1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 {}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 enable_unrestricted_guest, bool, S_IRUGO);
93
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105
106 /*
107 * If nested=1, nested virtualization is supported, i.e., guests may use
108 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109 * use VMX instructions.
110 */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119
120 #define MSR_BITMAP_MODE_X2APIC 1
121 #define MSR_BITMAP_MODE_X2APIC_APICV 2
122
123 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
124
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131
132 extern bool __read_mostly allow_smaller_maxphyaddr;
133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
134
135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON \
138 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
139 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 RTIT_STATUS_BYTECNT))
151
152 /*
153 * List of MSRs that can be directly passed to the guest.
154 * In addition to these x2apic and PT MSRs are handled specially.
155 */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 MSR_IA32_SPEC_CTRL,
158 MSR_IA32_PRED_CMD,
159 MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 MSR_FS_BASE,
162 MSR_GS_BASE,
163 MSR_KERNEL_GS_BASE,
164 #endif
165 MSR_IA32_SYSENTER_CS,
166 MSR_IA32_SYSENTER_ESP,
167 MSR_IA32_SYSENTER_EIP,
168 MSR_CORE_C1_RES,
169 MSR_CORE_C3_RESIDENCY,
170 MSR_CORE_C6_RESIDENCY,
171 MSR_CORE_C7_RESIDENCY,
172 };
173
174 /*
175 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176 * ple_gap: upper bound on the amount of time between two successive
177 * executions of PAUSE in a loop. Also indicate if ple enabled.
178 * According to test, this time is usually smaller than 128 cycles.
179 * ple_window: upper bound on the amount of time a guest is allowed to execute
180 * in a PAUSE loop. Tests indicate that most spinlocks are held for
181 * less than 2^12 cycles
182 * Time is measured based on a counter that runs at the same rate as the TSC,
183 * refer SDM volume 3b section 21.6.13 & 22.1.3.
184 */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
229 /* Control for disabling CPU Fill buffer clear */
230 static bool __read_mostly vmx_fb_clear_ctrl_available;
231
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 struct page *page;
235 unsigned int i;
236
237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 return 0;
240 }
241
242 if (!enable_ept) {
243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 return 0;
245 }
246
247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 u64 msr;
249
250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 return 0;
254 }
255 }
256
257 /* If set to auto use the default l1tf mitigation method */
258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 switch (l1tf_mitigation) {
260 case L1TF_MITIGATION_OFF:
261 l1tf = VMENTER_L1D_FLUSH_NEVER;
262 break;
263 case L1TF_MITIGATION_FLUSH_NOWARN:
264 case L1TF_MITIGATION_FLUSH:
265 case L1TF_MITIGATION_FLUSH_NOSMT:
266 l1tf = VMENTER_L1D_FLUSH_COND;
267 break;
268 case L1TF_MITIGATION_FULL:
269 case L1TF_MITIGATION_FULL_FORCE:
270 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 break;
272 }
273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 }
276
277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 /*
280 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 * lifetime and so should not be charged to a memcg.
282 */
283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 if (!page)
285 return -ENOMEM;
286 vmx_l1d_flush_pages = page_address(page);
287
288 /*
289 * Initialize each page with a different pattern in
290 * order to protect against KSM in the nested
291 * virtualization case.
292 */
293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 PAGE_SIZE);
296 }
297 }
298
299 l1tf_vmx_mitigation = l1tf;
300
301 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 static_branch_enable(&vmx_l1d_should_flush);
303 else
304 static_branch_disable(&vmx_l1d_should_flush);
305
306 if (l1tf == VMENTER_L1D_FLUSH_COND)
307 static_branch_enable(&vmx_l1d_flush_cond);
308 else
309 static_branch_disable(&vmx_l1d_flush_cond);
310 return 0;
311 }
312
vmentry_l1d_flush_parse(const char * s)313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 unsigned int i;
316
317 if (s) {
318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 if (vmentry_l1d_param[i].for_parse &&
320 sysfs_streq(s, vmentry_l1d_param[i].option))
321 return i;
322 }
323 }
324 return -EINVAL;
325 }
326
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 int l1tf, ret;
330
331 l1tf = vmentry_l1d_flush_parse(s);
332 if (l1tf < 0)
333 return l1tf;
334
335 if (!boot_cpu_has(X86_BUG_L1TF))
336 return 0;
337
338 /*
339 * Has vmx_init() run already? If not then this is the pre init
340 * parameter parsing. In that case just store the value and let
341 * vmx_init() do the proper setup after enable_ept has been
342 * established.
343 */
344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 vmentry_l1d_flush_param = l1tf;
346 return 0;
347 }
348
349 mutex_lock(&vmx_l1d_flush_mutex);
350 ret = vmx_setup_l1d_flush(l1tf);
351 mutex_unlock(&vmx_l1d_flush_mutex);
352 return ret;
353 }
354
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 return sprintf(s, "???\n");
359
360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362
vmx_setup_fb_clear_ctrl(void)363 static void vmx_setup_fb_clear_ctrl(void)
364 {
365 u64 msr;
366
367 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
368 !boot_cpu_has_bug(X86_BUG_MDS) &&
369 !boot_cpu_has_bug(X86_BUG_TAA)) {
370 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
371 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
372 vmx_fb_clear_ctrl_available = true;
373 }
374 }
375
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 u64 msr;
379
380 if (!vmx->disable_fb_clear)
381 return;
382
383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 msr |= FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 /* Cache the MSR value to avoid reading it later */
387 vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 if (!vmx->disable_fb_clear)
393 return;
394
395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
402
403 /*
404 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
405 * at VMEntry. Skip the MSR read/write when a guest has no use case to
406 * execute VERW.
407 */
408 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
409 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
410 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
411 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
413 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
414 vmx->disable_fb_clear = false;
415 }
416
417 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
418 .set = vmentry_l1d_flush_set,
419 .get = vmentry_l1d_flush_get,
420 };
421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
422
423 static u32 vmx_segment_access_rights(struct kvm_segment *var);
424 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
425 u32 msr, int type);
426
427 void vmx_vmexit(void);
428
429 #define vmx_insn_failed(fmt...) \
430 do { \
431 WARN_ONCE(1, fmt); \
432 pr_warn_ratelimited(fmt); \
433 } while (0)
434
vmread_error(unsigned long field,bool fault)435 asmlinkage void vmread_error(unsigned long field, bool fault)
436 {
437 if (fault)
438 kvm_spurious_fault();
439 else
440 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
441 }
442
vmwrite_error(unsigned long field,unsigned long value)443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
446 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448
vmclear_error(struct vmcs * vmcs,u64 phys_addr)449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
452 }
453
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
457 }
458
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)459 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
460 {
461 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
462 ext, vpid, gva);
463 }
464
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)465 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
466 {
467 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
468 ext, eptp, gpa);
469 }
470
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476 */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482 struct vmcs_config vmcs_config;
483 struct vmx_capability vmx_capability;
484
485 #define VMX_SEGMENT_FIELD(seg) \
486 [VCPU_SREG_##seg] = { \
487 .selector = GUEST_##seg##_SELECTOR, \
488 .base = GUEST_##seg##_BASE, \
489 .limit = GUEST_##seg##_LIMIT, \
490 .ar_bytes = GUEST_##seg##_AR_BYTES, \
491 }
492
493 static const struct kvm_vmx_segment_field {
494 unsigned selector;
495 unsigned base;
496 unsigned limit;
497 unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 VMX_SEGMENT_FIELD(CS),
500 VMX_SEGMENT_FIELD(DS),
501 VMX_SEGMENT_FIELD(ES),
502 VMX_SEGMENT_FIELD(FS),
503 VMX_SEGMENT_FIELD(GS),
504 VMX_SEGMENT_FIELD(SS),
505 VMX_SEGMENT_FIELD(TR),
506 VMX_SEGMENT_FIELD(LDTR),
507 };
508
vmx_segment_cache_clear(struct vcpu_vmx * vmx)509 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
510 {
511 vmx->segment_cache.bitmask = 0;
512 }
513
514 static unsigned long host_idt_base;
515
516 /*
517 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
518 * will emulate SYSCALL in legacy mode if the vendor string in guest
519 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
520 * support this emulation, IA32_STAR must always be included in
521 * vmx_uret_msrs_list[], even in i386 builds.
522 */
523 static const u32 vmx_uret_msrs_list[] = {
524 #ifdef CONFIG_X86_64
525 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
526 #endif
527 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
528 MSR_IA32_TSX_CTRL,
529 };
530
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs = true;
533 module_param(enlightened_vmcs, bool, 0444);
534
535 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)536 static void check_ept_pointer_match(struct kvm *kvm)
537 {
538 struct kvm_vcpu *vcpu;
539 u64 tmp_eptp = INVALID_PAGE;
540 int i;
541
542 kvm_for_each_vcpu(i, vcpu, kvm) {
543 if (!VALID_PAGE(tmp_eptp)) {
544 tmp_eptp = to_vmx(vcpu)->ept_pointer;
545 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
546 to_kvm_vmx(kvm)->ept_pointers_match
547 = EPT_POINTERS_MISMATCH;
548 return;
549 }
550 }
551
552 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
553 }
554
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)555 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
556 void *data)
557 {
558 struct kvm_tlb_range *range = data;
559
560 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
561 range->pages);
562 }
563
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)564 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
565 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
566 {
567 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
568
569 /*
570 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
571 * of the base of EPT PML4 table, strip off EPT configuration
572 * information.
573 */
574 if (range)
575 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
576 kvm_fill_hv_flush_list_func, (void *)range);
577 else
578 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
579 }
580
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)581 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
582 struct kvm_tlb_range *range)
583 {
584 struct kvm_vcpu *vcpu;
585 int ret = 0, i;
586
587 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
588
589 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
590 check_ept_pointer_match(kvm);
591
592 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
593 kvm_for_each_vcpu(i, vcpu, kvm) {
594 /* If ept_pointer is invalid pointer, bypass flush request. */
595 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
596 ret |= __hv_remote_flush_tlb_with_range(
597 kvm, vcpu, range);
598 }
599 } else {
600 ret = __hv_remote_flush_tlb_with_range(kvm,
601 kvm_get_vcpu(kvm, 0), range);
602 }
603
604 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
605 return ret;
606 }
hv_remote_flush_tlb(struct kvm * kvm)607 static int hv_remote_flush_tlb(struct kvm *kvm)
608 {
609 return hv_remote_flush_tlb_with_range(kvm, NULL);
610 }
611
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)612 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
613 {
614 struct hv_enlightened_vmcs *evmcs;
615 struct hv_partition_assist_pg **p_hv_pa_pg =
616 &vcpu->kvm->arch.hyperv.hv_pa_pg;
617 /*
618 * Synthetic VM-Exit is not enabled in current code and so All
619 * evmcs in singe VM shares same assist page.
620 */
621 if (!*p_hv_pa_pg)
622 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
623
624 if (!*p_hv_pa_pg)
625 return -ENOMEM;
626
627 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
628
629 evmcs->partition_assist_page =
630 __pa(*p_hv_pa_pg);
631 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
632 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
633
634 return 0;
635 }
636
637 #endif /* IS_ENABLED(CONFIG_HYPERV) */
638
639 /*
640 * Comment's format: document - errata name - stepping - processor name.
641 * Refer from
642 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
643 */
644 static u32 vmx_preemption_cpu_tfms[] = {
645 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
646 0x000206E6,
647 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
648 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
649 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
650 0x00020652,
651 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
652 0x00020655,
653 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
654 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
655 /*
656 * 320767.pdf - AAP86 - B1 -
657 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
658 */
659 0x000106E5,
660 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
661 0x000106A0,
662 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
663 0x000106A1,
664 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
665 0x000106A4,
666 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
667 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
668 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
669 0x000106A5,
670 /* Xeon E3-1220 V2 */
671 0x000306A8,
672 };
673
cpu_has_broken_vmx_preemption_timer(void)674 static inline bool cpu_has_broken_vmx_preemption_timer(void)
675 {
676 u32 eax = cpuid_eax(0x00000001), i;
677
678 /* Clear the reserved bits */
679 eax &= ~(0x3U << 14 | 0xfU << 28);
680 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
681 if (eax == vmx_preemption_cpu_tfms[i])
682 return true;
683
684 return false;
685 }
686
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)687 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
688 {
689 return flexpriority_enabled && lapic_in_kernel(vcpu);
690 }
691
report_flexpriority(void)692 static inline bool report_flexpriority(void)
693 {
694 return flexpriority_enabled;
695 }
696
possible_passthrough_msr_slot(u32 msr)697 static int possible_passthrough_msr_slot(u32 msr)
698 {
699 u32 i;
700
701 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
702 if (vmx_possible_passthrough_msrs[i] == msr)
703 return i;
704
705 return -ENOENT;
706 }
707
is_valid_passthrough_msr(u32 msr)708 static bool is_valid_passthrough_msr(u32 msr)
709 {
710 bool r;
711
712 switch (msr) {
713 case 0x800 ... 0x8ff:
714 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
715 return true;
716 case MSR_IA32_RTIT_STATUS:
717 case MSR_IA32_RTIT_OUTPUT_BASE:
718 case MSR_IA32_RTIT_OUTPUT_MASK:
719 case MSR_IA32_RTIT_CR3_MATCH:
720 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
721 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
722 return true;
723 }
724
725 r = possible_passthrough_msr_slot(msr) != -ENOENT;
726
727 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
728
729 return r;
730 }
731
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)732 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
733 {
734 int i;
735
736 for (i = 0; i < vmx->nr_uret_msrs; ++i)
737 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
738 return i;
739 return -1;
740 }
741
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)742 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
743 {
744 int i;
745
746 i = __vmx_find_uret_msr(vmx, msr);
747 if (i >= 0)
748 return &vmx->guest_uret_msrs[i];
749 return NULL;
750 }
751
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)752 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
753 struct vmx_uret_msr *msr, u64 data)
754 {
755 int ret = 0;
756
757 u64 old_msr_data = msr->data;
758 msr->data = data;
759 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
760 preempt_disable();
761 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
762 preempt_enable();
763 if (ret)
764 msr->data = old_msr_data;
765 }
766 return ret;
767 }
768
769 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)770 static void crash_vmclear_local_loaded_vmcss(void)
771 {
772 int cpu = raw_smp_processor_id();
773 struct loaded_vmcs *v;
774
775 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
776 loaded_vmcss_on_cpu_link)
777 vmcs_clear(v->vmcs);
778 }
779 #endif /* CONFIG_KEXEC_CORE */
780
__loaded_vmcs_clear(void * arg)781 static void __loaded_vmcs_clear(void *arg)
782 {
783 struct loaded_vmcs *loaded_vmcs = arg;
784 int cpu = raw_smp_processor_id();
785
786 if (loaded_vmcs->cpu != cpu)
787 return; /* vcpu migration can race with cpu offline */
788 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 per_cpu(current_vmcs, cpu) = NULL;
790
791 vmcs_clear(loaded_vmcs->vmcs);
792 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 vmcs_clear(loaded_vmcs->shadow_vmcs);
794
795 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796
797 /*
798 * Ensure all writes to loaded_vmcs, including deleting it from its
799 * current percpu list, complete before setting loaded_vmcs->vcpu to
800 * -1, otherwise a different cpu can see vcpu == -1 first and add
801 * loaded_vmcs to its percpu list before it's deleted from this cpu's
802 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 */
804 smp_wmb();
805
806 loaded_vmcs->cpu = -1;
807 loaded_vmcs->launched = 0;
808 }
809
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 int cpu = loaded_vmcs->cpu;
813
814 if (cpu != -1)
815 smp_call_function_single(cpu,
816 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 unsigned field)
821 {
822 bool ret;
823 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824
825 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 vmx->segment_cache.bitmask = 0;
828 }
829 ret = vmx->segment_cache.bitmask & mask;
830 vmx->segment_cache.bitmask |= mask;
831 return ret;
832 }
833
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 u16 *p = &vmx->segment_cache.seg[seg].selector;
837
838 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 return *p;
841 }
842
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 ulong *p = &vmx->segment_cache.seg[seg].base;
846
847 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 return *p;
850 }
851
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 u32 *p = &vmx->segment_cache.seg[seg].limit;
855
856 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 return *p;
859 }
860
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 u32 *p = &vmx->segment_cache.seg[seg].ar;
864
865 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 return *p;
868 }
869
update_exception_bitmap(struct kvm_vcpu * vcpu)870 void update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 u32 eb;
873
874 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 /*
877 * Guest access to VMware backdoor ports could legitimately
878 * trigger #GP because of TSS I/O permission bitmap.
879 * We intercept those #GP and allow access to them anyway
880 * as VMware does.
881 */
882 if (enable_vmware_backdoor)
883 eb |= (1u << GP_VECTOR);
884 if ((vcpu->guest_debug &
885 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
886 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
887 eb |= 1u << BP_VECTOR;
888 if (to_vmx(vcpu)->rmode.vm86_active)
889 eb = ~0;
890 if (!vmx_need_pf_intercept(vcpu))
891 eb &= ~(1u << PF_VECTOR);
892
893 /* When we are running a nested L2 guest and L1 specified for it a
894 * certain exception bitmap, we must trap the same exceptions and pass
895 * them to L1. When running L2, we will only handle the exceptions
896 * specified above if L1 did not want them.
897 */
898 if (is_guest_mode(vcpu))
899 eb |= get_vmcs12(vcpu)->exception_bitmap;
900 else {
901 /*
902 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
903 * between guest and host. In that case we only care about present
904 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
905 * prepare_vmcs02_rare.
906 */
907 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
908 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
911 }
912
913 vmcs_write32(EXCEPTION_BITMAP, eb);
914 }
915
916 /*
917 * Check if MSR is intercepted for currently loaded MSR bitmap.
918 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)919 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
920 {
921 unsigned long *msr_bitmap;
922 int f = sizeof(unsigned long);
923
924 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
925 return true;
926
927 msr_bitmap = vmx->loaded_vmcs->msr_bitmap;
928
929 if (msr <= 0x1fff) {
930 return !!test_bit(msr, msr_bitmap + 0x800 / f);
931 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
932 msr &= 0x1fff;
933 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
934 }
935
936 return true;
937 }
938
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)939 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
940 {
941 unsigned int flags = 0;
942
943 if (vmx->loaded_vmcs->launched)
944 flags |= VMX_RUN_VMRESUME;
945
946 /*
947 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
948 * to change it directly without causing a vmexit. In that case read
949 * it after vmexit and store it in vmx->spec_ctrl.
950 */
951 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
952 flags |= VMX_RUN_SAVE_SPEC_CTRL;
953
954 return flags;
955 }
956
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)957 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
958 unsigned long entry, unsigned long exit)
959 {
960 vm_entry_controls_clearbit(vmx, entry);
961 vm_exit_controls_clearbit(vmx, exit);
962 }
963
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)964 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
965 {
966 unsigned int i;
967
968 for (i = 0; i < m->nr; ++i) {
969 if (m->val[i].index == msr)
970 return i;
971 }
972 return -ENOENT;
973 }
974
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)975 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
976 {
977 int i;
978 struct msr_autoload *m = &vmx->msr_autoload;
979
980 switch (msr) {
981 case MSR_EFER:
982 if (cpu_has_load_ia32_efer()) {
983 clear_atomic_switch_msr_special(vmx,
984 VM_ENTRY_LOAD_IA32_EFER,
985 VM_EXIT_LOAD_IA32_EFER);
986 return;
987 }
988 break;
989 case MSR_CORE_PERF_GLOBAL_CTRL:
990 if (cpu_has_load_perf_global_ctrl()) {
991 clear_atomic_switch_msr_special(vmx,
992 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
993 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
994 return;
995 }
996 break;
997 }
998 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
999 if (i < 0)
1000 goto skip_guest;
1001 --m->guest.nr;
1002 m->guest.val[i] = m->guest.val[m->guest.nr];
1003 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004
1005 skip_guest:
1006 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1007 if (i < 0)
1008 return;
1009
1010 --m->host.nr;
1011 m->host.val[i] = m->host.val[m->host.nr];
1012 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1013 }
1014
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1015 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1016 unsigned long entry, unsigned long exit,
1017 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1018 u64 guest_val, u64 host_val)
1019 {
1020 vmcs_write64(guest_val_vmcs, guest_val);
1021 if (host_val_vmcs != HOST_IA32_EFER)
1022 vmcs_write64(host_val_vmcs, host_val);
1023 vm_entry_controls_setbit(vmx, entry);
1024 vm_exit_controls_setbit(vmx, exit);
1025 }
1026
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1027 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1028 u64 guest_val, u64 host_val, bool entry_only)
1029 {
1030 int i, j = 0;
1031 struct msr_autoload *m = &vmx->msr_autoload;
1032
1033 switch (msr) {
1034 case MSR_EFER:
1035 if (cpu_has_load_ia32_efer()) {
1036 add_atomic_switch_msr_special(vmx,
1037 VM_ENTRY_LOAD_IA32_EFER,
1038 VM_EXIT_LOAD_IA32_EFER,
1039 GUEST_IA32_EFER,
1040 HOST_IA32_EFER,
1041 guest_val, host_val);
1042 return;
1043 }
1044 break;
1045 case MSR_CORE_PERF_GLOBAL_CTRL:
1046 if (cpu_has_load_perf_global_ctrl()) {
1047 add_atomic_switch_msr_special(vmx,
1048 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1050 GUEST_IA32_PERF_GLOBAL_CTRL,
1051 HOST_IA32_PERF_GLOBAL_CTRL,
1052 guest_val, host_val);
1053 return;
1054 }
1055 break;
1056 case MSR_IA32_PEBS_ENABLE:
1057 /* PEBS needs a quiescent period after being disabled (to write
1058 * a record). Disabling PEBS through VMX MSR swapping doesn't
1059 * provide that period, so a CPU could write host's record into
1060 * guest's memory.
1061 */
1062 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1063 }
1064
1065 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1066 if (!entry_only)
1067 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1068
1069 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1070 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1071 printk_once(KERN_WARNING "Not enough msr switch entries. "
1072 "Can't add msr %x\n", msr);
1073 return;
1074 }
1075 if (i < 0) {
1076 i = m->guest.nr++;
1077 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1078 }
1079 m->guest.val[i].index = msr;
1080 m->guest.val[i].value = guest_val;
1081
1082 if (entry_only)
1083 return;
1084
1085 if (j < 0) {
1086 j = m->host.nr++;
1087 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1088 }
1089 m->host.val[j].index = msr;
1090 m->host.val[j].value = host_val;
1091 }
1092
update_transition_efer(struct vcpu_vmx * vmx)1093 static bool update_transition_efer(struct vcpu_vmx *vmx)
1094 {
1095 u64 guest_efer = vmx->vcpu.arch.efer;
1096 u64 ignore_bits = 0;
1097 int i;
1098
1099 /* Shadow paging assumes NX to be available. */
1100 if (!enable_ept)
1101 guest_efer |= EFER_NX;
1102
1103 /*
1104 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1105 */
1106 ignore_bits |= EFER_SCE;
1107 #ifdef CONFIG_X86_64
1108 ignore_bits |= EFER_LMA | EFER_LME;
1109 /* SCE is meaningful only in long mode on Intel */
1110 if (guest_efer & EFER_LMA)
1111 ignore_bits &= ~(u64)EFER_SCE;
1112 #endif
1113
1114 /*
1115 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1116 * On CPUs that support "load IA32_EFER", always switch EFER
1117 * atomically, since it's faster than switching it manually.
1118 */
1119 if (cpu_has_load_ia32_efer() ||
1120 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1121 if (!(guest_efer & EFER_LMA))
1122 guest_efer &= ~EFER_LME;
1123 if (guest_efer != host_efer)
1124 add_atomic_switch_msr(vmx, MSR_EFER,
1125 guest_efer, host_efer, false);
1126 else
1127 clear_atomic_switch_msr(vmx, MSR_EFER);
1128 return false;
1129 }
1130
1131 i = __vmx_find_uret_msr(vmx, MSR_EFER);
1132 if (i < 0)
1133 return false;
1134
1135 clear_atomic_switch_msr(vmx, MSR_EFER);
1136
1137 guest_efer &= ~ignore_bits;
1138 guest_efer |= host_efer & ignore_bits;
1139
1140 vmx->guest_uret_msrs[i].data = guest_efer;
1141 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1142
1143 return true;
1144 }
1145
1146 #ifdef CONFIG_X86_32
1147 /*
1148 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1149 * VMCS rather than the segment table. KVM uses this helper to figure
1150 * out the current bases to poke them into the VMCS before entry.
1151 */
segment_base(u16 selector)1152 static unsigned long segment_base(u16 selector)
1153 {
1154 struct desc_struct *table;
1155 unsigned long v;
1156
1157 if (!(selector & ~SEGMENT_RPL_MASK))
1158 return 0;
1159
1160 table = get_current_gdt_ro();
1161
1162 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1163 u16 ldt_selector = kvm_read_ldt();
1164
1165 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1166 return 0;
1167
1168 table = (struct desc_struct *)segment_base(ldt_selector);
1169 }
1170 v = get_desc_base(&table[selector >> 3]);
1171 return v;
1172 }
1173 #endif
1174
pt_can_write_msr(struct vcpu_vmx * vmx)1175 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1176 {
1177 return vmx_pt_mode_is_host_guest() &&
1178 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1179 }
1180
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1181 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1182 {
1183 /* The base must be 128-byte aligned and a legal physical address. */
1184 return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1185 }
1186
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1187 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1188 {
1189 u32 i;
1190
1191 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1192 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1193 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1194 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1195 for (i = 0; i < addr_range; i++) {
1196 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1197 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1198 }
1199 }
1200
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1201 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 u32 i;
1204
1205 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 for (i = 0; i < addr_range; i++) {
1210 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 }
1213 }
1214
pt_guest_enter(struct vcpu_vmx * vmx)1215 static void pt_guest_enter(struct vcpu_vmx *vmx)
1216 {
1217 if (vmx_pt_mode_is_system())
1218 return;
1219
1220 /*
1221 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1222 * Save host state before VM entry.
1223 */
1224 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1225 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1226 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1227 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1228 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1229 }
1230 }
1231
pt_guest_exit(struct vcpu_vmx * vmx)1232 static void pt_guest_exit(struct vcpu_vmx *vmx)
1233 {
1234 if (vmx_pt_mode_is_system())
1235 return;
1236
1237 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1239 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1240 }
1241
1242 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1243 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247 unsigned long fs_base, unsigned long gs_base)
1248 {
1249 if (unlikely(fs_sel != host->fs_sel)) {
1250 if (!(fs_sel & 7))
1251 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252 else
1253 vmcs_write16(HOST_FS_SELECTOR, 0);
1254 host->fs_sel = fs_sel;
1255 }
1256 if (unlikely(gs_sel != host->gs_sel)) {
1257 if (!(gs_sel & 7))
1258 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259 else
1260 vmcs_write16(HOST_GS_SELECTOR, 0);
1261 host->gs_sel = gs_sel;
1262 }
1263 if (unlikely(fs_base != host->fs_base)) {
1264 vmcs_writel(HOST_FS_BASE, fs_base);
1265 host->fs_base = fs_base;
1266 }
1267 if (unlikely(gs_base != host->gs_base)) {
1268 vmcs_writel(HOST_GS_BASE, gs_base);
1269 host->gs_base = gs_base;
1270 }
1271 }
1272
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275 struct vcpu_vmx *vmx = to_vmx(vcpu);
1276 struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278 int cpu = raw_smp_processor_id();
1279 #endif
1280 unsigned long fs_base, gs_base;
1281 u16 fs_sel, gs_sel;
1282 int i;
1283
1284 vmx->req_immediate_exit = false;
1285
1286 /*
1287 * Note that guest MSRs to be saved/restored can also be changed
1288 * when guest state is loaded. This happens when guest transitions
1289 * to/from long-mode by setting MSR_EFER.LMA.
1290 */
1291 if (!vmx->guest_uret_msrs_loaded) {
1292 vmx->guest_uret_msrs_loaded = true;
1293 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1294 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1295 vmx->guest_uret_msrs[i].data,
1296 vmx->guest_uret_msrs[i].mask);
1297
1298 }
1299
1300 if (vmx->nested.need_vmcs12_to_shadow_sync)
1301 nested_sync_vmcs12_to_shadow(vcpu);
1302
1303 if (vmx->guest_state_loaded)
1304 return;
1305
1306 host_state = &vmx->loaded_vmcs->host_state;
1307
1308 /*
1309 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1310 * allow segment selectors with cpl > 0 or ti == 1.
1311 */
1312 host_state->ldt_sel = kvm_read_ldt();
1313
1314 #ifdef CONFIG_X86_64
1315 savesegment(ds, host_state->ds_sel);
1316 savesegment(es, host_state->es_sel);
1317
1318 gs_base = cpu_kernelmode_gs_base(cpu);
1319 if (likely(is_64bit_mm(current->mm))) {
1320 current_save_fsgs();
1321 fs_sel = current->thread.fsindex;
1322 gs_sel = current->thread.gsindex;
1323 fs_base = current->thread.fsbase;
1324 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1325 } else {
1326 savesegment(fs, fs_sel);
1327 savesegment(gs, gs_sel);
1328 fs_base = read_msr(MSR_FS_BASE);
1329 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1330 }
1331
1332 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1333 #else
1334 savesegment(fs, fs_sel);
1335 savesegment(gs, gs_sel);
1336 fs_base = segment_base(fs_sel);
1337 gs_base = segment_base(gs_sel);
1338 #endif
1339
1340 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1341 vmx->guest_state_loaded = true;
1342 }
1343
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1344 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1345 {
1346 struct vmcs_host_state *host_state;
1347
1348 if (!vmx->guest_state_loaded)
1349 return;
1350
1351 host_state = &vmx->loaded_vmcs->host_state;
1352
1353 ++vmx->vcpu.stat.host_state_reload;
1354
1355 #ifdef CONFIG_X86_64
1356 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1357 #endif
1358 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1359 kvm_load_ldt(host_state->ldt_sel);
1360 #ifdef CONFIG_X86_64
1361 load_gs_index(host_state->gs_sel);
1362 #else
1363 loadsegment(gs, host_state->gs_sel);
1364 #endif
1365 }
1366 if (host_state->fs_sel & 7)
1367 loadsegment(fs, host_state->fs_sel);
1368 #ifdef CONFIG_X86_64
1369 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1370 loadsegment(ds, host_state->ds_sel);
1371 loadsegment(es, host_state->es_sel);
1372 }
1373 #endif
1374 invalidate_tss_limit();
1375 #ifdef CONFIG_X86_64
1376 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1377 #endif
1378 load_fixmap_gdt(raw_smp_processor_id());
1379 vmx->guest_state_loaded = false;
1380 vmx->guest_uret_msrs_loaded = false;
1381 }
1382
1383 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1384 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1385 {
1386 preempt_disable();
1387 if (vmx->guest_state_loaded)
1388 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1389 preempt_enable();
1390 return vmx->msr_guest_kernel_gs_base;
1391 }
1392
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1393 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1394 {
1395 preempt_disable();
1396 if (vmx->guest_state_loaded)
1397 wrmsrl(MSR_KERNEL_GS_BASE, data);
1398 preempt_enable();
1399 vmx->msr_guest_kernel_gs_base = data;
1400 }
1401 #endif
1402
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1403 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1404 struct loaded_vmcs *buddy)
1405 {
1406 struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1408 struct vmcs *prev;
1409
1410 if (!already_loaded) {
1411 loaded_vmcs_clear(vmx->loaded_vmcs);
1412 local_irq_disable();
1413
1414 /*
1415 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1416 * this cpu's percpu list, otherwise it may not yet be deleted
1417 * from its previous cpu's percpu list. Pairs with the
1418 * smb_wmb() in __loaded_vmcs_clear().
1419 */
1420 smp_rmb();
1421
1422 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1423 &per_cpu(loaded_vmcss_on_cpu, cpu));
1424 local_irq_enable();
1425 }
1426
1427 prev = per_cpu(current_vmcs, cpu);
1428 if (prev != vmx->loaded_vmcs->vmcs) {
1429 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1430 vmcs_load(vmx->loaded_vmcs->vmcs);
1431
1432 /*
1433 * No indirect branch prediction barrier needed when switching
1434 * the active VMCS within a vCPU, unless IBRS is advertised to
1435 * the vCPU. To minimize the number of IBPBs executed, KVM
1436 * performs IBPB on nested VM-Exit (a single nested transition
1437 * may switch the active VMCS multiple times).
1438 */
1439 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1440 indirect_branch_prediction_barrier();
1441 }
1442
1443 if (!already_loaded) {
1444 void *gdt = get_current_gdt_ro();
1445 unsigned long sysenter_esp;
1446
1447 /*
1448 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1449 * TLB entries from its previous association with the vCPU.
1450 */
1451 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1452
1453 /*
1454 * Linux uses per-cpu TSS and GDT, so set these when switching
1455 * processors. See 22.2.4.
1456 */
1457 vmcs_writel(HOST_TR_BASE,
1458 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1459 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1460
1461 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1462 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1463
1464 vmx->loaded_vmcs->cpu = cpu;
1465 }
1466
1467 /* Setup TSC multiplier */
1468 if (kvm_has_tsc_control &&
1469 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1470 decache_tsc_multiplier(vmx);
1471 }
1472
1473 /*
1474 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1475 * vcpu mutex is already taken.
1476 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 {
1479 struct vcpu_vmx *vmx = to_vmx(vcpu);
1480
1481 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1482
1483 vmx_vcpu_pi_load(vcpu, cpu);
1484
1485 vmx->host_debugctlmsr = get_debugctlmsr();
1486 }
1487
vmx_vcpu_put(struct kvm_vcpu * vcpu)1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1489 {
1490 vmx_vcpu_pi_put(vcpu);
1491
1492 vmx_prepare_switch_to_host(to_vmx(vcpu));
1493 }
1494
emulation_required(struct kvm_vcpu * vcpu)1495 static bool emulation_required(struct kvm_vcpu *vcpu)
1496 {
1497 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1498 }
1499
vmx_get_rflags(struct kvm_vcpu * vcpu)1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502 struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 unsigned long rflags, save_rflags;
1504
1505 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1506 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507 rflags = vmcs_readl(GUEST_RFLAGS);
1508 if (vmx->rmode.vm86_active) {
1509 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1510 save_rflags = vmx->rmode.save_rflags;
1511 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1512 }
1513 vmx->rflags = rflags;
1514 }
1515 return vmx->rflags;
1516 }
1517
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1519 {
1520 struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 unsigned long old_rflags;
1522
1523 if (is_unrestricted_guest(vcpu)) {
1524 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1525 vmx->rflags = rflags;
1526 vmcs_writel(GUEST_RFLAGS, rflags);
1527 return;
1528 }
1529
1530 old_rflags = vmx_get_rflags(vcpu);
1531 vmx->rflags = rflags;
1532 if (vmx->rmode.vm86_active) {
1533 vmx->rmode.save_rflags = rflags;
1534 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1535 }
1536 vmcs_writel(GUEST_RFLAGS, rflags);
1537
1538 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1539 vmx->emulation_required = emulation_required(vcpu);
1540 }
1541
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1542 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1543 {
1544 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1545 int ret = 0;
1546
1547 if (interruptibility & GUEST_INTR_STATE_STI)
1548 ret |= KVM_X86_SHADOW_INT_STI;
1549 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1550 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1551
1552 return ret;
1553 }
1554
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1555 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1556 {
1557 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1558 u32 interruptibility = interruptibility_old;
1559
1560 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1561
1562 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1563 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1564 else if (mask & KVM_X86_SHADOW_INT_STI)
1565 interruptibility |= GUEST_INTR_STATE_STI;
1566
1567 if ((interruptibility != interruptibility_old))
1568 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1569 }
1570
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1571 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1572 {
1573 struct vcpu_vmx *vmx = to_vmx(vcpu);
1574 unsigned long value;
1575
1576 /*
1577 * Any MSR write that attempts to change bits marked reserved will
1578 * case a #GP fault.
1579 */
1580 if (data & vmx->pt_desc.ctl_bitmask)
1581 return 1;
1582
1583 /*
1584 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1585 * result in a #GP unless the same write also clears TraceEn.
1586 */
1587 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1588 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1589 return 1;
1590
1591 /*
1592 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1593 * and FabricEn would cause #GP, if
1594 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1595 */
1596 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1597 !(data & RTIT_CTL_FABRIC_EN) &&
1598 !intel_pt_validate_cap(vmx->pt_desc.caps,
1599 PT_CAP_single_range_output))
1600 return 1;
1601
1602 /*
1603 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1604 * utilize encodings marked reserved will casue a #GP fault.
1605 */
1606 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1607 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1608 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1609 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1610 return 1;
1611 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1612 PT_CAP_cycle_thresholds);
1613 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1614 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1615 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1616 return 1;
1617 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1618 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1619 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1620 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1621 return 1;
1622
1623 /*
1624 * If ADDRx_CFG is reserved or the encodings is >2 will
1625 * cause a #GP fault.
1626 */
1627 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1628 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1629 return 1;
1630 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1631 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1632 return 1;
1633 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1634 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1635 return 1;
1636 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1637 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1638 return 1;
1639
1640 return 0;
1641 }
1642
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1643 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1644 {
1645 return true;
1646 }
1647
skip_emulated_instruction(struct kvm_vcpu * vcpu)1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650 unsigned long rip, orig_rip;
1651
1652 /*
1653 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1654 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1655 * set when EPT misconfig occurs. In practice, real hardware updates
1656 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1657 * (namely Hyper-V) don't set it due to it being undefined behavior,
1658 * i.e. we end up advancing IP with some random value.
1659 */
1660 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1661 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1662 orig_rip = kvm_rip_read(vcpu);
1663 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1664 #ifdef CONFIG_X86_64
1665 /*
1666 * We need to mask out the high 32 bits of RIP if not in 64-bit
1667 * mode, but just finding out that we are in 64-bit mode is
1668 * quite expensive. Only do it if there was a carry.
1669 */
1670 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1671 rip = (u32)rip;
1672 #endif
1673 kvm_rip_write(vcpu, rip);
1674 } else {
1675 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1676 return 0;
1677 }
1678
1679 /* skipping an emulated instruction also counts */
1680 vmx_set_interrupt_shadow(vcpu, 0);
1681
1682 return 1;
1683 }
1684
1685 /*
1686 * Recognizes a pending MTF VM-exit and records the nested state for later
1687 * delivery.
1688 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1689 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1690 {
1691 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1692 struct vcpu_vmx *vmx = to_vmx(vcpu);
1693
1694 if (!is_guest_mode(vcpu))
1695 return;
1696
1697 /*
1698 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1699 * T-bit traps. As instruction emulation is completed (i.e. at the
1700 * instruction boundary), any #DB exception pending delivery must be a
1701 * debug-trap. Record the pending MTF state to be delivered in
1702 * vmx_check_nested_events().
1703 */
1704 if (nested_cpu_has_mtf(vmcs12) &&
1705 (!vcpu->arch.exception.pending ||
1706 vcpu->arch.exception.nr == DB_VECTOR))
1707 vmx->nested.mtf_pending = true;
1708 else
1709 vmx->nested.mtf_pending = false;
1710 }
1711
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1712 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 vmx_update_emulated_instruction(vcpu);
1715 return skip_emulated_instruction(vcpu);
1716 }
1717
vmx_clear_hlt(struct kvm_vcpu * vcpu)1718 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1719 {
1720 /*
1721 * Ensure that we clear the HLT state in the VMCS. We don't need to
1722 * explicitly skip the instruction because if the HLT state is set,
1723 * then the instruction is already executing and RIP has already been
1724 * advanced.
1725 */
1726 if (kvm_hlt_in_guest(vcpu->kvm) &&
1727 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1728 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1729 }
1730
vmx_queue_exception(struct kvm_vcpu * vcpu)1731 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1732 {
1733 struct vcpu_vmx *vmx = to_vmx(vcpu);
1734 unsigned nr = vcpu->arch.exception.nr;
1735 bool has_error_code = vcpu->arch.exception.has_error_code;
1736 u32 error_code = vcpu->arch.exception.error_code;
1737 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1738
1739 kvm_deliver_exception_payload(vcpu);
1740
1741 if (has_error_code) {
1742 /*
1743 * Despite the error code being architecturally defined as 32
1744 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1745 * VMX don't actually supporting setting bits 31:16. Hardware
1746 * will (should) never provide a bogus error code, but AMD CPUs
1747 * do generate error codes with bits 31:16 set, and so KVM's
1748 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1749 * the upper bits to avoid VM-Fail, losing information that
1750 * does't really exist is preferable to killing the VM.
1751 */
1752 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)error_code);
1753 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1754 }
1755
1756 if (vmx->rmode.vm86_active) {
1757 int inc_eip = 0;
1758 if (kvm_exception_is_soft(nr))
1759 inc_eip = vcpu->arch.event_exit_inst_len;
1760 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1761 return;
1762 }
1763
1764 WARN_ON_ONCE(vmx->emulation_required);
1765
1766 if (kvm_exception_is_soft(nr)) {
1767 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1768 vmx->vcpu.arch.event_exit_inst_len);
1769 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1770 } else
1771 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1772
1773 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1774
1775 vmx_clear_hlt(vcpu);
1776 }
1777
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1778 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1779 {
1780 struct vmx_uret_msr tmp;
1781 int from, to;
1782
1783 from = __vmx_find_uret_msr(vmx, msr);
1784 if (from < 0)
1785 return;
1786 to = vmx->nr_active_uret_msrs++;
1787
1788 tmp = vmx->guest_uret_msrs[to];
1789 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1790 vmx->guest_uret_msrs[from] = tmp;
1791 }
1792
1793 /*
1794 * Set up the vmcs to automatically save and restore system
1795 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1796 * mode, as fiddling with msrs is very expensive.
1797 */
setup_msrs(struct vcpu_vmx * vmx)1798 static void setup_msrs(struct vcpu_vmx *vmx)
1799 {
1800 vmx->guest_uret_msrs_loaded = false;
1801 vmx->nr_active_uret_msrs = 0;
1802 #ifdef CONFIG_X86_64
1803 /*
1804 * The SYSCALL MSRs are only needed on long mode guests, and only
1805 * when EFER.SCE is set.
1806 */
1807 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1808 vmx_setup_uret_msr(vmx, MSR_STAR);
1809 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1810 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1811 }
1812 #endif
1813 if (update_transition_efer(vmx))
1814 vmx_setup_uret_msr(vmx, MSR_EFER);
1815
1816 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1817 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1818
1819 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1820
1821 if (cpu_has_vmx_msr_bitmap())
1822 vmx_update_msr_bitmap(&vmx->vcpu);
1823 }
1824
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1825 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1826 {
1827 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1828 u64 g_tsc_offset = 0;
1829
1830 /*
1831 * We're here if L1 chose not to trap WRMSR to TSC. According
1832 * to the spec, this should set L1's TSC; The offset that L1
1833 * set for L2 remains unchanged, and still needs to be added
1834 * to the newly set TSC to get L2's TSC.
1835 */
1836 if (is_guest_mode(vcpu) &&
1837 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1838 g_tsc_offset = vmcs12->tsc_offset;
1839
1840 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1841 vcpu->arch.tsc_offset - g_tsc_offset,
1842 offset);
1843 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1844 return offset + g_tsc_offset;
1845 }
1846
1847 /*
1848 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1849 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1850 * all guests if the "nested" module option is off, and can also be disabled
1851 * for a single guest by disabling its VMX cpuid bit.
1852 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1853 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1854 {
1855 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1856 }
1857
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1858 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1859 uint64_t val)
1860 {
1861 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1862
1863 return !(val & ~valid_bits);
1864 }
1865
vmx_get_msr_feature(struct kvm_msr_entry * msr)1866 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1867 {
1868 switch (msr->index) {
1869 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1870 if (!nested)
1871 return 1;
1872 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1873 case MSR_IA32_PERF_CAPABILITIES:
1874 msr->data = vmx_get_perf_capabilities();
1875 return 0;
1876 default:
1877 return KVM_MSR_RET_INVALID;
1878 }
1879 }
1880
1881 /*
1882 * Reads an msr value (of 'msr_index') into 'pdata'.
1883 * Returns 0 on success, non-0 otherwise.
1884 * Assumes vcpu_load() was already called.
1885 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1886 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1887 {
1888 struct vcpu_vmx *vmx = to_vmx(vcpu);
1889 struct vmx_uret_msr *msr;
1890 u32 index;
1891
1892 switch (msr_info->index) {
1893 #ifdef CONFIG_X86_64
1894 case MSR_FS_BASE:
1895 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1896 break;
1897 case MSR_GS_BASE:
1898 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1899 break;
1900 case MSR_KERNEL_GS_BASE:
1901 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1902 break;
1903 #endif
1904 case MSR_EFER:
1905 return kvm_get_msr_common(vcpu, msr_info);
1906 case MSR_IA32_TSX_CTRL:
1907 if (!msr_info->host_initiated &&
1908 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1909 return 1;
1910 goto find_uret_msr;
1911 case MSR_IA32_UMWAIT_CONTROL:
1912 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1913 return 1;
1914
1915 msr_info->data = vmx->msr_ia32_umwait_control;
1916 break;
1917 case MSR_IA32_SPEC_CTRL:
1918 if (!msr_info->host_initiated &&
1919 !guest_has_spec_ctrl_msr(vcpu))
1920 return 1;
1921
1922 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1923 break;
1924 case MSR_IA32_SYSENTER_CS:
1925 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1926 break;
1927 case MSR_IA32_SYSENTER_EIP:
1928 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1929 break;
1930 case MSR_IA32_SYSENTER_ESP:
1931 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1932 break;
1933 case MSR_IA32_BNDCFGS:
1934 if (!kvm_mpx_supported() ||
1935 (!msr_info->host_initiated &&
1936 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1937 return 1;
1938 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1939 break;
1940 case MSR_IA32_MCG_EXT_CTL:
1941 if (!msr_info->host_initiated &&
1942 !(vmx->msr_ia32_feature_control &
1943 FEAT_CTL_LMCE_ENABLED))
1944 return 1;
1945 msr_info->data = vcpu->arch.mcg_ext_ctl;
1946 break;
1947 case MSR_IA32_FEAT_CTL:
1948 msr_info->data = vmx->msr_ia32_feature_control;
1949 break;
1950 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1951 if (!nested_vmx_allowed(vcpu))
1952 return 1;
1953 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1954 &msr_info->data))
1955 return 1;
1956 /*
1957 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1958 * instead of just ignoring the features, different Hyper-V
1959 * versions are either trying to use them and fail or do some
1960 * sanity checking and refuse to boot. Filter all unsupported
1961 * features out.
1962 */
1963 if (!msr_info->host_initiated &&
1964 vmx->nested.enlightened_vmcs_enabled)
1965 nested_evmcs_filter_control_msr(msr_info->index,
1966 &msr_info->data);
1967 break;
1968 case MSR_IA32_RTIT_CTL:
1969 if (!vmx_pt_mode_is_host_guest())
1970 return 1;
1971 msr_info->data = vmx->pt_desc.guest.ctl;
1972 break;
1973 case MSR_IA32_RTIT_STATUS:
1974 if (!vmx_pt_mode_is_host_guest())
1975 return 1;
1976 msr_info->data = vmx->pt_desc.guest.status;
1977 break;
1978 case MSR_IA32_RTIT_CR3_MATCH:
1979 if (!vmx_pt_mode_is_host_guest() ||
1980 !intel_pt_validate_cap(vmx->pt_desc.caps,
1981 PT_CAP_cr3_filtering))
1982 return 1;
1983 msr_info->data = vmx->pt_desc.guest.cr3_match;
1984 break;
1985 case MSR_IA32_RTIT_OUTPUT_BASE:
1986 if (!vmx_pt_mode_is_host_guest() ||
1987 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1988 PT_CAP_topa_output) &&
1989 !intel_pt_validate_cap(vmx->pt_desc.caps,
1990 PT_CAP_single_range_output)))
1991 return 1;
1992 msr_info->data = vmx->pt_desc.guest.output_base;
1993 break;
1994 case MSR_IA32_RTIT_OUTPUT_MASK:
1995 if (!vmx_pt_mode_is_host_guest() ||
1996 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1997 PT_CAP_topa_output) &&
1998 !intel_pt_validate_cap(vmx->pt_desc.caps,
1999 PT_CAP_single_range_output)))
2000 return 1;
2001 msr_info->data = vmx->pt_desc.guest.output_mask;
2002 break;
2003 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2004 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2005 if (!vmx_pt_mode_is_host_guest() ||
2006 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2007 PT_CAP_num_address_ranges)))
2008 return 1;
2009 if (index % 2)
2010 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2011 else
2012 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2013 break;
2014 case MSR_TSC_AUX:
2015 if (!msr_info->host_initiated &&
2016 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2017 return 1;
2018 goto find_uret_msr;
2019 default:
2020 find_uret_msr:
2021 msr = vmx_find_uret_msr(vmx, msr_info->index);
2022 if (msr) {
2023 msr_info->data = msr->data;
2024 break;
2025 }
2026 return kvm_get_msr_common(vcpu, msr_info);
2027 }
2028
2029 return 0;
2030 }
2031
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2032 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2033 u64 data)
2034 {
2035 #ifdef CONFIG_X86_64
2036 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2037 return (u32)data;
2038 #endif
2039 return (unsigned long)data;
2040 }
2041
2042 /*
2043 * Writes msr value into the appropriate "register".
2044 * Returns 0 on success, non-0 otherwise.
2045 * Assumes vcpu_load() was already called.
2046 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2047 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2048 {
2049 struct vcpu_vmx *vmx = to_vmx(vcpu);
2050 struct vmx_uret_msr *msr;
2051 int ret = 0;
2052 u32 msr_index = msr_info->index;
2053 u64 data = msr_info->data;
2054 u32 index;
2055
2056 switch (msr_index) {
2057 case MSR_EFER:
2058 ret = kvm_set_msr_common(vcpu, msr_info);
2059 break;
2060 #ifdef CONFIG_X86_64
2061 case MSR_FS_BASE:
2062 vmx_segment_cache_clear(vmx);
2063 vmcs_writel(GUEST_FS_BASE, data);
2064 break;
2065 case MSR_GS_BASE:
2066 vmx_segment_cache_clear(vmx);
2067 vmcs_writel(GUEST_GS_BASE, data);
2068 break;
2069 case MSR_KERNEL_GS_BASE:
2070 vmx_write_guest_kernel_gs_base(vmx, data);
2071 break;
2072 #endif
2073 case MSR_IA32_SYSENTER_CS:
2074 if (is_guest_mode(vcpu))
2075 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2076 vmcs_write32(GUEST_SYSENTER_CS, data);
2077 break;
2078 case MSR_IA32_SYSENTER_EIP:
2079 if (is_guest_mode(vcpu)) {
2080 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2081 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2082 }
2083 vmcs_writel(GUEST_SYSENTER_EIP, data);
2084 break;
2085 case MSR_IA32_SYSENTER_ESP:
2086 if (is_guest_mode(vcpu)) {
2087 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2088 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2089 }
2090 vmcs_writel(GUEST_SYSENTER_ESP, data);
2091 break;
2092 case MSR_IA32_DEBUGCTLMSR:
2093 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2094 VM_EXIT_SAVE_DEBUG_CONTROLS)
2095 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2096
2097 ret = kvm_set_msr_common(vcpu, msr_info);
2098 break;
2099
2100 case MSR_IA32_BNDCFGS:
2101 if (!kvm_mpx_supported() ||
2102 (!msr_info->host_initiated &&
2103 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2104 return 1;
2105 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2106 (data & MSR_IA32_BNDCFGS_RSVD))
2107 return 1;
2108 vmcs_write64(GUEST_BNDCFGS, data);
2109 break;
2110 case MSR_IA32_UMWAIT_CONTROL:
2111 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2112 return 1;
2113
2114 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2115 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2116 return 1;
2117
2118 vmx->msr_ia32_umwait_control = data;
2119 break;
2120 case MSR_IA32_SPEC_CTRL:
2121 if (!msr_info->host_initiated &&
2122 !guest_has_spec_ctrl_msr(vcpu))
2123 return 1;
2124
2125 if (kvm_spec_ctrl_test_value(data))
2126 return 1;
2127
2128 vmx->spec_ctrl = data;
2129 if (!data)
2130 break;
2131
2132 /*
2133 * For non-nested:
2134 * When it's written (to non-zero) for the first time, pass
2135 * it through.
2136 *
2137 * For nested:
2138 * The handling of the MSR bitmap for L2 guests is done in
2139 * nested_vmx_prepare_msr_bitmap. We should not touch the
2140 * vmcs02.msr_bitmap here since it gets completely overwritten
2141 * in the merging. We update the vmcs01 here for L1 as well
2142 * since it will end up touching the MSR anyway now.
2143 */
2144 vmx_disable_intercept_for_msr(vcpu,
2145 MSR_IA32_SPEC_CTRL,
2146 MSR_TYPE_RW);
2147 break;
2148 case MSR_IA32_TSX_CTRL:
2149 if (!msr_info->host_initiated &&
2150 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2151 return 1;
2152 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2153 return 1;
2154 goto find_uret_msr;
2155 case MSR_IA32_PRED_CMD:
2156 if (!msr_info->host_initiated &&
2157 !guest_has_pred_cmd_msr(vcpu))
2158 return 1;
2159
2160 if (data & ~PRED_CMD_IBPB)
2161 return 1;
2162 if (!boot_cpu_has(X86_FEATURE_IBPB))
2163 return 1;
2164 if (!data)
2165 break;
2166
2167 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2168
2169 /*
2170 * For non-nested:
2171 * When it's written (to non-zero) for the first time, pass
2172 * it through.
2173 *
2174 * For nested:
2175 * The handling of the MSR bitmap for L2 guests is done in
2176 * nested_vmx_prepare_msr_bitmap. We should not touch the
2177 * vmcs02.msr_bitmap here since it gets completely overwritten
2178 * in the merging.
2179 */
2180 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2181 break;
2182 case MSR_IA32_CR_PAT:
2183 if (!kvm_pat_valid(data))
2184 return 1;
2185
2186 if (is_guest_mode(vcpu) &&
2187 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2188 get_vmcs12(vcpu)->guest_ia32_pat = data;
2189
2190 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2191 vmcs_write64(GUEST_IA32_PAT, data);
2192 vcpu->arch.pat = data;
2193 break;
2194 }
2195 ret = kvm_set_msr_common(vcpu, msr_info);
2196 break;
2197 case MSR_IA32_TSC_ADJUST:
2198 ret = kvm_set_msr_common(vcpu, msr_info);
2199 break;
2200 case MSR_IA32_MCG_EXT_CTL:
2201 if ((!msr_info->host_initiated &&
2202 !(to_vmx(vcpu)->msr_ia32_feature_control &
2203 FEAT_CTL_LMCE_ENABLED)) ||
2204 (data & ~MCG_EXT_CTL_LMCE_EN))
2205 return 1;
2206 vcpu->arch.mcg_ext_ctl = data;
2207 break;
2208 case MSR_IA32_FEAT_CTL:
2209 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2210 (to_vmx(vcpu)->msr_ia32_feature_control &
2211 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2212 return 1;
2213 vmx->msr_ia32_feature_control = data;
2214 if (msr_info->host_initiated && data == 0)
2215 vmx_leave_nested(vcpu);
2216 break;
2217 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2218 if (!msr_info->host_initiated)
2219 return 1; /* they are read-only */
2220 if (!nested_vmx_allowed(vcpu))
2221 return 1;
2222 return vmx_set_vmx_msr(vcpu, msr_index, data);
2223 case MSR_IA32_RTIT_CTL:
2224 if (!vmx_pt_mode_is_host_guest() ||
2225 vmx_rtit_ctl_check(vcpu, data) ||
2226 vmx->nested.vmxon)
2227 return 1;
2228 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2229 vmx->pt_desc.guest.ctl = data;
2230 pt_update_intercept_for_msr(vcpu);
2231 break;
2232 case MSR_IA32_RTIT_STATUS:
2233 if (!pt_can_write_msr(vmx))
2234 return 1;
2235 if (data & MSR_IA32_RTIT_STATUS_MASK)
2236 return 1;
2237 vmx->pt_desc.guest.status = data;
2238 break;
2239 case MSR_IA32_RTIT_CR3_MATCH:
2240 if (!pt_can_write_msr(vmx))
2241 return 1;
2242 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2243 PT_CAP_cr3_filtering))
2244 return 1;
2245 vmx->pt_desc.guest.cr3_match = data;
2246 break;
2247 case MSR_IA32_RTIT_OUTPUT_BASE:
2248 if (!pt_can_write_msr(vmx))
2249 return 1;
2250 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2251 PT_CAP_topa_output) &&
2252 !intel_pt_validate_cap(vmx->pt_desc.caps,
2253 PT_CAP_single_range_output))
2254 return 1;
2255 if (!pt_output_base_valid(vcpu, data))
2256 return 1;
2257 vmx->pt_desc.guest.output_base = data;
2258 break;
2259 case MSR_IA32_RTIT_OUTPUT_MASK:
2260 if (!pt_can_write_msr(vmx))
2261 return 1;
2262 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2263 PT_CAP_topa_output) &&
2264 !intel_pt_validate_cap(vmx->pt_desc.caps,
2265 PT_CAP_single_range_output))
2266 return 1;
2267 vmx->pt_desc.guest.output_mask = data;
2268 break;
2269 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2270 if (!pt_can_write_msr(vmx))
2271 return 1;
2272 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2273 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2274 PT_CAP_num_address_ranges))
2275 return 1;
2276 if (is_noncanonical_address(data, vcpu))
2277 return 1;
2278 if (index % 2)
2279 vmx->pt_desc.guest.addr_b[index / 2] = data;
2280 else
2281 vmx->pt_desc.guest.addr_a[index / 2] = data;
2282 break;
2283 case MSR_TSC_AUX:
2284 if (!msr_info->host_initiated &&
2285 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2286 return 1;
2287 /* Check reserved bit, higher 32 bits should be zero */
2288 if ((data >> 32) != 0)
2289 return 1;
2290 goto find_uret_msr;
2291
2292 default:
2293 find_uret_msr:
2294 msr = vmx_find_uret_msr(vmx, msr_index);
2295 if (msr)
2296 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2297 else
2298 ret = kvm_set_msr_common(vcpu, msr_info);
2299 }
2300
2301 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2302 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2303 vmx_update_fb_clear_dis(vcpu, vmx);
2304
2305 return ret;
2306 }
2307
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2308 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2309 {
2310 unsigned long guest_owned_bits;
2311
2312 kvm_register_mark_available(vcpu, reg);
2313
2314 switch (reg) {
2315 case VCPU_REGS_RSP:
2316 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2317 break;
2318 case VCPU_REGS_RIP:
2319 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2320 break;
2321 case VCPU_EXREG_PDPTR:
2322 if (enable_ept)
2323 ept_save_pdptrs(vcpu);
2324 break;
2325 case VCPU_EXREG_CR0:
2326 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2327
2328 vcpu->arch.cr0 &= ~guest_owned_bits;
2329 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2330 break;
2331 case VCPU_EXREG_CR3:
2332 if (is_unrestricted_guest(vcpu) ||
2333 (enable_ept && is_paging(vcpu)))
2334 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2335 break;
2336 case VCPU_EXREG_CR4:
2337 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2338
2339 vcpu->arch.cr4 &= ~guest_owned_bits;
2340 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2341 break;
2342 default:
2343 WARN_ON_ONCE(1);
2344 break;
2345 }
2346 }
2347
cpu_has_kvm_support(void)2348 static __init int cpu_has_kvm_support(void)
2349 {
2350 return cpu_has_vmx();
2351 }
2352
vmx_disabled_by_bios(void)2353 static __init int vmx_disabled_by_bios(void)
2354 {
2355 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2356 !boot_cpu_has(X86_FEATURE_VMX);
2357 }
2358
kvm_cpu_vmxon(u64 vmxon_pointer)2359 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2360 {
2361 u64 msr;
2362
2363 cr4_set_bits(X86_CR4_VMXE);
2364 intel_pt_handle_vmx(1);
2365
2366 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2367 _ASM_EXTABLE(1b, %l[fault])
2368 : : [vmxon_pointer] "m"(vmxon_pointer)
2369 : : fault);
2370 return 0;
2371
2372 fault:
2373 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2374 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2375 intel_pt_handle_vmx(0);
2376 cr4_clear_bits(X86_CR4_VMXE);
2377
2378 return -EFAULT;
2379 }
2380
hardware_enable(void)2381 static int hardware_enable(void)
2382 {
2383 int cpu = raw_smp_processor_id();
2384 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2385 int r;
2386
2387 if (cr4_read_shadow() & X86_CR4_VMXE)
2388 return -EBUSY;
2389
2390 /*
2391 * This can happen if we hot-added a CPU but failed to allocate
2392 * VP assist page for it.
2393 */
2394 if (static_branch_unlikely(&enable_evmcs) &&
2395 !hv_get_vp_assist_page(cpu))
2396 return -EFAULT;
2397
2398 r = kvm_cpu_vmxon(phys_addr);
2399 if (r)
2400 return r;
2401
2402 if (enable_ept)
2403 ept_sync_global();
2404
2405 return 0;
2406 }
2407
vmclear_local_loaded_vmcss(void)2408 static void vmclear_local_loaded_vmcss(void)
2409 {
2410 int cpu = raw_smp_processor_id();
2411 struct loaded_vmcs *v, *n;
2412
2413 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2414 loaded_vmcss_on_cpu_link)
2415 __loaded_vmcs_clear(v);
2416 }
2417
2418
2419 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2420 * tricks.
2421 */
kvm_cpu_vmxoff(void)2422 static void kvm_cpu_vmxoff(void)
2423 {
2424 asm volatile (__ex("vmxoff"));
2425
2426 intel_pt_handle_vmx(0);
2427 cr4_clear_bits(X86_CR4_VMXE);
2428 }
2429
hardware_disable(void)2430 static void hardware_disable(void)
2431 {
2432 vmclear_local_loaded_vmcss();
2433 kvm_cpu_vmxoff();
2434 }
2435
2436 /*
2437 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2438 * directly instead of going through cpu_has(), to ensure KVM is trapping
2439 * ENCLS whenever it's supported in hardware. It does not matter whether
2440 * the host OS supports or has enabled SGX.
2441 */
cpu_has_sgx(void)2442 static bool cpu_has_sgx(void)
2443 {
2444 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2445 }
2446
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2447 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2448 u32 msr, u32 *result)
2449 {
2450 u32 vmx_msr_low, vmx_msr_high;
2451 u32 ctl = ctl_min | ctl_opt;
2452
2453 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2454
2455 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2456 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2457
2458 /* Ensure minimum (required) set of control bits are supported. */
2459 if (ctl_min & ~ctl)
2460 return -EIO;
2461
2462 *result = ctl;
2463 return 0;
2464 }
2465
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2466 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2467 struct vmx_capability *vmx_cap)
2468 {
2469 u32 vmx_msr_low, vmx_msr_high;
2470 u32 min, opt, min2, opt2;
2471 u32 _pin_based_exec_control = 0;
2472 u32 _cpu_based_exec_control = 0;
2473 u32 _cpu_based_2nd_exec_control = 0;
2474 u32 _vmexit_control = 0;
2475 u32 _vmentry_control = 0;
2476
2477 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2478 min = CPU_BASED_HLT_EXITING |
2479 #ifdef CONFIG_X86_64
2480 CPU_BASED_CR8_LOAD_EXITING |
2481 CPU_BASED_CR8_STORE_EXITING |
2482 #endif
2483 CPU_BASED_CR3_LOAD_EXITING |
2484 CPU_BASED_CR3_STORE_EXITING |
2485 CPU_BASED_UNCOND_IO_EXITING |
2486 CPU_BASED_MOV_DR_EXITING |
2487 CPU_BASED_USE_TSC_OFFSETTING |
2488 CPU_BASED_MWAIT_EXITING |
2489 CPU_BASED_MONITOR_EXITING |
2490 CPU_BASED_INVLPG_EXITING |
2491 CPU_BASED_RDPMC_EXITING;
2492
2493 opt = CPU_BASED_TPR_SHADOW |
2494 CPU_BASED_USE_MSR_BITMAPS |
2495 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2496 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2497 &_cpu_based_exec_control) < 0)
2498 return -EIO;
2499 #ifdef CONFIG_X86_64
2500 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2501 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2502 ~CPU_BASED_CR8_STORE_EXITING;
2503 #endif
2504 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2505 min2 = 0;
2506 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2507 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2508 SECONDARY_EXEC_WBINVD_EXITING |
2509 SECONDARY_EXEC_ENABLE_VPID |
2510 SECONDARY_EXEC_ENABLE_EPT |
2511 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2512 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2513 SECONDARY_EXEC_DESC |
2514 SECONDARY_EXEC_ENABLE_RDTSCP |
2515 SECONDARY_EXEC_ENABLE_INVPCID |
2516 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2517 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2518 SECONDARY_EXEC_SHADOW_VMCS |
2519 SECONDARY_EXEC_XSAVES |
2520 SECONDARY_EXEC_RDSEED_EXITING |
2521 SECONDARY_EXEC_RDRAND_EXITING |
2522 SECONDARY_EXEC_ENABLE_PML |
2523 SECONDARY_EXEC_TSC_SCALING |
2524 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2525 SECONDARY_EXEC_PT_USE_GPA |
2526 SECONDARY_EXEC_PT_CONCEAL_VMX |
2527 SECONDARY_EXEC_ENABLE_VMFUNC;
2528 if (cpu_has_sgx())
2529 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2530 if (adjust_vmx_controls(min2, opt2,
2531 MSR_IA32_VMX_PROCBASED_CTLS2,
2532 &_cpu_based_2nd_exec_control) < 0)
2533 return -EIO;
2534 }
2535 #ifndef CONFIG_X86_64
2536 if (!(_cpu_based_2nd_exec_control &
2537 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2538 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2539 #endif
2540
2541 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2542 _cpu_based_2nd_exec_control &= ~(
2543 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2544 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2545 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2546
2547 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2548 &vmx_cap->ept, &vmx_cap->vpid);
2549
2550 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2551 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2552 enabled */
2553 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2554 CPU_BASED_CR3_STORE_EXITING |
2555 CPU_BASED_INVLPG_EXITING);
2556 } else if (vmx_cap->ept) {
2557 vmx_cap->ept = 0;
2558 pr_warn_once("EPT CAP should not exist if not support "
2559 "1-setting enable EPT VM-execution control\n");
2560 }
2561 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2562 vmx_cap->vpid) {
2563 vmx_cap->vpid = 0;
2564 pr_warn_once("VPID CAP should not exist if not support "
2565 "1-setting enable VPID VM-execution control\n");
2566 }
2567
2568 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2569 #ifdef CONFIG_X86_64
2570 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2571 #endif
2572 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2573 VM_EXIT_LOAD_IA32_PAT |
2574 VM_EXIT_LOAD_IA32_EFER |
2575 VM_EXIT_CLEAR_BNDCFGS |
2576 VM_EXIT_PT_CONCEAL_PIP |
2577 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2578 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2579 &_vmexit_control) < 0)
2580 return -EIO;
2581
2582 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2583 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2584 PIN_BASED_VMX_PREEMPTION_TIMER;
2585 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2586 &_pin_based_exec_control) < 0)
2587 return -EIO;
2588
2589 if (cpu_has_broken_vmx_preemption_timer())
2590 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2591 if (!(_cpu_based_2nd_exec_control &
2592 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2593 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2594
2595 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2596 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2597 VM_ENTRY_LOAD_IA32_PAT |
2598 VM_ENTRY_LOAD_IA32_EFER |
2599 VM_ENTRY_LOAD_BNDCFGS |
2600 VM_ENTRY_PT_CONCEAL_PIP |
2601 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2602 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2603 &_vmentry_control) < 0)
2604 return -EIO;
2605
2606 /*
2607 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2608 * can't be used due to an errata where VM Exit may incorrectly clear
2609 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2610 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2611 */
2612 if (boot_cpu_data.x86 == 0x6) {
2613 switch (boot_cpu_data.x86_model) {
2614 case 26: /* AAK155 */
2615 case 30: /* AAP115 */
2616 case 37: /* AAT100 */
2617 case 44: /* BC86,AAY89,BD102 */
2618 case 46: /* BA97 */
2619 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2620 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2621 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2622 "does not work properly. Using workaround\n");
2623 break;
2624 default:
2625 break;
2626 }
2627 }
2628
2629
2630 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2631
2632 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2633 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2634 return -EIO;
2635
2636 #ifdef CONFIG_X86_64
2637 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2638 if (vmx_msr_high & (1u<<16))
2639 return -EIO;
2640 #endif
2641
2642 /* Require Write-Back (WB) memory type for VMCS accesses. */
2643 if (((vmx_msr_high >> 18) & 15) != 6)
2644 return -EIO;
2645
2646 vmcs_conf->size = vmx_msr_high & 0x1fff;
2647 vmcs_conf->order = get_order(vmcs_conf->size);
2648 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2649
2650 vmcs_conf->revision_id = vmx_msr_low;
2651
2652 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2653 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2654 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2655 vmcs_conf->vmexit_ctrl = _vmexit_control;
2656 vmcs_conf->vmentry_ctrl = _vmentry_control;
2657
2658 #if IS_ENABLED(CONFIG_HYPERV)
2659 if (enlightened_vmcs)
2660 evmcs_sanitize_exec_ctrls(vmcs_conf);
2661 #endif
2662
2663 return 0;
2664 }
2665
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2666 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2667 {
2668 int node = cpu_to_node(cpu);
2669 struct page *pages;
2670 struct vmcs *vmcs;
2671
2672 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2673 if (!pages)
2674 return NULL;
2675 vmcs = page_address(pages);
2676 memset(vmcs, 0, vmcs_config.size);
2677
2678 /* KVM supports Enlightened VMCS v1 only */
2679 if (static_branch_unlikely(&enable_evmcs))
2680 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2681 else
2682 vmcs->hdr.revision_id = vmcs_config.revision_id;
2683
2684 if (shadow)
2685 vmcs->hdr.shadow_vmcs = 1;
2686 return vmcs;
2687 }
2688
free_vmcs(struct vmcs * vmcs)2689 void free_vmcs(struct vmcs *vmcs)
2690 {
2691 free_pages((unsigned long)vmcs, vmcs_config.order);
2692 }
2693
2694 /*
2695 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2696 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2697 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2698 {
2699 if (!loaded_vmcs->vmcs)
2700 return;
2701 loaded_vmcs_clear(loaded_vmcs);
2702 free_vmcs(loaded_vmcs->vmcs);
2703 loaded_vmcs->vmcs = NULL;
2704 if (loaded_vmcs->msr_bitmap)
2705 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2706 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2707 }
2708
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2709 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2710 {
2711 loaded_vmcs->vmcs = alloc_vmcs(false);
2712 if (!loaded_vmcs->vmcs)
2713 return -ENOMEM;
2714
2715 vmcs_clear(loaded_vmcs->vmcs);
2716
2717 loaded_vmcs->shadow_vmcs = NULL;
2718 loaded_vmcs->hv_timer_soft_disabled = false;
2719 loaded_vmcs->cpu = -1;
2720 loaded_vmcs->launched = 0;
2721
2722 if (cpu_has_vmx_msr_bitmap()) {
2723 loaded_vmcs->msr_bitmap = (unsigned long *)
2724 __get_free_page(GFP_KERNEL_ACCOUNT);
2725 if (!loaded_vmcs->msr_bitmap)
2726 goto out_vmcs;
2727 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2728
2729 if (IS_ENABLED(CONFIG_HYPERV) &&
2730 static_branch_unlikely(&enable_evmcs) &&
2731 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2732 struct hv_enlightened_vmcs *evmcs =
2733 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2734
2735 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2736 }
2737 }
2738
2739 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2740 memset(&loaded_vmcs->controls_shadow, 0,
2741 sizeof(struct vmcs_controls_shadow));
2742
2743 return 0;
2744
2745 out_vmcs:
2746 free_loaded_vmcs(loaded_vmcs);
2747 return -ENOMEM;
2748 }
2749
free_kvm_area(void)2750 static void free_kvm_area(void)
2751 {
2752 int cpu;
2753
2754 for_each_possible_cpu(cpu) {
2755 free_vmcs(per_cpu(vmxarea, cpu));
2756 per_cpu(vmxarea, cpu) = NULL;
2757 }
2758 }
2759
alloc_kvm_area(void)2760 static __init int alloc_kvm_area(void)
2761 {
2762 int cpu;
2763
2764 for_each_possible_cpu(cpu) {
2765 struct vmcs *vmcs;
2766
2767 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2768 if (!vmcs) {
2769 free_kvm_area();
2770 return -ENOMEM;
2771 }
2772
2773 /*
2774 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2775 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2776 * revision_id reported by MSR_IA32_VMX_BASIC.
2777 *
2778 * However, even though not explicitly documented by
2779 * TLFS, VMXArea passed as VMXON argument should
2780 * still be marked with revision_id reported by
2781 * physical CPU.
2782 */
2783 if (static_branch_unlikely(&enable_evmcs))
2784 vmcs->hdr.revision_id = vmcs_config.revision_id;
2785
2786 per_cpu(vmxarea, cpu) = vmcs;
2787 }
2788 return 0;
2789 }
2790
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2791 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2792 struct kvm_segment *save)
2793 {
2794 if (!emulate_invalid_guest_state) {
2795 /*
2796 * CS and SS RPL should be equal during guest entry according
2797 * to VMX spec, but in reality it is not always so. Since vcpu
2798 * is in the middle of the transition from real mode to
2799 * protected mode it is safe to assume that RPL 0 is a good
2800 * default value.
2801 */
2802 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2803 save->selector &= ~SEGMENT_RPL_MASK;
2804 save->dpl = save->selector & SEGMENT_RPL_MASK;
2805 save->s = 1;
2806 }
2807 vmx_set_segment(vcpu, save, seg);
2808 }
2809
enter_pmode(struct kvm_vcpu * vcpu)2810 static void enter_pmode(struct kvm_vcpu *vcpu)
2811 {
2812 unsigned long flags;
2813 struct vcpu_vmx *vmx = to_vmx(vcpu);
2814
2815 /*
2816 * Update real mode segment cache. It may be not up-to-date if sement
2817 * register was written while vcpu was in a guest mode.
2818 */
2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2823 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2824 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2825
2826 vmx->rmode.vm86_active = 0;
2827
2828 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2829
2830 flags = vmcs_readl(GUEST_RFLAGS);
2831 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2832 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2833 vmcs_writel(GUEST_RFLAGS, flags);
2834
2835 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2836 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2837
2838 update_exception_bitmap(vcpu);
2839
2840 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2841 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2842 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2843 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2844 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2845 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2846 }
2847
fix_rmode_seg(int seg,struct kvm_segment * save)2848 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2849 {
2850 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2851 struct kvm_segment var = *save;
2852
2853 var.dpl = 0x3;
2854 if (seg == VCPU_SREG_CS)
2855 var.type = 0x3;
2856
2857 if (!emulate_invalid_guest_state) {
2858 var.selector = var.base >> 4;
2859 var.base = var.base & 0xffff0;
2860 var.limit = 0xffff;
2861 var.g = 0;
2862 var.db = 0;
2863 var.present = 1;
2864 var.s = 1;
2865 var.l = 0;
2866 var.unusable = 0;
2867 var.type = 0x3;
2868 var.avl = 0;
2869 if (save->base & 0xf)
2870 printk_once(KERN_WARNING "kvm: segment base is not "
2871 "paragraph aligned when entering "
2872 "protected mode (seg=%d)", seg);
2873 }
2874
2875 vmcs_write16(sf->selector, var.selector);
2876 vmcs_writel(sf->base, var.base);
2877 vmcs_write32(sf->limit, var.limit);
2878 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2879 }
2880
enter_rmode(struct kvm_vcpu * vcpu)2881 static void enter_rmode(struct kvm_vcpu *vcpu)
2882 {
2883 unsigned long flags;
2884 struct vcpu_vmx *vmx = to_vmx(vcpu);
2885 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2886
2887 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2888 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2889 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2890 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2891 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2892 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2893 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2894
2895 vmx->rmode.vm86_active = 1;
2896
2897 /*
2898 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2899 * vcpu. Warn the user that an update is overdue.
2900 */
2901 if (!kvm_vmx->tss_addr)
2902 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2903 "called before entering vcpu\n");
2904
2905 vmx_segment_cache_clear(vmx);
2906
2907 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2908 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2909 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2910
2911 flags = vmcs_readl(GUEST_RFLAGS);
2912 vmx->rmode.save_rflags = flags;
2913
2914 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2915
2916 vmcs_writel(GUEST_RFLAGS, flags);
2917 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2918 update_exception_bitmap(vcpu);
2919
2920 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2921 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2922 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2923 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2924 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2925 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2926
2927 kvm_mmu_reset_context(vcpu);
2928 }
2929
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2930 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2931 {
2932 struct vcpu_vmx *vmx = to_vmx(vcpu);
2933 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2934
2935 /* Nothing to do if hardware doesn't support EFER. */
2936 if (!msr)
2937 return 0;
2938
2939 vcpu->arch.efer = efer;
2940 if (efer & EFER_LMA) {
2941 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2942 msr->data = efer;
2943 } else {
2944 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2945
2946 msr->data = efer & ~EFER_LME;
2947 }
2948 setup_msrs(vmx);
2949 return 0;
2950 }
2951
2952 #ifdef CONFIG_X86_64
2953
enter_lmode(struct kvm_vcpu * vcpu)2954 static void enter_lmode(struct kvm_vcpu *vcpu)
2955 {
2956 u32 guest_tr_ar;
2957
2958 vmx_segment_cache_clear(to_vmx(vcpu));
2959
2960 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2961 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2962 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2963 __func__);
2964 vmcs_write32(GUEST_TR_AR_BYTES,
2965 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2966 | VMX_AR_TYPE_BUSY_64_TSS);
2967 }
2968 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2969 }
2970
exit_lmode(struct kvm_vcpu * vcpu)2971 static void exit_lmode(struct kvm_vcpu *vcpu)
2972 {
2973 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2974 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2975 }
2976
2977 #endif
2978
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2979 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2980 {
2981 struct vcpu_vmx *vmx = to_vmx(vcpu);
2982
2983 /*
2984 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2985 * the CPU is not required to invalidate guest-physical mappings on
2986 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2987 * associated with the root EPT structure and not any particular VPID
2988 * (INVVPID also isn't required to invalidate guest-physical mappings).
2989 */
2990 if (enable_ept) {
2991 ept_sync_global();
2992 } else if (enable_vpid) {
2993 if (cpu_has_vmx_invvpid_global()) {
2994 vpid_sync_vcpu_global();
2995 } else {
2996 vpid_sync_vcpu_single(vmx->vpid);
2997 vpid_sync_vcpu_single(vmx->nested.vpid02);
2998 }
2999 }
3000 }
3001
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3002 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3003 {
3004 if (is_guest_mode(vcpu))
3005 return nested_get_vpid02(vcpu);
3006 return to_vmx(vcpu)->vpid;
3007 }
3008
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3009 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3010 {
3011 struct kvm_mmu *mmu = vcpu->arch.mmu;
3012 u64 root_hpa = mmu->root_hpa;
3013
3014 /* No flush required if the current context is invalid. */
3015 if (!VALID_PAGE(root_hpa))
3016 return;
3017
3018 if (enable_ept)
3019 ept_sync_context(construct_eptp(vcpu, root_hpa,
3020 mmu->shadow_root_level));
3021 else
3022 vpid_sync_context(vmx_get_current_vpid(vcpu));
3023 }
3024
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3025 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3026 {
3027 /*
3028 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3029 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3030 */
3031 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3032 }
3033
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3034 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3035 {
3036 /*
3037 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3038 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3039 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3040 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3041 * i.e. no explicit INVVPID is necessary.
3042 */
3043 vpid_sync_context(vmx_get_current_vpid(vcpu));
3044 }
3045
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3046 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3047 {
3048 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3049
3050 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3051 return;
3052
3053 if (is_pae_paging(vcpu)) {
3054 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3055 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3056 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3057 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3058 }
3059 }
3060
ept_save_pdptrs(struct kvm_vcpu * vcpu)3061 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3062 {
3063 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3064
3065 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3066 return;
3067
3068 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3069 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3070 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3071 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3072
3073 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3074 }
3075
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3076 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3077 unsigned long cr0,
3078 struct kvm_vcpu *vcpu)
3079 {
3080 struct vcpu_vmx *vmx = to_vmx(vcpu);
3081
3082 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3083 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3084 if (!(cr0 & X86_CR0_PG)) {
3085 /* From paging/starting to nonpaging */
3086 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3087 CPU_BASED_CR3_STORE_EXITING);
3088 vcpu->arch.cr0 = cr0;
3089 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3090 } else if (!is_paging(vcpu)) {
3091 /* From nonpaging to paging */
3092 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3093 CPU_BASED_CR3_STORE_EXITING);
3094 vcpu->arch.cr0 = cr0;
3095 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3096 }
3097
3098 if (!(cr0 & X86_CR0_WP))
3099 *hw_cr0 &= ~X86_CR0_WP;
3100 }
3101
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3102 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3103 {
3104 struct vcpu_vmx *vmx = to_vmx(vcpu);
3105 unsigned long hw_cr0;
3106
3107 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3108 if (is_unrestricted_guest(vcpu))
3109 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3110 else {
3111 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3112
3113 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3114 enter_pmode(vcpu);
3115
3116 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3117 enter_rmode(vcpu);
3118 }
3119
3120 #ifdef CONFIG_X86_64
3121 if (vcpu->arch.efer & EFER_LME) {
3122 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3123 enter_lmode(vcpu);
3124 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3125 exit_lmode(vcpu);
3126 }
3127 #endif
3128
3129 if (enable_ept && !is_unrestricted_guest(vcpu))
3130 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3131
3132 vmcs_writel(CR0_READ_SHADOW, cr0);
3133 vmcs_writel(GUEST_CR0, hw_cr0);
3134 vcpu->arch.cr0 = cr0;
3135 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3136
3137 /* depends on vcpu->arch.cr0 to be set to a new value */
3138 vmx->emulation_required = emulation_required(vcpu);
3139 }
3140
vmx_get_max_tdp_level(void)3141 static int vmx_get_max_tdp_level(void)
3142 {
3143 if (cpu_has_vmx_ept_5levels())
3144 return 5;
3145 return 4;
3146 }
3147
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3148 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3149 int root_level)
3150 {
3151 u64 eptp = VMX_EPTP_MT_WB;
3152
3153 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3154
3155 if (enable_ept_ad_bits &&
3156 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3157 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3158 eptp |= (root_hpa & PAGE_MASK);
3159
3160 return eptp;
3161 }
3162
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3163 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3164 int pgd_level)
3165 {
3166 struct kvm *kvm = vcpu->kvm;
3167 bool update_guest_cr3 = true;
3168 unsigned long guest_cr3;
3169 u64 eptp;
3170
3171 if (enable_ept) {
3172 eptp = construct_eptp(vcpu, pgd, pgd_level);
3173 vmcs_write64(EPT_POINTER, eptp);
3174
3175 if (kvm_x86_ops.tlb_remote_flush) {
3176 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3177 to_vmx(vcpu)->ept_pointer = eptp;
3178 to_kvm_vmx(kvm)->ept_pointers_match
3179 = EPT_POINTERS_CHECK;
3180 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3181 }
3182
3183 if (!enable_unrestricted_guest && !is_paging(vcpu))
3184 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3185 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3186 guest_cr3 = vcpu->arch.cr3;
3187 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3188 update_guest_cr3 = false;
3189 vmx_ept_load_pdptrs(vcpu);
3190 } else {
3191 guest_cr3 = pgd;
3192 }
3193
3194 if (update_guest_cr3)
3195 vmcs_writel(GUEST_CR3, guest_cr3);
3196 }
3197
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3198 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3199 {
3200 /*
3201 * We operate under the default treatment of SMM, so VMX cannot be
3202 * enabled under SMM. Note, whether or not VMXE is allowed at all is
3203 * handled by kvm_valid_cr4().
3204 */
3205 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3206 return false;
3207
3208 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3209 return false;
3210
3211 return true;
3212 }
3213
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3214 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3215 {
3216 struct vcpu_vmx *vmx = to_vmx(vcpu);
3217 /*
3218 * Pass through host's Machine Check Enable value to hw_cr4, which
3219 * is in force while we are in guest mode. Do not let guests control
3220 * this bit, even if host CR4.MCE == 0.
3221 */
3222 unsigned long hw_cr4;
3223
3224 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3225 if (is_unrestricted_guest(vcpu))
3226 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3227 else if (vmx->rmode.vm86_active)
3228 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3229 else
3230 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3231
3232 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3233 if (cr4 & X86_CR4_UMIP) {
3234 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3235 hw_cr4 &= ~X86_CR4_UMIP;
3236 } else if (!is_guest_mode(vcpu) ||
3237 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3238 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3239 }
3240 }
3241
3242 vcpu->arch.cr4 = cr4;
3243 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3244
3245 if (!is_unrestricted_guest(vcpu)) {
3246 if (enable_ept) {
3247 if (!is_paging(vcpu)) {
3248 hw_cr4 &= ~X86_CR4_PAE;
3249 hw_cr4 |= X86_CR4_PSE;
3250 } else if (!(cr4 & X86_CR4_PAE)) {
3251 hw_cr4 &= ~X86_CR4_PAE;
3252 }
3253 }
3254
3255 /*
3256 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3257 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3258 * to be manually disabled when guest switches to non-paging
3259 * mode.
3260 *
3261 * If !enable_unrestricted_guest, the CPU is always running
3262 * with CR0.PG=1 and CR4 needs to be modified.
3263 * If enable_unrestricted_guest, the CPU automatically
3264 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3265 */
3266 if (!is_paging(vcpu))
3267 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3268 }
3269
3270 vmcs_writel(CR4_READ_SHADOW, cr4);
3271 vmcs_writel(GUEST_CR4, hw_cr4);
3272 }
3273
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3274 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3275 {
3276 struct vcpu_vmx *vmx = to_vmx(vcpu);
3277 u32 ar;
3278
3279 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3280 *var = vmx->rmode.segs[seg];
3281 if (seg == VCPU_SREG_TR
3282 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3283 return;
3284 var->base = vmx_read_guest_seg_base(vmx, seg);
3285 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3286 return;
3287 }
3288 var->base = vmx_read_guest_seg_base(vmx, seg);
3289 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3290 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3291 ar = vmx_read_guest_seg_ar(vmx, seg);
3292 var->unusable = (ar >> 16) & 1;
3293 var->type = ar & 15;
3294 var->s = (ar >> 4) & 1;
3295 var->dpl = (ar >> 5) & 3;
3296 /*
3297 * Some userspaces do not preserve unusable property. Since usable
3298 * segment has to be present according to VMX spec we can use present
3299 * property to amend userspace bug by making unusable segment always
3300 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3301 * segment as unusable.
3302 */
3303 var->present = !var->unusable;
3304 var->avl = (ar >> 12) & 1;
3305 var->l = (ar >> 13) & 1;
3306 var->db = (ar >> 14) & 1;
3307 var->g = (ar >> 15) & 1;
3308 }
3309
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3310 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3311 {
3312 struct kvm_segment s;
3313
3314 if (to_vmx(vcpu)->rmode.vm86_active) {
3315 vmx_get_segment(vcpu, &s, seg);
3316 return s.base;
3317 }
3318 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3319 }
3320
vmx_get_cpl(struct kvm_vcpu * vcpu)3321 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3322 {
3323 struct vcpu_vmx *vmx = to_vmx(vcpu);
3324
3325 if (unlikely(vmx->rmode.vm86_active))
3326 return 0;
3327 else {
3328 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3329 return VMX_AR_DPL(ar);
3330 }
3331 }
3332
vmx_segment_access_rights(struct kvm_segment * var)3333 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3334 {
3335 u32 ar;
3336
3337 if (var->unusable || !var->present)
3338 ar = 1 << 16;
3339 else {
3340 ar = var->type & 15;
3341 ar |= (var->s & 1) << 4;
3342 ar |= (var->dpl & 3) << 5;
3343 ar |= (var->present & 1) << 7;
3344 ar |= (var->avl & 1) << 12;
3345 ar |= (var->l & 1) << 13;
3346 ar |= (var->db & 1) << 14;
3347 ar |= (var->g & 1) << 15;
3348 }
3349
3350 return ar;
3351 }
3352
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3353 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3354 {
3355 struct vcpu_vmx *vmx = to_vmx(vcpu);
3356 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3357
3358 vmx_segment_cache_clear(vmx);
3359
3360 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3361 vmx->rmode.segs[seg] = *var;
3362 if (seg == VCPU_SREG_TR)
3363 vmcs_write16(sf->selector, var->selector);
3364 else if (var->s)
3365 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3366 goto out;
3367 }
3368
3369 vmcs_writel(sf->base, var->base);
3370 vmcs_write32(sf->limit, var->limit);
3371 vmcs_write16(sf->selector, var->selector);
3372
3373 /*
3374 * Fix the "Accessed" bit in AR field of segment registers for older
3375 * qemu binaries.
3376 * IA32 arch specifies that at the time of processor reset the
3377 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3378 * is setting it to 0 in the userland code. This causes invalid guest
3379 * state vmexit when "unrestricted guest" mode is turned on.
3380 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3381 * tree. Newer qemu binaries with that qemu fix would not need this
3382 * kvm hack.
3383 */
3384 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3385 var->type |= 0x1; /* Accessed */
3386
3387 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3388
3389 out:
3390 vmx->emulation_required = emulation_required(vcpu);
3391 }
3392
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3393 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3394 {
3395 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3396
3397 *db = (ar >> 14) & 1;
3398 *l = (ar >> 13) & 1;
3399 }
3400
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3401 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3402 {
3403 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3404 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3405 }
3406
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3407 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3408 {
3409 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3410 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3411 }
3412
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3413 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3414 {
3415 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3416 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3417 }
3418
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3419 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3420 {
3421 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3422 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3423 }
3424
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3425 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3426 {
3427 struct kvm_segment var;
3428 u32 ar;
3429
3430 vmx_get_segment(vcpu, &var, seg);
3431 var.dpl = 0x3;
3432 if (seg == VCPU_SREG_CS)
3433 var.type = 0x3;
3434 ar = vmx_segment_access_rights(&var);
3435
3436 if (var.base != (var.selector << 4))
3437 return false;
3438 if (var.limit != 0xffff)
3439 return false;
3440 if (ar != 0xf3)
3441 return false;
3442
3443 return true;
3444 }
3445
code_segment_valid(struct kvm_vcpu * vcpu)3446 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3447 {
3448 struct kvm_segment cs;
3449 unsigned int cs_rpl;
3450
3451 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3452 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3453
3454 if (cs.unusable)
3455 return false;
3456 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3457 return false;
3458 if (!cs.s)
3459 return false;
3460 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3461 if (cs.dpl > cs_rpl)
3462 return false;
3463 } else {
3464 if (cs.dpl != cs_rpl)
3465 return false;
3466 }
3467 if (!cs.present)
3468 return false;
3469
3470 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3471 return true;
3472 }
3473
stack_segment_valid(struct kvm_vcpu * vcpu)3474 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3475 {
3476 struct kvm_segment ss;
3477 unsigned int ss_rpl;
3478
3479 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3480 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3481
3482 if (ss.unusable)
3483 return true;
3484 if (ss.type != 3 && ss.type != 7)
3485 return false;
3486 if (!ss.s)
3487 return false;
3488 if (ss.dpl != ss_rpl) /* DPL != RPL */
3489 return false;
3490 if (!ss.present)
3491 return false;
3492
3493 return true;
3494 }
3495
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3496 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3497 {
3498 struct kvm_segment var;
3499 unsigned int rpl;
3500
3501 vmx_get_segment(vcpu, &var, seg);
3502 rpl = var.selector & SEGMENT_RPL_MASK;
3503
3504 if (var.unusable)
3505 return true;
3506 if (!var.s)
3507 return false;
3508 if (!var.present)
3509 return false;
3510 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3511 if (var.dpl < rpl) /* DPL < RPL */
3512 return false;
3513 }
3514
3515 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3516 * rights flags
3517 */
3518 return true;
3519 }
3520
tr_valid(struct kvm_vcpu * vcpu)3521 static bool tr_valid(struct kvm_vcpu *vcpu)
3522 {
3523 struct kvm_segment tr;
3524
3525 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3526
3527 if (tr.unusable)
3528 return false;
3529 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3530 return false;
3531 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3532 return false;
3533 if (!tr.present)
3534 return false;
3535
3536 return true;
3537 }
3538
ldtr_valid(struct kvm_vcpu * vcpu)3539 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3540 {
3541 struct kvm_segment ldtr;
3542
3543 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3544
3545 if (ldtr.unusable)
3546 return true;
3547 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3548 return false;
3549 if (ldtr.type != 2)
3550 return false;
3551 if (!ldtr.present)
3552 return false;
3553
3554 return true;
3555 }
3556
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3557 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3558 {
3559 struct kvm_segment cs, ss;
3560
3561 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3562 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3563
3564 return ((cs.selector & SEGMENT_RPL_MASK) ==
3565 (ss.selector & SEGMENT_RPL_MASK));
3566 }
3567
3568 /*
3569 * Check if guest state is valid. Returns true if valid, false if
3570 * not.
3571 * We assume that registers are always usable
3572 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3573 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3574 {
3575 /* real mode guest state checks */
3576 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3577 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3578 return false;
3579 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3580 return false;
3581 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3582 return false;
3583 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3584 return false;
3585 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3586 return false;
3587 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3588 return false;
3589 } else {
3590 /* protected mode guest state checks */
3591 if (!cs_ss_rpl_check(vcpu))
3592 return false;
3593 if (!code_segment_valid(vcpu))
3594 return false;
3595 if (!stack_segment_valid(vcpu))
3596 return false;
3597 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3598 return false;
3599 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3600 return false;
3601 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3602 return false;
3603 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3604 return false;
3605 if (!tr_valid(vcpu))
3606 return false;
3607 if (!ldtr_valid(vcpu))
3608 return false;
3609 }
3610 /* TODO:
3611 * - Add checks on RIP
3612 * - Add checks on RFLAGS
3613 */
3614
3615 return true;
3616 }
3617
init_rmode_tss(struct kvm * kvm)3618 static int init_rmode_tss(struct kvm *kvm)
3619 {
3620 gfn_t fn;
3621 u16 data = 0;
3622 int idx, r;
3623
3624 idx = srcu_read_lock(&kvm->srcu);
3625 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3626 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3627 if (r < 0)
3628 goto out;
3629 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3630 r = kvm_write_guest_page(kvm, fn++, &data,
3631 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3632 if (r < 0)
3633 goto out;
3634 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3635 if (r < 0)
3636 goto out;
3637 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3638 if (r < 0)
3639 goto out;
3640 data = ~0;
3641 r = kvm_write_guest_page(kvm, fn, &data,
3642 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3643 sizeof(u8));
3644 out:
3645 srcu_read_unlock(&kvm->srcu, idx);
3646 return r;
3647 }
3648
init_rmode_identity_map(struct kvm * kvm)3649 static int init_rmode_identity_map(struct kvm *kvm)
3650 {
3651 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3652 int i, r = 0;
3653 kvm_pfn_t identity_map_pfn;
3654 u32 tmp;
3655
3656 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3657 mutex_lock(&kvm->slots_lock);
3658
3659 if (likely(kvm_vmx->ept_identity_pagetable_done))
3660 goto out;
3661
3662 if (!kvm_vmx->ept_identity_map_addr)
3663 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3664 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3665
3666 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3667 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3668 if (r < 0)
3669 goto out;
3670
3671 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3672 if (r < 0)
3673 goto out;
3674 /* Set up identity-mapping pagetable for EPT in real mode */
3675 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3676 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3677 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3678 r = kvm_write_guest_page(kvm, identity_map_pfn,
3679 &tmp, i * sizeof(tmp), sizeof(tmp));
3680 if (r < 0)
3681 goto out;
3682 }
3683 kvm_vmx->ept_identity_pagetable_done = true;
3684
3685 out:
3686 mutex_unlock(&kvm->slots_lock);
3687 return r;
3688 }
3689
seg_setup(int seg)3690 static void seg_setup(int seg)
3691 {
3692 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3693 unsigned int ar;
3694
3695 vmcs_write16(sf->selector, 0);
3696 vmcs_writel(sf->base, 0);
3697 vmcs_write32(sf->limit, 0xffff);
3698 ar = 0x93;
3699 if (seg == VCPU_SREG_CS)
3700 ar |= 0x08; /* code segment */
3701
3702 vmcs_write32(sf->ar_bytes, ar);
3703 }
3704
alloc_apic_access_page(struct kvm * kvm)3705 static int alloc_apic_access_page(struct kvm *kvm)
3706 {
3707 struct page *page;
3708 int r = 0;
3709
3710 mutex_lock(&kvm->slots_lock);
3711 if (kvm->arch.apic_access_page_done)
3712 goto out;
3713 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3714 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3715 if (r)
3716 goto out;
3717
3718 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3719 if (is_error_page(page)) {
3720 r = -EFAULT;
3721 goto out;
3722 }
3723
3724 /*
3725 * Do not pin the page in memory, so that memory hot-unplug
3726 * is able to migrate it.
3727 */
3728 put_page(page);
3729 kvm->arch.apic_access_page_done = true;
3730 out:
3731 mutex_unlock(&kvm->slots_lock);
3732 return r;
3733 }
3734
allocate_vpid(void)3735 int allocate_vpid(void)
3736 {
3737 int vpid;
3738
3739 if (!enable_vpid)
3740 return 0;
3741 spin_lock(&vmx_vpid_lock);
3742 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3743 if (vpid < VMX_NR_VPIDS)
3744 __set_bit(vpid, vmx_vpid_bitmap);
3745 else
3746 vpid = 0;
3747 spin_unlock(&vmx_vpid_lock);
3748 return vpid;
3749 }
3750
free_vpid(int vpid)3751 void free_vpid(int vpid)
3752 {
3753 if (!enable_vpid || vpid == 0)
3754 return;
3755 spin_lock(&vmx_vpid_lock);
3756 __clear_bit(vpid, vmx_vpid_bitmap);
3757 spin_unlock(&vmx_vpid_lock);
3758 }
3759
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3760 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3761 {
3762 int f = sizeof(unsigned long);
3763
3764 if (msr <= 0x1fff)
3765 __clear_bit(msr, msr_bitmap + 0x000 / f);
3766 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3767 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3768 }
3769
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3770 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3771 {
3772 int f = sizeof(unsigned long);
3773
3774 if (msr <= 0x1fff)
3775 __clear_bit(msr, msr_bitmap + 0x800 / f);
3776 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3777 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3778 }
3779
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3780 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3781 {
3782 int f = sizeof(unsigned long);
3783
3784 if (msr <= 0x1fff)
3785 __set_bit(msr, msr_bitmap + 0x000 / f);
3786 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3787 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3788 }
3789
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3790 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3791 {
3792 int f = sizeof(unsigned long);
3793
3794 if (msr <= 0x1fff)
3795 __set_bit(msr, msr_bitmap + 0x800 / f);
3796 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3797 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3798 }
3799
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3800 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3801 u32 msr, int type)
3802 {
3803 struct vcpu_vmx *vmx = to_vmx(vcpu);
3804 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3805
3806 if (!cpu_has_vmx_msr_bitmap())
3807 return;
3808
3809 if (static_branch_unlikely(&enable_evmcs))
3810 evmcs_touch_msr_bitmap();
3811
3812 /*
3813 * Mark the desired intercept state in shadow bitmap, this is needed
3814 * for resync when the MSR filters change.
3815 */
3816 if (is_valid_passthrough_msr(msr)) {
3817 int idx = possible_passthrough_msr_slot(msr);
3818
3819 if (idx != -ENOENT) {
3820 if (type & MSR_TYPE_R)
3821 clear_bit(idx, vmx->shadow_msr_intercept.read);
3822 if (type & MSR_TYPE_W)
3823 clear_bit(idx, vmx->shadow_msr_intercept.write);
3824 }
3825 }
3826
3827 if ((type & MSR_TYPE_R) &&
3828 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3829 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3830 type &= ~MSR_TYPE_R;
3831 }
3832
3833 if ((type & MSR_TYPE_W) &&
3834 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3835 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3836 type &= ~MSR_TYPE_W;
3837 }
3838
3839 if (type & MSR_TYPE_R)
3840 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3841
3842 if (type & MSR_TYPE_W)
3843 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3844 }
3845
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3846 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3847 u32 msr, int type)
3848 {
3849 struct vcpu_vmx *vmx = to_vmx(vcpu);
3850 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3851
3852 if (!cpu_has_vmx_msr_bitmap())
3853 return;
3854
3855 if (static_branch_unlikely(&enable_evmcs))
3856 evmcs_touch_msr_bitmap();
3857
3858 /*
3859 * Mark the desired intercept state in shadow bitmap, this is needed
3860 * for resync when the MSR filter changes.
3861 */
3862 if (is_valid_passthrough_msr(msr)) {
3863 int idx = possible_passthrough_msr_slot(msr);
3864
3865 if (idx != -ENOENT) {
3866 if (type & MSR_TYPE_R)
3867 set_bit(idx, vmx->shadow_msr_intercept.read);
3868 if (type & MSR_TYPE_W)
3869 set_bit(idx, vmx->shadow_msr_intercept.write);
3870 }
3871 }
3872
3873 if (type & MSR_TYPE_R)
3874 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3875
3876 if (type & MSR_TYPE_W)
3877 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3878 }
3879
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3880 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3881 u32 msr, int type, bool value)
3882 {
3883 if (value)
3884 vmx_enable_intercept_for_msr(vcpu, msr, type);
3885 else
3886 vmx_disable_intercept_for_msr(vcpu, msr, type);
3887 }
3888
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3889 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3890 {
3891 u8 mode = 0;
3892
3893 if (cpu_has_secondary_exec_ctrls() &&
3894 (secondary_exec_controls_get(to_vmx(vcpu)) &
3895 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3896 mode |= MSR_BITMAP_MODE_X2APIC;
3897 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3898 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3899 }
3900
3901 return mode;
3902 }
3903
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3904 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3905 {
3906 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3907 unsigned long read_intercept;
3908 int msr;
3909
3910 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3911
3912 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3913 unsigned int read_idx = msr / BITS_PER_LONG;
3914 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3915
3916 msr_bitmap[read_idx] = read_intercept;
3917 msr_bitmap[write_idx] = ~0ul;
3918 }
3919 }
3920
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3921 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3922 {
3923 if (!cpu_has_vmx_msr_bitmap())
3924 return;
3925
3926 vmx_reset_x2apic_msrs(vcpu, mode);
3927
3928 /*
3929 * TPR reads and writes can be virtualized even if virtual interrupt
3930 * delivery is not in use.
3931 */
3932 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3933 !(mode & MSR_BITMAP_MODE_X2APIC));
3934
3935 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3936 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3937 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3938 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3939 }
3940 }
3941
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3942 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3943 {
3944 struct vcpu_vmx *vmx = to_vmx(vcpu);
3945 u8 mode = vmx_msr_bitmap_mode(vcpu);
3946 u8 changed = mode ^ vmx->msr_bitmap_mode;
3947
3948 if (!changed)
3949 return;
3950
3951 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3952 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3953
3954 vmx->msr_bitmap_mode = mode;
3955 }
3956
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3957 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3958 {
3959 struct vcpu_vmx *vmx = to_vmx(vcpu);
3960 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3961 u32 i;
3962
3963 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3964 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3965 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3966 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3967 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3968 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3969 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3970 }
3971 }
3972
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3973 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3974 {
3975 struct vcpu_vmx *vmx = to_vmx(vcpu);
3976 void *vapic_page;
3977 u32 vppr;
3978 int rvi;
3979
3980 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3981 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3982 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3983 return false;
3984
3985 rvi = vmx_get_rvi();
3986
3987 vapic_page = vmx->nested.virtual_apic_map.hva;
3988 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3989
3990 return ((rvi & 0xf0) > (vppr & 0xf0));
3991 }
3992
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)3993 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3994 {
3995 struct vcpu_vmx *vmx = to_vmx(vcpu);
3996 u32 i;
3997
3998 /*
3999 * Set intercept permissions for all potentially passed through MSRs
4000 * again. They will automatically get filtered through the MSR filter,
4001 * so we are back in sync after this.
4002 */
4003 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4004 u32 msr = vmx_possible_passthrough_msrs[i];
4005 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
4006 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
4007
4008 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
4009 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4010 }
4011
4012 pt_update_intercept_for_msr(vcpu);
4013 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4014 }
4015
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)4016 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4017 bool nested)
4018 {
4019 #ifdef CONFIG_SMP
4020 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4021
4022 if (vcpu->mode == IN_GUEST_MODE) {
4023 /*
4024 * The vector of interrupt to be delivered to vcpu had
4025 * been set in PIR before this function.
4026 *
4027 * Following cases will be reached in this block, and
4028 * we always send a notification event in all cases as
4029 * explained below.
4030 *
4031 * Case 1: vcpu keeps in non-root mode. Sending a
4032 * notification event posts the interrupt to vcpu.
4033 *
4034 * Case 2: vcpu exits to root mode and is still
4035 * runnable. PIR will be synced to vIRR before the
4036 * next vcpu entry. Sending a notification event in
4037 * this case has no effect, as vcpu is not in root
4038 * mode.
4039 *
4040 * Case 3: vcpu exits to root mode and is blocked.
4041 * vcpu_block() has already synced PIR to vIRR and
4042 * never blocks vcpu if vIRR is not cleared. Therefore,
4043 * a blocked vcpu here does not wait for any requested
4044 * interrupts in PIR, and sending a notification event
4045 * which has no effect is safe here.
4046 */
4047
4048 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4049 return true;
4050 }
4051 #endif
4052 return false;
4053 }
4054
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4055 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4056 int vector)
4057 {
4058 struct vcpu_vmx *vmx = to_vmx(vcpu);
4059
4060 if (is_guest_mode(vcpu) &&
4061 vector == vmx->nested.posted_intr_nv) {
4062 /*
4063 * If a posted intr is not recognized by hardware,
4064 * we will accomplish it in the next vmentry.
4065 */
4066 vmx->nested.pi_pending = true;
4067 kvm_make_request(KVM_REQ_EVENT, vcpu);
4068 /* the PIR and ON have been set by L1. */
4069 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4070 kvm_vcpu_kick(vcpu);
4071 return 0;
4072 }
4073 return -1;
4074 }
4075 /*
4076 * Send interrupt to vcpu via posted interrupt way.
4077 * 1. If target vcpu is running(non-root mode), send posted interrupt
4078 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4079 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4080 * interrupt from PIR in next vmentry.
4081 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4082 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4083 {
4084 struct vcpu_vmx *vmx = to_vmx(vcpu);
4085 int r;
4086
4087 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4088 if (!r)
4089 return 0;
4090
4091 if (!vcpu->arch.apicv_active)
4092 return -1;
4093
4094 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4095 return 0;
4096
4097 /* If a previous notification has sent the IPI, nothing to do. */
4098 if (pi_test_and_set_on(&vmx->pi_desc))
4099 return 0;
4100
4101 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4102 kvm_vcpu_kick(vcpu);
4103
4104 return 0;
4105 }
4106
4107 /*
4108 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4109 * will not change in the lifetime of the guest.
4110 * Note that host-state that does change is set elsewhere. E.g., host-state
4111 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4112 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4113 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4114 {
4115 u32 low32, high32;
4116 unsigned long tmpl;
4117 unsigned long cr0, cr3, cr4;
4118
4119 cr0 = read_cr0();
4120 WARN_ON(cr0 & X86_CR0_TS);
4121 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4122
4123 /*
4124 * Save the most likely value for this task's CR3 in the VMCS.
4125 * We can't use __get_current_cr3_fast() because we're not atomic.
4126 */
4127 cr3 = __read_cr3();
4128 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4129 vmx->loaded_vmcs->host_state.cr3 = cr3;
4130
4131 /* Save the most likely value for this task's CR4 in the VMCS. */
4132 cr4 = cr4_read_shadow();
4133 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4134 vmx->loaded_vmcs->host_state.cr4 = cr4;
4135
4136 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4137 #ifdef CONFIG_X86_64
4138 /*
4139 * Load null selectors, so we can avoid reloading them in
4140 * vmx_prepare_switch_to_host(), in case userspace uses
4141 * the null selectors too (the expected case).
4142 */
4143 vmcs_write16(HOST_DS_SELECTOR, 0);
4144 vmcs_write16(HOST_ES_SELECTOR, 0);
4145 #else
4146 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4147 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4148 #endif
4149 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4150 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4151
4152 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4153
4154 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4155
4156 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4157 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4158 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4159 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4160
4161 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4162 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4163 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4164 }
4165
4166 if (cpu_has_load_ia32_efer())
4167 vmcs_write64(HOST_IA32_EFER, host_efer);
4168 }
4169
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4170 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4171 {
4172 struct kvm_vcpu *vcpu = &vmx->vcpu;
4173
4174 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4175 ~vcpu->arch.cr4_guest_rsvd_bits;
4176 if (!enable_ept)
4177 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4178 if (is_guest_mode(&vmx->vcpu))
4179 vcpu->arch.cr4_guest_owned_bits &=
4180 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4181 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4182 }
4183
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4184 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4185 {
4186 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4187
4188 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4189 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4190
4191 if (!enable_vnmi)
4192 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4193
4194 if (!enable_preemption_timer)
4195 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4196
4197 return pin_based_exec_ctrl;
4198 }
4199
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4200 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4201 {
4202 struct vcpu_vmx *vmx = to_vmx(vcpu);
4203
4204 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4205 if (cpu_has_secondary_exec_ctrls()) {
4206 if (kvm_vcpu_apicv_active(vcpu))
4207 secondary_exec_controls_setbit(vmx,
4208 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4209 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4210 else
4211 secondary_exec_controls_clearbit(vmx,
4212 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4213 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4214 }
4215
4216 if (cpu_has_vmx_msr_bitmap())
4217 vmx_update_msr_bitmap(vcpu);
4218 }
4219
vmx_exec_control(struct vcpu_vmx * vmx)4220 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4221 {
4222 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4223
4224 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4225 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4226
4227 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4228 exec_control &= ~CPU_BASED_TPR_SHADOW;
4229 #ifdef CONFIG_X86_64
4230 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4231 CPU_BASED_CR8_LOAD_EXITING;
4232 #endif
4233 }
4234 if (!enable_ept)
4235 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4236 CPU_BASED_CR3_LOAD_EXITING |
4237 CPU_BASED_INVLPG_EXITING;
4238 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4239 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4240 CPU_BASED_MONITOR_EXITING);
4241 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4242 exec_control &= ~CPU_BASED_HLT_EXITING;
4243 return exec_control;
4244 }
4245
4246 /*
4247 * Adjust a single secondary execution control bit to intercept/allow an
4248 * instruction in the guest. This is usually done based on whether or not a
4249 * feature has been exposed to the guest in order to correctly emulate faults.
4250 */
4251 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4252 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4253 u32 control, bool enabled, bool exiting)
4254 {
4255 /*
4256 * If the control is for an opt-in feature, clear the control if the
4257 * feature is not exposed to the guest, i.e. not enabled. If the
4258 * control is opt-out, i.e. an exiting control, clear the control if
4259 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4260 * disabled for the associated instruction. Note, the caller is
4261 * responsible presetting exec_control to set all supported bits.
4262 */
4263 if (enabled == exiting)
4264 *exec_control &= ~control;
4265
4266 /*
4267 * Update the nested MSR settings so that a nested VMM can/can't set
4268 * controls for features that are/aren't exposed to the guest.
4269 */
4270 if (nested) {
4271 if (enabled)
4272 vmx->nested.msrs.secondary_ctls_high |= control;
4273 else
4274 vmx->nested.msrs.secondary_ctls_high &= ~control;
4275 }
4276 }
4277
4278 /*
4279 * Wrapper macro for the common case of adjusting a secondary execution control
4280 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4281 * verifies that the control is actually supported by KVM and hardware.
4282 */
4283 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4284 ({ \
4285 bool __enabled; \
4286 \
4287 if (cpu_has_vmx_##name()) { \
4288 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4289 X86_FEATURE_##feat_name); \
4290 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4291 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4292 } \
4293 })
4294
4295 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4296 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4297 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4298
4299 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4300 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4301
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4302 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4303 {
4304 struct kvm_vcpu *vcpu = &vmx->vcpu;
4305
4306 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4307
4308 if (vmx_pt_mode_is_system())
4309 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4310 if (!cpu_need_virtualize_apic_accesses(vcpu))
4311 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4312 if (vmx->vpid == 0)
4313 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4314 if (!enable_ept) {
4315 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4316 enable_unrestricted_guest = 0;
4317 }
4318 if (!enable_unrestricted_guest)
4319 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4320 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4321 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4322 if (!kvm_vcpu_apicv_active(vcpu))
4323 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4324 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4325 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4326
4327 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4328 * in vmx_set_cr4. */
4329 exec_control &= ~SECONDARY_EXEC_DESC;
4330
4331 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4332 (handle_vmptrld).
4333 We can NOT enable shadow_vmcs here because we don't have yet
4334 a current VMCS12
4335 */
4336 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4337
4338 if (!enable_pml)
4339 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4340
4341 if (cpu_has_vmx_xsaves()) {
4342 /* Exposing XSAVES only when XSAVE is exposed */
4343 bool xsaves_enabled =
4344 boot_cpu_has(X86_FEATURE_XSAVE) &&
4345 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4346 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4347
4348 vcpu->arch.xsaves_enabled = xsaves_enabled;
4349
4350 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4351 SECONDARY_EXEC_XSAVES,
4352 xsaves_enabled, false);
4353 }
4354
4355 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4356
4357 /*
4358 * Expose INVPCID if and only if PCID is also exposed to the guest.
4359 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4360 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
4361 * behavior from the guest perspective (it would expect #GP or #PF).
4362 */
4363 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4364 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4365 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4366
4367
4368 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4369 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4370
4371 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4372 ENABLE_USR_WAIT_PAUSE, false);
4373
4374 vmx->secondary_exec_control = exec_control;
4375 }
4376
ept_set_mmio_spte_mask(void)4377 static void ept_set_mmio_spte_mask(void)
4378 {
4379 /*
4380 * EPT Misconfigurations can be generated if the value of bits 2:0
4381 * of an EPT paging-structure entry is 110b (write/execute).
4382 */
4383 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4384 }
4385
4386 #define VMX_XSS_EXIT_BITMAP 0
4387
4388 /*
4389 * Noting that the initialization of Guest-state Area of VMCS is in
4390 * vmx_vcpu_reset().
4391 */
init_vmcs(struct vcpu_vmx * vmx)4392 static void init_vmcs(struct vcpu_vmx *vmx)
4393 {
4394 if (nested)
4395 nested_vmx_set_vmcs_shadowing_bitmap();
4396
4397 if (cpu_has_vmx_msr_bitmap())
4398 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4399
4400 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4401
4402 /* Control */
4403 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4404
4405 exec_controls_set(vmx, vmx_exec_control(vmx));
4406
4407 if (cpu_has_secondary_exec_ctrls()) {
4408 vmx_compute_secondary_exec_control(vmx);
4409 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4410 }
4411
4412 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4413 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4414 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4415 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4416 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4417
4418 vmcs_write16(GUEST_INTR_STATUS, 0);
4419
4420 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4421 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4422 }
4423
4424 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4425 vmcs_write32(PLE_GAP, ple_gap);
4426 vmx->ple_window = ple_window;
4427 vmx->ple_window_dirty = true;
4428 }
4429
4430 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4431 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4432 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4433
4434 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4435 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4436 vmx_set_constant_host_state(vmx);
4437 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4438 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4439
4440 if (cpu_has_vmx_vmfunc())
4441 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4442
4443 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4444 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4445 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4446 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4447 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4448
4449 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4450 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4451
4452 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4453
4454 /* 22.2.1, 20.8.1 */
4455 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4456
4457 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4458 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4459
4460 set_cr4_guest_host_mask(vmx);
4461
4462 if (vmx->vpid != 0)
4463 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4464
4465 if (cpu_has_vmx_xsaves())
4466 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4467
4468 if (enable_pml) {
4469 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4470 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4471 }
4472
4473 if (cpu_has_vmx_encls_vmexit())
4474 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4475
4476 if (vmx_pt_mode_is_host_guest()) {
4477 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4478 /* Bit[6~0] are forced to 1, writes are ignored. */
4479 vmx->pt_desc.guest.output_mask = 0x7F;
4480 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4481 }
4482 }
4483
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4484 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4485 {
4486 struct vcpu_vmx *vmx = to_vmx(vcpu);
4487 struct msr_data apic_base_msr;
4488 u64 cr0;
4489
4490 vmx->rmode.vm86_active = 0;
4491 vmx->spec_ctrl = 0;
4492
4493 vmx->msr_ia32_umwait_control = 0;
4494
4495 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4496 vmx->hv_deadline_tsc = -1;
4497 kvm_set_cr8(vcpu, 0);
4498
4499 if (!init_event) {
4500 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4501 MSR_IA32_APICBASE_ENABLE;
4502 if (kvm_vcpu_is_reset_bsp(vcpu))
4503 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4504 apic_base_msr.host_initiated = true;
4505 kvm_set_apic_base(vcpu, &apic_base_msr);
4506 }
4507
4508 vmx_segment_cache_clear(vmx);
4509
4510 seg_setup(VCPU_SREG_CS);
4511 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4512 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4513
4514 seg_setup(VCPU_SREG_DS);
4515 seg_setup(VCPU_SREG_ES);
4516 seg_setup(VCPU_SREG_FS);
4517 seg_setup(VCPU_SREG_GS);
4518 seg_setup(VCPU_SREG_SS);
4519
4520 vmcs_write16(GUEST_TR_SELECTOR, 0);
4521 vmcs_writel(GUEST_TR_BASE, 0);
4522 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4523 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4524
4525 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4526 vmcs_writel(GUEST_LDTR_BASE, 0);
4527 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4528 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4529
4530 if (!init_event) {
4531 vmcs_write32(GUEST_SYSENTER_CS, 0);
4532 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4533 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4534 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4535 }
4536
4537 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4538 kvm_rip_write(vcpu, 0xfff0);
4539
4540 vmcs_writel(GUEST_GDTR_BASE, 0);
4541 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4542
4543 vmcs_writel(GUEST_IDTR_BASE, 0);
4544 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4545
4546 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4547 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4548 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4549 if (kvm_mpx_supported())
4550 vmcs_write64(GUEST_BNDCFGS, 0);
4551
4552 setup_msrs(vmx);
4553
4554 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4555
4556 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4557 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4558 if (cpu_need_tpr_shadow(vcpu))
4559 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4560 __pa(vcpu->arch.apic->regs));
4561 vmcs_write32(TPR_THRESHOLD, 0);
4562 }
4563
4564 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4565
4566 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4567 vmx->vcpu.arch.cr0 = cr0;
4568 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4569 vmx_set_cr4(vcpu, 0);
4570 vmx_set_efer(vcpu, 0);
4571
4572 update_exception_bitmap(vcpu);
4573
4574 vpid_sync_context(vmx->vpid);
4575 if (init_event)
4576 vmx_clear_hlt(vcpu);
4577
4578 vmx_update_fb_clear_dis(vcpu, vmx);
4579 }
4580
enable_irq_window(struct kvm_vcpu * vcpu)4581 static void enable_irq_window(struct kvm_vcpu *vcpu)
4582 {
4583 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4584 }
4585
enable_nmi_window(struct kvm_vcpu * vcpu)4586 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4587 {
4588 if (!enable_vnmi ||
4589 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4590 enable_irq_window(vcpu);
4591 return;
4592 }
4593
4594 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4595 }
4596
vmx_inject_irq(struct kvm_vcpu * vcpu)4597 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4598 {
4599 struct vcpu_vmx *vmx = to_vmx(vcpu);
4600 uint32_t intr;
4601 int irq = vcpu->arch.interrupt.nr;
4602
4603 trace_kvm_inj_virq(irq);
4604
4605 ++vcpu->stat.irq_injections;
4606 if (vmx->rmode.vm86_active) {
4607 int inc_eip = 0;
4608 if (vcpu->arch.interrupt.soft)
4609 inc_eip = vcpu->arch.event_exit_inst_len;
4610 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4611 return;
4612 }
4613 intr = irq | INTR_INFO_VALID_MASK;
4614 if (vcpu->arch.interrupt.soft) {
4615 intr |= INTR_TYPE_SOFT_INTR;
4616 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4617 vmx->vcpu.arch.event_exit_inst_len);
4618 } else
4619 intr |= INTR_TYPE_EXT_INTR;
4620 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4621
4622 vmx_clear_hlt(vcpu);
4623 }
4624
vmx_inject_nmi(struct kvm_vcpu * vcpu)4625 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4626 {
4627 struct vcpu_vmx *vmx = to_vmx(vcpu);
4628
4629 if (!enable_vnmi) {
4630 /*
4631 * Tracking the NMI-blocked state in software is built upon
4632 * finding the next open IRQ window. This, in turn, depends on
4633 * well-behaving guests: They have to keep IRQs disabled at
4634 * least as long as the NMI handler runs. Otherwise we may
4635 * cause NMI nesting, maybe breaking the guest. But as this is
4636 * highly unlikely, we can live with the residual risk.
4637 */
4638 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4639 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4640 }
4641
4642 ++vcpu->stat.nmi_injections;
4643 vmx->loaded_vmcs->nmi_known_unmasked = false;
4644
4645 if (vmx->rmode.vm86_active) {
4646 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4647 return;
4648 }
4649
4650 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4651 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4652
4653 vmx_clear_hlt(vcpu);
4654 }
4655
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4656 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4657 {
4658 struct vcpu_vmx *vmx = to_vmx(vcpu);
4659 bool masked;
4660
4661 if (!enable_vnmi)
4662 return vmx->loaded_vmcs->soft_vnmi_blocked;
4663 if (vmx->loaded_vmcs->nmi_known_unmasked)
4664 return false;
4665 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4666 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4667 return masked;
4668 }
4669
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4670 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4671 {
4672 struct vcpu_vmx *vmx = to_vmx(vcpu);
4673
4674 if (!enable_vnmi) {
4675 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4676 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4677 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4678 }
4679 } else {
4680 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4681 if (masked)
4682 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4683 GUEST_INTR_STATE_NMI);
4684 else
4685 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4686 GUEST_INTR_STATE_NMI);
4687 }
4688 }
4689
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4690 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4691 {
4692 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4693 return false;
4694
4695 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4696 return true;
4697
4698 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4699 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4700 GUEST_INTR_STATE_NMI));
4701 }
4702
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4703 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4704 {
4705 if (to_vmx(vcpu)->nested.nested_run_pending)
4706 return -EBUSY;
4707
4708 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4709 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4710 return -EBUSY;
4711
4712 return !vmx_nmi_blocked(vcpu);
4713 }
4714
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4715 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4716 {
4717 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4718 return false;
4719
4720 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4721 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4722 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4723 }
4724
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4725 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4726 {
4727 if (to_vmx(vcpu)->nested.nested_run_pending)
4728 return -EBUSY;
4729
4730 /*
4731 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4732 * e.g. if the IRQ arrived asynchronously after checking nested events.
4733 */
4734 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4735 return -EBUSY;
4736
4737 return !vmx_interrupt_blocked(vcpu);
4738 }
4739
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4740 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4741 {
4742 int ret;
4743
4744 if (enable_unrestricted_guest)
4745 return 0;
4746
4747 mutex_lock(&kvm->slots_lock);
4748 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4749 PAGE_SIZE * 3);
4750 mutex_unlock(&kvm->slots_lock);
4751
4752 if (ret)
4753 return ret;
4754 to_kvm_vmx(kvm)->tss_addr = addr;
4755 return init_rmode_tss(kvm);
4756 }
4757
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4758 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4759 {
4760 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4761 return 0;
4762 }
4763
rmode_exception(struct kvm_vcpu * vcpu,int vec)4764 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4765 {
4766 switch (vec) {
4767 case BP_VECTOR:
4768 /*
4769 * Update instruction length as we may reinject the exception
4770 * from user space while in guest debugging mode.
4771 */
4772 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4773 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4774 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4775 return false;
4776 fallthrough;
4777 case DB_VECTOR:
4778 return !(vcpu->guest_debug &
4779 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4780 case DE_VECTOR:
4781 case OF_VECTOR:
4782 case BR_VECTOR:
4783 case UD_VECTOR:
4784 case DF_VECTOR:
4785 case SS_VECTOR:
4786 case GP_VECTOR:
4787 case MF_VECTOR:
4788 return true;
4789 }
4790 return false;
4791 }
4792
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4793 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4794 int vec, u32 err_code)
4795 {
4796 /*
4797 * Instruction with address size override prefix opcode 0x67
4798 * Cause the #SS fault with 0 error code in VM86 mode.
4799 */
4800 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4801 if (kvm_emulate_instruction(vcpu, 0)) {
4802 if (vcpu->arch.halt_request) {
4803 vcpu->arch.halt_request = 0;
4804 return kvm_vcpu_halt(vcpu);
4805 }
4806 return 1;
4807 }
4808 return 0;
4809 }
4810
4811 /*
4812 * Forward all other exceptions that are valid in real mode.
4813 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4814 * the required debugging infrastructure rework.
4815 */
4816 kvm_queue_exception(vcpu, vec);
4817 return 1;
4818 }
4819
4820 /*
4821 * Trigger machine check on the host. We assume all the MSRs are already set up
4822 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4823 * We pass a fake environment to the machine check handler because we want
4824 * the guest to be always treated like user space, no matter what context
4825 * it used internally.
4826 */
kvm_machine_check(void)4827 static void kvm_machine_check(void)
4828 {
4829 #if defined(CONFIG_X86_MCE)
4830 struct pt_regs regs = {
4831 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4832 .flags = X86_EFLAGS_IF,
4833 };
4834
4835 do_machine_check(®s);
4836 #endif
4837 }
4838
handle_machine_check(struct kvm_vcpu * vcpu)4839 static int handle_machine_check(struct kvm_vcpu *vcpu)
4840 {
4841 /* handled by vmx_vcpu_run() */
4842 return 1;
4843 }
4844
4845 /*
4846 * If the host has split lock detection disabled, then #AC is
4847 * unconditionally injected into the guest, which is the pre split lock
4848 * detection behaviour.
4849 *
4850 * If the host has split lock detection enabled then #AC is
4851 * only injected into the guest when:
4852 * - Guest CPL == 3 (user mode)
4853 * - Guest has #AC detection enabled in CR0
4854 * - Guest EFLAGS has AC bit set
4855 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)4856 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4857 {
4858 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4859 return true;
4860
4861 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4862 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4863 }
4864
handle_exception_nmi(struct kvm_vcpu * vcpu)4865 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4866 {
4867 struct vcpu_vmx *vmx = to_vmx(vcpu);
4868 struct kvm_run *kvm_run = vcpu->run;
4869 u32 intr_info, ex_no, error_code;
4870 unsigned long cr2, rip, dr6;
4871 u32 vect_info;
4872
4873 vect_info = vmx->idt_vectoring_info;
4874 intr_info = vmx_get_intr_info(vcpu);
4875
4876 if (is_machine_check(intr_info) || is_nmi(intr_info))
4877 return 1; /* handled by handle_exception_nmi_irqoff() */
4878
4879 if (is_invalid_opcode(intr_info))
4880 return handle_ud(vcpu);
4881
4882 error_code = 0;
4883 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4884 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4885
4886 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4887 WARN_ON_ONCE(!enable_vmware_backdoor);
4888
4889 /*
4890 * VMware backdoor emulation on #GP interception only handles
4891 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4892 * error code on #GP.
4893 */
4894 if (error_code) {
4895 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4896 return 1;
4897 }
4898 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4899 }
4900
4901 /*
4902 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4903 * MMIO, it is better to report an internal error.
4904 * See the comments in vmx_handle_exit.
4905 */
4906 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4907 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4908 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4909 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4910 vcpu->run->internal.ndata = 4;
4911 vcpu->run->internal.data[0] = vect_info;
4912 vcpu->run->internal.data[1] = intr_info;
4913 vcpu->run->internal.data[2] = error_code;
4914 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4915 return 0;
4916 }
4917
4918 if (is_page_fault(intr_info)) {
4919 cr2 = vmx_get_exit_qual(vcpu);
4920 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4921 /*
4922 * EPT will cause page fault only if we need to
4923 * detect illegal GPAs.
4924 */
4925 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4926 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4927 return 1;
4928 } else
4929 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4930 }
4931
4932 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4933
4934 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4935 return handle_rmode_exception(vcpu, ex_no, error_code);
4936
4937 switch (ex_no) {
4938 case DB_VECTOR:
4939 dr6 = vmx_get_exit_qual(vcpu);
4940 if (!(vcpu->guest_debug &
4941 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4942 /*
4943 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4944 * instruction. ICEBP generates a trap-like #DB, but
4945 * despite its interception control being tied to #DB,
4946 * is an instruction intercept, i.e. the VM-Exit occurs
4947 * on the ICEBP itself. Note, skipping ICEBP also
4948 * clears STI and MOVSS blocking.
4949 *
4950 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4951 * if single-step is enabled in RFLAGS and STI or MOVSS
4952 * blocking is active, as the CPU doesn't set the bit
4953 * on VM-Exit due to #DB interception. VM-Entry has a
4954 * consistency check that a single-step #DB is pending
4955 * in this scenario as the previous instruction cannot
4956 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4957 * don't modify RFLAGS), therefore the one instruction
4958 * delay when activating single-step breakpoints must
4959 * have already expired. Note, the CPU sets/clears BS
4960 * as appropriate for all other VM-Exits types.
4961 */
4962 if (is_icebp(intr_info))
4963 WARN_ON(!skip_emulated_instruction(vcpu));
4964 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4965 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4966 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4967 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4968 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4969
4970 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4971 return 1;
4972 }
4973 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4974 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4975 fallthrough;
4976 case BP_VECTOR:
4977 /*
4978 * Update instruction length as we may reinject #BP from
4979 * user space while in guest debugging mode. Reading it for
4980 * #DB as well causes no harm, it is not used in that case.
4981 */
4982 vmx->vcpu.arch.event_exit_inst_len =
4983 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4984 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4985 rip = kvm_rip_read(vcpu);
4986 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4987 kvm_run->debug.arch.exception = ex_no;
4988 break;
4989 case AC_VECTOR:
4990 if (vmx_guest_inject_ac(vcpu)) {
4991 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4992 return 1;
4993 }
4994
4995 /*
4996 * Handle split lock. Depending on detection mode this will
4997 * either warn and disable split lock detection for this
4998 * task or force SIGBUS on it.
4999 */
5000 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5001 return 1;
5002 fallthrough;
5003 default:
5004 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5005 kvm_run->ex.exception = ex_no;
5006 kvm_run->ex.error_code = error_code;
5007 break;
5008 }
5009 return 0;
5010 }
5011
handle_external_interrupt(struct kvm_vcpu * vcpu)5012 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5013 {
5014 ++vcpu->stat.irq_exits;
5015 return 1;
5016 }
5017
handle_triple_fault(struct kvm_vcpu * vcpu)5018 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5019 {
5020 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5021 vcpu->mmio_needed = 0;
5022 return 0;
5023 }
5024
handle_io(struct kvm_vcpu * vcpu)5025 static int handle_io(struct kvm_vcpu *vcpu)
5026 {
5027 unsigned long exit_qualification;
5028 int size, in, string;
5029 unsigned port;
5030
5031 exit_qualification = vmx_get_exit_qual(vcpu);
5032 string = (exit_qualification & 16) != 0;
5033
5034 ++vcpu->stat.io_exits;
5035
5036 if (string)
5037 return kvm_emulate_instruction(vcpu, 0);
5038
5039 port = exit_qualification >> 16;
5040 size = (exit_qualification & 7) + 1;
5041 in = (exit_qualification & 8) != 0;
5042
5043 return kvm_fast_pio(vcpu, size, port, in);
5044 }
5045
5046 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5047 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5048 {
5049 /*
5050 * Patch in the VMCALL instruction:
5051 */
5052 hypercall[0] = 0x0f;
5053 hypercall[1] = 0x01;
5054 hypercall[2] = 0xc1;
5055 }
5056
5057 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5058 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5059 {
5060 if (is_guest_mode(vcpu)) {
5061 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5062 unsigned long orig_val = val;
5063
5064 /*
5065 * We get here when L2 changed cr0 in a way that did not change
5066 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5067 * but did change L0 shadowed bits. So we first calculate the
5068 * effective cr0 value that L1 would like to write into the
5069 * hardware. It consists of the L2-owned bits from the new
5070 * value combined with the L1-owned bits from L1's guest_cr0.
5071 */
5072 val = (val & ~vmcs12->cr0_guest_host_mask) |
5073 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5074
5075 if (!nested_guest_cr0_valid(vcpu, val))
5076 return 1;
5077
5078 if (kvm_set_cr0(vcpu, val))
5079 return 1;
5080 vmcs_writel(CR0_READ_SHADOW, orig_val);
5081 return 0;
5082 } else {
5083 if (to_vmx(vcpu)->nested.vmxon &&
5084 !nested_host_cr0_valid(vcpu, val))
5085 return 1;
5086
5087 return kvm_set_cr0(vcpu, val);
5088 }
5089 }
5090
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5091 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5092 {
5093 if (is_guest_mode(vcpu)) {
5094 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5095 unsigned long orig_val = val;
5096
5097 /* analogously to handle_set_cr0 */
5098 val = (val & ~vmcs12->cr4_guest_host_mask) |
5099 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5100 if (kvm_set_cr4(vcpu, val))
5101 return 1;
5102 vmcs_writel(CR4_READ_SHADOW, orig_val);
5103 return 0;
5104 } else
5105 return kvm_set_cr4(vcpu, val);
5106 }
5107
handle_desc(struct kvm_vcpu * vcpu)5108 static int handle_desc(struct kvm_vcpu *vcpu)
5109 {
5110 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5111 return kvm_emulate_instruction(vcpu, 0);
5112 }
5113
handle_cr(struct kvm_vcpu * vcpu)5114 static int handle_cr(struct kvm_vcpu *vcpu)
5115 {
5116 unsigned long exit_qualification, val;
5117 int cr;
5118 int reg;
5119 int err;
5120 int ret;
5121
5122 exit_qualification = vmx_get_exit_qual(vcpu);
5123 cr = exit_qualification & 15;
5124 reg = (exit_qualification >> 8) & 15;
5125 switch ((exit_qualification >> 4) & 3) {
5126 case 0: /* mov to cr */
5127 val = kvm_register_readl(vcpu, reg);
5128 trace_kvm_cr_write(cr, val);
5129 switch (cr) {
5130 case 0:
5131 err = handle_set_cr0(vcpu, val);
5132 return kvm_complete_insn_gp(vcpu, err);
5133 case 3:
5134 WARN_ON_ONCE(enable_unrestricted_guest);
5135 err = kvm_set_cr3(vcpu, val);
5136 return kvm_complete_insn_gp(vcpu, err);
5137 case 4:
5138 err = handle_set_cr4(vcpu, val);
5139 return kvm_complete_insn_gp(vcpu, err);
5140 case 8: {
5141 u8 cr8_prev = kvm_get_cr8(vcpu);
5142 u8 cr8 = (u8)val;
5143 err = kvm_set_cr8(vcpu, cr8);
5144 ret = kvm_complete_insn_gp(vcpu, err);
5145 if (lapic_in_kernel(vcpu))
5146 return ret;
5147 if (cr8_prev <= cr8)
5148 return ret;
5149 /*
5150 * TODO: we might be squashing a
5151 * KVM_GUESTDBG_SINGLESTEP-triggered
5152 * KVM_EXIT_DEBUG here.
5153 */
5154 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5155 return 0;
5156 }
5157 }
5158 break;
5159 case 2: /* clts */
5160 WARN_ONCE(1, "Guest should always own CR0.TS");
5161 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5162 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5163 return kvm_skip_emulated_instruction(vcpu);
5164 case 1: /*mov from cr*/
5165 switch (cr) {
5166 case 3:
5167 WARN_ON_ONCE(enable_unrestricted_guest);
5168 val = kvm_read_cr3(vcpu);
5169 kvm_register_write(vcpu, reg, val);
5170 trace_kvm_cr_read(cr, val);
5171 return kvm_skip_emulated_instruction(vcpu);
5172 case 8:
5173 val = kvm_get_cr8(vcpu);
5174 kvm_register_write(vcpu, reg, val);
5175 trace_kvm_cr_read(cr, val);
5176 return kvm_skip_emulated_instruction(vcpu);
5177 }
5178 break;
5179 case 3: /* lmsw */
5180 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5181 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5182 kvm_lmsw(vcpu, val);
5183
5184 return kvm_skip_emulated_instruction(vcpu);
5185 default:
5186 break;
5187 }
5188 vcpu->run->exit_reason = 0;
5189 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5190 (int)(exit_qualification >> 4) & 3, cr);
5191 return 0;
5192 }
5193
handle_dr(struct kvm_vcpu * vcpu)5194 static int handle_dr(struct kvm_vcpu *vcpu)
5195 {
5196 unsigned long exit_qualification;
5197 int dr, dr7, reg;
5198
5199 exit_qualification = vmx_get_exit_qual(vcpu);
5200 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5201
5202 /* First, if DR does not exist, trigger UD */
5203 if (!kvm_require_dr(vcpu, dr))
5204 return 1;
5205
5206 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5207 if (!kvm_require_cpl(vcpu, 0))
5208 return 1;
5209 dr7 = vmcs_readl(GUEST_DR7);
5210 if (dr7 & DR7_GD) {
5211 /*
5212 * As the vm-exit takes precedence over the debug trap, we
5213 * need to emulate the latter, either for the host or the
5214 * guest debugging itself.
5215 */
5216 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5217 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5218 vcpu->run->debug.arch.dr7 = dr7;
5219 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5220 vcpu->run->debug.arch.exception = DB_VECTOR;
5221 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5222 return 0;
5223 } else {
5224 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5225 return 1;
5226 }
5227 }
5228
5229 if (vcpu->guest_debug == 0) {
5230 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5231
5232 /*
5233 * No more DR vmexits; force a reload of the debug registers
5234 * and reenter on this instruction. The next vmexit will
5235 * retrieve the full state of the debug registers.
5236 */
5237 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5238 return 1;
5239 }
5240
5241 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5242 if (exit_qualification & TYPE_MOV_FROM_DR) {
5243 unsigned long val;
5244
5245 if (kvm_get_dr(vcpu, dr, &val))
5246 return 1;
5247 kvm_register_write(vcpu, reg, val);
5248 } else
5249 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5250 return 1;
5251
5252 return kvm_skip_emulated_instruction(vcpu);
5253 }
5254
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5255 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5256 {
5257 get_debugreg(vcpu->arch.db[0], 0);
5258 get_debugreg(vcpu->arch.db[1], 1);
5259 get_debugreg(vcpu->arch.db[2], 2);
5260 get_debugreg(vcpu->arch.db[3], 3);
5261 get_debugreg(vcpu->arch.dr6, 6);
5262 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5263
5264 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5265 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5266 }
5267
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5268 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5269 {
5270 vmcs_writel(GUEST_DR7, val);
5271 }
5272
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5273 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5274 {
5275 kvm_apic_update_ppr(vcpu);
5276 return 1;
5277 }
5278
handle_interrupt_window(struct kvm_vcpu * vcpu)5279 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5280 {
5281 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5282
5283 kvm_make_request(KVM_REQ_EVENT, vcpu);
5284
5285 ++vcpu->stat.irq_window_exits;
5286 return 1;
5287 }
5288
handle_vmcall(struct kvm_vcpu * vcpu)5289 static int handle_vmcall(struct kvm_vcpu *vcpu)
5290 {
5291 return kvm_emulate_hypercall(vcpu);
5292 }
5293
handle_invd(struct kvm_vcpu * vcpu)5294 static int handle_invd(struct kvm_vcpu *vcpu)
5295 {
5296 /* Treat an INVD instruction as a NOP and just skip it. */
5297 return kvm_skip_emulated_instruction(vcpu);
5298 }
5299
handle_invlpg(struct kvm_vcpu * vcpu)5300 static int handle_invlpg(struct kvm_vcpu *vcpu)
5301 {
5302 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5303
5304 kvm_mmu_invlpg(vcpu, exit_qualification);
5305 return kvm_skip_emulated_instruction(vcpu);
5306 }
5307
handle_rdpmc(struct kvm_vcpu * vcpu)5308 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5309 {
5310 int err;
5311
5312 err = kvm_rdpmc(vcpu);
5313 return kvm_complete_insn_gp(vcpu, err);
5314 }
5315
handle_wbinvd(struct kvm_vcpu * vcpu)5316 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5317 {
5318 return kvm_emulate_wbinvd(vcpu);
5319 }
5320
handle_xsetbv(struct kvm_vcpu * vcpu)5321 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5322 {
5323 u64 new_bv = kvm_read_edx_eax(vcpu);
5324 u32 index = kvm_rcx_read(vcpu);
5325
5326 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5327 return kvm_skip_emulated_instruction(vcpu);
5328 return 1;
5329 }
5330
handle_apic_access(struct kvm_vcpu * vcpu)5331 static int handle_apic_access(struct kvm_vcpu *vcpu)
5332 {
5333 if (likely(fasteoi)) {
5334 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5335 int access_type, offset;
5336
5337 access_type = exit_qualification & APIC_ACCESS_TYPE;
5338 offset = exit_qualification & APIC_ACCESS_OFFSET;
5339 /*
5340 * Sane guest uses MOV to write EOI, with written value
5341 * not cared. So make a short-circuit here by avoiding
5342 * heavy instruction emulation.
5343 */
5344 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5345 (offset == APIC_EOI)) {
5346 kvm_lapic_set_eoi(vcpu);
5347 return kvm_skip_emulated_instruction(vcpu);
5348 }
5349 }
5350 return kvm_emulate_instruction(vcpu, 0);
5351 }
5352
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5353 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5354 {
5355 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5356 int vector = exit_qualification & 0xff;
5357
5358 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5359 kvm_apic_set_eoi_accelerated(vcpu, vector);
5360 return 1;
5361 }
5362
handle_apic_write(struct kvm_vcpu * vcpu)5363 static int handle_apic_write(struct kvm_vcpu *vcpu)
5364 {
5365 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5366 u32 offset = exit_qualification & 0xfff;
5367
5368 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5369 kvm_apic_write_nodecode(vcpu, offset);
5370 return 1;
5371 }
5372
handle_task_switch(struct kvm_vcpu * vcpu)5373 static int handle_task_switch(struct kvm_vcpu *vcpu)
5374 {
5375 struct vcpu_vmx *vmx = to_vmx(vcpu);
5376 unsigned long exit_qualification;
5377 bool has_error_code = false;
5378 u32 error_code = 0;
5379 u16 tss_selector;
5380 int reason, type, idt_v, idt_index;
5381
5382 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5383 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5384 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5385
5386 exit_qualification = vmx_get_exit_qual(vcpu);
5387
5388 reason = (u32)exit_qualification >> 30;
5389 if (reason == TASK_SWITCH_GATE && idt_v) {
5390 switch (type) {
5391 case INTR_TYPE_NMI_INTR:
5392 vcpu->arch.nmi_injected = false;
5393 vmx_set_nmi_mask(vcpu, true);
5394 break;
5395 case INTR_TYPE_EXT_INTR:
5396 case INTR_TYPE_SOFT_INTR:
5397 kvm_clear_interrupt_queue(vcpu);
5398 break;
5399 case INTR_TYPE_HARD_EXCEPTION:
5400 if (vmx->idt_vectoring_info &
5401 VECTORING_INFO_DELIVER_CODE_MASK) {
5402 has_error_code = true;
5403 error_code =
5404 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5405 }
5406 fallthrough;
5407 case INTR_TYPE_SOFT_EXCEPTION:
5408 kvm_clear_exception_queue(vcpu);
5409 break;
5410 default:
5411 break;
5412 }
5413 }
5414 tss_selector = exit_qualification;
5415
5416 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5417 type != INTR_TYPE_EXT_INTR &&
5418 type != INTR_TYPE_NMI_INTR))
5419 WARN_ON(!skip_emulated_instruction(vcpu));
5420
5421 /*
5422 * TODO: What about debug traps on tss switch?
5423 * Are we supposed to inject them and update dr6?
5424 */
5425 return kvm_task_switch(vcpu, tss_selector,
5426 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5427 reason, has_error_code, error_code);
5428 }
5429
handle_ept_violation(struct kvm_vcpu * vcpu)5430 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5431 {
5432 unsigned long exit_qualification;
5433 gpa_t gpa;
5434 u64 error_code;
5435
5436 exit_qualification = vmx_get_exit_qual(vcpu);
5437
5438 /*
5439 * EPT violation happened while executing iret from NMI,
5440 * "blocked by NMI" bit has to be set before next VM entry.
5441 * There are errata that may cause this bit to not be set:
5442 * AAK134, BY25.
5443 */
5444 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5445 enable_vnmi &&
5446 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5447 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5448
5449 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5450 trace_kvm_page_fault(gpa, exit_qualification);
5451
5452 /* Is it a read fault? */
5453 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5454 ? PFERR_USER_MASK : 0;
5455 /* Is it a write fault? */
5456 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5457 ? PFERR_WRITE_MASK : 0;
5458 /* Is it a fetch fault? */
5459 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5460 ? PFERR_FETCH_MASK : 0;
5461 /* ept page table entry is present? */
5462 error_code |= (exit_qualification &
5463 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5464 EPT_VIOLATION_EXECUTABLE))
5465 ? PFERR_PRESENT_MASK : 0;
5466
5467 error_code |= (exit_qualification & 0x100) != 0 ?
5468 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5469
5470 vcpu->arch.exit_qualification = exit_qualification;
5471
5472 /*
5473 * Check that the GPA doesn't exceed physical memory limits, as that is
5474 * a guest page fault. We have to emulate the instruction here, because
5475 * if the illegal address is that of a paging structure, then
5476 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5477 * would also use advanced VM-exit information for EPT violations to
5478 * reconstruct the page fault error code.
5479 */
5480 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5481 return kvm_emulate_instruction(vcpu, 0);
5482
5483 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5484 }
5485
handle_ept_misconfig(struct kvm_vcpu * vcpu)5486 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5487 {
5488 gpa_t gpa;
5489
5490 /*
5491 * A nested guest cannot optimize MMIO vmexits, because we have an
5492 * nGPA here instead of the required GPA.
5493 */
5494 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5495 if (!is_guest_mode(vcpu) &&
5496 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5497 trace_kvm_fast_mmio(gpa);
5498 return kvm_skip_emulated_instruction(vcpu);
5499 }
5500
5501 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5502 }
5503
handle_nmi_window(struct kvm_vcpu * vcpu)5504 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5505 {
5506 WARN_ON_ONCE(!enable_vnmi);
5507 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5508 ++vcpu->stat.nmi_window_exits;
5509 kvm_make_request(KVM_REQ_EVENT, vcpu);
5510
5511 return 1;
5512 }
5513
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5514 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5515 {
5516 struct vcpu_vmx *vmx = to_vmx(vcpu);
5517 bool intr_window_requested;
5518 unsigned count = 130;
5519
5520 intr_window_requested = exec_controls_get(vmx) &
5521 CPU_BASED_INTR_WINDOW_EXITING;
5522
5523 while (vmx->emulation_required && count-- != 0) {
5524 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5525 return handle_interrupt_window(&vmx->vcpu);
5526
5527 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5528 return 1;
5529
5530 if (!kvm_emulate_instruction(vcpu, 0))
5531 return 0;
5532
5533 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5534 vcpu->arch.exception.pending) {
5535 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5536 vcpu->run->internal.suberror =
5537 KVM_INTERNAL_ERROR_EMULATION;
5538 vcpu->run->internal.ndata = 0;
5539 return 0;
5540 }
5541
5542 if (vcpu->arch.halt_request) {
5543 vcpu->arch.halt_request = 0;
5544 return kvm_vcpu_halt(vcpu);
5545 }
5546
5547 /*
5548 * Note, return 1 and not 0, vcpu_run() will invoke
5549 * xfer_to_guest_mode() which will create a proper return
5550 * code.
5551 */
5552 if (__xfer_to_guest_mode_work_pending())
5553 return 1;
5554 }
5555
5556 return 1;
5557 }
5558
grow_ple_window(struct kvm_vcpu * vcpu)5559 static void grow_ple_window(struct kvm_vcpu *vcpu)
5560 {
5561 struct vcpu_vmx *vmx = to_vmx(vcpu);
5562 unsigned int old = vmx->ple_window;
5563
5564 vmx->ple_window = __grow_ple_window(old, ple_window,
5565 ple_window_grow,
5566 ple_window_max);
5567
5568 if (vmx->ple_window != old) {
5569 vmx->ple_window_dirty = true;
5570 trace_kvm_ple_window_update(vcpu->vcpu_id,
5571 vmx->ple_window, old);
5572 }
5573 }
5574
shrink_ple_window(struct kvm_vcpu * vcpu)5575 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5576 {
5577 struct vcpu_vmx *vmx = to_vmx(vcpu);
5578 unsigned int old = vmx->ple_window;
5579
5580 vmx->ple_window = __shrink_ple_window(old, ple_window,
5581 ple_window_shrink,
5582 ple_window);
5583
5584 if (vmx->ple_window != old) {
5585 vmx->ple_window_dirty = true;
5586 trace_kvm_ple_window_update(vcpu->vcpu_id,
5587 vmx->ple_window, old);
5588 }
5589 }
5590
vmx_enable_tdp(void)5591 static void vmx_enable_tdp(void)
5592 {
5593 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5594 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5595 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5596 0ull, VMX_EPT_EXECUTABLE_MASK,
5597 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5598 VMX_EPT_RWX_MASK, 0ull);
5599
5600 ept_set_mmio_spte_mask();
5601 }
5602
5603 /*
5604 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5605 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5606 */
handle_pause(struct kvm_vcpu * vcpu)5607 static int handle_pause(struct kvm_vcpu *vcpu)
5608 {
5609 if (!kvm_pause_in_guest(vcpu->kvm))
5610 grow_ple_window(vcpu);
5611
5612 /*
5613 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5614 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5615 * never set PAUSE_EXITING and just set PLE if supported,
5616 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5617 */
5618 kvm_vcpu_on_spin(vcpu, true);
5619 return kvm_skip_emulated_instruction(vcpu);
5620 }
5621
handle_nop(struct kvm_vcpu * vcpu)5622 static int handle_nop(struct kvm_vcpu *vcpu)
5623 {
5624 return kvm_skip_emulated_instruction(vcpu);
5625 }
5626
handle_mwait(struct kvm_vcpu * vcpu)5627 static int handle_mwait(struct kvm_vcpu *vcpu)
5628 {
5629 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5630 return handle_nop(vcpu);
5631 }
5632
handle_invalid_op(struct kvm_vcpu * vcpu)5633 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5634 {
5635 kvm_queue_exception(vcpu, UD_VECTOR);
5636 return 1;
5637 }
5638
handle_monitor_trap(struct kvm_vcpu * vcpu)5639 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5640 {
5641 return 1;
5642 }
5643
handle_monitor(struct kvm_vcpu * vcpu)5644 static int handle_monitor(struct kvm_vcpu *vcpu)
5645 {
5646 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5647 return handle_nop(vcpu);
5648 }
5649
handle_invpcid(struct kvm_vcpu * vcpu)5650 static int handle_invpcid(struct kvm_vcpu *vcpu)
5651 {
5652 u32 vmx_instruction_info;
5653 unsigned long type;
5654 gva_t gva;
5655 struct {
5656 u64 pcid;
5657 u64 gla;
5658 } operand;
5659
5660 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5661 kvm_queue_exception(vcpu, UD_VECTOR);
5662 return 1;
5663 }
5664
5665 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5666 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5667
5668 if (type > 3) {
5669 kvm_inject_gp(vcpu, 0);
5670 return 1;
5671 }
5672
5673 /* According to the Intel instruction reference, the memory operand
5674 * is read even if it isn't needed (e.g., for type==all)
5675 */
5676 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5677 vmx_instruction_info, false,
5678 sizeof(operand), &gva))
5679 return 1;
5680
5681 return kvm_handle_invpcid(vcpu, type, gva);
5682 }
5683
handle_pml_full(struct kvm_vcpu * vcpu)5684 static int handle_pml_full(struct kvm_vcpu *vcpu)
5685 {
5686 unsigned long exit_qualification;
5687
5688 trace_kvm_pml_full(vcpu->vcpu_id);
5689
5690 exit_qualification = vmx_get_exit_qual(vcpu);
5691
5692 /*
5693 * PML buffer FULL happened while executing iret from NMI,
5694 * "blocked by NMI" bit has to be set before next VM entry.
5695 */
5696 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5697 enable_vnmi &&
5698 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5699 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5700 GUEST_INTR_STATE_NMI);
5701
5702 /*
5703 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5704 * here.., and there's no userspace involvement needed for PML.
5705 */
5706 return 1;
5707 }
5708
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5709 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5710 {
5711 struct vcpu_vmx *vmx = to_vmx(vcpu);
5712
5713 if (!vmx->req_immediate_exit &&
5714 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5715 kvm_lapic_expired_hv_timer(vcpu);
5716 return EXIT_FASTPATH_REENTER_GUEST;
5717 }
5718
5719 return EXIT_FASTPATH_NONE;
5720 }
5721
handle_preemption_timer(struct kvm_vcpu * vcpu)5722 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5723 {
5724 handle_fastpath_preemption_timer(vcpu);
5725 return 1;
5726 }
5727
5728 /*
5729 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5730 * are overwritten by nested_vmx_setup() when nested=1.
5731 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5732 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5733 {
5734 kvm_queue_exception(vcpu, UD_VECTOR);
5735 return 1;
5736 }
5737
handle_encls(struct kvm_vcpu * vcpu)5738 static int handle_encls(struct kvm_vcpu *vcpu)
5739 {
5740 /*
5741 * SGX virtualization is not yet supported. There is no software
5742 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5743 * to prevent the guest from executing ENCLS.
5744 */
5745 kvm_queue_exception(vcpu, UD_VECTOR);
5746 return 1;
5747 }
5748
5749 /*
5750 * The exit handlers return 1 if the exit was handled fully and guest execution
5751 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5752 * to be done to userspace and return 0.
5753 */
5754 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5755 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5756 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5757 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5758 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5759 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5760 [EXIT_REASON_CR_ACCESS] = handle_cr,
5761 [EXIT_REASON_DR_ACCESS] = handle_dr,
5762 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5763 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5764 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5765 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5766 [EXIT_REASON_HLT] = kvm_emulate_halt,
5767 [EXIT_REASON_INVD] = handle_invd,
5768 [EXIT_REASON_INVLPG] = handle_invlpg,
5769 [EXIT_REASON_RDPMC] = handle_rdpmc,
5770 [EXIT_REASON_VMCALL] = handle_vmcall,
5771 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5772 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5773 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5774 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5775 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5776 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5777 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5778 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5779 [EXIT_REASON_VMON] = handle_vmx_instruction,
5780 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5781 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5782 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5783 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5784 [EXIT_REASON_WBINVD] = handle_wbinvd,
5785 [EXIT_REASON_XSETBV] = handle_xsetbv,
5786 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5787 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5788 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5789 [EXIT_REASON_LDTR_TR] = handle_desc,
5790 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5791 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5792 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5793 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5794 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5795 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5796 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5797 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5798 [EXIT_REASON_RDRAND] = handle_invalid_op,
5799 [EXIT_REASON_RDSEED] = handle_invalid_op,
5800 [EXIT_REASON_PML_FULL] = handle_pml_full,
5801 [EXIT_REASON_INVPCID] = handle_invpcid,
5802 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5803 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5804 [EXIT_REASON_ENCLS] = handle_encls,
5805 };
5806
5807 static const int kvm_vmx_max_exit_handlers =
5808 ARRAY_SIZE(kvm_vmx_exit_handlers);
5809
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5810 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5811 u32 *intr_info, u32 *error_code)
5812 {
5813 struct vcpu_vmx *vmx = to_vmx(vcpu);
5814
5815 *info1 = vmx_get_exit_qual(vcpu);
5816 if (!(vmx->exit_reason.failed_vmentry)) {
5817 *info2 = vmx->idt_vectoring_info;
5818 *intr_info = vmx_get_intr_info(vcpu);
5819 if (is_exception_with_error_code(*intr_info))
5820 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5821 else
5822 *error_code = 0;
5823 } else {
5824 *info2 = 0;
5825 *intr_info = 0;
5826 *error_code = 0;
5827 }
5828 }
5829
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5830 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5831 {
5832 if (vmx->pml_pg) {
5833 __free_page(vmx->pml_pg);
5834 vmx->pml_pg = NULL;
5835 }
5836 }
5837
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5838 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5839 {
5840 struct vcpu_vmx *vmx = to_vmx(vcpu);
5841 u64 *pml_buf;
5842 u16 pml_idx;
5843
5844 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5845
5846 /* Do nothing if PML buffer is empty */
5847 if (pml_idx == (PML_ENTITY_NUM - 1))
5848 return;
5849
5850 /* PML index always points to next available PML buffer entity */
5851 if (pml_idx >= PML_ENTITY_NUM)
5852 pml_idx = 0;
5853 else
5854 pml_idx++;
5855
5856 pml_buf = page_address(vmx->pml_pg);
5857 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5858 u64 gpa;
5859
5860 gpa = pml_buf[pml_idx];
5861 WARN_ON(gpa & (PAGE_SIZE - 1));
5862 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5863 }
5864
5865 /* reset PML index */
5866 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5867 }
5868
5869 /*
5870 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5871 * Called before reporting dirty_bitmap to userspace.
5872 */
kvm_flush_pml_buffers(struct kvm * kvm)5873 static void kvm_flush_pml_buffers(struct kvm *kvm)
5874 {
5875 int i;
5876 struct kvm_vcpu *vcpu;
5877 /*
5878 * We only need to kick vcpu out of guest mode here, as PML buffer
5879 * is flushed at beginning of all VMEXITs, and it's obvious that only
5880 * vcpus running in guest are possible to have unflushed GPAs in PML
5881 * buffer.
5882 */
5883 kvm_for_each_vcpu(i, vcpu, kvm)
5884 kvm_vcpu_kick(vcpu);
5885 }
5886
vmx_dump_sel(char * name,uint32_t sel)5887 static void vmx_dump_sel(char *name, uint32_t sel)
5888 {
5889 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5890 name, vmcs_read16(sel),
5891 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5892 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5893 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5894 }
5895
vmx_dump_dtsel(char * name,uint32_t limit)5896 static void vmx_dump_dtsel(char *name, uint32_t limit)
5897 {
5898 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5899 name, vmcs_read32(limit),
5900 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5901 }
5902
dump_vmcs(void)5903 void dump_vmcs(void)
5904 {
5905 u32 vmentry_ctl, vmexit_ctl;
5906 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5907 unsigned long cr4;
5908
5909 if (!dump_invalid_vmcs) {
5910 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5911 return;
5912 }
5913
5914 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5915 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5916 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5917 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5918 cr4 = vmcs_readl(GUEST_CR4);
5919 secondary_exec_control = 0;
5920 if (cpu_has_secondary_exec_ctrls())
5921 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5922
5923 pr_err("*** Guest State ***\n");
5924 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5925 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5926 vmcs_readl(CR0_GUEST_HOST_MASK));
5927 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5928 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5929 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5930 if (cpu_has_vmx_ept()) {
5931 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5932 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5933 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5934 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5935 }
5936 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5937 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5938 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5939 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5940 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5941 vmcs_readl(GUEST_SYSENTER_ESP),
5942 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5943 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5944 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5945 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5946 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5947 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5948 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5949 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5950 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5951 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5952 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5953 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5954 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5955 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5956 vmcs_read64(GUEST_IA32_EFER),
5957 vmcs_read64(GUEST_IA32_PAT));
5958 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5959 vmcs_read64(GUEST_IA32_DEBUGCTL),
5960 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5961 if (cpu_has_load_perf_global_ctrl() &&
5962 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5963 pr_err("PerfGlobCtl = 0x%016llx\n",
5964 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5965 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5966 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5967 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5968 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5969 vmcs_read32(GUEST_ACTIVITY_STATE));
5970 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5971 pr_err("InterruptStatus = %04x\n",
5972 vmcs_read16(GUEST_INTR_STATUS));
5973
5974 pr_err("*** Host State ***\n");
5975 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5976 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5977 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5978 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5979 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5980 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5981 vmcs_read16(HOST_TR_SELECTOR));
5982 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5983 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5984 vmcs_readl(HOST_TR_BASE));
5985 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5986 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5987 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5988 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5989 vmcs_readl(HOST_CR4));
5990 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5991 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5992 vmcs_read32(HOST_IA32_SYSENTER_CS),
5993 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5994 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5995 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5996 vmcs_read64(HOST_IA32_EFER),
5997 vmcs_read64(HOST_IA32_PAT));
5998 if (cpu_has_load_perf_global_ctrl() &&
5999 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6000 pr_err("PerfGlobCtl = 0x%016llx\n",
6001 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6002
6003 pr_err("*** Control State ***\n");
6004 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
6005 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
6006 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
6007 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6008 vmcs_read32(EXCEPTION_BITMAP),
6009 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6010 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6011 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6012 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6013 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6014 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6015 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6016 vmcs_read32(VM_EXIT_INTR_INFO),
6017 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6018 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6019 pr_err(" reason=%08x qualification=%016lx\n",
6020 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6021 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6022 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6023 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6024 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6025 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6026 pr_err("TSC Multiplier = 0x%016llx\n",
6027 vmcs_read64(TSC_MULTIPLIER));
6028 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6029 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6030 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6031 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6032 }
6033 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6034 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6035 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6036 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6037 }
6038 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6039 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6040 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6041 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6042 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6043 pr_err("PLE Gap=%08x Window=%08x\n",
6044 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6045 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6046 pr_err("Virtual processor ID = 0x%04x\n",
6047 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6048 }
6049
6050 /*
6051 * The guest has exited. See if we can fix it or if we need userspace
6052 * assistance.
6053 */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6054 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6055 {
6056 struct vcpu_vmx *vmx = to_vmx(vcpu);
6057 union vmx_exit_reason exit_reason = vmx->exit_reason;
6058 u32 vectoring_info = vmx->idt_vectoring_info;
6059 u16 exit_handler_index;
6060
6061 /*
6062 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6063 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6064 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6065 * mode as if vcpus is in root mode, the PML buffer must has been
6066 * flushed already.
6067 */
6068 if (enable_pml)
6069 vmx_flush_pml_buffer(vcpu);
6070
6071 /*
6072 * We should never reach this point with a pending nested VM-Enter, and
6073 * more specifically emulation of L2 due to invalid guest state (see
6074 * below) should never happen as that means we incorrectly allowed a
6075 * nested VM-Enter with an invalid vmcs12.
6076 */
6077 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6078
6079 /* If guest state is invalid, start emulating */
6080 if (vmx->emulation_required)
6081 return handle_invalid_guest_state(vcpu);
6082
6083 if (is_guest_mode(vcpu)) {
6084 /*
6085 * The host physical addresses of some pages of guest memory
6086 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6087 * Page). The CPU may write to these pages via their host
6088 * physical address while L2 is running, bypassing any
6089 * address-translation-based dirty tracking (e.g. EPT write
6090 * protection).
6091 *
6092 * Mark them dirty on every exit from L2 to prevent them from
6093 * getting out of sync with dirty tracking.
6094 */
6095 nested_mark_vmcs12_pages_dirty(vcpu);
6096
6097 if (nested_vmx_reflect_vmexit(vcpu))
6098 return 1;
6099 }
6100
6101 if (exit_reason.failed_vmentry) {
6102 dump_vmcs();
6103 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6104 vcpu->run->fail_entry.hardware_entry_failure_reason
6105 = exit_reason.full;
6106 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6107 return 0;
6108 }
6109
6110 if (unlikely(vmx->fail)) {
6111 dump_vmcs();
6112 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6113 vcpu->run->fail_entry.hardware_entry_failure_reason
6114 = vmcs_read32(VM_INSTRUCTION_ERROR);
6115 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6116 return 0;
6117 }
6118
6119 /*
6120 * Note:
6121 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6122 * delivery event since it indicates guest is accessing MMIO.
6123 * The vm-exit can be triggered again after return to guest that
6124 * will cause infinite loop.
6125 */
6126 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6127 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6128 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6129 exit_reason.basic != EXIT_REASON_PML_FULL &&
6130 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6131 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6132 int ndata = 3;
6133
6134 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6135 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6136 vcpu->run->internal.data[0] = vectoring_info;
6137 vcpu->run->internal.data[1] = exit_reason.full;
6138 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6139 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6140 vcpu->run->internal.data[ndata++] =
6141 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6142 }
6143 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6144 vcpu->run->internal.ndata = ndata;
6145 return 0;
6146 }
6147
6148 if (unlikely(!enable_vnmi &&
6149 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6150 if (!vmx_interrupt_blocked(vcpu)) {
6151 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6152 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6153 vcpu->arch.nmi_pending) {
6154 /*
6155 * This CPU don't support us in finding the end of an
6156 * NMI-blocked window if the guest runs with IRQs
6157 * disabled. So we pull the trigger after 1 s of
6158 * futile waiting, but inform the user about this.
6159 */
6160 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6161 "state on VCPU %d after 1 s timeout\n",
6162 __func__, vcpu->vcpu_id);
6163 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6164 }
6165 }
6166
6167 if (exit_fastpath != EXIT_FASTPATH_NONE)
6168 return 1;
6169
6170 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6171 goto unexpected_vmexit;
6172 #ifdef CONFIG_RETPOLINE
6173 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6174 return kvm_emulate_wrmsr(vcpu);
6175 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6176 return handle_preemption_timer(vcpu);
6177 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6178 return handle_interrupt_window(vcpu);
6179 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6180 return handle_external_interrupt(vcpu);
6181 else if (exit_reason.basic == EXIT_REASON_HLT)
6182 return kvm_emulate_halt(vcpu);
6183 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6184 return handle_ept_misconfig(vcpu);
6185 #endif
6186
6187 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6188 kvm_vmx_max_exit_handlers);
6189 if (!kvm_vmx_exit_handlers[exit_handler_index])
6190 goto unexpected_vmexit;
6191
6192 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6193
6194 unexpected_vmexit:
6195 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6196 exit_reason.full);
6197 dump_vmcs();
6198 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6199 vcpu->run->internal.suberror =
6200 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6201 vcpu->run->internal.ndata = 2;
6202 vcpu->run->internal.data[0] = exit_reason.full;
6203 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6204 return 0;
6205 }
6206
6207 /*
6208 * Software based L1D cache flush which is used when microcode providing
6209 * the cache control MSR is not loaded.
6210 *
6211 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6212 * flush it is required to read in 64 KiB because the replacement algorithm
6213 * is not exactly LRU. This could be sized at runtime via topology
6214 * information but as all relevant affected CPUs have 32KiB L1D cache size
6215 * there is no point in doing so.
6216 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6217 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6218 {
6219 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6220
6221 /*
6222 * This code is only executed when the the flush mode is 'cond' or
6223 * 'always'
6224 */
6225 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6226 bool flush_l1d;
6227
6228 /*
6229 * Clear the per-vcpu flush bit, it gets set again
6230 * either from vcpu_run() or from one of the unsafe
6231 * VMEXIT handlers.
6232 */
6233 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6234 vcpu->arch.l1tf_flush_l1d = false;
6235
6236 /*
6237 * Clear the per-cpu flush bit, it gets set again from
6238 * the interrupt handlers.
6239 */
6240 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6241 kvm_clear_cpu_l1tf_flush_l1d();
6242
6243 if (!flush_l1d)
6244 return;
6245 }
6246
6247 vcpu->stat.l1d_flush++;
6248
6249 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6250 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6251 return;
6252 }
6253
6254 asm volatile(
6255 /* First ensure the pages are in the TLB */
6256 "xorl %%eax, %%eax\n"
6257 ".Lpopulate_tlb:\n\t"
6258 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6259 "addl $4096, %%eax\n\t"
6260 "cmpl %%eax, %[size]\n\t"
6261 "jne .Lpopulate_tlb\n\t"
6262 "xorl %%eax, %%eax\n\t"
6263 "cpuid\n\t"
6264 /* Now fill the cache */
6265 "xorl %%eax, %%eax\n"
6266 ".Lfill_cache:\n"
6267 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6268 "addl $64, %%eax\n\t"
6269 "cmpl %%eax, %[size]\n\t"
6270 "jne .Lfill_cache\n\t"
6271 "lfence\n"
6272 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6273 [size] "r" (size)
6274 : "eax", "ebx", "ecx", "edx");
6275 }
6276
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6277 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6278 {
6279 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6280 int tpr_threshold;
6281
6282 if (is_guest_mode(vcpu) &&
6283 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6284 return;
6285
6286 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6287 if (is_guest_mode(vcpu))
6288 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6289 else
6290 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6291 }
6292
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6293 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6294 {
6295 struct vcpu_vmx *vmx = to_vmx(vcpu);
6296 u32 sec_exec_control;
6297
6298 if (!lapic_in_kernel(vcpu))
6299 return;
6300
6301 if (!flexpriority_enabled &&
6302 !cpu_has_vmx_virtualize_x2apic_mode())
6303 return;
6304
6305 /* Postpone execution until vmcs01 is the current VMCS. */
6306 if (is_guest_mode(vcpu)) {
6307 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6308 return;
6309 }
6310
6311 sec_exec_control = secondary_exec_controls_get(vmx);
6312 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6313 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6314
6315 switch (kvm_get_apic_mode(vcpu)) {
6316 case LAPIC_MODE_INVALID:
6317 WARN_ONCE(true, "Invalid local APIC state");
6318 case LAPIC_MODE_DISABLED:
6319 break;
6320 case LAPIC_MODE_XAPIC:
6321 if (flexpriority_enabled) {
6322 sec_exec_control |=
6323 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6324 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6325
6326 /*
6327 * Flush the TLB, reloading the APIC access page will
6328 * only do so if its physical address has changed, but
6329 * the guest may have inserted a non-APIC mapping into
6330 * the TLB while the APIC access page was disabled.
6331 */
6332 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6333 }
6334 break;
6335 case LAPIC_MODE_X2APIC:
6336 if (cpu_has_vmx_virtualize_x2apic_mode())
6337 sec_exec_control |=
6338 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6339 break;
6340 }
6341 secondary_exec_controls_set(vmx, sec_exec_control);
6342
6343 vmx_update_msr_bitmap(vcpu);
6344 }
6345
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6346 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6347 {
6348 struct page *page;
6349
6350 /* Defer reload until vmcs01 is the current VMCS. */
6351 if (is_guest_mode(vcpu)) {
6352 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6353 return;
6354 }
6355
6356 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6357 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6358 return;
6359
6360 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6361 if (is_error_page(page))
6362 return;
6363
6364 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6365 vmx_flush_tlb_current(vcpu);
6366
6367 /*
6368 * Do not pin apic access page in memory, the MMU notifier
6369 * will call us again if it is migrated or swapped out.
6370 */
6371 put_page(page);
6372 }
6373
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6374 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6375 {
6376 u16 status;
6377 u8 old;
6378
6379 if (max_isr == -1)
6380 max_isr = 0;
6381
6382 status = vmcs_read16(GUEST_INTR_STATUS);
6383 old = status >> 8;
6384 if (max_isr != old) {
6385 status &= 0xff;
6386 status |= max_isr << 8;
6387 vmcs_write16(GUEST_INTR_STATUS, status);
6388 }
6389 }
6390
vmx_set_rvi(int vector)6391 static void vmx_set_rvi(int vector)
6392 {
6393 u16 status;
6394 u8 old;
6395
6396 if (vector == -1)
6397 vector = 0;
6398
6399 status = vmcs_read16(GUEST_INTR_STATUS);
6400 old = (u8)status & 0xff;
6401 if ((u8)vector != old) {
6402 status &= ~0xff;
6403 status |= (u8)vector;
6404 vmcs_write16(GUEST_INTR_STATUS, status);
6405 }
6406 }
6407
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6408 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6409 {
6410 /*
6411 * When running L2, updating RVI is only relevant when
6412 * vmcs12 virtual-interrupt-delivery enabled.
6413 * However, it can be enabled only when L1 also
6414 * intercepts external-interrupts and in that case
6415 * we should not update vmcs02 RVI but instead intercept
6416 * interrupt. Therefore, do nothing when running L2.
6417 */
6418 if (!is_guest_mode(vcpu))
6419 vmx_set_rvi(max_irr);
6420 }
6421
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6422 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6423 {
6424 struct vcpu_vmx *vmx = to_vmx(vcpu);
6425 int max_irr;
6426 bool max_irr_updated;
6427
6428 WARN_ON(!vcpu->arch.apicv_active);
6429 if (pi_test_on(&vmx->pi_desc)) {
6430 pi_clear_on(&vmx->pi_desc);
6431 /*
6432 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6433 * But on x86 this is just a compiler barrier anyway.
6434 */
6435 smp_mb__after_atomic();
6436 max_irr_updated =
6437 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6438
6439 /*
6440 * If we are running L2 and L1 has a new pending interrupt
6441 * which can be injected, this may cause a vmexit or it may
6442 * be injected into L2. Either way, this interrupt will be
6443 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6444 * virtual interrupt delivery to inject L1 interrupts into L2.
6445 */
6446 if (is_guest_mode(vcpu) && max_irr_updated)
6447 kvm_make_request(KVM_REQ_EVENT, vcpu);
6448 } else {
6449 max_irr = kvm_lapic_find_highest_irr(vcpu);
6450 }
6451 vmx_hwapic_irr_update(vcpu, max_irr);
6452 return max_irr;
6453 }
6454
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6455 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6456 {
6457 if (!kvm_vcpu_apicv_active(vcpu))
6458 return;
6459
6460 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6461 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6462 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6463 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6464 }
6465
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6466 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6467 {
6468 struct vcpu_vmx *vmx = to_vmx(vcpu);
6469
6470 pi_clear_on(&vmx->pi_desc);
6471 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6472 }
6473
6474 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6475
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6476 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6477 unsigned long entry)
6478 {
6479 kvm_before_interrupt(vcpu);
6480 vmx_do_interrupt_nmi_irqoff(entry);
6481 kvm_after_interrupt(vcpu);
6482 }
6483
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6484 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6485 {
6486 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6487 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6488
6489 /* if exit due to PF check for async PF */
6490 if (is_page_fault(intr_info))
6491 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6492 /* Handle machine checks before interrupts are enabled */
6493 else if (is_machine_check(intr_info))
6494 kvm_machine_check();
6495 /* We need to handle NMIs before interrupts are enabled */
6496 else if (is_nmi(intr_info))
6497 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6498 }
6499
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6500 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6501 {
6502 u32 intr_info = vmx_get_intr_info(vcpu);
6503 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6504 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6505
6506 if (WARN_ONCE(!is_external_intr(intr_info),
6507 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6508 return;
6509
6510 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6511 vcpu->arch.at_instruction_boundary = true;
6512 }
6513
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6514 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6515 {
6516 struct vcpu_vmx *vmx = to_vmx(vcpu);
6517
6518 if (vmx->emulation_required)
6519 return;
6520
6521 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6522 handle_external_interrupt_irqoff(vcpu);
6523 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6524 handle_exception_nmi_irqoff(vmx);
6525 }
6526
vmx_has_emulated_msr(u32 index)6527 static bool vmx_has_emulated_msr(u32 index)
6528 {
6529 switch (index) {
6530 case MSR_IA32_SMBASE:
6531 /*
6532 * We cannot do SMM unless we can run the guest in big
6533 * real mode.
6534 */
6535 return enable_unrestricted_guest || emulate_invalid_guest_state;
6536 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6537 return nested;
6538 case MSR_AMD64_VIRT_SPEC_CTRL:
6539 /* This is AMD only. */
6540 return false;
6541 default:
6542 return true;
6543 }
6544 }
6545
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6546 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6547 {
6548 u32 exit_intr_info;
6549 bool unblock_nmi;
6550 u8 vector;
6551 bool idtv_info_valid;
6552
6553 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6554
6555 if (enable_vnmi) {
6556 if (vmx->loaded_vmcs->nmi_known_unmasked)
6557 return;
6558
6559 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6560 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6561 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6562 /*
6563 * SDM 3: 27.7.1.2 (September 2008)
6564 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6565 * a guest IRET fault.
6566 * SDM 3: 23.2.2 (September 2008)
6567 * Bit 12 is undefined in any of the following cases:
6568 * If the VM exit sets the valid bit in the IDT-vectoring
6569 * information field.
6570 * If the VM exit is due to a double fault.
6571 */
6572 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6573 vector != DF_VECTOR && !idtv_info_valid)
6574 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6575 GUEST_INTR_STATE_NMI);
6576 else
6577 vmx->loaded_vmcs->nmi_known_unmasked =
6578 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6579 & GUEST_INTR_STATE_NMI);
6580 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6581 vmx->loaded_vmcs->vnmi_blocked_time +=
6582 ktime_to_ns(ktime_sub(ktime_get(),
6583 vmx->loaded_vmcs->entry_time));
6584 }
6585
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6586 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6587 u32 idt_vectoring_info,
6588 int instr_len_field,
6589 int error_code_field)
6590 {
6591 u8 vector;
6592 int type;
6593 bool idtv_info_valid;
6594
6595 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6596
6597 vcpu->arch.nmi_injected = false;
6598 kvm_clear_exception_queue(vcpu);
6599 kvm_clear_interrupt_queue(vcpu);
6600
6601 if (!idtv_info_valid)
6602 return;
6603
6604 kvm_make_request(KVM_REQ_EVENT, vcpu);
6605
6606 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6607 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6608
6609 switch (type) {
6610 case INTR_TYPE_NMI_INTR:
6611 vcpu->arch.nmi_injected = true;
6612 /*
6613 * SDM 3: 27.7.1.2 (September 2008)
6614 * Clear bit "block by NMI" before VM entry if a NMI
6615 * delivery faulted.
6616 */
6617 vmx_set_nmi_mask(vcpu, false);
6618 break;
6619 case INTR_TYPE_SOFT_EXCEPTION:
6620 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6621 fallthrough;
6622 case INTR_TYPE_HARD_EXCEPTION:
6623 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6624 u32 err = vmcs_read32(error_code_field);
6625 kvm_requeue_exception_e(vcpu, vector, err);
6626 } else
6627 kvm_requeue_exception(vcpu, vector);
6628 break;
6629 case INTR_TYPE_SOFT_INTR:
6630 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6631 fallthrough;
6632 case INTR_TYPE_EXT_INTR:
6633 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6634 break;
6635 default:
6636 break;
6637 }
6638 }
6639
vmx_complete_interrupts(struct vcpu_vmx * vmx)6640 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6641 {
6642 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6643 VM_EXIT_INSTRUCTION_LEN,
6644 IDT_VECTORING_ERROR_CODE);
6645 }
6646
vmx_cancel_injection(struct kvm_vcpu * vcpu)6647 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6648 {
6649 __vmx_complete_interrupts(vcpu,
6650 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6651 VM_ENTRY_INSTRUCTION_LEN,
6652 VM_ENTRY_EXCEPTION_ERROR_CODE);
6653
6654 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6655 }
6656
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6657 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6658 {
6659 int i, nr_msrs;
6660 struct perf_guest_switch_msr *msrs;
6661
6662 msrs = perf_guest_get_msrs(&nr_msrs);
6663
6664 if (!msrs)
6665 return;
6666
6667 for (i = 0; i < nr_msrs; i++)
6668 if (msrs[i].host == msrs[i].guest)
6669 clear_atomic_switch_msr(vmx, msrs[i].msr);
6670 else
6671 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6672 msrs[i].host, false);
6673 }
6674
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6675 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6676 {
6677 struct vcpu_vmx *vmx = to_vmx(vcpu);
6678 u64 tscl;
6679 u32 delta_tsc;
6680
6681 if (vmx->req_immediate_exit) {
6682 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6683 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6684 } else if (vmx->hv_deadline_tsc != -1) {
6685 tscl = rdtsc();
6686 if (vmx->hv_deadline_tsc > tscl)
6687 /* set_hv_timer ensures the delta fits in 32-bits */
6688 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6689 cpu_preemption_timer_multi);
6690 else
6691 delta_tsc = 0;
6692
6693 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6694 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6695 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6696 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6697 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6698 }
6699 }
6700
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6701 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6702 {
6703 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6704 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6705 vmcs_writel(HOST_RSP, host_rsp);
6706 }
6707 }
6708
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)6709 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
6710 unsigned int flags)
6711 {
6712 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
6713
6714 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
6715 return;
6716
6717 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
6718 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
6719
6720 /*
6721 * If the guest/host SPEC_CTRL values differ, restore the host value.
6722 *
6723 * For legacy IBRS, the IBRS bit always needs to be written after
6724 * transitioning from a less privileged predictor mode, regardless of
6725 * whether the guest/host values differ.
6726 */
6727 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
6728 vmx->spec_ctrl != hostval)
6729 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
6730
6731 barrier_nospec();
6732 }
6733
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6734 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6735 {
6736 switch (to_vmx(vcpu)->exit_reason.basic) {
6737 case EXIT_REASON_MSR_WRITE:
6738 return handle_fastpath_set_msr_irqoff(vcpu);
6739 case EXIT_REASON_PREEMPTION_TIMER:
6740 return handle_fastpath_preemption_timer(vcpu);
6741 default:
6742 return EXIT_FASTPATH_NONE;
6743 }
6744 }
6745
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)6746 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6747 struct vcpu_vmx *vmx,
6748 unsigned long flags)
6749 {
6750 /*
6751 * VMENTER enables interrupts (host state), but the kernel state is
6752 * interrupts disabled when this is invoked. Also tell RCU about
6753 * it. This is the same logic as for exit_to_user_mode().
6754 *
6755 * This ensures that e.g. latency analysis on the host observes
6756 * guest mode as interrupt enabled.
6757 *
6758 * guest_enter_irqoff() informs context tracking about the
6759 * transition to guest mode and if enabled adjusts RCU state
6760 * accordingly.
6761 */
6762 instrumentation_begin();
6763 trace_hardirqs_on_prepare();
6764 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6765 instrumentation_end();
6766
6767 guest_enter_irqoff();
6768 lockdep_hardirqs_on(CALLER_ADDR0);
6769
6770 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6771 if (static_branch_unlikely(&vmx_l1d_should_flush))
6772 vmx_l1d_flush(vcpu);
6773 else if (static_branch_unlikely(&mds_user_clear))
6774 mds_clear_cpu_buffers();
6775 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6776 kvm_arch_has_assigned_device(vcpu->kvm))
6777 mds_clear_cpu_buffers();
6778
6779 vmx_disable_fb_clear(vmx);
6780
6781 if (vcpu->arch.cr2 != native_read_cr2())
6782 native_write_cr2(vcpu->arch.cr2);
6783
6784 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6785 flags);
6786
6787 vcpu->arch.cr2 = native_read_cr2();
6788
6789 vmx_enable_fb_clear(vmx);
6790
6791 /*
6792 * VMEXIT disables interrupts (host state), but tracing and lockdep
6793 * have them in state 'on' as recorded before entering guest mode.
6794 * Same as enter_from_user_mode().
6795 *
6796 * context_tracking_guest_exit() restores host context and reinstates
6797 * RCU if enabled and required.
6798 *
6799 * This needs to be done before the below as native_read_msr()
6800 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6801 * into world and some more.
6802 */
6803 lockdep_hardirqs_off(CALLER_ADDR0);
6804 context_tracking_guest_exit();
6805
6806 instrumentation_begin();
6807 trace_hardirqs_off_finish();
6808 instrumentation_end();
6809 }
6810
vmx_vcpu_run(struct kvm_vcpu * vcpu)6811 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6812 {
6813 fastpath_t exit_fastpath;
6814 struct vcpu_vmx *vmx = to_vmx(vcpu);
6815 unsigned long cr3, cr4;
6816
6817 reenter_guest:
6818 /* Record the guest's net vcpu time for enforced NMI injections. */
6819 if (unlikely(!enable_vnmi &&
6820 vmx->loaded_vmcs->soft_vnmi_blocked))
6821 vmx->loaded_vmcs->entry_time = ktime_get();
6822
6823 /* Don't enter VMX if guest state is invalid, let the exit handler
6824 start emulation until we arrive back to a valid state */
6825 if (vmx->emulation_required)
6826 return EXIT_FASTPATH_NONE;
6827
6828 if (vmx->ple_window_dirty) {
6829 vmx->ple_window_dirty = false;
6830 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6831 }
6832
6833 /*
6834 * We did this in prepare_switch_to_guest, because it needs to
6835 * be within srcu_read_lock.
6836 */
6837 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6838
6839 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6840 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6841 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6842 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6843
6844 cr3 = __get_current_cr3_fast();
6845 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6846 vmcs_writel(HOST_CR3, cr3);
6847 vmx->loaded_vmcs->host_state.cr3 = cr3;
6848 }
6849
6850 cr4 = cr4_read_shadow();
6851 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6852 vmcs_writel(HOST_CR4, cr4);
6853 vmx->loaded_vmcs->host_state.cr4 = cr4;
6854 }
6855
6856 /* When single-stepping over STI and MOV SS, we must clear the
6857 * corresponding interruptibility bits in the guest state. Otherwise
6858 * vmentry fails as it then expects bit 14 (BS) in pending debug
6859 * exceptions being set, but that's not correct for the guest debugging
6860 * case. */
6861 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6862 vmx_set_interrupt_shadow(vcpu, 0);
6863
6864 kvm_load_guest_xsave_state(vcpu);
6865
6866 pt_guest_enter(vmx);
6867
6868 atomic_switch_perf_msrs(vmx);
6869
6870 if (enable_preemption_timer)
6871 vmx_update_hv_timer(vcpu);
6872
6873 kvm_wait_lapic_expire(vcpu);
6874
6875 /*
6876 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6877 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6878 * is no need to worry about the conditional branch over the wrmsr
6879 * being speculatively taken.
6880 */
6881 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6882
6883 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6884 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
6885
6886 /* All fields are clean at this point */
6887 if (static_branch_unlikely(&enable_evmcs))
6888 current_evmcs->hv_clean_fields |=
6889 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6890
6891 if (static_branch_unlikely(&enable_evmcs))
6892 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6893
6894 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6895 if (vmx->host_debugctlmsr)
6896 update_debugctlmsr(vmx->host_debugctlmsr);
6897
6898 #ifndef CONFIG_X86_64
6899 /*
6900 * The sysexit path does not restore ds/es, so we must set them to
6901 * a reasonable value ourselves.
6902 *
6903 * We can't defer this to vmx_prepare_switch_to_host() since that
6904 * function may be executed in interrupt context, which saves and
6905 * restore segments around it, nullifying its effect.
6906 */
6907 loadsegment(ds, __USER_DS);
6908 loadsegment(es, __USER_DS);
6909 #endif
6910
6911 vmx_register_cache_reset(vcpu);
6912
6913 pt_guest_exit(vmx);
6914
6915 kvm_load_host_xsave_state(vcpu);
6916
6917 vmx->nested.nested_run_pending = 0;
6918 vmx->idt_vectoring_info = 0;
6919
6920 if (unlikely(vmx->fail)) {
6921 vmx->exit_reason.full = 0xdead;
6922 return EXIT_FASTPATH_NONE;
6923 }
6924
6925 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6926 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6927 kvm_machine_check();
6928
6929 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6930
6931 if (unlikely(vmx->exit_reason.failed_vmentry))
6932 return EXIT_FASTPATH_NONE;
6933
6934 vmx->loaded_vmcs->launched = 1;
6935 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6936
6937 vmx_recover_nmi_blocking(vmx);
6938 vmx_complete_interrupts(vmx);
6939
6940 if (is_guest_mode(vcpu))
6941 return EXIT_FASTPATH_NONE;
6942
6943 exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6944 if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6945 if (!kvm_vcpu_exit_request(vcpu)) {
6946 /*
6947 * FIXME: this goto should be a loop in vcpu_enter_guest,
6948 * but it would incur the cost of a retpoline for now.
6949 * Revisit once static calls are available.
6950 */
6951 if (vcpu->arch.apicv_active)
6952 vmx_sync_pir_to_irr(vcpu);
6953 goto reenter_guest;
6954 }
6955 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6956 }
6957
6958 return exit_fastpath;
6959 }
6960
vmx_free_vcpu(struct kvm_vcpu * vcpu)6961 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6962 {
6963 struct vcpu_vmx *vmx = to_vmx(vcpu);
6964
6965 if (enable_pml)
6966 vmx_destroy_pml_buffer(vmx);
6967 free_vpid(vmx->vpid);
6968 nested_vmx_free_vcpu(vcpu);
6969 free_loaded_vmcs(vmx->loaded_vmcs);
6970 }
6971
vmx_create_vcpu(struct kvm_vcpu * vcpu)6972 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6973 {
6974 struct vcpu_vmx *vmx;
6975 int i, cpu, err;
6976
6977 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6978 vmx = to_vmx(vcpu);
6979
6980 err = -ENOMEM;
6981
6982 vmx->vpid = allocate_vpid();
6983
6984 /*
6985 * If PML is turned on, failure on enabling PML just results in failure
6986 * of creating the vcpu, therefore we can simplify PML logic (by
6987 * avoiding dealing with cases, such as enabling PML partially on vcpus
6988 * for the guest), etc.
6989 */
6990 if (enable_pml) {
6991 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6992 if (!vmx->pml_pg)
6993 goto free_vpid;
6994 }
6995
6996 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6997
6998 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6999 u32 index = vmx_uret_msrs_list[i];
7000 int j = vmx->nr_uret_msrs;
7001
7002 if (kvm_probe_user_return_msr(index))
7003 continue;
7004
7005 vmx->guest_uret_msrs[j].slot = i;
7006 vmx->guest_uret_msrs[j].data = 0;
7007 switch (index) {
7008 case MSR_IA32_TSX_CTRL:
7009 /*
7010 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
7011 * interception. Keep the host value unchanged to avoid
7012 * changing CPUID bits under the host kernel's feet.
7013 *
7014 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
7015 * combinations of new kernel and old userspace. If
7016 * those guests run on a tsx=off host, do allow guests
7017 * to use TSX_CTRL, but do not change the value on the
7018 * host so that TSX remains always disabled.
7019 */
7020 if (boot_cpu_has(X86_FEATURE_RTM))
7021 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7022 else
7023 vmx->guest_uret_msrs[j].mask = 0;
7024 break;
7025 default:
7026 vmx->guest_uret_msrs[j].mask = -1ull;
7027 break;
7028 }
7029 ++vmx->nr_uret_msrs;
7030 }
7031
7032 err = alloc_loaded_vmcs(&vmx->vmcs01);
7033 if (err < 0)
7034 goto free_pml;
7035
7036 /* The MSR bitmap starts with all ones */
7037 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7038 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7039
7040 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7041 #ifdef CONFIG_X86_64
7042 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7043 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7044 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7045 #endif
7046 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7047 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7048 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7049 if (kvm_cstate_in_guest(vcpu->kvm)) {
7050 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7051 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7052 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7053 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7054 }
7055 vmx->msr_bitmap_mode = 0;
7056
7057 vmx->loaded_vmcs = &vmx->vmcs01;
7058 cpu = get_cpu();
7059 vmx_vcpu_load(vcpu, cpu);
7060 vcpu->cpu = cpu;
7061 init_vmcs(vmx);
7062 vmx_vcpu_put(vcpu);
7063 put_cpu();
7064 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7065 err = alloc_apic_access_page(vcpu->kvm);
7066 if (err)
7067 goto free_vmcs;
7068 }
7069
7070 if (enable_ept && !enable_unrestricted_guest) {
7071 err = init_rmode_identity_map(vcpu->kvm);
7072 if (err)
7073 goto free_vmcs;
7074 }
7075
7076 if (nested)
7077 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7078 else
7079 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7080
7081 vmx->nested.posted_intr_nv = -1;
7082 vmx->nested.current_vmptr = -1ull;
7083
7084 vcpu->arch.microcode_version = 0x100000000ULL;
7085 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7086
7087 /*
7088 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7089 * or POSTED_INTR_WAKEUP_VECTOR.
7090 */
7091 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7092 vmx->pi_desc.sn = 1;
7093
7094 vmx->ept_pointer = INVALID_PAGE;
7095
7096 return 0;
7097
7098 free_vmcs:
7099 free_loaded_vmcs(vmx->loaded_vmcs);
7100 free_pml:
7101 vmx_destroy_pml_buffer(vmx);
7102 free_vpid:
7103 free_vpid(vmx->vpid);
7104 return err;
7105 }
7106
7107 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7108 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7109
vmx_vm_init(struct kvm * kvm)7110 static int vmx_vm_init(struct kvm *kvm)
7111 {
7112 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7113
7114 if (!ple_gap)
7115 kvm->arch.pause_in_guest = true;
7116
7117 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7118 switch (l1tf_mitigation) {
7119 case L1TF_MITIGATION_OFF:
7120 case L1TF_MITIGATION_FLUSH_NOWARN:
7121 /* 'I explicitly don't care' is set */
7122 break;
7123 case L1TF_MITIGATION_FLUSH:
7124 case L1TF_MITIGATION_FLUSH_NOSMT:
7125 case L1TF_MITIGATION_FULL:
7126 /*
7127 * Warn upon starting the first VM in a potentially
7128 * insecure environment.
7129 */
7130 if (sched_smt_active())
7131 pr_warn_once(L1TF_MSG_SMT);
7132 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7133 pr_warn_once(L1TF_MSG_L1D);
7134 break;
7135 case L1TF_MITIGATION_FULL_FORCE:
7136 /* Flush is enforced */
7137 break;
7138 }
7139 }
7140 kvm_apicv_init(kvm, enable_apicv);
7141 return 0;
7142 }
7143
vmx_check_processor_compat(void)7144 static int __init vmx_check_processor_compat(void)
7145 {
7146 struct vmcs_config vmcs_conf;
7147 struct vmx_capability vmx_cap;
7148
7149 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7150 !this_cpu_has(X86_FEATURE_VMX)) {
7151 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7152 return -EIO;
7153 }
7154
7155 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7156 return -EIO;
7157 if (nested)
7158 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7159 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7160 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7161 smp_processor_id());
7162 return -EIO;
7163 }
7164 return 0;
7165 }
7166
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7167 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7168 {
7169 u8 cache;
7170 u64 ipat = 0;
7171
7172 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7173 * memory aliases with conflicting memory types and sometimes MCEs.
7174 * We have to be careful as to what are honored and when.
7175 *
7176 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7177 * UC. The effective memory type is UC or WC depending on guest PAT.
7178 * This was historically the source of MCEs and we want to be
7179 * conservative.
7180 *
7181 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7182 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7183 * EPT memory type is set to WB. The effective memory type is forced
7184 * WB.
7185 *
7186 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7187 * EPT memory type is used to emulate guest CD/MTRR.
7188 */
7189
7190 if (is_mmio) {
7191 cache = MTRR_TYPE_UNCACHABLE;
7192 goto exit;
7193 }
7194
7195 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7196 ipat = VMX_EPT_IPAT_BIT;
7197 cache = MTRR_TYPE_WRBACK;
7198 goto exit;
7199 }
7200
7201 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7202 ipat = VMX_EPT_IPAT_BIT;
7203 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7204 cache = MTRR_TYPE_WRBACK;
7205 else
7206 cache = MTRR_TYPE_UNCACHABLE;
7207 goto exit;
7208 }
7209
7210 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7211
7212 exit:
7213 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7214 }
7215
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7216 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7217 {
7218 /*
7219 * These bits in the secondary execution controls field
7220 * are dynamic, the others are mostly based on the hypervisor
7221 * architecture and the guest's CPUID. Do not touch the
7222 * dynamic bits.
7223 */
7224 u32 mask =
7225 SECONDARY_EXEC_SHADOW_VMCS |
7226 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7227 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7228 SECONDARY_EXEC_DESC;
7229
7230 u32 new_ctl = vmx->secondary_exec_control;
7231 u32 cur_ctl = secondary_exec_controls_get(vmx);
7232
7233 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7234 }
7235
7236 /*
7237 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7238 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7239 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7240 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7241 {
7242 struct vcpu_vmx *vmx = to_vmx(vcpu);
7243 struct kvm_cpuid_entry2 *entry;
7244
7245 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7246 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7247
7248 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7249 if (entry && (entry->_reg & (_cpuid_mask))) \
7250 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7251 } while (0)
7252
7253 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7254 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7255 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7256 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7257 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7258 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7259 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7260 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7261 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7262 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7263 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7264 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7265 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7266 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7267 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7268
7269 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7270 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7271 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7272 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7273 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7274 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7275 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7276
7277 #undef cr4_fixed1_update
7278 }
7279
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7280 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7281 {
7282 struct vcpu_vmx *vmx = to_vmx(vcpu);
7283
7284 if (kvm_mpx_supported()) {
7285 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7286
7287 if (mpx_enabled) {
7288 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7289 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7290 } else {
7291 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7292 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7293 }
7294 }
7295 }
7296
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7297 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7298 {
7299 struct vcpu_vmx *vmx = to_vmx(vcpu);
7300 struct kvm_cpuid_entry2 *best = NULL;
7301 int i;
7302
7303 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7304 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7305 if (!best)
7306 return;
7307 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7308 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7309 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7310 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7311 }
7312
7313 /* Get the number of configurable Address Ranges for filtering */
7314 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7315 PT_CAP_num_address_ranges);
7316
7317 /* Initialize and clear the no dependency bits */
7318 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7319 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7320
7321 /*
7322 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7323 * will inject an #GP
7324 */
7325 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7326 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7327
7328 /*
7329 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7330 * PSBFreq can be set
7331 */
7332 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7333 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7334 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7335
7336 /*
7337 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7338 * MTCFreq can be set
7339 */
7340 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7341 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7342 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7343
7344 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7345 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7346 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7347 RTIT_CTL_PTW_EN);
7348
7349 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7350 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7351 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7352
7353 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7354 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7355 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7356
7357 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7358 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7359 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7360
7361 /* unmask address range configure area */
7362 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7363 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7364 }
7365
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7366 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7367 {
7368 struct vcpu_vmx *vmx = to_vmx(vcpu);
7369
7370 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7371 vcpu->arch.xsaves_enabled = false;
7372
7373 if (cpu_has_secondary_exec_ctrls()) {
7374 vmx_compute_secondary_exec_control(vmx);
7375 vmcs_set_secondary_exec_control(vmx);
7376 }
7377
7378 if (nested_vmx_allowed(vcpu))
7379 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7380 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7381 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7382 else
7383 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7384 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7385 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7386
7387 if (nested_vmx_allowed(vcpu)) {
7388 nested_vmx_cr_fixed1_bits_update(vcpu);
7389 nested_vmx_entry_exit_ctls_update(vcpu);
7390 }
7391
7392 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7393 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7394 update_intel_pt_cfg(vcpu);
7395
7396 if (boot_cpu_has(X86_FEATURE_RTM)) {
7397 struct vmx_uret_msr *msr;
7398 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7399 if (msr) {
7400 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7401 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7402 }
7403 }
7404
7405 set_cr4_guest_host_mask(vmx);
7406
7407 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7408 update_exception_bitmap(vcpu);
7409 }
7410
vmx_set_cpu_caps(void)7411 static __init void vmx_set_cpu_caps(void)
7412 {
7413 kvm_set_cpu_caps();
7414
7415 /* CPUID 0x1 */
7416 if (nested)
7417 kvm_cpu_cap_set(X86_FEATURE_VMX);
7418
7419 /* CPUID 0x7 */
7420 if (kvm_mpx_supported())
7421 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7422 if (cpu_has_vmx_invpcid())
7423 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7424 if (vmx_pt_mode_is_host_guest())
7425 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7426
7427 if (vmx_umip_emulated())
7428 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7429
7430 /* CPUID 0xD.1 */
7431 supported_xss = 0;
7432 if (!cpu_has_vmx_xsaves())
7433 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7434
7435 /* CPUID 0x80000001 and 0x7 (RDPID) */
7436 if (!cpu_has_vmx_rdtscp()) {
7437 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7438 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7439 }
7440
7441 if (cpu_has_vmx_waitpkg())
7442 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7443 }
7444
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7445 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7446 {
7447 to_vmx(vcpu)->req_immediate_exit = true;
7448 }
7449
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7450 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7451 struct x86_instruction_info *info)
7452 {
7453 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7454 unsigned short port;
7455 bool intercept;
7456 int size;
7457
7458 if (info->intercept == x86_intercept_in ||
7459 info->intercept == x86_intercept_ins) {
7460 port = info->src_val;
7461 size = info->dst_bytes;
7462 } else {
7463 port = info->dst_val;
7464 size = info->src_bytes;
7465 }
7466
7467 /*
7468 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7469 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7470 * control.
7471 *
7472 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7473 */
7474 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7475 intercept = nested_cpu_has(vmcs12,
7476 CPU_BASED_UNCOND_IO_EXITING);
7477 else
7478 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7479
7480 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7481 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7482 }
7483
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7484 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7485 struct x86_instruction_info *info,
7486 enum x86_intercept_stage stage,
7487 struct x86_exception *exception)
7488 {
7489 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7490
7491 switch (info->intercept) {
7492 /*
7493 * RDPID causes #UD if disabled through secondary execution controls.
7494 * Because it is marked as EmulateOnUD, we need to intercept it here.
7495 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7496 */
7497 case x86_intercept_rdpid:
7498 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7499 exception->vector = UD_VECTOR;
7500 exception->error_code_valid = false;
7501 return X86EMUL_PROPAGATE_FAULT;
7502 }
7503 break;
7504
7505 case x86_intercept_in:
7506 case x86_intercept_ins:
7507 case x86_intercept_out:
7508 case x86_intercept_outs:
7509 return vmx_check_intercept_io(vcpu, info);
7510
7511 case x86_intercept_lgdt:
7512 case x86_intercept_lidt:
7513 case x86_intercept_lldt:
7514 case x86_intercept_ltr:
7515 case x86_intercept_sgdt:
7516 case x86_intercept_sidt:
7517 case x86_intercept_sldt:
7518 case x86_intercept_str:
7519 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7520 return X86EMUL_CONTINUE;
7521
7522 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7523 break;
7524
7525 /* TODO: check more intercepts... */
7526 default:
7527 break;
7528 }
7529
7530 return X86EMUL_UNHANDLEABLE;
7531 }
7532
7533 #ifdef CONFIG_X86_64
7534 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7535 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7536 u64 divisor, u64 *result)
7537 {
7538 u64 low = a << shift, high = a >> (64 - shift);
7539
7540 /* To avoid the overflow on divq */
7541 if (high >= divisor)
7542 return 1;
7543
7544 /* Low hold the result, high hold rem which is discarded */
7545 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7546 "rm" (divisor), "0" (low), "1" (high));
7547 *result = low;
7548
7549 return 0;
7550 }
7551
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7552 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7553 bool *expired)
7554 {
7555 struct vcpu_vmx *vmx;
7556 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7557 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7558
7559 vmx = to_vmx(vcpu);
7560 tscl = rdtsc();
7561 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7562 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7563 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7564 ktimer->timer_advance_ns);
7565
7566 if (delta_tsc > lapic_timer_advance_cycles)
7567 delta_tsc -= lapic_timer_advance_cycles;
7568 else
7569 delta_tsc = 0;
7570
7571 /* Convert to host delta tsc if tsc scaling is enabled */
7572 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7573 delta_tsc && u64_shl_div_u64(delta_tsc,
7574 kvm_tsc_scaling_ratio_frac_bits,
7575 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7576 return -ERANGE;
7577
7578 /*
7579 * If the delta tsc can't fit in the 32 bit after the multi shift,
7580 * we can't use the preemption timer.
7581 * It's possible that it fits on later vmentries, but checking
7582 * on every vmentry is costly so we just use an hrtimer.
7583 */
7584 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7585 return -ERANGE;
7586
7587 vmx->hv_deadline_tsc = tscl + delta_tsc;
7588 *expired = !delta_tsc;
7589 return 0;
7590 }
7591
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7592 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7593 {
7594 to_vmx(vcpu)->hv_deadline_tsc = -1;
7595 }
7596 #endif
7597
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7598 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7599 {
7600 if (!kvm_pause_in_guest(vcpu->kvm))
7601 shrink_ple_window(vcpu);
7602 }
7603
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7604 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7605 struct kvm_memory_slot *slot)
7606 {
7607 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7608 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7609 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7610 }
7611
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7612 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7613 struct kvm_memory_slot *slot)
7614 {
7615 kvm_mmu_slot_set_dirty(kvm, slot);
7616 }
7617
vmx_flush_log_dirty(struct kvm * kvm)7618 static void vmx_flush_log_dirty(struct kvm *kvm)
7619 {
7620 kvm_flush_pml_buffers(kvm);
7621 }
7622
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7623 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7624 struct kvm_memory_slot *memslot,
7625 gfn_t offset, unsigned long mask)
7626 {
7627 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7628 }
7629
vmx_pre_block(struct kvm_vcpu * vcpu)7630 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7631 {
7632 if (pi_pre_block(vcpu))
7633 return 1;
7634
7635 if (kvm_lapic_hv_timer_in_use(vcpu))
7636 kvm_lapic_switch_to_sw_timer(vcpu);
7637
7638 return 0;
7639 }
7640
vmx_post_block(struct kvm_vcpu * vcpu)7641 static void vmx_post_block(struct kvm_vcpu *vcpu)
7642 {
7643 if (kvm_x86_ops.set_hv_timer)
7644 kvm_lapic_switch_to_hv_timer(vcpu);
7645
7646 pi_post_block(vcpu);
7647 }
7648
vmx_setup_mce(struct kvm_vcpu * vcpu)7649 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7650 {
7651 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7652 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7653 FEAT_CTL_LMCE_ENABLED;
7654 else
7655 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7656 ~FEAT_CTL_LMCE_ENABLED;
7657 }
7658
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7659 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7660 {
7661 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7662 if (to_vmx(vcpu)->nested.nested_run_pending)
7663 return -EBUSY;
7664 return !is_smm(vcpu);
7665 }
7666
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7667 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7668 {
7669 struct vcpu_vmx *vmx = to_vmx(vcpu);
7670
7671 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7672 if (vmx->nested.smm.guest_mode)
7673 nested_vmx_vmexit(vcpu, -1, 0, 0);
7674
7675 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7676 vmx->nested.vmxon = false;
7677 vmx_clear_hlt(vcpu);
7678 return 0;
7679 }
7680
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7681 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7682 {
7683 struct vcpu_vmx *vmx = to_vmx(vcpu);
7684 int ret;
7685
7686 if (vmx->nested.smm.vmxon) {
7687 vmx->nested.vmxon = true;
7688 vmx->nested.smm.vmxon = false;
7689 }
7690
7691 if (vmx->nested.smm.guest_mode) {
7692 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7693 if (ret)
7694 return ret;
7695
7696 vmx->nested.smm.guest_mode = false;
7697 }
7698 return 0;
7699 }
7700
enable_smi_window(struct kvm_vcpu * vcpu)7701 static void enable_smi_window(struct kvm_vcpu *vcpu)
7702 {
7703 /* RSM will cause a vmexit anyway. */
7704 }
7705
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7706 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7707 {
7708 return to_vmx(vcpu)->nested.vmxon;
7709 }
7710
vmx_migrate_timers(struct kvm_vcpu * vcpu)7711 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7712 {
7713 if (is_guest_mode(vcpu)) {
7714 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7715
7716 if (hrtimer_try_to_cancel(timer) == 1)
7717 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7718 }
7719 }
7720
hardware_unsetup(void)7721 static void hardware_unsetup(void)
7722 {
7723 kvm_set_posted_intr_wakeup_handler(NULL);
7724
7725 if (nested)
7726 nested_vmx_hardware_unsetup();
7727
7728 free_kvm_area();
7729 }
7730
vmx_check_apicv_inhibit_reasons(ulong bit)7731 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7732 {
7733 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7734 BIT(APICV_INHIBIT_REASON_HYPERV);
7735
7736 return supported & BIT(bit);
7737 }
7738
7739 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7740 .hardware_unsetup = hardware_unsetup,
7741
7742 .hardware_enable = hardware_enable,
7743 .hardware_disable = hardware_disable,
7744 .cpu_has_accelerated_tpr = report_flexpriority,
7745 .has_emulated_msr = vmx_has_emulated_msr,
7746
7747 .vm_size = sizeof(struct kvm_vmx),
7748 .vm_init = vmx_vm_init,
7749
7750 .vcpu_create = vmx_create_vcpu,
7751 .vcpu_free = vmx_free_vcpu,
7752 .vcpu_reset = vmx_vcpu_reset,
7753
7754 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7755 .vcpu_load = vmx_vcpu_load,
7756 .vcpu_put = vmx_vcpu_put,
7757
7758 .update_exception_bitmap = update_exception_bitmap,
7759 .get_msr_feature = vmx_get_msr_feature,
7760 .get_msr = vmx_get_msr,
7761 .set_msr = vmx_set_msr,
7762 .get_segment_base = vmx_get_segment_base,
7763 .get_segment = vmx_get_segment,
7764 .set_segment = vmx_set_segment,
7765 .get_cpl = vmx_get_cpl,
7766 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7767 .set_cr0 = vmx_set_cr0,
7768 .is_valid_cr4 = vmx_is_valid_cr4,
7769 .set_cr4 = vmx_set_cr4,
7770 .set_efer = vmx_set_efer,
7771 .get_idt = vmx_get_idt,
7772 .set_idt = vmx_set_idt,
7773 .get_gdt = vmx_get_gdt,
7774 .set_gdt = vmx_set_gdt,
7775 .set_dr7 = vmx_set_dr7,
7776 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7777 .cache_reg = vmx_cache_reg,
7778 .get_rflags = vmx_get_rflags,
7779 .set_rflags = vmx_set_rflags,
7780
7781 .tlb_flush_all = vmx_flush_tlb_all,
7782 .tlb_flush_current = vmx_flush_tlb_current,
7783 .tlb_flush_gva = vmx_flush_tlb_gva,
7784 .tlb_flush_guest = vmx_flush_tlb_guest,
7785
7786 .run = vmx_vcpu_run,
7787 .handle_exit = vmx_handle_exit,
7788 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7789 .update_emulated_instruction = vmx_update_emulated_instruction,
7790 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7791 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7792 .patch_hypercall = vmx_patch_hypercall,
7793 .set_irq = vmx_inject_irq,
7794 .set_nmi = vmx_inject_nmi,
7795 .queue_exception = vmx_queue_exception,
7796 .cancel_injection = vmx_cancel_injection,
7797 .interrupt_allowed = vmx_interrupt_allowed,
7798 .nmi_allowed = vmx_nmi_allowed,
7799 .get_nmi_mask = vmx_get_nmi_mask,
7800 .set_nmi_mask = vmx_set_nmi_mask,
7801 .enable_nmi_window = enable_nmi_window,
7802 .enable_irq_window = enable_irq_window,
7803 .update_cr8_intercept = update_cr8_intercept,
7804 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7805 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7806 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7807 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7808 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7809 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7810 .hwapic_irr_update = vmx_hwapic_irr_update,
7811 .hwapic_isr_update = vmx_hwapic_isr_update,
7812 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7813 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7814 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7815 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7816
7817 .set_tss_addr = vmx_set_tss_addr,
7818 .set_identity_map_addr = vmx_set_identity_map_addr,
7819 .get_mt_mask = vmx_get_mt_mask,
7820
7821 .get_exit_info = vmx_get_exit_info,
7822
7823 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7824
7825 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7826
7827 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7828
7829 .load_mmu_pgd = vmx_load_mmu_pgd,
7830
7831 .check_intercept = vmx_check_intercept,
7832 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7833
7834 .request_immediate_exit = vmx_request_immediate_exit,
7835
7836 .sched_in = vmx_sched_in,
7837
7838 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7839 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7840 .flush_log_dirty = vmx_flush_log_dirty,
7841 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7842
7843 .pre_block = vmx_pre_block,
7844 .post_block = vmx_post_block,
7845
7846 .pmu_ops = &intel_pmu_ops,
7847 .nested_ops = &vmx_nested_ops,
7848
7849 .update_pi_irte = pi_update_irte,
7850
7851 #ifdef CONFIG_X86_64
7852 .set_hv_timer = vmx_set_hv_timer,
7853 .cancel_hv_timer = vmx_cancel_hv_timer,
7854 #endif
7855
7856 .setup_mce = vmx_setup_mce,
7857
7858 .smi_allowed = vmx_smi_allowed,
7859 .pre_enter_smm = vmx_pre_enter_smm,
7860 .pre_leave_smm = vmx_pre_leave_smm,
7861 .enable_smi_window = enable_smi_window,
7862
7863 .can_emulate_instruction = vmx_can_emulate_instruction,
7864 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7865 .migrate_timers = vmx_migrate_timers,
7866
7867 .msr_filter_changed = vmx_msr_filter_changed,
7868 };
7869
hardware_setup(void)7870 static __init int hardware_setup(void)
7871 {
7872 unsigned long host_bndcfgs;
7873 struct desc_ptr dt;
7874 int r, i, ept_lpage_level;
7875
7876 store_idt(&dt);
7877 host_idt_base = dt.address;
7878
7879 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7880 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7881
7882 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7883 return -EIO;
7884
7885 if (boot_cpu_has(X86_FEATURE_NX))
7886 kvm_enable_efer_bits(EFER_NX);
7887
7888 if (boot_cpu_has(X86_FEATURE_MPX)) {
7889 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7890 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7891 }
7892
7893 if (!cpu_has_vmx_mpx())
7894 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7895 XFEATURE_MASK_BNDCSR);
7896
7897 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7898 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7899 enable_vpid = 0;
7900
7901 if (!cpu_has_vmx_ept() ||
7902 !cpu_has_vmx_ept_4levels() ||
7903 !cpu_has_vmx_ept_mt_wb() ||
7904 !cpu_has_vmx_invept_global())
7905 enable_ept = 0;
7906
7907 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7908 enable_ept_ad_bits = 0;
7909
7910 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7911 enable_unrestricted_guest = 0;
7912
7913 if (!cpu_has_vmx_flexpriority())
7914 flexpriority_enabled = 0;
7915
7916 if (!cpu_has_virtual_nmis())
7917 enable_vnmi = 0;
7918
7919 /*
7920 * set_apic_access_page_addr() is used to reload apic access
7921 * page upon invalidation. No need to do anything if not
7922 * using the APIC_ACCESS_ADDR VMCS field.
7923 */
7924 if (!flexpriority_enabled)
7925 vmx_x86_ops.set_apic_access_page_addr = NULL;
7926
7927 if (!cpu_has_vmx_tpr_shadow())
7928 vmx_x86_ops.update_cr8_intercept = NULL;
7929
7930 #if IS_ENABLED(CONFIG_HYPERV)
7931 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7932 && enable_ept) {
7933 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7934 vmx_x86_ops.tlb_remote_flush_with_range =
7935 hv_remote_flush_tlb_with_range;
7936 }
7937 #endif
7938
7939 if (!cpu_has_vmx_ple()) {
7940 ple_gap = 0;
7941 ple_window = 0;
7942 ple_window_grow = 0;
7943 ple_window_max = 0;
7944 ple_window_shrink = 0;
7945 }
7946
7947 if (!cpu_has_vmx_apicv()) {
7948 enable_apicv = 0;
7949 vmx_x86_ops.sync_pir_to_irr = NULL;
7950 }
7951
7952 if (cpu_has_vmx_tsc_scaling()) {
7953 kvm_has_tsc_control = true;
7954 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7955 kvm_tsc_scaling_ratio_frac_bits = 48;
7956 }
7957
7958 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7959
7960 if (enable_ept)
7961 vmx_enable_tdp();
7962
7963 if (!enable_ept)
7964 ept_lpage_level = 0;
7965 else if (cpu_has_vmx_ept_1g_page())
7966 ept_lpage_level = PG_LEVEL_1G;
7967 else if (cpu_has_vmx_ept_2m_page())
7968 ept_lpage_level = PG_LEVEL_2M;
7969 else
7970 ept_lpage_level = PG_LEVEL_4K;
7971 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7972
7973 /*
7974 * Only enable PML when hardware supports PML feature, and both EPT
7975 * and EPT A/D bit features are enabled -- PML depends on them to work.
7976 */
7977 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7978 enable_pml = 0;
7979
7980 if (!enable_pml) {
7981 vmx_x86_ops.slot_enable_log_dirty = NULL;
7982 vmx_x86_ops.slot_disable_log_dirty = NULL;
7983 vmx_x86_ops.flush_log_dirty = NULL;
7984 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7985 }
7986
7987 if (!cpu_has_vmx_preemption_timer())
7988 enable_preemption_timer = false;
7989
7990 if (enable_preemption_timer) {
7991 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7992 u64 vmx_msr;
7993
7994 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7995 cpu_preemption_timer_multi =
7996 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7997
7998 if (tsc_khz)
7999 use_timer_freq = (u64)tsc_khz * 1000;
8000 use_timer_freq >>= cpu_preemption_timer_multi;
8001
8002 /*
8003 * KVM "disables" the preemption timer by setting it to its max
8004 * value. Don't use the timer if it might cause spurious exits
8005 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8006 */
8007 if (use_timer_freq > 0xffffffffu / 10)
8008 enable_preemption_timer = false;
8009 }
8010
8011 if (!enable_preemption_timer) {
8012 vmx_x86_ops.set_hv_timer = NULL;
8013 vmx_x86_ops.cancel_hv_timer = NULL;
8014 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8015 }
8016
8017 kvm_mce_cap_supported |= MCG_LMCE_P;
8018
8019 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8020 return -EINVAL;
8021 if (!enable_ept || !cpu_has_vmx_intel_pt())
8022 pt_mode = PT_MODE_SYSTEM;
8023
8024 if (nested) {
8025 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8026 vmx_capability.ept);
8027
8028 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8029 if (r)
8030 return r;
8031 }
8032
8033 vmx_set_cpu_caps();
8034
8035 r = alloc_kvm_area();
8036 if (r)
8037 nested_vmx_hardware_unsetup();
8038
8039 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8040
8041 return r;
8042 }
8043
8044 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8045 .cpu_has_kvm_support = cpu_has_kvm_support,
8046 .disabled_by_bios = vmx_disabled_by_bios,
8047 .check_processor_compatibility = vmx_check_processor_compat,
8048 .hardware_setup = hardware_setup,
8049 .intel_pt_intr_in_guest = vmx_pt_mode_is_host_guest,
8050
8051 .runtime_ops = &vmx_x86_ops,
8052 };
8053
vmx_cleanup_l1d_flush(void)8054 static void vmx_cleanup_l1d_flush(void)
8055 {
8056 if (vmx_l1d_flush_pages) {
8057 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8058 vmx_l1d_flush_pages = NULL;
8059 }
8060 /* Restore state so sysfs ignores VMX */
8061 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8062 }
8063
vmx_exit(void)8064 static void vmx_exit(void)
8065 {
8066 #ifdef CONFIG_KEXEC_CORE
8067 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8068 synchronize_rcu();
8069 #endif
8070
8071 kvm_exit();
8072
8073 #if IS_ENABLED(CONFIG_HYPERV)
8074 if (static_branch_unlikely(&enable_evmcs)) {
8075 int cpu;
8076 struct hv_vp_assist_page *vp_ap;
8077 /*
8078 * Reset everything to support using non-enlightened VMCS
8079 * access later (e.g. when we reload the module with
8080 * enlightened_vmcs=0)
8081 */
8082 for_each_online_cpu(cpu) {
8083 vp_ap = hv_get_vp_assist_page(cpu);
8084
8085 if (!vp_ap)
8086 continue;
8087
8088 vp_ap->nested_control.features.directhypercall = 0;
8089 vp_ap->current_nested_vmcs = 0;
8090 vp_ap->enlighten_vmentry = 0;
8091 }
8092
8093 static_branch_disable(&enable_evmcs);
8094 }
8095 #endif
8096 vmx_cleanup_l1d_flush();
8097 }
8098 module_exit(vmx_exit);
8099
vmx_init(void)8100 static int __init vmx_init(void)
8101 {
8102 int r, cpu;
8103
8104 #if IS_ENABLED(CONFIG_HYPERV)
8105 /*
8106 * Enlightened VMCS usage should be recommended and the host needs
8107 * to support eVMCS v1 or above. We can also disable eVMCS support
8108 * with module parameter.
8109 */
8110 if (enlightened_vmcs &&
8111 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8112 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8113 KVM_EVMCS_VERSION) {
8114 int cpu;
8115
8116 /* Check that we have assist pages on all online CPUs */
8117 for_each_online_cpu(cpu) {
8118 if (!hv_get_vp_assist_page(cpu)) {
8119 enlightened_vmcs = false;
8120 break;
8121 }
8122 }
8123
8124 if (enlightened_vmcs) {
8125 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8126 static_branch_enable(&enable_evmcs);
8127 }
8128
8129 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8130 vmx_x86_ops.enable_direct_tlbflush
8131 = hv_enable_direct_tlbflush;
8132
8133 } else {
8134 enlightened_vmcs = false;
8135 }
8136 #endif
8137
8138 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8139 __alignof__(struct vcpu_vmx), THIS_MODULE);
8140 if (r)
8141 return r;
8142
8143 /*
8144 * Must be called after kvm_init() so enable_ept is properly set
8145 * up. Hand the parameter mitigation value in which was stored in
8146 * the pre module init parser. If no parameter was given, it will
8147 * contain 'auto' which will be turned into the default 'cond'
8148 * mitigation mode.
8149 */
8150 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8151 if (r) {
8152 vmx_exit();
8153 return r;
8154 }
8155
8156 vmx_setup_fb_clear_ctrl();
8157
8158 for_each_possible_cpu(cpu) {
8159 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8160
8161 pi_init_cpu(cpu);
8162 }
8163
8164 #ifdef CONFIG_KEXEC_CORE
8165 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8166 crash_vmclear_local_loaded_vmcss);
8167 #endif
8168 vmx_check_vmcs12_offsets();
8169
8170 /*
8171 * Shadow paging doesn't have a (further) performance penalty
8172 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8173 * by default
8174 */
8175 if (!enable_ept)
8176 allow_smaller_maxphyaddr = true;
8177
8178 return 0;
8179 }
8180 module_init(vmx_init);
8181