore(*flags);
1509 goto retry;
1510 }
1511
1512 if (ctx->task == TASK_TOMBSTONE ||
1513 !refcount_inc_not_zero(&ctx->refcount)) {
1514 raw_spin_unlock(&ctx->lock);
1515 ctx = NULL;
1516 } else {
1517 WARN_ON_ONCE(ctx->task != task);
1518 }
1519 }
1520 rcu_read_unlock();
1521 if (!ctx)
1522 local_irq_restore(*flags);
1523 return ctx;
1524 }
1525
1526 /*
1527 * Get the context for a task and increment its pin_count so it
1528 * can't get swapped to another task. This also increments its
1529 * reference count so that the context can't get freed.
1530 */
1531 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1532 perf_pin_task_context(struct task_struct *task, int ctxn)
1533 {
1534 struct perf_event_context *ctx;
1535 unsigned long flags;
1536
1537 ctx = perf_lock_task_context(task, ctxn, &flags);
1538 if (ctx) {
1539 ++ctx->pin_count;
1540 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1541 }
1542 return ctx;
1543 }
1544
perf_unpin_context(struct perf_event_context * ctx)1545 static void perf_unpin_context(struct perf_event_context *ctx)
1546 {
1547 unsigned long flags;
1548
1549 raw_spin_lock_irqsave(&ctx->lock, flags);
1550 --ctx->pin_count;
1551 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1552 }
1553
1554 /*
1555 * Update the record of the current time in a context.
1556 */
__update_context_time(struct perf_event_context * ctx,bool adv)1557 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1558 {
1559 u64 now = perf_clock();
1560
1561 if (adv)
1562 ctx->time += now - ctx->timestamp;
1563 ctx->timestamp = now;
1564
1565 /*
1566 * The above: time' = time + (now - timestamp), can be re-arranged
1567 * into: time` = now + (time - timestamp), which gives a single value
1568 * offset to compute future time without locks on.
1569 *
1570 * See perf_event_time_now(), which can be used from NMI context where
1571 * it's (obviously) not possible to acquire ctx->lock in order to read
1572 * both the above values in a consistent manner.
1573 */
1574 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1575 }
1576
update_context_time(struct perf_event_context * ctx)1577 static void update_context_time(struct perf_event_context *ctx)
1578 {
1579 __update_context_time(ctx, true);
1580 }
1581
perf_event_time(struct perf_event * event)1582 static u64 perf_event_time(struct perf_event *event)
1583 {
1584 struct perf_event_context *ctx = event->ctx;
1585
1586 if (unlikely(!ctx))
1587 return 0;
1588
1589 if (is_cgroup_event(event))
1590 return perf_cgroup_event_time(event);
1591
1592 return ctx->time;
1593 }
1594
perf_event_time_now(struct perf_event * event,u64 now)1595 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1596 {
1597 struct perf_event_context *ctx = event->ctx;
1598
1599 if (unlikely(!ctx))
1600 return 0;
1601
1602 if (is_cgroup_event(event))
1603 return perf_cgroup_event_time_now(event, now);
1604
1605 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1606 return ctx->time;
1607
1608 now += READ_ONCE(ctx->timeoffset);
1609 return now;
1610 }
1611
get_event_type(struct perf_event * event)1612 static enum event_type_t get_event_type(struct perf_event *event)
1613 {
1614 struct perf_event_context *ctx = event->ctx;
1615 enum event_type_t event_type;
1616
1617 lockdep_assert_held(&ctx->lock);
1618
1619 /*
1620 * It's 'group type', really, because if our group leader is
1621 * pinned, so are we.
1622 */
1623 if (event->group_leader != event)
1624 event = event->group_leader;
1625
1626 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1627 if (!ctx->task)
1628 event_type |= EVENT_CPU;
1629
1630 return event_type;
1631 }
1632
1633 /*
1634 * Helper function to initialize event group nodes.
1635 */
init_event_group(struct perf_event * event)1636 static void init_event_group(struct perf_event *event)
1637 {
1638 RB_CLEAR_NODE(&event->group_node);
1639 event->group_index = 0;
1640 }
1641
1642 /*
1643 * Extract pinned or flexible groups from the context
1644 * based on event attrs bits.
1645 */
1646 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1647 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1648 {
1649 if (event->attr.pinned)
1650 return &ctx->pinned_groups;
1651 else
1652 return &ctx->flexible_groups;
1653 }
1654
1655 /*
1656 * Helper function to initializes perf_event_group trees.
1657 */
perf_event_groups_init(struct perf_event_groups * groups)1658 static void perf_event_groups_init(struct perf_event_groups *groups)
1659 {
1660 groups->tree = RB_ROOT;
1661 groups->index = 0;
1662 }
1663
1664 /*
1665 * Compare function for event groups;
1666 *
1667 * Implements complex key that first sorts by CPU and then by virtual index
1668 * which provides ordering when rotating groups for the same CPU.
1669 */
1670 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1671 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1672 {
1673 if (left->cpu < right->cpu)
1674 return true;
1675 if (left->cpu > right->cpu)
1676 return false;
1677
1678 #ifdef CONFIG_CGROUP_PERF
1679 if (left->cgrp != right->cgrp) {
1680 if (!left->cgrp || !left->cgrp->css.cgroup) {
1681 /*
1682 * Left has no cgroup but right does, no cgroups come
1683 * first.
1684 */
1685 return true;
1686 }
1687 if (!right->cgrp || !right->cgrp->css.cgroup) {
1688 /*
1689 * Right has no cgroup but left does, no cgroups come
1690 * first.
1691 */
1692 return false;
1693 }
1694 /* Two dissimilar cgroups, order by id. */
1695 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1696 return true;
1697
1698 return false;
1699 }
1700 #endif
1701
1702 if (left->group_index < right->group_index)
1703 return true;
1704 if (left->group_index > right->group_index)
1705 return false;
1706
1707 return false;
1708 }
1709
1710 /*
1711 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1712 * key (see perf_event_groups_less). This places it last inside the CPU
1713 * subtree.
1714 */
1715 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1716 perf_event_groups_insert(struct perf_event_groups *groups,
1717 struct perf_event *event)
1718 {
1719 struct perf_event *node_event;
1720 struct rb_node *parent;
1721 struct rb_node **node;
1722
1723 event->group_index = ++groups->index;
1724
1725 node = &groups->tree.rb_node;
1726 parent = *node;
1727
1728 while (*node) {
1729 parent = *node;
1730 node_event = container_of(*node, struct perf_event, group_node);
1731
1732 if (perf_event_groups_less(event, node_event))
1733 node = &parent->rb_left;
1734 else
1735 node = &parent->rb_right;
1736 }
1737
1738 rb_link_node(&event->group_node, parent, node);
1739 rb_insert_color(&event->group_node, &groups->tree);
1740 }
1741
1742 /*
1743 * Helper function to insert event into the pinned or flexible groups.
1744 */
1745 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1746 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1747 {
1748 struct perf_event_groups *groups;
1749
1750 groups = get_event_groups(event, ctx);
1751 perf_event_groups_insert(groups, event);
1752 }
1753
1754 /*
1755 * Delete a group from a tree.
1756 */
1757 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1758 perf_event_groups_delete(struct perf_event_groups *groups,
1759 struct perf_event *event)
1760 {
1761 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1762 RB_EMPTY_ROOT(&groups->tree));
1763
1764 rb_erase(&event->group_node, &groups->tree);
1765 init_event_group(event);
1766 }
1767
1768 /*
1769 * Helper function to delete event from its groups.
1770 */
1771 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1772 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1773 {
1774 struct perf_event_groups *groups;
1775
1776 groups = get_event_groups(event, ctx);
1777 perf_event_groups_delete(groups, event);
1778 }
1779
1780 /*
1781 * Get the leftmost event in the cpu/cgroup subtree.
1782 */
1783 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct cgroup * cgrp)1784 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1785 struct cgroup *cgrp)
1786 {
1787 struct perf_event *node_event = NULL, *match = NULL;
1788 struct rb_node *node = groups->tree.rb_node;
1789 #ifdef CONFIG_CGROUP_PERF
1790 u64 node_cgrp_id, cgrp_id = 0;
1791
1792 if (cgrp)
1793 cgrp_id = cgrp->kn->id;
1794 #endif
1795
1796 while (node) {
1797 node_event = container_of(node, struct perf_event, group_node);
1798
1799 if (cpu < node_event->cpu) {
1800 node = node->rb_left;
1801 continue;
1802 }
1803 if (cpu > node_event->cpu) {
1804 node = node->rb_right;
1805 continue;
1806 }
1807 #ifdef CONFIG_CGROUP_PERF
1808 node_cgrp_id = 0;
1809 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1810 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1811
1812 if (cgrp_id < node_cgrp_id) {
1813 node = node->rb_left;
1814 continue;
1815 }
1816 if (cgrp_id > node_cgrp_id) {
1817 node = node->rb_right;
1818 continue;
1819 }
1820 #endif
1821 match = node_event;
1822 node = node->rb_left;
1823 }
1824
1825 return match;
1826 }
1827
1828 /*
1829 * Like rb_entry_next_safe() for the @cpu subtree.
1830 */
1831 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1832 perf_event_groups_next(struct perf_event *event)
1833 {
1834 struct perf_event *next;
1835 #ifdef CONFIG_CGROUP_PERF
1836 u64 curr_cgrp_id = 0;
1837 u64 next_cgrp_id = 0;
1838 #endif
1839
1840 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1841 if (next == NULL || next->cpu != event->cpu)
1842 return NULL;
1843
1844 #ifdef CONFIG_CGROUP_PERF
1845 if (event->cgrp && event->cgrp->css.cgroup)
1846 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1847
1848 if (next->cgrp && next->cgrp->css.cgroup)
1849 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1850
1851 if (curr_cgrp_id != next_cgrp_id)
1852 return NULL;
1853 #endif
1854 return next;
1855 }
1856
1857 /*
1858 * Iterate through the whole groups tree.
1859 */
1860 #define perf_event_groups_for_each(event, groups) \
1861 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1862 typeof(*event), group_node); event; \
1863 event = rb_entry_safe(rb_next(&event->group_node), \
1864 typeof(*event), group_node))
1865
1866 /*
1867 * Add an event from the lists for its context.
1868 * Must be called with ctx->mutex and ctx->lock held.
1869 */
1870 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1871 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1872 {
1873 lockdep_assert_held(&ctx->lock);
1874
1875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1876 event->attach_state |= PERF_ATTACH_CONTEXT;
1877
1878 event->tstamp = perf_event_time(event);
1879
1880 /*
1881 * If we're a stand alone event or group leader, we go to the context
1882 * list, group events are kept attached to the group so that
1883 * perf_group_detach can, at all times, locate all siblings.
1884 */
1885 if (event->group_leader == event) {
1886 event->group_caps = event->event_caps;
1887 add_event_to_groups(event, ctx);
1888 }
1889
1890 list_add_rcu(&event->event_entry, &ctx->event_list);
1891 ctx->nr_events++;
1892 if (event->attr.inherit_stat)
1893 ctx->nr_stat++;
1894
1895 if (event->state > PERF_EVENT_STATE_OFF)
1896 perf_cgroup_event_enable(event, ctx);
1897
1898 ctx->generation++;
1899 }
1900
1901 /*
1902 * Initialize event state based on the perf_event_attr::disabled.
1903 */
perf_event__state_init(struct perf_event * event)1904 static inline void perf_event__state_init(struct perf_event *event)
1905 {
1906 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1907 PERF_EVENT_STATE_INACTIVE;
1908 }
1909
__perf_event_read_size(u64 read_format,int nr_siblings)1910 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1911 {
1912 int entry = sizeof(u64); /* value */
1913 int size = 0;
1914 int nr = 1;
1915
1916 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1917 size += sizeof(u64);
1918
1919 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1920 size += sizeof(u64);
1921
1922 if (read_format & PERF_FORMAT_ID)
1923 entry += sizeof(u64);
1924
1925 if (read_format & PERF_FORMAT_LOST)
1926 entry += sizeof(u64);
1927
1928 if (read_format & PERF_FORMAT_GROUP) {
1929 nr += nr_siblings;
1930 size += sizeof(u64);
1931 }
1932
1933 /*
1934 * Since perf_event_validate_size() limits this to 16k and inhibits
1935 * adding more siblings, this will never overflow.
1936 */
1937 return size + nr * entry;
1938 }
1939
__perf_event_header_size(struct perf_event * event,u64 sample_type)1940 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1941 {
1942 struct perf_sample_data *data;
1943 u16 size = 0;
1944
1945 if (sample_type & PERF_SAMPLE_IP)
1946 size += sizeof(data->ip);
1947
1948 if (sample_type & PERF_SAMPLE_ADDR)
1949 size += sizeof(data->addr);
1950
1951 if (sample_type & PERF_SAMPLE_PERIOD)
1952 size += sizeof(data->period);
1953
1954 if (sample_type & PERF_SAMPLE_WEIGHT)
1955 size += sizeof(data->weight);
1956
1957 if (sample_type & PERF_SAMPLE_READ)
1958 size += event->read_size;
1959
1960 if (sample_type & PERF_SAMPLE_DATA_SRC)
1961 size += sizeof(data->data_src.val);
1962
1963 if (sample_type & PERF_SAMPLE_TRANSACTION)
1964 size += sizeof(data->txn);
1965
1966 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1967 size += sizeof(data->phys_addr);
1968
1969 if (sample_type & PERF_SAMPLE_CGROUP)
1970 size += sizeof(data->cgroup);
1971
1972 event->header_size = size;
1973 }
1974
1975 /*
1976 * Called at perf_event creation and when events are attached/detached from a
1977 * group.
1978 */
perf_event__header_size(struct perf_event * event)1979 static void perf_event__header_size(struct perf_event *event)
1980 {
1981 event->read_size =
1982 __perf_event_read_size(event->attr.read_format,
1983 event->group_leader->nr_siblings);
1984 __perf_event_header_size(event, event->attr.sample_type);
1985 }
1986
perf_event__id_header_size(struct perf_event * event)1987 static void perf_event__id_header_size(struct perf_event *event)
1988 {
1989 struct perf_sample_data *data;
1990 u64 sample_type = event->attr.sample_type;
1991 u16 size = 0;
1992
1993 if (sample_type & PERF_SAMPLE_TID)
1994 size += sizeof(data->tid_entry);
1995
1996 if (sample_type & PERF_SAMPLE_TIME)
1997 size += sizeof(data->time);
1998
1999 if (sample_type & PERF_SAMPLE_IDENTIFIER)
2000 size += sizeof(data->id);
2001
2002 if (sample_type & PERF_SAMPLE_ID)
2003 size += sizeof(data->id);
2004
2005 if (sample_type & PERF_SAMPLE_STREAM_ID)
2006 size += sizeof(data->stream_id);
2007
2008 if (sample_type & PERF_SAMPLE_CPU)
2009 size += sizeof(data->cpu_entry);
2010
2011 event->id_header_size = size;
2012 }
2013
2014 /*
2015 * Check that adding an event to the group does not result in anybody
2016 * overflowing the 64k event limit imposed by the output buffer.
2017 *
2018 * Specifically, check that the read_size for the event does not exceed 16k,
2019 * read_size being the one term that grows with groups size. Since read_size
2020 * depends on per-event read_format, also (re)check the existing events.
2021 *
2022 * This leaves 48k for the constant size fields and things like callchains,
2023 * branch stacks and register sets.
2024 */
perf_event_validate_size(struct perf_event * event)2025 static bool perf_event_validate_size(struct perf_event *event)
2026 {
2027 struct perf_event *sibling, *group_leader = event->group_leader;
2028
2029 if (__perf_event_read_size(event->attr.read_format,
2030 group_leader->nr_siblings + 1) > 16*1024)
2031 return false;
2032
2033 if (__perf_event_read_size(group_leader->attr.read_format,
2034 group_leader->nr_siblings + 1) > 16*1024)
2035 return false;
2036
2037 for_each_sibling_event(sibling, group_leader) {
2038 if (__perf_event_read_size(sibling->attr.read_format,
2039 group_leader->nr_siblings + 1) > 16*1024)
2040 return false;
2041 }
2042
2043 return true;
2044 }
2045
perf_group_attach(struct perf_event * event)2046 static void perf_group_attach(struct perf_event *event)
2047 {
2048 struct perf_event *group_leader = event->group_leader, *pos;
2049
2050 lockdep_assert_held(&event->ctx->lock);
2051
2052 /*
2053 * We can have double attach due to group movement in perf_event_open.
2054 */
2055 if (event->attach_state & PERF_ATTACH_GROUP)
2056 return;
2057
2058 event->attach_state |= PERF_ATTACH_GROUP;
2059
2060 if (group_leader == event)
2061 return;
2062
2063 WARN_ON_ONCE(group_leader->ctx != event->ctx);
2064
2065 group_leader->group_caps &= event->event_caps;
2066
2067 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2068 group_leader->nr_siblings++;
2069 group_leader->group_generation++;
2070
2071 perf_event__header_size(group_leader);
2072
2073 for_each_sibling_event(pos, group_leader)
2074 perf_event__header_size(pos);
2075 }
2076
2077 /*
2078 * Remove an event from the lists for its context.
2079 * Must be called with ctx->mutex and ctx->lock held.
2080 */
2081 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2082 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2083 {
2084 WARN_ON_ONCE(event->ctx != ctx);
2085 lockdep_assert_held(&ctx->lock);
2086
2087 /*
2088 * We can have double detach due to exit/hot-unplug + close.
2089 */
2090 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2091 return;
2092
2093 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2094
2095 ctx->nr_events--;
2096 if (event->attr.inherit_stat)
2097 ctx->nr_stat--;
2098
2099 list_del_rcu(&event->event_entry);
2100
2101 if (event->group_leader == event)
2102 del_event_from_groups(event, ctx);
2103
2104 /*
2105 * If event was in error state, then keep it
2106 * that way, otherwise bogus counts will be
2107 * returned on read(). The only way to get out
2108 * of error state is by explicit re-enabling
2109 * of the event
2110 */
2111 if (event->state > PERF_EVENT_STATE_OFF) {
2112 perf_cgroup_event_disable(event, ctx);
2113 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2114 }
2115
2116 ctx->generation++;
2117 }
2118
2119 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2120 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2121 {
2122 if (!has_aux(aux_event))
2123 return 0;
2124
2125 if (!event->pmu->aux_output_match)
2126 return 0;
2127
2128 return event->pmu->aux_output_match(aux_event);
2129 }
2130
2131 static void put_event(struct perf_event *event);
2132 static void event_sched_out(struct perf_event *event,
2133 struct perf_cpu_context *cpuctx,
2134 struct perf_event_context *ctx);
2135
perf_put_aux_event(struct perf_event * event)2136 static void perf_put_aux_event(struct perf_event *event)
2137 {
2138 struct perf_event_context *ctx = event->ctx;
2139 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2140 struct perf_event *iter;
2141
2142 /*
2143 * If event uses aux_event tear down the link
2144 */
2145 if (event->aux_event) {
2146 iter = event->aux_event;
2147 event->aux_event = NULL;
2148 put_event(iter);
2149 return;
2150 }
2151
2152 /*
2153 * If the event is an aux_event, tear down all links to
2154 * it from other events.
2155 */
2156 for_each_sibling_event(iter, event->group_leader) {
2157 if (iter->aux_event != event)
2158 continue;
2159
2160 iter->aux_event = NULL;
2161 put_event(event);
2162
2163 /*
2164 * If it's ACTIVE, schedule it out and put it into ERROR
2165 * state so that we don't try to schedule it again. Note
2166 * that perf_event_enable() will clear the ERROR status.
2167 */
2168 event_sched_out(iter, cpuctx, ctx);
2169 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2170 }
2171 }
2172
perf_need_aux_event(struct perf_event * event)2173 static bool perf_need_aux_event(struct perf_event *event)
2174 {
2175 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2176 }
2177
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2178 static int perf_get_aux_event(struct perf_event *event,
2179 struct perf_event *group_leader)
2180 {
2181 /*
2182 * Our group leader must be an aux event if we want to be
2183 * an aux_output. This way, the aux event will precede its
2184 * aux_output events in the group, and therefore will always
2185 * schedule first.
2186 */
2187 if (!group_leader)
2188 return 0;
2189
2190 /*
2191 * aux_output and aux_sample_size are mutually exclusive.
2192 */
2193 if (event->attr.aux_output && event->attr.aux_sample_size)
2194 return 0;
2195
2196 if (event->attr.aux_output &&
2197 !perf_aux_output_match(event, group_leader))
2198 return 0;
2199
2200 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2201 return 0;
2202
2203 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2204 return 0;
2205
2206 /*
2207 * Link aux_outputs to their aux event; this is undone in
2208 * perf_group_detach() by perf_put_aux_event(). When the
2209 * group in torn down, the aux_output events loose their
2210 * link to the aux_event and can't schedule any more.
2211 */
2212 event->aux_event = group_leader;
2213
2214 return 1;
2215 }
2216
get_event_list(struct perf_event * event)2217 static inline struct list_head *get_event_list(struct perf_event *event)
2218 {
2219 struct perf_event_context *ctx = event->ctx;
2220 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2221 }
2222
2223 /*
2224 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2225 * cannot exist on their own, schedule them out and move them into the ERROR
2226 * state. Also see _perf_event_enable(), it will not be able to recover
2227 * this ERROR state.
2228 */
perf_remove_sibling_event(struct perf_event * event)2229 static inline void perf_remove_sibling_event(struct perf_event *event)
2230 {
2231 struct perf_event_context *ctx = event->ctx;
2232 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2233
2234 event_sched_out(event, cpuctx, ctx);
2235 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2236 }
2237
perf_group_detach(struct perf_event * event)2238 static void perf_group_detach(struct perf_event *event)
2239 {
2240 struct perf_event *leader = event->group_leader;
2241 struct perf_event *sibling, *tmp;
2242 struct perf_event_context *ctx = event->ctx;
2243
2244 lockdep_assert_held(&ctx->lock);
2245
2246 /*
2247 * We can have double detach due to exit/hot-unplug + close.
2248 */
2249 if (!(event->attach_state & PERF_ATTACH_GROUP))
2250 return;
2251
2252 event->attach_state &= ~PERF_ATTACH_GROUP;
2253
2254 perf_put_aux_event(event);
2255
2256 /*
2257 * If this is a sibling, remove it from its group.
2258 */
2259 if (leader != event) {
2260 list_del_init(&event->sibling_list);
2261 event->group_leader->nr_siblings--;
2262 event->group_leader->group_generation++;
2263 goto out;
2264 }
2265
2266 /*
2267 * If this was a group event with sibling events then
2268 * upgrade the siblings to singleton events by adding them
2269 * to whatever list we are on.
2270 */
2271 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2272
2273 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2274 perf_remove_sibling_event(sibling);
2275
2276 sibling->group_leader = sibling;
2277 list_del_init(&sibling->sibling_list);
2278
2279 /* Inherit group flags from the previous leader */
2280 sibling->group_caps = event->group_caps;
2281
2282 if (!RB_EMPTY_NODE(&event->group_node)) {
2283 add_event_to_groups(sibling, event->ctx);
2284
2285 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2286 list_add_tail(&sibling->active_list, get_event_list(sibling));
2287 }
2288
2289 WARN_ON_ONCE(sibling->ctx != event->ctx);
2290 }
2291
2292 out:
2293 for_each_sibling_event(tmp, leader)
2294 perf_event__header_size(tmp);
2295
2296 perf_event__header_size(leader);
2297 }
2298
is_orphaned_event(struct perf_event * event)2299 static bool is_orphaned_event(struct perf_event *event)
2300 {
2301 return event->state == PERF_EVENT_STATE_DEAD;
2302 }
2303
__pmu_filter_match(struct perf_event * event)2304 static inline int __pmu_filter_match(struct perf_event *event)
2305 {
2306 struct pmu *pmu = event->pmu;
2307 return pmu->filter_match ? pmu->filter_match(event) : 1;
2308 }
2309
2310 /*
2311 * Check whether we should attempt to schedule an event group based on
2312 * PMU-specific filtering. An event group can consist of HW and SW events,
2313 * potentially with a SW leader, so we must check all the filters, to
2314 * determine whether a group is schedulable:
2315 */
pmu_filter_match(struct perf_event * event)2316 static inline int pmu_filter_match(struct perf_event *event)
2317 {
2318 struct perf_event *sibling;
2319
2320 if (!__pmu_filter_match(event))
2321 return 0;
2322
2323 for_each_sibling_event(sibling, event) {
2324 if (!__pmu_filter_match(sibling))
2325 return 0;
2326 }
2327
2328 return 1;
2329 }
2330
2331 static inline int
event_filter_match(struct perf_event * event)2332 event_filter_match(struct perf_event *event)
2333 {
2334 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2335 perf_cgroup_match(event) && pmu_filter_match(event);
2336 }
2337
2338 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2339 event_sched_out(struct perf_event *event,
2340 struct perf_cpu_context *cpuctx,
2341 struct perf_event_context *ctx)
2342 {
2343 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2344
2345 WARN_ON_ONCE(event->ctx != ctx);
2346 lockdep_assert_held(&ctx->lock);
2347
2348 if (event->state != PERF_EVENT_STATE_ACTIVE)
2349 return;
2350
2351 /*
2352 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2353 * we can schedule events _OUT_ individually through things like
2354 * __perf_remove_from_context().
2355 */
2356 list_del_init(&event->active_list);
2357
2358 perf_pmu_disable(event->pmu);
2359
2360 event->pmu->del(event, 0);
2361 event->oncpu = -1;
2362
2363 if (READ_ONCE(event->pending_disable) >= 0) {
2364 WRITE_ONCE(event->pending_disable, -1);
2365 perf_cgroup_event_disable(event, ctx);
2366 state = PERF_EVENT_STATE_OFF;
2367 }
2368 perf_event_set_state(event, state);
2369
2370 if (!is_software_event(event))
2371 cpuctx->active_oncpu--;
2372 if (!--ctx->nr_active)
2373 perf_event_ctx_deactivate(ctx);
2374 if (event->attr.freq && event->attr.sample_freq)
2375 ctx->nr_freq--;
2376 if (event->attr.exclusive || !cpuctx->active_oncpu)
2377 cpuctx->exclusive = 0;
2378
2379 perf_pmu_enable(event->pmu);
2380 }
2381
2382 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2383 group_sched_out(struct perf_event *group_event,
2384 struct perf_cpu_context *cpuctx,
2385 struct perf_event_context *ctx)
2386 {
2387 struct perf_event *event;
2388
2389 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2390 return;
2391
2392 perf_pmu_disable(ctx->pmu);
2393
2394 event_sched_out(group_event, cpuctx, ctx);
2395
2396 /*
2397 * Schedule out siblings (if any):
2398 */
2399 for_each_sibling_event(event, group_event)
2400 event_sched_out(event, cpuctx, ctx);
2401
2402 perf_pmu_enable(ctx->pmu);
2403 }
2404
2405 #define DETACH_GROUP 0x01UL
2406
2407 /*
2408 * Cross CPU call to remove a performance event
2409 *
2410 * We disable the event on the hardware level first. After that we
2411 * remove it from the context list.
2412 */
2413 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2414 __perf_remove_from_context(struct perf_event *event,
2415 struct perf_cpu_context *cpuctx,
2416 struct perf_event_context *ctx,
2417 void *info)
2418 {
2419 unsigned long flags = (unsigned long)info;
2420
2421 if (ctx->is_active & EVENT_TIME) {
2422 update_context_time(ctx);
2423 update_cgrp_time_from_cpuctx(cpuctx, false);
2424 }
2425
2426 event_sched_out(event, cpuctx, ctx);
2427 if (flags & DETACH_GROUP)
2428 perf_group_detach(event);
2429 list_del_event(event, ctx);
2430
2431 if (!ctx->nr_events && ctx->is_active) {
2432 if (ctx == &cpuctx->ctx)
2433 update_cgrp_time_from_cpuctx(cpuctx, true);
2434
2435 ctx->is_active = 0;
2436 ctx->rotate_necessary = 0;
2437 if (ctx->task) {
2438 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2439 cpuctx->task_ctx = NULL;
2440 }
2441 }
2442 }
2443
2444 /*
2445 * Remove the event from a task's (or a CPU's) list of events.
2446 *
2447 * If event->ctx is a cloned context, callers must make sure that
2448 * every task struct that event->ctx->task could possibly point to
2449 * remains valid. This is OK when called from perf_release since
2450 * that only calls us on the top-level context, which can't be a clone.
2451 * When called from perf_event_exit_task, it's OK because the
2452 * context has been detached from its task.
2453 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2454 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2455 {
2456 struct perf_event_context *ctx = event->ctx;
2457
2458 lockdep_assert_held(&ctx->mutex);
2459
2460 event_function_call(event, __perf_remove_from_context, (void *)flags);
2461
2462 /*
2463 * The above event_function_call() can NO-OP when it hits
2464 * TASK_TOMBSTONE. In that case we must already have been detached
2465 * from the context (by perf_event_exit_event()) but the grouping
2466 * might still be in-tact.
2467 */
2468 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2469 if ((flags & DETACH_GROUP) &&
2470 (event->attach_state & PERF_ATTACH_GROUP)) {
2471 /*
2472 * Since in that case we cannot possibly be scheduled, simply
2473 * detach now.
2474 */
2475 raw_spin_lock_irq(&ctx->lock);
2476 perf_group_detach(event);
2477 raw_spin_unlock_irq(&ctx->lock);
2478 }
2479 }
2480
2481 /*
2482 * Cross CPU call to disable a performance event
2483 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2484 static void __perf_event_disable(struct perf_event *event,
2485 struct perf_cpu_context *cpuctx,
2486 struct perf_event_context *ctx,
2487 void *info)
2488 {
2489 if (event->state < PERF_EVENT_STATE_INACTIVE)
2490 return;
2491
2492 if (ctx->is_active & EVENT_TIME) {
2493 update_context_time(ctx);
2494 update_cgrp_time_from_event(event);
2495 }
2496
2497 if (event == event->group_leader)
2498 group_sched_out(event, cpuctx, ctx);
2499 else
2500 event_sched_out(event, cpuctx, ctx);
2501
2502 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2503 perf_cgroup_event_disable(event, ctx);
2504 }
2505
2506 /*
2507 * Disable an event.
2508 *
2509 * If event->ctx is a cloned context, callers must make sure that
2510 * every task struct that event->ctx->task could possibly point to
2511 * remains valid. This condition is satisfied when called through
2512 * perf_event_for_each_child or perf_event_for_each because they
2513 * hold the top-level event's child_mutex, so any descendant that
2514 * goes to exit will block in perf_event_exit_event().
2515 *
2516 * When called from perf_pending_event it's OK because event->ctx
2517 * is the current context on this CPU and preemption is disabled,
2518 * hence we can't get into perf_event_task_sched_out for this context.
2519 */
_perf_event_disable(struct perf_event * event)2520 static void _perf_event_disable(struct perf_event *event)
2521 {
2522 struct perf_event_context *ctx = event->ctx;
2523
2524 raw_spin_lock_irq(&ctx->lock);
2525 if (event->state <= PERF_EVENT_STATE_OFF) {
2526 raw_spin_unlock_irq(&ctx->lock);
2527 return;
2528 }
2529 raw_spin_unlock_irq(&ctx->lock);
2530
2531 event_function_call(event, __perf_event_disable, NULL);
2532 }
2533
perf_event_disable_local(struct perf_event * event)2534 void perf_event_disable_local(struct perf_event *event)
2535 {
2536 event_function_local(event, __perf_event_disable, NULL);
2537 }
2538
2539 /*
2540 * Strictly speaking kernel users cannot create groups and therefore this
2541 * interface does not need the perf_event_ctx_lock() magic.
2542 */
perf_event_disable(struct perf_event * event)2543 void perf_event_disable(struct perf_event *event)
2544 {
2545 struct perf_event_context *ctx;
2546
2547 ctx = perf_event_ctx_lock(event);
2548 _perf_event_disable(event);
2549 perf_event_ctx_unlock(event, ctx);
2550 }
2551 EXPORT_SYMBOL_GPL(perf_event_disable);
2552
perf_event_disable_inatomic(struct perf_event * event)2553 void perf_event_disable_inatomic(struct perf_event *event)
2554 {
2555 WRITE_ONCE(event->pending_disable, smp_processor_id());
2556 /* can fail, see perf_pending_event_disable() */
2557 irq_work_queue(&event->pending);
2558 }
2559
2560 #define MAX_INTERRUPTS (~0ULL)
2561
2562 static void perf_log_throttle(struct perf_event *event, int enable);
2563 static void perf_log_itrace_start(struct perf_event *event);
2564
2565 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2566 event_sched_in(struct perf_event *event,
2567 struct perf_cpu_context *cpuctx,
2568 struct perf_event_context *ctx)
2569 {
2570 int ret = 0;
2571
2572 WARN_ON_ONCE(event->ctx != ctx);
2573
2574 lockdep_assert_held(&ctx->lock);
2575
2576 if (event->state <= PERF_EVENT_STATE_OFF)
2577 return 0;
2578
2579 WRITE_ONCE(event->oncpu, smp_processor_id());
2580 /*
2581 * Order event::oncpu write to happen before the ACTIVE state is
2582 * visible. This allows perf_event_{stop,read}() to observe the correct
2583 * ->oncpu if it sees ACTIVE.
2584 */
2585 smp_wmb();
2586 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2587
2588 /*
2589 * Unthrottle events, since we scheduled we might have missed several
2590 * ticks already, also for a heavily scheduling task there is little
2591 * guarantee it'll get a tick in a timely manner.
2592 */
2593 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2594 perf_log_throttle(event, 1);
2595 event->hw.interrupts = 0;
2596 }
2597
2598 perf_pmu_disable(event->pmu);
2599
2600 perf_log_itrace_start(event);
2601
2602 if (event->pmu->add(event, PERF_EF_START)) {
2603 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2604 event->oncpu = -1;
2605 ret = -EAGAIN;
2606 goto out;
2607 }
2608
2609 if (!is_software_event(event))
2610 cpuctx->active_oncpu++;
2611 if (!ctx->nr_active++)
2612 perf_event_ctx_activate(ctx);
2613 if (event->attr.freq && event->attr.sample_freq)
2614 ctx->nr_freq++;
2615
2616 if (event->attr.exclusive)
2617 cpuctx->exclusive = 1;
2618
2619 out:
2620 perf_pmu_enable(event->pmu);
2621
2622 return ret;
2623 }
2624
2625 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2626 group_sched_in(struct perf_event *group_event,
2627 struct perf_cpu_context *cpuctx,
2628 struct perf_event_context *ctx)
2629 {
2630 struct perf_event *event, *partial_group = NULL;
2631 struct pmu *pmu = ctx->pmu;
2632
2633 if (group_event->state == PERF_EVENT_STATE_OFF)
2634 return 0;
2635
2636 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2637
2638 if (event_sched_in(group_event, cpuctx, ctx))
2639 goto error;
2640
2641 /*
2642 * Schedule in siblings as one group (if any):
2643 */
2644 for_each_sibling_event(event, group_event) {
2645 if (event_sched_in(event, cpuctx, ctx)) {
2646 partial_group = event;
2647 goto group_error;
2648 }
2649 }
2650
2651 if (!pmu->commit_txn(pmu))
2652 return 0;
2653
2654 group_error:
2655 /*
2656 * Groups can be scheduled in as one unit only, so undo any
2657 * partial group before returning:
2658 * The events up to the failed event are scheduled out normally.
2659 */
2660 for_each_sibling_event(event, group_event) {
2661 if (event == partial_group)
2662 break;
2663
2664 event_sched_out(event, cpuctx, ctx);
2665 }
2666 event_sched_out(group_event, cpuctx, ctx);
2667
2668 error:
2669 pmu->cancel_txn(pmu);
2670 return -EAGAIN;
2671 }
2672
2673 /*
2674 * Work out whether we can put this event group on the CPU now.
2675 */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2676 static int group_can_go_on(struct perf_event *event,
2677 struct perf_cpu_context *cpuctx,
2678 int can_add_hw)
2679 {
2680 /*
2681 * Groups consisting entirely of software events can always go on.
2682 */
2683 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2684 return 1;
2685 /*
2686 * If an exclusive group is already on, no other hardware
2687 * events can go on.
2688 */
2689 if (cpuctx->exclusive)
2690 return 0;
2691 /*
2692 * If this group is exclusive and there are already
2693 * events on the CPU, it can't go on.
2694 */
2695 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2696 return 0;
2697 /*
2698 * Otherwise, try to add it if all previous groups were able
2699 * to go on.
2700 */
2701 return can_add_hw;
2702 }
2703
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2704 static void add_event_to_ctx(struct perf_event *event,
2705 struct perf_event_context *ctx)
2706 {
2707 list_add_event(event, ctx);
2708 perf_group_attach(event);
2709 }
2710
2711 static void ctx_sched_out(struct perf_event_context *ctx,
2712 struct perf_cpu_context *cpuctx,
2713 enum event_type_t event_type);
2714 static void
2715 ctx_sched_in(struct perf_event_context *ctx,
2716 struct perf_cpu_context *cpuctx,
2717 enum event_type_t event_type,
2718 struct task_struct *task);
2719
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2720 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2721 struct perf_event_context *ctx,
2722 enum event_type_t event_type)
2723 {
2724 if (!cpuctx->task_ctx)
2725 return;
2726
2727 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2728 return;
2729
2730 ctx_sched_out(ctx, cpuctx, event_type);
2731 }
2732
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2733 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2734 struct perf_event_context *ctx,
2735 struct task_struct *task)
2736 {
2737 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2738 if (ctx)
2739 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2740 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2741 if (ctx)
2742 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2743 }
2744
2745 /*
2746 * We want to maintain the following priority of scheduling:
2747 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2748 * - task pinned (EVENT_PINNED)
2749 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2750 * - task flexible (EVENT_FLEXIBLE).
2751 *
2752 * In order to avoid unscheduling and scheduling back in everything every
2753 * time an event is added, only do it for the groups of equal priority and
2754 * below.
2755 *
2756 * This can be called after a batch operation on task events, in which case
2757 * event_type is a bit mask of the types of events involved. For CPU events,
2758 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2759 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2760 static void ctx_resched(struct perf_cpu_context *cpuctx,
2761 struct perf_event_context *task_ctx,
2762 enum event_type_t event_type)
2763 {
2764 enum event_type_t ctx_event_type;
2765 bool cpu_event = !!(event_type & EVENT_CPU);
2766
2767 /*
2768 * If pinned groups are involved, flexible groups also need to be
2769 * scheduled out.
2770 */
2771 if (event_type & EVENT_PINNED)
2772 event_type |= EVENT_FLEXIBLE;
2773
2774 ctx_event_type = event_type & EVENT_ALL;
2775
2776 perf_pmu_disable(cpuctx->ctx.pmu);
2777 if (task_ctx)
2778 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2779
2780 /*
2781 * Decide which cpu ctx groups to schedule out based on the types
2782 * of events that caused rescheduling:
2783 * - EVENT_CPU: schedule out corresponding groups;
2784 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2785 * - otherwise, do nothing more.
2786 */
2787 if (cpu_event)
2788 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2789 else if (ctx_event_type & EVENT_PINNED)
2790 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2791
2792 perf_event_sched_in(cpuctx, task_ctx, current);
2793 perf_pmu_enable(cpuctx->ctx.pmu);
2794 }
2795
perf_pmu_resched(struct pmu * pmu)2796 void perf_pmu_resched(struct pmu *pmu)
2797 {
2798 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2799 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2800
2801 perf_ctx_lock(cpuctx, task_ctx);
2802 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2803 perf_ctx_unlock(cpuctx, task_ctx);
2804 }
2805
2806 /*
2807 * Cross CPU call to install and enable a performance event
2808 *
2809 * Very similar to remote_function() + event_function() but cannot assume that
2810 * things like ctx->is_active and cpuctx->task_ctx are set.
2811 */
__perf_install_in_context(void * info)2812 static int __perf_install_in_context(void *info)
2813 {
2814 struct perf_event *event = info;
2815 struct perf_event_context *ctx = event->ctx;
2816 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2817 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2818 bool reprogram = true;
2819 int ret = 0;
2820
2821 raw_spin_lock(&cpuctx->ctx.lock);
2822 if (ctx->task) {
2823 raw_spin_lock(&ctx->lock);
2824 task_ctx = ctx;
2825
2826 reprogram = (ctx->task == current);
2827
2828 /*
2829 * If the task is running, it must be running on this CPU,
2830 * otherwise we cannot reprogram things.
2831 *
2832 * If its not running, we don't care, ctx->lock will
2833 * serialize against it becoming runnable.
2834 */
2835 if (task_curr(ctx->task) && !reprogram) {
2836 ret = -ESRCH;
2837 goto unlock;
2838 }
2839
2840 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2841 } else if (task_ctx) {
2842 raw_spin_lock(&task_ctx->lock);
2843 }
2844
2845 #ifdef CONFIG_CGROUP_PERF
2846 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2847 /*
2848 * If the current cgroup doesn't match the event's
2849 * cgroup, we should not try to schedule it.
2850 */
2851 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2852 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2853 event->cgrp->css.cgroup);
2854 }
2855 #endif
2856
2857 if (reprogram) {
2858 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2859 add_event_to_ctx(event, ctx);
2860 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2861 } else {
2862 add_event_to_ctx(event, ctx);
2863 }
2864
2865 unlock:
2866 perf_ctx_unlock(cpuctx, task_ctx);
2867
2868 return ret;
2869 }
2870
2871 static bool exclusive_event_installable(struct perf_event *event,
2872 struct perf_event_context *ctx);
2873
2874 /*
2875 * Attach a performance event to a context.
2876 *
2877 * Very similar to event_function_call, see comment there.
2878 */
2879 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2880 perf_install_in_context(struct perf_event_context *ctx,
2881 struct perf_event *event,
2882 int cpu)
2883 {
2884 struct task_struct *task = READ_ONCE(ctx->task);
2885
2886 lockdep_assert_held(&ctx->mutex);
2887
2888 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2889
2890 if (event->cpu != -1)
2891 event->cpu = cpu;
2892
2893 /*
2894 * Ensures that if we can observe event->ctx, both the event and ctx
2895 * will be 'complete'. See perf_iterate_sb_cpu().
2896 */
2897 smp_store_release(&event->ctx, ctx);
2898
2899 /*
2900 * perf_event_attr::disabled events will not run and can be initialized
2901 * without IPI. Except when this is the first event for the context, in
2902 * that case we need the magic of the IPI to set ctx->is_active.
2903 *
2904 * The IOC_ENABLE that is sure to follow the creation of a disabled
2905 * event will issue the IPI and reprogram the hardware.
2906 */
2907 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2908 raw_spin_lock_irq(&ctx->lock);
2909 if (ctx->task == TASK_TOMBSTONE) {
2910 raw_spin_unlock_irq(&ctx->lock);
2911 return;
2912 }
2913 add_event_to_ctx(event, ctx);
2914 raw_spin_unlock_irq(&ctx->lock);
2915 return;
2916 }
2917
2918 if (!task) {
2919 cpu_function_call(cpu, __perf_install_in_context, event);
2920 return;
2921 }
2922
2923 /*
2924 * Should not happen, we validate the ctx is still alive before calling.
2925 */
2926 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2927 return;
2928
2929 /*
2930 * Installing events is tricky because we cannot rely on ctx->is_active
2931 * to be set in case this is the nr_events 0 -> 1 transition.
2932 *
2933 * Instead we use task_curr(), which tells us if the task is running.
2934 * However, since we use task_curr() outside of rq::lock, we can race
2935 * against the actual state. This means the result can be wrong.
2936 *
2937 * If we get a false positive, we retry, this is harmless.
2938 *
2939 * If we get a false negative, things are complicated. If we are after
2940 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2941 * value must be correct. If we're before, it doesn't matter since
2942 * perf_event_context_sched_in() will program the counter.
2943 *
2944 * However, this hinges on the remote context switch having observed
2945 * our task->perf_event_ctxp[] store, such that it will in fact take
2946 * ctx::lock in perf_event_context_sched_in().
2947 *
2948 * We do this by task_function_call(), if the IPI fails to hit the task
2949 * we know any future context switch of task must see the
2950 * perf_event_ctpx[] store.
2951 */
2952
2953 /*
2954 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2955 * task_cpu() load, such that if the IPI then does not find the task
2956 * running, a future context switch of that task must observe the
2957 * store.
2958 */
2959 smp_mb();
2960 again:
2961 if (!task_function_call(task, __perf_install_in_context, event))
2962 return;
2963
2964 raw_spin_lock_irq(&ctx->lock);
2965 task = ctx->task;
2966 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2967 /*
2968 * Cannot happen because we already checked above (which also
2969 * cannot happen), and we hold ctx->mutex, which serializes us
2970 * against perf_event_exit_task_context().
2971 */
2972 raw_spin_unlock_irq(&ctx->lock);
2973 return;
2974 }
2975 /*
2976 * If the task is not running, ctx->lock will avoid it becoming so,
2977 * thus we can safely install the event.
2978 */
2979 if (task_curr(task)) {
2980 raw_spin_unlock_irq(&ctx->lock);
2981 goto again;
2982 }
2983 add_event_to_ctx(event, ctx);
2984 raw_spin_unlock_irq(&ctx->lock);
2985 }
2986
2987 /*
2988 * Cross CPU call to enable a performance event
2989 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2990 static void __perf_event_enable(struct perf_event *event,
2991 struct perf_cpu_context *cpuctx,
2992 struct perf_event_context *ctx,
2993 void *info)
2994 {
2995 struct perf_event *leader = event->group_leader;
2996 struct perf_event_context *task_ctx;
2997
2998 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2999 event->state <= PERF_EVENT_STATE_ERROR)
3000 return;
3001
3002 if (ctx->is_active)
3003 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3004
3005 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3006 perf_cgroup_event_enable(event, ctx);
3007
3008 if (!ctx->is_active)
3009 return;
3010
3011 if (!event_filter_match(event)) {
3012 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3013 return;
3014 }
3015
3016 /*
3017 * If the event is in a group and isn't the group leader,
3018 * then don't put it on unless the group is on.
3019 */
3020 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3021 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3022 return;
3023 }
3024
3025 task_ctx = cpuctx->task_ctx;
3026 if (ctx->task)
3027 WARN_ON_ONCE(task_ctx != ctx);
3028
3029 ctx_resched(cpuctx, task_ctx, get_event_type(event));
3030 }
3031
3032 /*
3033 * Enable an event.
3034 *
3035 * If event->ctx is a cloned context, callers must make sure that
3036 * every task struct that event->ctx->task could possibly point to
3037 * remains valid. This condition is satisfied when called through
3038 * perf_event_for_each_child or perf_event_for_each as described
3039 * for perf_event_disable.
3040 */
_perf_event_enable(struct perf_event * event)3041 static void _perf_event_enable(struct perf_event *event)
3042 {
3043 struct perf_event_context *ctx = event->ctx;
3044
3045 raw_spin_lock_irq(&ctx->lock);
3046 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3047 event->state < PERF_EVENT_STATE_ERROR) {
3048 out:
3049 raw_spin_unlock_irq(&ctx->lock);
3050 return;
3051 }
3052
3053 /*
3054 * If the event is in error state, clear that first.
3055 *
3056 * That way, if we see the event in error state below, we know that it
3057 * has gone back into error state, as distinct from the task having
3058 * been scheduled away before the cross-call arrived.
3059 */
3060 if (event->state == PERF_EVENT_STATE_ERROR) {
3061 /*
3062 * Detached SIBLING events cannot leave ERROR state.
3063 */
3064 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3065 event->group_leader == event)
3066 goto out;
3067
3068 event->state = PERF_EVENT_STATE_OFF;
3069 }
3070 raw_spin_unlock_irq(&ctx->lock);
3071
3072 event_function_call(event, __perf_event_enable, NULL);
3073 }
3074
3075 /*
3076 * See perf_event_disable();
3077 */
perf_event_enable(struct perf_event * event)3078 void perf_event_enable(struct perf_event *event)
3079 {
3080 struct perf_event_context *ctx;
3081
3082 ctx = perf_event_ctx_lock(event);
3083 _perf_event_enable(event);
3084 perf_event_ctx_unlock(event, ctx);
3085 }
3086 EXPORT_SYMBOL_GPL(perf_event_enable);
3087
3088 struct stop_event_data {
3089 struct perf_event *event;
3090 unsigned int restart;
3091 };
3092
__perf_event_stop(void * info)3093 static int __perf_event_stop(void *info)
3094 {
3095 struct stop_event_data *sd = info;
3096 struct perf_event *event = sd->event;
3097
3098 /* if it's already INACTIVE, do nothing */
3099 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3100 return 0;
3101
3102 /* matches smp_wmb() in event_sched_in() */
3103 smp_rmb();
3104
3105 /*
3106 * There is a window with interrupts enabled before we get here,
3107 * so we need to check again lest we try to stop another CPU's event.
3108 */
3109 if (READ_ONCE(event->oncpu) != smp_processor_id())
3110 return -EAGAIN;
3111
3112 event->pmu->stop(event, PERF_EF_UPDATE);
3113
3114 /*
3115 * May race with the actual stop (through perf_pmu_output_stop()),
3116 * but it is only used for events with AUX ring buffer, and such
3117 * events will refuse to restart because of rb::aux_mmap_count==0,
3118 * see comments in perf_aux_output_begin().
3119 *
3120 * Since this is happening on an event-local CPU, no trace is lost
3121 * while restarting.
3122 */
3123 if (sd->restart)
3124 event->pmu->start(event, 0);
3125
3126 return 0;
3127 }
3128
perf_event_stop(struct perf_event * event,int restart)3129 static int perf_event_stop(struct perf_event *event, int restart)
3130 {
3131 struct stop_event_data sd = {
3132 .event = event,
3133 .restart = restart,
3134 };
3135 int ret = 0;
3136
3137 do {
3138 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3139 return 0;
3140
3141 /* matches smp_wmb() in event_sched_in() */
3142 smp_rmb();
3143
3144 /*
3145 * We only want to restart ACTIVE events, so if the event goes
3146 * inactive here (event->oncpu==-1), there's nothing more to do;
3147 * fall through with ret==-ENXIO.
3148 */
3149 ret = cpu_function_call(READ_ONCE(event->oncpu),
3150 __perf_event_stop, &sd);
3151 } while (ret == -EAGAIN);
3152
3153 return ret;
3154 }
3155
3156 /*
3157 * In order to contain the amount of racy and tricky in the address filter
3158 * configuration management, it is a two part process:
3159 *
3160 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3161 * we update the addresses of corresponding vmas in
3162 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3163 * (p2) when an event is scheduled in (pmu::add), it calls
3164 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3165 * if the generation has changed since the previous call.
3166 *
3167 * If (p1) happens while the event is active, we restart it to force (p2).
3168 *
3169 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3170 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3171 * ioctl;
3172 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3173 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3174 * for reading;
3175 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3176 * of exec.
3177 */
perf_event_addr_filters_sync(struct perf_event * event)3178 void perf_event_addr_filters_sync(struct perf_event *event)
3179 {
3180 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3181
3182 if (!has_addr_filter(event))
3183 return;
3184
3185 raw_spin_lock(&ifh->lock);
3186 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3187 event->pmu->addr_filters_sync(event);
3188 event->hw.addr_filters_gen = event->addr_filters_gen;
3189 }
3190 raw_spin_unlock(&ifh->lock);
3191 }
3192 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3193
_perf_event_refresh(struct perf_event * event,int refresh)3194 static int _perf_event_refresh(struct perf_event *event, int refresh)
3195 {
3196 /*
3197 * not supported on inherited events
3198 */
3199 if (event->attr.inherit || !is_sampling_event(event))
3200 return -EINVAL;
3201
3202 atomic_add(refresh, &event->event_limit);
3203 _perf_event_enable(event);
3204
3205 return 0;
3206 }
3207
3208 /*
3209 * See perf_event_disable()
3210 */
perf_event_refresh(struct perf_event * event,int refresh)3211 int perf_event_refresh(struct perf_event *event, int refresh)
3212 {
3213 struct perf_event_context *ctx;
3214 int ret;
3215
3216 ctx = perf_event_ctx_lock(event);
3217 ret = _perf_event_refresh(event, refresh);
3218 perf_event_ctx_unlock(event, ctx);
3219
3220 return ret;
3221 }
3222 EXPORT_SYMBOL_GPL(perf_event_refresh);
3223
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3224 static int perf_event_modify_breakpoint(struct perf_event *bp,
3225 struct perf_event_attr *attr)
3226 {
3227 int err;
3228
3229 _perf_event_disable(bp);
3230
3231 err = modify_user_hw_breakpoint_check(bp, attr, true);
3232
3233 if (!bp->attr.disabled)
3234 _perf_event_enable(bp);
3235
3236 return err;
3237 }
3238
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3239 static int perf_event_modify_attr(struct perf_event *event,
3240 struct perf_event_attr *attr)
3241 {
3242 if (event->attr.type != attr->type)
3243 return -EINVAL;
3244
3245 switch (event->attr.type) {
3246 case PERF_TYPE_BREAKPOINT:
3247 return perf_event_modify_breakpoint(event, attr);
3248 default:
3249 /* Place holder for future additions. */
3250 return -EOPNOTSUPP;
3251 }
3252 }
3253
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3254 static void ctx_sched_out(struct perf_event_context *ctx,
3255 struct perf_cpu_context *cpuctx,
3256 enum event_type_t event_type)
3257 {
3258 struct perf_event *event, *tmp;
3259 int is_active = ctx->is_active;
3260
3261 lockdep_assert_held(&ctx->lock);
3262
3263 if (likely(!ctx->nr_events)) {
3264 /*
3265 * See __perf_remove_from_context().
3266 */
3267 WARN_ON_ONCE(ctx->is_active);
3268 if (ctx->task)
3269 WARN_ON_ONCE(cpuctx->task_ctx);
3270 return;
3271 }
3272
3273 /*
3274 * Always update time if it was set; not only when it changes.
3275 * Otherwise we can 'forget' to update time for any but the last
3276 * context we sched out. For example:
3277 *
3278 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3279 * ctx_sched_out(.event_type = EVENT_PINNED)
3280 *
3281 * would only update time for the pinned events.
3282 */
3283 if (is_active & EVENT_TIME) {
3284 /* update (and stop) ctx time */
3285 update_context_time(ctx);
3286 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3287 /*
3288 * CPU-release for the below ->is_active store,
3289 * see __load_acquire() in perf_event_time_now()
3290 */
3291 barrier();
3292 }
3293
3294 ctx->is_active &= ~event_type;
3295 if (!(ctx->is_active & EVENT_ALL))
3296 ctx->is_active = 0;
3297
3298 if (ctx->task) {
3299 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3300 if (!ctx->is_active)
3301 cpuctx->task_ctx = NULL;
3302 }
3303
3304 is_active ^= ctx->is_active; /* changed bits */
3305
3306 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3307 return;
3308
3309 perf_pmu_disable(ctx->pmu);
3310 if (is_active & EVENT_PINNED) {
3311 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3312 group_sched_out(event, cpuctx, ctx);
3313 }
3314
3315 if (is_active & EVENT_FLEXIBLE) {
3316 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3317 group_sched_out(event, cpuctx, ctx);
3318
3319 /*
3320 * Since we cleared EVENT_FLEXIBLE, also clear
3321 * rotate_necessary, is will be reset by
3322 * ctx_flexible_sched_in() when needed.
3323 */
3324 ctx->rotate_necessary = 0;
3325 }
3326 perf_pmu_enable(ctx->pmu);
3327 }
3328
3329 /*
3330 * Test whether two contexts are equivalent, i.e. whether they have both been
3331 * cloned from the same version of the same context.
3332 *
3333 * Equivalence is measured using a generation number in the context that is
3334 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3335 * and list_del_event().
3336 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3337 static int context_equiv(struct perf_event_context *ctx1,
3338 struct perf_event_context *ctx2)
3339 {
3340 lockdep_assert_held(&ctx1->lock);
3341 lockdep_assert_held(&ctx2->lock);
3342
3343 /* Pinning disables the swap optimization */
3344 if (ctx1->pin_count || ctx2->pin_count)
3345 return 0;
3346
3347 /* If ctx1 is the parent of ctx2 */
3348 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3349 return 1;
3350
3351 /* If ctx2 is the parent of ctx1 */
3352 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3353 return 1;
3354
3355 /*
3356 * If ctx1 and ctx2 have the same parent; we flatten the parent
3357 * hierarchy, see perf_event_init_context().
3358 */
3359 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3360 ctx1->parent_gen == ctx2->parent_gen)
3361 return 1;
3362
3363 /* Unmatched */
3364 return 0;
3365 }
3366
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3367 static void __perf_event_sync_stat(struct perf_event *event,
3368 struct perf_event *next_event)
3369 {
3370 u64 value;
3371
3372 if (!event->attr.inherit_stat)
3373 return;
3374
3375 /*
3376 * Update the event value, we cannot use perf_event_read()
3377 * because we're in the middle of a context switch and have IRQs
3378 * disabled, which upsets smp_call_function_single(), however
3379 * we know the event must be on the current CPU, therefore we
3380 * don't need to use it.
3381 */
3382 if (event->state == PERF_EVENT_STATE_ACTIVE)
3383 event->pmu->read(event);
3384
3385 perf_event_update_time(event);
3386
3387 /*
3388 * In order to keep per-task stats reliable we need to flip the event
3389 * values when we flip the contexts.
3390 */
3391 value = local64_read(&next_event->count);
3392 value = local64_xchg(&event->count, value);
3393 local64_set(&next_event->count, value);
3394
3395 swap(event->total_time_enabled, next_event->total_time_enabled);
3396 swap(event->total_time_running, next_event->total_time_running);
3397
3398 /*
3399 * Since we swizzled the values, update the user visible data too.
3400 */
3401 perf_event_update_userpage(event);
3402 perf_event_update_userpage(next_event);
3403 }
3404
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3405 static void perf_event_sync_stat(struct perf_event_context *ctx,
3406 struct perf_event_context *next_ctx)
3407 {
3408 struct perf_event *event, *next_event;
3409
3410 if (!ctx->nr_stat)
3411 return;
3412
3413 update_context_time(ctx);
3414
3415 event = list_first_entry(&ctx->event_list,
3416 struct perf_event, event_entry);
3417
3418 next_event = list_first_entry(&next_ctx->event_list,
3419 struct perf_event, event_entry);
3420
3421 while (&event->event_entry != &ctx->event_list &&
3422 &next_event->event_entry != &next_ctx->event_list) {
3423
3424 __perf_event_sync_stat(event, next_event);
3425
3426 event = list_next_entry(event, event_entry);
3427 next_event = list_next_entry(next_event, event_entry);
3428 }
3429 }
3430
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3431 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3432 struct task_struct *next)
3433 {
3434 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3435 struct perf_event_context *next_ctx;
3436 struct perf_event_context *parent, *next_parent;
3437 struct perf_cpu_context *cpuctx;
3438 int do_switch = 1;
3439 struct pmu *pmu;
3440
3441 if (likely(!ctx))
3442 return;
3443
3444 pmu = ctx->pmu;
3445 cpuctx = __get_cpu_context(ctx);
3446 if (!cpuctx->task_ctx)
3447 return;
3448
3449 rcu_read_lock();
3450 next_ctx = next->perf_event_ctxp[ctxn];
3451 if (!next_ctx)
3452 goto unlock;
3453
3454 parent = rcu_dereference(ctx->parent_ctx);
3455 next_parent = rcu_dereference(next_ctx->parent_ctx);
3456
3457 /* If neither context have a parent context; they cannot be clones. */
3458 if (!parent && !next_parent)
3459 goto unlock;
3460
3461 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3462 /*
3463 * Looks like the two contexts are clones, so we might be
3464 * able to optimize the context switch. We lock both
3465 * contexts and check that they are clones under the
3466 * lock (including re-checking that neither has been
3467 * uncloned in the meantime). It doesn't matter which
3468 * order we take the locks because no other cpu could
3469 * be trying to lock both of these tasks.
3470 */
3471 raw_spin_lock(&ctx->lock);
3472 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3473 if (context_equiv(ctx, next_ctx)) {
3474
3475 WRITE_ONCE(ctx->task, next);
3476 WRITE_ONCE(next_ctx->task, task);
3477
3478 perf_pmu_disable(pmu);
3479
3480 if (cpuctx->sched_cb_usage && pmu->sched_task)
3481 pmu->sched_task(ctx, false);
3482
3483 /*
3484 * PMU specific parts of task perf context can require
3485 * additional synchronization. As an example of such
3486 * synchronization see implementation details of Intel
3487 * LBR call stack data profiling;
3488 */
3489 if (pmu->swap_task_ctx)
3490 pmu->swap_task_ctx(ctx, next_ctx);
3491 else
3492 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3493
3494 perf_pmu_enable(pmu);
3495
3496 /*
3497 * RCU_INIT_POINTER here is safe because we've not
3498 * modified the ctx and the above modification of
3499 * ctx->task and ctx->task_ctx_data are immaterial
3500 * since those values are always verified under
3501 * ctx->lock which we're now holding.
3502 */
3503 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3504 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3505
3506 do_switch = 0;
3507
3508 perf_event_sync_stat(ctx, next_ctx);
3509 }
3510 raw_spin_unlock(&next_ctx->lock);
3511 raw_spin_unlock(&ctx->lock);
3512 }
3513 unlock:
3514 rcu_read_unlock();
3515
3516 if (do_switch) {
3517 raw_spin_lock(&ctx->lock);
3518 perf_pmu_disable(pmu);
3519
3520 if (cpuctx->sched_cb_usage && pmu->sched_task)
3521 pmu->sched_task(ctx, false);
3522 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3523
3524 perf_pmu_enable(pmu);
3525 raw_spin_unlock(&ctx->lock);
3526 }
3527 }
3528
3529 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3530
perf_sched_cb_dec(struct pmu * pmu)3531 void perf_sched_cb_dec(struct pmu *pmu)
3532 {
3533 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3534
3535 this_cpu_dec(perf_sched_cb_usages);
3536
3537 if (!--cpuctx->sched_cb_usage)
3538 list_del(&cpuctx->sched_cb_entry);
3539 }
3540
3541
perf_sched_cb_inc(struct pmu * pmu)3542 void perf_sched_cb_inc(struct pmu *pmu)
3543 {
3544 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3545
3546 if (!cpuctx->sched_cb_usage++)
3547 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3548
3549 this_cpu_inc(perf_sched_cb_usages);
3550 }
3551
3552 /*
3553 * This function provides the context switch callback to the lower code
3554 * layer. It is invoked ONLY when the context switch callback is enabled.
3555 *
3556 * This callback is relevant even to per-cpu events; for example multi event
3557 * PEBS requires this to provide PID/TID information. This requires we flush
3558 * all queued PEBS records before we context switch to a new task.
3559 */
__perf_pmu_sched_task(struct perf_cpu_context * cpuctx,bool sched_in)3560 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3561 {
3562 struct pmu *pmu;
3563
3564 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3565
3566 if (WARN_ON_ONCE(!pmu->sched_task))
3567 return;
3568
3569 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3570 perf_pmu_disable(pmu);
3571
3572 pmu->sched_task(cpuctx->task_ctx, sched_in);
3573
3574 perf_pmu_enable(pmu);
3575 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3576 }
3577
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3578 static void perf_pmu_sched_task(struct task_struct *prev,
3579 struct task_struct *next,
3580 bool sched_in)
3581 {
3582 struct perf_cpu_context *cpuctx;
3583
3584 if (prev == next)
3585 return;
3586
3587 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3588 /* will be handled in perf_event_context_sched_in/out */
3589 if (cpuctx->task_ctx)
3590 continue;
3591
3592 __perf_pmu_sched_task(cpuctx, sched_in);
3593 }
3594 }
3595
3596 static void perf_event_switch(struct task_struct *task,
3597 struct task_struct *next_prev, bool sched_in);
3598
3599 #define for_each_task_context_nr(ctxn) \
3600 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3601
3602 /*
3603 * Called from scheduler to remove the events of the current task,
3604 * with interrupts disabled.
3605 *
3606 * We stop each event and update the event value in event->count.
3607 *
3608 * This does not protect us against NMI, but disable()
3609 * sets the disabled bit in the control field of event _before_
3610 * accessing the event control register. If a NMI hits, then it will
3611 * not restart the event.
3612 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3613 void __perf_event_task_sched_out(struct task_struct *task,
3614 struct task_struct *next)
3615 {
3616 int ctxn;
3617
3618 if (__this_cpu_read(perf_sched_cb_usages))
3619 perf_pmu_sched_task(task, next, false);
3620
3621 if (atomic_read(&nr_switch_events))
3622 perf_event_switch(task, next, false);
3623
3624 for_each_task_context_nr(ctxn)
3625 perf_event_context_sched_out(task, ctxn, next);
3626
3627 /*
3628 * if cgroup events exist on this CPU, then we need
3629 * to check if we have to switch out PMU state.
3630 * cgroup event are system-wide mode only
3631 */
3632 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3633 perf_cgroup_sched_out(task, next);
3634 }
3635
3636 /*
3637 * Called with IRQs disabled
3638 */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3639 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3640 enum event_type_t event_type)
3641 {
3642 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3643 }
3644
perf_less_group_idx(const void * l,const void * r)3645 static bool perf_less_group_idx(const void *l, const void *r)
3646 {
3647 const struct perf_event *le = *(const struct perf_event **)l;
3648 const struct perf_event *re = *(const struct perf_event **)r;
3649
3650 return le->group_index < re->group_index;
3651 }
3652
swap_ptr(void * l,void * r)3653 static void swap_ptr(void *l, void *r)
3654 {
3655 void **lp = l, **rp = r;
3656
3657 swap(*lp, *rp);
3658 }
3659
3660 static const struct min_heap_callbacks perf_min_heap = {
3661 .elem_size = sizeof(struct perf_event *),
3662 .less = perf_less_group_idx,
3663 .swp = swap_ptr,
3664 };
3665
__heap_add(struct min_heap * heap,struct perf_event * event)3666 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3667 {
3668 struct perf_event **itrs = heap->data;
3669
3670 if (event) {
3671 itrs[heap->nr] = event;
3672 heap->nr++;
3673 }
3674 }
3675
visit_groups_merge(struct perf_cpu_context * cpuctx,struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3676 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3677 struct perf_event_groups *groups, int cpu,
3678 int (*func)(struct perf_event *, void *),
3679 void *data)
3680 {
3681 #ifdef CONFIG_CGROUP_PERF
3682 struct cgroup_subsys_state *css = NULL;
3683 #endif
3684 /* Space for per CPU and/or any CPU event iterators. */
3685 struct perf_event *itrs[2];
3686 struct min_heap event_heap;
3687 struct perf_event **evt;
3688 int ret;
3689
3690 if (cpuctx) {
3691 event_heap = (struct min_heap){
3692 .data = cpuctx->heap,
3693 .nr = 0,
3694 .size = cpuctx->heap_size,
3695 };
3696
3697 lockdep_assert_held(&cpuctx->ctx.lock);
3698
3699 #ifdef CONFIG_CGROUP_PERF
3700 if (cpuctx->cgrp)
3701 css = &cpuctx->cgrp->css;
3702 #endif
3703 } else {
3704 event_heap = (struct min_heap){
3705 .data = itrs,
3706 .nr = 0,
3707 .size = ARRAY_SIZE(itrs),
3708 };
3709 /* Events not within a CPU context may be on any CPU. */
3710 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3711 }
3712 evt = event_heap.data;
3713
3714 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3715
3716 #ifdef CONFIG_CGROUP_PERF
3717 for (; css; css = css->parent)
3718 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3719 #endif
3720
3721 min_heapify_all(&event_heap, &perf_min_heap);
3722
3723 while (event_heap.nr) {
3724 ret = func(*evt, data);
3725 if (ret)
3726 return ret;
3727
3728 *evt = perf_event_groups_next(*evt);
3729 if (*evt)
3730 min_heapify(&event_heap, 0, &perf_min_heap);
3731 else
3732 min_heap_pop(&event_heap, &perf_min_heap);
3733 }
3734
3735 return 0;
3736 }
3737
3738 /*
3739 * Because the userpage is strictly per-event (there is no concept of context,
3740 * so there cannot be a context indirection), every userpage must be updated
3741 * when context time starts :-(
3742 *
3743 * IOW, we must not miss EVENT_TIME edges.
3744 */
event_update_userpage(struct perf_event * event)3745 static inline bool event_update_userpage(struct perf_event *event)
3746 {
3747 if (likely(!atomic_read(&event->mmap_count)))
3748 return false;
3749
3750 perf_event_update_time(event);
3751 perf_event_update_userpage(event);
3752
3753 return true;
3754 }
3755
group_update_userpage(struct perf_event * group_event)3756 static inline void group_update_userpage(struct perf_event *group_event)
3757 {
3758 struct perf_event *event;
3759
3760 if (!event_update_userpage(group_event))
3761 return;
3762
3763 for_each_sibling_event(event, group_event)
3764 event_update_userpage(event);
3765 }
3766
merge_sched_in(struct perf_event * event,void * data)3767 static int merge_sched_in(struct perf_event *event, void *data)
3768 {
3769 struct perf_event_context *ctx = event->ctx;
3770 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3771 int *can_add_hw = data;
3772
3773 if (event->state <= PERF_EVENT_STATE_OFF)
3774 return 0;
3775
3776 if (!event_filter_match(event))
3777 return 0;
3778
3779 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3780 if (!group_sched_in(event, cpuctx, ctx))
3781 list_add_tail(&event->active_list, get_event_list(event));
3782 }
3783
3784 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3785 *can_add_hw = 0;
3786 if (event->attr.pinned) {
3787 perf_cgroup_event_disable(event, ctx);
3788 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3789 } else {
3790 ctx->rotate_necessary = 1;
3791 perf_mux_hrtimer_restart(cpuctx);
3792 group_update_userpage(event);
3793 }
3794 }
3795
3796 return 0;
3797 }
3798
3799 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3800 ctx_pinned_sched_in(struct perf_event_context *ctx,
3801 struct perf_cpu_context *cpuctx)
3802 {
3803 int can_add_hw = 1;
3804
3805 if (ctx != &cpuctx->ctx)
3806 cpuctx = NULL;
3807
3808 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3809 smp_processor_id(),
3810 merge_sched_in, &can_add_hw);
3811 }
3812
3813 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3814 ctx_flexible_sched_in(struct perf_event_context *ctx,
3815 struct perf_cpu_context *cpuctx)
3816 {
3817 int can_add_hw = 1;
3818
3819 if (ctx != &cpuctx->ctx)
3820 cpuctx = NULL;
3821
3822 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3823 smp_processor_id(),
3824 merge_sched_in, &can_add_hw);
3825 }
3826
3827 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3828 ctx_sched_in(struct perf_event_context *ctx,
3829 struct perf_cpu_context *cpuctx,
3830 enum event_type_t event_type,
3831 struct task_struct *task)
3832 {
3833 int is_active = ctx->is_active;
3834
3835 lockdep_assert_held(&ctx->lock);
3836
3837 if (likely(!ctx->nr_events))
3838 return;
3839
3840 if (is_active ^ EVENT_TIME) {
3841 /* start ctx time */
3842 __update_context_time(ctx, false);
3843 perf_cgroup_set_timestamp(task, ctx);
3844 /*
3845 * CPU-release for the below ->is_active store,
3846 * see __load_acquire() in perf_event_time_now()
3847 */
3848 barrier();
3849 }
3850
3851 ctx->is_active |= (event_type | EVENT_TIME);
3852 if (ctx->task) {
3853 if (!is_active)
3854 cpuctx->task_ctx = ctx;
3855 else
3856 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3857 }
3858
3859 is_active ^= ctx->is_active; /* changed bits */
3860
3861 /*
3862 * First go through the list and put on any pinned groups
3863 * in order to give them the best chance of going on.
3864 */
3865 if (is_active & EVENT_PINNED)
3866 ctx_pinned_sched_in(ctx, cpuctx);
3867
3868 /* Then walk through the lower prio flexible groups */
3869 if (is_active & EVENT_FLEXIBLE)
3870 ctx_flexible_sched_in(ctx, cpuctx);
3871 }
3872
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3873 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3874 enum event_type_t event_type,
3875 struct task_struct *task)
3876 {
3877 struct perf_event_context *ctx = &cpuctx->ctx;
3878
3879 ctx_sched_in(ctx, cpuctx, event_type, task);
3880 }
3881
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3882 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3883 struct task_struct *task)
3884 {
3885 struct perf_cpu_context *cpuctx;
3886 struct pmu *pmu = ctx->pmu;
3887
3888 cpuctx = __get_cpu_context(ctx);
3889 if (cpuctx->task_ctx == ctx) {
3890 if (cpuctx->sched_cb_usage)
3891 __perf_pmu_sched_task(cpuctx, true);
3892 return;
3893 }
3894
3895 perf_ctx_lock(cpuctx, ctx);
3896 /*
3897 * We must check ctx->nr_events while holding ctx->lock, such
3898 * that we serialize against perf_install_in_context().
3899 */
3900 if (!ctx->nr_events)
3901 goto unlock;
3902
3903 perf_pmu_disable(pmu);
3904 /*
3905 * We want to keep the following priority order:
3906 * cpu pinned (that don't need to move), task pinned,
3907 * cpu flexible, task flexible.
3908 *
3909 * However, if task's ctx is not carrying any pinned
3910 * events, no need to flip the cpuctx's events around.
3911 */
3912 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3913 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3914 perf_event_sched_in(cpuctx, ctx, task);
3915
3916 if (cpuctx->sched_cb_usage && pmu->sched_task)
3917 pmu->sched_task(cpuctx->task_ctx, true);
3918
3919 perf_pmu_enable(pmu);
3920
3921 unlock:
3922 perf_ctx_unlock(cpuctx, ctx);
3923 }
3924
3925 /*
3926 * Called from scheduler to add the events of the current task
3927 * with interrupts disabled.
3928 *
3929 * We restore the event value and then enable it.
3930 *
3931 * This does not protect us against NMI, but enable()
3932 * sets the enabled bit in the control field of event _before_
3933 * accessing the event control register. If a NMI hits, then it will
3934 * keep the event running.
3935 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3936 void __perf_event_task_sched_in(struct task_struct *prev,
3937 struct task_struct *task)
3938 {
3939 struct perf_event_context *ctx;
3940 int ctxn;
3941
3942 /*
3943 * If cgroup events exist on this CPU, then we need to check if we have
3944 * to switch in PMU state; cgroup event are system-wide mode only.
3945 *
3946 * Since cgroup events are CPU events, we must schedule these in before
3947 * we schedule in the task events.
3948 */
3949 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3950 perf_cgroup_sched_in(prev, task);
3951
3952 for_each_task_context_nr(ctxn) {
3953 ctx = task->perf_event_ctxp[ctxn];
3954 if (likely(!ctx))
3955 continue;
3956
3957 perf_event_context_sched_in(ctx, task);
3958 }
3959
3960 if (atomic_read(&nr_switch_events))
3961 perf_event_switch(task, prev, true);
3962
3963 if (__this_cpu_read(perf_sched_cb_usages))
3964 perf_pmu_sched_task(prev, task, true);
3965 }
3966
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3967 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3968 {
3969 u64 frequency = event->attr.sample_freq;
3970 u64 sec = NSEC_PER_SEC;
3971 u64 divisor, dividend;
3972
3973 int count_fls, nsec_fls, frequency_fls, sec_fls;
3974
3975 count_fls = fls64(count);
3976 nsec_fls = fls64(nsec);
3977 frequency_fls = fls64(frequency);
3978 sec_fls = 30;
3979
3980 /*
3981 * We got @count in @nsec, with a target of sample_freq HZ
3982 * the target period becomes:
3983 *
3984 * @count * 10^9
3985 * period = -------------------
3986 * @nsec * sample_freq
3987 *
3988 */
3989
3990 /*
3991 * Reduce accuracy by one bit such that @a and @b converge
3992 * to a similar magnitude.
3993 */
3994 #define REDUCE_FLS(a, b) \
3995 do { \
3996 if (a##_fls > b##_fls) { \
3997 a >>= 1; \
3998 a##_fls--; \
3999 } else { \
4000 b >>= 1; \
4001 b##_fls--; \
4002 } \
4003 } while (0)
4004
4005 /*
4006 * Reduce accuracy until either term fits in a u64, then proceed with
4007 * the other, so that finally we can do a u64/u64 division.
4008 */
4009 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4010 REDUCE_FLS(nsec, frequency);
4011 REDUCE_FLS(sec, count);
4012 }
4013
4014 if (count_fls + sec_fls > 64) {
4015 divisor = nsec * frequency;
4016
4017 while (count_fls + sec_fls > 64) {
4018 REDUCE_FLS(count, sec);
4019 divisor >>= 1;
4020 }
4021
4022 dividend = count * sec;
4023 } else {
4024 dividend = count * sec;
4025
4026 while (nsec_fls + frequency_fls > 64) {
4027 REDUCE_FLS(nsec, frequency);
4028 dividend >>= 1;
4029 }
4030
4031 divisor = nsec * frequency;
4032 }
4033
4034 if (!divisor)
4035 return dividend;
4036
4037 return div64_u64(dividend, divisor);
4038 }
4039
4040 static DEFINE_PER_CPU(int, perf_throttled_count);
4041 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4042
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4043 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4044 {
4045 struct hw_perf_event *hwc = &event->hw;
4046 s64 period, sample_period;
4047 s64 delta;
4048
4049 period = perf_calculate_period(event, nsec, count);
4050
4051 delta = (s64)(period - hwc->sample_period);
4052 delta = (delta + 7) / 8; /* low pass filter */
4053
4054 sample_period = hwc->sample_period + delta;
4055
4056 if (!sample_period)
4057 sample_period = 1;
4058
4059 hwc->sample_period = sample_period;
4060
4061 if (local64_read(&hwc->period_left) > 8*sample_period) {
4062 if (disable)
4063 event->pmu->stop(event, PERF_EF_UPDATE);
4064
4065 local64_set(&hwc->period_left, 0);
4066
4067 if (disable)
4068 event->pmu->start(event, PERF_EF_RELOAD);
4069 }
4070 }
4071
4072 /*
4073 * combine freq adjustment with unthrottling to avoid two passes over the
4074 * events. At the same time, make sure, having freq events does not change
4075 * the rate of unthrottling as that would introduce bias.
4076 */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)4077 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4078 int needs_unthr)
4079 {
4080 struct perf_event *event;
4081 struct hw_perf_event *hwc;
4082 u64 now, period = TICK_NSEC;
4083 s64 delta;
4084
4085 /*
4086 * only need to iterate over all events iff:
4087 * - context have events in frequency mode (needs freq adjust)
4088 * - there are events to unthrottle on this cpu
4089 */
4090 if (!(ctx->nr_freq || needs_unthr))
4091 return;
4092
4093 raw_spin_lock(&ctx->lock);
4094 perf_pmu_disable(ctx->pmu);
4095
4096 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4097 if (event->state != PERF_EVENT_STATE_ACTIVE)
4098 continue;
4099
4100 if (!event_filter_match(event))
4101 continue;
4102
4103 perf_pmu_disable(event->pmu);
4104
4105 hwc = &event->hw;
4106
4107 if (hwc->interrupts == MAX_INTERRUPTS) {
4108 hwc->interrupts = 0;
4109 perf_log_throttle(event, 1);
4110 event->pmu->start(event, 0);
4111 }
4112
4113 if (!event->attr.freq || !event->attr.sample_freq)
4114 goto next;
4115
4116 /*
4117 * stop the event and update event->count
4118 */
4119 event->pmu->stop(event, PERF_EF_UPDATE);
4120
4121 now = local64_read(&event->count);
4122 delta = now - hwc->freq_count_stamp;
4123 hwc->freq_count_stamp = now;
4124
4125 /*
4126 * restart the event
4127 * reload only if value has changed
4128 * we have stopped the event so tell that
4129 * to perf_adjust_period() to avoid stopping it
4130 * twice.
4131 */
4132 if (delta > 0)
4133 perf_adjust_period(event, period, delta, false);
4134
4135 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4136 next:
4137 perf_pmu_enable(event->pmu);
4138 }
4139
4140 perf_pmu_enable(ctx->pmu);
4141 raw_spin_unlock(&ctx->lock);
4142 }
4143
4144 /*
4145 * Move @event to the tail of the @ctx's elegible events.
4146 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4147 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4148 {
4149 /*
4150 * Rotate the first entry last of non-pinned groups. Rotation might be
4151 * disabled by the inheritance code.
4152 */
4153 if (ctx->rotate_disable)
4154 return;
4155
4156 perf_event_groups_delete(&ctx->flexible_groups, event);
4157 perf_event_groups_insert(&ctx->flexible_groups, event);
4158 }
4159
4160 /* pick an event from the flexible_groups to rotate */
4161 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)4162 ctx_event_to_rotate(struct perf_event_context *ctx)
4163 {
4164 struct perf_event *event;
4165
4166 /* pick the first active flexible event */
4167 event = list_first_entry_or_null(&ctx->flexible_active,
4168 struct perf_event, active_list);
4169
4170 /* if no active flexible event, pick the first event */
4171 if (!event) {
4172 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4173 typeof(*event), group_node);
4174 }
4175
4176 /*
4177 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4178 * finds there are unschedulable events, it will set it again.
4179 */
4180 ctx->rotate_necessary = 0;
4181
4182 return event;
4183 }
4184
perf_rotate_context(struct perf_cpu_context * cpuctx)4185 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4186 {
4187 struct perf_event *cpu_event = NULL, *task_event = NULL;
4188 struct perf_event_context *task_ctx = NULL;
4189 int cpu_rotate, task_rotate;
4190
4191 /*
4192 * Since we run this from IRQ context, nobody can install new
4193 * events, thus the event count values are stable.
4194 */
4195
4196 cpu_rotate = cpuctx->ctx.rotate_necessary;
4197 task_ctx = cpuctx->task_ctx;
4198 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4199
4200 if (!(cpu_rotate || task_rotate))
4201 return false;
4202
4203 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4204 perf_pmu_disable(cpuctx->ctx.pmu);
4205
4206 if (task_rotate)
4207 task_event = ctx_event_to_rotate(task_ctx);
4208 if (cpu_rotate)
4209 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4210
4211 /*
4212 * As per the order given at ctx_resched() first 'pop' task flexible
4213 * and then, if needed CPU flexible.
4214 */
4215 if (task_event || (task_ctx && cpu_event))
4216 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4217 if (cpu_event)
4218 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4219
4220 if (task_event)
4221 rotate_ctx(task_ctx, task_event);
4222 if (cpu_event)
4223 rotate_ctx(&cpuctx->ctx, cpu_event);
4224
4225 perf_event_sched_in(cpuctx, task_ctx, current);
4226
4227 perf_pmu_enable(cpuctx->ctx.pmu);
4228 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4229
4230 return true;
4231 }
4232
perf_event_task_tick(void)4233 void perf_event_task_tick(void)
4234 {
4235 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4236 struct perf_event_context *ctx, *tmp;
4237 int throttled;
4238
4239 lockdep_assert_irqs_disabled();
4240
4241 __this_cpu_inc(perf_throttled_seq);
4242 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4243 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4244
4245 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4246 perf_adjust_freq_unthr_context(ctx, throttled);
4247 }
4248
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4249 static int event_enable_on_exec(struct perf_event *event,
4250 struct perf_event_context *ctx)
4251 {
4252 if (!event->attr.enable_on_exec)
4253 return 0;
4254
4255 event->attr.enable_on_exec = 0;
4256 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4257 return 0;
4258
4259 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4260
4261 return 1;
4262 }
4263
4264 /*
4265 * Enable all of a task's events that have been marked enable-on-exec.
4266 * This expects task == current.
4267 */
perf_event_enable_on_exec(int ctxn)4268 static void perf_event_enable_on_exec(int ctxn)
4269 {
4270 struct perf_event_context *ctx, *clone_ctx = NULL;
4271 enum event_type_t event_type = 0;
4272 struct perf_cpu_context *cpuctx;
4273 struct perf_event *event;
4274 unsigned long flags;
4275 int enabled = 0;
4276
4277 local_irq_save(flags);
4278 ctx = current->perf_event_ctxp[ctxn];
4279 if (!ctx || !ctx->nr_events)
4280 goto out;
4281
4282 cpuctx = __get_cpu_context(ctx);
4283 perf_ctx_lock(cpuctx, ctx);
4284 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4285 list_for_each_entry(event, &ctx->event_list, event_entry) {
4286 enabled |= event_enable_on_exec(event, ctx);
4287 event_type |= get_event_type(event);
4288 }
4289
4290 /*
4291 * Unclone and reschedule this context if we enabled any event.
4292 */
4293 if (enabled) {
4294 clone_ctx = unclone_ctx(ctx);
4295 ctx_resched(cpuctx, ctx, event_type);
4296 } else {
4297 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4298 }
4299 perf_ctx_unlock(cpuctx, ctx);
4300
4301 out:
4302 local_irq_restore(flags);
4303
4304 if (clone_ctx)
4305 put_ctx(clone_ctx);
4306 }
4307
4308 struct perf_read_data {
4309 struct perf_event *event;
4310 bool group;
4311 int ret;
4312 };
4313
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4314 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4315 {
4316 u16 local_pkg, event_pkg;
4317
4318 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4319 int local_cpu = smp_processor_id();
4320
4321 event_pkg = topology_physical_package_id(event_cpu);
4322 local_pkg = topology_physical_package_id(local_cpu);
4323
4324 if (event_pkg == local_pkg)
4325 return local_cpu;
4326 }
4327
4328 return event_cpu;
4329 }
4330
4331 /*
4332 * Cross CPU call to read the hardware event
4333 */
__perf_event_read(void * info)4334 static void __perf_event_read(void *info)
4335 {
4336 struct perf_read_data *data = info;
4337 struct perf_event *sub, *event = data->event;
4338 struct perf_event_context *ctx = event->ctx;
4339 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4340 struct pmu *pmu = event->pmu;
4341
4342 /*
4343 * If this is a task context, we need to check whether it is
4344 * the current task context of this cpu. If not it has been
4345 * scheduled out before the smp call arrived. In that case
4346 * event->count would have been updated to a recent sample
4347 * when the event was scheduled out.
4348 */
4349 if (ctx->task && cpuctx->task_ctx != ctx)
4350 return;
4351
4352 raw_spin_lock(&ctx->lock);
4353 if (ctx->is_active & EVENT_TIME) {
4354 update_context_time(ctx);
4355 update_cgrp_time_from_event(event);
4356 }
4357
4358 perf_event_update_time(event);
4359 if (data->group)
4360 perf_event_update_sibling_time(event);
4361
4362 if (event->state != PERF_EVENT_STATE_ACTIVE)
4363 goto unlock;
4364
4365 if (!data->group) {
4366 pmu->read(event);
4367 data->ret = 0;
4368 goto unlock;
4369 }
4370
4371 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4372
4373 pmu->read(event);
4374
4375 for_each_sibling_event(sub, event) {
4376 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4377 /*
4378 * Use sibling's PMU rather than @event's since
4379 * sibling could be on different (eg: software) PMU.
4380 */
4381 sub->pmu->read(sub);
4382 }
4383 }
4384
4385 data->ret = pmu->commit_txn(pmu);
4386
4387 unlock:
4388 raw_spin_unlock(&ctx->lock);
4389 }
4390
perf_event_count(struct perf_event * event)4391 static inline u64 perf_event_count(struct perf_event *event)
4392 {
4393 return local64_read(&event->count) + atomic64_read(&event->child_count);
4394 }
4395
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4396 static void calc_timer_values(struct perf_event *event,
4397 u64 *now,
4398 u64 *enabled,
4399 u64 *running)
4400 {
4401 u64 ctx_time;
4402
4403 *now = perf_clock();
4404 ctx_time = perf_event_time_now(event, *now);
4405 __perf_update_times(event, ctx_time, enabled, running);
4406 }
4407
4408 /*
4409 * NMI-safe method to read a local event, that is an event that
4410 * is:
4411 * - either for the current task, or for this CPU
4412 * - does not have inherit set, for inherited task events
4413 * will not be local and we cannot read them atomically
4414 * - must not have a pmu::count method
4415 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4416 int perf_event_read_local(struct perf_event *event, u64 *value,
4417 u64 *enabled, u64 *running)
4418 {
4419 unsigned long flags;
4420 int ret = 0;
4421
4422 /*
4423 * Disabling interrupts avoids all counter scheduling (context
4424 * switches, timer based rotation and IPIs).
4425 */
4426 local_irq_save(flags);
4427
4428 /*
4429 * It must not be an event with inherit set, we cannot read
4430 * all child counters from atomic context.
4431 */
4432 if (event->attr.inherit) {
4433 ret = -EOPNOTSUPP;
4434 goto out;
4435 }
4436
4437 /* If this is a per-task event, it must be for current */
4438 if ((event->attach_state & PERF_ATTACH_TASK) &&
4439 event->hw.target != current) {
4440 ret = -EINVAL;
4441 goto out;
4442 }
4443
4444 /* If this is a per-CPU event, it must be for this CPU */
4445 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4446 event->cpu != smp_processor_id()) {
4447 ret = -EINVAL;
4448 goto out;
4449 }
4450
4451 /* If this is a pinned event it must be running on this CPU */
4452 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4453 ret = -EBUSY;
4454 goto out;
4455 }
4456
4457 /*
4458 * If the event is currently on this CPU, its either a per-task event,
4459 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4460 * oncpu == -1).
4461 */
4462 if (event->oncpu == smp_processor_id())
4463 event->pmu->read(event);
4464
4465 *value = local64_read(&event->count);
4466 if (enabled || running) {
4467 u64 __enabled, __running, __now;;
4468
4469 calc_timer_values(event, &__now, &__enabled, &__running);
4470 if (enabled)
4471 *enabled = __enabled;
4472 if (running)
4473 *running = __running;
4474 }
4475 out:
4476 local_irq_restore(flags);
4477
4478 return ret;
4479 }
4480
perf_event_read(struct perf_event * event,bool group)4481 static int perf_event_read(struct perf_event *event, bool group)
4482 {
4483 enum perf_event_state state = READ_ONCE(event->state);
4484 int event_cpu, ret = 0;
4485
4486 /*
4487 * If event is enabled and currently active on a CPU, update the
4488 * value in the event structure:
4489 */
4490 again:
4491 if (state == PERF_EVENT_STATE_ACTIVE) {
4492 struct perf_read_data data;
4493
4494 /*
4495 * Orders the ->state and ->oncpu loads such that if we see
4496 * ACTIVE we must also see the right ->oncpu.
4497 *
4498 * Matches the smp_wmb() from event_sched_in().
4499 */
4500 smp_rmb();
4501
4502 event_cpu = READ_ONCE(event->oncpu);
4503 if ((unsigned)event_cpu >= nr_cpu_ids)
4504 return 0;
4505
4506 data = (struct perf_read_data){
4507 .event = event,
4508 .group = group,
4509 .ret = 0,
4510 };
4511
4512 preempt_disable();
4513 event_cpu = __perf_event_read_cpu(event, event_cpu);
4514
4515 /*
4516 * Purposely ignore the smp_call_function_single() return
4517 * value.
4518 *
4519 * If event_cpu isn't a valid CPU it means the event got
4520 * scheduled out and that will have updated the event count.
4521 *
4522 * Therefore, either way, we'll have an up-to-date event count
4523 * after this.
4524 */
4525 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4526 preempt_enable();
4527 ret = data.ret;
4528
4529 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4530 struct perf_event_context *ctx = event->ctx;
4531 unsigned long flags;
4532
4533 raw_spin_lock_irqsave(&ctx->lock, flags);
4534 state = event->state;
4535 if (state != PERF_EVENT_STATE_INACTIVE) {
4536 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4537 goto again;
4538 }
4539
4540 /*
4541 * May read while context is not active (e.g., thread is
4542 * blocked), in that case we cannot update context time
4543 */
4544 if (ctx->is_active & EVENT_TIME) {
4545 update_context_time(ctx);
4546 update_cgrp_time_from_event(event);
4547 }
4548
4549 perf_event_update_time(event);
4550 if (group)
4551 perf_event_update_sibling_time(event);
4552 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4553 }
4554
4555 return ret;
4556 }
4557
4558 /*
4559 * Initialize the perf_event context in a task_struct:
4560 */
__perf_event_init_context(struct perf_event_context * ctx)4561 static void __perf_event_init_context(struct perf_event_context *ctx)
4562 {
4563 raw_spin_lock_init(&ctx->lock);
4564 mutex_init(&ctx->mutex);
4565 INIT_LIST_HEAD(&ctx->active_ctx_list);
4566 perf_event_groups_init(&ctx->pinned_groups);
4567 perf_event_groups_init(&ctx->flexible_groups);
4568 INIT_LIST_HEAD(&ctx->event_list);
4569 INIT_LIST_HEAD(&ctx->pinned_active);
4570 INIT_LIST_HEAD(&ctx->flexible_active);
4571 refcount_set(&ctx->refcount, 1);
4572 }
4573
4574 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4575 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4576 {
4577 struct perf_event_context *ctx;
4578
4579 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4580 if (!ctx)
4581 return NULL;
4582
4583 __perf_event_init_context(ctx);
4584 if (task)
4585 ctx->task = get_task_struct(task);
4586 ctx->pmu = pmu;
4587
4588 return ctx;
4589 }
4590
4591 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4592 find_lively_task_by_vpid(pid_t vpid)
4593 {
4594 struct task_struct *task;
4595
4596 rcu_read_lock();
4597 if (!vpid)
4598 task = current;
4599 else
4600 task = find_task_by_vpid(vpid);
4601 if (task)
4602 get_task_struct(task);
4603 rcu_read_unlock();
4604
4605 if (!task)
4606 return ERR_PTR(-ESRCH);
4607
4608 return task;
4609 }
4610
4611 /*
4612 * Returns a matching context with refcount and pincount.
4613 */
4614 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4615 find_get_context(struct pmu *pmu, struct task_struct *task,
4616 struct perf_event *event)
4617 {
4618 struct perf_event_context *ctx, *clone_ctx = NULL;
4619 struct perf_cpu_context *cpuctx;
4620 void *task_ctx_data = NULL;
4621 unsigned long flags;
4622 int ctxn, err;
4623 int cpu = event->cpu;
4624
4625 if (!task) {
4626 /* Must be root to operate on a CPU event: */
4627 err = perf_allow_cpu(&event->attr);
4628 if (err)
4629 return ERR_PTR(err);
4630
4631 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4632 ctx = &cpuctx->ctx;
4633 get_ctx(ctx);
4634 raw_spin_lock_irqsave(&ctx->lock, flags);
4635 ++ctx->pin_count;
4636 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4637
4638 return ctx;
4639 }
4640
4641 err = -EINVAL;
4642 ctxn = pmu->task_ctx_nr;
4643 if (ctxn < 0)
4644 goto errout;
4645
4646 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4647 task_ctx_data = alloc_task_ctx_data(pmu);
4648 if (!task_ctx_data) {
4649 err = -ENOMEM;
4650 goto errout;
4651 }
4652 }
4653
4654 retry:
4655 ctx = perf_lock_task_context(task, ctxn, &flags);
4656 if (ctx) {
4657 clone_ctx = unclone_ctx(ctx);
4658 ++ctx->pin_count;
4659
4660 if (task_ctx_data && !ctx->task_ctx_data) {
4661 ctx->task_ctx_data = task_ctx_data;
4662 task_ctx_data = NULL;
4663 }
4664 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4665
4666 if (clone_ctx)
4667 put_ctx(clone_ctx);
4668 } else {
4669 ctx = alloc_perf_context(pmu, task);
4670 err = -ENOMEM;
4671 if (!ctx)
4672 goto errout;
4673
4674 if (task_ctx_data) {
4675 ctx->task_ctx_data = task_ctx_data;
4676 task_ctx_data = NULL;
4677 }
4678
4679 err = 0;
4680 mutex_lock(&task->perf_event_mutex);
4681 /*
4682 * If it has already passed perf_event_exit_task().
4683 * we must see PF_EXITING, it takes this mutex too.
4684 */
4685 if (task->flags & PF_EXITING)
4686 err = -ESRCH;
4687 else if (task->perf_event_ctxp[ctxn])
4688 err = -EAGAIN;
4689 else {
4690 get_ctx(ctx);
4691 ++ctx->pin_count;
4692 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4693 }
4694 mutex_unlock(&task->perf_event_mutex);
4695
4696 if (unlikely(err)) {
4697 put_ctx(ctx);
4698
4699 if (err == -EAGAIN)
4700 goto retry;
4701 goto errout;
4702 }
4703 }
4704
4705 free_task_ctx_data(pmu, task_ctx_data);
4706 return ctx;
4707
4708 errout:
4709 free_task_ctx_data(pmu, task_ctx_data);
4710 return ERR_PTR(err);
4711 }
4712
4713 static void perf_event_free_filter(struct perf_event *event);
4714 static void perf_event_free_bpf_prog(struct perf_event *event);
4715
free_event_rcu(struct rcu_head * head)4716 static void free_event_rcu(struct rcu_head *head)
4717 {
4718 struct perf_event *event;
4719
4720 event = container_of(head, struct perf_event, rcu_head);
4721 if (event->ns)
4722 put_pid_ns(event->ns);
4723 perf_event_free_filter(event);
4724 kfree(event);
4725 }
4726
4727 static void ring_buffer_attach(struct perf_event *event,
4728 struct perf_buffer *rb);
4729
detach_sb_event(struct perf_event * event)4730 static void detach_sb_event(struct perf_event *event)
4731 {
4732 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4733
4734 raw_spin_lock(&pel->lock);
4735 list_del_rcu(&event->sb_list);
4736 raw_spin_unlock(&pel->lock);
4737 }
4738
is_sb_event(struct perf_event * event)4739 static bool is_sb_event(struct perf_event *event)
4740 {
4741 struct perf_event_attr *attr = &event->attr;
4742
4743 if (event->parent)
4744 return false;
4745
4746 if (event->attach_state & PERF_ATTACH_TASK)
4747 return false;
4748
4749 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4750 attr->comm || attr->comm_exec ||
4751 attr->task || attr->ksymbol ||
4752 attr->context_switch || attr->text_poke ||
4753 attr->bpf_event)
4754 return true;
4755 return false;
4756 }
4757
unaccount_pmu_sb_event(struct perf_event * event)4758 static void unaccount_pmu_sb_event(struct perf_event *event)
4759 {
4760 if (is_sb_event(event))
4761 detach_sb_event(event);
4762 }
4763
unaccount_event_cpu(struct perf_event * event,int cpu)4764 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4765 {
4766 if (event->parent)
4767 return;
4768
4769 if (is_cgroup_event(event))
4770 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4771 }
4772
4773 #ifdef CONFIG_NO_HZ_FULL
4774 static DEFINE_SPINLOCK(nr_freq_lock);
4775 #endif
4776
unaccount_freq_event_nohz(void)4777 static void unaccount_freq_event_nohz(void)
4778 {
4779 #ifdef CONFIG_NO_HZ_FULL
4780 spin_lock(&nr_freq_lock);
4781 if (atomic_dec_and_test(&nr_freq_events))
4782 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4783 spin_unlock(&nr_freq_lock);
4784 #endif
4785 }
4786
unaccount_freq_event(void)4787 static void unaccount_freq_event(void)
4788 {
4789 if (tick_nohz_full_enabled())
4790 unaccount_freq_event_nohz();
4791 else
4792 atomic_dec(&nr_freq_events);
4793 }
4794
unaccount_event(struct perf_event * event)4795 static void unaccount_event(struct perf_event *event)
4796 {
4797 bool dec = false;
4798
4799 if (event->parent)
4800 return;
4801
4802 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4803 dec = true;
4804 if (event->attr.mmap || event->attr.mmap_data)
4805 atomic_dec(&nr_mmap_events);
4806 if (event->attr.comm)
4807 atomic_dec(&nr_comm_events);
4808 if (event->attr.namespaces)
4809 atomic_dec(&nr_namespaces_events);
4810 if (event->attr.cgroup)
4811 atomic_dec(&nr_cgroup_events);
4812 if (event->attr.task)
4813 atomic_dec(&nr_task_events);
4814 if (event->attr.freq)
4815 unaccount_freq_event();
4816 if (event->attr.context_switch) {
4817 dec = true;
4818 atomic_dec(&nr_switch_events);
4819 }
4820 if (is_cgroup_event(event))
4821 dec = true;
4822 if (has_branch_stack(event))
4823 dec = true;
4824 if (event->attr.ksymbol)
4825 atomic_dec(&nr_ksymbol_events);
4826 if (event->attr.bpf_event)
4827 atomic_dec(&nr_bpf_events);
4828 if (event->attr.text_poke)
4829 atomic_dec(&nr_text_poke_events);
4830
4831 if (dec) {
4832 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4833 schedule_delayed_work(&perf_sched_work, HZ);
4834 }
4835
4836 unaccount_event_cpu(event, event->cpu);
4837
4838 unaccount_pmu_sb_event(event);
4839 }
4840
perf_sched_delayed(struct work_struct * work)4841 static void perf_sched_delayed(struct work_struct *work)
4842 {
4843 mutex_lock(&perf_sched_mutex);
4844 if (atomic_dec_and_test(&perf_sched_count))
4845 static_branch_disable(&perf_sched_events);
4846 mutex_unlock(&perf_sched_mutex);
4847 }
4848
4849 /*
4850 * The following implement mutual exclusion of events on "exclusive" pmus
4851 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4852 * at a time, so we disallow creating events that might conflict, namely:
4853 *
4854 * 1) cpu-wide events in the presence of per-task events,
4855 * 2) per-task events in the presence of cpu-wide events,
4856 * 3) two matching events on the same context.
4857 *
4858 * The former two cases are handled in the allocation path (perf_event_alloc(),
4859 * _free_event()), the latter -- before the first perf_install_in_context().
4860 */
exclusive_event_init(struct perf_event * event)4861 static int exclusive_event_init(struct perf_event *event)
4862 {
4863 struct pmu *pmu = event->pmu;
4864
4865 if (!is_exclusive_pmu(pmu))
4866 return 0;
4867
4868 /*
4869 * Prevent co-existence of per-task and cpu-wide events on the
4870 * same exclusive pmu.
4871 *
4872 * Negative pmu::exclusive_cnt means there are cpu-wide
4873 * events on this "exclusive" pmu, positive means there are
4874 * per-task events.
4875 *
4876 * Since this is called in perf_event_alloc() path, event::ctx
4877 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4878 * to mean "per-task event", because unlike other attach states it
4879 * never gets cleared.
4880 */
4881 if (event->attach_state & PERF_ATTACH_TASK) {
4882 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4883 return -EBUSY;
4884 } else {
4885 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4886 return -EBUSY;
4887 }
4888
4889 return 0;
4890 }
4891
exclusive_event_destroy(struct perf_event * event)4892 static void exclusive_event_destroy(struct perf_event *event)
4893 {
4894 struct pmu *pmu = event->pmu;
4895
4896 if (!is_exclusive_pmu(pmu))
4897 return;
4898
4899 /* see comment in exclusive_event_init() */
4900 if (event->attach_state & PERF_ATTACH_TASK)
4901 atomic_dec(&pmu->exclusive_cnt);
4902 else
4903 atomic_inc(&pmu->exclusive_cnt);
4904 }
4905
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4906 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4907 {
4908 if ((e1->pmu == e2->pmu) &&
4909 (e1->cpu == e2->cpu ||
4910 e1->cpu == -1 ||
4911 e2->cpu == -1))
4912 return true;
4913 return false;
4914 }
4915
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4916 static bool exclusive_event_installable(struct perf_event *event,
4917 struct perf_event_context *ctx)
4918 {
4919 struct perf_event *iter_event;
4920 struct pmu *pmu = event->pmu;
4921
4922 lockdep_assert_held(&ctx->mutex);
4923
4924 if (!is_exclusive_pmu(pmu))
4925 return true;
4926
4927 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4928 if (exclusive_event_match(iter_event, event))
4929 return false;
4930 }
4931
4932 return true;
4933 }
4934
4935 static void perf_addr_filters_splice(struct perf_event *event,
4936 struct list_head *head);
4937
_free_event(struct perf_event * event)4938 static void _free_event(struct perf_event *event)
4939 {
4940 irq_work_sync(&event->pending);
4941
4942 unaccount_event(event);
4943
4944 security_perf_event_free(event);
4945
4946 if (event->rb) {
4947 /*
4948 * Can happen when we close an event with re-directed output.
4949 *
4950 * Since we have a 0 refcount, perf_mmap_close() will skip
4951 * over us; possibly making our ring_buffer_put() the last.
4952 */
4953 mutex_lock(&event->mmap_mutex);
4954 ring_buffer_attach(event, NULL);
4955 mutex_unlock(&event->mmap_mutex);
4956 }
4957
4958 if (is_cgroup_event(event))
4959 perf_detach_cgroup(event);
4960
4961 if (!event->parent) {
4962 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4963 put_callchain_buffers();
4964 }
4965
4966 perf_event_free_bpf_prog(event);
4967 perf_addr_filters_splice(event, NULL);
4968 kfree(event->addr_filter_ranges);
4969
4970 if (event->destroy)
4971 event->destroy(event);
4972
4973 /*
4974 * Must be after ->destroy(), due to uprobe_perf_close() using
4975 * hw.target.
4976 */
4977 if (event->hw.target)
4978 put_task_struct(event->hw.target);
4979
4980 /*
4981 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4982 * all task references must be cleaned up.
4983 */
4984 if (event->ctx)
4985 put_ctx(event->ctx);
4986
4987 exclusive_event_destroy(event);
4988 module_put(event->pmu->module);
4989
4990 call_rcu(&event->rcu_head, free_event_rcu);
4991 }
4992
4993 /*
4994 * Used to free events which have a known refcount of 1, such as in error paths
4995 * where the event isn't exposed yet and inherited events.
4996 */
free_event(struct perf_event * event)4997 static void free_event(struct perf_event *event)
4998 {
4999 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5000 "unexpected event refcount: %ld; ptr=%p\n",
5001 atomic_long_read(&event->refcount), event)) {
5002 /* leak to avoid use-after-free */
5003 return;
5004 }
5005
5006 _free_event(event);
5007 }
5008
5009 /*
5010 * Remove user event from the owner task.
5011 */
perf_remove_from_owner(struct perf_event * event)5012 static void perf_remove_from_owner(struct perf_event *event)
5013 {
5014 struct task_struct *owner;
5015
5016 rcu_read_lock();
5017 /*
5018 * Matches the smp_store_release() in perf_event_exit_task(). If we
5019 * observe !owner it means the list deletion is complete and we can
5020 * indeed free this event, otherwise we need to serialize on
5021 * owner->perf_event_mutex.
5022 */
5023 owner = READ_ONCE(event->owner);
5024 if (owner) {
5025 /*
5026 * Since delayed_put_task_struct() also drops the last
5027 * task reference we can safely take a new reference
5028 * while holding the rcu_read_lock().
5029 */
5030 get_task_struct(owner);
5031 }
5032 rcu_read_unlock();
5033
5034 if (owner) {
5035 /*
5036 * If we're here through perf_event_exit_task() we're already
5037 * holding ctx->mutex which would be an inversion wrt. the
5038 * normal lock order.
5039 *
5040 * However we can safely take this lock because its the child
5041 * ctx->mutex.
5042 */
5043 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5044
5045 /*
5046 * We have to re-check the event->owner field, if it is cleared
5047 * we raced with perf_event_exit_task(), acquiring the mutex
5048 * ensured they're done, and we can proceed with freeing the
5049 * event.
5050 */
5051 if (event->owner) {
5052 list_del_init(&event->owner_entry);
5053 smp_store_release(&event->owner, NULL);
5054 }
5055 mutex_unlock(&owner->perf_event_mutex);
5056 put_task_struct(owner);
5057 }
5058 }
5059
put_event(struct perf_event * event)5060 static void put_event(struct perf_event *event)
5061 {
5062 if (!atomic_long_dec_and_test(&event->refcount))
5063 return;
5064
5065 _free_event(event);
5066 }
5067
5068 /*
5069 * Kill an event dead; while event:refcount will preserve the event
5070 * object, it will not preserve its functionality. Once the last 'user'
5071 * gives up the object, we'll destroy the thing.
5072 */
perf_event_release_kernel(struct perf_event * event)5073 int perf_event_release_kernel(struct perf_event *event)
5074 {
5075 struct perf_event_context *ctx = event->ctx;
5076 struct perf_event *child, *tmp;
5077 LIST_HEAD(free_list);
5078
5079 /*
5080 * If we got here through err_file: fput(event_file); we will not have
5081 * attached to a context yet.
5082 */
5083 if (!ctx) {
5084 WARN_ON_ONCE(event->attach_state &
5085 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5086 goto no_ctx;
5087 }
5088
5089 if (!is_kernel_event(event))
5090 perf_remove_from_owner(event);
5091
5092 ctx = perf_event_ctx_lock(event);
5093 WARN_ON_ONCE(ctx->parent_ctx);
5094 perf_remove_from_context(event, DETACH_GROUP);
5095
5096 raw_spin_lock_irq(&ctx->lock);
5097 /*
5098 * Mark this event as STATE_DEAD, there is no external reference to it
5099 * anymore.
5100 *
5101 * Anybody acquiring event->child_mutex after the below loop _must_
5102 * also see this, most importantly inherit_event() which will avoid
5103 * placing more children on the list.
5104 *
5105 * Thus this guarantees that we will in fact observe and kill _ALL_
5106 * child events.
5107 */
5108 event->state = PERF_EVENT_STATE_DEAD;
5109 raw_spin_unlock_irq(&ctx->lock);
5110
5111 perf_event_ctx_unlock(event, ctx);
5112
5113 again:
5114 mutex_lock(&event->child_mutex);
5115 list_for_each_entry(child, &event->child_list, child_list) {
5116
5117 /*
5118 * Cannot change, child events are not migrated, see the
5119 * comment with perf_event_ctx_lock_nested().
5120 */
5121 ctx = READ_ONCE(child->ctx);
5122 /*
5123 * Since child_mutex nests inside ctx::mutex, we must jump
5124 * through hoops. We start by grabbing a reference on the ctx.
5125 *
5126 * Since the event cannot get freed while we hold the
5127 * child_mutex, the context must also exist and have a !0
5128 * reference count.
5129 */
5130 get_ctx(ctx);
5131
5132 /*
5133 * Now that we have a ctx ref, we can drop child_mutex, and
5134 * acquire ctx::mutex without fear of it going away. Then we
5135 * can re-acquire child_mutex.
5136 */
5137 mutex_unlock(&event->child_mutex);
5138 mutex_lock(&ctx->mutex);
5139 mutex_lock(&event->child_mutex);
5140
5141 /*
5142 * Now that we hold ctx::mutex and child_mutex, revalidate our
5143 * state, if child is still the first entry, it didn't get freed
5144 * and we can continue doing so.
5145 */
5146 tmp = list_first_entry_or_null(&event->child_list,
5147 struct perf_event, child_list);
5148 if (tmp == child) {
5149 perf_remove_from_context(child, DETACH_GROUP);
5150 list_move(&child->child_list, &free_list);
5151 /*
5152 * This matches the refcount bump in inherit_event();
5153 * this can't be the last reference.
5154 */
5155 put_event(event);
5156 }
5157
5158 mutex_unlock(&event->child_mutex);
5159 mutex_unlock(&ctx->mutex);
5160 put_ctx(ctx);
5161 goto again;
5162 }
5163 mutex_unlock(&event->child_mutex);
5164
5165 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5166 void *var = &child->ctx->refcount;
5167
5168 list_del(&child->child_list);
5169 free_event(child);
5170
5171 /*
5172 * Wake any perf_event_free_task() waiting for this event to be
5173 * freed.
5174 */
5175 smp_mb(); /* pairs with wait_var_event() */
5176 wake_up_var(var);
5177 }
5178
5179 no_ctx:
5180 put_event(event); /* Must be the 'last' reference */
5181 return 0;
5182 }
5183 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5184
5185 /*
5186 * Called when the last reference to the file is gone.
5187 */
perf_release(struct inode * inode,struct file * file)5188 static int perf_release(struct inode *inode, struct file *file)
5189 {
5190 perf_event_release_kernel(file->private_data);
5191 return 0;
5192 }
5193
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5194 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5195 {
5196 struct perf_event *child;
5197 u64 total = 0;
5198
5199 *enabled = 0;
5200 *running = 0;
5201
5202 mutex_lock(&event->child_mutex);
5203
5204 (void)perf_event_read(event, false);
5205 total += perf_event_count(event);
5206
5207 *enabled += event->total_time_enabled +
5208 atomic64_read(&event->child_total_time_enabled);
5209 *running += event->total_time_running +
5210 atomic64_read(&event->child_total_time_running);
5211
5212 list_for_each_entry(child, &event->child_list, child_list) {
5213 (void)perf_event_read(child, false);
5214 total += perf_event_count(child);
5215 *enabled += child->total_time_enabled;
5216 *running += child->total_time_running;
5217 }
5218 mutex_unlock(&event->child_mutex);
5219
5220 return total;
5221 }
5222
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5223 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5224 {
5225 struct perf_event_context *ctx;
5226 u64 count;
5227
5228 ctx = perf_event_ctx_lock(event);
5229 count = __perf_event_read_value(event, enabled, running);
5230 perf_event_ctx_unlock(event, ctx);
5231
5232 return count;
5233 }
5234 EXPORT_SYMBOL_GPL(perf_event_read_value);
5235
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5236 static int __perf_read_group_add(struct perf_event *leader,
5237 u64 read_format, u64 *values)
5238 {
5239 struct perf_event_context *ctx = leader->ctx;
5240 struct perf_event *sub, *parent;
5241 unsigned long flags;
5242 int n = 1; /* skip @nr */
5243 int ret;
5244
5245 ret = perf_event_read(leader, true);
5246 if (ret)
5247 return ret;
5248
5249 raw_spin_lock_irqsave(&ctx->lock, flags);
5250 /*
5251 * Verify the grouping between the parent and child (inherited)
5252 * events is still in tact.
5253 *
5254 * Specifically:
5255 * - leader->ctx->lock pins leader->sibling_list
5256 * - parent->child_mutex pins parent->child_list
5257 * - parent->ctx->mutex pins parent->sibling_list
5258 *
5259 * Because parent->ctx != leader->ctx (and child_list nests inside
5260 * ctx->mutex), group destruction is not atomic between children, also
5261 * see perf_event_release_kernel(). Additionally, parent can grow the
5262 * group.
5263 *
5264 * Therefore it is possible to have parent and child groups in a
5265 * different configuration and summing over such a beast makes no sense
5266 * what so ever.
5267 *
5268 * Reject this.
5269 */
5270 parent = leader->parent;
5271 if (parent &&
5272 (parent->group_generation != leader->group_generation ||
5273 parent->nr_siblings != leader->nr_siblings)) {
5274 ret = -ECHILD;
5275 goto unlock;
5276 }
5277
5278 /*
5279 * Since we co-schedule groups, {enabled,running} times of siblings
5280 * will be identical to those of the leader, so we only publish one
5281 * set.
5282 */
5283 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5284 values[n++] += leader->total_time_enabled +
5285 atomic64_read(&leader->child_total_time_enabled);
5286 }
5287
5288 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5289 values[n++] += leader->total_time_running +
5290 atomic64_read(&leader->child_total_time_running);
5291 }
5292
5293 /*
5294 * Write {count,id} tuples for every sibling.
5295 */
5296 values[n++] += perf_event_count(leader);
5297 if (read_format & PERF_FORMAT_ID)
5298 values[n++] = primary_event_id(leader);
5299 if (read_format & PERF_FORMAT_LOST)
5300 values[n++] = atomic64_read(&leader->lost_samples);
5301
5302 for_each_sibling_event(sub, leader) {
5303 values[n++] += perf_event_count(sub);
5304 if (read_format & PERF_FORMAT_ID)
5305 values[n++] = primary_event_id(sub);
5306 if (read_format & PERF_FORMAT_LOST)
5307 values[n++] = atomic64_read(&sub->lost_samples);
5308 }
5309
5310 unlock:
5311 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5312 return ret;
5313 }
5314
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5315 static int perf_read_group(struct perf_event *event,
5316 u64 read_format, char __user *buf)
5317 {
5318 struct perf_event *leader = event->group_leader, *child;
5319 struct perf_event_context *ctx = leader->ctx;
5320 int ret;
5321 u64 *values;
5322
5323 lockdep_assert_held(&ctx->mutex);
5324
5325 values = kzalloc(event->read_size, GFP_KERNEL);
5326 if (!values)
5327 return -ENOMEM;
5328
5329 values[0] = 1 + leader->nr_siblings;
5330
5331 mutex_lock(&leader->child_mutex);
5332
5333 ret = __perf_read_group_add(leader, read_format, values);
5334 if (ret)
5335 goto unlock;
5336
5337 list_for_each_entry(child, &leader->child_list, child_list) {
5338 ret = __perf_read_group_add(child, read_format, values);
5339 if (ret)
5340 goto unlock;
5341 }
5342
5343 mutex_unlock(&leader->child_mutex);
5344
5345 ret = event->read_size;
5346 if (copy_to_user(buf, values, event->read_size))
5347 ret = -EFAULT;
5348 goto out;
5349
5350 unlock:
5351 mutex_unlock(&leader->child_mutex);
5352 out:
5353 kfree(values);
5354 return ret;
5355 }
5356
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5357 static int perf_read_one(struct perf_event *event,
5358 u64 read_format, char __user *buf)
5359 {
5360 u64 enabled, running;
5361 u64 values[5];
5362 int n = 0;
5363
5364 values[n++] = __perf_event_read_value(event, &enabled, &running);
5365 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5366 values[n++] = enabled;
5367 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5368 values[n++] = running;
5369 if (read_format & PERF_FORMAT_ID)
5370 values[n++] = primary_event_id(event);
5371 if (read_format & PERF_FORMAT_LOST)
5372 values[n++] = atomic64_read(&event->lost_samples);
5373
5374 if (copy_to_user(buf, values, n * sizeof(u64)))
5375 return -EFAULT;
5376
5377 return n * sizeof(u64);
5378 }
5379
is_event_hup(struct perf_event * event)5380 static bool is_event_hup(struct perf_event *event)
5381 {
5382 bool no_children;
5383
5384 if (event->state > PERF_EVENT_STATE_EXIT)
5385 return false;
5386
5387 mutex_lock(&event->child_mutex);
5388 no_children = list_empty(&event->child_list);
5389 mutex_unlock(&event->child_mutex);
5390 return no_children;
5391 }
5392
5393 /*
5394 * Read the performance event - simple non blocking version for now
5395 */
5396 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5397 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5398 {
5399 u64 read_format = event->attr.read_format;
5400 int ret;
5401
5402 /*
5403 * Return end-of-file for a read on an event that is in
5404 * error state (i.e. because it was pinned but it couldn't be
5405 * scheduled on to the CPU at some point).
5406 */
5407 if (event->state == PERF_EVENT_STATE_ERROR)
5408 return 0;
5409
5410 if (count < event->read_size)
5411 return -ENOSPC;
5412
5413 WARN_ON_ONCE(event->ctx->parent_ctx);
5414 if (read_format & PERF_FORMAT_GROUP)
5415 ret = perf_read_group(event, read_format, buf);
5416 else
5417 ret = perf_read_one(event, read_format, buf);
5418
5419 return ret;
5420 }
5421
5422 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5423 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5424 {
5425 struct perf_event *event = file->private_data;
5426 struct perf_event_context *ctx;
5427 int ret;
5428
5429 ret = security_perf_event_read(event);
5430 if (ret)
5431 return ret;
5432
5433 ctx = perf_event_ctx_lock(event);
5434 ret = __perf_read(event, buf, count);
5435 perf_event_ctx_unlock(event, ctx);
5436
5437 return ret;
5438 }
5439
perf_poll(struct file * file,poll_table * wait)5440 static __poll_t perf_poll(struct file *file, poll_table *wait)
5441 {
5442 struct perf_event *event = file->private_data;
5443 struct perf_buffer *rb;
5444 __poll_t events = EPOLLHUP;
5445
5446 poll_wait(file, &event->waitq, wait);
5447
5448 if (is_event_hup(event))
5449 return events;
5450
5451 /*
5452 * Pin the event->rb by taking event->mmap_mutex; otherwise
5453 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5454 */
5455 mutex_lock(&event->mmap_mutex);
5456 rb = event->rb;
5457 if (rb)
5458 events = atomic_xchg(&rb->poll, 0);
5459 mutex_unlock(&event->mmap_mutex);
5460 return events;
5461 }
5462
_perf_event_reset(struct perf_event * event)5463 static void _perf_event_reset(struct perf_event *event)
5464 {
5465 (void)perf_event_read(event, false);
5466 local64_set(&event->count, 0);
5467 perf_event_update_userpage(event);
5468 }
5469
5470 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5471 u64 perf_event_pause(struct perf_event *event, bool reset)
5472 {
5473 struct perf_event_context *ctx;
5474 u64 count;
5475
5476 ctx = perf_event_ctx_lock(event);
5477 WARN_ON_ONCE(event->attr.inherit);
5478 _perf_event_disable(event);
5479 count = local64_read(&event->count);
5480 if (reset)
5481 local64_set(&event->count, 0);
5482 perf_event_ctx_unlock(event, ctx);
5483
5484 return count;
5485 }
5486 EXPORT_SYMBOL_GPL(perf_event_pause);
5487
5488 /*
5489 * Holding the top-level event's child_mutex means that any
5490 * descendant process that has inherited this event will block
5491 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5492 * task existence requirements of perf_event_enable/disable.
5493 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5494 static void perf_event_for_each_child(struct perf_event *event,
5495 void (*func)(struct perf_event *))
5496 {
5497 struct perf_event *child;
5498
5499 WARN_ON_ONCE(event->ctx->parent_ctx);
5500
5501 mutex_lock(&event->child_mutex);
5502 func(event);
5503 list_for_each_entry(child, &event->child_list, child_list)
5504 func(child);
5505 mutex_unlock(&event->child_mutex);
5506 }
5507
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5508 static void perf_event_for_each(struct perf_event *event,
5509 void (*func)(struct perf_event *))
5510 {
5511 struct perf_event_context *ctx = event->ctx;
5512 struct perf_event *sibling;
5513
5514 lockdep_assert_held(&ctx->mutex);
5515
5516 event = event->group_leader;
5517
5518 perf_event_for_each_child(event, func);
5519 for_each_sibling_event(sibling, event)
5520 perf_event_for_each_child(sibling, func);
5521 }
5522
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5523 static void __perf_event_period(struct perf_event *event,
5524 struct perf_cpu_context *cpuctx,
5525 struct perf_event_context *ctx,
5526 void *info)
5527 {
5528 u64 value = *((u64 *)info);
5529 bool active;
5530
5531 if (event->attr.freq) {
5532 event->attr.sample_freq = value;
5533 } else {
5534 event->attr.sample_period = value;
5535 event->hw.sample_period = value;
5536 }
5537
5538 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5539 if (active) {
5540 perf_pmu_disable(ctx->pmu);
5541 /*
5542 * We could be throttled; unthrottle now to avoid the tick
5543 * trying to unthrottle while we already re-started the event.
5544 */
5545 if (event->hw.interrupts == MAX_INTERRUPTS) {
5546 event->hw.interrupts = 0;
5547 perf_log_throttle(event, 1);
5548 }
5549 event->pmu->stop(event, PERF_EF_UPDATE);
5550 }
5551
5552 local64_set(&event->hw.period_left, 0);
5553
5554 if (active) {
5555 event->pmu->start(event, PERF_EF_RELOAD);
5556 perf_pmu_enable(ctx->pmu);
5557 }
5558 }
5559
perf_event_check_period(struct perf_event * event,u64 value)5560 static int perf_event_check_period(struct perf_event *event, u64 value)
5561 {
5562 return event->pmu->check_period(event, value);
5563 }
5564
_perf_event_period(struct perf_event * event,u64 value)5565 static int _perf_event_period(struct perf_event *event, u64 value)
5566 {
5567 if (!is_sampling_event(event))
5568 return -EINVAL;
5569
5570 if (!value)
5571 return -EINVAL;
5572
5573 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5574 return -EINVAL;
5575
5576 if (perf_event_check_period(event, value))
5577 return -EINVAL;
5578
5579 if (!event->attr.freq && (value & (1ULL << 63)))
5580 return -EINVAL;
5581
5582 event_function_call(event, __perf_event_period, &value);
5583
5584 return 0;
5585 }
5586
perf_event_period(struct perf_event * event,u64 value)5587 int perf_event_period(struct perf_event *event, u64 value)
5588 {
5589 struct perf_event_context *ctx;
5590 int ret;
5591
5592 ctx = perf_event_ctx_lock(event);
5593 ret = _perf_event_period(event, value);
5594 perf_event_ctx_unlock(event, ctx);
5595
5596 return ret;
5597 }
5598 EXPORT_SYMBOL_GPL(perf_event_period);
5599
5600 static const struct file_operations perf_fops;
5601
perf_fget_light(int fd,struct fd * p)5602 static inline int perf_fget_light(int fd, struct fd *p)
5603 {
5604 struct fd f = fdget(fd);
5605 if (!f.file)
5606 return -EBADF;
5607
5608 if (f.file->f_op != &perf_fops) {
5609 fdput(f);
5610 return -EBADF;
5611 }
5612 *p = f;
5613 return 0;
5614 }
5615
5616 static int perf_event_set_output(struct perf_event *event,
5617 struct perf_event *output_event);
5618 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5619 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5620 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5621 struct perf_event_attr *attr);
5622
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5623 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5624 {
5625 void (*func)(struct perf_event *);
5626 u32 flags = arg;
5627
5628 switch (cmd) {
5629 case PERF_EVENT_IOC_ENABLE:
5630 func = _perf_event_enable;
5631 break;
5632 case PERF_EVENT_IOC_DISABLE:
5633 func = _perf_event_disable;
5634 break;
5635 case PERF_EVENT_IOC_RESET:
5636 func = _perf_event_reset;
5637 break;
5638
5639 case PERF_EVENT_IOC_REFRESH:
5640 return _perf_event_refresh(event, arg);
5641
5642 case PERF_EVENT_IOC_PERIOD:
5643 {
5644 u64 value;
5645
5646 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5647 return -EFAULT;
5648
5649 return _perf_event_period(event, value);
5650 }
5651 case PERF_EVENT_IOC_ID:
5652 {
5653 u64 id = primary_event_id(event);
5654
5655 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5656 return -EFAULT;
5657 return 0;
5658 }
5659
5660 case PERF_EVENT_IOC_SET_OUTPUT:
5661 {
5662 int ret;
5663 if (arg != -1) {
5664 struct perf_event *output_event;
5665 struct fd output;
5666 ret = perf_fget_light(arg, &output);
5667 if (ret)
5668 return ret;
5669 output_event = output.file->private_data;
5670 ret = perf_event_set_output(event, output_event);
5671 fdput(output);
5672 } else {
5673 ret = perf_event_set_output(event, NULL);
5674 }
5675 return ret;
5676 }
5677
5678 case PERF_EVENT_IOC_SET_FILTER:
5679 return perf_event_set_filter(event, (void __user *)arg);
5680
5681 case PERF_EVENT_IOC_SET_BPF:
5682 return perf_event_set_bpf_prog(event, arg);
5683
5684 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5685 struct perf_buffer *rb;
5686
5687 rcu_read_lock();
5688 rb = rcu_dereference(event->rb);
5689 if (!rb || !rb->nr_pages) {
5690 rcu_read_unlock();
5691 return -EINVAL;
5692 }
5693 rb_toggle_paused(rb, !!arg);
5694 rcu_read_unlock();
5695 return 0;
5696 }
5697
5698 case PERF_EVENT_IOC_QUERY_BPF:
5699 return perf_event_query_prog_array(event, (void __user *)arg);
5700
5701 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5702 struct perf_event_attr new_attr;
5703 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5704 &new_attr);
5705
5706 if (err)
5707 return err;
5708
5709 return perf_event_modify_attr(event, &new_attr);
5710 }
5711 default:
5712 return -ENOTTY;
5713 }
5714
5715 if (flags & PERF_IOC_FLAG_GROUP)
5716 perf_event_for_each(event, func);
5717 else
5718 perf_event_for_each_child(event, func);
5719
5720 return 0;
5721 }
5722
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5723 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5724 {
5725 struct perf_event *event = file->private_data;
5726 struct perf_event_context *ctx;
5727 long ret;
5728
5729 /* Treat ioctl like writes as it is likely a mutating operation. */
5730 ret = security_perf_event_write(event);
5731 if (ret)
5732 return ret;
5733
5734 ctx = perf_event_ctx_lock(event);
5735 ret = _perf_ioctl(event, cmd, arg);
5736 perf_event_ctx_unlock(event, ctx);
5737
5738 return ret;
5739 }
5740
5741 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5742 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5743 unsigned long arg)
5744 {
5745 switch (_IOC_NR(cmd)) {
5746 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5747 case _IOC_NR(PERF_EVENT_IOC_ID):
5748 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5749 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5750 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5751 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5752 cmd &= ~IOCSIZE_MASK;
5753 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5754 }
5755 break;
5756 }
5757 return perf_ioctl(file, cmd, arg);
5758 }
5759 #else
5760 # define perf_compat_ioctl NULL
5761 #endif
5762
perf_event_task_enable(void)5763 int perf_event_task_enable(void)
5764 {
5765 struct perf_event_context *ctx;
5766 struct perf_event *event;
5767
5768 mutex_lock(¤t->perf_event_mutex);
5769 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5770 ctx = perf_event_ctx_lock(event);
5771 perf_event_for_each_child(event, _perf_event_enable);
5772 perf_event_ctx_unlock(event, ctx);
5773 }
5774 mutex_unlock(¤t->perf_event_mutex);
5775
5776 return 0;
5777 }
5778
perf_event_task_disable(void)5779 int perf_event_task_disable(void)
5780 {
5781 struct perf_event_context *ctx;
5782 struct perf_event *event;
5783
5784 mutex_lock(¤t->perf_event_mutex);
5785 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5786 ctx = perf_event_ctx_lock(event);
5787 perf_event_for_each_child(event, _perf_event_disable);
5788 perf_event_ctx_unlock(event, ctx);
5789 }
5790 mutex_unlock(¤t->perf_event_mutex);
5791
5792 return 0;
5793 }
5794
perf_event_index(struct perf_event * event)5795 static int perf_event_index(struct perf_event *event)
5796 {
5797 if (event->hw.state & PERF_HES_STOPPED)
5798 return 0;
5799
5800 if (event->state != PERF_EVENT_STATE_ACTIVE)
5801 return 0;
5802
5803 return event->pmu->event_idx(event);
5804 }
5805
perf_event_init_userpage(struct perf_event * event)5806 static void perf_event_init_userpage(struct perf_event *event)
5807 {
5808 struct perf_event_mmap_page *userpg;
5809 struct perf_buffer *rb;
5810
5811 rcu_read_lock();
5812 rb = rcu_dereference(event->rb);
5813 if (!rb)
5814 goto unlock;
5815
5816 userpg = rb->user_page;
5817
5818 /* Allow new userspace to detect that bit 0 is deprecated */
5819 userpg->cap_bit0_is_deprecated = 1;
5820 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5821 userpg->data_offset = PAGE_SIZE;
5822 userpg->data_size = perf_data_size(rb);
5823
5824 unlock:
5825 rcu_read_unlock();
5826 }
5827
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5828 void __weak arch_perf_update_userpage(
5829 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5830 {
5831 }
5832
5833 /*
5834 * Callers need to ensure there can be no nesting of this function, otherwise
5835 * the seqlock logic goes bad. We can not serialize this because the arch
5836 * code calls this from NMI context.
5837 */
perf_event_update_userpage(struct perf_event * event)5838 void perf_event_update_userpage(struct perf_event *event)
5839 {
5840 struct perf_event_mmap_page *userpg;
5841 struct perf_buffer *rb;
5842 u64 enabled, running, now;
5843
5844 rcu_read_lock();
5845 rb = rcu_dereference(event->rb);
5846 if (!rb)
5847 goto unlock;
5848
5849 /*
5850 * compute total_time_enabled, total_time_running
5851 * based on snapshot values taken when the event
5852 * was last scheduled in.
5853 *
5854 * we cannot simply called update_context_time()
5855 * because of locking issue as we can be called in
5856 * NMI context
5857 */
5858 calc_timer_values(event, &now, &enabled, &running);
5859
5860 userpg = rb->user_page;
5861 /*
5862 * Disable preemption to guarantee consistent time stamps are stored to
5863 * the user page.
5864 */
5865 preempt_disable();
5866 ++userpg->lock;
5867 barrier();
5868 userpg->index = perf_event_index(event);
5869 userpg->offset = perf_event_count(event);
5870 if (userpg->index)
5871 userpg->offset -= local64_read(&event->hw.prev_count);
5872
5873 userpg->time_enabled = enabled +
5874 atomic64_read(&event->child_total_time_enabled);
5875
5876 userpg->time_running = running +
5877 atomic64_read(&event->child_total_time_running);
5878
5879 arch_perf_update_userpage(event, userpg, now);
5880
5881 barrier();
5882 ++userpg->lock;
5883 preempt_enable();
5884 unlock:
5885 rcu_read_unlock();
5886 }
5887 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5888
perf_mmap_fault(struct vm_fault * vmf)5889 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5890 {
5891 struct perf_event *event = vmf->vma->vm_file->private_data;
5892 struct perf_buffer *rb;
5893 vm_fault_t ret = VM_FAULT_SIGBUS;
5894
5895 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5896 if (vmf->pgoff == 0)
5897 ret = 0;
5898 return ret;
5899 }
5900
5901 rcu_read_lock();
5902 rb = rcu_dereference(event->rb);
5903 if (!rb)
5904 goto unlock;
5905
5906 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5907 goto unlock;
5908
5909 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5910 if (!vmf->page)
5911 goto unlock;
5912
5913 get_page(vmf->page);
5914 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5915 vmf->page->index = vmf->pgoff;
5916
5917 ret = 0;
5918 unlock:
5919 rcu_read_unlock();
5920
5921 return ret;
5922 }
5923
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)5924 static void ring_buffer_attach(struct perf_event *event,
5925 struct perf_buffer *rb)
5926 {
5927 struct perf_buffer *old_rb = NULL;
5928 unsigned long flags;
5929
5930 WARN_ON_ONCE(event->parent);
5931
5932 if (event->rb) {
5933 /*
5934 * Should be impossible, we set this when removing
5935 * event->rb_entry and wait/clear when adding event->rb_entry.
5936 */
5937 WARN_ON_ONCE(event->rcu_pending);
5938
5939 old_rb = event->rb;
5940 spin_lock_irqsave(&old_rb->event_lock, flags);
5941 list_del_rcu(&event->rb_entry);
5942 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5943
5944 event->rcu_batches = get_state_synchronize_rcu();
5945 event->rcu_pending = 1;
5946 }
5947
5948 if (rb) {
5949 if (event->rcu_pending) {
5950 cond_synchronize_rcu(event->rcu_batches);
5951 event->rcu_pending = 0;
5952 }
5953
5954 spin_lock_irqsave(&rb->event_lock, flags);
5955 list_add_rcu(&event->rb_entry, &rb->event_list);
5956 spin_unlock_irqrestore(&rb->event_lock, flags);
5957 }
5958
5959 /*
5960 * Avoid racing with perf_mmap_close(AUX): stop the event
5961 * before swizzling the event::rb pointer; if it's getting
5962 * unmapped, its aux_mmap_count will be 0 and it won't
5963 * restart. See the comment in __perf_pmu_output_stop().
5964 *
5965 * Data will inevitably be lost when set_output is done in
5966 * mid-air, but then again, whoever does it like this is
5967 * not in for the data anyway.
5968 */
5969 if (has_aux(event))
5970 perf_event_stop(event, 0);
5971
5972 rcu_assign_pointer(event->rb, rb);
5973
5974 if (old_rb) {
5975 ring_buffer_put(old_rb);
5976 /*
5977 * Since we detached before setting the new rb, so that we
5978 * could attach the new rb, we could have missed a wakeup.
5979 * Provide it now.
5980 */
5981 wake_up_all(&event->waitq);
5982 }
5983 }
5984
ring_buffer_wakeup(struct perf_event * event)5985 static void ring_buffer_wakeup(struct perf_event *event)
5986 {
5987 struct perf_buffer *rb;
5988
5989 if (event->parent)
5990 event = event->parent;
5991
5992 rcu_read_lock();
5993 rb = rcu_dereference(event->rb);
5994 if (rb) {
5995 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5996 wake_up_all(&event->waitq);
5997 }
5998 rcu_read_unlock();
5999 }
6000
ring_buffer_get(struct perf_event * event)6001 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6002 {
6003 struct perf_buffer *rb;
6004
6005 if (event->parent)
6006 event = event->parent;
6007
6008 rcu_read_lock();
6009 rb = rcu_dereference(event->rb);
6010 if (rb) {
6011 if (!refcount_inc_not_zero(&rb->refcount))
6012 rb = NULL;
6013 }
6014 rcu_read_unlock();
6015
6016 return rb;
6017 }
6018
ring_buffer_put(struct perf_buffer * rb)6019 void ring_buffer_put(struct perf_buffer *rb)
6020 {
6021 if (!refcount_dec_and_test(&rb->refcount))
6022 return;
6023
6024 WARN_ON_ONCE(!list_empty(&rb->event_list));
6025
6026 call_rcu(&rb->rcu_head, rb_free_rcu);
6027 }
6028
perf_mmap_open(struct vm_area_struct * vma)6029 static void perf_mmap_open(struct vm_area_struct *vma)
6030 {
6031 struct perf_event *event = vma->vm_file->private_data;
6032
6033 atomic_inc(&event->mmap_count);
6034 atomic_inc(&event->rb->mmap_count);
6035
6036 if (vma->vm_pgoff)
6037 atomic_inc(&event->rb->aux_mmap_count);
6038
6039 if (event->pmu->event_mapped)
6040 event->pmu->event_mapped(event, vma->vm_mm);
6041 }
6042
6043 static void perf_pmu_output_stop(struct perf_event *event);
6044
6045 /*
6046 * A buffer can be mmap()ed multiple times; either directly through the same
6047 * event, or through other events by use of perf_event_set_output().
6048 *
6049 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6050 * the buffer here, where we still have a VM context. This means we need
6051 * to detach all events redirecting to us.
6052 */
perf_mmap_close(struct vm_area_struct * vma)6053 static void perf_mmap_close(struct vm_area_struct *vma)
6054 {
6055 struct perf_event *event = vma->vm_file->private_data;
6056 struct perf_buffer *rb = ring_buffer_get(event);
6057 struct user_struct *mmap_user = rb->mmap_user;
6058 int mmap_locked = rb->mmap_locked;
6059 unsigned long size = perf_data_size(rb);
6060 bool detach_rest = false;
6061
6062 if (event->pmu->event_unmapped)
6063 event->pmu->event_unmapped(event, vma->vm_mm);
6064
6065 /*
6066 * rb->aux_mmap_count will always drop before rb->mmap_count and
6067 * event->mmap_count, so it is ok to use event->mmap_mutex to
6068 * serialize with perf_mmap here.
6069 */
6070 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6071 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6072 /*
6073 * Stop all AUX events that are writing to this buffer,
6074 * so that we can free its AUX pages and corresponding PMU
6075 * data. Note that after rb::aux_mmap_count dropped to zero,
6076 * they won't start any more (see perf_aux_output_begin()).
6077 */
6078 perf_pmu_output_stop(event);
6079
6080 /* now it's safe to free the pages */
6081 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6082 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6083
6084 /* this has to be the last one */
6085 rb_free_aux(rb);
6086 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6087
6088 mutex_unlock(&event->mmap_mutex);
6089 }
6090
6091 if (atomic_dec_and_test(&rb->mmap_count))
6092 detach_rest = true;
6093
6094 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6095 goto out_put;
6096
6097 ring_buffer_attach(event, NULL);
6098 mutex_unlock(&event->mmap_mutex);
6099
6100 /* If there's still other mmap()s of this buffer, we're done. */
6101 if (!detach_rest)
6102 goto out_put;
6103
6104 /*
6105 * No other mmap()s, detach from all other events that might redirect
6106 * into the now unreachable buffer. Somewhat complicated by the
6107 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6108 */
6109 again:
6110 rcu_read_lock();
6111 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6112 if (!atomic_long_inc_not_zero(&event->refcount)) {
6113 /*
6114 * This event is en-route to free_event() which will
6115 * detach it and remove it from the list.
6116 */
6117 continue;
6118 }
6119 rcu_read_unlock();
6120
6121 mutex_lock(&event->mmap_mutex);
6122 /*
6123 * Check we didn't race with perf_event_set_output() which can
6124 * swizzle the rb from under us while we were waiting to
6125 * acquire mmap_mutex.
6126 *
6127 * If we find a different rb; ignore this event, a next
6128 * iteration will no longer find it on the list. We have to
6129 * still restart the iteration to make sure we're not now
6130 * iterating the wrong list.
6131 */
6132 if (event->rb == rb)
6133 ring_buffer_attach(event, NULL);
6134
6135 mutex_unlock(&event->mmap_mutex);
6136 put_event(event);
6137
6138 /*
6139 * Restart the iteration; either we're on the wrong list or
6140 * destroyed its integrity by doing a deletion.
6141 */
6142 goto again;
6143 }
6144 rcu_read_unlock();
6145
6146 /*
6147 * It could be there's still a few 0-ref events on the list; they'll
6148 * get cleaned up by free_event() -- they'll also still have their
6149 * ref on the rb and will free it whenever they are done with it.
6150 *
6151 * Aside from that, this buffer is 'fully' detached and unmapped,
6152 * undo the VM accounting.
6153 */
6154
6155 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6156 &mmap_user->locked_vm);
6157 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6158 free_uid(mmap_user);
6159
6160 out_put:
6161 ring_buffer_put(rb); /* could be last */
6162 }
6163
6164 static const struct vm_operations_struct perf_mmap_vmops = {
6165 .open = perf_mmap_open,
6166 .close = perf_mmap_close, /* non mergeable */
6167 .fault = perf_mmap_fault,
6168 .page_mkwrite = perf_mmap_fault,
6169 };
6170
perf_mmap(struct file * file,struct vm_area_struct * vma)6171 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6172 {
6173 struct perf_event *event = file->private_data;
6174 unsigned long user_locked, user_lock_limit;
6175 struct user_struct *user = current_user();
6176 struct perf_buffer *rb = NULL;
6177 unsigned long locked, lock_limit;
6178 unsigned long vma_size;
6179 unsigned long nr_pages;
6180 long user_extra = 0, extra = 0;
6181 int ret = 0, flags = 0;
6182
6183 /*
6184 * Don't allow mmap() of inherited per-task counters. This would
6185 * create a performance issue due to all children writing to the
6186 * same rb.
6187 */
6188 if (event->cpu == -1 && event->attr.inherit)
6189 return -EINVAL;
6190
6191 if (!(vma->vm_flags & VM_SHARED))
6192 return -EINVAL;
6193
6194 ret = security_perf_event_read(event);
6195 if (ret)
6196 return ret;
6197
6198 vma_size = vma->vm_end - vma->vm_start;
6199
6200 if (vma->vm_pgoff == 0) {
6201 nr_pages = (vma_size / PAGE_SIZE) - 1;
6202 } else {
6203 /*
6204 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6205 * mapped, all subsequent mappings should have the same size
6206 * and offset. Must be above the normal perf buffer.
6207 */
6208 u64 aux_offset, aux_size;
6209
6210 if (!event->rb)
6211 return -EINVAL;
6212
6213 nr_pages = vma_size / PAGE_SIZE;
6214
6215 mutex_lock(&event->mmap_mutex);
6216 ret = -EINVAL;
6217
6218 rb = event->rb;
6219 if (!rb)
6220 goto aux_unlock;
6221
6222 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6223 aux_size = READ_ONCE(rb->user_page->aux_size);
6224
6225 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6226 goto aux_unlock;
6227
6228 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6229 goto aux_unlock;
6230
6231 /* already mapped with a different offset */
6232 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6233 goto aux_unlock;
6234
6235 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6236 goto aux_unlock;
6237
6238 /* already mapped with a different size */
6239 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6240 goto aux_unlock;
6241
6242 if (!is_power_of_2(nr_pages))
6243 goto aux_unlock;
6244
6245 if (!atomic_inc_not_zero(&rb->mmap_count))
6246 goto aux_unlock;
6247
6248 if (rb_has_aux(rb)) {
6249 atomic_inc(&rb->aux_mmap_count);
6250 ret = 0;
6251 goto unlock;
6252 }
6253
6254 atomic_set(&rb->aux_mmap_count, 1);
6255 user_extra = nr_pages;
6256
6257 goto accounting;
6258 }
6259
6260 /*
6261 * If we have rb pages ensure they're a power-of-two number, so we
6262 * can do bitmasks instead of modulo.
6263 */
6264 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6265 return -EINVAL;
6266
6267 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6268 return -EINVAL;
6269
6270 WARN_ON_ONCE(event->ctx->parent_ctx);
6271 again:
6272 mutex_lock(&event->mmap_mutex);
6273 if (event->rb) {
6274 if (data_page_nr(event->rb) != nr_pages) {
6275 ret = -EINVAL;
6276 goto unlock;
6277 }
6278
6279 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6280 /*
6281 * Raced against perf_mmap_close(); remove the
6282 * event and try again.
6283 */
6284 ring_buffer_attach(event, NULL);
6285 mutex_unlock(&event->mmap_mutex);
6286 goto again;
6287 }
6288
6289 goto unlock;
6290 }
6291
6292 user_extra = nr_pages + 1;
6293
6294 accounting:
6295 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6296
6297 /*
6298 * Increase the limit linearly with more CPUs:
6299 */
6300 user_lock_limit *= num_online_cpus();
6301
6302 user_locked = atomic_long_read(&user->locked_vm);
6303
6304 /*
6305 * sysctl_perf_event_mlock may have changed, so that
6306 * user->locked_vm > user_lock_limit
6307 */
6308 if (user_locked > user_lock_limit)
6309 user_locked = user_lock_limit;
6310 user_locked += user_extra;
6311
6312 if (user_locked > user_lock_limit) {
6313 /*
6314 * charge locked_vm until it hits user_lock_limit;
6315 * charge the rest from pinned_vm
6316 */
6317 extra = user_locked - user_lock_limit;
6318 user_extra -= extra;
6319 }
6320
6321 lock_limit = rlimit(RLIMIT_MEMLOCK);
6322 lock_limit >>= PAGE_SHIFT;
6323 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6324
6325 if ((locked > lock_limit) && perf_is_paranoid() &&
6326 !capable(CAP_IPC_LOCK)) {
6327 ret = -EPERM;
6328 goto unlock;
6329 }
6330
6331 WARN_ON(!rb && event->rb);
6332
6333 if (vma->vm_flags & VM_WRITE)
6334 flags |= RING_BUFFER_WRITABLE;
6335
6336 if (!rb) {
6337 rb = rb_alloc(nr_pages,
6338 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6339 event->cpu, flags);
6340
6341 if (!rb) {
6342 ret = -ENOMEM;
6343 goto unlock;
6344 }
6345
6346 atomic_set(&rb->mmap_count, 1);
6347 rb->mmap_user = get_current_user();
6348 rb->mmap_locked = extra;
6349
6350 ring_buffer_attach(event, rb);
6351
6352 perf_event_update_time(event);
6353 perf_event_init_userpage(event);
6354 perf_event_update_userpage(event);
6355 } else {
6356 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6357 event->attr.aux_watermark, flags);
6358 if (!ret)
6359 rb->aux_mmap_locked = extra;
6360 }
6361
6362 unlock:
6363 if (!ret) {
6364 atomic_long_add(user_extra, &user->locked_vm);
6365 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6366
6367 atomic_inc(&event->mmap_count);
6368 } else if (rb) {
6369 atomic_dec(&rb->mmap_count);
6370 }
6371 aux_unlock:
6372 mutex_unlock(&event->mmap_mutex);
6373
6374 /*
6375 * Since pinned accounting is per vm we cannot allow fork() to copy our
6376 * vma.
6377 */
6378 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6379 vma->vm_ops = &perf_mmap_vmops;
6380
6381 if (event->pmu->event_mapped)
6382 event->pmu->event_mapped(event, vma->vm_mm);
6383
6384 return ret;
6385 }
6386
perf_fasync(int fd,struct file * filp,int on)6387 static int perf_fasync(int fd, struct file *filp, int on)
6388 {
6389 struct inode *inode = file_inode(filp);
6390 struct perf_event *event = filp->private_data;
6391 int retval;
6392
6393 inode_lock(inode);
6394 retval = fasync_helper(fd, filp, on, &event->fasync);
6395 inode_unlock(inode);
6396
6397 if (retval < 0)
6398 return retval;
6399
6400 return 0;
6401 }
6402
6403 static const struct file_operations perf_fops = {
6404 .llseek = no_llseek,
6405 .release = perf_release,
6406 .read = perf_read,
6407 .poll = perf_poll,
6408 .unlocked_ioctl = perf_ioctl,
6409 .compat_ioctl = perf_compat_ioctl,
6410 .mmap = perf_mmap,
6411 .fasync = perf_fasync,
6412 };
6413
6414 /*
6415 * Perf event wakeup
6416 *
6417 * If there's data, ensure we set the poll() state and publish everything
6418 * to user-space before waking everybody up.
6419 */
6420
perf_event_fasync(struct perf_event * event)6421 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6422 {
6423 /* only the parent has fasync state */
6424 if (event->parent)
6425 event = event->parent;
6426 return &event->fasync;
6427 }
6428
perf_event_wakeup(struct perf_event * event)6429 void perf_event_wakeup(struct perf_event *event)
6430 {
6431 ring_buffer_wakeup(event);
6432
6433 if (event->pending_kill) {
6434 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6435 event->pending_kill = 0;
6436 }
6437 }
6438
perf_pending_event_disable(struct perf_event * event)6439 static void perf_pending_event_disable(struct perf_event *event)
6440 {
6441 int cpu = READ_ONCE(event->pending_disable);
6442
6443 if (cpu < 0)
6444 return;
6445
6446 if (cpu == smp_processor_id()) {
6447 WRITE_ONCE(event->pending_disable, -1);
6448 perf_event_disable_local(event);
6449 return;
6450 }
6451
6452 /*
6453 * CPU-A CPU-B
6454 *
6455 * perf_event_disable_inatomic()
6456 * @pending_disable = CPU-A;
6457 * irq_work_queue();
6458 *
6459 * sched-out
6460 * @pending_disable = -1;
6461 *
6462 * sched-in
6463 * perf_event_disable_inatomic()
6464 * @pending_disable = CPU-B;
6465 * irq_work_queue(); // FAILS
6466 *
6467 * irq_work_run()
6468 * perf_pending_event()
6469 *
6470 * But the event runs on CPU-B and wants disabling there.
6471 */
6472 irq_work_queue_on(&event->pending, cpu);
6473 }
6474
perf_pending_event(struct irq_work * entry)6475 static void perf_pending_event(struct irq_work *entry)
6476 {
6477 struct perf_event *event = container_of(entry, struct perf_event, pending);
6478 int rctx;
6479
6480 rctx = perf_swevent_get_recursion_context();
6481 /*
6482 * If we 'fail' here, that's OK, it means recursion is already disabled
6483 * and we won't recurse 'further'.
6484 */
6485
6486 perf_pending_event_disable(event);
6487
6488 if (event->pending_wakeup) {
6489 event->pending_wakeup = 0;
6490 perf_event_wakeup(event);
6491 }
6492
6493 if (rctx >= 0)
6494 perf_swevent_put_recursion_context(rctx);
6495 }
6496
6497 /*
6498 * We assume there is only KVM supporting the callbacks.
6499 * Later on, we might change it to a list if there is
6500 * another virtualization implementation supporting the callbacks.
6501 */
6502 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6503
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6504 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6505 {
6506 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6507 return -EBUSY;
6508
6509 rcu_assign_pointer(perf_guest_cbs, cbs);
6510 return 0;
6511 }
6512 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6513
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6514 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6515 {
6516 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6517 return -EINVAL;
6518
6519 rcu_assign_pointer(perf_guest_cbs, NULL);
6520 synchronize_rcu();
6521 return 0;
6522 }
6523 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6524
6525 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6526 perf_output_sample_regs(struct perf_output_handle *handle,
6527 struct pt_regs *regs, u64 mask)
6528 {
6529 int bit;
6530 DECLARE_BITMAP(_mask, 64);
6531
6532 bitmap_from_u64(_mask, mask);
6533 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6534 u64 val;
6535
6536 val = perf_reg_value(regs, bit);
6537 perf_output_put(handle, val);
6538 }
6539 }
6540
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6541 static void perf_sample_regs_user(struct perf_regs *regs_user,
6542 struct pt_regs *regs)
6543 {
6544 if (user_mode(regs)) {
6545 regs_user->abi = perf_reg_abi(current);
6546 regs_user->regs = regs;
6547 } else if (!(current->flags & PF_KTHREAD)) {
6548 perf_get_regs_user(regs_user, regs);
6549 } else {
6550 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6551 regs_user->regs = NULL;
6552 }
6553 }
6554
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6555 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6556 struct pt_regs *regs)
6557 {
6558 regs_intr->regs = regs;
6559 regs_intr->abi = perf_reg_abi(current);
6560 }
6561
6562
6563 /*
6564 * Get remaining task size from user stack pointer.
6565 *
6566 * It'd be better to take stack vma map and limit this more
6567 * precisely, but there's no way to get it safely under interrupt,
6568 * so using TASK_SIZE as limit.
6569 */
perf_ustack_task_size(struct pt_regs * regs)6570 static u64 perf_ustack_task_size(struct pt_regs *regs)
6571 {
6572 unsigned long addr = perf_user_stack_pointer(regs);
6573
6574 if (!addr || addr >= TASK_SIZE)
6575 return 0;
6576
6577 return TASK_SIZE - addr;
6578 }
6579
6580 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6581 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6582 struct pt_regs *regs)
6583 {
6584 u64 task_size;
6585
6586 /* No regs, no stack pointer, no dump. */
6587 if (!regs)
6588 return 0;
6589
6590 /*
6591 * Check if we fit in with the requested stack size into the:
6592 * - TASK_SIZE
6593 * If we don't, we limit the size to the TASK_SIZE.
6594 *
6595 * - remaining sample size
6596 * If we don't, we customize the stack size to
6597 * fit in to the remaining sample size.
6598 */
6599
6600 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6601 stack_size = min(stack_size, (u16) task_size);
6602
6603 /* Current header size plus static size and dynamic size. */
6604 header_size += 2 * sizeof(u64);
6605
6606 /* Do we fit in with the current stack dump size? */
6607 if ((u16) (header_size + stack_size) < header_size) {
6608 /*
6609 * If we overflow the maximum size for the sample,
6610 * we customize the stack dump size to fit in.
6611 */
6612 stack_size = USHRT_MAX - header_size - sizeof(u64);
6613 stack_size = round_up(stack_size, sizeof(u64));
6614 }
6615
6616 return stack_size;
6617 }
6618
6619 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6620 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6621 struct pt_regs *regs)
6622 {
6623 /* Case of a kernel thread, nothing to dump */
6624 if (!regs) {
6625 u64 size = 0;
6626 perf_output_put(handle, size);
6627 } else {
6628 unsigned long sp;
6629 unsigned int rem;
6630 u64 dyn_size;
6631 mm_segment_t fs;
6632
6633 /*
6634 * We dump:
6635 * static size
6636 * - the size requested by user or the best one we can fit
6637 * in to the sample max size
6638 * data
6639 * - user stack dump data
6640 * dynamic size
6641 * - the actual dumped size
6642 */
6643
6644 /* Static size. */
6645 perf_output_put(handle, dump_size);
6646
6647 /* Data. */
6648 sp = perf_user_stack_pointer(regs);
6649 fs = force_uaccess_begin();
6650 rem = __output_copy_user(handle, (void *) sp, dump_size);
6651 force_uaccess_end(fs);
6652 dyn_size = dump_size - rem;
6653
6654 perf_output_skip(handle, rem);
6655
6656 /* Dynamic size. */
6657 perf_output_put(handle, dyn_size);
6658 }
6659 }
6660
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6661 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6662 struct perf_sample_data *data,
6663 size_t size)
6664 {
6665 struct perf_event *sampler = event->aux_event;
6666 struct perf_buffer *rb;
6667
6668 data->aux_size = 0;
6669
6670 if (!sampler)
6671 goto out;
6672
6673 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6674 goto out;
6675
6676 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6677 goto out;
6678
6679 rb = ring_buffer_get(sampler);
6680 if (!rb)
6681 goto out;
6682
6683 /*
6684 * If this is an NMI hit inside sampling code, don't take
6685 * the sample. See also perf_aux_sample_output().
6686 */
6687 if (READ_ONCE(rb->aux_in_sampling)) {
6688 data->aux_size = 0;
6689 } else {
6690 size = min_t(size_t, size, perf_aux_size(rb));
6691 data->aux_size = ALIGN(size, sizeof(u64));
6692 }
6693 ring_buffer_put(rb);
6694
6695 out:
6696 return data->aux_size;
6697 }
6698
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)6699 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6700 struct perf_event *event,
6701 struct perf_output_handle *handle,
6702 unsigned long size)
6703 {
6704 unsigned long flags;
6705 long ret;
6706
6707 /*
6708 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6709 * paths. If we start calling them in NMI context, they may race with
6710 * the IRQ ones, that is, for example, re-starting an event that's just
6711 * been stopped, which is why we're using a separate callback that
6712 * doesn't change the event state.
6713 *
6714 * IRQs need to be disabled to prevent IPIs from racing with us.
6715 */
6716 local_irq_save(flags);
6717 /*
6718 * Guard against NMI hits inside the critical section;
6719 * see also perf_prepare_sample_aux().
6720 */
6721 WRITE_ONCE(rb->aux_in_sampling, 1);
6722 barrier();
6723
6724 ret = event->pmu->snapshot_aux(event, handle, size);
6725
6726 barrier();
6727 WRITE_ONCE(rb->aux_in_sampling, 0);
6728 local_irq_restore(flags);
6729
6730 return ret;
6731 }
6732
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)6733 static void perf_aux_sample_output(struct perf_event *event,
6734 struct perf_output_handle *handle,
6735 struct perf_sample_data *data)
6736 {
6737 struct perf_event *sampler = event->aux_event;
6738 struct perf_buffer *rb;
6739 unsigned long pad;
6740 long size;
6741
6742 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6743 return;
6744
6745 rb = ring_buffer_get(sampler);
6746 if (!rb)
6747 return;
6748
6749 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6750
6751 /*
6752 * An error here means that perf_output_copy() failed (returned a
6753 * non-zero surplus that it didn't copy), which in its current
6754 * enlightened implementation is not possible. If that changes, we'd
6755 * like to know.
6756 */
6757 if (WARN_ON_ONCE(size < 0))
6758 goto out_put;
6759
6760 /*
6761 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6762 * perf_prepare_sample_aux(), so should not be more than that.
6763 */
6764 pad = data->aux_size - size;
6765 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6766 pad = 8;
6767
6768 if (pad) {
6769 u64 zero = 0;
6770 perf_output_copy(handle, &zero, pad);
6771 }
6772
6773 out_put:
6774 ring_buffer_put(rb);
6775 }
6776
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6777 static void __perf_event_header__init_id(struct perf_event_header *header,
6778 struct perf_sample_data *data,
6779 struct perf_event *event)
6780 {
6781 u64 sample_type = event->attr.sample_type;
6782
6783 data->type = sample_type;
6784 header->size += event->id_header_size;
6785
6786 if (sample_type & PERF_SAMPLE_TID) {
6787 /* namespace issues */
6788 data->tid_entry.pid = perf_event_pid(event, current);
6789 data->tid_entry.tid = perf_event_tid(event, current);
6790 }
6791
6792 if (sample_type & PERF_SAMPLE_TIME)
6793 data->time = perf_event_clock(event);
6794
6795 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6796 data->id = primary_event_id(event);
6797
6798 if (sample_type & PERF_SAMPLE_STREAM_ID)
6799 data->stream_id = event->id;
6800
6801 if (sample_type & PERF_SAMPLE_CPU) {
6802 data->cpu_entry.cpu = raw_smp_processor_id();
6803 data->cpu_entry.reserved = 0;
6804 }
6805 }
6806
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6807 void perf_event_header__init_id(struct perf_event_header *header,
6808 struct perf_sample_data *data,
6809 struct perf_event *event)
6810 {
6811 if (event->attr.sample_id_all)
6812 __perf_event_header__init_id(header, data, event);
6813 }
6814
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6815 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6816 struct perf_sample_data *data)
6817 {
6818 u64 sample_type = data->type;
6819
6820 if (sample_type & PERF_SAMPLE_TID)
6821 perf_output_put(handle, data->tid_entry);
6822
6823 if (sample_type & PERF_SAMPLE_TIME)
6824 perf_output_put(handle, data->time);
6825
6826 if (sample_type & PERF_SAMPLE_ID)
6827 perf_output_put(handle, data->id);
6828
6829 if (sample_type & PERF_SAMPLE_STREAM_ID)
6830 perf_output_put(handle, data->stream_id);
6831
6832 if (sample_type & PERF_SAMPLE_CPU)
6833 perf_output_put(handle, data->cpu_entry);
6834
6835 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6836 perf_output_put(handle, data->id);
6837 }
6838
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6839 void perf_event__output_id_sample(struct perf_event *event,
6840 struct perf_output_handle *handle,
6841 struct perf_sample_data *sample)
6842 {
6843 if (event->attr.sample_id_all)
6844 __perf_event__output_id_sample(handle, sample);
6845 }
6846
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6847 static void perf_output_read_one(struct perf_output_handle *handle,
6848 struct perf_event *event,
6849 u64 enabled, u64 running)
6850 {
6851 u64 read_format = event->attr.read_format;
6852 u64 values[5];
6853 int n = 0;
6854
6855 values[n++] = perf_event_count(event);
6856 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6857 values[n++] = enabled +
6858 atomic64_read(&event->child_total_time_enabled);
6859 }
6860 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6861 values[n++] = running +
6862 atomic64_read(&event->child_total_time_running);
6863 }
6864 if (read_format & PERF_FORMAT_ID)
6865 values[n++] = primary_event_id(event);
6866 if (read_format & PERF_FORMAT_LOST)
6867 values[n++] = atomic64_read(&event->lost_samples);
6868
6869 __output_copy(handle, values, n * sizeof(u64));
6870 }
6871
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6872 static void perf_output_read_group(struct perf_output_handle *handle,
6873 struct perf_event *event,
6874 u64 enabled, u64 running)
6875 {
6876 struct perf_event *leader = event->group_leader, *sub;
6877 u64 read_format = event->attr.read_format;
6878 u64 values[6];
6879 int n = 0;
6880
6881 values[n++] = 1 + leader->nr_siblings;
6882
6883 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6884 values[n++] = enabled;
6885
6886 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6887 values[n++] = running;
6888
6889 if ((leader != event) &&
6890 (leader->state == PERF_EVENT_STATE_ACTIVE))
6891 leader->pmu->read(leader);
6892
6893 values[n++] = perf_event_count(leader);
6894 if (read_format & PERF_FORMAT_ID)
6895 values[n++] = primary_event_id(leader);
6896 if (read_format & PERF_FORMAT_LOST)
6897 values[n++] = atomic64_read(&leader->lost_samples);
6898
6899 __output_copy(handle, values, n * sizeof(u64));
6900
6901 for_each_sibling_event(sub, leader) {
6902 n = 0;
6903
6904 if ((sub != event) &&
6905 (sub->state == PERF_EVENT_STATE_ACTIVE))
6906 sub->pmu->read(sub);
6907
6908 values[n++] = perf_event_count(sub);
6909 if (read_format & PERF_FORMAT_ID)
6910 values[n++] = primary_event_id(sub);
6911 if (read_format & PERF_FORMAT_LOST)
6912 values[n++] = atomic64_read(&sub->lost_samples);
6913
6914 __output_copy(handle, values, n * sizeof(u64));
6915 }
6916 }
6917
6918 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6919 PERF_FORMAT_TOTAL_TIME_RUNNING)
6920
6921 /*
6922 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6923 *
6924 * The problem is that its both hard and excessively expensive to iterate the
6925 * child list, not to mention that its impossible to IPI the children running
6926 * on another CPU, from interrupt/NMI context.
6927 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6928 static void perf_output_read(struct perf_output_handle *handle,
6929 struct perf_event *event)
6930 {
6931 u64 enabled = 0, running = 0, now;
6932 u64 read_format = event->attr.read_format;
6933
6934 /*
6935 * compute total_time_enabled, total_time_running
6936 * based on snapshot values taken when the event
6937 * was last scheduled in.
6938 *
6939 * we cannot simply called update_context_time()
6940 * because of locking issue as we are called in
6941 * NMI context
6942 */
6943 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6944 calc_timer_values(event, &now, &enabled, &running);
6945
6946 if (event->attr.read_format & PERF_FORMAT_GROUP)
6947 perf_output_read_group(handle, event, enabled, running);
6948 else
6949 perf_output_read_one(handle, event, enabled, running);
6950 }
6951
perf_sample_save_hw_index(struct perf_event * event)6952 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6953 {
6954 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6955 }
6956
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6957 void perf_output_sample(struct perf_output_handle *handle,
6958 struct perf_event_header *header,
6959 struct perf_sample_data *data,
6960 struct perf_event *event)
6961 {
6962 u64 sample_type = data->type;
6963
6964 perf_output_put(handle, *header);
6965
6966 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6967 perf_output_put(handle, data->id);
6968
6969 if (sample_type & PERF_SAMPLE_IP)
6970 perf_output_put(handle, data->ip);
6971
6972 if (sample_type & PERF_SAMPLE_TID)
6973 perf_output_put(handle, data->tid_entry);
6974
6975 if (sample_type & PERF_SAMPLE_TIME)
6976 perf_output_put(handle, data->time);
6977
6978 if (sample_type & PERF_SAMPLE_ADDR)
6979 perf_output_put(handle, data->addr);
6980
6981 if (sample_type & PERF_SAMPLE_ID)
6982 perf_output_put(handle, data->id);
6983
6984 if (sample_type & PERF_SAMPLE_STREAM_ID)
6985 perf_output_put(handle, data->stream_id);
6986
6987 if (sample_type & PERF_SAMPLE_CPU)
6988 perf_output_put(handle, data->cpu_entry);
6989
6990 if (sample_type & PERF_SAMPLE_PERIOD)
6991 perf_output_put(handle, data->period);
6992
6993 if (sample_type & PERF_SAMPLE_READ)
6994 perf_output_read(handle, event);
6995
6996 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6997 int size = 1;
6998
6999 size += data->callchain->nr;
7000 size *= sizeof(u64);
7001 __output_copy(handle, data->callchain, size);
7002 }
7003
7004 if (sample_type & PERF_SAMPLE_RAW) {
7005 struct perf_raw_record *raw = data->raw;
7006
7007 if (raw) {
7008 struct perf_raw_frag *frag = &raw->frag;
7009
7010 perf_output_put(handle, raw->size);
7011 do {
7012 if (frag->copy) {
7013 __output_custom(handle, frag->copy,
7014 frag->data, frag->size);
7015 } else {
7016 __output_copy(handle, frag->data,
7017 frag->size);
7018 }
7019 if (perf_raw_frag_last(frag))
7020 break;
7021 frag = frag->next;
7022 } while (1);
7023 if (frag->pad)
7024 __output_skip(handle, NULL, frag->pad);
7025 } else {
7026 struct {
7027 u32 size;
7028 u32 data;
7029 } raw = {
7030 .size = sizeof(u32),
7031 .data = 0,
7032 };
7033 perf_output_put(handle, raw);
7034 }
7035 }
7036
7037 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7038 if (data->br_stack) {
7039 size_t size;
7040
7041 size = data->br_stack->nr
7042 * sizeof(struct perf_branch_entry);
7043
7044 perf_output_put(handle, data->br_stack->nr);
7045 if (perf_sample_save_hw_index(event))
7046 perf_output_put(handle, data->br_stack->hw_idx);
7047 perf_output_copy(handle, data->br_stack->entries, size);
7048 } else {
7049 /*
7050 * we always store at least the value of nr
7051 */
7052 u64 nr = 0;
7053 perf_output_put(handle, nr);
7054 }
7055 }
7056
7057 if (sample_type & PERF_SAMPLE_REGS_USER) {
7058 u64 abi = data->regs_user.abi;
7059
7060 /*
7061 * If there are no regs to dump, notice it through
7062 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7063 */
7064 perf_output_put(handle, abi);
7065
7066 if (abi) {
7067 u64 mask = event->attr.sample_regs_user;
7068 perf_output_sample_regs(handle,
7069 data->regs_user.regs,
7070 mask);
7071 }
7072 }
7073
7074 if (sample_type & PERF_SAMPLE_STACK_USER) {
7075 perf_output_sample_ustack(handle,
7076 data->stack_user_size,
7077 data->regs_user.regs);
7078 }
7079
7080 if (sample_type & PERF_SAMPLE_WEIGHT)
7081 perf_output_put(handle, data->weight);
7082
7083 if (sample_type & PERF_SAMPLE_DATA_SRC)
7084 perf_output_put(handle, data->data_src.val);
7085
7086 if (sample_type & PERF_SAMPLE_TRANSACTION)
7087 perf_output_put(handle, data->txn);
7088
7089 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7090 u64 abi = data->regs_intr.abi;
7091 /*
7092 * If there are no regs to dump, notice it through
7093 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7094 */
7095 perf_output_put(handle, abi);
7096
7097 if (abi) {
7098 u64 mask = event->attr.sample_regs_intr;
7099
7100 perf_output_sample_regs(handle,
7101 data->regs_intr.regs,
7102 mask);
7103 }
7104 }
7105
7106 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7107 perf_output_put(handle, data->phys_addr);
7108
7109 if (sample_type & PERF_SAMPLE_CGROUP)
7110 perf_output_put(handle, data->cgroup);
7111
7112 if (sample_type & PERF_SAMPLE_AUX) {
7113 perf_output_put(handle, data->aux_size);
7114
7115 if (data->aux_size)
7116 perf_aux_sample_output(event, handle, data);
7117 }
7118
7119 if (!event->attr.watermark) {
7120 int wakeup_events = event->attr.wakeup_events;
7121
7122 if (wakeup_events) {
7123 struct perf_buffer *rb = handle->rb;
7124 int events = local_inc_return(&rb->events);
7125
7126 if (events >= wakeup_events) {
7127 local_sub(wakeup_events, &rb->events);
7128 local_inc(&rb->wakeup);
7129 }
7130 }
7131 }
7132 }
7133
perf_virt_to_phys(u64 virt)7134 static u64 perf_virt_to_phys(u64 virt)
7135 {
7136 u64 phys_addr = 0;
7137
7138 if (!virt)
7139 return 0;
7140
7141 if (virt >= TASK_SIZE) {
7142 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7143 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7144 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7145 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7146 } else {
7147 /*
7148 * Walking the pages tables for user address.
7149 * Interrupts are disabled, so it prevents any tear down
7150 * of the page tables.
7151 * Try IRQ-safe get_user_page_fast_only first.
7152 * If failed, leave phys_addr as 0.
7153 */
7154 if (current->mm != NULL) {
7155 struct page *p;
7156
7157 pagefault_disable();
7158 if (get_user_page_fast_only(virt, 0, &p)) {
7159 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7160 put_page(p);
7161 }
7162 pagefault_enable();
7163 }
7164 }
7165
7166 return phys_addr;
7167 }
7168
7169 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7170
7171 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7172 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7173 {
7174 bool kernel = !event->attr.exclude_callchain_kernel;
7175 bool user = !event->attr.exclude_callchain_user;
7176 /* Disallow cross-task user callchains. */
7177 bool crosstask = event->ctx->task && event->ctx->task != current;
7178 const u32 max_stack = event->attr.sample_max_stack;
7179 struct perf_callchain_entry *callchain;
7180
7181 if (!kernel && !user)
7182 return &__empty_callchain;
7183
7184 callchain = get_perf_callchain(regs, 0, kernel, user,
7185 max_stack, crosstask, true);
7186 return callchain ?: &__empty_callchain;
7187 }
7188
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7189 void perf_prepare_sample(struct perf_event_header *header,
7190 struct perf_sample_data *data,
7191 struct perf_event *event,
7192 struct pt_regs *regs)
7193 {
7194 u64 sample_type = event->attr.sample_type;
7195
7196 header->type = PERF_RECORD_SAMPLE;
7197 header->size = sizeof(*header) + event->header_size;
7198
7199 header->misc = 0;
7200 header->misc |= perf_misc_flags(regs);
7201
7202 __perf_event_header__init_id(header, data, event);
7203
7204 if (sample_type & PERF_SAMPLE_IP)
7205 data->ip = perf_instruction_pointer(regs);
7206
7207 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7208 int size = 1;
7209
7210 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7211 data->callchain = perf_callchain(event, regs);
7212
7213 size += data->callchain->nr;
7214
7215 header->size += size * sizeof(u64);
7216 }
7217
7218 if (sample_type & PERF_SAMPLE_RAW) {
7219 struct perf_raw_record *raw = data->raw;
7220 int size;
7221
7222 if (raw) {
7223 struct perf_raw_frag *frag = &raw->frag;
7224 u32 sum = 0;
7225
7226 do {
7227 sum += frag->size;
7228 if (perf_raw_frag_last(frag))
7229 break;
7230 frag = frag->next;
7231 } while (1);
7232
7233 size = round_up(sum + sizeof(u32), sizeof(u64));
7234 raw->size = size - sizeof(u32);
7235 frag->pad = raw->size - sum;
7236 } else {
7237 size = sizeof(u64);
7238 }
7239
7240 header->size += size;
7241 }
7242
7243 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7244 int size = sizeof(u64); /* nr */
7245 if (data->br_stack) {
7246 if (perf_sample_save_hw_index(event))
7247 size += sizeof(u64);
7248
7249 size += data->br_stack->nr
7250 * sizeof(struct perf_branch_entry);
7251 }
7252 header->size += size;
7253 }
7254
7255 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7256 perf_sample_regs_user(&data->regs_user, regs);
7257
7258 if (sample_type & PERF_SAMPLE_REGS_USER) {
7259 /* regs dump ABI info */
7260 int size = sizeof(u64);
7261
7262 if (data->regs_user.regs) {
7263 u64 mask = event->attr.sample_regs_user;
7264 size += hweight64(mask) * sizeof(u64);
7265 }
7266
7267 header->size += size;
7268 }
7269
7270 if (sample_type & PERF_SAMPLE_STACK_USER) {
7271 /*
7272 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7273 * processed as the last one or have additional check added
7274 * in case new sample type is added, because we could eat
7275 * up the rest of the sample size.
7276 */
7277 u16 stack_size = event->attr.sample_stack_user;
7278 u16 size = sizeof(u64);
7279
7280 stack_size = perf_sample_ustack_size(stack_size, header->size,
7281 data->regs_user.regs);
7282
7283 /*
7284 * If there is something to dump, add space for the dump
7285 * itself and for the field that tells the dynamic size,
7286 * which is how many have been actually dumped.
7287 */
7288 if (stack_size)
7289 size += sizeof(u64) + stack_size;
7290
7291 data->stack_user_size = stack_size;
7292 header->size += size;
7293 }
7294
7295 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7296 /* regs dump ABI info */
7297 int size = sizeof(u64);
7298
7299 perf_sample_regs_intr(&data->regs_intr, regs);
7300
7301 if (data->regs_intr.regs) {
7302 u64 mask = event->attr.sample_regs_intr;
7303
7304 size += hweight64(mask) * sizeof(u64);
7305 }
7306
7307 header->size += size;
7308 }
7309
7310 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7311 data->phys_addr = perf_virt_to_phys(data->addr);
7312
7313 #ifdef CONFIG_CGROUP_PERF
7314 if (sample_type & PERF_SAMPLE_CGROUP) {
7315 struct cgroup *cgrp;
7316
7317 /* protected by RCU */
7318 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7319 data->cgroup = cgroup_id(cgrp);
7320 }
7321 #endif
7322
7323 if (sample_type & PERF_SAMPLE_AUX) {
7324 u64 size;
7325
7326 header->size += sizeof(u64); /* size */
7327
7328 /*
7329 * Given the 16bit nature of header::size, an AUX sample can
7330 * easily overflow it, what with all the preceding sample bits.
7331 * Make sure this doesn't happen by using up to U16_MAX bytes
7332 * per sample in total (rounded down to 8 byte boundary).
7333 */
7334 size = min_t(size_t, U16_MAX - header->size,
7335 event->attr.aux_sample_size);
7336 size = rounddown(size, 8);
7337 size = perf_prepare_sample_aux(event, data, size);
7338
7339 WARN_ON_ONCE(size + header->size > U16_MAX);
7340 header->size += size;
7341 }
7342 /*
7343 * If you're adding more sample types here, you likely need to do
7344 * something about the overflowing header::size, like repurpose the
7345 * lowest 3 bits of size, which should be always zero at the moment.
7346 * This raises a more important question, do we really need 512k sized
7347 * samples and why, so good argumentation is in order for whatever you
7348 * do here next.
7349 */
7350 WARN_ON_ONCE(header->size & 7);
7351 }
7352
7353 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7354 __perf_event_output(struct perf_event *event,
7355 struct perf_sample_data *data,
7356 struct pt_regs *regs,
7357 int (*output_begin)(struct perf_output_handle *,
7358 struct perf_sample_data *,
7359 struct perf_event *,
7360 unsigned int))
7361 {
7362 struct perf_output_handle handle;
7363 struct perf_event_header header;
7364 int err;
7365
7366 /* protect the callchain buffers */
7367 rcu_read_lock();
7368
7369 perf_prepare_sample(&header, data, event, regs);
7370
7371 err = output_begin(&handle, data, event, header.size);
7372 if (err)
7373 goto exit;
7374
7375 perf_output_sample(&handle, &header, data, event);
7376
7377 perf_output_end(&handle);
7378
7379 exit:
7380 rcu_read_unlock();
7381 return err;
7382 }
7383
7384 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7385 perf_event_output_forward(struct perf_event *event,
7386 struct perf_sample_data *data,
7387 struct pt_regs *regs)
7388 {
7389 __perf_event_output(event, data, regs, perf_output_begin_forward);
7390 }
7391
7392 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7393 perf_event_output_backward(struct perf_event *event,
7394 struct perf_sample_data *data,
7395 struct pt_regs *regs)
7396 {
7397 __perf_event_output(event, data, regs, perf_output_begin_backward);
7398 }
7399
7400 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7401 perf_event_output(struct perf_event *event,
7402 struct perf_sample_data *data,
7403 struct pt_regs *regs)
7404 {
7405 return __perf_event_output(event, data, regs, perf_output_begin);
7406 }
7407
7408 /*
7409 * read event_id
7410 */
7411
7412 struct perf_read_event {
7413 struct perf_event_header header;
7414
7415 u32 pid;
7416 u32 tid;
7417 };
7418
7419 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7420 perf_event_read_event(struct perf_event *event,
7421 struct task_struct *task)
7422 {
7423 struct perf_output_handle handle;
7424 struct perf_sample_data sample;
7425 struct perf_read_event read_event = {
7426 .header = {
7427 .type = PERF_RECORD_READ,
7428 .misc = 0,
7429 .size = sizeof(read_event) + event->read_size,
7430 },
7431 .pid = perf_event_pid(event, task),
7432 .tid = perf_event_tid(event, task),
7433 };
7434 int ret;
7435
7436 perf_event_header__init_id(&read_event.header, &sample, event);
7437 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7438 if (ret)
7439 return;
7440
7441 perf_output_put(&handle, read_event);
7442 perf_output_read(&handle, event);
7443 perf_event__output_id_sample(event, &handle, &sample);
7444
7445 perf_output_end(&handle);
7446 }
7447
7448 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7449
7450 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7451 perf_iterate_ctx(struct perf_event_context *ctx,
7452 perf_iterate_f output,
7453 void *data, bool all)
7454 {
7455 struct perf_event *event;
7456
7457 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7458 if (!all) {
7459 if (event->state < PERF_EVENT_STATE_INACTIVE)
7460 continue;
7461 if (!event_filter_match(event))
7462 continue;
7463 }
7464
7465 output(event, data);
7466 }
7467 }
7468
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7469 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7470 {
7471 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7472 struct perf_event *event;
7473
7474 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7475 /*
7476 * Skip events that are not fully formed yet; ensure that
7477 * if we observe event->ctx, both event and ctx will be
7478 * complete enough. See perf_install_in_context().
7479 */
7480 if (!smp_load_acquire(&event->ctx))
7481 continue;
7482
7483 if (event->state < PERF_EVENT_STATE_INACTIVE)
7484 continue;
7485 if (!event_filter_match(event))
7486 continue;
7487 output(event, data);
7488 }
7489 }
7490
7491 /*
7492 * Iterate all events that need to receive side-band events.
7493 *
7494 * For new callers; ensure that account_pmu_sb_event() includes
7495 * your event, otherwise it might not get delivered.
7496 */
7497 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7498 perf_iterate_sb(perf_iterate_f output, void *data,
7499 struct perf_event_context *task_ctx)
7500 {
7501 struct perf_event_context *ctx;
7502 int ctxn;
7503
7504 rcu_read_lock();
7505 preempt_disable();
7506
7507 /*
7508 * If we have task_ctx != NULL we only notify the task context itself.
7509 * The task_ctx is set only for EXIT events before releasing task
7510 * context.
7511 */
7512 if (task_ctx) {
7513 perf_iterate_ctx(task_ctx, output, data, false);
7514 goto done;
7515 }
7516
7517 perf_iterate_sb_cpu(output, data);
7518
7519 for_each_task_context_nr(ctxn) {
7520 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7521 if (ctx)
7522 perf_iterate_ctx(ctx, output, data, false);
7523 }
7524 done:
7525 preempt_enable();
7526 rcu_read_unlock();
7527 }
7528
7529 /*
7530 * Clear all file-based filters at exec, they'll have to be
7531 * re-instated when/if these objects are mmapped again.
7532 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)7533 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7534 {
7535 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7536 struct perf_addr_filter *filter;
7537 unsigned int restart = 0, count = 0;
7538 unsigned long flags;
7539
7540 if (!has_addr_filter(event))
7541 return;
7542
7543 raw_spin_lock_irqsave(&ifh->lock, flags);
7544 list_for_each_entry(filter, &ifh->list, entry) {
7545 if (filter->path.dentry) {
7546 event->addr_filter_ranges[count].start = 0;
7547 event->addr_filter_ranges[count].size = 0;
7548 restart++;
7549 }
7550
7551 count++;
7552 }
7553
7554 if (restart)
7555 event->addr_filters_gen++;
7556 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7557
7558 if (restart)
7559 perf_event_stop(event, 1);
7560 }
7561
perf_event_exec(void)7562 void perf_event_exec(void)
7563 {
7564 struct perf_event_context *ctx;
7565 int ctxn;
7566
7567 rcu_read_lock();
7568 for_each_task_context_nr(ctxn) {
7569 ctx = current->perf_event_ctxp[ctxn];
7570 if (!ctx)
7571 continue;
7572
7573 perf_event_enable_on_exec(ctxn);
7574
7575 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7576 true);
7577 }
7578 rcu_read_unlock();
7579 }
7580
7581 struct remote_output {
7582 struct perf_buffer *rb;
7583 int err;
7584 };
7585
__perf_event_output_stop(struct perf_event * event,void * data)7586 static void __perf_event_output_stop(struct perf_event *event, void *data)
7587 {
7588 struct perf_event *parent = event->parent;
7589 struct remote_output *ro = data;
7590 struct perf_buffer *rb = ro->rb;
7591 struct stop_event_data sd = {
7592 .event = event,
7593 };
7594
7595 if (!has_aux(event))
7596 return;
7597
7598 if (!parent)
7599 parent = event;
7600
7601 /*
7602 * In case of inheritance, it will be the parent that links to the
7603 * ring-buffer, but it will be the child that's actually using it.
7604 *
7605 * We are using event::rb to determine if the event should be stopped,
7606 * however this may race with ring_buffer_attach() (through set_output),
7607 * which will make us skip the event that actually needs to be stopped.
7608 * So ring_buffer_attach() has to stop an aux event before re-assigning
7609 * its rb pointer.
7610 */
7611 if (rcu_dereference(parent->rb) == rb)
7612 ro->err = __perf_event_stop(&sd);
7613 }
7614
__perf_pmu_output_stop(void * info)7615 static int __perf_pmu_output_stop(void *info)
7616 {
7617 struct perf_event *event = info;
7618 struct pmu *pmu = event->ctx->pmu;
7619 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7620 struct remote_output ro = {
7621 .rb = event->rb,
7622 };
7623
7624 rcu_read_lock();
7625 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7626 if (cpuctx->task_ctx)
7627 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7628 &ro, false);
7629 rcu_read_unlock();
7630
7631 return ro.err;
7632 }
7633
perf_pmu_output_stop(struct perf_event * event)7634 static void perf_pmu_output_stop(struct perf_event *event)
7635 {
7636 struct perf_event *iter;
7637 int err, cpu;
7638
7639 restart:
7640 rcu_read_lock();
7641 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7642 /*
7643 * For per-CPU events, we need to make sure that neither they
7644 * nor their children are running; for cpu==-1 events it's
7645 * sufficient to stop the event itself if it's active, since
7646 * it can't have children.
7647 */
7648 cpu = iter->cpu;
7649 if (cpu == -1)
7650 cpu = READ_ONCE(iter->oncpu);
7651
7652 if (cpu == -1)
7653 continue;
7654
7655 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7656 if (err == -EAGAIN) {
7657 rcu_read_unlock();
7658 goto restart;
7659 }
7660 }
7661 rcu_read_unlock();
7662 }
7663
7664 /*
7665 * task tracking -- fork/exit
7666 *
7667 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7668 */
7669
7670 struct perf_task_event {
7671 struct task_struct *task;
7672 struct perf_event_context *task_ctx;
7673
7674 struct {
7675 struct perf_event_header header;
7676
7677 u32 pid;
7678 u32 ppid;
7679 u32 tid;
7680 u32 ptid;
7681 u64 time;
7682 } event_id;
7683 };
7684
perf_event_task_match(struct perf_event * event)7685 static int perf_event_task_match(struct perf_event *event)
7686 {
7687 return event->attr.comm || event->attr.mmap ||
7688 event->attr.mmap2 || event->attr.mmap_data ||
7689 event->attr.task;
7690 }
7691
perf_event_task_output(struct perf_event * event,void * data)7692 static void perf_event_task_output(struct perf_event *event,
7693 void *data)
7694 {
7695 struct perf_task_event *task_event = data;
7696 struct perf_output_handle handle;
7697 struct perf_sample_data sample;
7698 struct task_struct *task = task_event->task;
7699 int ret, size = task_event->event_id.header.size;
7700
7701 if (!perf_event_task_match(event))
7702 return;
7703
7704 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7705
7706 ret = perf_output_begin(&handle, &sample, event,
7707 task_event->event_id.header.size);
7708 if (ret)
7709 goto out;
7710
7711 task_event->event_id.pid = perf_event_pid(event, task);
7712 task_event->event_id.tid = perf_event_tid(event, task);
7713
7714 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7715 task_event->event_id.ppid = perf_event_pid(event,
7716 task->real_parent);
7717 task_event->event_id.ptid = perf_event_pid(event,
7718 task->real_parent);
7719 } else { /* PERF_RECORD_FORK */
7720 task_event->event_id.ppid = perf_event_pid(event, current);
7721 task_event->event_id.ptid = perf_event_tid(event, current);
7722 }
7723
7724 task_event->event_id.time = perf_event_clock(event);
7725
7726 perf_output_put(&handle, task_event->event_id);
7727
7728 perf_event__output_id_sample(event, &handle, &sample);
7729
7730 perf_output_end(&handle);
7731 out:
7732 task_event->event_id.header.size = size;
7733 }
7734
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7735 static void perf_event_task(struct task_struct *task,
7736 struct perf_event_context *task_ctx,
7737 int new)
7738 {
7739 struct perf_task_event task_event;
7740
7741 if (!atomic_read(&nr_comm_events) &&
7742 !atomic_read(&nr_mmap_events) &&
7743 !atomic_read(&nr_task_events))
7744 return;
7745
7746 task_event = (struct perf_task_event){
7747 .task = task,
7748 .task_ctx = task_ctx,
7749 .event_id = {
7750 .header = {
7751 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7752 .misc = 0,
7753 .size = sizeof(task_event.event_id),
7754 },
7755 /* .pid */
7756 /* .ppid */
7757 /* .tid */
7758 /* .ptid */
7759 /* .time */
7760 },
7761 };
7762
7763 perf_iterate_sb(perf_event_task_output,
7764 &task_event,
7765 task_ctx);
7766 }
7767
perf_event_fork(struct task_struct * task)7768 void perf_event_fork(struct task_struct *task)
7769 {
7770 perf_event_task(task, NULL, 1);
7771 perf_event_namespaces(task);
7772 }
7773
7774 /*
7775 * comm tracking
7776 */
7777
7778 struct perf_comm_event {
7779 struct task_struct *task;
7780 char *comm;
7781 int comm_size;
7782
7783 struct {
7784 struct perf_event_header header;
7785
7786 u32 pid;
7787 u32 tid;
7788 } event_id;
7789 };
7790
perf_event_comm_match(struct perf_event * event)7791 static int perf_event_comm_match(struct perf_event *event)
7792 {
7793 return event->attr.comm;
7794 }
7795
perf_event_comm_output(struct perf_event * event,void * data)7796 static void perf_event_comm_output(struct perf_event *event,
7797 void *data)
7798 {
7799 struct perf_comm_event *comm_event = data;
7800 struct perf_output_handle handle;
7801 struct perf_sample_data sample;
7802 int size = comm_event->event_id.header.size;
7803 int ret;
7804
7805 if (!perf_event_comm_match(event))
7806 return;
7807
7808 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7809 ret = perf_output_begin(&handle, &sample, event,
7810 comm_event->event_id.header.size);
7811
7812 if (ret)
7813 goto out;
7814
7815 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7816 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7817
7818 perf_output_put(&handle, comm_event->event_id);
7819 __output_copy(&handle, comm_event->comm,
7820 comm_event->comm_size);
7821
7822 perf_event__output_id_sample(event, &handle, &sample);
7823
7824 perf_output_end(&handle);
7825 out:
7826 comm_event->event_id.header.size = size;
7827 }
7828
perf_event_comm_event(struct perf_comm_event * comm_event)7829 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7830 {
7831 char comm[TASK_COMM_LEN];
7832 unsigned int size;
7833
7834 memset(comm, 0, sizeof(comm));
7835 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7836 size = ALIGN(strlen(comm)+1, sizeof(u64));
7837
7838 comm_event->comm = comm;
7839 comm_event->comm_size = size;
7840
7841 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7842
7843 perf_iterate_sb(perf_event_comm_output,
7844 comm_event,
7845 NULL);
7846 }
7847
perf_event_comm(struct task_struct * task,bool exec)7848 void perf_event_comm(struct task_struct *task, bool exec)
7849 {
7850 struct perf_comm_event comm_event;
7851
7852 if (!atomic_read(&nr_comm_events))
7853 return;
7854
7855 comm_event = (struct perf_comm_event){
7856 .task = task,
7857 /* .comm */
7858 /* .comm_size */
7859 .event_id = {
7860 .header = {
7861 .type = PERF_RECORD_COMM,
7862 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7863 /* .size */
7864 },
7865 /* .pid */
7866 /* .tid */
7867 },
7868 };
7869
7870 perf_event_comm_event(&comm_event);
7871 }
7872
7873 /*
7874 * namespaces tracking
7875 */
7876
7877 struct perf_namespaces_event {
7878 struct task_struct *task;
7879
7880 struct {
7881 struct perf_event_header header;
7882
7883 u32 pid;
7884 u32 tid;
7885 u64 nr_namespaces;
7886 struct perf_ns_link_info link_info[NR_NAMESPACES];
7887 } event_id;
7888 };
7889
perf_event_namespaces_match(struct perf_event * event)7890 static int perf_event_namespaces_match(struct perf_event *event)
7891 {
7892 return event->attr.namespaces;
7893 }
7894
perf_event_namespaces_output(struct perf_event * event,void * data)7895 static void perf_event_namespaces_output(struct perf_event *event,
7896 void *data)
7897 {
7898 struct perf_namespaces_event *namespaces_event = data;
7899 struct perf_output_handle handle;
7900 struct perf_sample_data sample;
7901 u16 header_size = namespaces_event->event_id.header.size;
7902 int ret;
7903
7904 if (!perf_event_namespaces_match(event))
7905 return;
7906
7907 perf_event_header__init_id(&namespaces_event->event_id.header,
7908 &sample, event);
7909 ret = perf_output_begin(&handle, &sample, event,
7910 namespaces_event->event_id.header.size);
7911 if (ret)
7912 goto out;
7913
7914 namespaces_event->event_id.pid = perf_event_pid(event,
7915 namespaces_event->task);
7916 namespaces_event->event_id.tid = perf_event_tid(event,
7917 namespaces_event->task);
7918
7919 perf_output_put(&handle, namespaces_event->event_id);
7920
7921 perf_event__output_id_sample(event, &handle, &sample);
7922
7923 perf_output_end(&handle);
7924 out:
7925 namespaces_event->event_id.header.size = header_size;
7926 }
7927
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7928 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7929 struct task_struct *task,
7930 const struct proc_ns_operations *ns_ops)
7931 {
7932 struct path ns_path;
7933 struct inode *ns_inode;
7934 int error;
7935
7936 error = ns_get_path(&ns_path, task, ns_ops);
7937 if (!error) {
7938 ns_inode = ns_path.dentry->d_inode;
7939 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7940 ns_link_info->ino = ns_inode->i_ino;
7941 path_put(&ns_path);
7942 }
7943 }
7944
perf_event_namespaces(struct task_struct * task)7945 void perf_event_namespaces(struct task_struct *task)
7946 {
7947 struct perf_namespaces_event namespaces_event;
7948 struct perf_ns_link_info *ns_link_info;
7949
7950 if (!atomic_read(&nr_namespaces_events))
7951 return;
7952
7953 namespaces_event = (struct perf_namespaces_event){
7954 .task = task,
7955 .event_id = {
7956 .header = {
7957 .type = PERF_RECORD_NAMESPACES,
7958 .misc = 0,
7959 .size = sizeof(namespaces_event.event_id),
7960 },
7961 /* .pid */
7962 /* .tid */
7963 .nr_namespaces = NR_NAMESPACES,
7964 /* .link_info[NR_NAMESPACES] */
7965 },
7966 };
7967
7968 ns_link_info = namespaces_event.event_id.link_info;
7969
7970 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7971 task, &mntns_operations);
7972
7973 #ifdef CONFIG_USER_NS
7974 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7975 task, &userns_operations);
7976 #endif
7977 #ifdef CONFIG_NET_NS
7978 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7979 task, &netns_operations);
7980 #endif
7981 #ifdef CONFIG_UTS_NS
7982 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7983 task, &utsns_operations);
7984 #endif
7985 #ifdef CONFIG_IPC_NS
7986 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7987 task, &ipcns_operations);
7988 #endif
7989 #ifdef CONFIG_PID_NS
7990 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7991 task, &pidns_operations);
7992 #endif
7993 #ifdef CONFIG_CGROUPS
7994 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7995 task, &cgroupns_operations);
7996 #endif
7997
7998 perf_iterate_sb(perf_event_namespaces_output,
7999 &namespaces_event,
8000 NULL);
8001 }
8002
8003 /*
8004 * cgroup tracking
8005 */
8006 #ifdef CONFIG_CGROUP_PERF
8007
8008 struct perf_cgroup_event {
8009 char *path;
8010 int path_size;
8011 struct {
8012 struct perf_event_header header;
8013 u64 id;
8014 char path[];
8015 } event_id;
8016 };
8017
perf_event_cgroup_match(struct perf_event * event)8018 static int perf_event_cgroup_match(struct perf_event *event)
8019 {
8020 return event->attr.cgroup;
8021 }
8022
perf_event_cgroup_output(struct perf_event * event,void * data)8023 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8024 {
8025 struct perf_cgroup_event *cgroup_event = data;
8026 struct perf_output_handle handle;
8027 struct perf_sample_data sample;
8028 u16 header_size = cgroup_event->event_id.header.size;
8029 int ret;
8030
8031 if (!perf_event_cgroup_match(event))
8032 return;
8033
8034 perf_event_header__init_id(&cgroup_event->event_id.header,
8035 &sample, event);
8036 ret = perf_output_begin(&handle, &sample, event,
8037 cgroup_event->event_id.header.size);
8038 if (ret)
8039 goto out;
8040
8041 perf_output_put(&handle, cgroup_event->event_id);
8042 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8043
8044 perf_event__output_id_sample(event, &handle, &sample);
8045
8046 perf_output_end(&handle);
8047 out:
8048 cgroup_event->event_id.header.size = header_size;
8049 }
8050
perf_event_cgroup(struct cgroup * cgrp)8051 static void perf_event_cgroup(struct cgroup *cgrp)
8052 {
8053 struct perf_cgroup_event cgroup_event;
8054 char path_enomem[16] = "//enomem";
8055 char *pathname;
8056 size_t size;
8057
8058 if (!atomic_read(&nr_cgroup_events))
8059 return;
8060
8061 cgroup_event = (struct perf_cgroup_event){
8062 .event_id = {
8063 .header = {
8064 .type = PERF_RECORD_CGROUP,
8065 .misc = 0,
8066 .size = sizeof(cgroup_event.event_id),
8067 },
8068 .id = cgroup_id(cgrp),
8069 },
8070 };
8071
8072 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8073 if (pathname == NULL) {
8074 cgroup_event.path = path_enomem;
8075 } else {
8076 /* just to be sure to have enough space for alignment */
8077 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8078 cgroup_event.path = pathname;
8079 }
8080
8081 /*
8082 * Since our buffer works in 8 byte units we need to align our string
8083 * size to a multiple of 8. However, we must guarantee the tail end is
8084 * zero'd out to avoid leaking random bits to userspace.
8085 */
8086 size = strlen(cgroup_event.path) + 1;
8087 while (!IS_ALIGNED(size, sizeof(u64)))
8088 cgroup_event.path[size++] = '\0';
8089
8090 cgroup_event.event_id.header.size += size;
8091 cgroup_event.path_size = size;
8092
8093 perf_iterate_sb(perf_event_cgroup_output,
8094 &cgroup_event,
8095 NULL);
8096
8097 kfree(pathname);
8098 }
8099
8100 #endif
8101
8102 /*
8103 * mmap tracking
8104 */
8105
8106 struct perf_mmap_event {
8107 struct vm_area_struct *vma;
8108
8109 const char *file_name;
8110 int file_size;
8111 int maj, min;
8112 u64 ino;
8113 u64 ino_generation;
8114 u32 prot, flags;
8115
8116 struct {
8117 struct perf_event_header header;
8118
8119 u32 pid;
8120 u32 tid;
8121 u64 start;
8122 u64 len;
8123 u64 pgoff;
8124 } event_id;
8125 };
8126
perf_event_mmap_match(struct perf_event * event,void * data)8127 static int perf_event_mmap_match(struct perf_event *event,
8128 void *data)
8129 {
8130 struct perf_mmap_event *mmap_event = data;
8131 struct vm_area_struct *vma = mmap_event->vma;
8132 int executable = vma->vm_flags & VM_EXEC;
8133
8134 return (!executable && event->attr.mmap_data) ||
8135 (executable && (event->attr.mmap || event->attr.mmap2));
8136 }
8137
perf_event_mmap_output(struct perf_event * event,void * data)8138 static void perf_event_mmap_output(struct perf_event *event,
8139 void *data)
8140 {
8141 struct perf_mmap_event *mmap_event = data;
8142 struct perf_output_handle handle;
8143 struct perf_sample_data sample;
8144 int size = mmap_event->event_id.header.size;
8145 u32 type = mmap_event->event_id.header.type;
8146 int ret;
8147
8148 if (!perf_event_mmap_match(event, data))
8149 return;
8150
8151 if (event->attr.mmap2) {
8152 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8153 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8154 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8155 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8156 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8157 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8158 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8159 }
8160
8161 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8162 ret = perf_output_begin(&handle, &sample, event,
8163 mmap_event->event_id.header.size);
8164 if (ret)
8165 goto out;
8166
8167 mmap_event->event_id.pid = perf_event_pid(event, current);
8168 mmap_event->event_id.tid = perf_event_tid(event, current);
8169
8170 perf_output_put(&handle, mmap_event->event_id);
8171
8172 if (event->attr.mmap2) {
8173 perf_output_put(&handle, mmap_event->maj);
8174 perf_output_put(&handle, mmap_event->min);
8175 perf_output_put(&handle, mmap_event->ino);
8176 perf_output_put(&handle, mmap_event->ino_generation);
8177 perf_output_put(&handle, mmap_event->prot);
8178 perf_output_put(&handle, mmap_event->flags);
8179 }
8180
8181 __output_copy(&handle, mmap_event->file_name,
8182 mmap_event->file_size);
8183
8184 perf_event__output_id_sample(event, &handle, &sample);
8185
8186 perf_output_end(&handle);
8187 out:
8188 mmap_event->event_id.header.size = size;
8189 mmap_event->event_id.header.type = type;
8190 }
8191
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8192 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8193 {
8194 struct vm_area_struct *vma = mmap_event->vma;
8195 struct file *file = vma->vm_file;
8196 int maj = 0, min = 0;
8197 u64 ino = 0, gen = 0;
8198 u32 prot = 0, flags = 0;
8199 unsigned int size;
8200 char tmp[16];
8201 char *buf = NULL;
8202 char *name;
8203
8204 if (vma->vm_flags & VM_READ)
8205 prot |= PROT_READ;
8206 if (vma->vm_flags & VM_WRITE)
8207 prot |= PROT_WRITE;
8208 if (vma->vm_flags & VM_EXEC)
8209 prot |= PROT_EXEC;
8210
8211 if (vma->vm_flags & VM_MAYSHARE)
8212 flags = MAP_SHARED;
8213 else
8214 flags = MAP_PRIVATE;
8215
8216 if (vma->vm_flags & VM_DENYWRITE)
8217 flags |= MAP_DENYWRITE;
8218 if (vma->vm_flags & VM_MAYEXEC)
8219 flags |= MAP_EXECUTABLE;
8220 if (vma->vm_flags & VM_LOCKED)
8221 flags |= MAP_LOCKED;
8222 if (is_vm_hugetlb_page(vma))
8223 flags |= MAP_HUGETLB;
8224
8225 if (file) {
8226 struct inode *inode;
8227 dev_t dev;
8228
8229 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8230 if (!buf) {
8231 name = "//enomem";
8232 goto cpy_name;
8233 }
8234 /*
8235 * d_path() works from the end of the rb backwards, so we
8236 * need to add enough zero bytes after the string to handle
8237 * the 64bit alignment we do later.
8238 */
8239 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8240 if (IS_ERR(name)) {
8241 name = "//toolong";
8242 goto cpy_name;
8243 }
8244 inode = file_inode(vma->vm_file);
8245 dev = inode->i_sb->s_dev;
8246 ino = inode->i_ino;
8247 gen = inode->i_generation;
8248 maj = MAJOR(dev);
8249 min = MINOR(dev);
8250
8251 goto got_name;
8252 } else {
8253 if (vma->vm_ops && vma->vm_ops->name) {
8254 name = (char *) vma->vm_ops->name(vma);
8255 if (name)
8256 goto cpy_name;
8257 }
8258
8259 name = (char *)arch_vma_name(vma);
8260 if (name)
8261 goto cpy_name;
8262
8263 if (vma->vm_start <= vma->vm_mm->start_brk &&
8264 vma->vm_end >= vma->vm_mm->brk) {
8265 name = "[heap]";
8266 goto cpy_name;
8267 }
8268 if (vma->vm_start <= vma->vm_mm->start_stack &&
8269 vma->vm_end >= vma->vm_mm->start_stack) {
8270 name = "[stack]";
8271 goto cpy_name;
8272 }
8273
8274 name = "//anon";
8275 goto cpy_name;
8276 }
8277
8278 cpy_name:
8279 strlcpy(tmp, name, sizeof(tmp));
8280 name = tmp;
8281 got_name:
8282 /*
8283 * Since our buffer works in 8 byte units we need to align our string
8284 * size to a multiple of 8. However, we must guarantee the tail end is
8285 * zero'd out to avoid leaking random bits to userspace.
8286 */
8287 size = strlen(name)+1;
8288 while (!IS_ALIGNED(size, sizeof(u64)))
8289 name[size++] = '\0';
8290
8291 mmap_event->file_name = name;
8292 mmap_event->file_size = size;
8293 mmap_event->maj = maj;
8294 mmap_event->min = min;
8295 mmap_event->ino = ino;
8296 mmap_event->ino_generation = gen;
8297 mmap_event->prot = prot;
8298 mmap_event->flags = flags;
8299
8300 if (!(vma->vm_flags & VM_EXEC))
8301 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8302
8303 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8304
8305 perf_iterate_sb(perf_event_mmap_output,
8306 mmap_event,
8307 NULL);
8308
8309 kfree(buf);
8310 }
8311
8312 /*
8313 * Check whether inode and address range match filter criteria.
8314 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8315 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8316 struct file *file, unsigned long offset,
8317 unsigned long size)
8318 {
8319 /* d_inode(NULL) won't be equal to any mapped user-space file */
8320 if (!filter->path.dentry)
8321 return false;
8322
8323 if (d_inode(filter->path.dentry) != file_inode(file))
8324 return false;
8325
8326 if (filter->offset > offset + size)
8327 return false;
8328
8329 if (filter->offset + filter->size < offset)
8330 return false;
8331
8332 return true;
8333 }
8334
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8335 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8336 struct vm_area_struct *vma,
8337 struct perf_addr_filter_range *fr)
8338 {
8339 unsigned long vma_size = vma->vm_end - vma->vm_start;
8340 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8341 struct file *file = vma->vm_file;
8342
8343 if (!perf_addr_filter_match(filter, file, off, vma_size))
8344 return false;
8345
8346 if (filter->offset < off) {
8347 fr->start = vma->vm_start;
8348 fr->size = min(vma_size, filter->size - (off - filter->offset));
8349 } else {
8350 fr->start = vma->vm_start + filter->offset - off;
8351 fr->size = min(vma->vm_end - fr->start, filter->size);
8352 }
8353
8354 return true;
8355 }
8356
__perf_addr_filters_adjust(struct perf_event * event,void * data)8357 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8358 {
8359 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8360 struct vm_area_struct *vma = data;
8361 struct perf_addr_filter *filter;
8362 unsigned int restart = 0, count = 0;
8363 unsigned long flags;
8364
8365 if (!has_addr_filter(event))
8366 return;
8367
8368 if (!vma->vm_file)
8369 return;
8370
8371 raw_spin_lock_irqsave(&ifh->lock, flags);
8372 list_for_each_entry(filter, &ifh->list, entry) {
8373 if (perf_addr_filter_vma_adjust(filter, vma,
8374 &event->addr_filter_ranges[count]))
8375 restart++;
8376
8377 count++;
8378 }
8379
8380 if (restart)
8381 event->addr_filters_gen++;
8382 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8383
8384 if (restart)
8385 perf_event_stop(event, 1);
8386 }
8387
8388 /*
8389 * Adjust all task's events' filters to the new vma
8390 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8391 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8392 {
8393 struct perf_event_context *ctx;
8394 int ctxn;
8395
8396 /*
8397 * Data tracing isn't supported yet and as such there is no need
8398 * to keep track of anything that isn't related to executable code:
8399 */
8400 if (!(vma->vm_flags & VM_EXEC))
8401 return;
8402
8403 rcu_read_lock();
8404 for_each_task_context_nr(ctxn) {
8405 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8406 if (!ctx)
8407 continue;
8408
8409 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8410 }
8411 rcu_read_unlock();
8412 }
8413
perf_event_mmap(struct vm_area_struct * vma)8414 void perf_event_mmap(struct vm_area_struct *vma)
8415 {
8416 struct perf_mmap_event mmap_event;
8417
8418 if (!atomic_read(&nr_mmap_events))
8419 return;
8420
8421 mmap_event = (struct perf_mmap_event){
8422 .vma = vma,
8423 /* .file_name */
8424 /* .file_size */
8425 .event_id = {
8426 .header = {
8427 .type = PERF_RECORD_MMAP,
8428 .misc = PERF_RECORD_MISC_USER,
8429 /* .size */
8430 },
8431 /* .pid */
8432 /* .tid */
8433 .start = vma->vm_start,
8434 .len = vma->vm_end - vma->vm_start,
8435 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8436 },
8437 /* .maj (attr_mmap2 only) */
8438 /* .min (attr_mmap2 only) */
8439 /* .ino (attr_mmap2 only) */
8440 /* .ino_generation (attr_mmap2 only) */
8441 /* .prot (attr_mmap2 only) */
8442 /* .flags (attr_mmap2 only) */
8443 };
8444
8445 perf_addr_filters_adjust(vma);
8446 perf_event_mmap_event(&mmap_event);
8447 }
8448
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8449 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8450 unsigned long size, u64 flags)
8451 {
8452 struct perf_output_handle handle;
8453 struct perf_sample_data sample;
8454 struct perf_aux_event {
8455 struct perf_event_header header;
8456 u64 offset;
8457 u64 size;
8458 u64 flags;
8459 } rec = {
8460 .header = {
8461 .type = PERF_RECORD_AUX,
8462 .misc = 0,
8463 .size = sizeof(rec),
8464 },
8465 .offset = head,
8466 .size = size,
8467 .flags = flags,
8468 };
8469 int ret;
8470
8471 perf_event_header__init_id(&rec.header, &sample, event);
8472 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8473
8474 if (ret)
8475 return;
8476
8477 perf_output_put(&handle, rec);
8478 perf_event__output_id_sample(event, &handle, &sample);
8479
8480 perf_output_end(&handle);
8481 }
8482
8483 /*
8484 * Lost/dropped samples logging
8485 */
perf_log_lost_samples(struct perf_event * event,u64 lost)8486 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8487 {
8488 struct perf_output_handle handle;
8489 struct perf_sample_data sample;
8490 int ret;
8491
8492 struct {
8493 struct perf_event_header header;
8494 u64 lost;
8495 } lost_samples_event = {
8496 .header = {
8497 .type = PERF_RECORD_LOST_SAMPLES,
8498 .misc = 0,
8499 .size = sizeof(lost_samples_event),
8500 },
8501 .lost = lost,
8502 };
8503
8504 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8505
8506 ret = perf_output_begin(&handle, &sample, event,
8507 lost_samples_event.header.size);
8508 if (ret)
8509 return;
8510
8511 perf_output_put(&handle, lost_samples_event);
8512 perf_event__output_id_sample(event, &handle, &sample);
8513 perf_output_end(&handle);
8514 }
8515
8516 /*
8517 * context_switch tracking
8518 */
8519
8520 struct perf_switch_event {
8521 struct task_struct *task;
8522 struct task_struct *next_prev;
8523
8524 struct {
8525 struct perf_event_header header;
8526 u32 next_prev_pid;
8527 u32 next_prev_tid;
8528 } event_id;
8529 };
8530
perf_event_switch_match(struct perf_event * event)8531 static int perf_event_switch_match(struct perf_event *event)
8532 {
8533 return event->attr.context_switch;
8534 }
8535
perf_event_switch_output(struct perf_event * event,void * data)8536 static void perf_event_switch_output(struct perf_event *event, void *data)
8537 {
8538 struct perf_switch_event *se = data;
8539 struct perf_output_handle handle;
8540 struct perf_sample_data sample;
8541 int ret;
8542
8543 if (!perf_event_switch_match(event))
8544 return;
8545
8546 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8547 if (event->ctx->task) {
8548 se->event_id.header.type = PERF_RECORD_SWITCH;
8549 se->event_id.header.size = sizeof(se->event_id.header);
8550 } else {
8551 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8552 se->event_id.header.size = sizeof(se->event_id);
8553 se->event_id.next_prev_pid =
8554 perf_event_pid(event, se->next_prev);
8555 se->event_id.next_prev_tid =
8556 perf_event_tid(event, se->next_prev);
8557 }
8558
8559 perf_event_header__init_id(&se->event_id.header, &sample, event);
8560
8561 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8562 if (ret)
8563 return;
8564
8565 if (event->ctx->task)
8566 perf_output_put(&handle, se->event_id.header);
8567 else
8568 perf_output_put(&handle, se->event_id);
8569
8570 perf_event__output_id_sample(event, &handle, &sample);
8571
8572 perf_output_end(&handle);
8573 }
8574
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)8575 static void perf_event_switch(struct task_struct *task,
8576 struct task_struct *next_prev, bool sched_in)
8577 {
8578 struct perf_switch_event switch_event;
8579
8580 /* N.B. caller checks nr_switch_events != 0 */
8581
8582 switch_event = (struct perf_switch_event){
8583 .task = task,
8584 .next_prev = next_prev,
8585 .event_id = {
8586 .header = {
8587 /* .type */
8588 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8589 /* .size */
8590 },
8591 /* .next_prev_pid */
8592 /* .next_prev_tid */
8593 },
8594 };
8595
8596 if (!sched_in && task->state == TASK_RUNNING)
8597 switch_event.event_id.header.misc |=
8598 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8599
8600 perf_iterate_sb(perf_event_switch_output,
8601 &switch_event,
8602 NULL);
8603 }
8604
8605 /*
8606 * IRQ throttle logging
8607 */
8608
perf_log_throttle(struct perf_event * event,int enable)8609 static void perf_log_throttle(struct perf_event *event, int enable)
8610 {
8611 struct perf_output_handle handle;
8612 struct perf_sample_data sample;
8613 int ret;
8614
8615 struct {
8616 struct perf_event_header header;
8617 u64 time;
8618 u64 id;
8619 u64 stream_id;
8620 } throttle_event = {
8621 .header = {
8622 .type = PERF_RECORD_THROTTLE,
8623 .misc = 0,
8624 .size = sizeof(throttle_event),
8625 },
8626 .time = perf_event_clock(event),
8627 .id = primary_event_id(event),
8628 .stream_id = event->id,
8629 };
8630
8631 if (enable)
8632 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8633
8634 perf_event_header__init_id(&throttle_event.header, &sample, event);
8635
8636 ret = perf_output_begin(&handle, &sample, event,
8637 throttle_event.header.size);
8638 if (ret)
8639 return;
8640
8641 perf_output_put(&handle, throttle_event);
8642 perf_event__output_id_sample(event, &handle, &sample);
8643 perf_output_end(&handle);
8644 }
8645
8646 /*
8647 * ksymbol register/unregister tracking
8648 */
8649
8650 struct perf_ksymbol_event {
8651 const char *name;
8652 int name_len;
8653 struct {
8654 struct perf_event_header header;
8655 u64 addr;
8656 u32 len;
8657 u16 ksym_type;
8658 u16 flags;
8659 } event_id;
8660 };
8661
perf_event_ksymbol_match(struct perf_event * event)8662 static int perf_event_ksymbol_match(struct perf_event *event)
8663 {
8664 return event->attr.ksymbol;
8665 }
8666
perf_event_ksymbol_output(struct perf_event * event,void * data)8667 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8668 {
8669 struct perf_ksymbol_event *ksymbol_event = data;
8670 struct perf_output_handle handle;
8671 struct perf_sample_data sample;
8672 int ret;
8673
8674 if (!perf_event_ksymbol_match(event))
8675 return;
8676
8677 perf_event_header__init_id(&ksymbol_event->event_id.header,
8678 &sample, event);
8679 ret = perf_output_begin(&handle, &sample, event,
8680 ksymbol_event->event_id.header.size);
8681 if (ret)
8682 return;
8683
8684 perf_output_put(&handle, ksymbol_event->event_id);
8685 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8686 perf_event__output_id_sample(event, &handle, &sample);
8687
8688 perf_output_end(&handle);
8689 }
8690
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)8691 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8692 const char *sym)
8693 {
8694 struct perf_ksymbol_event ksymbol_event;
8695 char name[KSYM_NAME_LEN];
8696 u16 flags = 0;
8697 int name_len;
8698
8699 if (!atomic_read(&nr_ksymbol_events))
8700 return;
8701
8702 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8703 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8704 goto err;
8705
8706 strlcpy(name, sym, KSYM_NAME_LEN);
8707 name_len = strlen(name) + 1;
8708 while (!IS_ALIGNED(name_len, sizeof(u64)))
8709 name[name_len++] = '\0';
8710 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8711
8712 if (unregister)
8713 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8714
8715 ksymbol_event = (struct perf_ksymbol_event){
8716 .name = name,
8717 .name_len = name_len,
8718 .event_id = {
8719 .header = {
8720 .type = PERF_RECORD_KSYMBOL,
8721 .size = sizeof(ksymbol_event.event_id) +
8722 name_len,
8723 },
8724 .addr = addr,
8725 .len = len,
8726 .ksym_type = ksym_type,
8727 .flags = flags,
8728 },
8729 };
8730
8731 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8732 return;
8733 err:
8734 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8735 }
8736
8737 /*
8738 * bpf program load/unload tracking
8739 */
8740
8741 struct perf_bpf_event {
8742 struct bpf_prog *prog;
8743 struct {
8744 struct perf_event_header header;
8745 u16 type;
8746 u16 flags;
8747 u32 id;
8748 u8 tag[BPF_TAG_SIZE];
8749 } event_id;
8750 };
8751
perf_event_bpf_match(struct perf_event * event)8752 static int perf_event_bpf_match(struct perf_event *event)
8753 {
8754 return event->attr.bpf_event;
8755 }
8756
perf_event_bpf_output(struct perf_event * event,void * data)8757 static void perf_event_bpf_output(struct perf_event *event, void *data)
8758 {
8759 struct perf_bpf_event *bpf_event = data;
8760 struct perf_output_handle handle;
8761 struct perf_sample_data sample;
8762 int ret;
8763
8764 if (!perf_event_bpf_match(event))
8765 return;
8766
8767 perf_event_header__init_id(&bpf_event->event_id.header,
8768 &sample, event);
8769 ret = perf_output_begin(&handle, data, event,
8770 bpf_event->event_id.header.size);
8771 if (ret)
8772 return;
8773
8774 perf_output_put(&handle, bpf_event->event_id);
8775 perf_event__output_id_sample(event, &handle, &sample);
8776
8777 perf_output_end(&handle);
8778 }
8779
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8780 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8781 enum perf_bpf_event_type type)
8782 {
8783 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8784 int i;
8785
8786 if (prog->aux->func_cnt == 0) {
8787 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8788 (u64)(unsigned long)prog->bpf_func,
8789 prog->jited_len, unregister,
8790 prog->aux->ksym.name);
8791 } else {
8792 for (i = 0; i < prog->aux->func_cnt; i++) {
8793 struct bpf_prog *subprog = prog->aux->func[i];
8794
8795 perf_event_ksymbol(
8796 PERF_RECORD_KSYMBOL_TYPE_BPF,
8797 (u64)(unsigned long)subprog->bpf_func,
8798 subprog->jited_len, unregister,
8799 subprog->aux->ksym.name);
8800 }
8801 }
8802 }
8803
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8804 void perf_event_bpf_event(struct bpf_prog *prog,
8805 enum perf_bpf_event_type type,
8806 u16 flags)
8807 {
8808 struct perf_bpf_event bpf_event;
8809
8810 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8811 type >= PERF_BPF_EVENT_MAX)
8812 return;
8813
8814 switch (type) {
8815 case PERF_BPF_EVENT_PROG_LOAD:
8816 case PERF_BPF_EVENT_PROG_UNLOAD:
8817 if (atomic_read(&nr_ksymbol_events))
8818 perf_event_bpf_emit_ksymbols(prog, type);
8819 break;
8820 default:
8821 break;
8822 }
8823
8824 if (!atomic_read(&nr_bpf_events))
8825 return;
8826
8827 bpf_event = (struct perf_bpf_event){
8828 .prog = prog,
8829 .event_id = {
8830 .header = {
8831 .type = PERF_RECORD_BPF_EVENT,
8832 .size = sizeof(bpf_event.event_id),
8833 },
8834 .type = type,
8835 .flags = flags,
8836 .id = prog->aux->id,
8837 },
8838 };
8839
8840 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8841
8842 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8843 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8844 }
8845
8846 struct perf_text_poke_event {
8847 const void *old_bytes;
8848 const void *new_bytes;
8849 size_t pad;
8850 u16 old_len;
8851 u16 new_len;
8852
8853 struct {
8854 struct perf_event_header header;
8855
8856 u64 addr;
8857 } event_id;
8858 };
8859
perf_event_text_poke_match(struct perf_event * event)8860 static int perf_event_text_poke_match(struct perf_event *event)
8861 {
8862 return event->attr.text_poke;
8863 }
8864
perf_event_text_poke_output(struct perf_event * event,void * data)8865 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8866 {
8867 struct perf_text_poke_event *text_poke_event = data;
8868 struct perf_output_handle handle;
8869 struct perf_sample_data sample;
8870 u64 padding = 0;
8871 int ret;
8872
8873 if (!perf_event_text_poke_match(event))
8874 return;
8875
8876 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8877
8878 ret = perf_output_begin(&handle, &sample, event,
8879 text_poke_event->event_id.header.size);
8880 if (ret)
8881 return;
8882
8883 perf_output_put(&handle, text_poke_event->event_id);
8884 perf_output_put(&handle, text_poke_event->old_len);
8885 perf_output_put(&handle, text_poke_event->new_len);
8886
8887 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8888 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8889
8890 if (text_poke_event->pad)
8891 __output_copy(&handle, &padding, text_poke_event->pad);
8892
8893 perf_event__output_id_sample(event, &handle, &sample);
8894
8895 perf_output_end(&handle);
8896 }
8897
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)8898 void perf_event_text_poke(const void *addr, const void *old_bytes,
8899 size_t old_len, const void *new_bytes, size_t new_len)
8900 {
8901 struct perf_text_poke_event text_poke_event;
8902 size_t tot, pad;
8903
8904 if (!atomic_read(&nr_text_poke_events))
8905 return;
8906
8907 tot = sizeof(text_poke_event.old_len) + old_len;
8908 tot += sizeof(text_poke_event.new_len) + new_len;
8909 pad = ALIGN(tot, sizeof(u64)) - tot;
8910
8911 text_poke_event = (struct perf_text_poke_event){
8912 .old_bytes = old_bytes,
8913 .new_bytes = new_bytes,
8914 .pad = pad,
8915 .old_len = old_len,
8916 .new_len = new_len,
8917 .event_id = {
8918 .header = {
8919 .type = PERF_RECORD_TEXT_POKE,
8920 .misc = PERF_RECORD_MISC_KERNEL,
8921 .size = sizeof(text_poke_event.event_id) + tot + pad,
8922 },
8923 .addr = (unsigned long)addr,
8924 },
8925 };
8926
8927 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8928 }
8929
perf_event_itrace_started(struct perf_event * event)8930 void perf_event_itrace_started(struct perf_event *event)
8931 {
8932 event->attach_state |= PERF_ATTACH_ITRACE;
8933 }
8934
perf_log_itrace_start(struct perf_event * event)8935 static void perf_log_itrace_start(struct perf_event *event)
8936 {
8937 struct perf_output_handle handle;
8938 struct perf_sample_data sample;
8939 struct perf_aux_event {
8940 struct perf_event_header header;
8941 u32 pid;
8942 u32 tid;
8943 } rec;
8944 int ret;
8945
8946 if (event->parent)
8947 event = event->parent;
8948
8949 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8950 event->attach_state & PERF_ATTACH_ITRACE)
8951 return;
8952
8953 rec.header.type = PERF_RECORD_ITRACE_START;
8954 rec.header.misc = 0;
8955 rec.header.size = sizeof(rec);
8956 rec.pid = perf_event_pid(event, current);
8957 rec.tid = perf_event_tid(event, current);
8958
8959 perf_event_header__init_id(&rec.header, &sample, event);
8960 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8961
8962 if (ret)
8963 return;
8964
8965 perf_output_put(&handle, rec);
8966 perf_event__output_id_sample(event, &handle, &sample);
8967
8968 perf_output_end(&handle);
8969 }
8970
8971 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8972 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8973 {
8974 struct hw_perf_event *hwc = &event->hw;
8975 int ret = 0;
8976 u64 seq;
8977
8978 seq = __this_cpu_read(perf_throttled_seq);
8979 if (seq != hwc->interrupts_seq) {
8980 hwc->interrupts_seq = seq;
8981 hwc->interrupts = 1;
8982 } else {
8983 hwc->interrupts++;
8984 if (unlikely(throttle
8985 && hwc->interrupts >= max_samples_per_tick)) {
8986 __this_cpu_inc(perf_throttled_count);
8987 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8988 hwc->interrupts = MAX_INTERRUPTS;
8989 perf_log_throttle(event, 0);
8990 ret = 1;
8991 }
8992 }
8993
8994 if (event->attr.freq) {
8995 u64 now = perf_clock();
8996 s64 delta = now - hwc->freq_time_stamp;
8997
8998 hwc->freq_time_stamp = now;
8999
9000 if (delta > 0 && delta < 2*TICK_NSEC)
9001 perf_adjust_period(event, delta, hwc->last_period, true);
9002 }
9003
9004 return ret;
9005 }
9006
perf_event_account_interrupt(struct perf_event * event)9007 int perf_event_account_interrupt(struct perf_event *event)
9008 {
9009 return __perf_event_account_interrupt(event, 1);
9010 }
9011
9012 /*
9013 * Generic event overflow handling, sampling.
9014 */
9015
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9016 static int __perf_event_overflow(struct perf_event *event,
9017 int throttle, struct perf_sample_data *data,
9018 struct pt_regs *regs)
9019 {
9020 int events = atomic_read(&event->event_limit);
9021 int ret = 0;
9022
9023 /*
9024 * Non-sampling counters might still use the PMI to fold short
9025 * hardware counters, ignore those.
9026 */
9027 if (unlikely(!is_sampling_event(event)))
9028 return 0;
9029
9030 ret = __perf_event_account_interrupt(event, throttle);
9031
9032 /*
9033 * XXX event_limit might not quite work as expected on inherited
9034 * events
9035 */
9036
9037 event->pending_kill = POLL_IN;
9038 if (events && atomic_dec_and_test(&event->event_limit)) {
9039 ret = 1;
9040 event->pending_kill = POLL_HUP;
9041
9042 perf_event_disable_inatomic(event);
9043 }
9044
9045 READ_ONCE(event->overflow_handler)(event, data, regs);
9046
9047 if (*perf_event_fasync(event) && event->pending_kill) {
9048 event->pending_wakeup = 1;
9049 irq_work_queue(&event->pending);
9050 }
9051
9052 return ret;
9053 }
9054
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9055 int perf_event_overflow(struct perf_event *event,
9056 struct perf_sample_data *data,
9057 struct pt_regs *regs)
9058 {
9059 return __perf_event_overflow(event, 1, data, regs);
9060 }
9061
9062 /*
9063 * Generic software event infrastructure
9064 */
9065
9066 struct swevent_htable {
9067 struct swevent_hlist *swevent_hlist;
9068 struct mutex hlist_mutex;
9069 int hlist_refcount;
9070
9071 /* Recursion avoidance in each contexts */
9072 int recursion[PERF_NR_CONTEXTS];
9073 };
9074
9075 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9076
9077 /*
9078 * We directly increment event->count and keep a second value in
9079 * event->hw.period_left to count intervals. This period event
9080 * is kept in the range [-sample_period, 0] so that we can use the
9081 * sign as trigger.
9082 */
9083
perf_swevent_set_period(struct perf_event * event)9084 u64 perf_swevent_set_period(struct perf_event *event)
9085 {
9086 struct hw_perf_event *hwc = &event->hw;
9087 u64 period = hwc->last_period;
9088 u64 nr, offset;
9089 s64 old, val;
9090
9091 hwc->last_period = hwc->sample_period;
9092
9093 again:
9094 old = val = local64_read(&hwc->period_left);
9095 if (val < 0)
9096 return 0;
9097
9098 nr = div64_u64(period + val, period);
9099 offset = nr * period;
9100 val -= offset;
9101 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9102 goto again;
9103
9104 return nr;
9105 }
9106
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9107 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9108 struct perf_sample_data *data,
9109 struct pt_regs *regs)
9110 {
9111 struct hw_perf_event *hwc = &event->hw;
9112 int throttle = 0;
9113
9114 if (!overflow)
9115 overflow = perf_swevent_set_period(event);
9116
9117 if (hwc->interrupts == MAX_INTERRUPTS)
9118 return;
9119
9120 for (; overflow; overflow--) {
9121 if (__perf_event_overflow(event, throttle,
9122 data, regs)) {
9123 /*
9124 * We inhibit the overflow from happening when
9125 * hwc->interrupts == MAX_INTERRUPTS.
9126 */
9127 break;
9128 }
9129 throttle = 1;
9130 }
9131 }
9132
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9133 static void perf_swevent_event(struct perf_event *event, u64 nr,
9134 struct perf_sample_data *data,
9135 struct pt_regs *regs)
9136 {
9137 struct hw_perf_event *hwc = &event->hw;
9138
9139 local64_add(nr, &event->count);
9140
9141 if (!regs)
9142 return;
9143
9144 if (!is_sampling_event(event))
9145 return;
9146
9147 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9148 data->period = nr;
9149 return perf_swevent_overflow(event, 1, data, regs);
9150 } else
9151 data->period = event->hw.last_period;
9152
9153 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9154 return perf_swevent_overflow(event, 1, data, regs);
9155
9156 if (local64_add_negative(nr, &hwc->period_left))
9157 return;
9158
9159 perf_swevent_overflow(event, 0, data, regs);
9160 }
9161
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9162 static int perf_exclude_event(struct perf_event *event,
9163 struct pt_regs *regs)
9164 {
9165 if (event->hw.state & PERF_HES_STOPPED)
9166 return 1;
9167
9168 if (regs) {
9169 if (event->attr.exclude_user && user_mode(regs))
9170 return 1;
9171
9172 if (event->attr.exclude_kernel && !user_mode(regs))
9173 return 1;
9174 }
9175
9176 return 0;
9177 }
9178
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9179 static int perf_swevent_match(struct perf_event *event,
9180 enum perf_type_id type,
9181 u32 event_id,
9182 struct perf_sample_data *data,
9183 struct pt_regs *regs)
9184 {
9185 if (event->attr.type != type)
9186 return 0;
9187
9188 if (event->attr.config != event_id)
9189 return 0;
9190
9191 if (perf_exclude_event(event, regs))
9192 return 0;
9193
9194 return 1;
9195 }
9196
swevent_hash(u64 type,u32 event_id)9197 static inline u64 swevent_hash(u64 type, u32 event_id)
9198 {
9199 u64 val = event_id | (type << 32);
9200
9201 return hash_64(val, SWEVENT_HLIST_BITS);
9202 }
9203
9204 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9205 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9206 {
9207 u64 hash = swevent_hash(type, event_id);
9208
9209 return &hlist->heads[hash];
9210 }
9211
9212 /* For the read side: events when they trigger */
9213 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9214 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9215 {
9216 struct swevent_hlist *hlist;
9217
9218 hlist = rcu_dereference(swhash->swevent_hlist);
9219 if (!hlist)
9220 return NULL;
9221
9222 return __find_swevent_head(hlist, type, event_id);
9223 }
9224
9225 /* For the event head insertion and removal in the hlist */
9226 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9227 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9228 {
9229 struct swevent_hlist *hlist;
9230 u32 event_id = event->attr.config;
9231 u64 type = event->attr.type;
9232
9233 /*
9234 * Event scheduling is always serialized against hlist allocation
9235 * and release. Which makes the protected version suitable here.
9236 * The context lock guarantees that.
9237 */
9238 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9239 lockdep_is_held(&event->ctx->lock));
9240 if (!hlist)
9241 return NULL;
9242
9243 return __find_swevent_head(hlist, type, event_id);
9244 }
9245
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9246 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9247 u64 nr,
9248 struct perf_sample_data *data,
9249 struct pt_regs *regs)
9250 {
9251 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9252 struct perf_event *event;
9253 struct hlist_head *head;
9254
9255 rcu_read_lock();
9256 head = find_swevent_head_rcu(swhash, type, event_id);
9257 if (!head)
9258 goto end;
9259
9260 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9261 if (perf_swevent_match(event, type, event_id, data, regs))
9262 perf_swevent_event(event, nr, data, regs);
9263 }
9264 end:
9265 rcu_read_unlock();
9266 }
9267
9268 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9269
perf_swevent_get_recursion_context(void)9270 int perf_swevent_get_recursion_context(void)
9271 {
9272 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9273
9274 return get_recursion_context(swhash->recursion);
9275 }
9276 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9277
perf_swevent_put_recursion_context(int rctx)9278 void perf_swevent_put_recursion_context(int rctx)
9279 {
9280 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9281
9282 put_recursion_context(swhash->recursion, rctx);
9283 }
9284
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9285 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9286 {
9287 struct perf_sample_data data;
9288
9289 if (WARN_ON_ONCE(!regs))
9290 return;
9291
9292 perf_sample_data_init(&data, addr, 0);
9293 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9294 }
9295
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9296 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9297 {
9298 int rctx;
9299
9300 preempt_disable_notrace();
9301 rctx = perf_swevent_get_recursion_context();
9302 if (unlikely(rctx < 0))
9303 goto fail;
9304
9305 ___perf_sw_event(event_id, nr, regs, addr);
9306
9307 perf_swevent_put_recursion_context(rctx);
9308 fail:
9309 preempt_enable_notrace();
9310 }
9311
perf_swevent_read(struct perf_event * event)9312 static void perf_swevent_read(struct perf_event *event)
9313 {
9314 }
9315
perf_swevent_add(struct perf_event * event,int flags)9316 static int perf_swevent_add(struct perf_event *event, int flags)
9317 {
9318 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9319 struct hw_perf_event *hwc = &event->hw;
9320 struct hlist_head *head;
9321
9322 if (is_sampling_event(event)) {
9323 hwc->last_period = hwc->sample_period;
9324 perf_swevent_set_period(event);
9325 }
9326
9327 hwc->state = !(flags & PERF_EF_START);
9328
9329 head = find_swevent_head(swhash, event);
9330 if (WARN_ON_ONCE(!head))
9331 return -EINVAL;
9332
9333 hlist_add_head_rcu(&event->hlist_entry, head);
9334 perf_event_update_userpage(event);
9335
9336 return 0;
9337 }
9338
perf_swevent_del(struct perf_event * event,int flags)9339 static void perf_swevent_del(struct perf_event *event, int flags)
9340 {
9341 hlist_del_rcu(&event->hlist_entry);
9342 }
9343
perf_swevent_start(struct perf_event * event,int flags)9344 static void perf_swevent_start(struct perf_event *event, int flags)
9345 {
9346 event->hw.state = 0;
9347 }
9348
perf_swevent_stop(struct perf_event * event,int flags)9349 static void perf_swevent_stop(struct perf_event *event, int flags)
9350 {
9351 event->hw.state = PERF_HES_STOPPED;
9352 }
9353
9354 /* Deref the hlist from the update side */
9355 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9356 swevent_hlist_deref(struct swevent_htable *swhash)
9357 {
9358 return rcu_dereference_protected(swhash->swevent_hlist,
9359 lockdep_is_held(&swhash->hlist_mutex));
9360 }
9361
swevent_hlist_release(struct swevent_htable * swhash)9362 static void swevent_hlist_release(struct swevent_htable *swhash)
9363 {
9364 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9365
9366 if (!hlist)
9367 return;
9368
9369 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9370 kfree_rcu(hlist, rcu_head);
9371 }
9372
swevent_hlist_put_cpu(int cpu)9373 static void swevent_hlist_put_cpu(int cpu)
9374 {
9375 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9376
9377 mutex_lock(&swhash->hlist_mutex);
9378
9379 if (!--swhash->hlist_refcount)
9380 swevent_hlist_release(swhash);
9381
9382 mutex_unlock(&swhash->hlist_mutex);
9383 }
9384
swevent_hlist_put(void)9385 static void swevent_hlist_put(void)
9386 {
9387 int cpu;
9388
9389 for_each_possible_cpu(cpu)
9390 swevent_hlist_put_cpu(cpu);
9391 }
9392
swevent_hlist_get_cpu(int cpu)9393 static int swevent_hlist_get_cpu(int cpu)
9394 {
9395 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9396 int err = 0;
9397
9398 mutex_lock(&swhash->hlist_mutex);
9399 if (!swevent_hlist_deref(swhash) &&
9400 cpumask_test_cpu(cpu, perf_online_mask)) {
9401 struct swevent_hlist *hlist;
9402
9403 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9404 if (!hlist) {
9405 err = -ENOMEM;
9406 goto exit;
9407 }
9408 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9409 }
9410 swhash->hlist_refcount++;
9411 exit:
9412 mutex_unlock(&swhash->hlist_mutex);
9413
9414 return err;
9415 }
9416
swevent_hlist_get(void)9417 static int swevent_hlist_get(void)
9418 {
9419 int err, cpu, failed_cpu;
9420
9421 mutex_lock(&pmus_lock);
9422 for_each_possible_cpu(cpu) {
9423 err = swevent_hlist_get_cpu(cpu);
9424 if (err) {
9425 failed_cpu = cpu;
9426 goto fail;
9427 }
9428 }
9429 mutex_unlock(&pmus_lock);
9430 return 0;
9431 fail:
9432 for_each_possible_cpu(cpu) {
9433 if (cpu == failed_cpu)
9434 break;
9435 swevent_hlist_put_cpu(cpu);
9436 }
9437 mutex_unlock(&pmus_lock);
9438 return err;
9439 }
9440
9441 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9442
sw_perf_event_destroy(struct perf_event * event)9443 static void sw_perf_event_destroy(struct perf_event *event)
9444 {
9445 u64 event_id = event->attr.config;
9446
9447 WARN_ON(event->parent);
9448
9449 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9450 swevent_hlist_put();
9451 }
9452
perf_swevent_init(struct perf_event * event)9453 static int perf_swevent_init(struct perf_event *event)
9454 {
9455 u64 event_id = event->attr.config;
9456
9457 if (event->attr.type != PERF_TYPE_SOFTWARE)
9458 return -ENOENT;
9459
9460 /*
9461 * no branch sampling for software events
9462 */
9463 if (has_branch_stack(event))
9464 return -EOPNOTSUPP;
9465
9466 switch (event_id) {
9467 case PERF_COUNT_SW_CPU_CLOCK:
9468 case PERF_COUNT_SW_TASK_CLOCK:
9469 return -ENOENT;
9470
9471 default:
9472 break;
9473 }
9474
9475 if (event_id >= PERF_COUNT_SW_MAX)
9476 return -ENOENT;
9477
9478 if (!event->parent) {
9479 int err;
9480
9481 err = swevent_hlist_get();
9482 if (err)
9483 return err;
9484
9485 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9486 event->destroy = sw_perf_event_destroy;
9487 }
9488
9489 return 0;
9490 }
9491
9492 static struct pmu perf_swevent = {
9493 .task_ctx_nr = perf_sw_context,
9494
9495 .capabilities = PERF_PMU_CAP_NO_NMI,
9496
9497 .event_init = perf_swevent_init,
9498 .add = perf_swevent_add,
9499 .del = perf_swevent_del,
9500 .start = perf_swevent_start,
9501 .stop = perf_swevent_stop,
9502 .read = perf_swevent_read,
9503 };
9504
9505 #ifdef CONFIG_EVENT_TRACING
9506
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)9507 static int perf_tp_filter_match(struct perf_event *event,
9508 struct perf_sample_data *data)
9509 {
9510 void *record = data->raw->frag.data;
9511
9512 /* only top level events have filters set */
9513 if (event->parent)
9514 event = event->parent;
9515
9516 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9517 return 1;
9518 return 0;
9519 }
9520
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9521 static int perf_tp_event_match(struct perf_event *event,
9522 struct perf_sample_data *data,
9523 struct pt_regs *regs)
9524 {
9525 if (event->hw.state & PERF_HES_STOPPED)
9526 return 0;
9527 /*
9528 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9529 */
9530 if (event->attr.exclude_kernel && !user_mode(regs))
9531 return 0;
9532
9533 if (!perf_tp_filter_match(event, data))
9534 return 0;
9535
9536 return 1;
9537 }
9538
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)9539 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9540 struct trace_event_call *call, u64 count,
9541 struct pt_regs *regs, struct hlist_head *head,
9542 struct task_struct *task)
9543 {
9544 if (bpf_prog_array_valid(call)) {
9545 *(struct pt_regs **)raw_data = regs;
9546 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9547 perf_swevent_put_recursion_context(rctx);
9548 return;
9549 }
9550 }
9551 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9552 rctx, task);
9553 }
9554 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9555
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)9556 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9557 struct pt_regs *regs, struct hlist_head *head, int rctx,
9558 struct task_struct *task)
9559 {
9560 struct perf_sample_data data;
9561 struct perf_event *event;
9562
9563 struct perf_raw_record raw = {
9564 .frag = {
9565 .size = entry_size,
9566 .data = record,
9567 },
9568 };
9569
9570 perf_sample_data_init(&data, 0, 0);
9571 data.raw = &raw;
9572
9573 perf_trace_buf_update(record, event_type);
9574
9575 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9576 if (perf_tp_event_match(event, &data, regs))
9577 perf_swevent_event(event, count, &data, regs);
9578 }
9579
9580 /*
9581 * If we got specified a target task, also iterate its context and
9582 * deliver this event there too.
9583 */
9584 if (task && task != current) {
9585 struct perf_event_context *ctx;
9586 struct trace_entry *entry = record;
9587
9588 rcu_read_lock();
9589 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9590 if (!ctx)
9591 goto unlock;
9592
9593 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9594 if (event->cpu != smp_processor_id())
9595 continue;
9596 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9597 continue;
9598 if (event->attr.config != entry->type)
9599 continue;
9600 if (perf_tp_event_match(event, &data, regs))
9601 perf_swevent_event(event, count, &data, regs);
9602 }
9603 unlock:
9604 rcu_read_unlock();
9605 }
9606
9607 perf_swevent_put_recursion_context(rctx);
9608 }
9609 EXPORT_SYMBOL_GPL(perf_tp_event);
9610
tp_perf_event_destroy(struct perf_event * event)9611 static void tp_perf_event_destroy(struct perf_event *event)
9612 {
9613 perf_trace_destroy(event);
9614 }
9615
perf_tp_event_init(struct perf_event * event)9616 static int perf_tp_event_init(struct perf_event *event)
9617 {
9618 int err;
9619
9620 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9621 return -ENOENT;
9622
9623 /*
9624 * no branch sampling for tracepoint events
9625 */
9626 if (has_branch_stack(event))
9627 return -EOPNOTSUPP;
9628
9629 err = perf_trace_init(event);
9630 if (err)
9631 return err;
9632
9633 event->destroy = tp_perf_event_destroy;
9634
9635 return 0;
9636 }
9637
9638 static struct pmu perf_tracepoint = {
9639 .task_ctx_nr = perf_sw_context,
9640
9641 .event_init = perf_tp_event_init,
9642 .add = perf_trace_add,
9643 .del = perf_trace_del,
9644 .start = perf_swevent_start,
9645 .stop = perf_swevent_stop,
9646 .read = perf_swevent_read,
9647 };
9648
9649 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9650 /*
9651 * Flags in config, used by dynamic PMU kprobe and uprobe
9652 * The flags should match following PMU_FORMAT_ATTR().
9653 *
9654 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9655 * if not set, create kprobe/uprobe
9656 *
9657 * The following values specify a reference counter (or semaphore in the
9658 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9659 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9660 *
9661 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9662 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9663 */
9664 enum perf_probe_config {
9665 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9666 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9667 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9668 };
9669
9670 PMU_FORMAT_ATTR(retprobe, "config:0");
9671 #endif
9672
9673 #ifdef CONFIG_KPROBE_EVENTS
9674 static struct attribute *kprobe_attrs[] = {
9675 &format_attr_retprobe.attr,
9676 NULL,
9677 };
9678
9679 static struct attribute_group kprobe_format_group = {
9680 .name = "format",
9681 .attrs = kprobe_attrs,
9682 };
9683
9684 static const struct attribute_group *kprobe_attr_groups[] = {
9685 &kprobe_format_group,
9686 NULL,
9687 };
9688
9689 static int perf_kprobe_event_init(struct perf_event *event);
9690 static struct pmu perf_kprobe = {
9691 .task_ctx_nr = perf_sw_context,
9692 .event_init = perf_kprobe_event_init,
9693 .add = perf_trace_add,
9694 .del = perf_trace_del,
9695 .start = perf_swevent_start,
9696 .stop = perf_swevent_stop,
9697 .read = perf_swevent_read,
9698 .attr_groups = kprobe_attr_groups,
9699 };
9700
perf_kprobe_event_init(struct perf_event * event)9701 static int perf_kprobe_event_init(struct perf_event *event)
9702 {
9703 int err;
9704 bool is_retprobe;
9705
9706 if (event->attr.type != perf_kprobe.type)
9707 return -ENOENT;
9708
9709 if (!perfmon_capable())
9710 return -EACCES;
9711
9712 /*
9713 * no branch sampling for probe events
9714 */
9715 if (has_branch_stack(event))
9716 return -EOPNOTSUPP;
9717
9718 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9719 err = perf_kprobe_init(event, is_retprobe);
9720 if (err)
9721 return err;
9722
9723 event->destroy = perf_kprobe_destroy;
9724
9725 return 0;
9726 }
9727 #endif /* CONFIG_KPROBE_EVENTS */
9728
9729 #ifdef CONFIG_UPROBE_EVENTS
9730 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9731
9732 static struct attribute *uprobe_attrs[] = {
9733 &format_attr_retprobe.attr,
9734 &format_attr_ref_ctr_offset.attr,
9735 NULL,
9736 };
9737
9738 static struct attribute_group uprobe_format_group = {
9739 .name = "format",
9740 .attrs = uprobe_attrs,
9741 };
9742
9743 static const struct attribute_group *uprobe_attr_groups[] = {
9744 &uprobe_format_group,
9745 NULL,
9746 };
9747
9748 static int perf_uprobe_event_init(struct perf_event *event);
9749 static struct pmu perf_uprobe = {
9750 .task_ctx_nr = perf_sw_context,
9751 .event_init = perf_uprobe_event_init,
9752 .add = perf_trace_add,
9753 .del = perf_trace_del,
9754 .start = perf_swevent_start,
9755 .stop = perf_swevent_stop,
9756 .read = perf_swevent_read,
9757 .attr_groups = uprobe_attr_groups,
9758 };
9759
perf_uprobe_event_init(struct perf_event * event)9760 static int perf_uprobe_event_init(struct perf_event *event)
9761 {
9762 int err;
9763 unsigned long ref_ctr_offset;
9764 bool is_retprobe;
9765
9766 if (event->attr.type != perf_uprobe.type)
9767 return -ENOENT;
9768
9769 if (!perfmon_capable())
9770 return -EACCES;
9771
9772 /*
9773 * no branch sampling for probe events
9774 */
9775 if (has_branch_stack(event))
9776 return -EOPNOTSUPP;
9777
9778 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9779 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9780 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9781 if (err)
9782 return err;
9783
9784 event->destroy = perf_uprobe_destroy;
9785
9786 return 0;
9787 }
9788 #endif /* CONFIG_UPROBE_EVENTS */
9789
perf_tp_register(void)9790 static inline void perf_tp_register(void)
9791 {
9792 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9793 #ifdef CONFIG_KPROBE_EVENTS
9794 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9795 #endif
9796 #ifdef CONFIG_UPROBE_EVENTS
9797 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9798 #endif
9799 }
9800
perf_event_free_filter(struct perf_event * event)9801 static void perf_event_free_filter(struct perf_event *event)
9802 {
9803 ftrace_profile_free_filter(event);
9804 }
9805
9806 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9807 static void bpf_overflow_handler(struct perf_event *event,
9808 struct perf_sample_data *data,
9809 struct pt_regs *regs)
9810 {
9811 struct bpf_perf_event_data_kern ctx = {
9812 .data = data,
9813 .event = event,
9814 };
9815 int ret = 0;
9816
9817 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9818 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9819 goto out;
9820 rcu_read_lock();
9821 ret = BPF_PROG_RUN(event->prog, &ctx);
9822 rcu_read_unlock();
9823 out:
9824 __this_cpu_dec(bpf_prog_active);
9825 if (!ret)
9826 return;
9827
9828 event->orig_overflow_handler(event, data, regs);
9829 }
9830
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9831 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9832 {
9833 struct bpf_prog *prog;
9834
9835 if (event->overflow_handler_context)
9836 /* hw breakpoint or kernel counter */
9837 return -EINVAL;
9838
9839 if (event->prog)
9840 return -EEXIST;
9841
9842 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9843 if (IS_ERR(prog))
9844 return PTR_ERR(prog);
9845
9846 if (event->attr.precise_ip &&
9847 prog->call_get_stack &&
9848 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9849 event->attr.exclude_callchain_kernel ||
9850 event->attr.exclude_callchain_user)) {
9851 /*
9852 * On perf_event with precise_ip, calling bpf_get_stack()
9853 * may trigger unwinder warnings and occasional crashes.
9854 * bpf_get_[stack|stackid] works around this issue by using
9855 * callchain attached to perf_sample_data. If the
9856 * perf_event does not full (kernel and user) callchain
9857 * attached to perf_sample_data, do not allow attaching BPF
9858 * program that calls bpf_get_[stack|stackid].
9859 */
9860 bpf_prog_put(prog);
9861 return -EPROTO;
9862 }
9863
9864 event->prog = prog;
9865 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9866 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9867 return 0;
9868 }
9869
perf_event_free_bpf_handler(struct perf_event * event)9870 static void perf_event_free_bpf_handler(struct perf_event *event)
9871 {
9872 struct bpf_prog *prog = event->prog;
9873
9874 if (!prog)
9875 return;
9876
9877 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9878 event->prog = NULL;
9879 bpf_prog_put(prog);
9880 }
9881 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9882 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9883 {
9884 return -EOPNOTSUPP;
9885 }
perf_event_free_bpf_handler(struct perf_event * event)9886 static void perf_event_free_bpf_handler(struct perf_event *event)
9887 {
9888 }
9889 #endif
9890
9891 /*
9892 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9893 * with perf_event_open()
9894 */
perf_event_is_tracing(struct perf_event * event)9895 static inline bool perf_event_is_tracing(struct perf_event *event)
9896 {
9897 if (event->pmu == &perf_tracepoint)
9898 return true;
9899 #ifdef CONFIG_KPROBE_EVENTS
9900 if (event->pmu == &perf_kprobe)
9901 return true;
9902 #endif
9903 #ifdef CONFIG_UPROBE_EVENTS
9904 if (event->pmu == &perf_uprobe)
9905 return true;
9906 #endif
9907 return false;
9908 }
9909
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9910 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9911 {
9912 bool is_kprobe, is_tracepoint, is_syscall_tp;
9913 struct bpf_prog *prog;
9914 int ret;
9915
9916 if (!perf_event_is_tracing(event))
9917 return perf_event_set_bpf_handler(event, prog_fd);
9918
9919 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9920 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9921 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9922 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9923 /* bpf programs can only be attached to u/kprobe or tracepoint */
9924 return -EINVAL;
9925
9926 prog = bpf_prog_get(prog_fd);
9927 if (IS_ERR(prog))
9928 return PTR_ERR(prog);
9929
9930 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9931 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9932 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9933 /* valid fd, but invalid bpf program type */
9934 bpf_prog_put(prog);
9935 return -EINVAL;
9936 }
9937
9938 /* Kprobe override only works for kprobes, not uprobes. */
9939 if (prog->kprobe_override &&
9940 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9941 bpf_prog_put(prog);
9942 return -EINVAL;
9943 }
9944
9945 if (is_tracepoint || is_syscall_tp) {
9946 int off = trace_event_get_offsets(event->tp_event);
9947
9948 if (prog->aux->max_ctx_offset > off) {
9949 bpf_prog_put(prog);
9950 return -EACCES;
9951 }
9952 }
9953
9954 ret = perf_event_attach_bpf_prog(event, prog);
9955 if (ret)
9956 bpf_prog_put(prog);
9957 return ret;
9958 }
9959
perf_event_free_bpf_prog(struct perf_event * event)9960 static void perf_event_free_bpf_prog(struct perf_event *event)
9961 {
9962 if (!perf_event_is_tracing(event)) {
9963 perf_event_free_bpf_handler(event);
9964 return;
9965 }
9966 perf_event_detach_bpf_prog(event);
9967 }
9968
9969 #else
9970
perf_tp_register(void)9971 static inline void perf_tp_register(void)
9972 {
9973 }
9974
perf_event_free_filter(struct perf_event * event)9975 static void perf_event_free_filter(struct perf_event *event)
9976 {
9977 }
9978
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9979 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9980 {
9981 return -ENOENT;
9982 }
9983
perf_event_free_bpf_prog(struct perf_event * event)9984 static void perf_event_free_bpf_prog(struct perf_event *event)
9985 {
9986 }
9987 #endif /* CONFIG_EVENT_TRACING */
9988
9989 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9990 void perf_bp_event(struct perf_event *bp, void *data)
9991 {
9992 struct perf_sample_data sample;
9993 struct pt_regs *regs = data;
9994
9995 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9996
9997 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9998 perf_swevent_event(bp, 1, &sample, regs);
9999 }
10000 #endif
10001
10002 /*
10003 * Allocate a new address filter
10004 */
10005 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10006 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10007 {
10008 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10009 struct perf_addr_filter *filter;
10010
10011 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10012 if (!filter)
10013 return NULL;
10014
10015 INIT_LIST_HEAD(&filter->entry);
10016 list_add_tail(&filter->entry, filters);
10017
10018 return filter;
10019 }
10020
free_filters_list(struct list_head * filters)10021 static void free_filters_list(struct list_head *filters)
10022 {
10023 struct perf_addr_filter *filter, *iter;
10024
10025 list_for_each_entry_safe(filter, iter, filters, entry) {
10026 path_put(&filter->path);
10027 list_del(&filter->entry);
10028 kfree(filter);
10029 }
10030 }
10031
10032 /*
10033 * Free existing address filters and optionally install new ones
10034 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10035 static void perf_addr_filters_splice(struct perf_event *event,
10036 struct list_head *head)
10037 {
10038 unsigned long flags;
10039 LIST_HEAD(list);
10040
10041 if (!has_addr_filter(event))
10042 return;
10043
10044 /* don't bother with children, they don't have their own filters */
10045 if (event->parent)
10046 return;
10047
10048 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10049
10050 list_splice_init(&event->addr_filters.list, &list);
10051 if (head)
10052 list_splice(head, &event->addr_filters.list);
10053
10054 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10055
10056 free_filters_list(&list);
10057 }
10058
10059 /*
10060 * Scan through mm's vmas and see if one of them matches the
10061 * @filter; if so, adjust filter's address range.
10062 * Called with mm::mmap_lock down for reading.
10063 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10064 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10065 struct mm_struct *mm,
10066 struct perf_addr_filter_range *fr)
10067 {
10068 struct vm_area_struct *vma;
10069
10070 for (vma = mm->mmap; vma; vma = vma->vm_next) {
10071 if (!vma->vm_file)
10072 continue;
10073
10074 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10075 return;
10076 }
10077 }
10078
10079 /*
10080 * Update event's address range filters based on the
10081 * task's existing mappings, if any.
10082 */
perf_event_addr_filters_apply(struct perf_event * event)10083 static void perf_event_addr_filters_apply(struct perf_event *event)
10084 {
10085 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10086 struct task_struct *task = READ_ONCE(event->ctx->task);
10087 struct perf_addr_filter *filter;
10088 struct mm_struct *mm = NULL;
10089 unsigned int count = 0;
10090 unsigned long flags;
10091
10092 /*
10093 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10094 * will stop on the parent's child_mutex that our caller is also holding
10095 */
10096 if (task == TASK_TOMBSTONE)
10097 return;
10098
10099 if (ifh->nr_file_filters) {
10100 mm = get_task_mm(task);
10101 if (!mm)
10102 goto restart;
10103
10104 mmap_read_lock(mm);
10105 }
10106
10107 raw_spin_lock_irqsave(&ifh->lock, flags);
10108 list_for_each_entry(filter, &ifh->list, entry) {
10109 if (filter->path.dentry) {
10110 /*
10111 * Adjust base offset if the filter is associated to a
10112 * binary that needs to be mapped:
10113 */
10114 event->addr_filter_ranges[count].start = 0;
10115 event->addr_filter_ranges[count].size = 0;
10116
10117 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10118 } else {
10119 event->addr_filter_ranges[count].start = filter->offset;
10120 event->addr_filter_ranges[count].size = filter->size;
10121 }
10122
10123 count++;
10124 }
10125
10126 event->addr_filters_gen++;
10127 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10128
10129 if (ifh->nr_file_filters) {
10130 mmap_read_unlock(mm);
10131
10132 mmput(mm);
10133 }
10134
10135 restart:
10136 perf_event_stop(event, 1);
10137 }
10138
10139 /*
10140 * Address range filtering: limiting the data to certain
10141 * instruction address ranges. Filters are ioctl()ed to us from
10142 * userspace as ascii strings.
10143 *
10144 * Filter string format:
10145 *
10146 * ACTION RANGE_SPEC
10147 * where ACTION is one of the
10148 * * "filter": limit the trace to this region
10149 * * "start": start tracing from this address
10150 * * "stop": stop tracing at this address/region;
10151 * RANGE_SPEC is
10152 * * for kernel addresses: <start address>[/<size>]
10153 * * for object files: <start address>[/<size>]@</path/to/object/file>
10154 *
10155 * if <size> is not specified or is zero, the range is treated as a single
10156 * address; not valid for ACTION=="filter".
10157 */
10158 enum {
10159 IF_ACT_NONE = -1,
10160 IF_ACT_FILTER,
10161 IF_ACT_START,
10162 IF_ACT_STOP,
10163 IF_SRC_FILE,
10164 IF_SRC_KERNEL,
10165 IF_SRC_FILEADDR,
10166 IF_SRC_KERNELADDR,
10167 };
10168
10169 enum {
10170 IF_STATE_ACTION = 0,
10171 IF_STATE_SOURCE,
10172 IF_STATE_END,
10173 };
10174
10175 static const match_table_t if_tokens = {
10176 { IF_ACT_FILTER, "filter" },
10177 { IF_ACT_START, "start" },
10178 { IF_ACT_STOP, "stop" },
10179 { IF_SRC_FILE, "%u/%u@%s" },
10180 { IF_SRC_KERNEL, "%u/%u" },
10181 { IF_SRC_FILEADDR, "%u@%s" },
10182 { IF_SRC_KERNELADDR, "%u" },
10183 { IF_ACT_NONE, NULL },
10184 };
10185
10186 /*
10187 * Address filter string parser
10188 */
10189 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10190 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10191 struct list_head *filters)
10192 {
10193 struct perf_addr_filter *filter = NULL;
10194 char *start, *orig, *filename = NULL;
10195 substring_t args[MAX_OPT_ARGS];
10196 int state = IF_STATE_ACTION, token;
10197 unsigned int kernel = 0;
10198 int ret = -EINVAL;
10199
10200 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10201 if (!fstr)
10202 return -ENOMEM;
10203
10204 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10205 static const enum perf_addr_filter_action_t actions[] = {
10206 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10207 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10208 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10209 };
10210 ret = -EINVAL;
10211
10212 if (!*start)
10213 continue;
10214
10215 /* filter definition begins */
10216 if (state == IF_STATE_ACTION) {
10217 filter = perf_addr_filter_new(event, filters);
10218 if (!filter)
10219 goto fail;
10220 }
10221
10222 token = match_token(start, if_tokens, args);
10223 switch (token) {
10224 case IF_ACT_FILTER:
10225 case IF_ACT_START:
10226 case IF_ACT_STOP:
10227 if (state != IF_STATE_ACTION)
10228 goto fail;
10229
10230 filter->action = actions[token];
10231 state = IF_STATE_SOURCE;
10232 break;
10233
10234 case IF_SRC_KERNELADDR:
10235 case IF_SRC_KERNEL:
10236 kernel = 1;
10237 fallthrough;
10238
10239 case IF_SRC_FILEADDR:
10240 case IF_SRC_FILE:
10241 if (state != IF_STATE_SOURCE)
10242 goto fail;
10243
10244 *args[0].to = 0;
10245 ret = kstrtoul(args[0].from, 0, &filter->offset);
10246 if (ret)
10247 goto fail;
10248
10249 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10250 *args[1].to = 0;
10251 ret = kstrtoul(args[1].from, 0, &filter->size);
10252 if (ret)
10253 goto fail;
10254 }
10255
10256 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10257 int fpos = token == IF_SRC_FILE ? 2 : 1;
10258
10259 kfree(filename);
10260 filename = match_strdup(&args[fpos]);
10261 if (!filename) {
10262 ret = -ENOMEM;
10263 goto fail;
10264 }
10265 }
10266
10267 state = IF_STATE_END;
10268 break;
10269
10270 default:
10271 goto fail;
10272 }
10273
10274 /*
10275 * Filter definition is fully parsed, validate and install it.
10276 * Make sure that it doesn't contradict itself or the event's
10277 * attribute.
10278 */
10279 if (state == IF_STATE_END) {
10280 ret = -EINVAL;
10281 if (kernel && event->attr.exclude_kernel)
10282 goto fail;
10283
10284 /*
10285 * ACTION "filter" must have a non-zero length region
10286 * specified.
10287 */
10288 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10289 !filter->size)
10290 goto fail;
10291
10292 if (!kernel) {
10293 if (!filename)
10294 goto fail;
10295
10296 /*
10297 * For now, we only support file-based filters
10298 * in per-task events; doing so for CPU-wide
10299 * events requires additional context switching
10300 * trickery, since same object code will be
10301 * mapped at different virtual addresses in
10302 * different processes.
10303 */
10304 ret = -EOPNOTSUPP;
10305 if (!event->ctx->task)
10306 goto fail;
10307
10308 /* look up the path and grab its inode */
10309 ret = kern_path(filename, LOOKUP_FOLLOW,
10310 &filter->path);
10311 if (ret)
10312 goto fail;
10313
10314 ret = -EINVAL;
10315 if (!filter->path.dentry ||
10316 !S_ISREG(d_inode(filter->path.dentry)
10317 ->i_mode))
10318 goto fail;
10319
10320 event->addr_filters.nr_file_filters++;
10321 }
10322
10323 /* ready to consume more filters */
10324 kfree(filename);
10325 filename = NULL;
10326 state = IF_STATE_ACTION;
10327 filter = NULL;
10328 kernel = 0;
10329 }
10330 }
10331
10332 if (state != IF_STATE_ACTION)
10333 goto fail;
10334
10335 kfree(filename);
10336 kfree(orig);
10337
10338 return 0;
10339
10340 fail:
10341 kfree(filename);
10342 free_filters_list(filters);
10343 kfree(orig);
10344
10345 return ret;
10346 }
10347
10348 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10349 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10350 {
10351 LIST_HEAD(filters);
10352 int ret;
10353
10354 /*
10355 * Since this is called in perf_ioctl() path, we're already holding
10356 * ctx::mutex.
10357 */
10358 lockdep_assert_held(&event->ctx->mutex);
10359
10360 if (WARN_ON_ONCE(event->parent))
10361 return -EINVAL;
10362
10363 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10364 if (ret)
10365 goto fail_clear_files;
10366
10367 ret = event->pmu->addr_filters_validate(&filters);
10368 if (ret)
10369 goto fail_free_filters;
10370
10371 /* remove existing filters, if any */
10372 perf_addr_filters_splice(event, &filters);
10373
10374 /* install new filters */
10375 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10376
10377 return ret;
10378
10379 fail_free_filters:
10380 free_filters_list(&filters);
10381
10382 fail_clear_files:
10383 event->addr_filters.nr_file_filters = 0;
10384
10385 return ret;
10386 }
10387
perf_event_set_filter(struct perf_event * event,void __user * arg)10388 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10389 {
10390 int ret = -EINVAL;
10391 char *filter_str;
10392
10393 filter_str = strndup_user(arg, PAGE_SIZE);
10394 if (IS_ERR(filter_str))
10395 return PTR_ERR(filter_str);
10396
10397 #ifdef CONFIG_EVENT_TRACING
10398 if (perf_event_is_tracing(event)) {
10399 struct perf_event_context *ctx = event->ctx;
10400
10401 /*
10402 * Beware, here be dragons!!
10403 *
10404 * the tracepoint muck will deadlock against ctx->mutex, but
10405 * the tracepoint stuff does not actually need it. So
10406 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10407 * already have a reference on ctx.
10408 *
10409 * This can result in event getting moved to a different ctx,
10410 * but that does not affect the tracepoint state.
10411 */
10412 mutex_unlock(&ctx->mutex);
10413 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10414 mutex_lock(&ctx->mutex);
10415 } else
10416 #endif
10417 if (has_addr_filter(event))
10418 ret = perf_event_set_addr_filter(event, filter_str);
10419
10420 kfree(filter_str);
10421 return ret;
10422 }
10423
10424 /*
10425 * hrtimer based swevent callback
10426 */
10427
perf_swevent_hrtimer(struct hrtimer * hrtimer)10428 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10429 {
10430 enum hrtimer_restart ret = HRTIMER_RESTART;
10431 struct perf_sample_data data;
10432 struct pt_regs *regs;
10433 struct perf_event *event;
10434 u64 period;
10435
10436 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10437
10438 if (event->state != PERF_EVENT_STATE_ACTIVE)
10439 return HRTIMER_NORESTART;
10440
10441 event->pmu->read(event);
10442
10443 perf_sample_data_init(&data, 0, event->hw.last_period);
10444 regs = get_irq_regs();
10445
10446 if (regs && !perf_exclude_event(event, regs)) {
10447 if (!(event->attr.exclude_idle && is_idle_task(current)))
10448 if (__perf_event_overflow(event, 1, &data, regs))
10449 ret = HRTIMER_NORESTART;
10450 }
10451
10452 period = max_t(u64, 10000, event->hw.sample_period);
10453 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10454
10455 return ret;
10456 }
10457
perf_swevent_start_hrtimer(struct perf_event * event)10458 static void perf_swevent_start_hrtimer(struct perf_event *event)
10459 {
10460 struct hw_perf_event *hwc = &event->hw;
10461 s64 period;
10462
10463 if (!is_sampling_event(event))
10464 return;
10465
10466 period = local64_read(&hwc->period_left);
10467 if (period) {
10468 if (period < 0)
10469 period = 10000;
10470
10471 local64_set(&hwc->period_left, 0);
10472 } else {
10473 period = max_t(u64, 10000, hwc->sample_period);
10474 }
10475 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10476 HRTIMER_MODE_REL_PINNED_HARD);
10477 }
10478
perf_swevent_cancel_hrtimer(struct perf_event * event)10479 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10480 {
10481 struct hw_perf_event *hwc = &event->hw;
10482
10483 if (is_sampling_event(event)) {
10484 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10485 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10486
10487 hrtimer_cancel(&hwc->hrtimer);
10488 }
10489 }
10490
perf_swevent_init_hrtimer(struct perf_event * event)10491 static void perf_swevent_init_hrtimer(struct perf_event *event)
10492 {
10493 struct hw_perf_event *hwc = &event->hw;
10494
10495 if (!is_sampling_event(event))
10496 return;
10497
10498 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10499 hwc->hrtimer.function = perf_swevent_hrtimer;
10500
10501 /*
10502 * Since hrtimers have a fixed rate, we can do a static freq->period
10503 * mapping and avoid the whole period adjust feedback stuff.
10504 */
10505 if (event->attr.freq) {
10506 long freq = event->attr.sample_freq;
10507
10508 event->attr.sample_period = NSEC_PER_SEC / freq;
10509 hwc->sample_period = event->attr.sample_period;
10510 local64_set(&hwc->period_left, hwc->sample_period);
10511 hwc->last_period = hwc->sample_period;
10512 event->attr.freq = 0;
10513 }
10514 }
10515
10516 /*
10517 * Software event: cpu wall time clock
10518 */
10519
cpu_clock_event_update(struct perf_event * event)10520 static void cpu_clock_event_update(struct perf_event *event)
10521 {
10522 s64 prev;
10523 u64 now;
10524
10525 now = local_clock();
10526 prev = local64_xchg(&event->hw.prev_count, now);
10527 local64_add(now - prev, &event->count);
10528 }
10529
cpu_clock_event_start(struct perf_event * event,int flags)10530 static void cpu_clock_event_start(struct perf_event *event, int flags)
10531 {
10532 local64_set(&event->hw.prev_count, local_clock());
10533 perf_swevent_start_hrtimer(event);
10534 }
10535
cpu_clock_event_stop(struct perf_event * event,int flags)10536 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10537 {
10538 perf_swevent_cancel_hrtimer(event);
10539 cpu_clock_event_update(event);
10540 }
10541
cpu_clock_event_add(struct perf_event * event,int flags)10542 static int cpu_clock_event_add(struct perf_event *event, int flags)
10543 {
10544 if (flags & PERF_EF_START)
10545 cpu_clock_event_start(event, flags);
10546 perf_event_update_userpage(event);
10547
10548 return 0;
10549 }
10550
cpu_clock_event_del(struct perf_event * event,int flags)10551 static void cpu_clock_event_del(struct perf_event *event, int flags)
10552 {
10553 cpu_clock_event_stop(event, flags);
10554 }
10555
cpu_clock_event_read(struct perf_event * event)10556 static void cpu_clock_event_read(struct perf_event *event)
10557 {
10558 cpu_clock_event_update(event);
10559 }
10560
cpu_clock_event_init(struct perf_event * event)10561 static int cpu_clock_event_init(struct perf_event *event)
10562 {
10563 if (event->attr.type != PERF_TYPE_SOFTWARE)
10564 return -ENOENT;
10565
10566 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10567 return -ENOENT;
10568
10569 /*
10570 * no branch sampling for software events
10571 */
10572 if (has_branch_stack(event))
10573 return -EOPNOTSUPP;
10574
10575 perf_swevent_init_hrtimer(event);
10576
10577 return 0;
10578 }
10579
10580 static struct pmu perf_cpu_clock = {
10581 .task_ctx_nr = perf_sw_context,
10582
10583 .capabilities = PERF_PMU_CAP_NO_NMI,
10584
10585 .event_init = cpu_clock_event_init,
10586 .add = cpu_clock_event_add,
10587 .del = cpu_clock_event_del,
10588 .start = cpu_clock_event_start,
10589 .stop = cpu_clock_event_stop,
10590 .read = cpu_clock_event_read,
10591 };
10592
10593 /*
10594 * Software event: task time clock
10595 */
10596
task_clock_event_update(struct perf_event * event,u64 now)10597 static void task_clock_event_update(struct perf_event *event, u64 now)
10598 {
10599 u64 prev;
10600 s64 delta;
10601
10602 prev = local64_xchg(&event->hw.prev_count, now);
10603 delta = now - prev;
10604 local64_add(delta, &event->count);
10605 }
10606
task_clock_event_start(struct perf_event * event,int flags)10607 static void task_clock_event_start(struct perf_event *event, int flags)
10608 {
10609 local64_set(&event->hw.prev_count, event->ctx->time);
10610 perf_swevent_start_hrtimer(event);
10611 }
10612
task_clock_event_stop(struct perf_event * event,int flags)10613 static void task_clock_event_stop(struct perf_event *event, int flags)
10614 {
10615 perf_swevent_cancel_hrtimer(event);
10616 task_clock_event_update(event, event->ctx->time);
10617 }
10618
task_clock_event_add(struct perf_event * event,int flags)10619 static int task_clock_event_add(struct perf_event *event, int flags)
10620 {
10621 if (flags & PERF_EF_START)
10622 task_clock_event_start(event, flags);
10623 perf_event_update_userpage(event);
10624
10625 return 0;
10626 }
10627
task_clock_event_del(struct perf_event * event,int flags)10628 static void task_clock_event_del(struct perf_event *event, int flags)
10629 {
10630 task_clock_event_stop(event, PERF_EF_UPDATE);
10631 }
10632
task_clock_event_read(struct perf_event * event)10633 static void task_clock_event_read(struct perf_event *event)
10634 {
10635 u64 now = perf_clock();
10636 u64 delta = now - event->ctx->timestamp;
10637 u64 time = event->ctx->time + delta;
10638
10639 task_clock_event_update(event, time);
10640 }
10641
task_clock_event_init(struct perf_event * event)10642 static int task_clock_event_init(struct perf_event *event)
10643 {
10644 if (event->attr.type != PERF_TYPE_SOFTWARE)
10645 return -ENOENT;
10646
10647 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10648 return -ENOENT;
10649
10650 /*
10651 * no branch sampling for software events
10652 */
10653 if (has_branch_stack(event))
10654 return -EOPNOTSUPP;
10655
10656 perf_swevent_init_hrtimer(event);
10657
10658 return 0;
10659 }
10660
10661 static struct pmu perf_task_clock = {
10662 .task_ctx_nr = perf_sw_context,
10663
10664 .capabilities = PERF_PMU_CAP_NO_NMI,
10665
10666 .event_init = task_clock_event_init,
10667 .add = task_clock_event_add,
10668 .del = task_clock_event_del,
10669 .start = task_clock_event_start,
10670 .stop = task_clock_event_stop,
10671 .read = task_clock_event_read,
10672 };
10673
perf_pmu_nop_void(struct pmu * pmu)10674 static void perf_pmu_nop_void(struct pmu *pmu)
10675 {
10676 }
10677
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)10678 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10679 {
10680 }
10681
perf_pmu_nop_int(struct pmu * pmu)10682 static int perf_pmu_nop_int(struct pmu *pmu)
10683 {
10684 return 0;
10685 }
10686
perf_event_nop_int(struct perf_event * event,u64 value)10687 static int perf_event_nop_int(struct perf_event *event, u64 value)
10688 {
10689 return 0;
10690 }
10691
10692 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10693
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)10694 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10695 {
10696 __this_cpu_write(nop_txn_flags, flags);
10697
10698 if (flags & ~PERF_PMU_TXN_ADD)
10699 return;
10700
10701 perf_pmu_disable(pmu);
10702 }
10703
perf_pmu_commit_txn(struct pmu * pmu)10704 static int perf_pmu_commit_txn(struct pmu *pmu)
10705 {
10706 unsigned int flags = __this_cpu_read(nop_txn_flags);
10707
10708 __this_cpu_write(nop_txn_flags, 0);
10709
10710 if (flags & ~PERF_PMU_TXN_ADD)
10711 return 0;
10712
10713 perf_pmu_enable(pmu);
10714 return 0;
10715 }
10716
perf_pmu_cancel_txn(struct pmu * pmu)10717 static void perf_pmu_cancel_txn(struct pmu *pmu)
10718 {
10719 unsigned int flags = __this_cpu_read(nop_txn_flags);
10720
10721 __this_cpu_write(nop_txn_flags, 0);
10722
10723 if (flags & ~PERF_PMU_TXN_ADD)
10724 return;
10725
10726 perf_pmu_enable(pmu);
10727 }
10728
perf_event_idx_default(struct perf_event * event)10729 static int perf_event_idx_default(struct perf_event *event)
10730 {
10731 return 0;
10732 }
10733
10734 /*
10735 * Ensures all contexts with the same task_ctx_nr have the same
10736 * pmu_cpu_context too.
10737 */
find_pmu_context(int ctxn)10738 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10739 {
10740 struct pmu *pmu;
10741
10742 if (ctxn < 0)
10743 return NULL;
10744
10745 list_for_each_entry(pmu, &pmus, entry) {
10746 if (pmu->task_ctx_nr == ctxn)
10747 return pmu->pmu_cpu_context;
10748 }
10749
10750 return NULL;
10751 }
10752
free_pmu_context(struct pmu * pmu)10753 static void free_pmu_context(struct pmu *pmu)
10754 {
10755 /*
10756 * Static contexts such as perf_sw_context have a global lifetime
10757 * and may be shared between different PMUs. Avoid freeing them
10758 * when a single PMU is going away.
10759 */
10760 if (pmu->task_ctx_nr > perf_invalid_context)
10761 return;
10762
10763 free_percpu(pmu->pmu_cpu_context);
10764 }
10765
10766 /*
10767 * Let userspace know that this PMU supports address range filtering:
10768 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)10769 static ssize_t nr_addr_filters_show(struct device *dev,
10770 struct device_attribute *attr,
10771 char *page)
10772 {
10773 struct pmu *pmu = dev_get_drvdata(dev);
10774
10775 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10776 }
10777 DEVICE_ATTR_RO(nr_addr_filters);
10778
10779 static struct idr pmu_idr;
10780
10781 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)10782 type_show(struct device *dev, struct device_attribute *attr, char *page)
10783 {
10784 struct pmu *pmu = dev_get_drvdata(dev);
10785
10786 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10787 }
10788 static DEVICE_ATTR_RO(type);
10789
10790 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)10791 perf_event_mux_interval_ms_show(struct device *dev,
10792 struct device_attribute *attr,
10793 char *page)
10794 {
10795 struct pmu *pmu = dev_get_drvdata(dev);
10796
10797 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10798 }
10799
10800 static DEFINE_MUTEX(mux_interval_mutex);
10801
10802 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)10803 perf_event_mux_interval_ms_store(struct device *dev,
10804 struct device_attribute *attr,
10805 const char *buf, size_t count)
10806 {
10807 struct pmu *pmu = dev_get_drvdata(dev);
10808 int timer, cpu, ret;
10809
10810 ret = kstrtoint(buf, 0, &timer);
10811 if (ret)
10812 return ret;
10813
10814 if (timer < 1)
10815 return -EINVAL;
10816
10817 /* same value, noting to do */
10818 if (timer == pmu->hrtimer_interval_ms)
10819 return count;
10820
10821 mutex_lock(&mux_interval_mutex);
10822 pmu->hrtimer_interval_ms = timer;
10823
10824 /* update all cpuctx for this PMU */
10825 cpus_read_lock();
10826 for_each_online_cpu(cpu) {
10827 struct perf_cpu_context *cpuctx;
10828 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10829 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10830
10831 cpu_function_call(cpu,
10832 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10833 }
10834 cpus_read_unlock();
10835 mutex_unlock(&mux_interval_mutex);
10836
10837 return count;
10838 }
10839 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10840
10841 static struct attribute *pmu_dev_attrs[] = {
10842 &dev_attr_type.attr,
10843 &dev_attr_perf_event_mux_interval_ms.attr,
10844 NULL,
10845 };
10846 ATTRIBUTE_GROUPS(pmu_dev);
10847
10848 static int pmu_bus_running;
10849 static struct bus_type pmu_bus = {
10850 .name = "event_source",
10851 .dev_groups = pmu_dev_groups,
10852 };
10853
pmu_dev_release(struct device * dev)10854 static void pmu_dev_release(struct device *dev)
10855 {
10856 kfree(dev);
10857 }
10858
pmu_dev_alloc(struct pmu * pmu)10859 static int pmu_dev_alloc(struct pmu *pmu)
10860 {
10861 int ret = -ENOMEM;
10862
10863 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10864 if (!pmu->dev)
10865 goto out;
10866
10867 pmu->dev->groups = pmu->attr_groups;
10868 device_initialize(pmu->dev);
10869
10870 dev_set_drvdata(pmu->dev, pmu);
10871 pmu->dev->bus = &pmu_bus;
10872 pmu->dev->release = pmu_dev_release;
10873
10874 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10875 if (ret)
10876 goto free_dev;
10877
10878 ret = device_add(pmu->dev);
10879 if (ret)
10880 goto free_dev;
10881
10882 /* For PMUs with address filters, throw in an extra attribute: */
10883 if (pmu->nr_addr_filters)
10884 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10885
10886 if (ret)
10887 goto del_dev;
10888
10889 if (pmu->attr_update)
10890 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10891
10892 if (ret)
10893 goto del_dev;
10894
10895 out:
10896 return ret;
10897
10898 del_dev:
10899 device_del(pmu->dev);
10900
10901 free_dev:
10902 put_device(pmu->dev);
10903 goto out;
10904 }
10905
10906 static struct lock_class_key cpuctx_mutex;
10907 static struct lock_class_key cpuctx_lock;
10908
perf_pmu_register(struct pmu * pmu,const char * name,int type)10909 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10910 {
10911 int cpu, ret, max = PERF_TYPE_MAX;
10912
10913 mutex_lock(&pmus_lock);
10914 ret = -ENOMEM;
10915 pmu->pmu_disable_count = alloc_percpu(int);
10916 if (!pmu->pmu_disable_count)
10917 goto unlock;
10918
10919 pmu->type = -1;
10920 if (!name)
10921 goto skip_type;
10922 pmu->name = name;
10923
10924 if (type != PERF_TYPE_SOFTWARE) {
10925 if (type >= 0)
10926 max = type;
10927
10928 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10929 if (ret < 0)
10930 goto free_pdc;
10931
10932 WARN_ON(type >= 0 && ret != type);
10933
10934 type = ret;
10935 }
10936 pmu->type = type;
10937
10938 if (pmu_bus_running) {
10939 ret = pmu_dev_alloc(pmu);
10940 if (ret)
10941 goto free_idr;
10942 }
10943
10944 skip_type:
10945 if (pmu->task_ctx_nr == perf_hw_context) {
10946 static int hw_context_taken = 0;
10947
10948 /*
10949 * Other than systems with heterogeneous CPUs, it never makes
10950 * sense for two PMUs to share perf_hw_context. PMUs which are
10951 * uncore must use perf_invalid_context.
10952 */
10953 if (WARN_ON_ONCE(hw_context_taken &&
10954 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10955 pmu->task_ctx_nr = perf_invalid_context;
10956
10957 hw_context_taken = 1;
10958 }
10959
10960 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10961 if (pmu->pmu_cpu_context)
10962 goto got_cpu_context;
10963
10964 ret = -ENOMEM;
10965 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10966 if (!pmu->pmu_cpu_context)
10967 goto free_dev;
10968
10969 for_each_possible_cpu(cpu) {
10970 struct perf_cpu_context *cpuctx;
10971
10972 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10973 __perf_event_init_context(&cpuctx->ctx);
10974 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10975 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10976 cpuctx->ctx.pmu = pmu;
10977 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10978
10979 __perf_mux_hrtimer_init(cpuctx, cpu);
10980
10981 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10982 cpuctx->heap = cpuctx->heap_default;
10983 }
10984
10985 got_cpu_context:
10986 if (!pmu->start_txn) {
10987 if (pmu->pmu_enable) {
10988 /*
10989 * If we have pmu_enable/pmu_disable calls, install
10990 * transaction stubs that use that to try and batch
10991 * hardware accesses.
10992 */
10993 pmu->start_txn = perf_pmu_start_txn;
10994 pmu->commit_txn = perf_pmu_commit_txn;
10995 pmu->cancel_txn = perf_pmu_cancel_txn;
10996 } else {
10997 pmu->start_txn = perf_pmu_nop_txn;
10998 pmu->commit_txn = perf_pmu_nop_int;
10999 pmu->cancel_txn = perf_pmu_nop_void;
11000 }
11001 }
11002
11003 if (!pmu->pmu_enable) {
11004 pmu->pmu_enable = perf_pmu_nop_void;
11005 pmu->pmu_disable = perf_pmu_nop_void;
11006 }
11007
11008 if (!pmu->check_period)
11009 pmu->check_period = perf_event_nop_int;
11010
11011 if (!pmu->event_idx)
11012 pmu->event_idx = perf_event_idx_default;
11013
11014 /*
11015 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11016 * since these cannot be in the IDR. This way the linear search
11017 * is fast, provided a valid software event is provided.
11018 */
11019 if (type == PERF_TYPE_SOFTWARE || !name)
11020 list_add_rcu(&pmu->entry, &pmus);
11021 else
11022 list_add_tail_rcu(&pmu->entry, &pmus);
11023
11024 atomic_set(&pmu->exclusive_cnt, 0);
11025 ret = 0;
11026 unlock:
11027 mutex_unlock(&pmus_lock);
11028
11029 return ret;
11030
11031 free_dev:
11032 device_del(pmu->dev);
11033 put_device(pmu->dev);
11034
11035 free_idr:
11036 if (pmu->type != PERF_TYPE_SOFTWARE)
11037 idr_remove(&pmu_idr, pmu->type);
11038
11039 free_pdc:
11040 free_percpu(pmu->pmu_disable_count);
11041 goto unlock;
11042 }
11043 EXPORT_SYMBOL_GPL(perf_pmu_register);
11044
perf_pmu_unregister(struct pmu * pmu)11045 void perf_pmu_unregister(struct pmu *pmu)
11046 {
11047 mutex_lock(&pmus_lock);
11048 list_del_rcu(&pmu->entry);
11049
11050 /*
11051 * We dereference the pmu list under both SRCU and regular RCU, so
11052 * synchronize against both of those.
11053 */
11054 synchronize_srcu(&pmus_srcu);
11055 synchronize_rcu();
11056
11057 free_percpu(pmu->pmu_disable_count);
11058 if (pmu->type != PERF_TYPE_SOFTWARE)
11059 idr_remove(&pmu_idr, pmu->type);
11060 if (pmu_bus_running) {
11061 if (pmu->nr_addr_filters)
11062 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11063 device_del(pmu->dev);
11064 put_device(pmu->dev);
11065 }
11066 free_pmu_context(pmu);
11067 mutex_unlock(&pmus_lock);
11068 }
11069 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11070
has_extended_regs(struct perf_event * event)11071 static inline bool has_extended_regs(struct perf_event *event)
11072 {
11073 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11074 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11075 }
11076
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11077 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11078 {
11079 struct perf_event_context *ctx = NULL;
11080 int ret;
11081
11082 if (!try_module_get(pmu->module))
11083 return -ENODEV;
11084
11085 /*
11086 * A number of pmu->event_init() methods iterate the sibling_list to,
11087 * for example, validate if the group fits on the PMU. Therefore,
11088 * if this is a sibling event, acquire the ctx->mutex to protect
11089 * the sibling_list.
11090 */
11091 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11092 /*
11093 * This ctx->mutex can nest when we're called through
11094 * inheritance. See the perf_event_ctx_lock_nested() comment.
11095 */
11096 ctx = perf_event_ctx_lock_nested(event->group_leader,
11097 SINGLE_DEPTH_NESTING);
11098 BUG_ON(!ctx);
11099 }
11100
11101 event->pmu = pmu;
11102 ret = pmu->event_init(event);
11103
11104 if (ctx)
11105 perf_event_ctx_unlock(event->group_leader, ctx);
11106
11107 if (!ret) {
11108 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11109 has_extended_regs(event))
11110 ret = -EOPNOTSUPP;
11111
11112 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11113 event_has_any_exclude_flag(event))
11114 ret = -EINVAL;
11115
11116 if (ret && event->destroy)
11117 event->destroy(event);
11118 }
11119
11120 if (ret)
11121 module_put(pmu->module);
11122
11123 return ret;
11124 }
11125
perf_init_event(struct perf_event * event)11126 static struct pmu *perf_init_event(struct perf_event *event)
11127 {
11128 int idx, type, ret;
11129 struct pmu *pmu;
11130
11131 idx = srcu_read_lock(&pmus_srcu);
11132
11133 /* Try parent's PMU first: */
11134 if (event->parent && event->parent->pmu) {
11135 pmu = event->parent->pmu;
11136 ret = perf_try_init_event(pmu, event);
11137 if (!ret)
11138 goto unlock;
11139 }
11140
11141 /*
11142 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11143 * are often aliases for PERF_TYPE_RAW.
11144 */
11145 type = event->attr.type;
11146 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11147 type = PERF_TYPE_RAW;
11148
11149 again:
11150 rcu_read_lock();
11151 pmu = idr_find(&pmu_idr, type);
11152 rcu_read_unlock();
11153 if (pmu) {
11154 ret = perf_try_init_event(pmu, event);
11155 if (ret == -ENOENT && event->attr.type != type) {
11156 type = event->attr.type;
11157 goto again;
11158 }
11159
11160 if (ret)
11161 pmu = ERR_PTR(ret);
11162
11163 goto unlock;
11164 }
11165
11166 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11167 ret = perf_try_init_event(pmu, event);
11168 if (!ret)
11169 goto unlock;
11170
11171 if (ret != -ENOENT) {
11172 pmu = ERR_PTR(ret);
11173 goto unlock;
11174 }
11175 }
11176 pmu = ERR_PTR(-ENOENT);
11177 unlock:
11178 srcu_read_unlock(&pmus_srcu, idx);
11179
11180 return pmu;
11181 }
11182
attach_sb_event(struct perf_event * event)11183 static void attach_sb_event(struct perf_event *event)
11184 {
11185 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11186
11187 raw_spin_lock(&pel->lock);
11188 list_add_rcu(&event->sb_list, &pel->list);
11189 raw_spin_unlock(&pel->lock);
11190 }
11191
11192 /*
11193 * We keep a list of all !task (and therefore per-cpu) events
11194 * that need to receive side-band records.
11195 *
11196 * This avoids having to scan all the various PMU per-cpu contexts
11197 * looking for them.
11198 */
account_pmu_sb_event(struct perf_event * event)11199 static void account_pmu_sb_event(struct perf_event *event)
11200 {
11201 if (is_sb_event(event))
11202 attach_sb_event(event);
11203 }
11204
account_event_cpu(struct perf_event * event,int cpu)11205 static void account_event_cpu(struct perf_event *event, int cpu)
11206 {
11207 if (event->parent)
11208 return;
11209
11210 if (is_cgroup_event(event))
11211 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11212 }
11213
11214 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11215 static void account_freq_event_nohz(void)
11216 {
11217 #ifdef CONFIG_NO_HZ_FULL
11218 /* Lock so we don't race with concurrent unaccount */
11219 spin_lock(&nr_freq_lock);
11220 if (atomic_inc_return(&nr_freq_events) == 1)
11221 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11222 spin_unlock(&nr_freq_lock);
11223 #endif
11224 }
11225
account_freq_event(void)11226 static void account_freq_event(void)
11227 {
11228 if (tick_nohz_full_enabled())
11229 account_freq_event_nohz();
11230 else
11231 atomic_inc(&nr_freq_events);
11232 }
11233
11234
account_event(struct perf_event * event)11235 static void account_event(struct perf_event *event)
11236 {
11237 bool inc = false;
11238
11239 if (event->parent)
11240 return;
11241
11242 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11243 inc = true;
11244 if (event->attr.mmap || event->attr.mmap_data)
11245 atomic_inc(&nr_mmap_events);
11246 if (event->attr.comm)
11247 atomic_inc(&nr_comm_events);
11248 if (event->attr.namespaces)
11249 atomic_inc(&nr_namespaces_events);
11250 if (event->attr.cgroup)
11251 atomic_inc(&nr_cgroup_events);
11252 if (event->attr.task)
11253 atomic_inc(&nr_task_events);
11254 if (event->attr.freq)
11255 account_freq_event();
11256 if (event->attr.context_switch) {
11257 atomic_inc(&nr_switch_events);
11258 inc = true;
11259 }
11260 if (has_branch_stack(event))
11261 inc = true;
11262 if (is_cgroup_event(event))
11263 inc = true;
11264 if (event->attr.ksymbol)
11265 atomic_inc(&nr_ksymbol_events);
11266 if (event->attr.bpf_event)
11267 atomic_inc(&nr_bpf_events);
11268 if (event->attr.text_poke)
11269 atomic_inc(&nr_text_poke_events);
11270
11271 if (inc) {
11272 /*
11273 * We need the mutex here because static_branch_enable()
11274 * must complete *before* the perf_sched_count increment
11275 * becomes visible.
11276 */
11277 if (atomic_inc_not_zero(&perf_sched_count))
11278 goto enabled;
11279
11280 mutex_lock(&perf_sched_mutex);
11281 if (!atomic_read(&perf_sched_count)) {
11282 static_branch_enable(&perf_sched_events);
11283 /*
11284 * Guarantee that all CPUs observe they key change and
11285 * call the perf scheduling hooks before proceeding to
11286 * install events that need them.
11287 */
11288 synchronize_rcu();
11289 }
11290 /*
11291 * Now that we have waited for the sync_sched(), allow further
11292 * increments to by-pass the mutex.
11293 */
11294 atomic_inc(&perf_sched_count);
11295 mutex_unlock(&perf_sched_mutex);
11296 }
11297 enabled:
11298
11299 account_event_cpu(event, event->cpu);
11300
11301 account_pmu_sb_event(event);
11302 }
11303
11304 /*
11305 * Allocate and initialize an event structure
11306 */
11307 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11308 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11309 struct task_struct *task,
11310 struct perf_event *group_leader,
11311 struct perf_event *parent_event,
11312 perf_overflow_handler_t overflow_handler,
11313 void *context, int cgroup_fd)
11314 {
11315 struct pmu *pmu;
11316 struct perf_event *event;
11317 struct hw_perf_event *hwc;
11318 long err = -EINVAL;
11319
11320 if ((unsigned)cpu >= nr_cpu_ids) {
11321 if (!task || cpu != -1)
11322 return ERR_PTR(-EINVAL);
11323 }
11324
11325 event = kzalloc(sizeof(*event), GFP_KERNEL);
11326 if (!event)
11327 return ERR_PTR(-ENOMEM);
11328
11329 /*
11330 * Single events are their own group leaders, with an
11331 * empty sibling list:
11332 */
11333 if (!group_leader)
11334 group_leader = event;
11335
11336 mutex_init(&event->child_mutex);
11337 INIT_LIST_HEAD(&event->child_list);
11338
11339 INIT_LIST_HEAD(&event->event_entry);
11340 INIT_LIST_HEAD(&event->sibling_list);
11341 INIT_LIST_HEAD(&event->active_list);
11342 init_event_group(event);
11343 INIT_LIST_HEAD(&event->rb_entry);
11344 INIT_LIST_HEAD(&event->active_entry);
11345 INIT_LIST_HEAD(&event->addr_filters.list);
11346 INIT_HLIST_NODE(&event->hlist_entry);
11347
11348
11349 init_waitqueue_head(&event->waitq);
11350 event->pending_disable = -1;
11351 init_irq_work(&event->pending, perf_pending_event);
11352
11353 mutex_init(&event->mmap_mutex);
11354 raw_spin_lock_init(&event->addr_filters.lock);
11355
11356 atomic_long_set(&event->refcount, 1);
11357 event->cpu = cpu;
11358 event->attr = *attr;
11359 event->group_leader = group_leader;
11360 event->pmu = NULL;
11361 event->oncpu = -1;
11362
11363 event->parent = parent_event;
11364
11365 event->ns = get_pid_ns(task_active_pid_ns(current));
11366 event->id = atomic64_inc_return(&perf_event_id);
11367
11368 event->state = PERF_EVENT_STATE_INACTIVE;
11369
11370 if (task) {
11371 event->attach_state = PERF_ATTACH_TASK;
11372 /*
11373 * XXX pmu::event_init needs to know what task to account to
11374 * and we cannot use the ctx information because we need the
11375 * pmu before we get a ctx.
11376 */
11377 event->hw.target = get_task_struct(task);
11378 }
11379
11380 event->clock = &local_clock;
11381 if (parent_event)
11382 event->clock = parent_event->clock;
11383
11384 if (!overflow_handler && parent_event) {
11385 overflow_handler = parent_event->overflow_handler;
11386 context = parent_event->overflow_handler_context;
11387 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11388 if (overflow_handler == bpf_overflow_handler) {
11389 struct bpf_prog *prog = parent_event->prog;
11390
11391 bpf_prog_inc(prog);
11392 event->prog = prog;
11393 event->orig_overflow_handler =
11394 parent_event->orig_overflow_handler;
11395 }
11396 #endif
11397 }
11398
11399 if (overflow_handler) {
11400 event->overflow_handler = overflow_handler;
11401 event->overflow_handler_context = context;
11402 } else if (is_write_backward(event)){
11403 event->overflow_handler = perf_event_output_backward;
11404 event->overflow_handler_context = NULL;
11405 } else {
11406 event->overflow_handler = perf_event_output_forward;
11407 event->overflow_handler_context = NULL;
11408 }
11409
11410 perf_event__state_init(event);
11411
11412 pmu = NULL;
11413
11414 hwc = &event->hw;
11415 hwc->sample_period = attr->sample_period;
11416 if (attr->freq && attr->sample_freq)
11417 hwc->sample_period = 1;
11418 hwc->last_period = hwc->sample_period;
11419
11420 local64_set(&hwc->period_left, hwc->sample_period);
11421
11422 /*
11423 * We currently do not support PERF_SAMPLE_READ on inherited events.
11424 * See perf_output_read().
11425 */
11426 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11427 goto err_ns;
11428
11429 if (!has_branch_stack(event))
11430 event->attr.branch_sample_type = 0;
11431
11432 pmu = perf_init_event(event);
11433 if (IS_ERR(pmu)) {
11434 err = PTR_ERR(pmu);
11435 goto err_ns;
11436 }
11437
11438 /*
11439 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11440 * be different on other CPUs in the uncore mask.
11441 */
11442 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11443 err = -EINVAL;
11444 goto err_pmu;
11445 }
11446
11447 if (event->attr.aux_output &&
11448 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11449 err = -EOPNOTSUPP;
11450 goto err_pmu;
11451 }
11452
11453 if (cgroup_fd != -1) {
11454 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11455 if (err)
11456 goto err_pmu;
11457 }
11458
11459 err = exclusive_event_init(event);
11460 if (err)
11461 goto err_pmu;
11462
11463 if (has_addr_filter(event)) {
11464 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11465 sizeof(struct perf_addr_filter_range),
11466 GFP_KERNEL);
11467 if (!event->addr_filter_ranges) {
11468 err = -ENOMEM;
11469 goto err_per_task;
11470 }
11471
11472 /*
11473 * Clone the parent's vma offsets: they are valid until exec()
11474 * even if the mm is not shared with the parent.
11475 */
11476 if (event->parent) {
11477 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11478
11479 raw_spin_lock_irq(&ifh->lock);
11480 memcpy(event->addr_filter_ranges,
11481 event->parent->addr_filter_ranges,
11482 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11483 raw_spin_unlock_irq(&ifh->lock);
11484 }
11485
11486 /* force hw sync on the address filters */
11487 event->addr_filters_gen = 1;
11488 }
11489
11490 if (!event->parent) {
11491 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11492 err = get_callchain_buffers(attr->sample_max_stack);
11493 if (err)
11494 goto err_addr_filters;
11495 }
11496 }
11497
11498 err = security_perf_event_alloc(event);
11499 if (err)
11500 goto err_callchain_buffer;
11501
11502 /* symmetric to unaccount_event() in _free_event() */
11503 account_event(event);
11504
11505 return event;
11506
11507 err_callchain_buffer:
11508 if (!event->parent) {
11509 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11510 put_callchain_buffers();
11511 }
11512 err_addr_filters:
11513 kfree(event->addr_filter_ranges);
11514
11515 err_per_task:
11516 exclusive_event_destroy(event);
11517
11518 err_pmu:
11519 if (is_cgroup_event(event))
11520 perf_detach_cgroup(event);
11521 if (event->destroy)
11522 event->destroy(event);
11523 module_put(pmu->module);
11524 err_ns:
11525 if (event->ns)
11526 put_pid_ns(event->ns);
11527 if (event->hw.target)
11528 put_task_struct(event->hw.target);
11529 kfree(event);
11530
11531 return ERR_PTR(err);
11532 }
11533
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)11534 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11535 struct perf_event_attr *attr)
11536 {
11537 u32 size;
11538 int ret;
11539
11540 /* Zero the full structure, so that a short copy will be nice. */
11541 memset(attr, 0, sizeof(*attr));
11542
11543 ret = get_user(size, &uattr->size);
11544 if (ret)
11545 return ret;
11546
11547 /* ABI compatibility quirk: */
11548 if (!size)
11549 size = PERF_ATTR_SIZE_VER0;
11550 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11551 goto err_size;
11552
11553 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11554 if (ret) {
11555 if (ret == -E2BIG)
11556 goto err_size;
11557 return ret;
11558 }
11559
11560 attr->size = size;
11561
11562 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11563 return -EINVAL;
11564
11565 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11566 return -EINVAL;
11567
11568 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11569 return -EINVAL;
11570
11571 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11572 u64 mask = attr->branch_sample_type;
11573
11574 /* only using defined bits */
11575 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11576 return -EINVAL;
11577
11578 /* at least one branch bit must be set */
11579 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11580 return -EINVAL;
11581
11582 /* propagate priv level, when not set for branch */
11583 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11584
11585 /* exclude_kernel checked on syscall entry */
11586 if (!attr->exclude_kernel)
11587 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11588
11589 if (!attr->exclude_user)
11590 mask |= PERF_SAMPLE_BRANCH_USER;
11591
11592 if (!attr->exclude_hv)
11593 mask |= PERF_SAMPLE_BRANCH_HV;
11594 /*
11595 * adjust user setting (for HW filter setup)
11596 */
11597 attr->branch_sample_type = mask;
11598 }
11599 /* privileged levels capture (kernel, hv): check permissions */
11600 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11601 ret = perf_allow_kernel(attr);
11602 if (ret)
11603 return ret;
11604 }
11605 }
11606
11607 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11608 ret = perf_reg_validate(attr->sample_regs_user);
11609 if (ret)
11610 return ret;
11611 }
11612
11613 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11614 if (!arch_perf_have_user_stack_dump())
11615 return -ENOSYS;
11616
11617 /*
11618 * We have __u32 type for the size, but so far
11619 * we can only use __u16 as maximum due to the
11620 * __u16 sample size limit.
11621 */
11622 if (attr->sample_stack_user >= USHRT_MAX)
11623 return -EINVAL;
11624 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11625 return -EINVAL;
11626 }
11627
11628 if (!attr->sample_max_stack)
11629 attr->sample_max_stack = sysctl_perf_event_max_stack;
11630
11631 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11632 ret = perf_reg_validate(attr->sample_regs_intr);
11633
11634 #ifndef CONFIG_CGROUP_PERF
11635 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11636 return -EINVAL;
11637 #endif
11638
11639 out:
11640 return ret;
11641
11642 err_size:
11643 put_user(sizeof(*attr), &uattr->size);
11644 ret = -E2BIG;
11645 goto out;
11646 }
11647
mutex_lock_double(struct mutex * a,struct mutex * b)11648 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11649 {
11650 if (b < a)
11651 swap(a, b);
11652
11653 mutex_lock(a);
11654 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11655 }
11656
11657 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)11658 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11659 {
11660 struct perf_buffer *rb = NULL;
11661 int ret = -EINVAL;
11662
11663 if (!output_event) {
11664 mutex_lock(&event->mmap_mutex);
11665 goto set;
11666 }
11667
11668 /* don't allow circular references */
11669 if (event == output_event)
11670 goto out;
11671
11672 /*
11673 * Don't allow cross-cpu buffers
11674 */
11675 if (output_event->cpu != event->cpu)
11676 goto out;
11677
11678 /*
11679 * If its not a per-cpu rb, it must be the same task.
11680 */
11681 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11682 goto out;
11683
11684 /*
11685 * Mixing clocks in the same buffer is trouble you don't need.
11686 */
11687 if (output_event->clock != event->clock)
11688 goto out;
11689
11690 /*
11691 * Either writing ring buffer from beginning or from end.
11692 * Mixing is not allowed.
11693 */
11694 if (is_write_backward(output_event) != is_write_backward(event))
11695 goto out;
11696
11697 /*
11698 * If both events generate aux data, they must be on the same PMU
11699 */
11700 if (has_aux(event) && has_aux(output_event) &&
11701 event->pmu != output_event->pmu)
11702 goto out;
11703
11704 /*
11705 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
11706 * output_event is already on rb->event_list, and the list iteration
11707 * restarts after every removal, it is guaranteed this new event is
11708 * observed *OR* if output_event is already removed, it's guaranteed we
11709 * observe !rb->mmap_count.
11710 */
11711 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
11712 set:
11713 /* Can't redirect output if we've got an active mmap() */
11714 if (atomic_read(&event->mmap_count))
11715 goto unlock;
11716
11717 if (output_event) {
11718 /* get the rb we want to redirect to */
11719 rb = ring_buffer_get(output_event);
11720 if (!rb)
11721 goto unlock;
11722
11723 /* did we race against perf_mmap_close() */
11724 if (!atomic_read(&rb->mmap_count)) {
11725 ring_buffer_put(rb);
11726 goto unlock;
11727 }
11728 }
11729
11730 ring_buffer_attach(event, rb);
11731
11732 ret = 0;
11733 unlock:
11734 mutex_unlock(&event->mmap_mutex);
11735 if (output_event)
11736 mutex_unlock(&output_event->mmap_mutex);
11737
11738 out:
11739 return ret;
11740 }
11741
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)11742 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11743 {
11744 bool nmi_safe = false;
11745
11746 switch (clk_id) {
11747 case CLOCK_MONOTONIC:
11748 event->clock = &ktime_get_mono_fast_ns;
11749 nmi_safe = true;
11750 break;
11751
11752 case CLOCK_MONOTONIC_RAW:
11753 event->clock = &ktime_get_raw_fast_ns;
11754 nmi_safe = true;
11755 break;
11756
11757 case CLOCK_REALTIME:
11758 event->clock = &ktime_get_real_ns;
11759 break;
11760
11761 case CLOCK_BOOTTIME:
11762 event->clock = &ktime_get_boottime_ns;
11763 break;
11764
11765 case CLOCK_TAI:
11766 event->clock = &ktime_get_clocktai_ns;
11767 break;
11768
11769 default:
11770 return -EINVAL;
11771 }
11772
11773 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11774 return -EINVAL;
11775
11776 return 0;
11777 }
11778
11779 /*
11780 * Variation on perf_event_ctx_lock_nested(), except we take two context
11781 * mutexes.
11782 */
11783 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)11784 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11785 struct perf_event_context *ctx)
11786 {
11787 struct perf_event_context *gctx;
11788
11789 again:
11790 rcu_read_lock();
11791 gctx = READ_ONCE(group_leader->ctx);
11792 if (!refcount_inc_not_zero(&gctx->refcount)) {
11793 rcu_read_unlock();
11794 goto again;
11795 }
11796 rcu_read_unlock();
11797
11798 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11799
11800 if (group_leader->ctx != gctx) {
11801 mutex_unlock(&ctx->mutex);
11802 mutex_unlock(&gctx->mutex);
11803 put_ctx(gctx);
11804 goto again;
11805 }
11806
11807 return gctx;
11808 }
11809
11810 /**
11811 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11812 *
11813 * @attr_uptr: event_id type attributes for monitoring/sampling
11814 * @pid: target pid
11815 * @cpu: target cpu
11816 * @group_fd: group leader event fd
11817 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)11818 SYSCALL_DEFINE5(perf_event_open,
11819 struct perf_event_attr __user *, attr_uptr,
11820 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11821 {
11822 struct perf_event *group_leader = NULL, *output_event = NULL;
11823 struct perf_event *event, *sibling;
11824 struct perf_event_attr attr;
11825 struct perf_event_context *ctx, *gctx;
11826 struct file *event_file = NULL;
11827 struct fd group = {NULL, 0};
11828 struct task_struct *task = NULL;
11829 struct pmu *pmu;
11830 int event_fd;
11831 int move_group = 0;
11832 int err;
11833 int f_flags = O_RDWR;
11834 int cgroup_fd = -1;
11835
11836 /* for future expandability... */
11837 if (flags & ~PERF_FLAG_ALL)
11838 return -EINVAL;
11839
11840 err = perf_copy_attr(attr_uptr, &attr);
11841 if (err)
11842 return err;
11843
11844 /* Do we allow access to perf_event_open(2) ? */
11845 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11846 if (err)
11847 return err;
11848
11849 if (!attr.exclude_kernel) {
11850 err = perf_allow_kernel(&attr);
11851 if (err)
11852 return err;
11853 }
11854
11855 if (attr.namespaces) {
11856 if (!perfmon_capable())
11857 return -EACCES;
11858 }
11859
11860 if (attr.freq) {
11861 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11862 return -EINVAL;
11863 } else {
11864 if (attr.sample_period & (1ULL << 63))
11865 return -EINVAL;
11866 }
11867
11868 /* Only privileged users can get physical addresses */
11869 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11870 err = perf_allow_kernel(&attr);
11871 if (err)
11872 return err;
11873 }
11874
11875 /* REGS_INTR can leak data, lockdown must prevent this */
11876 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11877 err = security_locked_down(LOCKDOWN_PERF);
11878 if (err)
11879 return err;
11880 }
11881
11882 /*
11883 * In cgroup mode, the pid argument is used to pass the fd
11884 * opened to the cgroup directory in cgroupfs. The cpu argument
11885 * designates the cpu on which to monitor threads from that
11886 * cgroup.
11887 */
11888 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11889 return -EINVAL;
11890
11891 if (flags & PERF_FLAG_FD_CLOEXEC)
11892 f_flags |= O_CLOEXEC;
11893
11894 event_fd = get_unused_fd_flags(f_flags);
11895 if (event_fd < 0)
11896 return event_fd;
11897
11898 if (group_fd != -1) {
11899 err = perf_fget_light(group_fd, &group);
11900 if (err)
11901 goto err_fd;
11902 group_leader = group.file->private_data;
11903 if (flags & PERF_FLAG_FD_OUTPUT)
11904 output_event = group_leader;
11905 if (flags & PERF_FLAG_FD_NO_GROUP)
11906 group_leader = NULL;
11907 }
11908
11909 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11910 task = find_lively_task_by_vpid(pid);
11911 if (IS_ERR(task)) {
11912 err = PTR_ERR(task);
11913 goto err_group_fd;
11914 }
11915 }
11916
11917 if (task && group_leader &&
11918 group_leader->attr.inherit != attr.inherit) {
11919 err = -EINVAL;
11920 goto err_task;
11921 }
11922
11923 if (flags & PERF_FLAG_PID_CGROUP)
11924 cgroup_fd = pid;
11925
11926 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11927 NULL, NULL, cgroup_fd);
11928 if (IS_ERR(event)) {
11929 err = PTR_ERR(event);
11930 goto err_task;
11931 }
11932
11933 if (is_sampling_event(event)) {
11934 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11935 err = -EOPNOTSUPP;
11936 goto err_alloc;
11937 }
11938 }
11939
11940 /*
11941 * Special case software events and allow them to be part of
11942 * any hardware group.
11943 */
11944 pmu = event->pmu;
11945
11946 if (attr.use_clockid) {
11947 err = perf_event_set_clock(event, attr.clockid);
11948 if (err)
11949 goto err_alloc;
11950 }
11951
11952 if (pmu->task_ctx_nr == perf_sw_context)
11953 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11954
11955 if (group_leader) {
11956 if (is_software_event(event) &&
11957 !in_software_context(group_leader)) {
11958 /*
11959 * If the event is a sw event, but the group_leader
11960 * is on hw context.
11961 *
11962 * Allow the addition of software events to hw
11963 * groups, this is safe because software events
11964 * never fail to schedule.
11965 */
11966 pmu = group_leader->ctx->pmu;
11967 } else if (!is_software_event(event) &&
11968 is_software_event(group_leader) &&
11969 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11970 /*
11971 * In case the group is a pure software group, and we
11972 * try to add a hardware event, move the whole group to
11973 * the hardware context.
11974 */
11975 move_group = 1;
11976 }
11977 }
11978
11979 /*
11980 * Get the target context (task or percpu):
11981 */
11982 ctx = find_get_context(pmu, task, event);
11983 if (IS_ERR(ctx)) {
11984 err = PTR_ERR(ctx);
11985 goto err_alloc;
11986 }
11987
11988 /*
11989 * Look up the group leader (we will attach this event to it):
11990 */
11991 if (group_leader) {
11992 err = -EINVAL;
11993
11994 /*
11995 * Do not allow a recursive hierarchy (this new sibling
11996 * becoming part of another group-sibling):
11997 */
11998 if (group_leader->group_leader != group_leader)
11999 goto err_context;
12000
12001 /* All events in a group should have the same clock */
12002 if (group_leader->clock != event->clock)
12003 goto err_context;
12004
12005 /*
12006 * Make sure we're both events for the same CPU;
12007 * grouping events for different CPUs is broken; since
12008 * you can never concurrently schedule them anyhow.
12009 */
12010 if (group_leader->cpu != event->cpu)
12011 goto err_context;
12012
12013 /*
12014 * Make sure we're both on the same task, or both
12015 * per-CPU events.
12016 */
12017 if (group_leader->ctx->task != ctx->task)
12018 goto err_context;
12019
12020 /*
12021 * Do not allow to attach to a group in a different task
12022 * or CPU context. If we're moving SW events, we'll fix
12023 * this up later, so allow that.
12024 *
12025 * Racy, not holding group_leader->ctx->mutex, see comment with
12026 * perf_event_ctx_lock().
12027 */
12028 if (!move_group && group_leader->ctx != ctx)
12029 goto err_context;
12030
12031 /*
12032 * Only a group leader can be exclusive or pinned
12033 */
12034 if (attr.exclusive || attr.pinned)
12035 goto err_context;
12036 }
12037
12038 if (output_event) {
12039 err = perf_event_set_output(event, output_event);
12040 if (err)
12041 goto err_context;
12042 }
12043
12044 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12045 f_flags);
12046 if (IS_ERR(event_file)) {
12047 err = PTR_ERR(event_file);
12048 event_file = NULL;
12049 goto err_context;
12050 }
12051
12052 if (task) {
12053 err = down_read_interruptible(&task->signal->exec_update_lock);
12054 if (err)
12055 goto err_file;
12056
12057 /*
12058 * Preserve ptrace permission check for backwards compatibility.
12059 *
12060 * We must hold exec_update_lock across this and any potential
12061 * perf_install_in_context() call for this new event to
12062 * serialize against exec() altering our credentials (and the
12063 * perf_event_exit_task() that could imply).
12064 */
12065 err = -EACCES;
12066 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12067 goto err_cred;
12068 }
12069
12070 if (move_group) {
12071 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12072
12073 if (gctx->task == TASK_TOMBSTONE) {
12074 err = -ESRCH;
12075 goto err_locked;
12076 }
12077
12078 /*
12079 * Check if we raced against another sys_perf_event_open() call
12080 * moving the software group underneath us.
12081 */
12082 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12083 /*
12084 * If someone moved the group out from under us, check
12085 * if this new event wound up on the same ctx, if so
12086 * its the regular !move_group case, otherwise fail.
12087 */
12088 if (gctx != ctx) {
12089 err = -EINVAL;
12090 goto err_locked;
12091 } else {
12092 perf_event_ctx_unlock(group_leader, gctx);
12093 move_group = 0;
12094 goto not_move_group;
12095 }
12096 }
12097
12098 /*
12099 * Failure to create exclusive events returns -EBUSY.
12100 */
12101 err = -EBUSY;
12102 if (!exclusive_event_installable(group_leader, ctx))
12103 goto err_locked;
12104
12105 for_each_sibling_event(sibling, group_leader) {
12106 if (!exclusive_event_installable(sibling, ctx))
12107 goto err_locked;
12108 }
12109 } else {
12110 mutex_lock(&ctx->mutex);
12111
12112 /*
12113 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12114 * see the group_leader && !move_group test earlier.
12115 */
12116 if (group_leader && group_leader->ctx != ctx) {
12117 err = -EINVAL;
12118 goto err_locked;
12119 }
12120 }
12121 not_move_group:
12122
12123 if (ctx->task == TASK_TOMBSTONE) {
12124 err = -ESRCH;
12125 goto err_locked;
12126 }
12127
12128 if (!perf_event_validate_size(event)) {
12129 err = -E2BIG;
12130 goto err_locked;
12131 }
12132
12133 if (!task) {
12134 /*
12135 * Check if the @cpu we're creating an event for is online.
12136 *
12137 * We use the perf_cpu_context::ctx::mutex to serialize against
12138 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12139 */
12140 struct perf_cpu_context *cpuctx =
12141 container_of(ctx, struct perf_cpu_context, ctx);
12142
12143 if (!cpuctx->online) {
12144 err = -ENODEV;
12145 goto err_locked;
12146 }
12147 }
12148
12149 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12150 err = -EINVAL;
12151 goto err_locked;
12152 }
12153
12154 /*
12155 * Must be under the same ctx::mutex as perf_install_in_context(),
12156 * because we need to serialize with concurrent event creation.
12157 */
12158 if (!exclusive_event_installable(event, ctx)) {
12159 err = -EBUSY;
12160 goto err_locked;
12161 }
12162
12163 WARN_ON_ONCE(ctx->parent_ctx);
12164
12165 /*
12166 * This is the point on no return; we cannot fail hereafter. This is
12167 * where we start modifying current state.
12168 */
12169
12170 if (move_group) {
12171 /*
12172 * See perf_event_ctx_lock() for comments on the details
12173 * of swizzling perf_event::ctx.
12174 */
12175 perf_remove_from_context(group_leader, 0);
12176 put_ctx(gctx);
12177
12178 for_each_sibling_event(sibling, group_leader) {
12179 perf_remove_from_context(sibling, 0);
12180 put_ctx(gctx);
12181 }
12182
12183 /*
12184 * Wait for everybody to stop referencing the events through
12185 * the old lists, before installing it on new lists.
12186 */
12187 synchronize_rcu();
12188
12189 /*
12190 * Install the group siblings before the group leader.
12191 *
12192 * Because a group leader will try and install the entire group
12193 * (through the sibling list, which is still in-tact), we can
12194 * end up with siblings installed in the wrong context.
12195 *
12196 * By installing siblings first we NO-OP because they're not
12197 * reachable through the group lists.
12198 */
12199 for_each_sibling_event(sibling, group_leader) {
12200 perf_event__state_init(sibling);
12201 perf_install_in_context(ctx, sibling, sibling->cpu);
12202 get_ctx(ctx);
12203 }
12204
12205 /*
12206 * Removing from the context ends up with disabled
12207 * event. What we want here is event in the initial
12208 * startup state, ready to be add into new context.
12209 */
12210 perf_event__state_init(group_leader);
12211 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12212 get_ctx(ctx);
12213 }
12214
12215 /*
12216 * Precalculate sample_data sizes; do while holding ctx::mutex such
12217 * that we're serialized against further additions and before
12218 * perf_install_in_context() which is the point the event is active and
12219 * can use these values.
12220 */
12221 perf_event__header_size(event);
12222 perf_event__id_header_size(event);
12223
12224 event->owner = current;
12225
12226 perf_install_in_context(ctx, event, event->cpu);
12227 perf_unpin_context(ctx);
12228
12229 if (move_group)
12230 perf_event_ctx_unlock(group_leader, gctx);
12231 mutex_unlock(&ctx->mutex);
12232
12233 if (task) {
12234 up_read(&task->signal->exec_update_lock);
12235 put_task_struct(task);
12236 }
12237
12238 mutex_lock(¤t->perf_event_mutex);
12239 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12240 mutex_unlock(¤t->perf_event_mutex);
12241
12242 /*
12243 * Drop the reference on the group_event after placing the
12244 * new event on the sibling_list. This ensures destruction
12245 * of the group leader will find the pointer to itself in
12246 * perf_group_detach().
12247 */
12248 fdput(group);
12249 fd_install(event_fd, event_file);
12250 return event_fd;
12251
12252 err_locked:
12253 if (move_group)
12254 perf_event_ctx_unlock(group_leader, gctx);
12255 mutex_unlock(&ctx->mutex);
12256 err_cred:
12257 if (task)
12258 up_read(&task->signal->exec_update_lock);
12259 err_file:
12260 fput(event_file);
12261 err_context:
12262 perf_unpin_context(ctx);
12263 put_ctx(ctx);
12264 err_alloc:
12265 /*
12266 * If event_file is set, the fput() above will have called ->release()
12267 * and that will take care of freeing the event.
12268 */
12269 if (!event_file)
12270 free_event(event);
12271 err_task:
12272 if (task)
12273 put_task_struct(task);
12274 err_group_fd:
12275 fdput(group);
12276 err_fd:
12277 put_unused_fd(event_fd);
12278 return err;
12279 }
12280
12281 /**
12282 * perf_event_create_kernel_counter
12283 *
12284 * @attr: attributes of the counter to create
12285 * @cpu: cpu in which the counter is bound
12286 * @task: task to profile (NULL for percpu)
12287 */
12288 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12289 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12290 struct task_struct *task,
12291 perf_overflow_handler_t overflow_handler,
12292 void *context)
12293 {
12294 struct perf_event_context *ctx;
12295 struct perf_event *event;
12296 int err;
12297
12298 /*
12299 * Grouping is not supported for kernel events, neither is 'AUX',
12300 * make sure the caller's intentions are adjusted.
12301 */
12302 if (attr->aux_output)
12303 return ERR_PTR(-EINVAL);
12304
12305 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12306 overflow_handler, context, -1);
12307 if (IS_ERR(event)) {
12308 err = PTR_ERR(event);
12309 goto err;
12310 }
12311
12312 /* Mark owner so we could distinguish it from user events. */
12313 event->owner = TASK_TOMBSTONE;
12314
12315 /*
12316 * Get the target context (task or percpu):
12317 */
12318 ctx = find_get_context(event->pmu, task, event);
12319 if (IS_ERR(ctx)) {
12320 err = PTR_ERR(ctx);
12321 goto err_free;
12322 }
12323
12324 WARN_ON_ONCE(ctx->parent_ctx);
12325 mutex_lock(&ctx->mutex);
12326 if (ctx->task == TASK_TOMBSTONE) {
12327 err = -ESRCH;
12328 goto err_unlock;
12329 }
12330
12331 if (!task) {
12332 /*
12333 * Check if the @cpu we're creating an event for is online.
12334 *
12335 * We use the perf_cpu_context::ctx::mutex to serialize against
12336 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12337 */
12338 struct perf_cpu_context *cpuctx =
12339 container_of(ctx, struct perf_cpu_context, ctx);
12340 if (!cpuctx->online) {
12341 err = -ENODEV;
12342 goto err_unlock;
12343 }
12344 }
12345
12346 if (!exclusive_event_installable(event, ctx)) {
12347 err = -EBUSY;
12348 goto err_unlock;
12349 }
12350
12351 perf_install_in_context(ctx, event, event->cpu);
12352 perf_unpin_context(ctx);
12353 mutex_unlock(&ctx->mutex);
12354
12355 return event;
12356
12357 err_unlock:
12358 mutex_unlock(&ctx->mutex);
12359 perf_unpin_context(ctx);
12360 put_ctx(ctx);
12361 err_free:
12362 free_event(event);
12363 err:
12364 return ERR_PTR(err);
12365 }
12366 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12367
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12368 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12369 {
12370 struct perf_event_context *src_ctx;
12371 struct perf_event_context *dst_ctx;
12372 struct perf_event *event, *tmp;
12373 LIST_HEAD(events);
12374
12375 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12376 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12377
12378 /*
12379 * See perf_event_ctx_lock() for comments on the details
12380 * of swizzling perf_event::ctx.
12381 */
12382 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12383 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12384 event_entry) {
12385 perf_remove_from_context(event, 0);
12386 unaccount_event_cpu(event, src_cpu);
12387 put_ctx(src_ctx);
12388 list_add(&event->migrate_entry, &events);
12389 }
12390
12391 /*
12392 * Wait for the events to quiesce before re-instating them.
12393 */
12394 synchronize_rcu();
12395
12396 /*
12397 * Re-instate events in 2 passes.
12398 *
12399 * Skip over group leaders and only install siblings on this first
12400 * pass, siblings will not get enabled without a leader, however a
12401 * leader will enable its siblings, even if those are still on the old
12402 * context.
12403 */
12404 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12405 if (event->group_leader == event)
12406 continue;
12407
12408 list_del(&event->migrate_entry);
12409 if (event->state >= PERF_EVENT_STATE_OFF)
12410 event->state = PERF_EVENT_STATE_INACTIVE;
12411 account_event_cpu(event, dst_cpu);
12412 perf_install_in_context(dst_ctx, event, dst_cpu);
12413 get_ctx(dst_ctx);
12414 }
12415
12416 /*
12417 * Once all the siblings are setup properly, install the group leaders
12418 * to make it go.
12419 */
12420 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12421 list_del(&event->migrate_entry);
12422 if (event->state >= PERF_EVENT_STATE_OFF)
12423 event->state = PERF_EVENT_STATE_INACTIVE;
12424 account_event_cpu(event, dst_cpu);
12425 perf_install_in_context(dst_ctx, event, dst_cpu);
12426 get_ctx(dst_ctx);
12427 }
12428 mutex_unlock(&dst_ctx->mutex);
12429 mutex_unlock(&src_ctx->mutex);
12430 }
12431 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12432
sync_child_event(struct perf_event * child_event,struct task_struct * child)12433 static void sync_child_event(struct perf_event *child_event,
12434 struct task_struct *child)
12435 {
12436 struct perf_event *parent_event = child_event->parent;
12437 u64 child_val;
12438
12439 if (child_event->attr.inherit_stat)
12440 perf_event_read_event(child_event, child);
12441
12442 child_val = perf_event_count(child_event);
12443
12444 /*
12445 * Add back the child's count to the parent's count:
12446 */
12447 atomic64_add(child_val, &parent_event->child_count);
12448 atomic64_add(child_event->total_time_enabled,
12449 &parent_event->child_total_time_enabled);
12450 atomic64_add(child_event->total_time_running,
12451 &parent_event->child_total_time_running);
12452 }
12453
12454 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)12455 perf_event_exit_event(struct perf_event *child_event,
12456 struct perf_event_context *child_ctx,
12457 struct task_struct *child)
12458 {
12459 struct perf_event *parent_event = child_event->parent;
12460
12461 /*
12462 * Do not destroy the 'original' grouping; because of the context
12463 * switch optimization the original events could've ended up in a
12464 * random child task.
12465 *
12466 * If we were to destroy the original group, all group related
12467 * operations would cease to function properly after this random
12468 * child dies.
12469 *
12470 * Do destroy all inherited groups, we don't care about those
12471 * and being thorough is better.
12472 */
12473 raw_spin_lock_irq(&child_ctx->lock);
12474 WARN_ON_ONCE(child_ctx->is_active);
12475
12476 if (parent_event)
12477 perf_group_detach(child_event);
12478 list_del_event(child_event, child_ctx);
12479 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12480 raw_spin_unlock_irq(&child_ctx->lock);
12481
12482 /*
12483 * Parent events are governed by their filedesc, retain them.
12484 */
12485 if (!parent_event) {
12486 perf_event_wakeup(child_event);
12487 return;
12488 }
12489 /*
12490 * Child events can be cleaned up.
12491 */
12492
12493 sync_child_event(child_event, child);
12494
12495 /*
12496 * Remove this event from the parent's list
12497 */
12498 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12499 mutex_lock(&parent_event->child_mutex);
12500 list_del_init(&child_event->child_list);
12501 mutex_unlock(&parent_event->child_mutex);
12502
12503 /*
12504 * Kick perf_poll() for is_event_hup().
12505 */
12506 perf_event_wakeup(parent_event);
12507 free_event(child_event);
12508 put_event(parent_event);
12509 }
12510
perf_event_exit_task_context(struct task_struct * child,int ctxn)12511 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12512 {
12513 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12514 struct perf_event *child_event, *next;
12515
12516 WARN_ON_ONCE(child != current);
12517
12518 child_ctx = perf_pin_task_context(child, ctxn);
12519 if (!child_ctx)
12520 return;
12521
12522 /*
12523 * In order to reduce the amount of tricky in ctx tear-down, we hold
12524 * ctx::mutex over the entire thing. This serializes against almost
12525 * everything that wants to access the ctx.
12526 *
12527 * The exception is sys_perf_event_open() /
12528 * perf_event_create_kernel_count() which does find_get_context()
12529 * without ctx::mutex (it cannot because of the move_group double mutex
12530 * lock thing). See the comments in perf_install_in_context().
12531 */
12532 mutex_lock(&child_ctx->mutex);
12533
12534 /*
12535 * In a single ctx::lock section, de-schedule the events and detach the
12536 * context from the task such that we cannot ever get it scheduled back
12537 * in.
12538 */
12539 raw_spin_lock_irq(&child_ctx->lock);
12540 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12541
12542 /*
12543 * Now that the context is inactive, destroy the task <-> ctx relation
12544 * and mark the context dead.
12545 */
12546 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12547 put_ctx(child_ctx); /* cannot be last */
12548 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12549 put_task_struct(current); /* cannot be last */
12550
12551 clone_ctx = unclone_ctx(child_ctx);
12552 raw_spin_unlock_irq(&child_ctx->lock);
12553
12554 if (clone_ctx)
12555 put_ctx(clone_ctx);
12556
12557 /*
12558 * Report the task dead after unscheduling the events so that we
12559 * won't get any samples after PERF_RECORD_EXIT. We can however still
12560 * get a few PERF_RECORD_READ events.
12561 */
12562 perf_event_task(child, child_ctx, 0);
12563
12564 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12565 perf_event_exit_event(child_event, child_ctx, child);
12566
12567 mutex_unlock(&child_ctx->mutex);
12568
12569 put_ctx(child_ctx);
12570 }
12571
12572 /*
12573 * When a child task exits, feed back event values to parent events.
12574 *
12575 * Can be called with exec_update_lock held when called from
12576 * setup_new_exec().
12577 */
perf_event_exit_task(struct task_struct * child)12578 void perf_event_exit_task(struct task_struct *child)
12579 {
12580 struct perf_event *event, *tmp;
12581 int ctxn;
12582
12583 mutex_lock(&child->perf_event_mutex);
12584 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12585 owner_entry) {
12586 list_del_init(&event->owner_entry);
12587
12588 /*
12589 * Ensure the list deletion is visible before we clear
12590 * the owner, closes a race against perf_release() where
12591 * we need to serialize on the owner->perf_event_mutex.
12592 */
12593 smp_store_release(&event->owner, NULL);
12594 }
12595 mutex_unlock(&child->perf_event_mutex);
12596
12597 for_each_task_context_nr(ctxn)
12598 perf_event_exit_task_context(child, ctxn);
12599
12600 /*
12601 * The perf_event_exit_task_context calls perf_event_task
12602 * with child's task_ctx, which generates EXIT events for
12603 * child contexts and sets child->perf_event_ctxp[] to NULL.
12604 * At this point we need to send EXIT events to cpu contexts.
12605 */
12606 perf_event_task(child, NULL, 0);
12607 }
12608
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)12609 static void perf_free_event(struct perf_event *event,
12610 struct perf_event_context *ctx)
12611 {
12612 struct perf_event *parent = event->parent;
12613
12614 if (WARN_ON_ONCE(!parent))
12615 return;
12616
12617 mutex_lock(&parent->child_mutex);
12618 list_del_init(&event->child_list);
12619 mutex_unlock(&parent->child_mutex);
12620
12621 put_event(parent);
12622
12623 raw_spin_lock_irq(&ctx->lock);
12624 perf_group_detach(event);
12625 list_del_event(event, ctx);
12626 raw_spin_unlock_irq(&ctx->lock);
12627 free_event(event);
12628 }
12629
12630 /*
12631 * Free a context as created by inheritance by perf_event_init_task() below,
12632 * used by fork() in case of fail.
12633 *
12634 * Even though the task has never lived, the context and events have been
12635 * exposed through the child_list, so we must take care tearing it all down.
12636 */
perf_event_free_task(struct task_struct * task)12637 void perf_event_free_task(struct task_struct *task)
12638 {
12639 struct perf_event_context *ctx;
12640 struct perf_event *event, *tmp;
12641 int ctxn;
12642
12643 for_each_task_context_nr(ctxn) {
12644 ctx = task->perf_event_ctxp[ctxn];
12645 if (!ctx)
12646 continue;
12647
12648 mutex_lock(&ctx->mutex);
12649 raw_spin_lock_irq(&ctx->lock);
12650 /*
12651 * Destroy the task <-> ctx relation and mark the context dead.
12652 *
12653 * This is important because even though the task hasn't been
12654 * exposed yet the context has been (through child_list).
12655 */
12656 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12657 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12658 put_task_struct(task); /* cannot be last */
12659 raw_spin_unlock_irq(&ctx->lock);
12660
12661 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12662 perf_free_event(event, ctx);
12663
12664 mutex_unlock(&ctx->mutex);
12665
12666 /*
12667 * perf_event_release_kernel() could've stolen some of our
12668 * child events and still have them on its free_list. In that
12669 * case we must wait for these events to have been freed (in
12670 * particular all their references to this task must've been
12671 * dropped).
12672 *
12673 * Without this copy_process() will unconditionally free this
12674 * task (irrespective of its reference count) and
12675 * _free_event()'s put_task_struct(event->hw.target) will be a
12676 * use-after-free.
12677 *
12678 * Wait for all events to drop their context reference.
12679 */
12680 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12681 put_ctx(ctx); /* must be last */
12682 }
12683 }
12684
perf_event_delayed_put(struct task_struct * task)12685 void perf_event_delayed_put(struct task_struct *task)
12686 {
12687 int ctxn;
12688
12689 for_each_task_context_nr(ctxn)
12690 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12691 }
12692
perf_event_get(unsigned int fd)12693 struct file *perf_event_get(unsigned int fd)
12694 {
12695 struct file *file = fget(fd);
12696 if (!file)
12697 return ERR_PTR(-EBADF);
12698
12699 if (file->f_op != &perf_fops) {
12700 fput(file);
12701 return ERR_PTR(-EBADF);
12702 }
12703
12704 return file;
12705 }
12706
perf_get_event(struct file * file)12707 const struct perf_event *perf_get_event(struct file *file)
12708 {
12709 if (file->f_op != &perf_fops)
12710 return ERR_PTR(-EINVAL);
12711
12712 return file->private_data;
12713 }
12714
perf_event_attrs(struct perf_event * event)12715 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12716 {
12717 if (!event)
12718 return ERR_PTR(-EINVAL);
12719
12720 return &event->attr;
12721 }
12722
12723 /*
12724 * Inherit an event from parent task to child task.
12725 *
12726 * Returns:
12727 * - valid pointer on success
12728 * - NULL for orphaned events
12729 * - IS_ERR() on error
12730 */
12731 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)12732 inherit_event(struct perf_event *parent_event,
12733 struct task_struct *parent,
12734 struct perf_event_context *parent_ctx,
12735 struct task_struct *child,
12736 struct perf_event *group_leader,
12737 struct perf_event_context *child_ctx)
12738 {
12739 enum perf_event_state parent_state = parent_event->state;
12740 struct perf_event *child_event;
12741 unsigned long flags;
12742
12743 /*
12744 * Instead of creating recursive hierarchies of events,
12745 * we link inherited events back to the original parent,
12746 * which has a filp for sure, which we use as the reference
12747 * count:
12748 */
12749 if (parent_event->parent)
12750 parent_event = parent_event->parent;
12751
12752 child_event = perf_event_alloc(&parent_event->attr,
12753 parent_event->cpu,
12754 child,
12755 group_leader, parent_event,
12756 NULL, NULL, -1);
12757 if (IS_ERR(child_event))
12758 return child_event;
12759
12760
12761 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12762 !child_ctx->task_ctx_data) {
12763 struct pmu *pmu = child_event->pmu;
12764
12765 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12766 if (!child_ctx->task_ctx_data) {
12767 free_event(child_event);
12768 return ERR_PTR(-ENOMEM);
12769 }
12770 }
12771
12772 /*
12773 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12774 * must be under the same lock in order to serialize against
12775 * perf_event_release_kernel(), such that either we must observe
12776 * is_orphaned_event() or they will observe us on the child_list.
12777 */
12778 mutex_lock(&parent_event->child_mutex);
12779 if (is_orphaned_event(parent_event) ||
12780 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12781 mutex_unlock(&parent_event->child_mutex);
12782 /* task_ctx_data is freed with child_ctx */
12783 free_event(child_event);
12784 return NULL;
12785 }
12786
12787 get_ctx(child_ctx);
12788
12789 /*
12790 * Make the child state follow the state of the parent event,
12791 * not its attr.disabled bit. We hold the parent's mutex,
12792 * so we won't race with perf_event_{en, dis}able_family.
12793 */
12794 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12795 child_event->state = PERF_EVENT_STATE_INACTIVE;
12796 else
12797 child_event->state = PERF_EVENT_STATE_OFF;
12798
12799 if (parent_event->attr.freq) {
12800 u64 sample_period = parent_event->hw.sample_period;
12801 struct hw_perf_event *hwc = &child_event->hw;
12802
12803 hwc->sample_period = sample_period;
12804 hwc->last_period = sample_period;
12805
12806 local64_set(&hwc->period_left, sample_period);
12807 }
12808
12809 child_event->ctx = child_ctx;
12810 child_event->overflow_handler = parent_event->overflow_handler;
12811 child_event->overflow_handler_context
12812 = parent_event->overflow_handler_context;
12813
12814 /*
12815 * Precalculate sample_data sizes
12816 */
12817 perf_event__header_size(child_event);
12818 perf_event__id_header_size(child_event);
12819
12820 /*
12821 * Link it up in the child's context:
12822 */
12823 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12824 add_event_to_ctx(child_event, child_ctx);
12825 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12826
12827 /*
12828 * Link this into the parent event's child list
12829 */
12830 list_add_tail(&child_event->child_list, &parent_event->child_list);
12831 mutex_unlock(&parent_event->child_mutex);
12832
12833 return child_event;
12834 }
12835
12836 /*
12837 * Inherits an event group.
12838 *
12839 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12840 * This matches with perf_event_release_kernel() removing all child events.
12841 *
12842 * Returns:
12843 * - 0 on success
12844 * - <0 on error
12845 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)12846 static int inherit_group(struct perf_event *parent_event,
12847 struct task_struct *parent,
12848 struct perf_event_context *parent_ctx,
12849 struct task_struct *child,
12850 struct perf_event_context *child_ctx)
12851 {
12852 struct perf_event *leader;
12853 struct perf_event *sub;
12854 struct perf_event *child_ctr;
12855
12856 leader = inherit_event(parent_event, parent, parent_ctx,
12857 child, NULL, child_ctx);
12858 if (IS_ERR(leader))
12859 return PTR_ERR(leader);
12860 /*
12861 * @leader can be NULL here because of is_orphaned_event(). In this
12862 * case inherit_event() will create individual events, similar to what
12863 * perf_group_detach() would do anyway.
12864 */
12865 for_each_sibling_event(sub, parent_event) {
12866 child_ctr = inherit_event(sub, parent, parent_ctx,
12867 child, leader, child_ctx);
12868 if (IS_ERR(child_ctr))
12869 return PTR_ERR(child_ctr);
12870
12871 if (sub->aux_event == parent_event && child_ctr &&
12872 !perf_get_aux_event(child_ctr, leader))
12873 return -EINVAL;
12874 }
12875 leader->group_generation = parent_event->group_generation;
12876 return 0;
12877 }
12878
12879 /*
12880 * Creates the child task context and tries to inherit the event-group.
12881 *
12882 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12883 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12884 * consistent with perf_event_release_kernel() removing all child events.
12885 *
12886 * Returns:
12887 * - 0 on success
12888 * - <0 on error
12889 */
12890 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)12891 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12892 struct perf_event_context *parent_ctx,
12893 struct task_struct *child, int ctxn,
12894 int *inherited_all)
12895 {
12896 int ret;
12897 struct perf_event_context *child_ctx;
12898
12899 if (!event->attr.inherit) {
12900 *inherited_all = 0;
12901 return 0;
12902 }
12903
12904 child_ctx = child->perf_event_ctxp[ctxn];
12905 if (!child_ctx) {
12906 /*
12907 * This is executed from the parent task context, so
12908 * inherit events that have been marked for cloning.
12909 * First allocate and initialize a context for the
12910 * child.
12911 */
12912 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12913 if (!child_ctx)
12914 return -ENOMEM;
12915
12916 child->perf_event_ctxp[ctxn] = child_ctx;
12917 }
12918
12919 ret = inherit_group(event, parent, parent_ctx,
12920 child, child_ctx);
12921
12922 if (ret)
12923 *inherited_all = 0;
12924
12925 return ret;
12926 }
12927
12928 /*
12929 * Initialize the perf_event context in task_struct
12930 */
perf_event_init_context(struct task_struct * child,int ctxn)12931 static int perf_event_init_context(struct task_struct *child, int ctxn)
12932 {
12933 struct perf_event_context *child_ctx, *parent_ctx;
12934 struct perf_event_context *cloned_ctx;
12935 struct perf_event *event;
12936 struct task_struct *parent = current;
12937 int inherited_all = 1;
12938 unsigned long flags;
12939 int ret = 0;
12940
12941 if (likely(!parent->perf_event_ctxp[ctxn]))
12942 return 0;
12943
12944 /*
12945 * If the parent's context is a clone, pin it so it won't get
12946 * swapped under us.
12947 */
12948 parent_ctx = perf_pin_task_context(parent, ctxn);
12949 if (!parent_ctx)
12950 return 0;
12951
12952 /*
12953 * No need to check if parent_ctx != NULL here; since we saw
12954 * it non-NULL earlier, the only reason for it to become NULL
12955 * is if we exit, and since we're currently in the middle of
12956 * a fork we can't be exiting at the same time.
12957 */
12958
12959 /*
12960 * Lock the parent list. No need to lock the child - not PID
12961 * hashed yet and not running, so nobody can access it.
12962 */
12963 mutex_lock(&parent_ctx->mutex);
12964
12965 /*
12966 * We dont have to disable NMIs - we are only looking at
12967 * the list, not manipulating it:
12968 */
12969 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12970 ret = inherit_task_group(event, parent, parent_ctx,
12971 child, ctxn, &inherited_all);
12972 if (ret)
12973 goto out_unlock;
12974 }
12975
12976 /*
12977 * We can't hold ctx->lock when iterating the ->flexible_group list due
12978 * to allocations, but we need to prevent rotation because
12979 * rotate_ctx() will change the list from interrupt context.
12980 */
12981 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12982 parent_ctx->rotate_disable = 1;
12983 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12984
12985 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12986 ret = inherit_task_group(event, parent, parent_ctx,
12987 child, ctxn, &inherited_all);
12988 if (ret)
12989 goto out_unlock;
12990 }
12991
12992 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12993 parent_ctx->rotate_disable = 0;
12994
12995 child_ctx = child->perf_event_ctxp[ctxn];
12996
12997 if (child_ctx && inherited_all) {
12998 /*
12999 * Mark the child context as a clone of the parent
13000 * context, or of whatever the parent is a clone of.
13001 *
13002 * Note that if the parent is a clone, the holding of
13003 * parent_ctx->lock avoids it from being uncloned.
13004 */
13005 cloned_ctx = parent_ctx->parent_ctx;
13006 if (cloned_ctx) {
13007 child_ctx->parent_ctx = cloned_ctx;
13008 child_ctx->parent_gen = parent_ctx->parent_gen;
13009 } else {
13010 child_ctx->parent_ctx = parent_ctx;
13011 child_ctx->parent_gen = parent_ctx->generation;
13012 }
13013 get_ctx(child_ctx->parent_ctx);
13014 }
13015
13016 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13017 out_unlock:
13018 mutex_unlock(&parent_ctx->mutex);
13019
13020 perf_unpin_context(parent_ctx);
13021 put_ctx(parent_ctx);
13022
13023 return ret;
13024 }
13025
13026 /*
13027 * Initialize the perf_event context in task_struct
13028 */
perf_event_init_task(struct task_struct * child)13029 int perf_event_init_task(struct task_struct *child)
13030 {
13031 int ctxn, ret;
13032
13033 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13034 mutex_init(&child->perf_event_mutex);
13035 INIT_LIST_HEAD(&child->perf_event_list);
13036
13037 for_each_task_context_nr(ctxn) {
13038 ret = perf_event_init_context(child, ctxn);
13039 if (ret) {
13040 perf_event_free_task(child);
13041 return ret;
13042 }
13043 }
13044
13045 return 0;
13046 }
13047
perf_event_init_all_cpus(void)13048 static void __init perf_event_init_all_cpus(void)
13049 {
13050 struct swevent_htable *swhash;
13051 int cpu;
13052
13053 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13054
13055 for_each_possible_cpu(cpu) {
13056 swhash = &per_cpu(swevent_htable, cpu);
13057 mutex_init(&swhash->hlist_mutex);
13058 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13059
13060 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13061 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13062
13063 #ifdef CONFIG_CGROUP_PERF
13064 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13065 #endif
13066 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13067 }
13068 }
13069
perf_swevent_init_cpu(unsigned int cpu)13070 static void perf_swevent_init_cpu(unsigned int cpu)
13071 {
13072 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13073
13074 mutex_lock(&swhash->hlist_mutex);
13075 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13076 struct swevent_hlist *hlist;
13077
13078 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13079 WARN_ON(!hlist);
13080 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13081 }
13082 mutex_unlock(&swhash->hlist_mutex);
13083 }
13084
13085 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13086 static void __perf_event_exit_context(void *__info)
13087 {
13088 struct perf_event_context *ctx = __info;
13089 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13090 struct perf_event *event;
13091
13092 raw_spin_lock(&ctx->lock);
13093 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13094 list_for_each_entry(event, &ctx->event_list, event_entry)
13095 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13096 raw_spin_unlock(&ctx->lock);
13097 }
13098
perf_event_exit_cpu_context(int cpu)13099 static void perf_event_exit_cpu_context(int cpu)
13100 {
13101 struct perf_cpu_context *cpuctx;
13102 struct perf_event_context *ctx;
13103 struct pmu *pmu;
13104
13105 mutex_lock(&pmus_lock);
13106 list_for_each_entry(pmu, &pmus, entry) {
13107 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13108 ctx = &cpuctx->ctx;
13109
13110 mutex_lock(&ctx->mutex);
13111 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13112 cpuctx->online = 0;
13113 mutex_unlock(&ctx->mutex);
13114 }
13115 cpumask_clear_cpu(cpu, perf_online_mask);
13116 mutex_unlock(&pmus_lock);
13117 }
13118 #else
13119
perf_event_exit_cpu_context(int cpu)13120 static void perf_event_exit_cpu_context(int cpu) { }
13121
13122 #endif
13123
perf_event_init_cpu(unsigned int cpu)13124 int perf_event_init_cpu(unsigned int cpu)
13125 {
13126 struct perf_cpu_context *cpuctx;
13127 struct perf_event_context *ctx;
13128 struct pmu *pmu;
13129
13130 perf_swevent_init_cpu(cpu);
13131
13132 mutex_lock(&pmus_lock);
13133 cpumask_set_cpu(cpu, perf_online_mask);
13134 list_for_each_entry(pmu, &pmus, entry) {
13135 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13136 ctx = &cpuctx->ctx;
13137
13138 mutex_lock(&ctx->mutex);
13139 cpuctx->online = 1;
13140 mutex_unlock(&ctx->mutex);
13141 }
13142 mutex_unlock(&pmus_lock);
13143
13144 return 0;
13145 }
13146
perf_event_exit_cpu(unsigned int cpu)13147 int perf_event_exit_cpu(unsigned int cpu)
13148 {
13149 perf_event_exit_cpu_context(cpu);
13150 return 0;
13151 }
13152
13153 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13154 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13155 {
13156 int cpu;
13157
13158 for_each_online_cpu(cpu)
13159 perf_event_exit_cpu(cpu);
13160
13161 return NOTIFY_OK;
13162 }
13163
13164 /*
13165 * Run the perf reboot notifier at the very last possible moment so that
13166 * the generic watchdog code runs as long as possible.
13167 */
13168 static struct notifier_block perf_reboot_notifier = {
13169 .notifier_call = perf_reboot,
13170 .priority = INT_MIN,
13171 };
13172
perf_event_init(void)13173 void __init perf_event_init(void)
13174 {
13175 int ret;
13176
13177 idr_init(&pmu_idr);
13178
13179 perf_event_init_all_cpus();
13180 init_srcu_struct(&pmus_srcu);
13181 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13182 perf_pmu_register(&perf_cpu_clock, NULL, -1);
13183 perf_pmu_register(&perf_task_clock, NULL, -1);
13184 perf_tp_register();
13185 perf_event_init_cpu(smp_processor_id());
13186 register_reboot_notifier(&perf_reboot_notifier);
13187
13188 ret = init_hw_breakpoint();
13189 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13190
13191 /*
13192 * Build time assertion that we keep the data_head at the intended
13193 * location. IOW, validation we got the __reserved[] size right.
13194 */
13195 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13196 != 1024);
13197 }
13198
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13199 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13200 char *page)
13201 {
13202 struct perf_pmu_events_attr *pmu_attr =
13203 container_of(attr, struct perf_pmu_events_attr, attr);
13204
13205 if (pmu_attr->event_str)
13206 return sprintf(page, "%s\n", pmu_attr->event_str);
13207
13208 return 0;
13209 }
13210 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13211
perf_event_sysfs_init(void)13212 static int __init perf_event_sysfs_init(void)
13213 {
13214 struct pmu *pmu;
13215 int ret;
13216
13217 mutex_lock(&pmus_lock);
13218
13219 ret = bus_register(&pmu_bus);
13220 if (ret)
13221 goto unlock;
13222
13223 list_for_each_entry(pmu, &pmus, entry) {
13224 if (!pmu->name || pmu->type < 0)
13225 continue;
13226
13227 ret = pmu_dev_alloc(pmu);
13228 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13229 }
13230 pmu_bus_running = 1;
13231 ret = 0;
13232
13233 unlock:
13234 mutex_unlock(&pmus_lock);
13235
13236 return ret;
13237 }
13238 device_initcall(perf_event_sysfs_init);
13239
13240 #ifdef CONFIG_CGROUP_PERF
13241 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13242 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13243 {
13244 struct perf_cgroup *jc;
13245
13246 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13247 if (!jc)
13248 return ERR_PTR(-ENOMEM);
13249
13250 jc->info = alloc_percpu(struct perf_cgroup_info);
13251 if (!jc->info) {
13252 kfree(jc);
13253 return ERR_PTR(-ENOMEM);
13254 }
13255
13256 return &jc->css;
13257 }
13258
perf_cgroup_css_free(struct cgroup_subsys_state * css)13259 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13260 {
13261 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13262
13263 free_percpu(jc->info);
13264 kfree(jc);
13265 }
13266
perf_cgroup_css_online(struct cgroup_subsys_state * css)13267 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13268 {
13269 perf_event_cgroup(css->cgroup);
13270 return 0;
13271 }
13272
__perf_cgroup_move(void * info)13273 static int __perf_cgroup_move(void *info)
13274 {
13275 struct task_struct *task = info;
13276 rcu_read_lock();
13277 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13278 rcu_read_unlock();
13279 return 0;
13280 }
13281
perf_cgroup_attach(struct cgroup_taskset * tset)13282 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13283 {
13284 struct task_struct *task;
13285 struct cgroup_subsys_state *css;
13286
13287 cgroup_taskset_for_each(task, css, tset)
13288 task_function_call(task, __perf_cgroup_move, task);
13289 }
13290
13291 struct cgroup_subsys perf_event_cgrp_subsys = {
13292 .css_alloc = perf_cgroup_css_alloc,
13293 .css_free = perf_cgroup_css_free,
13294 .css_online = perf_cgroup_css_online,
13295 .attach = perf_cgroup_attach,
13296 /*
13297 * Implicitly enable on dfl hierarchy so that perf events can
13298 * always be filtered by cgroup2 path as long as perf_event
13299 * controller is not mounted on a legacy hierarchy.
13300 */
13301 .implicit_on_dfl = true,
13302 .threaded = true,
13303 };
13304 #endif /* CONFIG_CGROUP_PERF */
13305