1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31
32 #include "internal.h"
33
34 /*
35 * New pipe buffers will be restricted to this size while the user is exceeding
36 * their pipe buffer quota. The general pipe use case needs at least two
37 * buffers: one for data yet to be read, and one for new data. If this is less
38 * than two, then a write to a non-empty pipe may block even if the pipe is not
39 * full. This can occur with GNU make jobserver or similar uses of pipes as
40 * semaphores: multiple processes may be waiting to write tokens back to the
41 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
42 *
43 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
44 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
45 * emptied.
46 */
47 #define PIPE_MIN_DEF_BUFFERS 2
48
49 /*
50 * The max size that a non-root user is allowed to grow the pipe. Can
51 * be set by root in /proc/sys/fs/pipe-max-size
52 */
53 unsigned int pipe_max_size = 1048576;
54
55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
56 * matches default values.
57 */
58 unsigned long pipe_user_pages_hard;
59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
60
61 /*
62 * We use head and tail indices that aren't masked off, except at the point of
63 * dereference, but rather they're allowed to wrap naturally. This means there
64 * isn't a dead spot in the buffer, but the ring has to be a power of two and
65 * <= 2^31.
66 * -- David Howells 2019-09-23.
67 *
68 * Reads with count = 0 should always return 0.
69 * -- Julian Bradfield 1999-06-07.
70 *
71 * FIFOs and Pipes now generate SIGIO for both readers and writers.
72 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
73 *
74 * pipe_read & write cleanup
75 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
76 */
77
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
79 {
80 if (pipe->files)
81 mutex_lock_nested(&pipe->mutex, subclass);
82 }
83
pipe_lock(struct pipe_inode_info * pipe)84 void pipe_lock(struct pipe_inode_info *pipe)
85 {
86 /*
87 * pipe_lock() nests non-pipe inode locks (for writing to a file)
88 */
89 pipe_lock_nested(pipe, I_MUTEX_PARENT);
90 }
91 EXPORT_SYMBOL(pipe_lock);
92
pipe_unlock(struct pipe_inode_info * pipe)93 void pipe_unlock(struct pipe_inode_info *pipe)
94 {
95 if (pipe->files)
96 mutex_unlock(&pipe->mutex);
97 }
98 EXPORT_SYMBOL(pipe_unlock);
99
__pipe_lock(struct pipe_inode_info * pipe)100 static inline void __pipe_lock(struct pipe_inode_info *pipe)
101 {
102 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
103 }
104
__pipe_unlock(struct pipe_inode_info * pipe)105 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
106 {
107 mutex_unlock(&pipe->mutex);
108 }
109
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)110 void pipe_double_lock(struct pipe_inode_info *pipe1,
111 struct pipe_inode_info *pipe2)
112 {
113 BUG_ON(pipe1 == pipe2);
114
115 if (pipe1 < pipe2) {
116 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
117 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
118 } else {
119 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
120 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
121 }
122 }
123
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 struct pipe_buffer *buf)
126 {
127 struct page *page = buf->page;
128
129 /*
130 * If nobody else uses this page, and we don't already have a
131 * temporary page, let's keep track of it as a one-deep
132 * allocation cache. (Otherwise just release our reference to it)
133 */
134 if (page_count(page) == 1 && !pipe->tmp_page)
135 pipe->tmp_page = page;
136 else
137 put_page(page);
138 }
139
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
141 struct pipe_buffer *buf)
142 {
143 struct page *page = buf->page;
144
145 if (page_count(page) != 1)
146 return false;
147 memcg_kmem_uncharge_page(page, 0);
148 __SetPageLocked(page);
149 return true;
150 }
151
152 /**
153 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
154 * @pipe: the pipe that the buffer belongs to
155 * @buf: the buffer to attempt to steal
156 *
157 * Description:
158 * This function attempts to steal the &struct page attached to
159 * @buf. If successful, this function returns 0 and returns with
160 * the page locked. The caller may then reuse the page for whatever
161 * he wishes; the typical use is insertion into a different file
162 * page cache.
163 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 struct pipe_buffer *buf)
166 {
167 struct page *page = buf->page;
168
169 /*
170 * A reference of one is golden, that means that the owner of this
171 * page is the only one holding a reference to it. lock the page
172 * and return OK.
173 */
174 if (page_count(page) == 1) {
175 lock_page(page);
176 return true;
177 }
178 return false;
179 }
180 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
181
182 /**
183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184 * @pipe: the pipe that the buffer belongs to
185 * @buf: the buffer to get a reference to
186 *
187 * Description:
188 * This function grabs an extra reference to @buf. It's used in
189 * in the tee() system call, when we duplicate the buffers in one
190 * pipe into another.
191 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
193 {
194 return try_get_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_get);
197
198 /**
199 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
200 * @pipe: the pipe that the buffer belongs to
201 * @buf: the buffer to put a reference to
202 *
203 * Description:
204 * This function releases a reference to @buf.
205 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)206 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
207 struct pipe_buffer *buf)
208 {
209 put_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_release);
212
213 static const struct pipe_buf_operations anon_pipe_buf_ops = {
214 .release = anon_pipe_buf_release,
215 .try_steal = anon_pipe_buf_try_steal,
216 .get = generic_pipe_buf_get,
217 };
218
219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)220 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
221 {
222 unsigned int head = READ_ONCE(pipe->head);
223 unsigned int tail = READ_ONCE(pipe->tail);
224 unsigned int writers = READ_ONCE(pipe->writers);
225
226 return !pipe_empty(head, tail) || !writers;
227 }
228
229 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)230 pipe_read(struct kiocb *iocb, struct iov_iter *to)
231 {
232 size_t total_len = iov_iter_count(to);
233 struct file *filp = iocb->ki_filp;
234 struct pipe_inode_info *pipe = filp->private_data;
235 bool was_full, wake_next_reader = false;
236 ssize_t ret;
237
238 /* Null read succeeds. */
239 if (unlikely(total_len == 0))
240 return 0;
241
242 ret = 0;
243 __pipe_lock(pipe);
244
245 /*
246 * We only wake up writers if the pipe was full when we started
247 * reading in order to avoid unnecessary wakeups.
248 *
249 * But when we do wake up writers, we do so using a sync wakeup
250 * (WF_SYNC), because we want them to get going and generate more
251 * data for us.
252 */
253 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
254 for (;;) {
255 /* Read ->head with a barrier vs post_one_notification() */
256 unsigned int head = smp_load_acquire(&pipe->head);
257 unsigned int tail = pipe->tail;
258 unsigned int mask = pipe->ring_size - 1;
259
260 #ifdef CONFIG_WATCH_QUEUE
261 if (pipe->note_loss) {
262 struct watch_notification n;
263
264 if (total_len < 8) {
265 if (ret == 0)
266 ret = -ENOBUFS;
267 break;
268 }
269
270 n.type = WATCH_TYPE_META;
271 n.subtype = WATCH_META_LOSS_NOTIFICATION;
272 n.info = watch_sizeof(n);
273 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
274 if (ret == 0)
275 ret = -EFAULT;
276 break;
277 }
278 ret += sizeof(n);
279 total_len -= sizeof(n);
280 pipe->note_loss = false;
281 }
282 #endif
283
284 if (!pipe_empty(head, tail)) {
285 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
286 size_t chars = buf->len;
287 size_t written;
288 int error;
289
290 if (chars > total_len) {
291 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
292 if (ret == 0)
293 ret = -ENOBUFS;
294 break;
295 }
296 chars = total_len;
297 }
298
299 error = pipe_buf_confirm(pipe, buf);
300 if (error) {
301 if (!ret)
302 ret = error;
303 break;
304 }
305
306 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
307 if (unlikely(written < chars)) {
308 if (!ret)
309 ret = -EFAULT;
310 break;
311 }
312 ret += chars;
313 buf->offset += chars;
314 buf->len -= chars;
315
316 /* Was it a packet buffer? Clean up and exit */
317 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
318 total_len = chars;
319 buf->len = 0;
320 }
321
322 if (!buf->len) {
323 pipe_buf_release(pipe, buf);
324 spin_lock_irq(&pipe->rd_wait.lock);
325 #ifdef CONFIG_WATCH_QUEUE
326 if (buf->flags & PIPE_BUF_FLAG_LOSS)
327 pipe->note_loss = true;
328 #endif
329 tail++;
330 pipe->tail = tail;
331 spin_unlock_irq(&pipe->rd_wait.lock);
332 }
333 total_len -= chars;
334 if (!total_len)
335 break; /* common path: read succeeded */
336 if (!pipe_empty(head, tail)) /* More to do? */
337 continue;
338 }
339
340 if (!pipe->writers)
341 break;
342 if (ret)
343 break;
344 if (filp->f_flags & O_NONBLOCK) {
345 ret = -EAGAIN;
346 break;
347 }
348 __pipe_unlock(pipe);
349
350 /*
351 * We only get here if we didn't actually read anything.
352 *
353 * However, we could have seen (and removed) a zero-sized
354 * pipe buffer, and might have made space in the buffers
355 * that way.
356 *
357 * You can't make zero-sized pipe buffers by doing an empty
358 * write (not even in packet mode), but they can happen if
359 * the writer gets an EFAULT when trying to fill a buffer
360 * that already got allocated and inserted in the buffer
361 * array.
362 *
363 * So we still need to wake up any pending writers in the
364 * _very_ unlikely case that the pipe was full, but we got
365 * no data.
366 */
367 if (unlikely(was_full))
368 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
369 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
370
371 /*
372 * But because we didn't read anything, at this point we can
373 * just return directly with -ERESTARTSYS if we're interrupted,
374 * since we've done any required wakeups and there's no need
375 * to mark anything accessed. And we've dropped the lock.
376 */
377 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
378 return -ERESTARTSYS;
379
380 __pipe_lock(pipe);
381 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
382 wake_next_reader = true;
383 }
384 if (pipe_empty(pipe->head, pipe->tail))
385 wake_next_reader = false;
386 __pipe_unlock(pipe);
387
388 if (was_full)
389 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
390 if (wake_next_reader)
391 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
392 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
393 if (ret > 0)
394 file_accessed(filp);
395 return ret;
396 }
397
is_packetized(struct file * file)398 static inline int is_packetized(struct file *file)
399 {
400 return (file->f_flags & O_DIRECT) != 0;
401 }
402
403 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)404 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
405 {
406 unsigned int head = READ_ONCE(pipe->head);
407 unsigned int tail = READ_ONCE(pipe->tail);
408 unsigned int max_usage = READ_ONCE(pipe->max_usage);
409
410 return !pipe_full(head, tail, max_usage) ||
411 !READ_ONCE(pipe->readers);
412 }
413
414 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)415 pipe_write(struct kiocb *iocb, struct iov_iter *from)
416 {
417 struct file *filp = iocb->ki_filp;
418 struct pipe_inode_info *pipe = filp->private_data;
419 unsigned int head;
420 ssize_t ret = 0;
421 size_t total_len = iov_iter_count(from);
422 ssize_t chars;
423 bool was_empty = false;
424 bool wake_next_writer = false;
425
426 /* Null write succeeds. */
427 if (unlikely(total_len == 0))
428 return 0;
429
430 __pipe_lock(pipe);
431
432 if (!pipe->readers) {
433 send_sig(SIGPIPE, current, 0);
434 ret = -EPIPE;
435 goto out;
436 }
437
438 #ifdef CONFIG_WATCH_QUEUE
439 if (pipe->watch_queue) {
440 ret = -EXDEV;
441 goto out;
442 }
443 #endif
444
445 /*
446 * If it wasn't empty we try to merge new data into
447 * the last buffer.
448 *
449 * That naturally merges small writes, but it also
450 * page-aligns the rest of the writes for large writes
451 * spanning multiple pages.
452 */
453 head = pipe->head;
454 was_empty = pipe_empty(head, pipe->tail);
455 chars = total_len & (PAGE_SIZE-1);
456 if (chars && !was_empty) {
457 unsigned int mask = pipe->ring_size - 1;
458 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
459 int offset = buf->offset + buf->len;
460
461 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
462 offset + chars <= PAGE_SIZE) {
463 ret = pipe_buf_confirm(pipe, buf);
464 if (ret)
465 goto out;
466
467 ret = copy_page_from_iter(buf->page, offset, chars, from);
468 if (unlikely(ret < chars)) {
469 ret = -EFAULT;
470 goto out;
471 }
472
473 buf->len += ret;
474 if (!iov_iter_count(from))
475 goto out;
476 }
477 }
478
479 for (;;) {
480 if (!pipe->readers) {
481 send_sig(SIGPIPE, current, 0);
482 if (!ret)
483 ret = -EPIPE;
484 break;
485 }
486
487 head = pipe->head;
488 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
489 unsigned int mask = pipe->ring_size - 1;
490 struct pipe_buffer *buf = &pipe->bufs[head & mask];
491 struct page *page = pipe->tmp_page;
492 int copied;
493
494 if (!page) {
495 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
496 if (unlikely(!page)) {
497 ret = ret ? : -ENOMEM;
498 break;
499 }
500 pipe->tmp_page = page;
501 }
502
503 /* Allocate a slot in the ring in advance and attach an
504 * empty buffer. If we fault or otherwise fail to use
505 * it, either the reader will consume it or it'll still
506 * be there for the next write.
507 */
508 spin_lock_irq(&pipe->rd_wait.lock);
509
510 head = pipe->head;
511 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
512 spin_unlock_irq(&pipe->rd_wait.lock);
513 continue;
514 }
515
516 pipe->head = head + 1;
517 spin_unlock_irq(&pipe->rd_wait.lock);
518
519 /* Insert it into the buffer array */
520 buf = &pipe->bufs[head & mask];
521 buf->page = page;
522 buf->ops = &anon_pipe_buf_ops;
523 buf->offset = 0;
524 buf->len = 0;
525 if (is_packetized(filp))
526 buf->flags = PIPE_BUF_FLAG_PACKET;
527 else
528 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
529 pipe->tmp_page = NULL;
530
531 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
532 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
533 if (!ret)
534 ret = -EFAULT;
535 break;
536 }
537 ret += copied;
538 buf->offset = 0;
539 buf->len = copied;
540
541 if (!iov_iter_count(from))
542 break;
543 }
544
545 if (!pipe_full(head, pipe->tail, pipe->max_usage))
546 continue;
547
548 /* Wait for buffer space to become available. */
549 if (filp->f_flags & O_NONBLOCK) {
550 if (!ret)
551 ret = -EAGAIN;
552 break;
553 }
554 if (signal_pending(current)) {
555 if (!ret)
556 ret = -ERESTARTSYS;
557 break;
558 }
559
560 /*
561 * We're going to release the pipe lock and wait for more
562 * space. We wake up any readers if necessary, and then
563 * after waiting we need to re-check whether the pipe
564 * become empty while we dropped the lock.
565 */
566 __pipe_unlock(pipe);
567 if (was_empty)
568 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
569 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
570 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
571 __pipe_lock(pipe);
572 was_empty = pipe_empty(pipe->head, pipe->tail);
573 wake_next_writer = true;
574 }
575 out:
576 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
577 wake_next_writer = false;
578 __pipe_unlock(pipe);
579
580 /*
581 * If we do do a wakeup event, we do a 'sync' wakeup, because we
582 * want the reader to start processing things asap, rather than
583 * leave the data pending.
584 *
585 * This is particularly important for small writes, because of
586 * how (for example) the GNU make jobserver uses small writes to
587 * wake up pending jobs
588 *
589 * Epoll nonsensically wants a wakeup whether the pipe
590 * was already empty or not.
591 */
592 if (was_empty || pipe->poll_usage)
593 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
594 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595 if (wake_next_writer)
596 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
597 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
598 int err = file_update_time(filp);
599 if (err)
600 ret = err;
601 sb_end_write(file_inode(filp)->i_sb);
602 }
603 return ret;
604 }
605
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)606 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
607 {
608 struct pipe_inode_info *pipe = filp->private_data;
609 int count, head, tail, mask;
610
611 switch (cmd) {
612 case FIONREAD:
613 __pipe_lock(pipe);
614 count = 0;
615 head = pipe->head;
616 tail = pipe->tail;
617 mask = pipe->ring_size - 1;
618
619 while (tail != head) {
620 count += pipe->bufs[tail & mask].len;
621 tail++;
622 }
623 __pipe_unlock(pipe);
624
625 return put_user(count, (int __user *)arg);
626
627 #ifdef CONFIG_WATCH_QUEUE
628 case IOC_WATCH_QUEUE_SET_SIZE: {
629 int ret;
630 __pipe_lock(pipe);
631 ret = watch_queue_set_size(pipe, arg);
632 __pipe_unlock(pipe);
633 return ret;
634 }
635
636 case IOC_WATCH_QUEUE_SET_FILTER:
637 return watch_queue_set_filter(
638 pipe, (struct watch_notification_filter __user *)arg);
639 #endif
640
641 default:
642 return -ENOIOCTLCMD;
643 }
644 }
645
646 /* No kernel lock held - fine */
647 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)648 pipe_poll(struct file *filp, poll_table *wait)
649 {
650 __poll_t mask;
651 struct pipe_inode_info *pipe = filp->private_data;
652 unsigned int head, tail;
653
654 /* Epoll has some historical nasty semantics, this enables them */
655 WRITE_ONCE(pipe->poll_usage, true);
656
657 /*
658 * Reading pipe state only -- no need for acquiring the semaphore.
659 *
660 * But because this is racy, the code has to add the
661 * entry to the poll table _first_ ..
662 */
663 if (filp->f_mode & FMODE_READ)
664 poll_wait(filp, &pipe->rd_wait, wait);
665 if (filp->f_mode & FMODE_WRITE)
666 poll_wait(filp, &pipe->wr_wait, wait);
667
668 /*
669 * .. and only then can you do the racy tests. That way,
670 * if something changes and you got it wrong, the poll
671 * table entry will wake you up and fix it.
672 */
673 head = READ_ONCE(pipe->head);
674 tail = READ_ONCE(pipe->tail);
675
676 mask = 0;
677 if (filp->f_mode & FMODE_READ) {
678 if (!pipe_empty(head, tail))
679 mask |= EPOLLIN | EPOLLRDNORM;
680 if (!pipe->writers && filp->f_version != pipe->w_counter)
681 mask |= EPOLLHUP;
682 }
683
684 if (filp->f_mode & FMODE_WRITE) {
685 if (!pipe_full(head, tail, pipe->max_usage))
686 mask |= EPOLLOUT | EPOLLWRNORM;
687 /*
688 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
689 * behave exactly like pipes for poll().
690 */
691 if (!pipe->readers)
692 mask |= EPOLLERR;
693 }
694
695 return mask;
696 }
697
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
699 {
700 int kill = 0;
701
702 spin_lock(&inode->i_lock);
703 if (!--pipe->files) {
704 inode->i_pipe = NULL;
705 kill = 1;
706 }
707 spin_unlock(&inode->i_lock);
708
709 if (kill)
710 free_pipe_info(pipe);
711 }
712
713 static int
pipe_release(struct inode * inode,struct file * file)714 pipe_release(struct inode *inode, struct file *file)
715 {
716 struct pipe_inode_info *pipe = file->private_data;
717
718 __pipe_lock(pipe);
719 if (file->f_mode & FMODE_READ)
720 pipe->readers--;
721 if (file->f_mode & FMODE_WRITE)
722 pipe->writers--;
723
724 /* Was that the last reader or writer, but not the other side? */
725 if (!pipe->readers != !pipe->writers) {
726 wake_up_interruptible_all(&pipe->rd_wait);
727 wake_up_interruptible_all(&pipe->wr_wait);
728 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 }
731 __pipe_unlock(pipe);
732
733 put_pipe_info(inode, pipe);
734 return 0;
735 }
736
737 static int
pipe_fasync(int fd,struct file * filp,int on)738 pipe_fasync(int fd, struct file *filp, int on)
739 {
740 struct pipe_inode_info *pipe = filp->private_data;
741 int retval = 0;
742
743 __pipe_lock(pipe);
744 if (filp->f_mode & FMODE_READ)
745 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
746 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
747 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
748 if (retval < 0 && (filp->f_mode & FMODE_READ))
749 /* this can happen only if on == T */
750 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
751 }
752 __pipe_unlock(pipe);
753 return retval;
754 }
755
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)756 unsigned long account_pipe_buffers(struct user_struct *user,
757 unsigned long old, unsigned long new)
758 {
759 return atomic_long_add_return(new - old, &user->pipe_bufs);
760 }
761
too_many_pipe_buffers_soft(unsigned long user_bufs)762 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
763 {
764 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
765
766 return soft_limit && user_bufs > soft_limit;
767 }
768
too_many_pipe_buffers_hard(unsigned long user_bufs)769 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
770 {
771 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
772
773 return hard_limit && user_bufs > hard_limit;
774 }
775
pipe_is_unprivileged_user(void)776 bool pipe_is_unprivileged_user(void)
777 {
778 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
779 }
780
alloc_pipe_info(void)781 struct pipe_inode_info *alloc_pipe_info(void)
782 {
783 struct pipe_inode_info *pipe;
784 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
785 struct user_struct *user = get_current_user();
786 unsigned long user_bufs;
787 unsigned int max_size = READ_ONCE(pipe_max_size);
788
789 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
790 if (pipe == NULL)
791 goto out_free_uid;
792
793 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
794 pipe_bufs = max_size >> PAGE_SHIFT;
795
796 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
797
798 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
799 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
800 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
801 }
802
803 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
804 goto out_revert_acct;
805
806 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
807 GFP_KERNEL_ACCOUNT);
808
809 if (pipe->bufs) {
810 init_waitqueue_head(&pipe->rd_wait);
811 init_waitqueue_head(&pipe->wr_wait);
812 pipe->r_counter = pipe->w_counter = 1;
813 pipe->max_usage = pipe_bufs;
814 pipe->ring_size = pipe_bufs;
815 pipe->nr_accounted = pipe_bufs;
816 pipe->user = user;
817 mutex_init(&pipe->mutex);
818 return pipe;
819 }
820
821 out_revert_acct:
822 (void) account_pipe_buffers(user, pipe_bufs, 0);
823 kfree(pipe);
824 out_free_uid:
825 free_uid(user);
826 return NULL;
827 }
828
free_pipe_info(struct pipe_inode_info * pipe)829 void free_pipe_info(struct pipe_inode_info *pipe)
830 {
831 int i;
832
833 #ifdef CONFIG_WATCH_QUEUE
834 if (pipe->watch_queue)
835 watch_queue_clear(pipe->watch_queue);
836 #endif
837
838 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
839 free_uid(pipe->user);
840 for (i = 0; i < pipe->ring_size; i++) {
841 struct pipe_buffer *buf = pipe->bufs + i;
842 if (buf->ops)
843 pipe_buf_release(pipe, buf);
844 }
845 #ifdef CONFIG_WATCH_QUEUE
846 if (pipe->watch_queue)
847 put_watch_queue(pipe->watch_queue);
848 #endif
849 if (pipe->tmp_page)
850 __free_page(pipe->tmp_page);
851 kfree(pipe->bufs);
852 kfree(pipe);
853 }
854
855 static struct vfsmount *pipe_mnt __read_mostly;
856
857 /*
858 * pipefs_dname() is called from d_path().
859 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)860 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
861 {
862 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
863 d_inode(dentry)->i_ino);
864 }
865
866 static const struct dentry_operations pipefs_dentry_operations = {
867 .d_dname = pipefs_dname,
868 };
869
get_pipe_inode(void)870 static struct inode * get_pipe_inode(void)
871 {
872 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
873 struct pipe_inode_info *pipe;
874
875 if (!inode)
876 goto fail_inode;
877
878 inode->i_ino = get_next_ino();
879
880 pipe = alloc_pipe_info();
881 if (!pipe)
882 goto fail_iput;
883
884 inode->i_pipe = pipe;
885 pipe->files = 2;
886 pipe->readers = pipe->writers = 1;
887 inode->i_fop = &pipefifo_fops;
888
889 /*
890 * Mark the inode dirty from the very beginning,
891 * that way it will never be moved to the dirty
892 * list because "mark_inode_dirty()" will think
893 * that it already _is_ on the dirty list.
894 */
895 inode->i_state = I_DIRTY;
896 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
897 inode->i_uid = current_fsuid();
898 inode->i_gid = current_fsgid();
899 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
900
901 return inode;
902
903 fail_iput:
904 iput(inode);
905
906 fail_inode:
907 return NULL;
908 }
909
create_pipe_files(struct file ** res,int flags)910 int create_pipe_files(struct file **res, int flags)
911 {
912 struct inode *inode = get_pipe_inode();
913 struct file *f;
914 int error;
915
916 if (!inode)
917 return -ENFILE;
918
919 if (flags & O_NOTIFICATION_PIPE) {
920 error = watch_queue_init(inode->i_pipe);
921 if (error) {
922 free_pipe_info(inode->i_pipe);
923 iput(inode);
924 return error;
925 }
926 }
927
928 f = alloc_file_pseudo(inode, pipe_mnt, "",
929 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
930 &pipefifo_fops);
931 if (IS_ERR(f)) {
932 free_pipe_info(inode->i_pipe);
933 iput(inode);
934 return PTR_ERR(f);
935 }
936
937 f->private_data = inode->i_pipe;
938
939 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
940 &pipefifo_fops);
941 if (IS_ERR(res[0])) {
942 put_pipe_info(inode, inode->i_pipe);
943 fput(f);
944 return PTR_ERR(res[0]);
945 }
946 res[0]->private_data = inode->i_pipe;
947 res[1] = f;
948 stream_open(inode, res[0]);
949 stream_open(inode, res[1]);
950 return 0;
951 }
952
__do_pipe_flags(int * fd,struct file ** files,int flags)953 static int __do_pipe_flags(int *fd, struct file **files, int flags)
954 {
955 int error;
956 int fdw, fdr;
957
958 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
959 return -EINVAL;
960
961 error = create_pipe_files(files, flags);
962 if (error)
963 return error;
964
965 error = get_unused_fd_flags(flags);
966 if (error < 0)
967 goto err_read_pipe;
968 fdr = error;
969
970 error = get_unused_fd_flags(flags);
971 if (error < 0)
972 goto err_fdr;
973 fdw = error;
974
975 audit_fd_pair(fdr, fdw);
976 fd[0] = fdr;
977 fd[1] = fdw;
978 return 0;
979
980 err_fdr:
981 put_unused_fd(fdr);
982 err_read_pipe:
983 fput(files[0]);
984 fput(files[1]);
985 return error;
986 }
987
do_pipe_flags(int * fd,int flags)988 int do_pipe_flags(int *fd, int flags)
989 {
990 struct file *files[2];
991 int error = __do_pipe_flags(fd, files, flags);
992 if (!error) {
993 fd_install(fd[0], files[0]);
994 fd_install(fd[1], files[1]);
995 }
996 return error;
997 }
998
999 /*
1000 * sys_pipe() is the normal C calling standard for creating
1001 * a pipe. It's not the way Unix traditionally does this, though.
1002 */
do_pipe2(int __user * fildes,int flags)1003 static int do_pipe2(int __user *fildes, int flags)
1004 {
1005 struct file *files[2];
1006 int fd[2];
1007 int error;
1008
1009 error = __do_pipe_flags(fd, files, flags);
1010 if (!error) {
1011 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1012 fput(files[0]);
1013 fput(files[1]);
1014 put_unused_fd(fd[0]);
1015 put_unused_fd(fd[1]);
1016 error = -EFAULT;
1017 } else {
1018 fd_install(fd[0], files[0]);
1019 fd_install(fd[1], files[1]);
1020 }
1021 }
1022 return error;
1023 }
1024
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1025 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1026 {
1027 return do_pipe2(fildes, flags);
1028 }
1029
SYSCALL_DEFINE1(pipe,int __user *,fildes)1030 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1031 {
1032 return do_pipe2(fildes, 0);
1033 }
1034
1035 /*
1036 * This is the stupid "wait for pipe to be readable or writable"
1037 * model.
1038 *
1039 * See pipe_read/write() for the proper kind of exclusive wait,
1040 * but that requires that we wake up any other readers/writers
1041 * if we then do not end up reading everything (ie the whole
1042 * "wake_next_reader/writer" logic in pipe_read/write()).
1043 */
pipe_wait_readable(struct pipe_inode_info * pipe)1044 void pipe_wait_readable(struct pipe_inode_info *pipe)
1045 {
1046 pipe_unlock(pipe);
1047 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1048 pipe_lock(pipe);
1049 }
1050
pipe_wait_writable(struct pipe_inode_info * pipe)1051 void pipe_wait_writable(struct pipe_inode_info *pipe)
1052 {
1053 pipe_unlock(pipe);
1054 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1055 pipe_lock(pipe);
1056 }
1057
1058 /*
1059 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1060 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1061 * race with the count check and waitqueue prep.
1062 *
1063 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1064 * then check the condition you're waiting for, and only then sleep. But
1065 * because of the pipe lock, we can check the condition before being on
1066 * the wait queue.
1067 *
1068 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1069 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1070 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1071 {
1072 DEFINE_WAIT(rdwait);
1073 int cur = *cnt;
1074
1075 while (cur == *cnt) {
1076 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1077 pipe_unlock(pipe);
1078 schedule();
1079 finish_wait(&pipe->rd_wait, &rdwait);
1080 pipe_lock(pipe);
1081 if (signal_pending(current))
1082 break;
1083 }
1084 return cur == *cnt ? -ERESTARTSYS : 0;
1085 }
1086
wake_up_partner(struct pipe_inode_info * pipe)1087 static void wake_up_partner(struct pipe_inode_info *pipe)
1088 {
1089 wake_up_interruptible_all(&pipe->rd_wait);
1090 }
1091
fifo_open(struct inode * inode,struct file * filp)1092 static int fifo_open(struct inode *inode, struct file *filp)
1093 {
1094 struct pipe_inode_info *pipe;
1095 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1096 int ret;
1097
1098 filp->f_version = 0;
1099
1100 spin_lock(&inode->i_lock);
1101 if (inode->i_pipe) {
1102 pipe = inode->i_pipe;
1103 pipe->files++;
1104 spin_unlock(&inode->i_lock);
1105 } else {
1106 spin_unlock(&inode->i_lock);
1107 pipe = alloc_pipe_info();
1108 if (!pipe)
1109 return -ENOMEM;
1110 pipe->files = 1;
1111 spin_lock(&inode->i_lock);
1112 if (unlikely(inode->i_pipe)) {
1113 inode->i_pipe->files++;
1114 spin_unlock(&inode->i_lock);
1115 free_pipe_info(pipe);
1116 pipe = inode->i_pipe;
1117 } else {
1118 inode->i_pipe = pipe;
1119 spin_unlock(&inode->i_lock);
1120 }
1121 }
1122 filp->private_data = pipe;
1123 /* OK, we have a pipe and it's pinned down */
1124
1125 __pipe_lock(pipe);
1126
1127 /* We can only do regular read/write on fifos */
1128 stream_open(inode, filp);
1129
1130 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1131 case FMODE_READ:
1132 /*
1133 * O_RDONLY
1134 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1135 * opened, even when there is no process writing the FIFO.
1136 */
1137 pipe->r_counter++;
1138 if (pipe->readers++ == 0)
1139 wake_up_partner(pipe);
1140
1141 if (!is_pipe && !pipe->writers) {
1142 if ((filp->f_flags & O_NONBLOCK)) {
1143 /* suppress EPOLLHUP until we have
1144 * seen a writer */
1145 filp->f_version = pipe->w_counter;
1146 } else {
1147 if (wait_for_partner(pipe, &pipe->w_counter))
1148 goto err_rd;
1149 }
1150 }
1151 break;
1152
1153 case FMODE_WRITE:
1154 /*
1155 * O_WRONLY
1156 * POSIX.1 says that O_NONBLOCK means return -1 with
1157 * errno=ENXIO when there is no process reading the FIFO.
1158 */
1159 ret = -ENXIO;
1160 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1161 goto err;
1162
1163 pipe->w_counter++;
1164 if (!pipe->writers++)
1165 wake_up_partner(pipe);
1166
1167 if (!is_pipe && !pipe->readers) {
1168 if (wait_for_partner(pipe, &pipe->r_counter))
1169 goto err_wr;
1170 }
1171 break;
1172
1173 case FMODE_READ | FMODE_WRITE:
1174 /*
1175 * O_RDWR
1176 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1177 * This implementation will NEVER block on a O_RDWR open, since
1178 * the process can at least talk to itself.
1179 */
1180
1181 pipe->readers++;
1182 pipe->writers++;
1183 pipe->r_counter++;
1184 pipe->w_counter++;
1185 if (pipe->readers == 1 || pipe->writers == 1)
1186 wake_up_partner(pipe);
1187 break;
1188
1189 default:
1190 ret = -EINVAL;
1191 goto err;
1192 }
1193
1194 /* Ok! */
1195 __pipe_unlock(pipe);
1196 return 0;
1197
1198 err_rd:
1199 if (!--pipe->readers)
1200 wake_up_interruptible(&pipe->wr_wait);
1201 ret = -ERESTARTSYS;
1202 goto err;
1203
1204 err_wr:
1205 if (!--pipe->writers)
1206 wake_up_interruptible_all(&pipe->rd_wait);
1207 ret = -ERESTARTSYS;
1208 goto err;
1209
1210 err:
1211 __pipe_unlock(pipe);
1212
1213 put_pipe_info(inode, pipe);
1214 return ret;
1215 }
1216
1217 const struct file_operations pipefifo_fops = {
1218 .open = fifo_open,
1219 .llseek = no_llseek,
1220 .read_iter = pipe_read,
1221 .write_iter = pipe_write,
1222 .poll = pipe_poll,
1223 .unlocked_ioctl = pipe_ioctl,
1224 .release = pipe_release,
1225 .fasync = pipe_fasync,
1226 .splice_write = iter_file_splice_write,
1227 };
1228
1229 /*
1230 * Currently we rely on the pipe array holding a power-of-2 number
1231 * of pages. Returns 0 on error.
1232 */
round_pipe_size(unsigned long size)1233 unsigned int round_pipe_size(unsigned long size)
1234 {
1235 if (size > (1U << 31))
1236 return 0;
1237
1238 /* Minimum pipe size, as required by POSIX */
1239 if (size < PAGE_SIZE)
1240 return PAGE_SIZE;
1241
1242 return roundup_pow_of_two(size);
1243 }
1244
1245 /*
1246 * Resize the pipe ring to a number of slots.
1247 *
1248 * Note the pipe can be reduced in capacity, but only if the current
1249 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1250 * returned instead.
1251 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1252 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1253 {
1254 struct pipe_buffer *bufs;
1255 unsigned int head, tail, mask, n;
1256
1257 bufs = kcalloc(nr_slots, sizeof(*bufs),
1258 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1259 if (unlikely(!bufs))
1260 return -ENOMEM;
1261
1262 spin_lock_irq(&pipe->rd_wait.lock);
1263 mask = pipe->ring_size - 1;
1264 head = pipe->head;
1265 tail = pipe->tail;
1266
1267 n = pipe_occupancy(head, tail);
1268 if (nr_slots < n) {
1269 spin_unlock_irq(&pipe->rd_wait.lock);
1270 kfree(bufs);
1271 return -EBUSY;
1272 }
1273
1274 /*
1275 * The pipe array wraps around, so just start the new one at zero
1276 * and adjust the indices.
1277 */
1278 if (n > 0) {
1279 unsigned int h = head & mask;
1280 unsigned int t = tail & mask;
1281 if (h > t) {
1282 memcpy(bufs, pipe->bufs + t,
1283 n * sizeof(struct pipe_buffer));
1284 } else {
1285 unsigned int tsize = pipe->ring_size - t;
1286 if (h > 0)
1287 memcpy(bufs + tsize, pipe->bufs,
1288 h * sizeof(struct pipe_buffer));
1289 memcpy(bufs, pipe->bufs + t,
1290 tsize * sizeof(struct pipe_buffer));
1291 }
1292 }
1293
1294 head = n;
1295 tail = 0;
1296
1297 kfree(pipe->bufs);
1298 pipe->bufs = bufs;
1299 pipe->ring_size = nr_slots;
1300 if (pipe->max_usage > nr_slots)
1301 pipe->max_usage = nr_slots;
1302 pipe->tail = tail;
1303 pipe->head = head;
1304
1305 spin_unlock_irq(&pipe->rd_wait.lock);
1306
1307 /* This might have made more room for writers */
1308 wake_up_interruptible(&pipe->wr_wait);
1309 return 0;
1310 }
1311
1312 /*
1313 * Allocate a new array of pipe buffers and copy the info over. Returns the
1314 * pipe size if successful, or return -ERROR on error.
1315 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long arg)1316 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1317 {
1318 unsigned long user_bufs;
1319 unsigned int nr_slots, size;
1320 long ret = 0;
1321
1322 #ifdef CONFIG_WATCH_QUEUE
1323 if (pipe->watch_queue)
1324 return -EBUSY;
1325 #endif
1326
1327 size = round_pipe_size(arg);
1328 nr_slots = size >> PAGE_SHIFT;
1329
1330 if (!nr_slots)
1331 return -EINVAL;
1332
1333 /*
1334 * If trying to increase the pipe capacity, check that an
1335 * unprivileged user is not trying to exceed various limits
1336 * (soft limit check here, hard limit check just below).
1337 * Decreasing the pipe capacity is always permitted, even
1338 * if the user is currently over a limit.
1339 */
1340 if (nr_slots > pipe->max_usage &&
1341 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1342 return -EPERM;
1343
1344 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1345
1346 if (nr_slots > pipe->max_usage &&
1347 (too_many_pipe_buffers_hard(user_bufs) ||
1348 too_many_pipe_buffers_soft(user_bufs)) &&
1349 pipe_is_unprivileged_user()) {
1350 ret = -EPERM;
1351 goto out_revert_acct;
1352 }
1353
1354 ret = pipe_resize_ring(pipe, nr_slots);
1355 if (ret < 0)
1356 goto out_revert_acct;
1357
1358 pipe->max_usage = nr_slots;
1359 pipe->nr_accounted = nr_slots;
1360 return pipe->max_usage * PAGE_SIZE;
1361
1362 out_revert_acct:
1363 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1364 return ret;
1365 }
1366
1367 /*
1368 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1369 * location, so checking ->i_pipe is not enough to verify that this is a
1370 * pipe.
1371 */
get_pipe_info(struct file * file,bool for_splice)1372 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1373 {
1374 struct pipe_inode_info *pipe = file->private_data;
1375
1376 if (file->f_op != &pipefifo_fops || !pipe)
1377 return NULL;
1378 #ifdef CONFIG_WATCH_QUEUE
1379 if (for_splice && pipe->watch_queue)
1380 return NULL;
1381 #endif
1382 return pipe;
1383 }
1384
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1385 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1386 {
1387 struct pipe_inode_info *pipe;
1388 long ret;
1389
1390 pipe = get_pipe_info(file, false);
1391 if (!pipe)
1392 return -EBADF;
1393
1394 __pipe_lock(pipe);
1395
1396 switch (cmd) {
1397 case F_SETPIPE_SZ:
1398 ret = pipe_set_size(pipe, arg);
1399 break;
1400 case F_GETPIPE_SZ:
1401 ret = pipe->max_usage * PAGE_SIZE;
1402 break;
1403 default:
1404 ret = -EINVAL;
1405 break;
1406 }
1407
1408 __pipe_unlock(pipe);
1409 return ret;
1410 }
1411
1412 static const struct super_operations pipefs_ops = {
1413 .destroy_inode = free_inode_nonrcu,
1414 .statfs = simple_statfs,
1415 };
1416
1417 /*
1418 * pipefs should _never_ be mounted by userland - too much of security hassle,
1419 * no real gain from having the whole whorehouse mounted. So we don't need
1420 * any operations on the root directory. However, we need a non-trivial
1421 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1422 */
1423
pipefs_init_fs_context(struct fs_context * fc)1424 static int pipefs_init_fs_context(struct fs_context *fc)
1425 {
1426 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1427 if (!ctx)
1428 return -ENOMEM;
1429 ctx->ops = &pipefs_ops;
1430 ctx->dops = &pipefs_dentry_operations;
1431 return 0;
1432 }
1433
1434 static struct file_system_type pipe_fs_type = {
1435 .name = "pipefs",
1436 .init_fs_context = pipefs_init_fs_context,
1437 .kill_sb = kill_anon_super,
1438 };
1439
init_pipe_fs(void)1440 static int __init init_pipe_fs(void)
1441 {
1442 int err = register_filesystem(&pipe_fs_type);
1443
1444 if (!err) {
1445 pipe_mnt = kern_mount(&pipe_fs_type);
1446 if (IS_ERR(pipe_mnt)) {
1447 err = PTR_ERR(pipe_mnt);
1448 unregister_filesystem(&pipe_fs_type);
1449 }
1450 }
1451 return err;
1452 }
1453
1454 fs_initcall(init_pipe_fs);
1455