• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66 
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69 
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 	{}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77 
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80 
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83 
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86 
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89 
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 			enable_unrestricted_guest, bool, S_IRUGO);
93 
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96 
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99 
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102 
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105 
106 /*
107  * If nested=1, nested virtualization is supported, i.e., guests may use
108  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109  * use VMX instructions.
110  */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113 
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116 
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119 
120 #define MSR_BITMAP_MODE_X2APIC		1
121 #define MSR_BITMAP_MODE_X2APIC_APICV	2
122 
123 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
124 
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131 
132 extern bool __read_mostly allow_smaller_maxphyaddr;
133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
134 
135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON				\
138 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
139 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 /* Control for disabling CPU Fill buffer clear */
230 static bool __read_mostly vmx_fb_clear_ctrl_available;
231 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 	struct page *page;
235 	unsigned int i;
236 
237 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 		return 0;
240 	}
241 
242 	if (!enable_ept) {
243 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 		return 0;
245 	}
246 
247 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 		u64 msr;
249 
250 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 			return 0;
254 		}
255 	}
256 
257 	/* If set to auto use the default l1tf mitigation method */
258 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 		switch (l1tf_mitigation) {
260 		case L1TF_MITIGATION_OFF:
261 			l1tf = VMENTER_L1D_FLUSH_NEVER;
262 			break;
263 		case L1TF_MITIGATION_FLUSH_NOWARN:
264 		case L1TF_MITIGATION_FLUSH:
265 		case L1TF_MITIGATION_FLUSH_NOSMT:
266 			l1tf = VMENTER_L1D_FLUSH_COND;
267 			break;
268 		case L1TF_MITIGATION_FULL:
269 		case L1TF_MITIGATION_FULL_FORCE:
270 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 			break;
272 		}
273 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 	}
276 
277 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 		/*
280 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 		 * lifetime and so should not be charged to a memcg.
282 		 */
283 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 		if (!page)
285 			return -ENOMEM;
286 		vmx_l1d_flush_pages = page_address(page);
287 
288 		/*
289 		 * Initialize each page with a different pattern in
290 		 * order to protect against KSM in the nested
291 		 * virtualization case.
292 		 */
293 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 			       PAGE_SIZE);
296 		}
297 	}
298 
299 	l1tf_vmx_mitigation = l1tf;
300 
301 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 		static_branch_enable(&vmx_l1d_should_flush);
303 	else
304 		static_branch_disable(&vmx_l1d_should_flush);
305 
306 	if (l1tf == VMENTER_L1D_FLUSH_COND)
307 		static_branch_enable(&vmx_l1d_flush_cond);
308 	else
309 		static_branch_disable(&vmx_l1d_flush_cond);
310 	return 0;
311 }
312 
vmentry_l1d_flush_parse(const char * s)313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 	unsigned int i;
316 
317 	if (s) {
318 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 			if (vmentry_l1d_param[i].for_parse &&
320 			    sysfs_streq(s, vmentry_l1d_param[i].option))
321 				return i;
322 		}
323 	}
324 	return -EINVAL;
325 }
326 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 	int l1tf, ret;
330 
331 	l1tf = vmentry_l1d_flush_parse(s);
332 	if (l1tf < 0)
333 		return l1tf;
334 
335 	if (!boot_cpu_has(X86_BUG_L1TF))
336 		return 0;
337 
338 	/*
339 	 * Has vmx_init() run already? If not then this is the pre init
340 	 * parameter parsing. In that case just store the value and let
341 	 * vmx_init() do the proper setup after enable_ept has been
342 	 * established.
343 	 */
344 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 		vmentry_l1d_flush_param = l1tf;
346 		return 0;
347 	}
348 
349 	mutex_lock(&vmx_l1d_flush_mutex);
350 	ret = vmx_setup_l1d_flush(l1tf);
351 	mutex_unlock(&vmx_l1d_flush_mutex);
352 	return ret;
353 }
354 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 		return sprintf(s, "???\n");
359 
360 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362 
vmx_setup_fb_clear_ctrl(void)363 static void vmx_setup_fb_clear_ctrl(void)
364 {
365 	u64 msr;
366 
367 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
368 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
369 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
370 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
371 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
372 			vmx_fb_clear_ctrl_available = true;
373 	}
374 }
375 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 	u64 msr;
379 
380 	if (!vmx->disable_fb_clear)
381 		return;
382 
383 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 	msr |= FB_CLEAR_DIS;
385 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 	/* Cache the MSR value to avoid reading it later */
387 	vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 	if (!vmx->disable_fb_clear)
393 		return;
394 
395 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
402 
403 	/*
404 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
405 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
406 	 * execute VERW.
407 	 */
408 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
409 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
410 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
411 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
412 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
413 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
414 		vmx->disable_fb_clear = false;
415 }
416 
417 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
418 	.set = vmentry_l1d_flush_set,
419 	.get = vmentry_l1d_flush_get,
420 };
421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
422 
423 static u32 vmx_segment_access_rights(struct kvm_segment *var);
424 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
425 							  u32 msr, int type);
426 
427 void vmx_vmexit(void);
428 
429 #define vmx_insn_failed(fmt...)		\
430 do {					\
431 	WARN_ONCE(1, fmt);		\
432 	pr_warn_ratelimited(fmt);	\
433 } while (0)
434 
vmread_error(unsigned long field,bool fault)435 asmlinkage void vmread_error(unsigned long field, bool fault)
436 {
437 	if (fault)
438 		kvm_spurious_fault();
439 	else
440 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
441 }
442 
vmwrite_error(unsigned long field,unsigned long value)443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
446 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
452 }
453 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
457 }
458 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)459 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
460 {
461 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
462 			ext, vpid, gva);
463 }
464 
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)465 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
466 {
467 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
468 			ext, eptp, gpa);
469 }
470 
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476  */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478 
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481 
482 struct vmcs_config vmcs_config;
483 struct vmx_capability vmx_capability;
484 
485 #define VMX_SEGMENT_FIELD(seg)					\
486 	[VCPU_SREG_##seg] = {                                   \
487 		.selector = GUEST_##seg##_SELECTOR,		\
488 		.base = GUEST_##seg##_BASE,		   	\
489 		.limit = GUEST_##seg##_LIMIT,		   	\
490 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
491 	}
492 
493 static const struct kvm_vmx_segment_field {
494 	unsigned selector;
495 	unsigned base;
496 	unsigned limit;
497 	unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 	VMX_SEGMENT_FIELD(CS),
500 	VMX_SEGMENT_FIELD(DS),
501 	VMX_SEGMENT_FIELD(ES),
502 	VMX_SEGMENT_FIELD(FS),
503 	VMX_SEGMENT_FIELD(GS),
504 	VMX_SEGMENT_FIELD(SS),
505 	VMX_SEGMENT_FIELD(TR),
506 	VMX_SEGMENT_FIELD(LDTR),
507 };
508 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)509 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
510 {
511 	vmx->segment_cache.bitmask = 0;
512 }
513 
514 static unsigned long host_idt_base;
515 
516 /*
517  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
518  * will emulate SYSCALL in legacy mode if the vendor string in guest
519  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
520  * support this emulation, IA32_STAR must always be included in
521  * vmx_uret_msrs_list[], even in i386 builds.
522  */
523 static const u32 vmx_uret_msrs_list[] = {
524 #ifdef CONFIG_X86_64
525 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
526 #endif
527 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
528 	MSR_IA32_TSX_CTRL,
529 };
530 
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs = true;
533 module_param(enlightened_vmcs, bool, 0444);
534 
535 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)536 static void check_ept_pointer_match(struct kvm *kvm)
537 {
538 	struct kvm_vcpu *vcpu;
539 	u64 tmp_eptp = INVALID_PAGE;
540 	int i;
541 
542 	kvm_for_each_vcpu(i, vcpu, kvm) {
543 		if (!VALID_PAGE(tmp_eptp)) {
544 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
545 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
546 			to_kvm_vmx(kvm)->ept_pointers_match
547 				= EPT_POINTERS_MISMATCH;
548 			return;
549 		}
550 	}
551 
552 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
553 }
554 
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)555 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
556 		void *data)
557 {
558 	struct kvm_tlb_range *range = data;
559 
560 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
561 			range->pages);
562 }
563 
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)564 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
565 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
566 {
567 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
568 
569 	/*
570 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
571 	 * of the base of EPT PML4 table, strip off EPT configuration
572 	 * information.
573 	 */
574 	if (range)
575 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
576 				kvm_fill_hv_flush_list_func, (void *)range);
577 	else
578 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
579 }
580 
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)581 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
582 		struct kvm_tlb_range *range)
583 {
584 	struct kvm_vcpu *vcpu;
585 	int ret = 0, i;
586 
587 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
588 
589 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
590 		check_ept_pointer_match(kvm);
591 
592 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
593 		kvm_for_each_vcpu(i, vcpu, kvm) {
594 			/* If ept_pointer is invalid pointer, bypass flush request. */
595 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
596 				ret |= __hv_remote_flush_tlb_with_range(
597 					kvm, vcpu, range);
598 		}
599 	} else {
600 		ret = __hv_remote_flush_tlb_with_range(kvm,
601 				kvm_get_vcpu(kvm, 0), range);
602 	}
603 
604 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
605 	return ret;
606 }
hv_remote_flush_tlb(struct kvm * kvm)607 static int hv_remote_flush_tlb(struct kvm *kvm)
608 {
609 	return hv_remote_flush_tlb_with_range(kvm, NULL);
610 }
611 
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)612 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
613 {
614 	struct hv_enlightened_vmcs *evmcs;
615 	struct hv_partition_assist_pg **p_hv_pa_pg =
616 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
617 	/*
618 	 * Synthetic VM-Exit is not enabled in current code and so All
619 	 * evmcs in singe VM shares same assist page.
620 	 */
621 	if (!*p_hv_pa_pg)
622 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
623 
624 	if (!*p_hv_pa_pg)
625 		return -ENOMEM;
626 
627 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
628 
629 	evmcs->partition_assist_page =
630 		__pa(*p_hv_pa_pg);
631 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
632 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
633 
634 	return 0;
635 }
636 
637 #endif /* IS_ENABLED(CONFIG_HYPERV) */
638 
639 /*
640  * Comment's format: document - errata name - stepping - processor name.
641  * Refer from
642  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
643  */
644 static u32 vmx_preemption_cpu_tfms[] = {
645 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
646 0x000206E6,
647 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
648 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
649 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
650 0x00020652,
651 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
652 0x00020655,
653 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
654 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
655 /*
656  * 320767.pdf - AAP86  - B1 -
657  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
658  */
659 0x000106E5,
660 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
661 0x000106A0,
662 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
663 0x000106A1,
664 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
665 0x000106A4,
666  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
667  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
668  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
669 0x000106A5,
670  /* Xeon E3-1220 V2 */
671 0x000306A8,
672 };
673 
cpu_has_broken_vmx_preemption_timer(void)674 static inline bool cpu_has_broken_vmx_preemption_timer(void)
675 {
676 	u32 eax = cpuid_eax(0x00000001), i;
677 
678 	/* Clear the reserved bits */
679 	eax &= ~(0x3U << 14 | 0xfU << 28);
680 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
681 		if (eax == vmx_preemption_cpu_tfms[i])
682 			return true;
683 
684 	return false;
685 }
686 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)687 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
688 {
689 	return flexpriority_enabled && lapic_in_kernel(vcpu);
690 }
691 
report_flexpriority(void)692 static inline bool report_flexpriority(void)
693 {
694 	return flexpriority_enabled;
695 }
696 
possible_passthrough_msr_slot(u32 msr)697 static int possible_passthrough_msr_slot(u32 msr)
698 {
699 	u32 i;
700 
701 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
702 		if (vmx_possible_passthrough_msrs[i] == msr)
703 			return i;
704 
705 	return -ENOENT;
706 }
707 
is_valid_passthrough_msr(u32 msr)708 static bool is_valid_passthrough_msr(u32 msr)
709 {
710 	bool r;
711 
712 	switch (msr) {
713 	case 0x800 ... 0x8ff:
714 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
715 		return true;
716 	case MSR_IA32_RTIT_STATUS:
717 	case MSR_IA32_RTIT_OUTPUT_BASE:
718 	case MSR_IA32_RTIT_OUTPUT_MASK:
719 	case MSR_IA32_RTIT_CR3_MATCH:
720 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
721 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
722 		return true;
723 	}
724 
725 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
726 
727 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
728 
729 	return r;
730 }
731 
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)732 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
733 {
734 	int i;
735 
736 	for (i = 0; i < vmx->nr_uret_msrs; ++i)
737 		if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
738 			return i;
739 	return -1;
740 }
741 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)742 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
743 {
744 	int i;
745 
746 	i = __vmx_find_uret_msr(vmx, msr);
747 	if (i >= 0)
748 		return &vmx->guest_uret_msrs[i];
749 	return NULL;
750 }
751 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)752 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
753 				  struct vmx_uret_msr *msr, u64 data)
754 {
755 	int ret = 0;
756 
757 	u64 old_msr_data = msr->data;
758 	msr->data = data;
759 	if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
760 		preempt_disable();
761 		ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
762 		preempt_enable();
763 		if (ret)
764 			msr->data = old_msr_data;
765 	}
766 	return ret;
767 }
768 
769 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)770 static void crash_vmclear_local_loaded_vmcss(void)
771 {
772 	int cpu = raw_smp_processor_id();
773 	struct loaded_vmcs *v;
774 
775 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
776 			    loaded_vmcss_on_cpu_link)
777 		vmcs_clear(v->vmcs);
778 }
779 #endif /* CONFIG_KEXEC_CORE */
780 
__loaded_vmcs_clear(void * arg)781 static void __loaded_vmcs_clear(void *arg)
782 {
783 	struct loaded_vmcs *loaded_vmcs = arg;
784 	int cpu = raw_smp_processor_id();
785 
786 	if (loaded_vmcs->cpu != cpu)
787 		return; /* vcpu migration can race with cpu offline */
788 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 		per_cpu(current_vmcs, cpu) = NULL;
790 
791 	vmcs_clear(loaded_vmcs->vmcs);
792 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 		vmcs_clear(loaded_vmcs->shadow_vmcs);
794 
795 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796 
797 	/*
798 	 * Ensure all writes to loaded_vmcs, including deleting it from its
799 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
800 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
801 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
802 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 	 */
804 	smp_wmb();
805 
806 	loaded_vmcs->cpu = -1;
807 	loaded_vmcs->launched = 0;
808 }
809 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 	int cpu = loaded_vmcs->cpu;
813 
814 	if (cpu != -1)
815 		smp_call_function_single(cpu,
816 			 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 				       unsigned field)
821 {
822 	bool ret;
823 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824 
825 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 		vmx->segment_cache.bitmask = 0;
828 	}
829 	ret = vmx->segment_cache.bitmask & mask;
830 	vmx->segment_cache.bitmask |= mask;
831 	return ret;
832 }
833 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 	u16 *p = &vmx->segment_cache.seg[seg].selector;
837 
838 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 	return *p;
841 }
842 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 	ulong *p = &vmx->segment_cache.seg[seg].base;
846 
847 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 	return *p;
850 }
851 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 	u32 *p = &vmx->segment_cache.seg[seg].limit;
855 
856 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 	return *p;
859 }
860 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 	u32 *p = &vmx->segment_cache.seg[seg].ar;
864 
865 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 	return *p;
868 }
869 
update_exception_bitmap(struct kvm_vcpu * vcpu)870 void update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 	u32 eb;
873 
874 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 	/*
877 	 * Guest access to VMware backdoor ports could legitimately
878 	 * trigger #GP because of TSS I/O permission bitmap.
879 	 * We intercept those #GP and allow access to them anyway
880 	 * as VMware does.
881 	 */
882 	if (enable_vmware_backdoor)
883 		eb |= (1u << GP_VECTOR);
884 	if ((vcpu->guest_debug &
885 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
886 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
887 		eb |= 1u << BP_VECTOR;
888 	if (to_vmx(vcpu)->rmode.vm86_active)
889 		eb = ~0;
890 	if (!vmx_need_pf_intercept(vcpu))
891 		eb &= ~(1u << PF_VECTOR);
892 
893 	/* When we are running a nested L2 guest and L1 specified for it a
894 	 * certain exception bitmap, we must trap the same exceptions and pass
895 	 * them to L1. When running L2, we will only handle the exceptions
896 	 * specified above if L1 did not want them.
897 	 */
898 	if (is_guest_mode(vcpu))
899 		eb |= get_vmcs12(vcpu)->exception_bitmap;
900         else {
901 		/*
902 		 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
903 		 * between guest and host.  In that case we only care about present
904 		 * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
905 		 * prepare_vmcs02_rare.
906 		 */
907 		bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
908 		int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
909 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
911 	}
912 
913 	vmcs_write32(EXCEPTION_BITMAP, eb);
914 }
915 
916 /*
917  * Check if MSR is intercepted for currently loaded MSR bitmap.
918  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)919 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
920 {
921 	unsigned long *msr_bitmap;
922 	int f = sizeof(unsigned long);
923 
924 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
925 		return true;
926 
927 	msr_bitmap = vmx->loaded_vmcs->msr_bitmap;
928 
929 	if (msr <= 0x1fff) {
930 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
931 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
932 		msr &= 0x1fff;
933 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
934 	}
935 
936 	return true;
937 }
938 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)939 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
940 {
941 	unsigned int flags = 0;
942 
943 	if (vmx->loaded_vmcs->launched)
944 		flags |= VMX_RUN_VMRESUME;
945 
946 	/*
947 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
948 	 * to change it directly without causing a vmexit.  In that case read
949 	 * it after vmexit and store it in vmx->spec_ctrl.
950 	 */
951 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
952 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
953 
954 	return flags;
955 }
956 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)957 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
958 		unsigned long entry, unsigned long exit)
959 {
960 	vm_entry_controls_clearbit(vmx, entry);
961 	vm_exit_controls_clearbit(vmx, exit);
962 }
963 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)964 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
965 {
966 	unsigned int i;
967 
968 	for (i = 0; i < m->nr; ++i) {
969 		if (m->val[i].index == msr)
970 			return i;
971 	}
972 	return -ENOENT;
973 }
974 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)975 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
976 {
977 	int i;
978 	struct msr_autoload *m = &vmx->msr_autoload;
979 
980 	switch (msr) {
981 	case MSR_EFER:
982 		if (cpu_has_load_ia32_efer()) {
983 			clear_atomic_switch_msr_special(vmx,
984 					VM_ENTRY_LOAD_IA32_EFER,
985 					VM_EXIT_LOAD_IA32_EFER);
986 			return;
987 		}
988 		break;
989 	case MSR_CORE_PERF_GLOBAL_CTRL:
990 		if (cpu_has_load_perf_global_ctrl()) {
991 			clear_atomic_switch_msr_special(vmx,
992 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
993 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
994 			return;
995 		}
996 		break;
997 	}
998 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
999 	if (i < 0)
1000 		goto skip_guest;
1001 	--m->guest.nr;
1002 	m->guest.val[i] = m->guest.val[m->guest.nr];
1003 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004 
1005 skip_guest:
1006 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1007 	if (i < 0)
1008 		return;
1009 
1010 	--m->host.nr;
1011 	m->host.val[i] = m->host.val[m->host.nr];
1012 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1013 }
1014 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1015 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1016 		unsigned long entry, unsigned long exit,
1017 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1018 		u64 guest_val, u64 host_val)
1019 {
1020 	vmcs_write64(guest_val_vmcs, guest_val);
1021 	if (host_val_vmcs != HOST_IA32_EFER)
1022 		vmcs_write64(host_val_vmcs, host_val);
1023 	vm_entry_controls_setbit(vmx, entry);
1024 	vm_exit_controls_setbit(vmx, exit);
1025 }
1026 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1027 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1028 				  u64 guest_val, u64 host_val, bool entry_only)
1029 {
1030 	int i, j = 0;
1031 	struct msr_autoload *m = &vmx->msr_autoload;
1032 
1033 	switch (msr) {
1034 	case MSR_EFER:
1035 		if (cpu_has_load_ia32_efer()) {
1036 			add_atomic_switch_msr_special(vmx,
1037 					VM_ENTRY_LOAD_IA32_EFER,
1038 					VM_EXIT_LOAD_IA32_EFER,
1039 					GUEST_IA32_EFER,
1040 					HOST_IA32_EFER,
1041 					guest_val, host_val);
1042 			return;
1043 		}
1044 		break;
1045 	case MSR_CORE_PERF_GLOBAL_CTRL:
1046 		if (cpu_has_load_perf_global_ctrl()) {
1047 			add_atomic_switch_msr_special(vmx,
1048 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1050 					GUEST_IA32_PERF_GLOBAL_CTRL,
1051 					HOST_IA32_PERF_GLOBAL_CTRL,
1052 					guest_val, host_val);
1053 			return;
1054 		}
1055 		break;
1056 	case MSR_IA32_PEBS_ENABLE:
1057 		/* PEBS needs a quiescent period after being disabled (to write
1058 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1059 		 * provide that period, so a CPU could write host's record into
1060 		 * guest's memory.
1061 		 */
1062 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1063 	}
1064 
1065 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1066 	if (!entry_only)
1067 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1068 
1069 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1070 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1071 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1072 				"Can't add msr %x\n", msr);
1073 		return;
1074 	}
1075 	if (i < 0) {
1076 		i = m->guest.nr++;
1077 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1078 	}
1079 	m->guest.val[i].index = msr;
1080 	m->guest.val[i].value = guest_val;
1081 
1082 	if (entry_only)
1083 		return;
1084 
1085 	if (j < 0) {
1086 		j = m->host.nr++;
1087 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1088 	}
1089 	m->host.val[j].index = msr;
1090 	m->host.val[j].value = host_val;
1091 }
1092 
update_transition_efer(struct vcpu_vmx * vmx)1093 static bool update_transition_efer(struct vcpu_vmx *vmx)
1094 {
1095 	u64 guest_efer = vmx->vcpu.arch.efer;
1096 	u64 ignore_bits = 0;
1097 	int i;
1098 
1099 	/* Shadow paging assumes NX to be available.  */
1100 	if (!enable_ept)
1101 		guest_efer |= EFER_NX;
1102 
1103 	/*
1104 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1105 	 */
1106 	ignore_bits |= EFER_SCE;
1107 #ifdef CONFIG_X86_64
1108 	ignore_bits |= EFER_LMA | EFER_LME;
1109 	/* SCE is meaningful only in long mode on Intel */
1110 	if (guest_efer & EFER_LMA)
1111 		ignore_bits &= ~(u64)EFER_SCE;
1112 #endif
1113 
1114 	/*
1115 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1116 	 * On CPUs that support "load IA32_EFER", always switch EFER
1117 	 * atomically, since it's faster than switching it manually.
1118 	 */
1119 	if (cpu_has_load_ia32_efer() ||
1120 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1121 		if (!(guest_efer & EFER_LMA))
1122 			guest_efer &= ~EFER_LME;
1123 		if (guest_efer != host_efer)
1124 			add_atomic_switch_msr(vmx, MSR_EFER,
1125 					      guest_efer, host_efer, false);
1126 		else
1127 			clear_atomic_switch_msr(vmx, MSR_EFER);
1128 		return false;
1129 	}
1130 
1131 	i = __vmx_find_uret_msr(vmx, MSR_EFER);
1132 	if (i < 0)
1133 		return false;
1134 
1135 	clear_atomic_switch_msr(vmx, MSR_EFER);
1136 
1137 	guest_efer &= ~ignore_bits;
1138 	guest_efer |= host_efer & ignore_bits;
1139 
1140 	vmx->guest_uret_msrs[i].data = guest_efer;
1141 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1142 
1143 	return true;
1144 }
1145 
1146 #ifdef CONFIG_X86_32
1147 /*
1148  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1149  * VMCS rather than the segment table.  KVM uses this helper to figure
1150  * out the current bases to poke them into the VMCS before entry.
1151  */
segment_base(u16 selector)1152 static unsigned long segment_base(u16 selector)
1153 {
1154 	struct desc_struct *table;
1155 	unsigned long v;
1156 
1157 	if (!(selector & ~SEGMENT_RPL_MASK))
1158 		return 0;
1159 
1160 	table = get_current_gdt_ro();
1161 
1162 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1163 		u16 ldt_selector = kvm_read_ldt();
1164 
1165 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1166 			return 0;
1167 
1168 		table = (struct desc_struct *)segment_base(ldt_selector);
1169 	}
1170 	v = get_desc_base(&table[selector >> 3]);
1171 	return v;
1172 }
1173 #endif
1174 
pt_can_write_msr(struct vcpu_vmx * vmx)1175 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1176 {
1177 	return vmx_pt_mode_is_host_guest() &&
1178 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1179 }
1180 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1181 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1182 {
1183 	/* The base must be 128-byte aligned and a legal physical address. */
1184 	return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1185 }
1186 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1187 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1188 {
1189 	u32 i;
1190 
1191 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1192 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1193 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1194 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1195 	for (i = 0; i < addr_range; i++) {
1196 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1197 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1198 	}
1199 }
1200 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1201 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 	u32 i;
1204 
1205 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 	for (i = 0; i < addr_range; i++) {
1210 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 	}
1213 }
1214 
pt_guest_enter(struct vcpu_vmx * vmx)1215 static void pt_guest_enter(struct vcpu_vmx *vmx)
1216 {
1217 	if (vmx_pt_mode_is_system())
1218 		return;
1219 
1220 	/*
1221 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1222 	 * Save host state before VM entry.
1223 	 */
1224 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1225 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1226 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1227 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1228 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1229 	}
1230 }
1231 
pt_guest_exit(struct vcpu_vmx * vmx)1232 static void pt_guest_exit(struct vcpu_vmx *vmx)
1233 {
1234 	if (vmx_pt_mode_is_system())
1235 		return;
1236 
1237 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1239 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1240 	}
1241 
1242 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1243 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247 			unsigned long fs_base, unsigned long gs_base)
1248 {
1249 	if (unlikely(fs_sel != host->fs_sel)) {
1250 		if (!(fs_sel & 7))
1251 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252 		else
1253 			vmcs_write16(HOST_FS_SELECTOR, 0);
1254 		host->fs_sel = fs_sel;
1255 	}
1256 	if (unlikely(gs_sel != host->gs_sel)) {
1257 		if (!(gs_sel & 7))
1258 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259 		else
1260 			vmcs_write16(HOST_GS_SELECTOR, 0);
1261 		host->gs_sel = gs_sel;
1262 	}
1263 	if (unlikely(fs_base != host->fs_base)) {
1264 		vmcs_writel(HOST_FS_BASE, fs_base);
1265 		host->fs_base = fs_base;
1266 	}
1267 	if (unlikely(gs_base != host->gs_base)) {
1268 		vmcs_writel(HOST_GS_BASE, gs_base);
1269 		host->gs_base = gs_base;
1270 	}
1271 }
1272 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1276 	struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278 	int cpu = raw_smp_processor_id();
1279 #endif
1280 	unsigned long fs_base, gs_base;
1281 	u16 fs_sel, gs_sel;
1282 	int i;
1283 
1284 	vmx->req_immediate_exit = false;
1285 
1286 	/*
1287 	 * Note that guest MSRs to be saved/restored can also be changed
1288 	 * when guest state is loaded. This happens when guest transitions
1289 	 * to/from long-mode by setting MSR_EFER.LMA.
1290 	 */
1291 	if (!vmx->guest_uret_msrs_loaded) {
1292 		vmx->guest_uret_msrs_loaded = true;
1293 		for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1294 			kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1295 						vmx->guest_uret_msrs[i].data,
1296 						vmx->guest_uret_msrs[i].mask);
1297 
1298 	}
1299 
1300     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1301 		nested_sync_vmcs12_to_shadow(vcpu);
1302 
1303 	if (vmx->guest_state_loaded)
1304 		return;
1305 
1306 	host_state = &vmx->loaded_vmcs->host_state;
1307 
1308 	/*
1309 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1310 	 * allow segment selectors with cpl > 0 or ti == 1.
1311 	 */
1312 	host_state->ldt_sel = kvm_read_ldt();
1313 
1314 #ifdef CONFIG_X86_64
1315 	savesegment(ds, host_state->ds_sel);
1316 	savesegment(es, host_state->es_sel);
1317 
1318 	gs_base = cpu_kernelmode_gs_base(cpu);
1319 	if (likely(is_64bit_mm(current->mm))) {
1320 		current_save_fsgs();
1321 		fs_sel = current->thread.fsindex;
1322 		gs_sel = current->thread.gsindex;
1323 		fs_base = current->thread.fsbase;
1324 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1325 	} else {
1326 		savesegment(fs, fs_sel);
1327 		savesegment(gs, gs_sel);
1328 		fs_base = read_msr(MSR_FS_BASE);
1329 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1330 	}
1331 
1332 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1333 #else
1334 	savesegment(fs, fs_sel);
1335 	savesegment(gs, gs_sel);
1336 	fs_base = segment_base(fs_sel);
1337 	gs_base = segment_base(gs_sel);
1338 #endif
1339 
1340 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1341 	vmx->guest_state_loaded = true;
1342 }
1343 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1344 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1345 {
1346 	struct vmcs_host_state *host_state;
1347 
1348 	if (!vmx->guest_state_loaded)
1349 		return;
1350 
1351 	host_state = &vmx->loaded_vmcs->host_state;
1352 
1353 	++vmx->vcpu.stat.host_state_reload;
1354 
1355 #ifdef CONFIG_X86_64
1356 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1357 #endif
1358 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1359 		kvm_load_ldt(host_state->ldt_sel);
1360 #ifdef CONFIG_X86_64
1361 		load_gs_index(host_state->gs_sel);
1362 #else
1363 		loadsegment(gs, host_state->gs_sel);
1364 #endif
1365 	}
1366 	if (host_state->fs_sel & 7)
1367 		loadsegment(fs, host_state->fs_sel);
1368 #ifdef CONFIG_X86_64
1369 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1370 		loadsegment(ds, host_state->ds_sel);
1371 		loadsegment(es, host_state->es_sel);
1372 	}
1373 #endif
1374 	invalidate_tss_limit();
1375 #ifdef CONFIG_X86_64
1376 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1377 #endif
1378 	load_fixmap_gdt(raw_smp_processor_id());
1379 	vmx->guest_state_loaded = false;
1380 	vmx->guest_uret_msrs_loaded = false;
1381 }
1382 
1383 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1384 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1385 {
1386 	preempt_disable();
1387 	if (vmx->guest_state_loaded)
1388 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1389 	preempt_enable();
1390 	return vmx->msr_guest_kernel_gs_base;
1391 }
1392 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1393 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1394 {
1395 	preempt_disable();
1396 	if (vmx->guest_state_loaded)
1397 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1398 	preempt_enable();
1399 	vmx->msr_guest_kernel_gs_base = data;
1400 }
1401 #endif
1402 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1403 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1404 			struct loaded_vmcs *buddy)
1405 {
1406 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1408 	struct vmcs *prev;
1409 
1410 	if (!already_loaded) {
1411 		loaded_vmcs_clear(vmx->loaded_vmcs);
1412 		local_irq_disable();
1413 
1414 		/*
1415 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1416 		 * this cpu's percpu list, otherwise it may not yet be deleted
1417 		 * from its previous cpu's percpu list.  Pairs with the
1418 		 * smb_wmb() in __loaded_vmcs_clear().
1419 		 */
1420 		smp_rmb();
1421 
1422 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1423 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1424 		local_irq_enable();
1425 	}
1426 
1427 	prev = per_cpu(current_vmcs, cpu);
1428 	if (prev != vmx->loaded_vmcs->vmcs) {
1429 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1430 		vmcs_load(vmx->loaded_vmcs->vmcs);
1431 
1432 		/*
1433 		 * No indirect branch prediction barrier needed when switching
1434 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1435 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1436 		 * performs IBPB on nested VM-Exit (a single nested transition
1437 		 * may switch the active VMCS multiple times).
1438 		 */
1439 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1440 			indirect_branch_prediction_barrier();
1441 	}
1442 
1443 	if (!already_loaded) {
1444 		void *gdt = get_current_gdt_ro();
1445 		unsigned long sysenter_esp;
1446 
1447 		/*
1448 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1449 		 * TLB entries from its previous association with the vCPU.
1450 		 */
1451 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1452 
1453 		/*
1454 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1455 		 * processors.  See 22.2.4.
1456 		 */
1457 		vmcs_writel(HOST_TR_BASE,
1458 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1459 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1460 
1461 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1462 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1463 
1464 		vmx->loaded_vmcs->cpu = cpu;
1465 	}
1466 
1467 	/* Setup TSC multiplier */
1468 	if (kvm_has_tsc_control &&
1469 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1470 		decache_tsc_multiplier(vmx);
1471 }
1472 
1473 /*
1474  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1475  * vcpu mutex is already taken.
1476  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 {
1479 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1480 
1481 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1482 
1483 	vmx_vcpu_pi_load(vcpu, cpu);
1484 
1485 	vmx->host_debugctlmsr = get_debugctlmsr();
1486 }
1487 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1489 {
1490 	vmx_vcpu_pi_put(vcpu);
1491 
1492 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1493 }
1494 
emulation_required(struct kvm_vcpu * vcpu)1495 static bool emulation_required(struct kvm_vcpu *vcpu)
1496 {
1497 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1498 }
1499 
vmx_get_rflags(struct kvm_vcpu * vcpu)1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 	unsigned long rflags, save_rflags;
1504 
1505 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1506 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507 		rflags = vmcs_readl(GUEST_RFLAGS);
1508 		if (vmx->rmode.vm86_active) {
1509 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1510 			save_rflags = vmx->rmode.save_rflags;
1511 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1512 		}
1513 		vmx->rflags = rflags;
1514 	}
1515 	return vmx->rflags;
1516 }
1517 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1519 {
1520 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 	unsigned long old_rflags;
1522 
1523 	if (is_unrestricted_guest(vcpu)) {
1524 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1525 		vmx->rflags = rflags;
1526 		vmcs_writel(GUEST_RFLAGS, rflags);
1527 		return;
1528 	}
1529 
1530 	old_rflags = vmx_get_rflags(vcpu);
1531 	vmx->rflags = rflags;
1532 	if (vmx->rmode.vm86_active) {
1533 		vmx->rmode.save_rflags = rflags;
1534 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1535 	}
1536 	vmcs_writel(GUEST_RFLAGS, rflags);
1537 
1538 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1539 		vmx->emulation_required = emulation_required(vcpu);
1540 }
1541 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1542 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1543 {
1544 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1545 	int ret = 0;
1546 
1547 	if (interruptibility & GUEST_INTR_STATE_STI)
1548 		ret |= KVM_X86_SHADOW_INT_STI;
1549 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1550 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1551 
1552 	return ret;
1553 }
1554 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1555 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1556 {
1557 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1558 	u32 interruptibility = interruptibility_old;
1559 
1560 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1561 
1562 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1563 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1564 	else if (mask & KVM_X86_SHADOW_INT_STI)
1565 		interruptibility |= GUEST_INTR_STATE_STI;
1566 
1567 	if ((interruptibility != interruptibility_old))
1568 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1569 }
1570 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1571 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1572 {
1573 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1574 	unsigned long value;
1575 
1576 	/*
1577 	 * Any MSR write that attempts to change bits marked reserved will
1578 	 * case a #GP fault.
1579 	 */
1580 	if (data & vmx->pt_desc.ctl_bitmask)
1581 		return 1;
1582 
1583 	/*
1584 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1585 	 * result in a #GP unless the same write also clears TraceEn.
1586 	 */
1587 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1588 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1589 		return 1;
1590 
1591 	/*
1592 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1593 	 * and FabricEn would cause #GP, if
1594 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1595 	 */
1596 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1597 		!(data & RTIT_CTL_FABRIC_EN) &&
1598 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1599 					PT_CAP_single_range_output))
1600 		return 1;
1601 
1602 	/*
1603 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1604 	 * utilize encodings marked reserved will casue a #GP fault.
1605 	 */
1606 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1607 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1608 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1609 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1610 		return 1;
1611 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1612 						PT_CAP_cycle_thresholds);
1613 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1614 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1615 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1616 		return 1;
1617 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1618 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1619 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1620 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1621 		return 1;
1622 
1623 	/*
1624 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1625 	 * cause a #GP fault.
1626 	 */
1627 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1628 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1629 		return 1;
1630 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1631 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1632 		return 1;
1633 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1634 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1635 		return 1;
1636 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1637 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1638 		return 1;
1639 
1640 	return 0;
1641 }
1642 
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1643 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1644 {
1645 	return true;
1646 }
1647 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650 	unsigned long rip, orig_rip;
1651 
1652 	/*
1653 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1654 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1655 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1656 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1657 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1658 	 * i.e. we end up advancing IP with some random value.
1659 	 */
1660 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1661 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1662 		orig_rip = kvm_rip_read(vcpu);
1663 		rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1664 #ifdef CONFIG_X86_64
1665 		/*
1666 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1667 		 * mode, but just finding out that we are in 64-bit mode is
1668 		 * quite expensive.  Only do it if there was a carry.
1669 		 */
1670 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1671 			rip = (u32)rip;
1672 #endif
1673 		kvm_rip_write(vcpu, rip);
1674 	} else {
1675 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1676 			return 0;
1677 	}
1678 
1679 	/* skipping an emulated instruction also counts */
1680 	vmx_set_interrupt_shadow(vcpu, 0);
1681 
1682 	return 1;
1683 }
1684 
1685 /*
1686  * Recognizes a pending MTF VM-exit and records the nested state for later
1687  * delivery.
1688  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1689 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1690 {
1691 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1692 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1693 
1694 	if (!is_guest_mode(vcpu))
1695 		return;
1696 
1697 	/*
1698 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1699 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1700 	 * instruction boundary), any #DB exception pending delivery must be a
1701 	 * debug-trap. Record the pending MTF state to be delivered in
1702 	 * vmx_check_nested_events().
1703 	 */
1704 	if (nested_cpu_has_mtf(vmcs12) &&
1705 	    (!vcpu->arch.exception.pending ||
1706 	     vcpu->arch.exception.nr == DB_VECTOR))
1707 		vmx->nested.mtf_pending = true;
1708 	else
1709 		vmx->nested.mtf_pending = false;
1710 }
1711 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1712 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 	vmx_update_emulated_instruction(vcpu);
1715 	return skip_emulated_instruction(vcpu);
1716 }
1717 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1718 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1719 {
1720 	/*
1721 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1722 	 * explicitly skip the instruction because if the HLT state is set,
1723 	 * then the instruction is already executing and RIP has already been
1724 	 * advanced.
1725 	 */
1726 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1727 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1728 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1729 }
1730 
vmx_queue_exception(struct kvm_vcpu * vcpu)1731 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1732 {
1733 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1734 	unsigned nr = vcpu->arch.exception.nr;
1735 	bool has_error_code = vcpu->arch.exception.has_error_code;
1736 	u32 error_code = vcpu->arch.exception.error_code;
1737 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1738 
1739 	kvm_deliver_exception_payload(vcpu);
1740 
1741 	if (has_error_code) {
1742 		/*
1743 		 * Despite the error code being architecturally defined as 32
1744 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1745 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1746 		 * will (should) never provide a bogus error code, but AMD CPUs
1747 		 * do generate error codes with bits 31:16 set, and so KVM's
1748 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1749 		 * the upper bits to avoid VM-Fail, losing information that
1750 		 * does't really exist is preferable to killing the VM.
1751 		 */
1752 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)error_code);
1753 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1754 	}
1755 
1756 	if (vmx->rmode.vm86_active) {
1757 		int inc_eip = 0;
1758 		if (kvm_exception_is_soft(nr))
1759 			inc_eip = vcpu->arch.event_exit_inst_len;
1760 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1761 		return;
1762 	}
1763 
1764 	WARN_ON_ONCE(vmx->emulation_required);
1765 
1766 	if (kvm_exception_is_soft(nr)) {
1767 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1768 			     vmx->vcpu.arch.event_exit_inst_len);
1769 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1770 	} else
1771 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1772 
1773 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1774 
1775 	vmx_clear_hlt(vcpu);
1776 }
1777 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1778 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1779 {
1780 	struct vmx_uret_msr tmp;
1781 	int from, to;
1782 
1783 	from = __vmx_find_uret_msr(vmx, msr);
1784 	if (from < 0)
1785 		return;
1786 	to = vmx->nr_active_uret_msrs++;
1787 
1788 	tmp = vmx->guest_uret_msrs[to];
1789 	vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1790 	vmx->guest_uret_msrs[from] = tmp;
1791 }
1792 
1793 /*
1794  * Set up the vmcs to automatically save and restore system
1795  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1796  * mode, as fiddling with msrs is very expensive.
1797  */
setup_msrs(struct vcpu_vmx * vmx)1798 static void setup_msrs(struct vcpu_vmx *vmx)
1799 {
1800 	vmx->guest_uret_msrs_loaded = false;
1801 	vmx->nr_active_uret_msrs = 0;
1802 #ifdef CONFIG_X86_64
1803 	/*
1804 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1805 	 * when EFER.SCE is set.
1806 	 */
1807 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1808 		vmx_setup_uret_msr(vmx, MSR_STAR);
1809 		vmx_setup_uret_msr(vmx, MSR_LSTAR);
1810 		vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1811 	}
1812 #endif
1813 	if (update_transition_efer(vmx))
1814 		vmx_setup_uret_msr(vmx, MSR_EFER);
1815 
1816 	if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1817 		vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1818 
1819 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1820 
1821 	if (cpu_has_vmx_msr_bitmap())
1822 		vmx_update_msr_bitmap(&vmx->vcpu);
1823 }
1824 
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1825 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1826 {
1827 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1828 	u64 g_tsc_offset = 0;
1829 
1830 	/*
1831 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1832 	 * to the spec, this should set L1's TSC; The offset that L1
1833 	 * set for L2 remains unchanged, and still needs to be added
1834 	 * to the newly set TSC to get L2's TSC.
1835 	 */
1836 	if (is_guest_mode(vcpu) &&
1837 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1838 		g_tsc_offset = vmcs12->tsc_offset;
1839 
1840 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1841 				   vcpu->arch.tsc_offset - g_tsc_offset,
1842 				   offset);
1843 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1844 	return offset + g_tsc_offset;
1845 }
1846 
1847 /*
1848  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1849  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1850  * all guests if the "nested" module option is off, and can also be disabled
1851  * for a single guest by disabling its VMX cpuid bit.
1852  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1853 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1854 {
1855 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1856 }
1857 
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1858 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1859 						 uint64_t val)
1860 {
1861 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1862 
1863 	return !(val & ~valid_bits);
1864 }
1865 
vmx_get_msr_feature(struct kvm_msr_entry * msr)1866 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1867 {
1868 	switch (msr->index) {
1869 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1870 		if (!nested)
1871 			return 1;
1872 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1873 	case MSR_IA32_PERF_CAPABILITIES:
1874 		msr->data = vmx_get_perf_capabilities();
1875 		return 0;
1876 	default:
1877 		return KVM_MSR_RET_INVALID;
1878 	}
1879 }
1880 
1881 /*
1882  * Reads an msr value (of 'msr_index') into 'pdata'.
1883  * Returns 0 on success, non-0 otherwise.
1884  * Assumes vcpu_load() was already called.
1885  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1886 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1887 {
1888 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1889 	struct vmx_uret_msr *msr;
1890 	u32 index;
1891 
1892 	switch (msr_info->index) {
1893 #ifdef CONFIG_X86_64
1894 	case MSR_FS_BASE:
1895 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1896 		break;
1897 	case MSR_GS_BASE:
1898 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1899 		break;
1900 	case MSR_KERNEL_GS_BASE:
1901 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1902 		break;
1903 #endif
1904 	case MSR_EFER:
1905 		return kvm_get_msr_common(vcpu, msr_info);
1906 	case MSR_IA32_TSX_CTRL:
1907 		if (!msr_info->host_initiated &&
1908 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1909 			return 1;
1910 		goto find_uret_msr;
1911 	case MSR_IA32_UMWAIT_CONTROL:
1912 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1913 			return 1;
1914 
1915 		msr_info->data = vmx->msr_ia32_umwait_control;
1916 		break;
1917 	case MSR_IA32_SPEC_CTRL:
1918 		if (!msr_info->host_initiated &&
1919 		    !guest_has_spec_ctrl_msr(vcpu))
1920 			return 1;
1921 
1922 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1923 		break;
1924 	case MSR_IA32_SYSENTER_CS:
1925 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1926 		break;
1927 	case MSR_IA32_SYSENTER_EIP:
1928 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1929 		break;
1930 	case MSR_IA32_SYSENTER_ESP:
1931 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1932 		break;
1933 	case MSR_IA32_BNDCFGS:
1934 		if (!kvm_mpx_supported() ||
1935 		    (!msr_info->host_initiated &&
1936 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1937 			return 1;
1938 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1939 		break;
1940 	case MSR_IA32_MCG_EXT_CTL:
1941 		if (!msr_info->host_initiated &&
1942 		    !(vmx->msr_ia32_feature_control &
1943 		      FEAT_CTL_LMCE_ENABLED))
1944 			return 1;
1945 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1946 		break;
1947 	case MSR_IA32_FEAT_CTL:
1948 		msr_info->data = vmx->msr_ia32_feature_control;
1949 		break;
1950 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1951 		if (!nested_vmx_allowed(vcpu))
1952 			return 1;
1953 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1954 				    &msr_info->data))
1955 			return 1;
1956 		/*
1957 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1958 		 * instead of just ignoring the features, different Hyper-V
1959 		 * versions are either trying to use them and fail or do some
1960 		 * sanity checking and refuse to boot. Filter all unsupported
1961 		 * features out.
1962 		 */
1963 		if (!msr_info->host_initiated &&
1964 		    vmx->nested.enlightened_vmcs_enabled)
1965 			nested_evmcs_filter_control_msr(msr_info->index,
1966 							&msr_info->data);
1967 		break;
1968 	case MSR_IA32_RTIT_CTL:
1969 		if (!vmx_pt_mode_is_host_guest())
1970 			return 1;
1971 		msr_info->data = vmx->pt_desc.guest.ctl;
1972 		break;
1973 	case MSR_IA32_RTIT_STATUS:
1974 		if (!vmx_pt_mode_is_host_guest())
1975 			return 1;
1976 		msr_info->data = vmx->pt_desc.guest.status;
1977 		break;
1978 	case MSR_IA32_RTIT_CR3_MATCH:
1979 		if (!vmx_pt_mode_is_host_guest() ||
1980 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1981 						PT_CAP_cr3_filtering))
1982 			return 1;
1983 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1984 		break;
1985 	case MSR_IA32_RTIT_OUTPUT_BASE:
1986 		if (!vmx_pt_mode_is_host_guest() ||
1987 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1988 					PT_CAP_topa_output) &&
1989 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1990 					PT_CAP_single_range_output)))
1991 			return 1;
1992 		msr_info->data = vmx->pt_desc.guest.output_base;
1993 		break;
1994 	case MSR_IA32_RTIT_OUTPUT_MASK:
1995 		if (!vmx_pt_mode_is_host_guest() ||
1996 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1997 					PT_CAP_topa_output) &&
1998 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1999 					PT_CAP_single_range_output)))
2000 			return 1;
2001 		msr_info->data = vmx->pt_desc.guest.output_mask;
2002 		break;
2003 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2004 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2005 		if (!vmx_pt_mode_is_host_guest() ||
2006 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2007 					PT_CAP_num_address_ranges)))
2008 			return 1;
2009 		if (index % 2)
2010 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2011 		else
2012 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2013 		break;
2014 	case MSR_TSC_AUX:
2015 		if (!msr_info->host_initiated &&
2016 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2017 			return 1;
2018 		goto find_uret_msr;
2019 	default:
2020 	find_uret_msr:
2021 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2022 		if (msr) {
2023 			msr_info->data = msr->data;
2024 			break;
2025 		}
2026 		return kvm_get_msr_common(vcpu, msr_info);
2027 	}
2028 
2029 	return 0;
2030 }
2031 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2032 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2033 						    u64 data)
2034 {
2035 #ifdef CONFIG_X86_64
2036 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2037 		return (u32)data;
2038 #endif
2039 	return (unsigned long)data;
2040 }
2041 
2042 /*
2043  * Writes msr value into the appropriate "register".
2044  * Returns 0 on success, non-0 otherwise.
2045  * Assumes vcpu_load() was already called.
2046  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2047 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2048 {
2049 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2050 	struct vmx_uret_msr *msr;
2051 	int ret = 0;
2052 	u32 msr_index = msr_info->index;
2053 	u64 data = msr_info->data;
2054 	u32 index;
2055 
2056 	switch (msr_index) {
2057 	case MSR_EFER:
2058 		ret = kvm_set_msr_common(vcpu, msr_info);
2059 		break;
2060 #ifdef CONFIG_X86_64
2061 	case MSR_FS_BASE:
2062 		vmx_segment_cache_clear(vmx);
2063 		vmcs_writel(GUEST_FS_BASE, data);
2064 		break;
2065 	case MSR_GS_BASE:
2066 		vmx_segment_cache_clear(vmx);
2067 		vmcs_writel(GUEST_GS_BASE, data);
2068 		break;
2069 	case MSR_KERNEL_GS_BASE:
2070 		vmx_write_guest_kernel_gs_base(vmx, data);
2071 		break;
2072 #endif
2073 	case MSR_IA32_SYSENTER_CS:
2074 		if (is_guest_mode(vcpu))
2075 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2076 		vmcs_write32(GUEST_SYSENTER_CS, data);
2077 		break;
2078 	case MSR_IA32_SYSENTER_EIP:
2079 		if (is_guest_mode(vcpu)) {
2080 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2081 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2082 		}
2083 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2084 		break;
2085 	case MSR_IA32_SYSENTER_ESP:
2086 		if (is_guest_mode(vcpu)) {
2087 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2088 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2089 		}
2090 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2091 		break;
2092 	case MSR_IA32_DEBUGCTLMSR:
2093 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2094 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2095 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2096 
2097 		ret = kvm_set_msr_common(vcpu, msr_info);
2098 		break;
2099 
2100 	case MSR_IA32_BNDCFGS:
2101 		if (!kvm_mpx_supported() ||
2102 		    (!msr_info->host_initiated &&
2103 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2104 			return 1;
2105 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2106 		    (data & MSR_IA32_BNDCFGS_RSVD))
2107 			return 1;
2108 		vmcs_write64(GUEST_BNDCFGS, data);
2109 		break;
2110 	case MSR_IA32_UMWAIT_CONTROL:
2111 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2112 			return 1;
2113 
2114 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2115 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2116 			return 1;
2117 
2118 		vmx->msr_ia32_umwait_control = data;
2119 		break;
2120 	case MSR_IA32_SPEC_CTRL:
2121 		if (!msr_info->host_initiated &&
2122 		    !guest_has_spec_ctrl_msr(vcpu))
2123 			return 1;
2124 
2125 		if (kvm_spec_ctrl_test_value(data))
2126 			return 1;
2127 
2128 		vmx->spec_ctrl = data;
2129 		if (!data)
2130 			break;
2131 
2132 		/*
2133 		 * For non-nested:
2134 		 * When it's written (to non-zero) for the first time, pass
2135 		 * it through.
2136 		 *
2137 		 * For nested:
2138 		 * The handling of the MSR bitmap for L2 guests is done in
2139 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2140 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2141 		 * in the merging. We update the vmcs01 here for L1 as well
2142 		 * since it will end up touching the MSR anyway now.
2143 		 */
2144 		vmx_disable_intercept_for_msr(vcpu,
2145 					      MSR_IA32_SPEC_CTRL,
2146 					      MSR_TYPE_RW);
2147 		break;
2148 	case MSR_IA32_TSX_CTRL:
2149 		if (!msr_info->host_initiated &&
2150 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2151 			return 1;
2152 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2153 			return 1;
2154 		goto find_uret_msr;
2155 	case MSR_IA32_PRED_CMD:
2156 		if (!msr_info->host_initiated &&
2157 		    !guest_has_pred_cmd_msr(vcpu))
2158 			return 1;
2159 
2160 		if (data & ~PRED_CMD_IBPB)
2161 			return 1;
2162 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2163 			return 1;
2164 		if (!data)
2165 			break;
2166 
2167 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2168 
2169 		/*
2170 		 * For non-nested:
2171 		 * When it's written (to non-zero) for the first time, pass
2172 		 * it through.
2173 		 *
2174 		 * For nested:
2175 		 * The handling of the MSR bitmap for L2 guests is done in
2176 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2177 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2178 		 * in the merging.
2179 		 */
2180 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2181 		break;
2182 	case MSR_IA32_CR_PAT:
2183 		if (!kvm_pat_valid(data))
2184 			return 1;
2185 
2186 		if (is_guest_mode(vcpu) &&
2187 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2188 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2189 
2190 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2191 			vmcs_write64(GUEST_IA32_PAT, data);
2192 			vcpu->arch.pat = data;
2193 			break;
2194 		}
2195 		ret = kvm_set_msr_common(vcpu, msr_info);
2196 		break;
2197 	case MSR_IA32_TSC_ADJUST:
2198 		ret = kvm_set_msr_common(vcpu, msr_info);
2199 		break;
2200 	case MSR_IA32_MCG_EXT_CTL:
2201 		if ((!msr_info->host_initiated &&
2202 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2203 		       FEAT_CTL_LMCE_ENABLED)) ||
2204 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2205 			return 1;
2206 		vcpu->arch.mcg_ext_ctl = data;
2207 		break;
2208 	case MSR_IA32_FEAT_CTL:
2209 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2210 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2211 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2212 			return 1;
2213 		vmx->msr_ia32_feature_control = data;
2214 		if (msr_info->host_initiated && data == 0)
2215 			vmx_leave_nested(vcpu);
2216 		break;
2217 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2218 		if (!msr_info->host_initiated)
2219 			return 1; /* they are read-only */
2220 		if (!nested_vmx_allowed(vcpu))
2221 			return 1;
2222 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2223 	case MSR_IA32_RTIT_CTL:
2224 		if (!vmx_pt_mode_is_host_guest() ||
2225 			vmx_rtit_ctl_check(vcpu, data) ||
2226 			vmx->nested.vmxon)
2227 			return 1;
2228 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2229 		vmx->pt_desc.guest.ctl = data;
2230 		pt_update_intercept_for_msr(vcpu);
2231 		break;
2232 	case MSR_IA32_RTIT_STATUS:
2233 		if (!pt_can_write_msr(vmx))
2234 			return 1;
2235 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2236 			return 1;
2237 		vmx->pt_desc.guest.status = data;
2238 		break;
2239 	case MSR_IA32_RTIT_CR3_MATCH:
2240 		if (!pt_can_write_msr(vmx))
2241 			return 1;
2242 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2243 					   PT_CAP_cr3_filtering))
2244 			return 1;
2245 		vmx->pt_desc.guest.cr3_match = data;
2246 		break;
2247 	case MSR_IA32_RTIT_OUTPUT_BASE:
2248 		if (!pt_can_write_msr(vmx))
2249 			return 1;
2250 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2251 					   PT_CAP_topa_output) &&
2252 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2253 					   PT_CAP_single_range_output))
2254 			return 1;
2255 		if (!pt_output_base_valid(vcpu, data))
2256 			return 1;
2257 		vmx->pt_desc.guest.output_base = data;
2258 		break;
2259 	case MSR_IA32_RTIT_OUTPUT_MASK:
2260 		if (!pt_can_write_msr(vmx))
2261 			return 1;
2262 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2263 					   PT_CAP_topa_output) &&
2264 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2265 					   PT_CAP_single_range_output))
2266 			return 1;
2267 		vmx->pt_desc.guest.output_mask = data;
2268 		break;
2269 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2270 		if (!pt_can_write_msr(vmx))
2271 			return 1;
2272 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2273 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2274 						       PT_CAP_num_address_ranges))
2275 			return 1;
2276 		if (is_noncanonical_address(data, vcpu))
2277 			return 1;
2278 		if (index % 2)
2279 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2280 		else
2281 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2282 		break;
2283 	case MSR_TSC_AUX:
2284 		if (!msr_info->host_initiated &&
2285 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2286 			return 1;
2287 		/* Check reserved bit, higher 32 bits should be zero */
2288 		if ((data >> 32) != 0)
2289 			return 1;
2290 		goto find_uret_msr;
2291 
2292 	default:
2293 	find_uret_msr:
2294 		msr = vmx_find_uret_msr(vmx, msr_index);
2295 		if (msr)
2296 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2297 		else
2298 			ret = kvm_set_msr_common(vcpu, msr_info);
2299 	}
2300 
2301 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2302 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2303 		vmx_update_fb_clear_dis(vcpu, vmx);
2304 
2305 	return ret;
2306 }
2307 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2308 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2309 {
2310 	unsigned long guest_owned_bits;
2311 
2312 	kvm_register_mark_available(vcpu, reg);
2313 
2314 	switch (reg) {
2315 	case VCPU_REGS_RSP:
2316 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2317 		break;
2318 	case VCPU_REGS_RIP:
2319 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2320 		break;
2321 	case VCPU_EXREG_PDPTR:
2322 		if (enable_ept)
2323 			ept_save_pdptrs(vcpu);
2324 		break;
2325 	case VCPU_EXREG_CR0:
2326 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2327 
2328 		vcpu->arch.cr0 &= ~guest_owned_bits;
2329 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2330 		break;
2331 	case VCPU_EXREG_CR3:
2332 		if (is_unrestricted_guest(vcpu) ||
2333 		    (enable_ept && is_paging(vcpu)))
2334 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2335 		break;
2336 	case VCPU_EXREG_CR4:
2337 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2338 
2339 		vcpu->arch.cr4 &= ~guest_owned_bits;
2340 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2341 		break;
2342 	default:
2343 		WARN_ON_ONCE(1);
2344 		break;
2345 	}
2346 }
2347 
cpu_has_kvm_support(void)2348 static __init int cpu_has_kvm_support(void)
2349 {
2350 	return cpu_has_vmx();
2351 }
2352 
vmx_disabled_by_bios(void)2353 static __init int vmx_disabled_by_bios(void)
2354 {
2355 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2356 	       !boot_cpu_has(X86_FEATURE_VMX);
2357 }
2358 
kvm_cpu_vmxon(u64 vmxon_pointer)2359 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2360 {
2361 	u64 msr;
2362 
2363 	cr4_set_bits(X86_CR4_VMXE);
2364 	intel_pt_handle_vmx(1);
2365 
2366 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2367 			  _ASM_EXTABLE(1b, %l[fault])
2368 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2369 			  : : fault);
2370 	return 0;
2371 
2372 fault:
2373 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2374 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2375 	intel_pt_handle_vmx(0);
2376 	cr4_clear_bits(X86_CR4_VMXE);
2377 
2378 	return -EFAULT;
2379 }
2380 
hardware_enable(void)2381 static int hardware_enable(void)
2382 {
2383 	int cpu = raw_smp_processor_id();
2384 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2385 	int r;
2386 
2387 	if (cr4_read_shadow() & X86_CR4_VMXE)
2388 		return -EBUSY;
2389 
2390 	/*
2391 	 * This can happen if we hot-added a CPU but failed to allocate
2392 	 * VP assist page for it.
2393 	 */
2394 	if (static_branch_unlikely(&enable_evmcs) &&
2395 	    !hv_get_vp_assist_page(cpu))
2396 		return -EFAULT;
2397 
2398 	r = kvm_cpu_vmxon(phys_addr);
2399 	if (r)
2400 		return r;
2401 
2402 	if (enable_ept)
2403 		ept_sync_global();
2404 
2405 	return 0;
2406 }
2407 
vmclear_local_loaded_vmcss(void)2408 static void vmclear_local_loaded_vmcss(void)
2409 {
2410 	int cpu = raw_smp_processor_id();
2411 	struct loaded_vmcs *v, *n;
2412 
2413 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2414 				 loaded_vmcss_on_cpu_link)
2415 		__loaded_vmcs_clear(v);
2416 }
2417 
2418 
2419 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2420  * tricks.
2421  */
kvm_cpu_vmxoff(void)2422 static void kvm_cpu_vmxoff(void)
2423 {
2424 	asm volatile (__ex("vmxoff"));
2425 
2426 	intel_pt_handle_vmx(0);
2427 	cr4_clear_bits(X86_CR4_VMXE);
2428 }
2429 
hardware_disable(void)2430 static void hardware_disable(void)
2431 {
2432 	vmclear_local_loaded_vmcss();
2433 	kvm_cpu_vmxoff();
2434 }
2435 
2436 /*
2437  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2438  * directly instead of going through cpu_has(), to ensure KVM is trapping
2439  * ENCLS whenever it's supported in hardware.  It does not matter whether
2440  * the host OS supports or has enabled SGX.
2441  */
cpu_has_sgx(void)2442 static bool cpu_has_sgx(void)
2443 {
2444 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2445 }
2446 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2447 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2448 				      u32 msr, u32 *result)
2449 {
2450 	u32 vmx_msr_low, vmx_msr_high;
2451 	u32 ctl = ctl_min | ctl_opt;
2452 
2453 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2454 
2455 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2456 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2457 
2458 	/* Ensure minimum (required) set of control bits are supported. */
2459 	if (ctl_min & ~ctl)
2460 		return -EIO;
2461 
2462 	*result = ctl;
2463 	return 0;
2464 }
2465 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2466 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2467 				    struct vmx_capability *vmx_cap)
2468 {
2469 	u32 vmx_msr_low, vmx_msr_high;
2470 	u32 min, opt, min2, opt2;
2471 	u32 _pin_based_exec_control = 0;
2472 	u32 _cpu_based_exec_control = 0;
2473 	u32 _cpu_based_2nd_exec_control = 0;
2474 	u32 _vmexit_control = 0;
2475 	u32 _vmentry_control = 0;
2476 
2477 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2478 	min = CPU_BASED_HLT_EXITING |
2479 #ifdef CONFIG_X86_64
2480 	      CPU_BASED_CR8_LOAD_EXITING |
2481 	      CPU_BASED_CR8_STORE_EXITING |
2482 #endif
2483 	      CPU_BASED_CR3_LOAD_EXITING |
2484 	      CPU_BASED_CR3_STORE_EXITING |
2485 	      CPU_BASED_UNCOND_IO_EXITING |
2486 	      CPU_BASED_MOV_DR_EXITING |
2487 	      CPU_BASED_USE_TSC_OFFSETTING |
2488 	      CPU_BASED_MWAIT_EXITING |
2489 	      CPU_BASED_MONITOR_EXITING |
2490 	      CPU_BASED_INVLPG_EXITING |
2491 	      CPU_BASED_RDPMC_EXITING;
2492 
2493 	opt = CPU_BASED_TPR_SHADOW |
2494 	      CPU_BASED_USE_MSR_BITMAPS |
2495 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2496 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2497 				&_cpu_based_exec_control) < 0)
2498 		return -EIO;
2499 #ifdef CONFIG_X86_64
2500 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2501 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2502 					   ~CPU_BASED_CR8_STORE_EXITING;
2503 #endif
2504 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2505 		min2 = 0;
2506 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2507 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2508 			SECONDARY_EXEC_WBINVD_EXITING |
2509 			SECONDARY_EXEC_ENABLE_VPID |
2510 			SECONDARY_EXEC_ENABLE_EPT |
2511 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2512 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2513 			SECONDARY_EXEC_DESC |
2514 			SECONDARY_EXEC_ENABLE_RDTSCP |
2515 			SECONDARY_EXEC_ENABLE_INVPCID |
2516 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2517 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2518 			SECONDARY_EXEC_SHADOW_VMCS |
2519 			SECONDARY_EXEC_XSAVES |
2520 			SECONDARY_EXEC_RDSEED_EXITING |
2521 			SECONDARY_EXEC_RDRAND_EXITING |
2522 			SECONDARY_EXEC_ENABLE_PML |
2523 			SECONDARY_EXEC_TSC_SCALING |
2524 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2525 			SECONDARY_EXEC_PT_USE_GPA |
2526 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2527 			SECONDARY_EXEC_ENABLE_VMFUNC;
2528 		if (cpu_has_sgx())
2529 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2530 		if (adjust_vmx_controls(min2, opt2,
2531 					MSR_IA32_VMX_PROCBASED_CTLS2,
2532 					&_cpu_based_2nd_exec_control) < 0)
2533 			return -EIO;
2534 	}
2535 #ifndef CONFIG_X86_64
2536 	if (!(_cpu_based_2nd_exec_control &
2537 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2538 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2539 #endif
2540 
2541 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2542 		_cpu_based_2nd_exec_control &= ~(
2543 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2544 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2545 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2546 
2547 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2548 		&vmx_cap->ept, &vmx_cap->vpid);
2549 
2550 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2551 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2552 		   enabled */
2553 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2554 					     CPU_BASED_CR3_STORE_EXITING |
2555 					     CPU_BASED_INVLPG_EXITING);
2556 	} else if (vmx_cap->ept) {
2557 		vmx_cap->ept = 0;
2558 		pr_warn_once("EPT CAP should not exist if not support "
2559 				"1-setting enable EPT VM-execution control\n");
2560 	}
2561 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2562 		vmx_cap->vpid) {
2563 		vmx_cap->vpid = 0;
2564 		pr_warn_once("VPID CAP should not exist if not support "
2565 				"1-setting enable VPID VM-execution control\n");
2566 	}
2567 
2568 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2569 #ifdef CONFIG_X86_64
2570 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2571 #endif
2572 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2573 	      VM_EXIT_LOAD_IA32_PAT |
2574 	      VM_EXIT_LOAD_IA32_EFER |
2575 	      VM_EXIT_CLEAR_BNDCFGS |
2576 	      VM_EXIT_PT_CONCEAL_PIP |
2577 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2578 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2579 				&_vmexit_control) < 0)
2580 		return -EIO;
2581 
2582 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2583 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2584 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2585 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2586 				&_pin_based_exec_control) < 0)
2587 		return -EIO;
2588 
2589 	if (cpu_has_broken_vmx_preemption_timer())
2590 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2591 	if (!(_cpu_based_2nd_exec_control &
2592 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2593 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2594 
2595 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2596 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2597 	      VM_ENTRY_LOAD_IA32_PAT |
2598 	      VM_ENTRY_LOAD_IA32_EFER |
2599 	      VM_ENTRY_LOAD_BNDCFGS |
2600 	      VM_ENTRY_PT_CONCEAL_PIP |
2601 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2602 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2603 				&_vmentry_control) < 0)
2604 		return -EIO;
2605 
2606 	/*
2607 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2608 	 * can't be used due to an errata where VM Exit may incorrectly clear
2609 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2610 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2611 	 */
2612 	if (boot_cpu_data.x86 == 0x6) {
2613 		switch (boot_cpu_data.x86_model) {
2614 		case 26: /* AAK155 */
2615 		case 30: /* AAP115 */
2616 		case 37: /* AAT100 */
2617 		case 44: /* BC86,AAY89,BD102 */
2618 		case 46: /* BA97 */
2619 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2620 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2621 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2622 					"does not work properly. Using workaround\n");
2623 			break;
2624 		default:
2625 			break;
2626 		}
2627 	}
2628 
2629 
2630 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2631 
2632 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2633 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2634 		return -EIO;
2635 
2636 #ifdef CONFIG_X86_64
2637 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2638 	if (vmx_msr_high & (1u<<16))
2639 		return -EIO;
2640 #endif
2641 
2642 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2643 	if (((vmx_msr_high >> 18) & 15) != 6)
2644 		return -EIO;
2645 
2646 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2647 	vmcs_conf->order = get_order(vmcs_conf->size);
2648 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2649 
2650 	vmcs_conf->revision_id = vmx_msr_low;
2651 
2652 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2653 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2654 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2655 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2656 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2657 
2658 #if IS_ENABLED(CONFIG_HYPERV)
2659 	if (enlightened_vmcs)
2660 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2661 #endif
2662 
2663 	return 0;
2664 }
2665 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2666 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2667 {
2668 	int node = cpu_to_node(cpu);
2669 	struct page *pages;
2670 	struct vmcs *vmcs;
2671 
2672 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2673 	if (!pages)
2674 		return NULL;
2675 	vmcs = page_address(pages);
2676 	memset(vmcs, 0, vmcs_config.size);
2677 
2678 	/* KVM supports Enlightened VMCS v1 only */
2679 	if (static_branch_unlikely(&enable_evmcs))
2680 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2681 	else
2682 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2683 
2684 	if (shadow)
2685 		vmcs->hdr.shadow_vmcs = 1;
2686 	return vmcs;
2687 }
2688 
free_vmcs(struct vmcs * vmcs)2689 void free_vmcs(struct vmcs *vmcs)
2690 {
2691 	free_pages((unsigned long)vmcs, vmcs_config.order);
2692 }
2693 
2694 /*
2695  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2696  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2697 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2698 {
2699 	if (!loaded_vmcs->vmcs)
2700 		return;
2701 	loaded_vmcs_clear(loaded_vmcs);
2702 	free_vmcs(loaded_vmcs->vmcs);
2703 	loaded_vmcs->vmcs = NULL;
2704 	if (loaded_vmcs->msr_bitmap)
2705 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2706 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2707 }
2708 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2709 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2710 {
2711 	loaded_vmcs->vmcs = alloc_vmcs(false);
2712 	if (!loaded_vmcs->vmcs)
2713 		return -ENOMEM;
2714 
2715 	vmcs_clear(loaded_vmcs->vmcs);
2716 
2717 	loaded_vmcs->shadow_vmcs = NULL;
2718 	loaded_vmcs->hv_timer_soft_disabled = false;
2719 	loaded_vmcs->cpu = -1;
2720 	loaded_vmcs->launched = 0;
2721 
2722 	if (cpu_has_vmx_msr_bitmap()) {
2723 		loaded_vmcs->msr_bitmap = (unsigned long *)
2724 				__get_free_page(GFP_KERNEL_ACCOUNT);
2725 		if (!loaded_vmcs->msr_bitmap)
2726 			goto out_vmcs;
2727 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2728 
2729 		if (IS_ENABLED(CONFIG_HYPERV) &&
2730 		    static_branch_unlikely(&enable_evmcs) &&
2731 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2732 			struct hv_enlightened_vmcs *evmcs =
2733 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2734 
2735 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2736 		}
2737 	}
2738 
2739 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2740 	memset(&loaded_vmcs->controls_shadow, 0,
2741 		sizeof(struct vmcs_controls_shadow));
2742 
2743 	return 0;
2744 
2745 out_vmcs:
2746 	free_loaded_vmcs(loaded_vmcs);
2747 	return -ENOMEM;
2748 }
2749 
free_kvm_area(void)2750 static void free_kvm_area(void)
2751 {
2752 	int cpu;
2753 
2754 	for_each_possible_cpu(cpu) {
2755 		free_vmcs(per_cpu(vmxarea, cpu));
2756 		per_cpu(vmxarea, cpu) = NULL;
2757 	}
2758 }
2759 
alloc_kvm_area(void)2760 static __init int alloc_kvm_area(void)
2761 {
2762 	int cpu;
2763 
2764 	for_each_possible_cpu(cpu) {
2765 		struct vmcs *vmcs;
2766 
2767 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2768 		if (!vmcs) {
2769 			free_kvm_area();
2770 			return -ENOMEM;
2771 		}
2772 
2773 		/*
2774 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2775 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2776 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2777 		 *
2778 		 * However, even though not explicitly documented by
2779 		 * TLFS, VMXArea passed as VMXON argument should
2780 		 * still be marked with revision_id reported by
2781 		 * physical CPU.
2782 		 */
2783 		if (static_branch_unlikely(&enable_evmcs))
2784 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2785 
2786 		per_cpu(vmxarea, cpu) = vmcs;
2787 	}
2788 	return 0;
2789 }
2790 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2791 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2792 		struct kvm_segment *save)
2793 {
2794 	if (!emulate_invalid_guest_state) {
2795 		/*
2796 		 * CS and SS RPL should be equal during guest entry according
2797 		 * to VMX spec, but in reality it is not always so. Since vcpu
2798 		 * is in the middle of the transition from real mode to
2799 		 * protected mode it is safe to assume that RPL 0 is a good
2800 		 * default value.
2801 		 */
2802 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2803 			save->selector &= ~SEGMENT_RPL_MASK;
2804 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2805 		save->s = 1;
2806 	}
2807 	vmx_set_segment(vcpu, save, seg);
2808 }
2809 
enter_pmode(struct kvm_vcpu * vcpu)2810 static void enter_pmode(struct kvm_vcpu *vcpu)
2811 {
2812 	unsigned long flags;
2813 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2814 
2815 	/*
2816 	 * Update real mode segment cache. It may be not up-to-date if sement
2817 	 * register was written while vcpu was in a guest mode.
2818 	 */
2819 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2820 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2821 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2823 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2824 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2825 
2826 	vmx->rmode.vm86_active = 0;
2827 
2828 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2829 
2830 	flags = vmcs_readl(GUEST_RFLAGS);
2831 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2832 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2833 	vmcs_writel(GUEST_RFLAGS, flags);
2834 
2835 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2836 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2837 
2838 	update_exception_bitmap(vcpu);
2839 
2840 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2841 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2842 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2843 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2844 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2845 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2846 }
2847 
fix_rmode_seg(int seg,struct kvm_segment * save)2848 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2849 {
2850 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2851 	struct kvm_segment var = *save;
2852 
2853 	var.dpl = 0x3;
2854 	if (seg == VCPU_SREG_CS)
2855 		var.type = 0x3;
2856 
2857 	if (!emulate_invalid_guest_state) {
2858 		var.selector = var.base >> 4;
2859 		var.base = var.base & 0xffff0;
2860 		var.limit = 0xffff;
2861 		var.g = 0;
2862 		var.db = 0;
2863 		var.present = 1;
2864 		var.s = 1;
2865 		var.l = 0;
2866 		var.unusable = 0;
2867 		var.type = 0x3;
2868 		var.avl = 0;
2869 		if (save->base & 0xf)
2870 			printk_once(KERN_WARNING "kvm: segment base is not "
2871 					"paragraph aligned when entering "
2872 					"protected mode (seg=%d)", seg);
2873 	}
2874 
2875 	vmcs_write16(sf->selector, var.selector);
2876 	vmcs_writel(sf->base, var.base);
2877 	vmcs_write32(sf->limit, var.limit);
2878 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2879 }
2880 
enter_rmode(struct kvm_vcpu * vcpu)2881 static void enter_rmode(struct kvm_vcpu *vcpu)
2882 {
2883 	unsigned long flags;
2884 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2885 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2886 
2887 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2888 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2889 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2890 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2891 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2892 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2893 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2894 
2895 	vmx->rmode.vm86_active = 1;
2896 
2897 	/*
2898 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2899 	 * vcpu. Warn the user that an update is overdue.
2900 	 */
2901 	if (!kvm_vmx->tss_addr)
2902 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2903 			     "called before entering vcpu\n");
2904 
2905 	vmx_segment_cache_clear(vmx);
2906 
2907 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2908 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2909 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2910 
2911 	flags = vmcs_readl(GUEST_RFLAGS);
2912 	vmx->rmode.save_rflags = flags;
2913 
2914 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2915 
2916 	vmcs_writel(GUEST_RFLAGS, flags);
2917 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2918 	update_exception_bitmap(vcpu);
2919 
2920 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2921 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2922 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2923 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2924 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2925 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2926 
2927 	kvm_mmu_reset_context(vcpu);
2928 }
2929 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2930 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2931 {
2932 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2933 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2934 
2935 	/* Nothing to do if hardware doesn't support EFER. */
2936 	if (!msr)
2937 		return 0;
2938 
2939 	vcpu->arch.efer = efer;
2940 	if (efer & EFER_LMA) {
2941 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2942 		msr->data = efer;
2943 	} else {
2944 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2945 
2946 		msr->data = efer & ~EFER_LME;
2947 	}
2948 	setup_msrs(vmx);
2949 	return 0;
2950 }
2951 
2952 #ifdef CONFIG_X86_64
2953 
enter_lmode(struct kvm_vcpu * vcpu)2954 static void enter_lmode(struct kvm_vcpu *vcpu)
2955 {
2956 	u32 guest_tr_ar;
2957 
2958 	vmx_segment_cache_clear(to_vmx(vcpu));
2959 
2960 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2961 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2962 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2963 				     __func__);
2964 		vmcs_write32(GUEST_TR_AR_BYTES,
2965 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2966 			     | VMX_AR_TYPE_BUSY_64_TSS);
2967 	}
2968 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2969 }
2970 
exit_lmode(struct kvm_vcpu * vcpu)2971 static void exit_lmode(struct kvm_vcpu *vcpu)
2972 {
2973 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2974 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2975 }
2976 
2977 #endif
2978 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2979 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2980 {
2981 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2982 
2983 	/*
2984 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2985 	 * the CPU is not required to invalidate guest-physical mappings on
2986 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2987 	 * associated with the root EPT structure and not any particular VPID
2988 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2989 	 */
2990 	if (enable_ept) {
2991 		ept_sync_global();
2992 	} else if (enable_vpid) {
2993 		if (cpu_has_vmx_invvpid_global()) {
2994 			vpid_sync_vcpu_global();
2995 		} else {
2996 			vpid_sync_vcpu_single(vmx->vpid);
2997 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2998 		}
2999 	}
3000 }
3001 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3002 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3003 {
3004 	if (is_guest_mode(vcpu))
3005 		return nested_get_vpid02(vcpu);
3006 	return to_vmx(vcpu)->vpid;
3007 }
3008 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3009 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3010 {
3011 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3012 	u64 root_hpa = mmu->root_hpa;
3013 
3014 	/* No flush required if the current context is invalid. */
3015 	if (!VALID_PAGE(root_hpa))
3016 		return;
3017 
3018 	if (enable_ept)
3019 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3020 						mmu->shadow_root_level));
3021 	else
3022 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3023 }
3024 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3025 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3026 {
3027 	/*
3028 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3029 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3030 	 */
3031 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3032 }
3033 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3034 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3035 {
3036 	/*
3037 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3038 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3039 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3040 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3041 	 * i.e. no explicit INVVPID is necessary.
3042 	 */
3043 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3044 }
3045 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3046 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3047 {
3048 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3049 
3050 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3051 		return;
3052 
3053 	if (is_pae_paging(vcpu)) {
3054 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3055 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3056 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3057 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3058 	}
3059 }
3060 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3061 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3062 {
3063 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3064 
3065 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3066 		return;
3067 
3068 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3069 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3070 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3071 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3072 
3073 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3074 }
3075 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3076 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3077 					unsigned long cr0,
3078 					struct kvm_vcpu *vcpu)
3079 {
3080 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3081 
3082 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3083 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3084 	if (!(cr0 & X86_CR0_PG)) {
3085 		/* From paging/starting to nonpaging */
3086 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3087 					  CPU_BASED_CR3_STORE_EXITING);
3088 		vcpu->arch.cr0 = cr0;
3089 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3090 	} else if (!is_paging(vcpu)) {
3091 		/* From nonpaging to paging */
3092 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3093 					    CPU_BASED_CR3_STORE_EXITING);
3094 		vcpu->arch.cr0 = cr0;
3095 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3096 	}
3097 
3098 	if (!(cr0 & X86_CR0_WP))
3099 		*hw_cr0 &= ~X86_CR0_WP;
3100 }
3101 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3102 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3103 {
3104 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3105 	unsigned long hw_cr0;
3106 
3107 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3108 	if (is_unrestricted_guest(vcpu))
3109 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3110 	else {
3111 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3112 
3113 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3114 			enter_pmode(vcpu);
3115 
3116 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3117 			enter_rmode(vcpu);
3118 	}
3119 
3120 #ifdef CONFIG_X86_64
3121 	if (vcpu->arch.efer & EFER_LME) {
3122 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3123 			enter_lmode(vcpu);
3124 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3125 			exit_lmode(vcpu);
3126 	}
3127 #endif
3128 
3129 	if (enable_ept && !is_unrestricted_guest(vcpu))
3130 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3131 
3132 	vmcs_writel(CR0_READ_SHADOW, cr0);
3133 	vmcs_writel(GUEST_CR0, hw_cr0);
3134 	vcpu->arch.cr0 = cr0;
3135 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3136 
3137 	/* depends on vcpu->arch.cr0 to be set to a new value */
3138 	vmx->emulation_required = emulation_required(vcpu);
3139 }
3140 
vmx_get_max_tdp_level(void)3141 static int vmx_get_max_tdp_level(void)
3142 {
3143 	if (cpu_has_vmx_ept_5levels())
3144 		return 5;
3145 	return 4;
3146 }
3147 
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3148 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3149 		   int root_level)
3150 {
3151 	u64 eptp = VMX_EPTP_MT_WB;
3152 
3153 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3154 
3155 	if (enable_ept_ad_bits &&
3156 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3157 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3158 	eptp |= (root_hpa & PAGE_MASK);
3159 
3160 	return eptp;
3161 }
3162 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3163 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3164 			     int pgd_level)
3165 {
3166 	struct kvm *kvm = vcpu->kvm;
3167 	bool update_guest_cr3 = true;
3168 	unsigned long guest_cr3;
3169 	u64 eptp;
3170 
3171 	if (enable_ept) {
3172 		eptp = construct_eptp(vcpu, pgd, pgd_level);
3173 		vmcs_write64(EPT_POINTER, eptp);
3174 
3175 		if (kvm_x86_ops.tlb_remote_flush) {
3176 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3177 			to_vmx(vcpu)->ept_pointer = eptp;
3178 			to_kvm_vmx(kvm)->ept_pointers_match
3179 				= EPT_POINTERS_CHECK;
3180 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3181 		}
3182 
3183 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3184 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3185 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3186 			guest_cr3 = vcpu->arch.cr3;
3187 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3188 			update_guest_cr3 = false;
3189 		vmx_ept_load_pdptrs(vcpu);
3190 	} else {
3191 		guest_cr3 = pgd;
3192 	}
3193 
3194 	if (update_guest_cr3)
3195 		vmcs_writel(GUEST_CR3, guest_cr3);
3196 }
3197 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3198 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3199 {
3200 	/*
3201 	 * We operate under the default treatment of SMM, so VMX cannot be
3202 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3203 	 * handled by kvm_valid_cr4().
3204 	 */
3205 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3206 		return false;
3207 
3208 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3209 		return false;
3210 
3211 	return true;
3212 }
3213 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3214 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3215 {
3216 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3217 	/*
3218 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3219 	 * is in force while we are in guest mode.  Do not let guests control
3220 	 * this bit, even if host CR4.MCE == 0.
3221 	 */
3222 	unsigned long hw_cr4;
3223 
3224 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3225 	if (is_unrestricted_guest(vcpu))
3226 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3227 	else if (vmx->rmode.vm86_active)
3228 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3229 	else
3230 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3231 
3232 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3233 		if (cr4 & X86_CR4_UMIP) {
3234 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3235 			hw_cr4 &= ~X86_CR4_UMIP;
3236 		} else if (!is_guest_mode(vcpu) ||
3237 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3238 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3239 		}
3240 	}
3241 
3242 	vcpu->arch.cr4 = cr4;
3243 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3244 
3245 	if (!is_unrestricted_guest(vcpu)) {
3246 		if (enable_ept) {
3247 			if (!is_paging(vcpu)) {
3248 				hw_cr4 &= ~X86_CR4_PAE;
3249 				hw_cr4 |= X86_CR4_PSE;
3250 			} else if (!(cr4 & X86_CR4_PAE)) {
3251 				hw_cr4 &= ~X86_CR4_PAE;
3252 			}
3253 		}
3254 
3255 		/*
3256 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3257 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3258 		 * to be manually disabled when guest switches to non-paging
3259 		 * mode.
3260 		 *
3261 		 * If !enable_unrestricted_guest, the CPU is always running
3262 		 * with CR0.PG=1 and CR4 needs to be modified.
3263 		 * If enable_unrestricted_guest, the CPU automatically
3264 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3265 		 */
3266 		if (!is_paging(vcpu))
3267 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3268 	}
3269 
3270 	vmcs_writel(CR4_READ_SHADOW, cr4);
3271 	vmcs_writel(GUEST_CR4, hw_cr4);
3272 }
3273 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3274 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3275 {
3276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3277 	u32 ar;
3278 
3279 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3280 		*var = vmx->rmode.segs[seg];
3281 		if (seg == VCPU_SREG_TR
3282 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3283 			return;
3284 		var->base = vmx_read_guest_seg_base(vmx, seg);
3285 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3286 		return;
3287 	}
3288 	var->base = vmx_read_guest_seg_base(vmx, seg);
3289 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3290 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3291 	ar = vmx_read_guest_seg_ar(vmx, seg);
3292 	var->unusable = (ar >> 16) & 1;
3293 	var->type = ar & 15;
3294 	var->s = (ar >> 4) & 1;
3295 	var->dpl = (ar >> 5) & 3;
3296 	/*
3297 	 * Some userspaces do not preserve unusable property. Since usable
3298 	 * segment has to be present according to VMX spec we can use present
3299 	 * property to amend userspace bug by making unusable segment always
3300 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3301 	 * segment as unusable.
3302 	 */
3303 	var->present = !var->unusable;
3304 	var->avl = (ar >> 12) & 1;
3305 	var->l = (ar >> 13) & 1;
3306 	var->db = (ar >> 14) & 1;
3307 	var->g = (ar >> 15) & 1;
3308 }
3309 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3310 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3311 {
3312 	struct kvm_segment s;
3313 
3314 	if (to_vmx(vcpu)->rmode.vm86_active) {
3315 		vmx_get_segment(vcpu, &s, seg);
3316 		return s.base;
3317 	}
3318 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3319 }
3320 
vmx_get_cpl(struct kvm_vcpu * vcpu)3321 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3322 {
3323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3324 
3325 	if (unlikely(vmx->rmode.vm86_active))
3326 		return 0;
3327 	else {
3328 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3329 		return VMX_AR_DPL(ar);
3330 	}
3331 }
3332 
vmx_segment_access_rights(struct kvm_segment * var)3333 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3334 {
3335 	u32 ar;
3336 
3337 	if (var->unusable || !var->present)
3338 		ar = 1 << 16;
3339 	else {
3340 		ar = var->type & 15;
3341 		ar |= (var->s & 1) << 4;
3342 		ar |= (var->dpl & 3) << 5;
3343 		ar |= (var->present & 1) << 7;
3344 		ar |= (var->avl & 1) << 12;
3345 		ar |= (var->l & 1) << 13;
3346 		ar |= (var->db & 1) << 14;
3347 		ar |= (var->g & 1) << 15;
3348 	}
3349 
3350 	return ar;
3351 }
3352 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3353 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3354 {
3355 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3356 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3357 
3358 	vmx_segment_cache_clear(vmx);
3359 
3360 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3361 		vmx->rmode.segs[seg] = *var;
3362 		if (seg == VCPU_SREG_TR)
3363 			vmcs_write16(sf->selector, var->selector);
3364 		else if (var->s)
3365 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3366 		goto out;
3367 	}
3368 
3369 	vmcs_writel(sf->base, var->base);
3370 	vmcs_write32(sf->limit, var->limit);
3371 	vmcs_write16(sf->selector, var->selector);
3372 
3373 	/*
3374 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3375 	 * qemu binaries.
3376 	 *   IA32 arch specifies that at the time of processor reset the
3377 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3378 	 * is setting it to 0 in the userland code. This causes invalid guest
3379 	 * state vmexit when "unrestricted guest" mode is turned on.
3380 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3381 	 * tree. Newer qemu binaries with that qemu fix would not need this
3382 	 * kvm hack.
3383 	 */
3384 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3385 		var->type |= 0x1; /* Accessed */
3386 
3387 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3388 
3389 out:
3390 	vmx->emulation_required = emulation_required(vcpu);
3391 }
3392 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3393 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3394 {
3395 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3396 
3397 	*db = (ar >> 14) & 1;
3398 	*l = (ar >> 13) & 1;
3399 }
3400 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3401 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3402 {
3403 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3404 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3405 }
3406 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3407 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3408 {
3409 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3410 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3411 }
3412 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3413 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3414 {
3415 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3416 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3417 }
3418 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3419 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3420 {
3421 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3422 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3423 }
3424 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3425 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3426 {
3427 	struct kvm_segment var;
3428 	u32 ar;
3429 
3430 	vmx_get_segment(vcpu, &var, seg);
3431 	var.dpl = 0x3;
3432 	if (seg == VCPU_SREG_CS)
3433 		var.type = 0x3;
3434 	ar = vmx_segment_access_rights(&var);
3435 
3436 	if (var.base != (var.selector << 4))
3437 		return false;
3438 	if (var.limit != 0xffff)
3439 		return false;
3440 	if (ar != 0xf3)
3441 		return false;
3442 
3443 	return true;
3444 }
3445 
code_segment_valid(struct kvm_vcpu * vcpu)3446 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3447 {
3448 	struct kvm_segment cs;
3449 	unsigned int cs_rpl;
3450 
3451 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3452 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3453 
3454 	if (cs.unusable)
3455 		return false;
3456 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3457 		return false;
3458 	if (!cs.s)
3459 		return false;
3460 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3461 		if (cs.dpl > cs_rpl)
3462 			return false;
3463 	} else {
3464 		if (cs.dpl != cs_rpl)
3465 			return false;
3466 	}
3467 	if (!cs.present)
3468 		return false;
3469 
3470 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3471 	return true;
3472 }
3473 
stack_segment_valid(struct kvm_vcpu * vcpu)3474 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3475 {
3476 	struct kvm_segment ss;
3477 	unsigned int ss_rpl;
3478 
3479 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3480 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3481 
3482 	if (ss.unusable)
3483 		return true;
3484 	if (ss.type != 3 && ss.type != 7)
3485 		return false;
3486 	if (!ss.s)
3487 		return false;
3488 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3489 		return false;
3490 	if (!ss.present)
3491 		return false;
3492 
3493 	return true;
3494 }
3495 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3496 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3497 {
3498 	struct kvm_segment var;
3499 	unsigned int rpl;
3500 
3501 	vmx_get_segment(vcpu, &var, seg);
3502 	rpl = var.selector & SEGMENT_RPL_MASK;
3503 
3504 	if (var.unusable)
3505 		return true;
3506 	if (!var.s)
3507 		return false;
3508 	if (!var.present)
3509 		return false;
3510 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3511 		if (var.dpl < rpl) /* DPL < RPL */
3512 			return false;
3513 	}
3514 
3515 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3516 	 * rights flags
3517 	 */
3518 	return true;
3519 }
3520 
tr_valid(struct kvm_vcpu * vcpu)3521 static bool tr_valid(struct kvm_vcpu *vcpu)
3522 {
3523 	struct kvm_segment tr;
3524 
3525 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3526 
3527 	if (tr.unusable)
3528 		return false;
3529 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3530 		return false;
3531 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3532 		return false;
3533 	if (!tr.present)
3534 		return false;
3535 
3536 	return true;
3537 }
3538 
ldtr_valid(struct kvm_vcpu * vcpu)3539 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3540 {
3541 	struct kvm_segment ldtr;
3542 
3543 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3544 
3545 	if (ldtr.unusable)
3546 		return true;
3547 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3548 		return false;
3549 	if (ldtr.type != 2)
3550 		return false;
3551 	if (!ldtr.present)
3552 		return false;
3553 
3554 	return true;
3555 }
3556 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3557 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3558 {
3559 	struct kvm_segment cs, ss;
3560 
3561 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3562 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3563 
3564 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3565 		 (ss.selector & SEGMENT_RPL_MASK));
3566 }
3567 
3568 /*
3569  * Check if guest state is valid. Returns true if valid, false if
3570  * not.
3571  * We assume that registers are always usable
3572  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3573 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3574 {
3575 	/* real mode guest state checks */
3576 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3577 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3578 			return false;
3579 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3580 			return false;
3581 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3582 			return false;
3583 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3584 			return false;
3585 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3586 			return false;
3587 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3588 			return false;
3589 	} else {
3590 	/* protected mode guest state checks */
3591 		if (!cs_ss_rpl_check(vcpu))
3592 			return false;
3593 		if (!code_segment_valid(vcpu))
3594 			return false;
3595 		if (!stack_segment_valid(vcpu))
3596 			return false;
3597 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3598 			return false;
3599 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3600 			return false;
3601 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3602 			return false;
3603 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3604 			return false;
3605 		if (!tr_valid(vcpu))
3606 			return false;
3607 		if (!ldtr_valid(vcpu))
3608 			return false;
3609 	}
3610 	/* TODO:
3611 	 * - Add checks on RIP
3612 	 * - Add checks on RFLAGS
3613 	 */
3614 
3615 	return true;
3616 }
3617 
init_rmode_tss(struct kvm * kvm)3618 static int init_rmode_tss(struct kvm *kvm)
3619 {
3620 	gfn_t fn;
3621 	u16 data = 0;
3622 	int idx, r;
3623 
3624 	idx = srcu_read_lock(&kvm->srcu);
3625 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3626 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3627 	if (r < 0)
3628 		goto out;
3629 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3630 	r = kvm_write_guest_page(kvm, fn++, &data,
3631 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3632 	if (r < 0)
3633 		goto out;
3634 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3635 	if (r < 0)
3636 		goto out;
3637 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3638 	if (r < 0)
3639 		goto out;
3640 	data = ~0;
3641 	r = kvm_write_guest_page(kvm, fn, &data,
3642 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3643 				 sizeof(u8));
3644 out:
3645 	srcu_read_unlock(&kvm->srcu, idx);
3646 	return r;
3647 }
3648 
init_rmode_identity_map(struct kvm * kvm)3649 static int init_rmode_identity_map(struct kvm *kvm)
3650 {
3651 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3652 	int i, r = 0;
3653 	kvm_pfn_t identity_map_pfn;
3654 	u32 tmp;
3655 
3656 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3657 	mutex_lock(&kvm->slots_lock);
3658 
3659 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3660 		goto out;
3661 
3662 	if (!kvm_vmx->ept_identity_map_addr)
3663 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3664 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3665 
3666 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3667 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3668 	if (r < 0)
3669 		goto out;
3670 
3671 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3672 	if (r < 0)
3673 		goto out;
3674 	/* Set up identity-mapping pagetable for EPT in real mode */
3675 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3676 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3677 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3678 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3679 				&tmp, i * sizeof(tmp), sizeof(tmp));
3680 		if (r < 0)
3681 			goto out;
3682 	}
3683 	kvm_vmx->ept_identity_pagetable_done = true;
3684 
3685 out:
3686 	mutex_unlock(&kvm->slots_lock);
3687 	return r;
3688 }
3689 
seg_setup(int seg)3690 static void seg_setup(int seg)
3691 {
3692 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3693 	unsigned int ar;
3694 
3695 	vmcs_write16(sf->selector, 0);
3696 	vmcs_writel(sf->base, 0);
3697 	vmcs_write32(sf->limit, 0xffff);
3698 	ar = 0x93;
3699 	if (seg == VCPU_SREG_CS)
3700 		ar |= 0x08; /* code segment */
3701 
3702 	vmcs_write32(sf->ar_bytes, ar);
3703 }
3704 
alloc_apic_access_page(struct kvm * kvm)3705 static int alloc_apic_access_page(struct kvm *kvm)
3706 {
3707 	struct page *page;
3708 	int r = 0;
3709 
3710 	mutex_lock(&kvm->slots_lock);
3711 	if (kvm->arch.apic_access_page_done)
3712 		goto out;
3713 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3714 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3715 	if (r)
3716 		goto out;
3717 
3718 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3719 	if (is_error_page(page)) {
3720 		r = -EFAULT;
3721 		goto out;
3722 	}
3723 
3724 	/*
3725 	 * Do not pin the page in memory, so that memory hot-unplug
3726 	 * is able to migrate it.
3727 	 */
3728 	put_page(page);
3729 	kvm->arch.apic_access_page_done = true;
3730 out:
3731 	mutex_unlock(&kvm->slots_lock);
3732 	return r;
3733 }
3734 
allocate_vpid(void)3735 int allocate_vpid(void)
3736 {
3737 	int vpid;
3738 
3739 	if (!enable_vpid)
3740 		return 0;
3741 	spin_lock(&vmx_vpid_lock);
3742 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3743 	if (vpid < VMX_NR_VPIDS)
3744 		__set_bit(vpid, vmx_vpid_bitmap);
3745 	else
3746 		vpid = 0;
3747 	spin_unlock(&vmx_vpid_lock);
3748 	return vpid;
3749 }
3750 
free_vpid(int vpid)3751 void free_vpid(int vpid)
3752 {
3753 	if (!enable_vpid || vpid == 0)
3754 		return;
3755 	spin_lock(&vmx_vpid_lock);
3756 	__clear_bit(vpid, vmx_vpid_bitmap);
3757 	spin_unlock(&vmx_vpid_lock);
3758 }
3759 
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3760 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3761 {
3762 	int f = sizeof(unsigned long);
3763 
3764 	if (msr <= 0x1fff)
3765 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3766 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3767 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3768 }
3769 
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3770 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3771 {
3772 	int f = sizeof(unsigned long);
3773 
3774 	if (msr <= 0x1fff)
3775 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3776 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3777 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3778 }
3779 
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3780 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3781 {
3782 	int f = sizeof(unsigned long);
3783 
3784 	if (msr <= 0x1fff)
3785 		__set_bit(msr, msr_bitmap + 0x000 / f);
3786 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3787 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3788 }
3789 
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3790 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3791 {
3792 	int f = sizeof(unsigned long);
3793 
3794 	if (msr <= 0x1fff)
3795 		__set_bit(msr, msr_bitmap + 0x800 / f);
3796 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3797 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3798 }
3799 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3800 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3801 							  u32 msr, int type)
3802 {
3803 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3804 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3805 
3806 	if (!cpu_has_vmx_msr_bitmap())
3807 		return;
3808 
3809 	if (static_branch_unlikely(&enable_evmcs))
3810 		evmcs_touch_msr_bitmap();
3811 
3812 	/*
3813 	 * Mark the desired intercept state in shadow bitmap, this is needed
3814 	 * for resync when the MSR filters change.
3815 	*/
3816 	if (is_valid_passthrough_msr(msr)) {
3817 		int idx = possible_passthrough_msr_slot(msr);
3818 
3819 		if (idx != -ENOENT) {
3820 			if (type & MSR_TYPE_R)
3821 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3822 			if (type & MSR_TYPE_W)
3823 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3824 		}
3825 	}
3826 
3827 	if ((type & MSR_TYPE_R) &&
3828 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3829 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3830 		type &= ~MSR_TYPE_R;
3831 	}
3832 
3833 	if ((type & MSR_TYPE_W) &&
3834 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3835 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3836 		type &= ~MSR_TYPE_W;
3837 	}
3838 
3839 	if (type & MSR_TYPE_R)
3840 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3841 
3842 	if (type & MSR_TYPE_W)
3843 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3844 }
3845 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3846 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3847 							 u32 msr, int type)
3848 {
3849 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3850 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3851 
3852 	if (!cpu_has_vmx_msr_bitmap())
3853 		return;
3854 
3855 	if (static_branch_unlikely(&enable_evmcs))
3856 		evmcs_touch_msr_bitmap();
3857 
3858 	/*
3859 	 * Mark the desired intercept state in shadow bitmap, this is needed
3860 	 * for resync when the MSR filter changes.
3861 	*/
3862 	if (is_valid_passthrough_msr(msr)) {
3863 		int idx = possible_passthrough_msr_slot(msr);
3864 
3865 		if (idx != -ENOENT) {
3866 			if (type & MSR_TYPE_R)
3867 				set_bit(idx, vmx->shadow_msr_intercept.read);
3868 			if (type & MSR_TYPE_W)
3869 				set_bit(idx, vmx->shadow_msr_intercept.write);
3870 		}
3871 	}
3872 
3873 	if (type & MSR_TYPE_R)
3874 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3875 
3876 	if (type & MSR_TYPE_W)
3877 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3878 }
3879 
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3880 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3881 						      u32 msr, int type, bool value)
3882 {
3883 	if (value)
3884 		vmx_enable_intercept_for_msr(vcpu, msr, type);
3885 	else
3886 		vmx_disable_intercept_for_msr(vcpu, msr, type);
3887 }
3888 
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3889 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3890 {
3891 	u8 mode = 0;
3892 
3893 	if (cpu_has_secondary_exec_ctrls() &&
3894 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3895 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3896 		mode |= MSR_BITMAP_MODE_X2APIC;
3897 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3898 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3899 	}
3900 
3901 	return mode;
3902 }
3903 
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3904 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3905 {
3906 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3907 	unsigned long read_intercept;
3908 	int msr;
3909 
3910 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3911 
3912 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3913 		unsigned int read_idx = msr / BITS_PER_LONG;
3914 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3915 
3916 		msr_bitmap[read_idx] = read_intercept;
3917 		msr_bitmap[write_idx] = ~0ul;
3918 	}
3919 }
3920 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3921 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3922 {
3923 	if (!cpu_has_vmx_msr_bitmap())
3924 		return;
3925 
3926 	vmx_reset_x2apic_msrs(vcpu, mode);
3927 
3928 	/*
3929 	 * TPR reads and writes can be virtualized even if virtual interrupt
3930 	 * delivery is not in use.
3931 	 */
3932 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3933 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3934 
3935 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3936 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3937 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3938 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3939 	}
3940 }
3941 
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3942 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3943 {
3944 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3945 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3946 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3947 
3948 	if (!changed)
3949 		return;
3950 
3951 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3952 		vmx_update_msr_bitmap_x2apic(vcpu, mode);
3953 
3954 	vmx->msr_bitmap_mode = mode;
3955 }
3956 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3957 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3958 {
3959 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3960 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3961 	u32 i;
3962 
3963 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3964 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3965 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3966 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3967 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3968 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3969 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3970 	}
3971 }
3972 
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3973 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3974 {
3975 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3976 	void *vapic_page;
3977 	u32 vppr;
3978 	int rvi;
3979 
3980 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3981 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3982 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3983 		return false;
3984 
3985 	rvi = vmx_get_rvi();
3986 
3987 	vapic_page = vmx->nested.virtual_apic_map.hva;
3988 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3989 
3990 	return ((rvi & 0xf0) > (vppr & 0xf0));
3991 }
3992 
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)3993 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3994 {
3995 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3996 	u32 i;
3997 
3998 	/*
3999 	 * Set intercept permissions for all potentially passed through MSRs
4000 	 * again. They will automatically get filtered through the MSR filter,
4001 	 * so we are back in sync after this.
4002 	 */
4003 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4004 		u32 msr = vmx_possible_passthrough_msrs[i];
4005 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
4006 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
4007 
4008 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
4009 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4010 	}
4011 
4012 	pt_update_intercept_for_msr(vcpu);
4013 	vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4014 }
4015 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)4016 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4017 						     bool nested)
4018 {
4019 #ifdef CONFIG_SMP
4020 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4021 
4022 	if (vcpu->mode == IN_GUEST_MODE) {
4023 		/*
4024 		 * The vector of interrupt to be delivered to vcpu had
4025 		 * been set in PIR before this function.
4026 		 *
4027 		 * Following cases will be reached in this block, and
4028 		 * we always send a notification event in all cases as
4029 		 * explained below.
4030 		 *
4031 		 * Case 1: vcpu keeps in non-root mode. Sending a
4032 		 * notification event posts the interrupt to vcpu.
4033 		 *
4034 		 * Case 2: vcpu exits to root mode and is still
4035 		 * runnable. PIR will be synced to vIRR before the
4036 		 * next vcpu entry. Sending a notification event in
4037 		 * this case has no effect, as vcpu is not in root
4038 		 * mode.
4039 		 *
4040 		 * Case 3: vcpu exits to root mode and is blocked.
4041 		 * vcpu_block() has already synced PIR to vIRR and
4042 		 * never blocks vcpu if vIRR is not cleared. Therefore,
4043 		 * a blocked vcpu here does not wait for any requested
4044 		 * interrupts in PIR, and sending a notification event
4045 		 * which has no effect is safe here.
4046 		 */
4047 
4048 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4049 		return true;
4050 	}
4051 #endif
4052 	return false;
4053 }
4054 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4055 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4056 						int vector)
4057 {
4058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4059 
4060 	if (is_guest_mode(vcpu) &&
4061 	    vector == vmx->nested.posted_intr_nv) {
4062 		/*
4063 		 * If a posted intr is not recognized by hardware,
4064 		 * we will accomplish it in the next vmentry.
4065 		 */
4066 		vmx->nested.pi_pending = true;
4067 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4068 		/* the PIR and ON have been set by L1. */
4069 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4070 			kvm_vcpu_kick(vcpu);
4071 		return 0;
4072 	}
4073 	return -1;
4074 }
4075 /*
4076  * Send interrupt to vcpu via posted interrupt way.
4077  * 1. If target vcpu is running(non-root mode), send posted interrupt
4078  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4079  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4080  * interrupt from PIR in next vmentry.
4081  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4082 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4083 {
4084 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4085 	int r;
4086 
4087 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4088 	if (!r)
4089 		return 0;
4090 
4091 	if (!vcpu->arch.apicv_active)
4092 		return -1;
4093 
4094 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4095 		return 0;
4096 
4097 	/* If a previous notification has sent the IPI, nothing to do.  */
4098 	if (pi_test_and_set_on(&vmx->pi_desc))
4099 		return 0;
4100 
4101 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4102 		kvm_vcpu_kick(vcpu);
4103 
4104 	return 0;
4105 }
4106 
4107 /*
4108  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4109  * will not change in the lifetime of the guest.
4110  * Note that host-state that does change is set elsewhere. E.g., host-state
4111  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4112  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4113 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4114 {
4115 	u32 low32, high32;
4116 	unsigned long tmpl;
4117 	unsigned long cr0, cr3, cr4;
4118 
4119 	cr0 = read_cr0();
4120 	WARN_ON(cr0 & X86_CR0_TS);
4121 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4122 
4123 	/*
4124 	 * Save the most likely value for this task's CR3 in the VMCS.
4125 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4126 	 */
4127 	cr3 = __read_cr3();
4128 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4129 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4130 
4131 	/* Save the most likely value for this task's CR4 in the VMCS. */
4132 	cr4 = cr4_read_shadow();
4133 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4134 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4135 
4136 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4137 #ifdef CONFIG_X86_64
4138 	/*
4139 	 * Load null selectors, so we can avoid reloading them in
4140 	 * vmx_prepare_switch_to_host(), in case userspace uses
4141 	 * the null selectors too (the expected case).
4142 	 */
4143 	vmcs_write16(HOST_DS_SELECTOR, 0);
4144 	vmcs_write16(HOST_ES_SELECTOR, 0);
4145 #else
4146 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4147 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4148 #endif
4149 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4150 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4151 
4152 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4153 
4154 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4155 
4156 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4157 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4158 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4159 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4160 
4161 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4162 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4163 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4164 	}
4165 
4166 	if (cpu_has_load_ia32_efer())
4167 		vmcs_write64(HOST_IA32_EFER, host_efer);
4168 }
4169 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4170 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4171 {
4172 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4173 
4174 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4175 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4176 	if (!enable_ept)
4177 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4178 	if (is_guest_mode(&vmx->vcpu))
4179 		vcpu->arch.cr4_guest_owned_bits &=
4180 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4181 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4182 }
4183 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4184 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4185 {
4186 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4187 
4188 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4189 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4190 
4191 	if (!enable_vnmi)
4192 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4193 
4194 	if (!enable_preemption_timer)
4195 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4196 
4197 	return pin_based_exec_ctrl;
4198 }
4199 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4200 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4201 {
4202 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4203 
4204 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4205 	if (cpu_has_secondary_exec_ctrls()) {
4206 		if (kvm_vcpu_apicv_active(vcpu))
4207 			secondary_exec_controls_setbit(vmx,
4208 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4209 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4210 		else
4211 			secondary_exec_controls_clearbit(vmx,
4212 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4213 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4214 	}
4215 
4216 	if (cpu_has_vmx_msr_bitmap())
4217 		vmx_update_msr_bitmap(vcpu);
4218 }
4219 
vmx_exec_control(struct vcpu_vmx * vmx)4220 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4221 {
4222 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4223 
4224 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4225 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4226 
4227 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4228 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4229 #ifdef CONFIG_X86_64
4230 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4231 				CPU_BASED_CR8_LOAD_EXITING;
4232 #endif
4233 	}
4234 	if (!enable_ept)
4235 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4236 				CPU_BASED_CR3_LOAD_EXITING  |
4237 				CPU_BASED_INVLPG_EXITING;
4238 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4239 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4240 				CPU_BASED_MONITOR_EXITING);
4241 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4242 		exec_control &= ~CPU_BASED_HLT_EXITING;
4243 	return exec_control;
4244 }
4245 
4246 /*
4247  * Adjust a single secondary execution control bit to intercept/allow an
4248  * instruction in the guest.  This is usually done based on whether or not a
4249  * feature has been exposed to the guest in order to correctly emulate faults.
4250  */
4251 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4252 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4253 				  u32 control, bool enabled, bool exiting)
4254 {
4255 	/*
4256 	 * If the control is for an opt-in feature, clear the control if the
4257 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4258 	 * control is opt-out, i.e. an exiting control, clear the control if
4259 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4260 	 * disabled for the associated instruction.  Note, the caller is
4261 	 * responsible presetting exec_control to set all supported bits.
4262 	 */
4263 	if (enabled == exiting)
4264 		*exec_control &= ~control;
4265 
4266 	/*
4267 	 * Update the nested MSR settings so that a nested VMM can/can't set
4268 	 * controls for features that are/aren't exposed to the guest.
4269 	 */
4270 	if (nested) {
4271 		if (enabled)
4272 			vmx->nested.msrs.secondary_ctls_high |= control;
4273 		else
4274 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4275 	}
4276 }
4277 
4278 /*
4279  * Wrapper macro for the common case of adjusting a secondary execution control
4280  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4281  * verifies that the control is actually supported by KVM and hardware.
4282  */
4283 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4284 ({									 \
4285 	bool __enabled;							 \
4286 									 \
4287 	if (cpu_has_vmx_##name()) {					 \
4288 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4289 					    X86_FEATURE_##feat_name);	 \
4290 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4291 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4292 	}								 \
4293 })
4294 
4295 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4296 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4297 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4298 
4299 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4300 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4301 
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4302 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4303 {
4304 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4305 
4306 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4307 
4308 	if (vmx_pt_mode_is_system())
4309 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4310 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4311 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4312 	if (vmx->vpid == 0)
4313 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4314 	if (!enable_ept) {
4315 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4316 		enable_unrestricted_guest = 0;
4317 	}
4318 	if (!enable_unrestricted_guest)
4319 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4320 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4321 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4322 	if (!kvm_vcpu_apicv_active(vcpu))
4323 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4324 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4325 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4326 
4327 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4328 	 * in vmx_set_cr4.  */
4329 	exec_control &= ~SECONDARY_EXEC_DESC;
4330 
4331 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4332 	   (handle_vmptrld).
4333 	   We can NOT enable shadow_vmcs here because we don't have yet
4334 	   a current VMCS12
4335 	*/
4336 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4337 
4338 	if (!enable_pml)
4339 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4340 
4341 	if (cpu_has_vmx_xsaves()) {
4342 		/* Exposing XSAVES only when XSAVE is exposed */
4343 		bool xsaves_enabled =
4344 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4345 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4346 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4347 
4348 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4349 
4350 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4351 						  SECONDARY_EXEC_XSAVES,
4352 						  xsaves_enabled, false);
4353 	}
4354 
4355 	vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4356 
4357 	/*
4358 	 * Expose INVPCID if and only if PCID is also exposed to the guest.
4359 	 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4360 	 * if CR4.PCIDE=0.  Enumerating CPUID.INVPCID=1 would lead to incorrect
4361 	 * behavior from the guest perspective (it would expect #GP or #PF).
4362 	 */
4363 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4364 		guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4365 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4366 
4367 
4368 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4369 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4370 
4371 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4372 				    ENABLE_USR_WAIT_PAUSE, false);
4373 
4374 	vmx->secondary_exec_control = exec_control;
4375 }
4376 
ept_set_mmio_spte_mask(void)4377 static void ept_set_mmio_spte_mask(void)
4378 {
4379 	/*
4380 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4381 	 * of an EPT paging-structure entry is 110b (write/execute).
4382 	 */
4383 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4384 }
4385 
4386 #define VMX_XSS_EXIT_BITMAP 0
4387 
4388 /*
4389  * Noting that the initialization of Guest-state Area of VMCS is in
4390  * vmx_vcpu_reset().
4391  */
init_vmcs(struct vcpu_vmx * vmx)4392 static void init_vmcs(struct vcpu_vmx *vmx)
4393 {
4394 	if (nested)
4395 		nested_vmx_set_vmcs_shadowing_bitmap();
4396 
4397 	if (cpu_has_vmx_msr_bitmap())
4398 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4399 
4400 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4401 
4402 	/* Control */
4403 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4404 
4405 	exec_controls_set(vmx, vmx_exec_control(vmx));
4406 
4407 	if (cpu_has_secondary_exec_ctrls()) {
4408 		vmx_compute_secondary_exec_control(vmx);
4409 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4410 	}
4411 
4412 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4413 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4414 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4415 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4416 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4417 
4418 		vmcs_write16(GUEST_INTR_STATUS, 0);
4419 
4420 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4421 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4422 	}
4423 
4424 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4425 		vmcs_write32(PLE_GAP, ple_gap);
4426 		vmx->ple_window = ple_window;
4427 		vmx->ple_window_dirty = true;
4428 	}
4429 
4430 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4431 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4432 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4433 
4434 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4435 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4436 	vmx_set_constant_host_state(vmx);
4437 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4438 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4439 
4440 	if (cpu_has_vmx_vmfunc())
4441 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4442 
4443 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4444 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4445 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4446 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4447 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4448 
4449 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4450 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4451 
4452 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4453 
4454 	/* 22.2.1, 20.8.1 */
4455 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4456 
4457 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4458 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4459 
4460 	set_cr4_guest_host_mask(vmx);
4461 
4462 	if (vmx->vpid != 0)
4463 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4464 
4465 	if (cpu_has_vmx_xsaves())
4466 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4467 
4468 	if (enable_pml) {
4469 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4470 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4471 	}
4472 
4473 	if (cpu_has_vmx_encls_vmexit())
4474 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4475 
4476 	if (vmx_pt_mode_is_host_guest()) {
4477 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4478 		/* Bit[6~0] are forced to 1, writes are ignored. */
4479 		vmx->pt_desc.guest.output_mask = 0x7F;
4480 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4481 	}
4482 }
4483 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4484 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4485 {
4486 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4487 	struct msr_data apic_base_msr;
4488 	u64 cr0;
4489 
4490 	vmx->rmode.vm86_active = 0;
4491 	vmx->spec_ctrl = 0;
4492 
4493 	vmx->msr_ia32_umwait_control = 0;
4494 
4495 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4496 	vmx->hv_deadline_tsc = -1;
4497 	kvm_set_cr8(vcpu, 0);
4498 
4499 	if (!init_event) {
4500 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4501 				     MSR_IA32_APICBASE_ENABLE;
4502 		if (kvm_vcpu_is_reset_bsp(vcpu))
4503 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4504 		apic_base_msr.host_initiated = true;
4505 		kvm_set_apic_base(vcpu, &apic_base_msr);
4506 	}
4507 
4508 	vmx_segment_cache_clear(vmx);
4509 
4510 	seg_setup(VCPU_SREG_CS);
4511 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4512 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4513 
4514 	seg_setup(VCPU_SREG_DS);
4515 	seg_setup(VCPU_SREG_ES);
4516 	seg_setup(VCPU_SREG_FS);
4517 	seg_setup(VCPU_SREG_GS);
4518 	seg_setup(VCPU_SREG_SS);
4519 
4520 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4521 	vmcs_writel(GUEST_TR_BASE, 0);
4522 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4523 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4524 
4525 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4526 	vmcs_writel(GUEST_LDTR_BASE, 0);
4527 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4528 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4529 
4530 	if (!init_event) {
4531 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4532 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4533 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4534 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4535 	}
4536 
4537 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4538 	kvm_rip_write(vcpu, 0xfff0);
4539 
4540 	vmcs_writel(GUEST_GDTR_BASE, 0);
4541 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4542 
4543 	vmcs_writel(GUEST_IDTR_BASE, 0);
4544 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4545 
4546 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4547 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4548 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4549 	if (kvm_mpx_supported())
4550 		vmcs_write64(GUEST_BNDCFGS, 0);
4551 
4552 	setup_msrs(vmx);
4553 
4554 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4555 
4556 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4557 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4558 		if (cpu_need_tpr_shadow(vcpu))
4559 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4560 				     __pa(vcpu->arch.apic->regs));
4561 		vmcs_write32(TPR_THRESHOLD, 0);
4562 	}
4563 
4564 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4565 
4566 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4567 	vmx->vcpu.arch.cr0 = cr0;
4568 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4569 	vmx_set_cr4(vcpu, 0);
4570 	vmx_set_efer(vcpu, 0);
4571 
4572 	update_exception_bitmap(vcpu);
4573 
4574 	vpid_sync_context(vmx->vpid);
4575 	if (init_event)
4576 		vmx_clear_hlt(vcpu);
4577 
4578 	vmx_update_fb_clear_dis(vcpu, vmx);
4579 }
4580 
enable_irq_window(struct kvm_vcpu * vcpu)4581 static void enable_irq_window(struct kvm_vcpu *vcpu)
4582 {
4583 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4584 }
4585 
enable_nmi_window(struct kvm_vcpu * vcpu)4586 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4587 {
4588 	if (!enable_vnmi ||
4589 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4590 		enable_irq_window(vcpu);
4591 		return;
4592 	}
4593 
4594 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4595 }
4596 
vmx_inject_irq(struct kvm_vcpu * vcpu)4597 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4598 {
4599 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4600 	uint32_t intr;
4601 	int irq = vcpu->arch.interrupt.nr;
4602 
4603 	trace_kvm_inj_virq(irq);
4604 
4605 	++vcpu->stat.irq_injections;
4606 	if (vmx->rmode.vm86_active) {
4607 		int inc_eip = 0;
4608 		if (vcpu->arch.interrupt.soft)
4609 			inc_eip = vcpu->arch.event_exit_inst_len;
4610 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4611 		return;
4612 	}
4613 	intr = irq | INTR_INFO_VALID_MASK;
4614 	if (vcpu->arch.interrupt.soft) {
4615 		intr |= INTR_TYPE_SOFT_INTR;
4616 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4617 			     vmx->vcpu.arch.event_exit_inst_len);
4618 	} else
4619 		intr |= INTR_TYPE_EXT_INTR;
4620 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4621 
4622 	vmx_clear_hlt(vcpu);
4623 }
4624 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4625 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4626 {
4627 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4628 
4629 	if (!enable_vnmi) {
4630 		/*
4631 		 * Tracking the NMI-blocked state in software is built upon
4632 		 * finding the next open IRQ window. This, in turn, depends on
4633 		 * well-behaving guests: They have to keep IRQs disabled at
4634 		 * least as long as the NMI handler runs. Otherwise we may
4635 		 * cause NMI nesting, maybe breaking the guest. But as this is
4636 		 * highly unlikely, we can live with the residual risk.
4637 		 */
4638 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4639 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4640 	}
4641 
4642 	++vcpu->stat.nmi_injections;
4643 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4644 
4645 	if (vmx->rmode.vm86_active) {
4646 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4647 		return;
4648 	}
4649 
4650 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4651 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4652 
4653 	vmx_clear_hlt(vcpu);
4654 }
4655 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4656 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4657 {
4658 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4659 	bool masked;
4660 
4661 	if (!enable_vnmi)
4662 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4663 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4664 		return false;
4665 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4666 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4667 	return masked;
4668 }
4669 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4670 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4671 {
4672 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4673 
4674 	if (!enable_vnmi) {
4675 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4676 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4677 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4678 		}
4679 	} else {
4680 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4681 		if (masked)
4682 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4683 				      GUEST_INTR_STATE_NMI);
4684 		else
4685 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4686 					GUEST_INTR_STATE_NMI);
4687 	}
4688 }
4689 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4690 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4691 {
4692 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4693 		return false;
4694 
4695 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4696 		return true;
4697 
4698 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4699 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4700 		 GUEST_INTR_STATE_NMI));
4701 }
4702 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4703 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4704 {
4705 	if (to_vmx(vcpu)->nested.nested_run_pending)
4706 		return -EBUSY;
4707 
4708 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4709 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4710 		return -EBUSY;
4711 
4712 	return !vmx_nmi_blocked(vcpu);
4713 }
4714 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4715 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4716 {
4717 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4718 		return false;
4719 
4720 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4721 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4722 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4723 }
4724 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4725 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4726 {
4727 	if (to_vmx(vcpu)->nested.nested_run_pending)
4728 		return -EBUSY;
4729 
4730        /*
4731         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4732         * e.g. if the IRQ arrived asynchronously after checking nested events.
4733         */
4734 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4735 		return -EBUSY;
4736 
4737 	return !vmx_interrupt_blocked(vcpu);
4738 }
4739 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4740 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4741 {
4742 	int ret;
4743 
4744 	if (enable_unrestricted_guest)
4745 		return 0;
4746 
4747 	mutex_lock(&kvm->slots_lock);
4748 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4749 				      PAGE_SIZE * 3);
4750 	mutex_unlock(&kvm->slots_lock);
4751 
4752 	if (ret)
4753 		return ret;
4754 	to_kvm_vmx(kvm)->tss_addr = addr;
4755 	return init_rmode_tss(kvm);
4756 }
4757 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4758 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4759 {
4760 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4761 	return 0;
4762 }
4763 
rmode_exception(struct kvm_vcpu * vcpu,int vec)4764 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4765 {
4766 	switch (vec) {
4767 	case BP_VECTOR:
4768 		/*
4769 		 * Update instruction length as we may reinject the exception
4770 		 * from user space while in guest debugging mode.
4771 		 */
4772 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4773 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4774 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4775 			return false;
4776 		fallthrough;
4777 	case DB_VECTOR:
4778 		return !(vcpu->guest_debug &
4779 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4780 	case DE_VECTOR:
4781 	case OF_VECTOR:
4782 	case BR_VECTOR:
4783 	case UD_VECTOR:
4784 	case DF_VECTOR:
4785 	case SS_VECTOR:
4786 	case GP_VECTOR:
4787 	case MF_VECTOR:
4788 		return true;
4789 	}
4790 	return false;
4791 }
4792 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4793 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4794 				  int vec, u32 err_code)
4795 {
4796 	/*
4797 	 * Instruction with address size override prefix opcode 0x67
4798 	 * Cause the #SS fault with 0 error code in VM86 mode.
4799 	 */
4800 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4801 		if (kvm_emulate_instruction(vcpu, 0)) {
4802 			if (vcpu->arch.halt_request) {
4803 				vcpu->arch.halt_request = 0;
4804 				return kvm_vcpu_halt(vcpu);
4805 			}
4806 			return 1;
4807 		}
4808 		return 0;
4809 	}
4810 
4811 	/*
4812 	 * Forward all other exceptions that are valid in real mode.
4813 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4814 	 *        the required debugging infrastructure rework.
4815 	 */
4816 	kvm_queue_exception(vcpu, vec);
4817 	return 1;
4818 }
4819 
4820 /*
4821  * Trigger machine check on the host. We assume all the MSRs are already set up
4822  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4823  * We pass a fake environment to the machine check handler because we want
4824  * the guest to be always treated like user space, no matter what context
4825  * it used internally.
4826  */
kvm_machine_check(void)4827 static void kvm_machine_check(void)
4828 {
4829 #if defined(CONFIG_X86_MCE)
4830 	struct pt_regs regs = {
4831 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4832 		.flags = X86_EFLAGS_IF,
4833 	};
4834 
4835 	do_machine_check(&regs);
4836 #endif
4837 }
4838 
handle_machine_check(struct kvm_vcpu * vcpu)4839 static int handle_machine_check(struct kvm_vcpu *vcpu)
4840 {
4841 	/* handled by vmx_vcpu_run() */
4842 	return 1;
4843 }
4844 
4845 /*
4846  * If the host has split lock detection disabled, then #AC is
4847  * unconditionally injected into the guest, which is the pre split lock
4848  * detection behaviour.
4849  *
4850  * If the host has split lock detection enabled then #AC is
4851  * only injected into the guest when:
4852  *  - Guest CPL == 3 (user mode)
4853  *  - Guest has #AC detection enabled in CR0
4854  *  - Guest EFLAGS has AC bit set
4855  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)4856 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4857 {
4858 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4859 		return true;
4860 
4861 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4862 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4863 }
4864 
handle_exception_nmi(struct kvm_vcpu * vcpu)4865 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4866 {
4867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4868 	struct kvm_run *kvm_run = vcpu->run;
4869 	u32 intr_info, ex_no, error_code;
4870 	unsigned long cr2, rip, dr6;
4871 	u32 vect_info;
4872 
4873 	vect_info = vmx->idt_vectoring_info;
4874 	intr_info = vmx_get_intr_info(vcpu);
4875 
4876 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4877 		return 1; /* handled by handle_exception_nmi_irqoff() */
4878 
4879 	if (is_invalid_opcode(intr_info))
4880 		return handle_ud(vcpu);
4881 
4882 	error_code = 0;
4883 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4884 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4885 
4886 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4887 		WARN_ON_ONCE(!enable_vmware_backdoor);
4888 
4889 		/*
4890 		 * VMware backdoor emulation on #GP interception only handles
4891 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4892 		 * error code on #GP.
4893 		 */
4894 		if (error_code) {
4895 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4896 			return 1;
4897 		}
4898 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4899 	}
4900 
4901 	/*
4902 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4903 	 * MMIO, it is better to report an internal error.
4904 	 * See the comments in vmx_handle_exit.
4905 	 */
4906 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4907 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4908 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4909 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4910 		vcpu->run->internal.ndata = 4;
4911 		vcpu->run->internal.data[0] = vect_info;
4912 		vcpu->run->internal.data[1] = intr_info;
4913 		vcpu->run->internal.data[2] = error_code;
4914 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4915 		return 0;
4916 	}
4917 
4918 	if (is_page_fault(intr_info)) {
4919 		cr2 = vmx_get_exit_qual(vcpu);
4920 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4921 			/*
4922 			 * EPT will cause page fault only if we need to
4923 			 * detect illegal GPAs.
4924 			 */
4925 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4926 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4927 			return 1;
4928 		} else
4929 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4930 	}
4931 
4932 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4933 
4934 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4935 		return handle_rmode_exception(vcpu, ex_no, error_code);
4936 
4937 	switch (ex_no) {
4938 	case DB_VECTOR:
4939 		dr6 = vmx_get_exit_qual(vcpu);
4940 		if (!(vcpu->guest_debug &
4941 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4942 			/*
4943 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4944 			 * instruction.  ICEBP generates a trap-like #DB, but
4945 			 * despite its interception control being tied to #DB,
4946 			 * is an instruction intercept, i.e. the VM-Exit occurs
4947 			 * on the ICEBP itself.  Note, skipping ICEBP also
4948 			 * clears STI and MOVSS blocking.
4949 			 *
4950 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4951 			 * if single-step is enabled in RFLAGS and STI or MOVSS
4952 			 * blocking is active, as the CPU doesn't set the bit
4953 			 * on VM-Exit due to #DB interception.  VM-Entry has a
4954 			 * consistency check that a single-step #DB is pending
4955 			 * in this scenario as the previous instruction cannot
4956 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4957 			 * don't modify RFLAGS), therefore the one instruction
4958 			 * delay when activating single-step breakpoints must
4959 			 * have already expired.  Note, the CPU sets/clears BS
4960 			 * as appropriate for all other VM-Exits types.
4961 			 */
4962 			if (is_icebp(intr_info))
4963 				WARN_ON(!skip_emulated_instruction(vcpu));
4964 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4965 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4966 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4967 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4968 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4969 
4970 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4971 			return 1;
4972 		}
4973 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4974 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4975 		fallthrough;
4976 	case BP_VECTOR:
4977 		/*
4978 		 * Update instruction length as we may reinject #BP from
4979 		 * user space while in guest debugging mode. Reading it for
4980 		 * #DB as well causes no harm, it is not used in that case.
4981 		 */
4982 		vmx->vcpu.arch.event_exit_inst_len =
4983 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4984 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4985 		rip = kvm_rip_read(vcpu);
4986 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4987 		kvm_run->debug.arch.exception = ex_no;
4988 		break;
4989 	case AC_VECTOR:
4990 		if (vmx_guest_inject_ac(vcpu)) {
4991 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4992 			return 1;
4993 		}
4994 
4995 		/*
4996 		 * Handle split lock. Depending on detection mode this will
4997 		 * either warn and disable split lock detection for this
4998 		 * task or force SIGBUS on it.
4999 		 */
5000 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5001 			return 1;
5002 		fallthrough;
5003 	default:
5004 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5005 		kvm_run->ex.exception = ex_no;
5006 		kvm_run->ex.error_code = error_code;
5007 		break;
5008 	}
5009 	return 0;
5010 }
5011 
handle_external_interrupt(struct kvm_vcpu * vcpu)5012 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5013 {
5014 	++vcpu->stat.irq_exits;
5015 	return 1;
5016 }
5017 
handle_triple_fault(struct kvm_vcpu * vcpu)5018 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5019 {
5020 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5021 	vcpu->mmio_needed = 0;
5022 	return 0;
5023 }
5024 
handle_io(struct kvm_vcpu * vcpu)5025 static int handle_io(struct kvm_vcpu *vcpu)
5026 {
5027 	unsigned long exit_qualification;
5028 	int size, in, string;
5029 	unsigned port;
5030 
5031 	exit_qualification = vmx_get_exit_qual(vcpu);
5032 	string = (exit_qualification & 16) != 0;
5033 
5034 	++vcpu->stat.io_exits;
5035 
5036 	if (string)
5037 		return kvm_emulate_instruction(vcpu, 0);
5038 
5039 	port = exit_qualification >> 16;
5040 	size = (exit_qualification & 7) + 1;
5041 	in = (exit_qualification & 8) != 0;
5042 
5043 	return kvm_fast_pio(vcpu, size, port, in);
5044 }
5045 
5046 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5047 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5048 {
5049 	/*
5050 	 * Patch in the VMCALL instruction:
5051 	 */
5052 	hypercall[0] = 0x0f;
5053 	hypercall[1] = 0x01;
5054 	hypercall[2] = 0xc1;
5055 }
5056 
5057 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5058 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5059 {
5060 	if (is_guest_mode(vcpu)) {
5061 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5062 		unsigned long orig_val = val;
5063 
5064 		/*
5065 		 * We get here when L2 changed cr0 in a way that did not change
5066 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5067 		 * but did change L0 shadowed bits. So we first calculate the
5068 		 * effective cr0 value that L1 would like to write into the
5069 		 * hardware. It consists of the L2-owned bits from the new
5070 		 * value combined with the L1-owned bits from L1's guest_cr0.
5071 		 */
5072 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5073 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5074 
5075 		if (!nested_guest_cr0_valid(vcpu, val))
5076 			return 1;
5077 
5078 		if (kvm_set_cr0(vcpu, val))
5079 			return 1;
5080 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5081 		return 0;
5082 	} else {
5083 		if (to_vmx(vcpu)->nested.vmxon &&
5084 		    !nested_host_cr0_valid(vcpu, val))
5085 			return 1;
5086 
5087 		return kvm_set_cr0(vcpu, val);
5088 	}
5089 }
5090 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5091 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5092 {
5093 	if (is_guest_mode(vcpu)) {
5094 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5095 		unsigned long orig_val = val;
5096 
5097 		/* analogously to handle_set_cr0 */
5098 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5099 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5100 		if (kvm_set_cr4(vcpu, val))
5101 			return 1;
5102 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5103 		return 0;
5104 	} else
5105 		return kvm_set_cr4(vcpu, val);
5106 }
5107 
handle_desc(struct kvm_vcpu * vcpu)5108 static int handle_desc(struct kvm_vcpu *vcpu)
5109 {
5110 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5111 	return kvm_emulate_instruction(vcpu, 0);
5112 }
5113 
handle_cr(struct kvm_vcpu * vcpu)5114 static int handle_cr(struct kvm_vcpu *vcpu)
5115 {
5116 	unsigned long exit_qualification, val;
5117 	int cr;
5118 	int reg;
5119 	int err;
5120 	int ret;
5121 
5122 	exit_qualification = vmx_get_exit_qual(vcpu);
5123 	cr = exit_qualification & 15;
5124 	reg = (exit_qualification >> 8) & 15;
5125 	switch ((exit_qualification >> 4) & 3) {
5126 	case 0: /* mov to cr */
5127 		val = kvm_register_readl(vcpu, reg);
5128 		trace_kvm_cr_write(cr, val);
5129 		switch (cr) {
5130 		case 0:
5131 			err = handle_set_cr0(vcpu, val);
5132 			return kvm_complete_insn_gp(vcpu, err);
5133 		case 3:
5134 			WARN_ON_ONCE(enable_unrestricted_guest);
5135 			err = kvm_set_cr3(vcpu, val);
5136 			return kvm_complete_insn_gp(vcpu, err);
5137 		case 4:
5138 			err = handle_set_cr4(vcpu, val);
5139 			return kvm_complete_insn_gp(vcpu, err);
5140 		case 8: {
5141 				u8 cr8_prev = kvm_get_cr8(vcpu);
5142 				u8 cr8 = (u8)val;
5143 				err = kvm_set_cr8(vcpu, cr8);
5144 				ret = kvm_complete_insn_gp(vcpu, err);
5145 				if (lapic_in_kernel(vcpu))
5146 					return ret;
5147 				if (cr8_prev <= cr8)
5148 					return ret;
5149 				/*
5150 				 * TODO: we might be squashing a
5151 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5152 				 * KVM_EXIT_DEBUG here.
5153 				 */
5154 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5155 				return 0;
5156 			}
5157 		}
5158 		break;
5159 	case 2: /* clts */
5160 		WARN_ONCE(1, "Guest should always own CR0.TS");
5161 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5162 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5163 		return kvm_skip_emulated_instruction(vcpu);
5164 	case 1: /*mov from cr*/
5165 		switch (cr) {
5166 		case 3:
5167 			WARN_ON_ONCE(enable_unrestricted_guest);
5168 			val = kvm_read_cr3(vcpu);
5169 			kvm_register_write(vcpu, reg, val);
5170 			trace_kvm_cr_read(cr, val);
5171 			return kvm_skip_emulated_instruction(vcpu);
5172 		case 8:
5173 			val = kvm_get_cr8(vcpu);
5174 			kvm_register_write(vcpu, reg, val);
5175 			trace_kvm_cr_read(cr, val);
5176 			return kvm_skip_emulated_instruction(vcpu);
5177 		}
5178 		break;
5179 	case 3: /* lmsw */
5180 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5181 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5182 		kvm_lmsw(vcpu, val);
5183 
5184 		return kvm_skip_emulated_instruction(vcpu);
5185 	default:
5186 		break;
5187 	}
5188 	vcpu->run->exit_reason = 0;
5189 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5190 	       (int)(exit_qualification >> 4) & 3, cr);
5191 	return 0;
5192 }
5193 
handle_dr(struct kvm_vcpu * vcpu)5194 static int handle_dr(struct kvm_vcpu *vcpu)
5195 {
5196 	unsigned long exit_qualification;
5197 	int dr, dr7, reg;
5198 
5199 	exit_qualification = vmx_get_exit_qual(vcpu);
5200 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5201 
5202 	/* First, if DR does not exist, trigger UD */
5203 	if (!kvm_require_dr(vcpu, dr))
5204 		return 1;
5205 
5206 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5207 	if (!kvm_require_cpl(vcpu, 0))
5208 		return 1;
5209 	dr7 = vmcs_readl(GUEST_DR7);
5210 	if (dr7 & DR7_GD) {
5211 		/*
5212 		 * As the vm-exit takes precedence over the debug trap, we
5213 		 * need to emulate the latter, either for the host or the
5214 		 * guest debugging itself.
5215 		 */
5216 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5217 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5218 			vcpu->run->debug.arch.dr7 = dr7;
5219 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5220 			vcpu->run->debug.arch.exception = DB_VECTOR;
5221 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5222 			return 0;
5223 		} else {
5224 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5225 			return 1;
5226 		}
5227 	}
5228 
5229 	if (vcpu->guest_debug == 0) {
5230 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5231 
5232 		/*
5233 		 * No more DR vmexits; force a reload of the debug registers
5234 		 * and reenter on this instruction.  The next vmexit will
5235 		 * retrieve the full state of the debug registers.
5236 		 */
5237 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5238 		return 1;
5239 	}
5240 
5241 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5242 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5243 		unsigned long val;
5244 
5245 		if (kvm_get_dr(vcpu, dr, &val))
5246 			return 1;
5247 		kvm_register_write(vcpu, reg, val);
5248 	} else
5249 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5250 			return 1;
5251 
5252 	return kvm_skip_emulated_instruction(vcpu);
5253 }
5254 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5255 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5256 {
5257 	get_debugreg(vcpu->arch.db[0], 0);
5258 	get_debugreg(vcpu->arch.db[1], 1);
5259 	get_debugreg(vcpu->arch.db[2], 2);
5260 	get_debugreg(vcpu->arch.db[3], 3);
5261 	get_debugreg(vcpu->arch.dr6, 6);
5262 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5263 
5264 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5265 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5266 }
5267 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5268 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5269 {
5270 	vmcs_writel(GUEST_DR7, val);
5271 }
5272 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5273 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5274 {
5275 	kvm_apic_update_ppr(vcpu);
5276 	return 1;
5277 }
5278 
handle_interrupt_window(struct kvm_vcpu * vcpu)5279 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5280 {
5281 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5282 
5283 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5284 
5285 	++vcpu->stat.irq_window_exits;
5286 	return 1;
5287 }
5288 
handle_vmcall(struct kvm_vcpu * vcpu)5289 static int handle_vmcall(struct kvm_vcpu *vcpu)
5290 {
5291 	return kvm_emulate_hypercall(vcpu);
5292 }
5293 
handle_invd(struct kvm_vcpu * vcpu)5294 static int handle_invd(struct kvm_vcpu *vcpu)
5295 {
5296 	/* Treat an INVD instruction as a NOP and just skip it. */
5297 	return kvm_skip_emulated_instruction(vcpu);
5298 }
5299 
handle_invlpg(struct kvm_vcpu * vcpu)5300 static int handle_invlpg(struct kvm_vcpu *vcpu)
5301 {
5302 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5303 
5304 	kvm_mmu_invlpg(vcpu, exit_qualification);
5305 	return kvm_skip_emulated_instruction(vcpu);
5306 }
5307 
handle_rdpmc(struct kvm_vcpu * vcpu)5308 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5309 {
5310 	int err;
5311 
5312 	err = kvm_rdpmc(vcpu);
5313 	return kvm_complete_insn_gp(vcpu, err);
5314 }
5315 
handle_wbinvd(struct kvm_vcpu * vcpu)5316 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5317 {
5318 	return kvm_emulate_wbinvd(vcpu);
5319 }
5320 
handle_xsetbv(struct kvm_vcpu * vcpu)5321 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5322 {
5323 	u64 new_bv = kvm_read_edx_eax(vcpu);
5324 	u32 index = kvm_rcx_read(vcpu);
5325 
5326 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5327 		return kvm_skip_emulated_instruction(vcpu);
5328 	return 1;
5329 }
5330 
handle_apic_access(struct kvm_vcpu * vcpu)5331 static int handle_apic_access(struct kvm_vcpu *vcpu)
5332 {
5333 	if (likely(fasteoi)) {
5334 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5335 		int access_type, offset;
5336 
5337 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5338 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5339 		/*
5340 		 * Sane guest uses MOV to write EOI, with written value
5341 		 * not cared. So make a short-circuit here by avoiding
5342 		 * heavy instruction emulation.
5343 		 */
5344 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5345 		    (offset == APIC_EOI)) {
5346 			kvm_lapic_set_eoi(vcpu);
5347 			return kvm_skip_emulated_instruction(vcpu);
5348 		}
5349 	}
5350 	return kvm_emulate_instruction(vcpu, 0);
5351 }
5352 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5353 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5354 {
5355 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5356 	int vector = exit_qualification & 0xff;
5357 
5358 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5359 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5360 	return 1;
5361 }
5362 
handle_apic_write(struct kvm_vcpu * vcpu)5363 static int handle_apic_write(struct kvm_vcpu *vcpu)
5364 {
5365 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5366 	u32 offset = exit_qualification & 0xfff;
5367 
5368 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5369 	kvm_apic_write_nodecode(vcpu, offset);
5370 	return 1;
5371 }
5372 
handle_task_switch(struct kvm_vcpu * vcpu)5373 static int handle_task_switch(struct kvm_vcpu *vcpu)
5374 {
5375 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5376 	unsigned long exit_qualification;
5377 	bool has_error_code = false;
5378 	u32 error_code = 0;
5379 	u16 tss_selector;
5380 	int reason, type, idt_v, idt_index;
5381 
5382 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5383 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5384 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5385 
5386 	exit_qualification = vmx_get_exit_qual(vcpu);
5387 
5388 	reason = (u32)exit_qualification >> 30;
5389 	if (reason == TASK_SWITCH_GATE && idt_v) {
5390 		switch (type) {
5391 		case INTR_TYPE_NMI_INTR:
5392 			vcpu->arch.nmi_injected = false;
5393 			vmx_set_nmi_mask(vcpu, true);
5394 			break;
5395 		case INTR_TYPE_EXT_INTR:
5396 		case INTR_TYPE_SOFT_INTR:
5397 			kvm_clear_interrupt_queue(vcpu);
5398 			break;
5399 		case INTR_TYPE_HARD_EXCEPTION:
5400 			if (vmx->idt_vectoring_info &
5401 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5402 				has_error_code = true;
5403 				error_code =
5404 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5405 			}
5406 			fallthrough;
5407 		case INTR_TYPE_SOFT_EXCEPTION:
5408 			kvm_clear_exception_queue(vcpu);
5409 			break;
5410 		default:
5411 			break;
5412 		}
5413 	}
5414 	tss_selector = exit_qualification;
5415 
5416 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5417 		       type != INTR_TYPE_EXT_INTR &&
5418 		       type != INTR_TYPE_NMI_INTR))
5419 		WARN_ON(!skip_emulated_instruction(vcpu));
5420 
5421 	/*
5422 	 * TODO: What about debug traps on tss switch?
5423 	 *       Are we supposed to inject them and update dr6?
5424 	 */
5425 	return kvm_task_switch(vcpu, tss_selector,
5426 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5427 			       reason, has_error_code, error_code);
5428 }
5429 
handle_ept_violation(struct kvm_vcpu * vcpu)5430 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5431 {
5432 	unsigned long exit_qualification;
5433 	gpa_t gpa;
5434 	u64 error_code;
5435 
5436 	exit_qualification = vmx_get_exit_qual(vcpu);
5437 
5438 	/*
5439 	 * EPT violation happened while executing iret from NMI,
5440 	 * "blocked by NMI" bit has to be set before next VM entry.
5441 	 * There are errata that may cause this bit to not be set:
5442 	 * AAK134, BY25.
5443 	 */
5444 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5445 			enable_vnmi &&
5446 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5447 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5448 
5449 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5450 	trace_kvm_page_fault(gpa, exit_qualification);
5451 
5452 	/* Is it a read fault? */
5453 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5454 		     ? PFERR_USER_MASK : 0;
5455 	/* Is it a write fault? */
5456 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5457 		      ? PFERR_WRITE_MASK : 0;
5458 	/* Is it a fetch fault? */
5459 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5460 		      ? PFERR_FETCH_MASK : 0;
5461 	/* ept page table entry is present? */
5462 	error_code |= (exit_qualification &
5463 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5464 			EPT_VIOLATION_EXECUTABLE))
5465 		      ? PFERR_PRESENT_MASK : 0;
5466 
5467 	error_code |= (exit_qualification & 0x100) != 0 ?
5468 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5469 
5470 	vcpu->arch.exit_qualification = exit_qualification;
5471 
5472 	/*
5473 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5474 	 * a guest page fault.  We have to emulate the instruction here, because
5475 	 * if the illegal address is that of a paging structure, then
5476 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5477 	 * would also use advanced VM-exit information for EPT violations to
5478 	 * reconstruct the page fault error code.
5479 	 */
5480 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5481 		return kvm_emulate_instruction(vcpu, 0);
5482 
5483 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5484 }
5485 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5486 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5487 {
5488 	gpa_t gpa;
5489 
5490 	/*
5491 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5492 	 * nGPA here instead of the required GPA.
5493 	 */
5494 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5495 	if (!is_guest_mode(vcpu) &&
5496 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5497 		trace_kvm_fast_mmio(gpa);
5498 		return kvm_skip_emulated_instruction(vcpu);
5499 	}
5500 
5501 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5502 }
5503 
handle_nmi_window(struct kvm_vcpu * vcpu)5504 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5505 {
5506 	WARN_ON_ONCE(!enable_vnmi);
5507 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5508 	++vcpu->stat.nmi_window_exits;
5509 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5510 
5511 	return 1;
5512 }
5513 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5514 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5515 {
5516 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5517 	bool intr_window_requested;
5518 	unsigned count = 130;
5519 
5520 	intr_window_requested = exec_controls_get(vmx) &
5521 				CPU_BASED_INTR_WINDOW_EXITING;
5522 
5523 	while (vmx->emulation_required && count-- != 0) {
5524 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5525 			return handle_interrupt_window(&vmx->vcpu);
5526 
5527 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5528 			return 1;
5529 
5530 		if (!kvm_emulate_instruction(vcpu, 0))
5531 			return 0;
5532 
5533 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5534 		    vcpu->arch.exception.pending) {
5535 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5536 			vcpu->run->internal.suberror =
5537 						KVM_INTERNAL_ERROR_EMULATION;
5538 			vcpu->run->internal.ndata = 0;
5539 			return 0;
5540 		}
5541 
5542 		if (vcpu->arch.halt_request) {
5543 			vcpu->arch.halt_request = 0;
5544 			return kvm_vcpu_halt(vcpu);
5545 		}
5546 
5547 		/*
5548 		 * Note, return 1 and not 0, vcpu_run() will invoke
5549 		 * xfer_to_guest_mode() which will create a proper return
5550 		 * code.
5551 		 */
5552 		if (__xfer_to_guest_mode_work_pending())
5553 			return 1;
5554 	}
5555 
5556 	return 1;
5557 }
5558 
grow_ple_window(struct kvm_vcpu * vcpu)5559 static void grow_ple_window(struct kvm_vcpu *vcpu)
5560 {
5561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5562 	unsigned int old = vmx->ple_window;
5563 
5564 	vmx->ple_window = __grow_ple_window(old, ple_window,
5565 					    ple_window_grow,
5566 					    ple_window_max);
5567 
5568 	if (vmx->ple_window != old) {
5569 		vmx->ple_window_dirty = true;
5570 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5571 					    vmx->ple_window, old);
5572 	}
5573 }
5574 
shrink_ple_window(struct kvm_vcpu * vcpu)5575 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5576 {
5577 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5578 	unsigned int old = vmx->ple_window;
5579 
5580 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5581 					      ple_window_shrink,
5582 					      ple_window);
5583 
5584 	if (vmx->ple_window != old) {
5585 		vmx->ple_window_dirty = true;
5586 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5587 					    vmx->ple_window, old);
5588 	}
5589 }
5590 
vmx_enable_tdp(void)5591 static void vmx_enable_tdp(void)
5592 {
5593 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5594 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5595 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5596 		0ull, VMX_EPT_EXECUTABLE_MASK,
5597 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5598 		VMX_EPT_RWX_MASK, 0ull);
5599 
5600 	ept_set_mmio_spte_mask();
5601 }
5602 
5603 /*
5604  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5605  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5606  */
handle_pause(struct kvm_vcpu * vcpu)5607 static int handle_pause(struct kvm_vcpu *vcpu)
5608 {
5609 	if (!kvm_pause_in_guest(vcpu->kvm))
5610 		grow_ple_window(vcpu);
5611 
5612 	/*
5613 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5614 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5615 	 * never set PAUSE_EXITING and just set PLE if supported,
5616 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5617 	 */
5618 	kvm_vcpu_on_spin(vcpu, true);
5619 	return kvm_skip_emulated_instruction(vcpu);
5620 }
5621 
handle_nop(struct kvm_vcpu * vcpu)5622 static int handle_nop(struct kvm_vcpu *vcpu)
5623 {
5624 	return kvm_skip_emulated_instruction(vcpu);
5625 }
5626 
handle_mwait(struct kvm_vcpu * vcpu)5627 static int handle_mwait(struct kvm_vcpu *vcpu)
5628 {
5629 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5630 	return handle_nop(vcpu);
5631 }
5632 
handle_invalid_op(struct kvm_vcpu * vcpu)5633 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5634 {
5635 	kvm_queue_exception(vcpu, UD_VECTOR);
5636 	return 1;
5637 }
5638 
handle_monitor_trap(struct kvm_vcpu * vcpu)5639 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5640 {
5641 	return 1;
5642 }
5643 
handle_monitor(struct kvm_vcpu * vcpu)5644 static int handle_monitor(struct kvm_vcpu *vcpu)
5645 {
5646 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5647 	return handle_nop(vcpu);
5648 }
5649 
handle_invpcid(struct kvm_vcpu * vcpu)5650 static int handle_invpcid(struct kvm_vcpu *vcpu)
5651 {
5652 	u32 vmx_instruction_info;
5653 	unsigned long type;
5654 	gva_t gva;
5655 	struct {
5656 		u64 pcid;
5657 		u64 gla;
5658 	} operand;
5659 
5660 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5661 		kvm_queue_exception(vcpu, UD_VECTOR);
5662 		return 1;
5663 	}
5664 
5665 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5666 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5667 
5668 	if (type > 3) {
5669 		kvm_inject_gp(vcpu, 0);
5670 		return 1;
5671 	}
5672 
5673 	/* According to the Intel instruction reference, the memory operand
5674 	 * is read even if it isn't needed (e.g., for type==all)
5675 	 */
5676 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5677 				vmx_instruction_info, false,
5678 				sizeof(operand), &gva))
5679 		return 1;
5680 
5681 	return kvm_handle_invpcid(vcpu, type, gva);
5682 }
5683 
handle_pml_full(struct kvm_vcpu * vcpu)5684 static int handle_pml_full(struct kvm_vcpu *vcpu)
5685 {
5686 	unsigned long exit_qualification;
5687 
5688 	trace_kvm_pml_full(vcpu->vcpu_id);
5689 
5690 	exit_qualification = vmx_get_exit_qual(vcpu);
5691 
5692 	/*
5693 	 * PML buffer FULL happened while executing iret from NMI,
5694 	 * "blocked by NMI" bit has to be set before next VM entry.
5695 	 */
5696 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5697 			enable_vnmi &&
5698 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5699 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5700 				GUEST_INTR_STATE_NMI);
5701 
5702 	/*
5703 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5704 	 * here.., and there's no userspace involvement needed for PML.
5705 	 */
5706 	return 1;
5707 }
5708 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5709 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5710 {
5711 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5712 
5713 	if (!vmx->req_immediate_exit &&
5714 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5715 		kvm_lapic_expired_hv_timer(vcpu);
5716 		return EXIT_FASTPATH_REENTER_GUEST;
5717 	}
5718 
5719 	return EXIT_FASTPATH_NONE;
5720 }
5721 
handle_preemption_timer(struct kvm_vcpu * vcpu)5722 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5723 {
5724 	handle_fastpath_preemption_timer(vcpu);
5725 	return 1;
5726 }
5727 
5728 /*
5729  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5730  * are overwritten by nested_vmx_setup() when nested=1.
5731  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5732 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5733 {
5734 	kvm_queue_exception(vcpu, UD_VECTOR);
5735 	return 1;
5736 }
5737 
handle_encls(struct kvm_vcpu * vcpu)5738 static int handle_encls(struct kvm_vcpu *vcpu)
5739 {
5740 	/*
5741 	 * SGX virtualization is not yet supported.  There is no software
5742 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5743 	 * to prevent the guest from executing ENCLS.
5744 	 */
5745 	kvm_queue_exception(vcpu, UD_VECTOR);
5746 	return 1;
5747 }
5748 
5749 /*
5750  * The exit handlers return 1 if the exit was handled fully and guest execution
5751  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5752  * to be done to userspace and return 0.
5753  */
5754 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5755 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5756 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5757 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5758 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5759 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5760 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5761 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5762 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5763 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5764 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5765 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5766 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5767 	[EXIT_REASON_INVD]		      = handle_invd,
5768 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5769 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5770 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5771 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5772 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5773 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5774 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5775 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5776 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5777 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5778 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5779 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5780 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5781 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5782 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5783 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5784 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5785 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5786 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5787 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5788 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5789 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5790 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5791 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5792 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5793 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5794 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5795 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5796 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5797 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5798 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5799 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5800 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5801 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5802 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5803 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5804 	[EXIT_REASON_ENCLS]		      = handle_encls,
5805 };
5806 
5807 static const int kvm_vmx_max_exit_handlers =
5808 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5809 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5810 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5811 			      u32 *intr_info, u32 *error_code)
5812 {
5813 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5814 
5815 	*info1 = vmx_get_exit_qual(vcpu);
5816 	if (!(vmx->exit_reason.failed_vmentry)) {
5817 		*info2 = vmx->idt_vectoring_info;
5818 		*intr_info = vmx_get_intr_info(vcpu);
5819 		if (is_exception_with_error_code(*intr_info))
5820 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5821 		else
5822 			*error_code = 0;
5823 	} else {
5824 		*info2 = 0;
5825 		*intr_info = 0;
5826 		*error_code = 0;
5827 	}
5828 }
5829 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5830 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5831 {
5832 	if (vmx->pml_pg) {
5833 		__free_page(vmx->pml_pg);
5834 		vmx->pml_pg = NULL;
5835 	}
5836 }
5837 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5838 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5839 {
5840 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5841 	u64 *pml_buf;
5842 	u16 pml_idx;
5843 
5844 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5845 
5846 	/* Do nothing if PML buffer is empty */
5847 	if (pml_idx == (PML_ENTITY_NUM - 1))
5848 		return;
5849 
5850 	/* PML index always points to next available PML buffer entity */
5851 	if (pml_idx >= PML_ENTITY_NUM)
5852 		pml_idx = 0;
5853 	else
5854 		pml_idx++;
5855 
5856 	pml_buf = page_address(vmx->pml_pg);
5857 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5858 		u64 gpa;
5859 
5860 		gpa = pml_buf[pml_idx];
5861 		WARN_ON(gpa & (PAGE_SIZE - 1));
5862 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5863 	}
5864 
5865 	/* reset PML index */
5866 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5867 }
5868 
5869 /*
5870  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5871  * Called before reporting dirty_bitmap to userspace.
5872  */
kvm_flush_pml_buffers(struct kvm * kvm)5873 static void kvm_flush_pml_buffers(struct kvm *kvm)
5874 {
5875 	int i;
5876 	struct kvm_vcpu *vcpu;
5877 	/*
5878 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5879 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5880 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5881 	 * buffer.
5882 	 */
5883 	kvm_for_each_vcpu(i, vcpu, kvm)
5884 		kvm_vcpu_kick(vcpu);
5885 }
5886 
vmx_dump_sel(char * name,uint32_t sel)5887 static void vmx_dump_sel(char *name, uint32_t sel)
5888 {
5889 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5890 	       name, vmcs_read16(sel),
5891 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5892 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5893 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5894 }
5895 
vmx_dump_dtsel(char * name,uint32_t limit)5896 static void vmx_dump_dtsel(char *name, uint32_t limit)
5897 {
5898 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5899 	       name, vmcs_read32(limit),
5900 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5901 }
5902 
dump_vmcs(void)5903 void dump_vmcs(void)
5904 {
5905 	u32 vmentry_ctl, vmexit_ctl;
5906 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5907 	unsigned long cr4;
5908 
5909 	if (!dump_invalid_vmcs) {
5910 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5911 		return;
5912 	}
5913 
5914 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5915 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5916 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5917 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5918 	cr4 = vmcs_readl(GUEST_CR4);
5919 	secondary_exec_control = 0;
5920 	if (cpu_has_secondary_exec_ctrls())
5921 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5922 
5923 	pr_err("*** Guest State ***\n");
5924 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5925 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5926 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5927 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5928 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5929 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5930 	if (cpu_has_vmx_ept()) {
5931 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5932 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5933 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5934 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5935 	}
5936 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5937 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5938 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5939 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5940 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5941 	       vmcs_readl(GUEST_SYSENTER_ESP),
5942 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5943 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5944 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5945 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5946 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5947 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5948 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5949 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5950 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5951 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5952 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5953 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5954 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5955 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5956 		       vmcs_read64(GUEST_IA32_EFER),
5957 		       vmcs_read64(GUEST_IA32_PAT));
5958 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5959 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5960 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5961 	if (cpu_has_load_perf_global_ctrl() &&
5962 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5963 		pr_err("PerfGlobCtl = 0x%016llx\n",
5964 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5965 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5966 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5967 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5968 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5969 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5970 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5971 		pr_err("InterruptStatus = %04x\n",
5972 		       vmcs_read16(GUEST_INTR_STATUS));
5973 
5974 	pr_err("*** Host State ***\n");
5975 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5976 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5977 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5978 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5979 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5980 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5981 	       vmcs_read16(HOST_TR_SELECTOR));
5982 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5983 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5984 	       vmcs_readl(HOST_TR_BASE));
5985 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5986 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5987 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5988 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5989 	       vmcs_readl(HOST_CR4));
5990 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5991 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5992 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5993 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5994 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5995 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5996 		       vmcs_read64(HOST_IA32_EFER),
5997 		       vmcs_read64(HOST_IA32_PAT));
5998 	if (cpu_has_load_perf_global_ctrl() &&
5999 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6000 		pr_err("PerfGlobCtl = 0x%016llx\n",
6001 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6002 
6003 	pr_err("*** Control State ***\n");
6004 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
6005 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
6006 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
6007 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6008 	       vmcs_read32(EXCEPTION_BITMAP),
6009 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6010 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6011 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6012 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6013 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6014 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6015 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6016 	       vmcs_read32(VM_EXIT_INTR_INFO),
6017 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6018 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6019 	pr_err("        reason=%08x qualification=%016lx\n",
6020 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6021 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6022 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6023 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6024 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6025 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6026 		pr_err("TSC Multiplier = 0x%016llx\n",
6027 		       vmcs_read64(TSC_MULTIPLIER));
6028 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6029 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6030 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6031 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6032 		}
6033 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6034 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6035 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6036 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6037 	}
6038 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6039 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6040 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6041 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6042 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6043 		pr_err("PLE Gap=%08x Window=%08x\n",
6044 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6045 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6046 		pr_err("Virtual processor ID = 0x%04x\n",
6047 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6048 }
6049 
6050 /*
6051  * The guest has exited.  See if we can fix it or if we need userspace
6052  * assistance.
6053  */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6054 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6055 {
6056 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6057 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6058 	u32 vectoring_info = vmx->idt_vectoring_info;
6059 	u16 exit_handler_index;
6060 
6061 	/*
6062 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6063 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6064 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6065 	 * mode as if vcpus is in root mode, the PML buffer must has been
6066 	 * flushed already.
6067 	 */
6068 	if (enable_pml)
6069 		vmx_flush_pml_buffer(vcpu);
6070 
6071 	/*
6072 	 * We should never reach this point with a pending nested VM-Enter, and
6073 	 * more specifically emulation of L2 due to invalid guest state (see
6074 	 * below) should never happen as that means we incorrectly allowed a
6075 	 * nested VM-Enter with an invalid vmcs12.
6076 	 */
6077 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6078 
6079 	/* If guest state is invalid, start emulating */
6080 	if (vmx->emulation_required)
6081 		return handle_invalid_guest_state(vcpu);
6082 
6083 	if (is_guest_mode(vcpu)) {
6084 		/*
6085 		 * The host physical addresses of some pages of guest memory
6086 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6087 		 * Page). The CPU may write to these pages via their host
6088 		 * physical address while L2 is running, bypassing any
6089 		 * address-translation-based dirty tracking (e.g. EPT write
6090 		 * protection).
6091 		 *
6092 		 * Mark them dirty on every exit from L2 to prevent them from
6093 		 * getting out of sync with dirty tracking.
6094 		 */
6095 		nested_mark_vmcs12_pages_dirty(vcpu);
6096 
6097 		if (nested_vmx_reflect_vmexit(vcpu))
6098 			return 1;
6099 	}
6100 
6101 	if (exit_reason.failed_vmentry) {
6102 		dump_vmcs();
6103 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6104 		vcpu->run->fail_entry.hardware_entry_failure_reason
6105 			= exit_reason.full;
6106 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6107 		return 0;
6108 	}
6109 
6110 	if (unlikely(vmx->fail)) {
6111 		dump_vmcs();
6112 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6113 		vcpu->run->fail_entry.hardware_entry_failure_reason
6114 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6115 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6116 		return 0;
6117 	}
6118 
6119 	/*
6120 	 * Note:
6121 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6122 	 * delivery event since it indicates guest is accessing MMIO.
6123 	 * The vm-exit can be triggered again after return to guest that
6124 	 * will cause infinite loop.
6125 	 */
6126 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6127 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6128 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6129 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6130 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6131 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6132 		int ndata = 3;
6133 
6134 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6135 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6136 		vcpu->run->internal.data[0] = vectoring_info;
6137 		vcpu->run->internal.data[1] = exit_reason.full;
6138 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6139 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6140 			vcpu->run->internal.data[ndata++] =
6141 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6142 		}
6143 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6144 		vcpu->run->internal.ndata = ndata;
6145 		return 0;
6146 	}
6147 
6148 	if (unlikely(!enable_vnmi &&
6149 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6150 		if (!vmx_interrupt_blocked(vcpu)) {
6151 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6152 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6153 			   vcpu->arch.nmi_pending) {
6154 			/*
6155 			 * This CPU don't support us in finding the end of an
6156 			 * NMI-blocked window if the guest runs with IRQs
6157 			 * disabled. So we pull the trigger after 1 s of
6158 			 * futile waiting, but inform the user about this.
6159 			 */
6160 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6161 			       "state on VCPU %d after 1 s timeout\n",
6162 			       __func__, vcpu->vcpu_id);
6163 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6164 		}
6165 	}
6166 
6167 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6168 		return 1;
6169 
6170 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6171 		goto unexpected_vmexit;
6172 #ifdef CONFIG_RETPOLINE
6173 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6174 		return kvm_emulate_wrmsr(vcpu);
6175 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6176 		return handle_preemption_timer(vcpu);
6177 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6178 		return handle_interrupt_window(vcpu);
6179 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6180 		return handle_external_interrupt(vcpu);
6181 	else if (exit_reason.basic == EXIT_REASON_HLT)
6182 		return kvm_emulate_halt(vcpu);
6183 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6184 		return handle_ept_misconfig(vcpu);
6185 #endif
6186 
6187 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6188 						kvm_vmx_max_exit_handlers);
6189 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6190 		goto unexpected_vmexit;
6191 
6192 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6193 
6194 unexpected_vmexit:
6195 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6196 		    exit_reason.full);
6197 	dump_vmcs();
6198 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6199 	vcpu->run->internal.suberror =
6200 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6201 	vcpu->run->internal.ndata = 2;
6202 	vcpu->run->internal.data[0] = exit_reason.full;
6203 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6204 	return 0;
6205 }
6206 
6207 /*
6208  * Software based L1D cache flush which is used when microcode providing
6209  * the cache control MSR is not loaded.
6210  *
6211  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6212  * flush it is required to read in 64 KiB because the replacement algorithm
6213  * is not exactly LRU. This could be sized at runtime via topology
6214  * information but as all relevant affected CPUs have 32KiB L1D cache size
6215  * there is no point in doing so.
6216  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6217 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6218 {
6219 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6220 
6221 	/*
6222 	 * This code is only executed when the the flush mode is 'cond' or
6223 	 * 'always'
6224 	 */
6225 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6226 		bool flush_l1d;
6227 
6228 		/*
6229 		 * Clear the per-vcpu flush bit, it gets set again
6230 		 * either from vcpu_run() or from one of the unsafe
6231 		 * VMEXIT handlers.
6232 		 */
6233 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6234 		vcpu->arch.l1tf_flush_l1d = false;
6235 
6236 		/*
6237 		 * Clear the per-cpu flush bit, it gets set again from
6238 		 * the interrupt handlers.
6239 		 */
6240 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6241 		kvm_clear_cpu_l1tf_flush_l1d();
6242 
6243 		if (!flush_l1d)
6244 			return;
6245 	}
6246 
6247 	vcpu->stat.l1d_flush++;
6248 
6249 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6250 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6251 		return;
6252 	}
6253 
6254 	asm volatile(
6255 		/* First ensure the pages are in the TLB */
6256 		"xorl	%%eax, %%eax\n"
6257 		".Lpopulate_tlb:\n\t"
6258 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6259 		"addl	$4096, %%eax\n\t"
6260 		"cmpl	%%eax, %[size]\n\t"
6261 		"jne	.Lpopulate_tlb\n\t"
6262 		"xorl	%%eax, %%eax\n\t"
6263 		"cpuid\n\t"
6264 		/* Now fill the cache */
6265 		"xorl	%%eax, %%eax\n"
6266 		".Lfill_cache:\n"
6267 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6268 		"addl	$64, %%eax\n\t"
6269 		"cmpl	%%eax, %[size]\n\t"
6270 		"jne	.Lfill_cache\n\t"
6271 		"lfence\n"
6272 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6273 		    [size] "r" (size)
6274 		: "eax", "ebx", "ecx", "edx");
6275 }
6276 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6277 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6278 {
6279 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6280 	int tpr_threshold;
6281 
6282 	if (is_guest_mode(vcpu) &&
6283 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6284 		return;
6285 
6286 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6287 	if (is_guest_mode(vcpu))
6288 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6289 	else
6290 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6291 }
6292 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6293 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6294 {
6295 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6296 	u32 sec_exec_control;
6297 
6298 	if (!lapic_in_kernel(vcpu))
6299 		return;
6300 
6301 	if (!flexpriority_enabled &&
6302 	    !cpu_has_vmx_virtualize_x2apic_mode())
6303 		return;
6304 
6305 	/* Postpone execution until vmcs01 is the current VMCS. */
6306 	if (is_guest_mode(vcpu)) {
6307 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6308 		return;
6309 	}
6310 
6311 	sec_exec_control = secondary_exec_controls_get(vmx);
6312 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6313 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6314 
6315 	switch (kvm_get_apic_mode(vcpu)) {
6316 	case LAPIC_MODE_INVALID:
6317 		WARN_ONCE(true, "Invalid local APIC state");
6318 	case LAPIC_MODE_DISABLED:
6319 		break;
6320 	case LAPIC_MODE_XAPIC:
6321 		if (flexpriority_enabled) {
6322 			sec_exec_control |=
6323 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6324 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6325 
6326 			/*
6327 			 * Flush the TLB, reloading the APIC access page will
6328 			 * only do so if its physical address has changed, but
6329 			 * the guest may have inserted a non-APIC mapping into
6330 			 * the TLB while the APIC access page was disabled.
6331 			 */
6332 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6333 		}
6334 		break;
6335 	case LAPIC_MODE_X2APIC:
6336 		if (cpu_has_vmx_virtualize_x2apic_mode())
6337 			sec_exec_control |=
6338 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6339 		break;
6340 	}
6341 	secondary_exec_controls_set(vmx, sec_exec_control);
6342 
6343 	vmx_update_msr_bitmap(vcpu);
6344 }
6345 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6346 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6347 {
6348 	struct page *page;
6349 
6350 	/* Defer reload until vmcs01 is the current VMCS. */
6351 	if (is_guest_mode(vcpu)) {
6352 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6353 		return;
6354 	}
6355 
6356 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6357 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6358 		return;
6359 
6360 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6361 	if (is_error_page(page))
6362 		return;
6363 
6364 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6365 	vmx_flush_tlb_current(vcpu);
6366 
6367 	/*
6368 	 * Do not pin apic access page in memory, the MMU notifier
6369 	 * will call us again if it is migrated or swapped out.
6370 	 */
6371 	put_page(page);
6372 }
6373 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6374 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6375 {
6376 	u16 status;
6377 	u8 old;
6378 
6379 	if (max_isr == -1)
6380 		max_isr = 0;
6381 
6382 	status = vmcs_read16(GUEST_INTR_STATUS);
6383 	old = status >> 8;
6384 	if (max_isr != old) {
6385 		status &= 0xff;
6386 		status |= max_isr << 8;
6387 		vmcs_write16(GUEST_INTR_STATUS, status);
6388 	}
6389 }
6390 
vmx_set_rvi(int vector)6391 static void vmx_set_rvi(int vector)
6392 {
6393 	u16 status;
6394 	u8 old;
6395 
6396 	if (vector == -1)
6397 		vector = 0;
6398 
6399 	status = vmcs_read16(GUEST_INTR_STATUS);
6400 	old = (u8)status & 0xff;
6401 	if ((u8)vector != old) {
6402 		status &= ~0xff;
6403 		status |= (u8)vector;
6404 		vmcs_write16(GUEST_INTR_STATUS, status);
6405 	}
6406 }
6407 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6408 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6409 {
6410 	/*
6411 	 * When running L2, updating RVI is only relevant when
6412 	 * vmcs12 virtual-interrupt-delivery enabled.
6413 	 * However, it can be enabled only when L1 also
6414 	 * intercepts external-interrupts and in that case
6415 	 * we should not update vmcs02 RVI but instead intercept
6416 	 * interrupt. Therefore, do nothing when running L2.
6417 	 */
6418 	if (!is_guest_mode(vcpu))
6419 		vmx_set_rvi(max_irr);
6420 }
6421 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6422 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6423 {
6424 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6425 	int max_irr;
6426 	bool max_irr_updated;
6427 
6428 	WARN_ON(!vcpu->arch.apicv_active);
6429 	if (pi_test_on(&vmx->pi_desc)) {
6430 		pi_clear_on(&vmx->pi_desc);
6431 		/*
6432 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6433 		 * But on x86 this is just a compiler barrier anyway.
6434 		 */
6435 		smp_mb__after_atomic();
6436 		max_irr_updated =
6437 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6438 
6439 		/*
6440 		 * If we are running L2 and L1 has a new pending interrupt
6441 		 * which can be injected, this may cause a vmexit or it may
6442 		 * be injected into L2.  Either way, this interrupt will be
6443 		 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6444 		 * virtual interrupt delivery to inject L1 interrupts into L2.
6445 		 */
6446 		if (is_guest_mode(vcpu) && max_irr_updated)
6447 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6448 	} else {
6449 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6450 	}
6451 	vmx_hwapic_irr_update(vcpu, max_irr);
6452 	return max_irr;
6453 }
6454 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6455 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6456 {
6457 	if (!kvm_vcpu_apicv_active(vcpu))
6458 		return;
6459 
6460 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6461 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6462 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6463 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6464 }
6465 
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6466 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6467 {
6468 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6469 
6470 	pi_clear_on(&vmx->pi_desc);
6471 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6472 }
6473 
6474 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6475 
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6476 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6477 					unsigned long entry)
6478 {
6479 	kvm_before_interrupt(vcpu);
6480 	vmx_do_interrupt_nmi_irqoff(entry);
6481 	kvm_after_interrupt(vcpu);
6482 }
6483 
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6484 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6485 {
6486 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6487 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6488 
6489 	/* if exit due to PF check for async PF */
6490 	if (is_page_fault(intr_info))
6491 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6492 	/* Handle machine checks before interrupts are enabled */
6493 	else if (is_machine_check(intr_info))
6494 		kvm_machine_check();
6495 	/* We need to handle NMIs before interrupts are enabled */
6496 	else if (is_nmi(intr_info))
6497 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6498 }
6499 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6500 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6501 {
6502 	u32 intr_info = vmx_get_intr_info(vcpu);
6503 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6504 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6505 
6506 	if (WARN_ONCE(!is_external_intr(intr_info),
6507 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6508 		return;
6509 
6510 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6511 	vcpu->arch.at_instruction_boundary = true;
6512 }
6513 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6514 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6515 {
6516 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6517 
6518 	if (vmx->emulation_required)
6519 		return;
6520 
6521 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6522 		handle_external_interrupt_irqoff(vcpu);
6523 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6524 		handle_exception_nmi_irqoff(vmx);
6525 }
6526 
vmx_has_emulated_msr(u32 index)6527 static bool vmx_has_emulated_msr(u32 index)
6528 {
6529 	switch (index) {
6530 	case MSR_IA32_SMBASE:
6531 		/*
6532 		 * We cannot do SMM unless we can run the guest in big
6533 		 * real mode.
6534 		 */
6535 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6536 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6537 		return nested;
6538 	case MSR_AMD64_VIRT_SPEC_CTRL:
6539 		/* This is AMD only.  */
6540 		return false;
6541 	default:
6542 		return true;
6543 	}
6544 }
6545 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6546 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6547 {
6548 	u32 exit_intr_info;
6549 	bool unblock_nmi;
6550 	u8 vector;
6551 	bool idtv_info_valid;
6552 
6553 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6554 
6555 	if (enable_vnmi) {
6556 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6557 			return;
6558 
6559 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6560 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6561 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6562 		/*
6563 		 * SDM 3: 27.7.1.2 (September 2008)
6564 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6565 		 * a guest IRET fault.
6566 		 * SDM 3: 23.2.2 (September 2008)
6567 		 * Bit 12 is undefined in any of the following cases:
6568 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6569 		 *   information field.
6570 		 *  If the VM exit is due to a double fault.
6571 		 */
6572 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6573 		    vector != DF_VECTOR && !idtv_info_valid)
6574 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6575 				      GUEST_INTR_STATE_NMI);
6576 		else
6577 			vmx->loaded_vmcs->nmi_known_unmasked =
6578 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6579 				  & GUEST_INTR_STATE_NMI);
6580 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6581 		vmx->loaded_vmcs->vnmi_blocked_time +=
6582 			ktime_to_ns(ktime_sub(ktime_get(),
6583 					      vmx->loaded_vmcs->entry_time));
6584 }
6585 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6586 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6587 				      u32 idt_vectoring_info,
6588 				      int instr_len_field,
6589 				      int error_code_field)
6590 {
6591 	u8 vector;
6592 	int type;
6593 	bool idtv_info_valid;
6594 
6595 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6596 
6597 	vcpu->arch.nmi_injected = false;
6598 	kvm_clear_exception_queue(vcpu);
6599 	kvm_clear_interrupt_queue(vcpu);
6600 
6601 	if (!idtv_info_valid)
6602 		return;
6603 
6604 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6605 
6606 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6607 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6608 
6609 	switch (type) {
6610 	case INTR_TYPE_NMI_INTR:
6611 		vcpu->arch.nmi_injected = true;
6612 		/*
6613 		 * SDM 3: 27.7.1.2 (September 2008)
6614 		 * Clear bit "block by NMI" before VM entry if a NMI
6615 		 * delivery faulted.
6616 		 */
6617 		vmx_set_nmi_mask(vcpu, false);
6618 		break;
6619 	case INTR_TYPE_SOFT_EXCEPTION:
6620 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6621 		fallthrough;
6622 	case INTR_TYPE_HARD_EXCEPTION:
6623 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6624 			u32 err = vmcs_read32(error_code_field);
6625 			kvm_requeue_exception_e(vcpu, vector, err);
6626 		} else
6627 			kvm_requeue_exception(vcpu, vector);
6628 		break;
6629 	case INTR_TYPE_SOFT_INTR:
6630 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6631 		fallthrough;
6632 	case INTR_TYPE_EXT_INTR:
6633 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6634 		break;
6635 	default:
6636 		break;
6637 	}
6638 }
6639 
vmx_complete_interrupts(struct vcpu_vmx * vmx)6640 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6641 {
6642 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6643 				  VM_EXIT_INSTRUCTION_LEN,
6644 				  IDT_VECTORING_ERROR_CODE);
6645 }
6646 
vmx_cancel_injection(struct kvm_vcpu * vcpu)6647 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6648 {
6649 	__vmx_complete_interrupts(vcpu,
6650 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6651 				  VM_ENTRY_INSTRUCTION_LEN,
6652 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6653 
6654 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6655 }
6656 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6657 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6658 {
6659 	int i, nr_msrs;
6660 	struct perf_guest_switch_msr *msrs;
6661 
6662 	msrs = perf_guest_get_msrs(&nr_msrs);
6663 
6664 	if (!msrs)
6665 		return;
6666 
6667 	for (i = 0; i < nr_msrs; i++)
6668 		if (msrs[i].host == msrs[i].guest)
6669 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6670 		else
6671 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6672 					msrs[i].host, false);
6673 }
6674 
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6675 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6676 {
6677 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6678 	u64 tscl;
6679 	u32 delta_tsc;
6680 
6681 	if (vmx->req_immediate_exit) {
6682 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6683 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6684 	} else if (vmx->hv_deadline_tsc != -1) {
6685 		tscl = rdtsc();
6686 		if (vmx->hv_deadline_tsc > tscl)
6687 			/* set_hv_timer ensures the delta fits in 32-bits */
6688 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6689 				cpu_preemption_timer_multi);
6690 		else
6691 			delta_tsc = 0;
6692 
6693 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6694 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6695 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6696 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6697 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6698 	}
6699 }
6700 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6701 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6702 {
6703 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6704 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6705 		vmcs_writel(HOST_RSP, host_rsp);
6706 	}
6707 }
6708 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)6709 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
6710 					unsigned int flags)
6711 {
6712 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
6713 
6714 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
6715 		return;
6716 
6717 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
6718 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
6719 
6720 	/*
6721 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
6722 	 *
6723 	 * For legacy IBRS, the IBRS bit always needs to be written after
6724 	 * transitioning from a less privileged predictor mode, regardless of
6725 	 * whether the guest/host values differ.
6726 	 */
6727 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
6728 	    vmx->spec_ctrl != hostval)
6729 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
6730 
6731 	barrier_nospec();
6732 }
6733 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6734 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6735 {
6736 	switch (to_vmx(vcpu)->exit_reason.basic) {
6737 	case EXIT_REASON_MSR_WRITE:
6738 		return handle_fastpath_set_msr_irqoff(vcpu);
6739 	case EXIT_REASON_PREEMPTION_TIMER:
6740 		return handle_fastpath_preemption_timer(vcpu);
6741 	default:
6742 		return EXIT_FASTPATH_NONE;
6743 	}
6744 }
6745 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)6746 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6747 					struct vcpu_vmx *vmx,
6748 					unsigned long flags)
6749 {
6750 	/*
6751 	 * VMENTER enables interrupts (host state), but the kernel state is
6752 	 * interrupts disabled when this is invoked. Also tell RCU about
6753 	 * it. This is the same logic as for exit_to_user_mode().
6754 	 *
6755 	 * This ensures that e.g. latency analysis on the host observes
6756 	 * guest mode as interrupt enabled.
6757 	 *
6758 	 * guest_enter_irqoff() informs context tracking about the
6759 	 * transition to guest mode and if enabled adjusts RCU state
6760 	 * accordingly.
6761 	 */
6762 	instrumentation_begin();
6763 	trace_hardirqs_on_prepare();
6764 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6765 	instrumentation_end();
6766 
6767 	guest_enter_irqoff();
6768 	lockdep_hardirqs_on(CALLER_ADDR0);
6769 
6770 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6771 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6772 		vmx_l1d_flush(vcpu);
6773 	else if (static_branch_unlikely(&mds_user_clear))
6774 		mds_clear_cpu_buffers();
6775 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6776 		 kvm_arch_has_assigned_device(vcpu->kvm))
6777 		mds_clear_cpu_buffers();
6778 
6779 	vmx_disable_fb_clear(vmx);
6780 
6781 	if (vcpu->arch.cr2 != native_read_cr2())
6782 		native_write_cr2(vcpu->arch.cr2);
6783 
6784 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6785 				   flags);
6786 
6787 	vcpu->arch.cr2 = native_read_cr2();
6788 
6789 	vmx_enable_fb_clear(vmx);
6790 
6791 	/*
6792 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
6793 	 * have them in state 'on' as recorded before entering guest mode.
6794 	 * Same as enter_from_user_mode().
6795 	 *
6796 	 * context_tracking_guest_exit() restores host context and reinstates
6797 	 * RCU if enabled and required.
6798 	 *
6799 	 * This needs to be done before the below as native_read_msr()
6800 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6801 	 * into world and some more.
6802 	 */
6803 	lockdep_hardirqs_off(CALLER_ADDR0);
6804 	context_tracking_guest_exit();
6805 
6806 	instrumentation_begin();
6807 	trace_hardirqs_off_finish();
6808 	instrumentation_end();
6809 }
6810 
vmx_vcpu_run(struct kvm_vcpu * vcpu)6811 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6812 {
6813 	fastpath_t exit_fastpath;
6814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6815 	unsigned long cr3, cr4;
6816 
6817 reenter_guest:
6818 	/* Record the guest's net vcpu time for enforced NMI injections. */
6819 	if (unlikely(!enable_vnmi &&
6820 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6821 		vmx->loaded_vmcs->entry_time = ktime_get();
6822 
6823 	/* Don't enter VMX if guest state is invalid, let the exit handler
6824 	   start emulation until we arrive back to a valid state */
6825 	if (vmx->emulation_required)
6826 		return EXIT_FASTPATH_NONE;
6827 
6828 	if (vmx->ple_window_dirty) {
6829 		vmx->ple_window_dirty = false;
6830 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6831 	}
6832 
6833 	/*
6834 	 * We did this in prepare_switch_to_guest, because it needs to
6835 	 * be within srcu_read_lock.
6836 	 */
6837 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6838 
6839 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6840 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6841 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6842 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6843 
6844 	cr3 = __get_current_cr3_fast();
6845 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6846 		vmcs_writel(HOST_CR3, cr3);
6847 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6848 	}
6849 
6850 	cr4 = cr4_read_shadow();
6851 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6852 		vmcs_writel(HOST_CR4, cr4);
6853 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6854 	}
6855 
6856 	/* When single-stepping over STI and MOV SS, we must clear the
6857 	 * corresponding interruptibility bits in the guest state. Otherwise
6858 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6859 	 * exceptions being set, but that's not correct for the guest debugging
6860 	 * case. */
6861 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6862 		vmx_set_interrupt_shadow(vcpu, 0);
6863 
6864 	kvm_load_guest_xsave_state(vcpu);
6865 
6866 	pt_guest_enter(vmx);
6867 
6868 	atomic_switch_perf_msrs(vmx);
6869 
6870 	if (enable_preemption_timer)
6871 		vmx_update_hv_timer(vcpu);
6872 
6873 	kvm_wait_lapic_expire(vcpu);
6874 
6875 	/*
6876 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6877 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6878 	 * is no need to worry about the conditional branch over the wrmsr
6879 	 * being speculatively taken.
6880 	 */
6881 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6882 
6883 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6884 	vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
6885 
6886 	/* All fields are clean at this point */
6887 	if (static_branch_unlikely(&enable_evmcs))
6888 		current_evmcs->hv_clean_fields |=
6889 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6890 
6891 	if (static_branch_unlikely(&enable_evmcs))
6892 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6893 
6894 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6895 	if (vmx->host_debugctlmsr)
6896 		update_debugctlmsr(vmx->host_debugctlmsr);
6897 
6898 #ifndef CONFIG_X86_64
6899 	/*
6900 	 * The sysexit path does not restore ds/es, so we must set them to
6901 	 * a reasonable value ourselves.
6902 	 *
6903 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6904 	 * function may be executed in interrupt context, which saves and
6905 	 * restore segments around it, nullifying its effect.
6906 	 */
6907 	loadsegment(ds, __USER_DS);
6908 	loadsegment(es, __USER_DS);
6909 #endif
6910 
6911 	vmx_register_cache_reset(vcpu);
6912 
6913 	pt_guest_exit(vmx);
6914 
6915 	kvm_load_host_xsave_state(vcpu);
6916 
6917 	vmx->nested.nested_run_pending = 0;
6918 	vmx->idt_vectoring_info = 0;
6919 
6920 	if (unlikely(vmx->fail)) {
6921 		vmx->exit_reason.full = 0xdead;
6922 		return EXIT_FASTPATH_NONE;
6923 	}
6924 
6925 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6926 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6927 		kvm_machine_check();
6928 
6929 	trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6930 
6931 	if (unlikely(vmx->exit_reason.failed_vmentry))
6932 		return EXIT_FASTPATH_NONE;
6933 
6934 	vmx->loaded_vmcs->launched = 1;
6935 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6936 
6937 	vmx_recover_nmi_blocking(vmx);
6938 	vmx_complete_interrupts(vmx);
6939 
6940 	if (is_guest_mode(vcpu))
6941 		return EXIT_FASTPATH_NONE;
6942 
6943 	exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6944 	if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6945 		if (!kvm_vcpu_exit_request(vcpu)) {
6946 			/*
6947 			 * FIXME: this goto should be a loop in vcpu_enter_guest,
6948 			 * but it would incur the cost of a retpoline for now.
6949 			 * Revisit once static calls are available.
6950 			 */
6951 			if (vcpu->arch.apicv_active)
6952 				vmx_sync_pir_to_irr(vcpu);
6953 			goto reenter_guest;
6954 		}
6955 		exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6956 	}
6957 
6958 	return exit_fastpath;
6959 }
6960 
vmx_free_vcpu(struct kvm_vcpu * vcpu)6961 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6962 {
6963 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6964 
6965 	if (enable_pml)
6966 		vmx_destroy_pml_buffer(vmx);
6967 	free_vpid(vmx->vpid);
6968 	nested_vmx_free_vcpu(vcpu);
6969 	free_loaded_vmcs(vmx->loaded_vmcs);
6970 }
6971 
vmx_create_vcpu(struct kvm_vcpu * vcpu)6972 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6973 {
6974 	struct vcpu_vmx *vmx;
6975 	int i, cpu, err;
6976 
6977 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6978 	vmx = to_vmx(vcpu);
6979 
6980 	err = -ENOMEM;
6981 
6982 	vmx->vpid = allocate_vpid();
6983 
6984 	/*
6985 	 * If PML is turned on, failure on enabling PML just results in failure
6986 	 * of creating the vcpu, therefore we can simplify PML logic (by
6987 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6988 	 * for the guest), etc.
6989 	 */
6990 	if (enable_pml) {
6991 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6992 		if (!vmx->pml_pg)
6993 			goto free_vpid;
6994 	}
6995 
6996 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6997 
6998 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6999 		u32 index = vmx_uret_msrs_list[i];
7000 		int j = vmx->nr_uret_msrs;
7001 
7002 		if (kvm_probe_user_return_msr(index))
7003 			continue;
7004 
7005 		vmx->guest_uret_msrs[j].slot = i;
7006 		vmx->guest_uret_msrs[j].data = 0;
7007 		switch (index) {
7008 		case MSR_IA32_TSX_CTRL:
7009 			/*
7010 			 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
7011 			 * interception.  Keep the host value unchanged to avoid
7012 			 * changing CPUID bits under the host kernel's feet.
7013 			 *
7014 			 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
7015 			 * combinations of new kernel and old userspace.  If
7016 			 * those guests run on a tsx=off host, do allow guests
7017 			 * to use TSX_CTRL, but do not change the value on the
7018 			 * host so that TSX remains always disabled.
7019 			 */
7020 			if (boot_cpu_has(X86_FEATURE_RTM))
7021 				vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7022 			else
7023 				vmx->guest_uret_msrs[j].mask = 0;
7024 			break;
7025 		default:
7026 			vmx->guest_uret_msrs[j].mask = -1ull;
7027 			break;
7028 		}
7029 		++vmx->nr_uret_msrs;
7030 	}
7031 
7032 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7033 	if (err < 0)
7034 		goto free_pml;
7035 
7036 	/* The MSR bitmap starts with all ones */
7037 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7038 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7039 
7040 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7041 #ifdef CONFIG_X86_64
7042 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7043 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7044 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7045 #endif
7046 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7047 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7048 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7049 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7050 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7051 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7052 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7053 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7054 	}
7055 	vmx->msr_bitmap_mode = 0;
7056 
7057 	vmx->loaded_vmcs = &vmx->vmcs01;
7058 	cpu = get_cpu();
7059 	vmx_vcpu_load(vcpu, cpu);
7060 	vcpu->cpu = cpu;
7061 	init_vmcs(vmx);
7062 	vmx_vcpu_put(vcpu);
7063 	put_cpu();
7064 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7065 		err = alloc_apic_access_page(vcpu->kvm);
7066 		if (err)
7067 			goto free_vmcs;
7068 	}
7069 
7070 	if (enable_ept && !enable_unrestricted_guest) {
7071 		err = init_rmode_identity_map(vcpu->kvm);
7072 		if (err)
7073 			goto free_vmcs;
7074 	}
7075 
7076 	if (nested)
7077 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7078 	else
7079 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7080 
7081 	vmx->nested.posted_intr_nv = -1;
7082 	vmx->nested.current_vmptr = -1ull;
7083 
7084 	vcpu->arch.microcode_version = 0x100000000ULL;
7085 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7086 
7087 	/*
7088 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7089 	 * or POSTED_INTR_WAKEUP_VECTOR.
7090 	 */
7091 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7092 	vmx->pi_desc.sn = 1;
7093 
7094 	vmx->ept_pointer = INVALID_PAGE;
7095 
7096 	return 0;
7097 
7098 free_vmcs:
7099 	free_loaded_vmcs(vmx->loaded_vmcs);
7100 free_pml:
7101 	vmx_destroy_pml_buffer(vmx);
7102 free_vpid:
7103 	free_vpid(vmx->vpid);
7104 	return err;
7105 }
7106 
7107 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7108 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7109 
vmx_vm_init(struct kvm * kvm)7110 static int vmx_vm_init(struct kvm *kvm)
7111 {
7112 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7113 
7114 	if (!ple_gap)
7115 		kvm->arch.pause_in_guest = true;
7116 
7117 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7118 		switch (l1tf_mitigation) {
7119 		case L1TF_MITIGATION_OFF:
7120 		case L1TF_MITIGATION_FLUSH_NOWARN:
7121 			/* 'I explicitly don't care' is set */
7122 			break;
7123 		case L1TF_MITIGATION_FLUSH:
7124 		case L1TF_MITIGATION_FLUSH_NOSMT:
7125 		case L1TF_MITIGATION_FULL:
7126 			/*
7127 			 * Warn upon starting the first VM in a potentially
7128 			 * insecure environment.
7129 			 */
7130 			if (sched_smt_active())
7131 				pr_warn_once(L1TF_MSG_SMT);
7132 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7133 				pr_warn_once(L1TF_MSG_L1D);
7134 			break;
7135 		case L1TF_MITIGATION_FULL_FORCE:
7136 			/* Flush is enforced */
7137 			break;
7138 		}
7139 	}
7140 	kvm_apicv_init(kvm, enable_apicv);
7141 	return 0;
7142 }
7143 
vmx_check_processor_compat(void)7144 static int __init vmx_check_processor_compat(void)
7145 {
7146 	struct vmcs_config vmcs_conf;
7147 	struct vmx_capability vmx_cap;
7148 
7149 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7150 	    !this_cpu_has(X86_FEATURE_VMX)) {
7151 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7152 		return -EIO;
7153 	}
7154 
7155 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7156 		return -EIO;
7157 	if (nested)
7158 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7159 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7160 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7161 				smp_processor_id());
7162 		return -EIO;
7163 	}
7164 	return 0;
7165 }
7166 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7167 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7168 {
7169 	u8 cache;
7170 	u64 ipat = 0;
7171 
7172 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7173 	 * memory aliases with conflicting memory types and sometimes MCEs.
7174 	 * We have to be careful as to what are honored and when.
7175 	 *
7176 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7177 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7178 	 * This was historically the source of MCEs and we want to be
7179 	 * conservative.
7180 	 *
7181 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7182 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7183 	 * EPT memory type is set to WB.  The effective memory type is forced
7184 	 * WB.
7185 	 *
7186 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7187 	 * EPT memory type is used to emulate guest CD/MTRR.
7188 	 */
7189 
7190 	if (is_mmio) {
7191 		cache = MTRR_TYPE_UNCACHABLE;
7192 		goto exit;
7193 	}
7194 
7195 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7196 		ipat = VMX_EPT_IPAT_BIT;
7197 		cache = MTRR_TYPE_WRBACK;
7198 		goto exit;
7199 	}
7200 
7201 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7202 		ipat = VMX_EPT_IPAT_BIT;
7203 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7204 			cache = MTRR_TYPE_WRBACK;
7205 		else
7206 			cache = MTRR_TYPE_UNCACHABLE;
7207 		goto exit;
7208 	}
7209 
7210 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7211 
7212 exit:
7213 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7214 }
7215 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7216 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7217 {
7218 	/*
7219 	 * These bits in the secondary execution controls field
7220 	 * are dynamic, the others are mostly based on the hypervisor
7221 	 * architecture and the guest's CPUID.  Do not touch the
7222 	 * dynamic bits.
7223 	 */
7224 	u32 mask =
7225 		SECONDARY_EXEC_SHADOW_VMCS |
7226 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7227 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7228 		SECONDARY_EXEC_DESC;
7229 
7230 	u32 new_ctl = vmx->secondary_exec_control;
7231 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7232 
7233 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7234 }
7235 
7236 /*
7237  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7238  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7239  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7240 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7241 {
7242 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7243 	struct kvm_cpuid_entry2 *entry;
7244 
7245 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7246 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7247 
7248 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7249 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7250 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7251 } while (0)
7252 
7253 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7254 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7255 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7256 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7257 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7258 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7259 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7260 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7261 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7262 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7263 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7264 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7265 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7266 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7267 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7268 
7269 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7270 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7271 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7272 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7273 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7274 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7275 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7276 
7277 #undef cr4_fixed1_update
7278 }
7279 
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7280 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7281 {
7282 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7283 
7284 	if (kvm_mpx_supported()) {
7285 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7286 
7287 		if (mpx_enabled) {
7288 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7289 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7290 		} else {
7291 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7292 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7293 		}
7294 	}
7295 }
7296 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7297 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7298 {
7299 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7300 	struct kvm_cpuid_entry2 *best = NULL;
7301 	int i;
7302 
7303 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7304 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7305 		if (!best)
7306 			return;
7307 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7308 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7309 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7310 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7311 	}
7312 
7313 	/* Get the number of configurable Address Ranges for filtering */
7314 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7315 						PT_CAP_num_address_ranges);
7316 
7317 	/* Initialize and clear the no dependency bits */
7318 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7319 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7320 
7321 	/*
7322 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7323 	 * will inject an #GP
7324 	 */
7325 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7326 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7327 
7328 	/*
7329 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7330 	 * PSBFreq can be set
7331 	 */
7332 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7333 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7334 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7335 
7336 	/*
7337 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7338 	 * MTCFreq can be set
7339 	 */
7340 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7341 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7342 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7343 
7344 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7345 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7346 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7347 							RTIT_CTL_PTW_EN);
7348 
7349 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7350 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7351 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7352 
7353 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7354 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7355 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7356 
7357 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7358 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7359 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7360 
7361 	/* unmask address range configure area */
7362 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7363 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7364 }
7365 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7366 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7367 {
7368 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7369 
7370 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7371 	vcpu->arch.xsaves_enabled = false;
7372 
7373 	if (cpu_has_secondary_exec_ctrls()) {
7374 		vmx_compute_secondary_exec_control(vmx);
7375 		vmcs_set_secondary_exec_control(vmx);
7376 	}
7377 
7378 	if (nested_vmx_allowed(vcpu))
7379 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7380 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7381 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7382 	else
7383 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7384 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7385 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7386 
7387 	if (nested_vmx_allowed(vcpu)) {
7388 		nested_vmx_cr_fixed1_bits_update(vcpu);
7389 		nested_vmx_entry_exit_ctls_update(vcpu);
7390 	}
7391 
7392 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7393 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7394 		update_intel_pt_cfg(vcpu);
7395 
7396 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7397 		struct vmx_uret_msr *msr;
7398 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7399 		if (msr) {
7400 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7401 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7402 		}
7403 	}
7404 
7405 	set_cr4_guest_host_mask(vmx);
7406 
7407 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7408 	update_exception_bitmap(vcpu);
7409 }
7410 
vmx_set_cpu_caps(void)7411 static __init void vmx_set_cpu_caps(void)
7412 {
7413 	kvm_set_cpu_caps();
7414 
7415 	/* CPUID 0x1 */
7416 	if (nested)
7417 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7418 
7419 	/* CPUID 0x7 */
7420 	if (kvm_mpx_supported())
7421 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7422 	if (cpu_has_vmx_invpcid())
7423 		kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7424 	if (vmx_pt_mode_is_host_guest())
7425 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7426 
7427 	if (vmx_umip_emulated())
7428 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7429 
7430 	/* CPUID 0xD.1 */
7431 	supported_xss = 0;
7432 	if (!cpu_has_vmx_xsaves())
7433 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7434 
7435 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7436 	if (!cpu_has_vmx_rdtscp()) {
7437 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7438 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7439 	}
7440 
7441 	if (cpu_has_vmx_waitpkg())
7442 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7443 }
7444 
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7445 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7446 {
7447 	to_vmx(vcpu)->req_immediate_exit = true;
7448 }
7449 
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7450 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7451 				  struct x86_instruction_info *info)
7452 {
7453 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7454 	unsigned short port;
7455 	bool intercept;
7456 	int size;
7457 
7458 	if (info->intercept == x86_intercept_in ||
7459 	    info->intercept == x86_intercept_ins) {
7460 		port = info->src_val;
7461 		size = info->dst_bytes;
7462 	} else {
7463 		port = info->dst_val;
7464 		size = info->src_bytes;
7465 	}
7466 
7467 	/*
7468 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7469 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7470 	 * control.
7471 	 *
7472 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7473 	 */
7474 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7475 		intercept = nested_cpu_has(vmcs12,
7476 					   CPU_BASED_UNCOND_IO_EXITING);
7477 	else
7478 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7479 
7480 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7481 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7482 }
7483 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7484 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7485 			       struct x86_instruction_info *info,
7486 			       enum x86_intercept_stage stage,
7487 			       struct x86_exception *exception)
7488 {
7489 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7490 
7491 	switch (info->intercept) {
7492 	/*
7493 	 * RDPID causes #UD if disabled through secondary execution controls.
7494 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7495 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7496 	 */
7497 	case x86_intercept_rdpid:
7498 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7499 			exception->vector = UD_VECTOR;
7500 			exception->error_code_valid = false;
7501 			return X86EMUL_PROPAGATE_FAULT;
7502 		}
7503 		break;
7504 
7505 	case x86_intercept_in:
7506 	case x86_intercept_ins:
7507 	case x86_intercept_out:
7508 	case x86_intercept_outs:
7509 		return vmx_check_intercept_io(vcpu, info);
7510 
7511 	case x86_intercept_lgdt:
7512 	case x86_intercept_lidt:
7513 	case x86_intercept_lldt:
7514 	case x86_intercept_ltr:
7515 	case x86_intercept_sgdt:
7516 	case x86_intercept_sidt:
7517 	case x86_intercept_sldt:
7518 	case x86_intercept_str:
7519 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7520 			return X86EMUL_CONTINUE;
7521 
7522 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7523 		break;
7524 
7525 	/* TODO: check more intercepts... */
7526 	default:
7527 		break;
7528 	}
7529 
7530 	return X86EMUL_UNHANDLEABLE;
7531 }
7532 
7533 #ifdef CONFIG_X86_64
7534 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7535 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7536 				  u64 divisor, u64 *result)
7537 {
7538 	u64 low = a << shift, high = a >> (64 - shift);
7539 
7540 	/* To avoid the overflow on divq */
7541 	if (high >= divisor)
7542 		return 1;
7543 
7544 	/* Low hold the result, high hold rem which is discarded */
7545 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7546 	    "rm" (divisor), "0" (low), "1" (high));
7547 	*result = low;
7548 
7549 	return 0;
7550 }
7551 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7552 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7553 			    bool *expired)
7554 {
7555 	struct vcpu_vmx *vmx;
7556 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7557 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7558 
7559 	vmx = to_vmx(vcpu);
7560 	tscl = rdtsc();
7561 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7562 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7563 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7564 						    ktimer->timer_advance_ns);
7565 
7566 	if (delta_tsc > lapic_timer_advance_cycles)
7567 		delta_tsc -= lapic_timer_advance_cycles;
7568 	else
7569 		delta_tsc = 0;
7570 
7571 	/* Convert to host delta tsc if tsc scaling is enabled */
7572 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7573 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7574 				kvm_tsc_scaling_ratio_frac_bits,
7575 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7576 		return -ERANGE;
7577 
7578 	/*
7579 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7580 	 * we can't use the preemption timer.
7581 	 * It's possible that it fits on later vmentries, but checking
7582 	 * on every vmentry is costly so we just use an hrtimer.
7583 	 */
7584 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7585 		return -ERANGE;
7586 
7587 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7588 	*expired = !delta_tsc;
7589 	return 0;
7590 }
7591 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7592 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7593 {
7594 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7595 }
7596 #endif
7597 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7598 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7599 {
7600 	if (!kvm_pause_in_guest(vcpu->kvm))
7601 		shrink_ple_window(vcpu);
7602 }
7603 
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7604 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7605 				     struct kvm_memory_slot *slot)
7606 {
7607 	if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7608 		kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7609 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7610 }
7611 
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7612 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7613 				       struct kvm_memory_slot *slot)
7614 {
7615 	kvm_mmu_slot_set_dirty(kvm, slot);
7616 }
7617 
vmx_flush_log_dirty(struct kvm * kvm)7618 static void vmx_flush_log_dirty(struct kvm *kvm)
7619 {
7620 	kvm_flush_pml_buffers(kvm);
7621 }
7622 
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7623 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7624 					   struct kvm_memory_slot *memslot,
7625 					   gfn_t offset, unsigned long mask)
7626 {
7627 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7628 }
7629 
vmx_pre_block(struct kvm_vcpu * vcpu)7630 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7631 {
7632 	if (pi_pre_block(vcpu))
7633 		return 1;
7634 
7635 	if (kvm_lapic_hv_timer_in_use(vcpu))
7636 		kvm_lapic_switch_to_sw_timer(vcpu);
7637 
7638 	return 0;
7639 }
7640 
vmx_post_block(struct kvm_vcpu * vcpu)7641 static void vmx_post_block(struct kvm_vcpu *vcpu)
7642 {
7643 	if (kvm_x86_ops.set_hv_timer)
7644 		kvm_lapic_switch_to_hv_timer(vcpu);
7645 
7646 	pi_post_block(vcpu);
7647 }
7648 
vmx_setup_mce(struct kvm_vcpu * vcpu)7649 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7650 {
7651 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7652 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7653 			FEAT_CTL_LMCE_ENABLED;
7654 	else
7655 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7656 			~FEAT_CTL_LMCE_ENABLED;
7657 }
7658 
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7659 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7660 {
7661 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7662 	if (to_vmx(vcpu)->nested.nested_run_pending)
7663 		return -EBUSY;
7664 	return !is_smm(vcpu);
7665 }
7666 
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7667 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7668 {
7669 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7670 
7671 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7672 	if (vmx->nested.smm.guest_mode)
7673 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7674 
7675 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7676 	vmx->nested.vmxon = false;
7677 	vmx_clear_hlt(vcpu);
7678 	return 0;
7679 }
7680 
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7681 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7682 {
7683 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7684 	int ret;
7685 
7686 	if (vmx->nested.smm.vmxon) {
7687 		vmx->nested.vmxon = true;
7688 		vmx->nested.smm.vmxon = false;
7689 	}
7690 
7691 	if (vmx->nested.smm.guest_mode) {
7692 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7693 		if (ret)
7694 			return ret;
7695 
7696 		vmx->nested.smm.guest_mode = false;
7697 	}
7698 	return 0;
7699 }
7700 
enable_smi_window(struct kvm_vcpu * vcpu)7701 static void enable_smi_window(struct kvm_vcpu *vcpu)
7702 {
7703 	/* RSM will cause a vmexit anyway.  */
7704 }
7705 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7706 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7707 {
7708 	return to_vmx(vcpu)->nested.vmxon;
7709 }
7710 
vmx_migrate_timers(struct kvm_vcpu * vcpu)7711 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7712 {
7713 	if (is_guest_mode(vcpu)) {
7714 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7715 
7716 		if (hrtimer_try_to_cancel(timer) == 1)
7717 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7718 	}
7719 }
7720 
hardware_unsetup(void)7721 static void hardware_unsetup(void)
7722 {
7723 	kvm_set_posted_intr_wakeup_handler(NULL);
7724 
7725 	if (nested)
7726 		nested_vmx_hardware_unsetup();
7727 
7728 	free_kvm_area();
7729 }
7730 
vmx_check_apicv_inhibit_reasons(ulong bit)7731 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7732 {
7733 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7734 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7735 
7736 	return supported & BIT(bit);
7737 }
7738 
7739 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7740 	.hardware_unsetup = hardware_unsetup,
7741 
7742 	.hardware_enable = hardware_enable,
7743 	.hardware_disable = hardware_disable,
7744 	.cpu_has_accelerated_tpr = report_flexpriority,
7745 	.has_emulated_msr = vmx_has_emulated_msr,
7746 
7747 	.vm_size = sizeof(struct kvm_vmx),
7748 	.vm_init = vmx_vm_init,
7749 
7750 	.vcpu_create = vmx_create_vcpu,
7751 	.vcpu_free = vmx_free_vcpu,
7752 	.vcpu_reset = vmx_vcpu_reset,
7753 
7754 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7755 	.vcpu_load = vmx_vcpu_load,
7756 	.vcpu_put = vmx_vcpu_put,
7757 
7758 	.update_exception_bitmap = update_exception_bitmap,
7759 	.get_msr_feature = vmx_get_msr_feature,
7760 	.get_msr = vmx_get_msr,
7761 	.set_msr = vmx_set_msr,
7762 	.get_segment_base = vmx_get_segment_base,
7763 	.get_segment = vmx_get_segment,
7764 	.set_segment = vmx_set_segment,
7765 	.get_cpl = vmx_get_cpl,
7766 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7767 	.set_cr0 = vmx_set_cr0,
7768 	.is_valid_cr4 = vmx_is_valid_cr4,
7769 	.set_cr4 = vmx_set_cr4,
7770 	.set_efer = vmx_set_efer,
7771 	.get_idt = vmx_get_idt,
7772 	.set_idt = vmx_set_idt,
7773 	.get_gdt = vmx_get_gdt,
7774 	.set_gdt = vmx_set_gdt,
7775 	.set_dr7 = vmx_set_dr7,
7776 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7777 	.cache_reg = vmx_cache_reg,
7778 	.get_rflags = vmx_get_rflags,
7779 	.set_rflags = vmx_set_rflags,
7780 
7781 	.tlb_flush_all = vmx_flush_tlb_all,
7782 	.tlb_flush_current = vmx_flush_tlb_current,
7783 	.tlb_flush_gva = vmx_flush_tlb_gva,
7784 	.tlb_flush_guest = vmx_flush_tlb_guest,
7785 
7786 	.run = vmx_vcpu_run,
7787 	.handle_exit = vmx_handle_exit,
7788 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7789 	.update_emulated_instruction = vmx_update_emulated_instruction,
7790 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7791 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7792 	.patch_hypercall = vmx_patch_hypercall,
7793 	.set_irq = vmx_inject_irq,
7794 	.set_nmi = vmx_inject_nmi,
7795 	.queue_exception = vmx_queue_exception,
7796 	.cancel_injection = vmx_cancel_injection,
7797 	.interrupt_allowed = vmx_interrupt_allowed,
7798 	.nmi_allowed = vmx_nmi_allowed,
7799 	.get_nmi_mask = vmx_get_nmi_mask,
7800 	.set_nmi_mask = vmx_set_nmi_mask,
7801 	.enable_nmi_window = enable_nmi_window,
7802 	.enable_irq_window = enable_irq_window,
7803 	.update_cr8_intercept = update_cr8_intercept,
7804 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7805 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7806 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7807 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7808 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7809 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7810 	.hwapic_irr_update = vmx_hwapic_irr_update,
7811 	.hwapic_isr_update = vmx_hwapic_isr_update,
7812 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7813 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7814 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7815 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7816 
7817 	.set_tss_addr = vmx_set_tss_addr,
7818 	.set_identity_map_addr = vmx_set_identity_map_addr,
7819 	.get_mt_mask = vmx_get_mt_mask,
7820 
7821 	.get_exit_info = vmx_get_exit_info,
7822 
7823 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7824 
7825 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7826 
7827 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7828 
7829 	.load_mmu_pgd = vmx_load_mmu_pgd,
7830 
7831 	.check_intercept = vmx_check_intercept,
7832 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7833 
7834 	.request_immediate_exit = vmx_request_immediate_exit,
7835 
7836 	.sched_in = vmx_sched_in,
7837 
7838 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7839 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7840 	.flush_log_dirty = vmx_flush_log_dirty,
7841 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7842 
7843 	.pre_block = vmx_pre_block,
7844 	.post_block = vmx_post_block,
7845 
7846 	.pmu_ops = &intel_pmu_ops,
7847 	.nested_ops = &vmx_nested_ops,
7848 
7849 	.update_pi_irte = pi_update_irte,
7850 
7851 #ifdef CONFIG_X86_64
7852 	.set_hv_timer = vmx_set_hv_timer,
7853 	.cancel_hv_timer = vmx_cancel_hv_timer,
7854 #endif
7855 
7856 	.setup_mce = vmx_setup_mce,
7857 
7858 	.smi_allowed = vmx_smi_allowed,
7859 	.pre_enter_smm = vmx_pre_enter_smm,
7860 	.pre_leave_smm = vmx_pre_leave_smm,
7861 	.enable_smi_window = enable_smi_window,
7862 
7863 	.can_emulate_instruction = vmx_can_emulate_instruction,
7864 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7865 	.migrate_timers = vmx_migrate_timers,
7866 
7867 	.msr_filter_changed = vmx_msr_filter_changed,
7868 };
7869 
hardware_setup(void)7870 static __init int hardware_setup(void)
7871 {
7872 	unsigned long host_bndcfgs;
7873 	struct desc_ptr dt;
7874 	int r, i, ept_lpage_level;
7875 
7876 	store_idt(&dt);
7877 	host_idt_base = dt.address;
7878 
7879 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7880 		kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7881 
7882 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7883 		return -EIO;
7884 
7885 	if (boot_cpu_has(X86_FEATURE_NX))
7886 		kvm_enable_efer_bits(EFER_NX);
7887 
7888 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7889 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7890 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7891 	}
7892 
7893 	if (!cpu_has_vmx_mpx())
7894 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7895 				    XFEATURE_MASK_BNDCSR);
7896 
7897 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7898 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7899 		enable_vpid = 0;
7900 
7901 	if (!cpu_has_vmx_ept() ||
7902 	    !cpu_has_vmx_ept_4levels() ||
7903 	    !cpu_has_vmx_ept_mt_wb() ||
7904 	    !cpu_has_vmx_invept_global())
7905 		enable_ept = 0;
7906 
7907 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7908 		enable_ept_ad_bits = 0;
7909 
7910 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7911 		enable_unrestricted_guest = 0;
7912 
7913 	if (!cpu_has_vmx_flexpriority())
7914 		flexpriority_enabled = 0;
7915 
7916 	if (!cpu_has_virtual_nmis())
7917 		enable_vnmi = 0;
7918 
7919 	/*
7920 	 * set_apic_access_page_addr() is used to reload apic access
7921 	 * page upon invalidation.  No need to do anything if not
7922 	 * using the APIC_ACCESS_ADDR VMCS field.
7923 	 */
7924 	if (!flexpriority_enabled)
7925 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7926 
7927 	if (!cpu_has_vmx_tpr_shadow())
7928 		vmx_x86_ops.update_cr8_intercept = NULL;
7929 
7930 #if IS_ENABLED(CONFIG_HYPERV)
7931 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7932 	    && enable_ept) {
7933 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7934 		vmx_x86_ops.tlb_remote_flush_with_range =
7935 				hv_remote_flush_tlb_with_range;
7936 	}
7937 #endif
7938 
7939 	if (!cpu_has_vmx_ple()) {
7940 		ple_gap = 0;
7941 		ple_window = 0;
7942 		ple_window_grow = 0;
7943 		ple_window_max = 0;
7944 		ple_window_shrink = 0;
7945 	}
7946 
7947 	if (!cpu_has_vmx_apicv()) {
7948 		enable_apicv = 0;
7949 		vmx_x86_ops.sync_pir_to_irr = NULL;
7950 	}
7951 
7952 	if (cpu_has_vmx_tsc_scaling()) {
7953 		kvm_has_tsc_control = true;
7954 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7955 		kvm_tsc_scaling_ratio_frac_bits = 48;
7956 	}
7957 
7958 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7959 
7960 	if (enable_ept)
7961 		vmx_enable_tdp();
7962 
7963 	if (!enable_ept)
7964 		ept_lpage_level = 0;
7965 	else if (cpu_has_vmx_ept_1g_page())
7966 		ept_lpage_level = PG_LEVEL_1G;
7967 	else if (cpu_has_vmx_ept_2m_page())
7968 		ept_lpage_level = PG_LEVEL_2M;
7969 	else
7970 		ept_lpage_level = PG_LEVEL_4K;
7971 	kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7972 
7973 	/*
7974 	 * Only enable PML when hardware supports PML feature, and both EPT
7975 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7976 	 */
7977 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7978 		enable_pml = 0;
7979 
7980 	if (!enable_pml) {
7981 		vmx_x86_ops.slot_enable_log_dirty = NULL;
7982 		vmx_x86_ops.slot_disable_log_dirty = NULL;
7983 		vmx_x86_ops.flush_log_dirty = NULL;
7984 		vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7985 	}
7986 
7987 	if (!cpu_has_vmx_preemption_timer())
7988 		enable_preemption_timer = false;
7989 
7990 	if (enable_preemption_timer) {
7991 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7992 		u64 vmx_msr;
7993 
7994 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7995 		cpu_preemption_timer_multi =
7996 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7997 
7998 		if (tsc_khz)
7999 			use_timer_freq = (u64)tsc_khz * 1000;
8000 		use_timer_freq >>= cpu_preemption_timer_multi;
8001 
8002 		/*
8003 		 * KVM "disables" the preemption timer by setting it to its max
8004 		 * value.  Don't use the timer if it might cause spurious exits
8005 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8006 		 */
8007 		if (use_timer_freq > 0xffffffffu / 10)
8008 			enable_preemption_timer = false;
8009 	}
8010 
8011 	if (!enable_preemption_timer) {
8012 		vmx_x86_ops.set_hv_timer = NULL;
8013 		vmx_x86_ops.cancel_hv_timer = NULL;
8014 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8015 	}
8016 
8017 	kvm_mce_cap_supported |= MCG_LMCE_P;
8018 
8019 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8020 		return -EINVAL;
8021 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8022 		pt_mode = PT_MODE_SYSTEM;
8023 
8024 	if (nested) {
8025 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8026 					   vmx_capability.ept);
8027 
8028 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8029 		if (r)
8030 			return r;
8031 	}
8032 
8033 	vmx_set_cpu_caps();
8034 
8035 	r = alloc_kvm_area();
8036 	if (r)
8037 		nested_vmx_hardware_unsetup();
8038 
8039 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8040 
8041 	return r;
8042 }
8043 
8044 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8045 	.cpu_has_kvm_support = cpu_has_kvm_support,
8046 	.disabled_by_bios = vmx_disabled_by_bios,
8047 	.check_processor_compatibility = vmx_check_processor_compat,
8048 	.hardware_setup = hardware_setup,
8049 	.intel_pt_intr_in_guest = vmx_pt_mode_is_host_guest,
8050 
8051 	.runtime_ops = &vmx_x86_ops,
8052 };
8053 
vmx_cleanup_l1d_flush(void)8054 static void vmx_cleanup_l1d_flush(void)
8055 {
8056 	if (vmx_l1d_flush_pages) {
8057 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8058 		vmx_l1d_flush_pages = NULL;
8059 	}
8060 	/* Restore state so sysfs ignores VMX */
8061 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8062 }
8063 
vmx_exit(void)8064 static void vmx_exit(void)
8065 {
8066 #ifdef CONFIG_KEXEC_CORE
8067 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8068 	synchronize_rcu();
8069 #endif
8070 
8071 	kvm_exit();
8072 
8073 #if IS_ENABLED(CONFIG_HYPERV)
8074 	if (static_branch_unlikely(&enable_evmcs)) {
8075 		int cpu;
8076 		struct hv_vp_assist_page *vp_ap;
8077 		/*
8078 		 * Reset everything to support using non-enlightened VMCS
8079 		 * access later (e.g. when we reload the module with
8080 		 * enlightened_vmcs=0)
8081 		 */
8082 		for_each_online_cpu(cpu) {
8083 			vp_ap =	hv_get_vp_assist_page(cpu);
8084 
8085 			if (!vp_ap)
8086 				continue;
8087 
8088 			vp_ap->nested_control.features.directhypercall = 0;
8089 			vp_ap->current_nested_vmcs = 0;
8090 			vp_ap->enlighten_vmentry = 0;
8091 		}
8092 
8093 		static_branch_disable(&enable_evmcs);
8094 	}
8095 #endif
8096 	vmx_cleanup_l1d_flush();
8097 }
8098 module_exit(vmx_exit);
8099 
vmx_init(void)8100 static int __init vmx_init(void)
8101 {
8102 	int r, cpu;
8103 
8104 #if IS_ENABLED(CONFIG_HYPERV)
8105 	/*
8106 	 * Enlightened VMCS usage should be recommended and the host needs
8107 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8108 	 * with module parameter.
8109 	 */
8110 	if (enlightened_vmcs &&
8111 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8112 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8113 	    KVM_EVMCS_VERSION) {
8114 		int cpu;
8115 
8116 		/* Check that we have assist pages on all online CPUs */
8117 		for_each_online_cpu(cpu) {
8118 			if (!hv_get_vp_assist_page(cpu)) {
8119 				enlightened_vmcs = false;
8120 				break;
8121 			}
8122 		}
8123 
8124 		if (enlightened_vmcs) {
8125 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8126 			static_branch_enable(&enable_evmcs);
8127 		}
8128 
8129 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8130 			vmx_x86_ops.enable_direct_tlbflush
8131 				= hv_enable_direct_tlbflush;
8132 
8133 	} else {
8134 		enlightened_vmcs = false;
8135 	}
8136 #endif
8137 
8138 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8139 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8140 	if (r)
8141 		return r;
8142 
8143 	/*
8144 	 * Must be called after kvm_init() so enable_ept is properly set
8145 	 * up. Hand the parameter mitigation value in which was stored in
8146 	 * the pre module init parser. If no parameter was given, it will
8147 	 * contain 'auto' which will be turned into the default 'cond'
8148 	 * mitigation mode.
8149 	 */
8150 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8151 	if (r) {
8152 		vmx_exit();
8153 		return r;
8154 	}
8155 
8156 	vmx_setup_fb_clear_ctrl();
8157 
8158 	for_each_possible_cpu(cpu) {
8159 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8160 
8161 		pi_init_cpu(cpu);
8162 	}
8163 
8164 #ifdef CONFIG_KEXEC_CORE
8165 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8166 			   crash_vmclear_local_loaded_vmcss);
8167 #endif
8168 	vmx_check_vmcs12_offsets();
8169 
8170 	/*
8171 	 * Shadow paging doesn't have a (further) performance penalty
8172 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8173 	 * by default
8174 	 */
8175 	if (!enable_ept)
8176 		allow_smaller_maxphyaddr = true;
8177 
8178 	return 0;
8179 }
8180 module_init(vmx_init);
8181