• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include "pmbus.h"
23 
24 /*
25  * Number of additional attribute pointers to allocate
26  * with each call to krealloc
27  */
28 #define PMBUS_ATTR_ALLOC_SIZE	32
29 #define PMBUS_NAME_SIZE		24
30 
31 struct pmbus_sensor {
32 	struct pmbus_sensor *next;
33 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
34 	struct device_attribute attribute;
35 	u8 page;		/* page number */
36 	u8 phase;		/* phase number, 0xff for all phases */
37 	u16 reg;		/* register */
38 	enum pmbus_sensor_classes class;	/* sensor class */
39 	bool update;		/* runtime sensor update needed */
40 	bool convert;		/* Whether or not to apply linear/vid/direct */
41 	int data;		/* Sensor data.
42 				   Negative if there was a read error */
43 };
44 #define to_pmbus_sensor(_attr) \
45 	container_of(_attr, struct pmbus_sensor, attribute)
46 
47 struct pmbus_boolean {
48 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
49 	struct sensor_device_attribute attribute;
50 	struct pmbus_sensor *s1;
51 	struct pmbus_sensor *s2;
52 };
53 #define to_pmbus_boolean(_attr) \
54 	container_of(_attr, struct pmbus_boolean, attribute)
55 
56 struct pmbus_label {
57 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
58 	struct device_attribute attribute;
59 	char label[PMBUS_NAME_SIZE];	/* label */
60 };
61 #define to_pmbus_label(_attr) \
62 	container_of(_attr, struct pmbus_label, attribute)
63 
64 /* Macros for converting between sensor index and register/page/status mask */
65 
66 #define PB_STATUS_MASK	0xffff
67 #define PB_REG_SHIFT	16
68 #define PB_REG_MASK	0x3ff
69 #define PB_PAGE_SHIFT	26
70 #define PB_PAGE_MASK	0x3f
71 
72 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
73 						 ((reg) << PB_REG_SHIFT) | (mask))
74 
75 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
76 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
77 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
78 
79 struct pmbus_data {
80 	struct device *dev;
81 	struct device *hwmon_dev;
82 
83 	u32 flags;		/* from platform data */
84 
85 	int exponent[PMBUS_PAGES];
86 				/* linear mode: exponent for output voltages */
87 
88 	const struct pmbus_driver_info *info;
89 
90 	int max_attributes;
91 	int num_attributes;
92 	struct attribute_group group;
93 	const struct attribute_group **groups;
94 	struct dentry *debugfs;		/* debugfs device directory */
95 
96 	struct pmbus_sensor *sensors;
97 
98 	struct mutex update_lock;
99 
100 	bool has_status_word;		/* device uses STATUS_WORD register */
101 	int (*read_status)(struct i2c_client *client, int page);
102 
103 	s16 currpage;	/* current page, -1 for unknown/unset */
104 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
105 };
106 
107 struct pmbus_debugfs_entry {
108 	struct i2c_client *client;
109 	u8 page;
110 	u8 reg;
111 };
112 
113 static const int pmbus_fan_rpm_mask[] = {
114 	PB_FAN_1_RPM,
115 	PB_FAN_2_RPM,
116 	PB_FAN_1_RPM,
117 	PB_FAN_2_RPM,
118 };
119 
120 static const int pmbus_fan_config_registers[] = {
121 	PMBUS_FAN_CONFIG_12,
122 	PMBUS_FAN_CONFIG_12,
123 	PMBUS_FAN_CONFIG_34,
124 	PMBUS_FAN_CONFIG_34
125 };
126 
127 static const int pmbus_fan_command_registers[] = {
128 	PMBUS_FAN_COMMAND_1,
129 	PMBUS_FAN_COMMAND_2,
130 	PMBUS_FAN_COMMAND_3,
131 	PMBUS_FAN_COMMAND_4,
132 };
133 
pmbus_clear_cache(struct i2c_client * client)134 void pmbus_clear_cache(struct i2c_client *client)
135 {
136 	struct pmbus_data *data = i2c_get_clientdata(client);
137 	struct pmbus_sensor *sensor;
138 
139 	for (sensor = data->sensors; sensor; sensor = sensor->next)
140 		sensor->data = -ENODATA;
141 }
142 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
143 
pmbus_set_page(struct i2c_client * client,int page,int phase)144 int pmbus_set_page(struct i2c_client *client, int page, int phase)
145 {
146 	struct pmbus_data *data = i2c_get_clientdata(client);
147 	int rv;
148 
149 	if (page < 0)
150 		return 0;
151 
152 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
153 	    data->info->pages > 1 && page != data->currpage) {
154 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
155 		if (rv < 0)
156 			return rv;
157 
158 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
159 		if (rv < 0)
160 			return rv;
161 
162 		if (rv != page)
163 			return -EIO;
164 	}
165 	data->currpage = page;
166 
167 	if (data->info->phases[page] && data->currphase != phase &&
168 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
169 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
170 					       phase);
171 		if (rv)
172 			return rv;
173 	}
174 	data->currphase = phase;
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(pmbus_set_page);
179 
pmbus_write_byte(struct i2c_client * client,int page,u8 value)180 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
181 {
182 	int rv;
183 
184 	rv = pmbus_set_page(client, page, 0xff);
185 	if (rv < 0)
186 		return rv;
187 
188 	return i2c_smbus_write_byte(client, value);
189 }
190 EXPORT_SYMBOL_GPL(pmbus_write_byte);
191 
192 /*
193  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
194  * a device specific mapping function exists and calls it if necessary.
195  */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)196 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
197 {
198 	struct pmbus_data *data = i2c_get_clientdata(client);
199 	const struct pmbus_driver_info *info = data->info;
200 	int status;
201 
202 	if (info->write_byte) {
203 		status = info->write_byte(client, page, value);
204 		if (status != -ENODATA)
205 			return status;
206 	}
207 	return pmbus_write_byte(client, page, value);
208 }
209 
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)210 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
211 			  u16 word)
212 {
213 	int rv;
214 
215 	rv = pmbus_set_page(client, page, 0xff);
216 	if (rv < 0)
217 		return rv;
218 
219 	return i2c_smbus_write_word_data(client, reg, word);
220 }
221 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
222 
223 
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)224 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
225 				u16 word)
226 {
227 	int bit;
228 	int id;
229 	int rv;
230 
231 	switch (reg) {
232 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
233 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
234 		bit = pmbus_fan_rpm_mask[id];
235 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
236 		break;
237 	default:
238 		rv = -ENXIO;
239 		break;
240 	}
241 
242 	return rv;
243 }
244 
245 /*
246  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
247  * a device specific mapping function exists and calls it if necessary.
248  */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)249 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
250 				  u16 word)
251 {
252 	struct pmbus_data *data = i2c_get_clientdata(client);
253 	const struct pmbus_driver_info *info = data->info;
254 	int status;
255 
256 	if (info->write_word_data) {
257 		status = info->write_word_data(client, page, reg, word);
258 		if (status != -ENODATA)
259 			return status;
260 	}
261 
262 	if (reg >= PMBUS_VIRT_BASE)
263 		return pmbus_write_virt_reg(client, page, reg, word);
264 
265 	return pmbus_write_word_data(client, page, reg, word);
266 }
267 
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)268 int pmbus_update_fan(struct i2c_client *client, int page, int id,
269 		     u8 config, u8 mask, u16 command)
270 {
271 	int from;
272 	int rv;
273 	u8 to;
274 
275 	from = pmbus_read_byte_data(client, page,
276 				    pmbus_fan_config_registers[id]);
277 	if (from < 0)
278 		return from;
279 
280 	to = (from & ~mask) | (config & mask);
281 	if (to != from) {
282 		rv = pmbus_write_byte_data(client, page,
283 					   pmbus_fan_config_registers[id], to);
284 		if (rv < 0)
285 			return rv;
286 	}
287 
288 	return _pmbus_write_word_data(client, page,
289 				      pmbus_fan_command_registers[id], command);
290 }
291 EXPORT_SYMBOL_GPL(pmbus_update_fan);
292 
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)293 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
294 {
295 	int rv;
296 
297 	rv = pmbus_set_page(client, page, phase);
298 	if (rv < 0)
299 		return rv;
300 
301 	return i2c_smbus_read_word_data(client, reg);
302 }
303 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
304 
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)305 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
306 {
307 	int rv;
308 	int id;
309 
310 	switch (reg) {
311 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
312 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
313 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
314 		break;
315 	default:
316 		rv = -ENXIO;
317 		break;
318 	}
319 
320 	return rv;
321 }
322 
323 /*
324  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
325  * a device specific mapping function exists and calls it if necessary.
326  */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)327 static int _pmbus_read_word_data(struct i2c_client *client, int page,
328 				 int phase, int reg)
329 {
330 	struct pmbus_data *data = i2c_get_clientdata(client);
331 	const struct pmbus_driver_info *info = data->info;
332 	int status;
333 
334 	if (info->read_word_data) {
335 		status = info->read_word_data(client, page, phase, reg);
336 		if (status != -ENODATA)
337 			return status;
338 	}
339 
340 	if (reg >= PMBUS_VIRT_BASE)
341 		return pmbus_read_virt_reg(client, page, reg);
342 
343 	return pmbus_read_word_data(client, page, phase, reg);
344 }
345 
346 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)347 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
348 {
349 	return _pmbus_read_word_data(client, page, 0xff, reg);
350 }
351 
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)352 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
353 {
354 	int rv;
355 
356 	rv = pmbus_set_page(client, page, 0xff);
357 	if (rv < 0)
358 		return rv;
359 
360 	return i2c_smbus_read_byte_data(client, reg);
361 }
362 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
363 
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)364 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
365 {
366 	int rv;
367 
368 	rv = pmbus_set_page(client, page, 0xff);
369 	if (rv < 0)
370 		return rv;
371 
372 	return i2c_smbus_write_byte_data(client, reg, value);
373 }
374 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
375 
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)376 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
377 			   u8 mask, u8 value)
378 {
379 	unsigned int tmp;
380 	int rv;
381 
382 	rv = pmbus_read_byte_data(client, page, reg);
383 	if (rv < 0)
384 		return rv;
385 
386 	tmp = (rv & ~mask) | (value & mask);
387 
388 	if (tmp != rv)
389 		rv = pmbus_write_byte_data(client, page, reg, tmp);
390 
391 	return rv;
392 }
393 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
394 
395 /*
396  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
397  * a device specific mapping function exists and calls it if necessary.
398  */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)399 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
400 {
401 	struct pmbus_data *data = i2c_get_clientdata(client);
402 	const struct pmbus_driver_info *info = data->info;
403 	int status;
404 
405 	if (info->read_byte_data) {
406 		status = info->read_byte_data(client, page, reg);
407 		if (status != -ENODATA)
408 			return status;
409 	}
410 	return pmbus_read_byte_data(client, page, reg);
411 }
412 
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)413 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
414 					      int reg)
415 {
416 	struct pmbus_sensor *sensor;
417 
418 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
419 		if (sensor->page == page && sensor->reg == reg)
420 			return sensor;
421 	}
422 
423 	return ERR_PTR(-EINVAL);
424 }
425 
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)426 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
427 			      enum pmbus_fan_mode mode,
428 			      bool from_cache)
429 {
430 	struct pmbus_data *data = i2c_get_clientdata(client);
431 	bool want_rpm, have_rpm;
432 	struct pmbus_sensor *s;
433 	int config;
434 	int reg;
435 
436 	want_rpm = (mode == rpm);
437 
438 	if (from_cache) {
439 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
440 		s = pmbus_find_sensor(data, page, reg + id);
441 		if (IS_ERR(s))
442 			return PTR_ERR(s);
443 
444 		return s->data;
445 	}
446 
447 	config = pmbus_read_byte_data(client, page,
448 				      pmbus_fan_config_registers[id]);
449 	if (config < 0)
450 		return config;
451 
452 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
453 	if (want_rpm == have_rpm)
454 		return pmbus_read_word_data(client, page, 0xff,
455 					    pmbus_fan_command_registers[id]);
456 
457 	/* Can't sensibly map between RPM and PWM, just return zero */
458 	return 0;
459 }
460 
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)461 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
462 			      enum pmbus_fan_mode mode)
463 {
464 	return pmbus_get_fan_rate(client, page, id, mode, false);
465 }
466 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device);
467 
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)468 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
469 			      enum pmbus_fan_mode mode)
470 {
471 	return pmbus_get_fan_rate(client, page, id, mode, true);
472 }
473 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached);
474 
pmbus_clear_fault_page(struct i2c_client * client,int page)475 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
476 {
477 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
478 }
479 
pmbus_clear_faults(struct i2c_client * client)480 void pmbus_clear_faults(struct i2c_client *client)
481 {
482 	struct pmbus_data *data = i2c_get_clientdata(client);
483 	int i;
484 
485 	for (i = 0; i < data->info->pages; i++)
486 		pmbus_clear_fault_page(client, i);
487 }
488 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
489 
pmbus_check_status_cml(struct i2c_client * client)490 static int pmbus_check_status_cml(struct i2c_client *client)
491 {
492 	struct pmbus_data *data = i2c_get_clientdata(client);
493 	int status, status2;
494 
495 	status = data->read_status(client, -1);
496 	if (status < 0 || (status & PB_STATUS_CML)) {
497 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
498 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
499 			return -EIO;
500 	}
501 	return 0;
502 }
503 
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)504 static bool pmbus_check_register(struct i2c_client *client,
505 				 int (*func)(struct i2c_client *client,
506 					     int page, int reg),
507 				 int page, int reg)
508 {
509 	int rv;
510 	struct pmbus_data *data = i2c_get_clientdata(client);
511 
512 	rv = func(client, page, reg);
513 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
514 		rv = pmbus_check_status_cml(client);
515 	pmbus_clear_fault_page(client, -1);
516 	return rv >= 0;
517 }
518 
pmbus_check_status_register(struct i2c_client * client,int page)519 static bool pmbus_check_status_register(struct i2c_client *client, int page)
520 {
521 	int status;
522 	struct pmbus_data *data = i2c_get_clientdata(client);
523 
524 	status = data->read_status(client, page);
525 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
526 	    (status & PB_STATUS_CML)) {
527 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
528 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
529 			status = -EIO;
530 	}
531 
532 	pmbus_clear_fault_page(client, -1);
533 	return status >= 0;
534 }
535 
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)536 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
537 {
538 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
539 }
540 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
541 
pmbus_check_word_register(struct i2c_client * client,int page,int reg)542 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
543 {
544 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
545 }
546 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
547 
pmbus_get_driver_info(struct i2c_client * client)548 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
549 {
550 	struct pmbus_data *data = i2c_get_clientdata(client);
551 
552 	return data->info;
553 }
554 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
555 
pmbus_get_status(struct i2c_client * client,int page,int reg)556 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
557 {
558 	struct pmbus_data *data = i2c_get_clientdata(client);
559 	int status;
560 
561 	switch (reg) {
562 	case PMBUS_STATUS_WORD:
563 		status = data->read_status(client, page);
564 		break;
565 	default:
566 		status = _pmbus_read_byte_data(client, page, reg);
567 		break;
568 	}
569 	if (status < 0)
570 		pmbus_clear_faults(client);
571 	return status;
572 }
573 
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)574 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
575 {
576 	if (sensor->data < 0 || sensor->update)
577 		sensor->data = _pmbus_read_word_data(client, sensor->page,
578 						     sensor->phase, sensor->reg);
579 }
580 
581 /*
582  * Convert linear sensor values to milli- or micro-units
583  * depending on sensor type.
584  */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)585 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
586 				 struct pmbus_sensor *sensor)
587 {
588 	s16 exponent;
589 	s32 mantissa;
590 	s64 val;
591 
592 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
593 		exponent = data->exponent[sensor->page];
594 		mantissa = (u16) sensor->data;
595 	} else {				/* LINEAR11 */
596 		exponent = ((s16)sensor->data) >> 11;
597 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
598 	}
599 
600 	val = mantissa;
601 
602 	/* scale result to milli-units for all sensors except fans */
603 	if (sensor->class != PSC_FAN)
604 		val = val * 1000LL;
605 
606 	/* scale result to micro-units for power sensors */
607 	if (sensor->class == PSC_POWER)
608 		val = val * 1000LL;
609 
610 	if (exponent >= 0)
611 		val <<= exponent;
612 	else
613 		val >>= -exponent;
614 
615 	return val;
616 }
617 
618 /*
619  * Convert direct sensor values to milli- or micro-units
620  * depending on sensor type.
621  */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)622 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
623 				 struct pmbus_sensor *sensor)
624 {
625 	s64 b, val = (s16)sensor->data;
626 	s32 m, R;
627 
628 	m = data->info->m[sensor->class];
629 	b = data->info->b[sensor->class];
630 	R = data->info->R[sensor->class];
631 
632 	if (m == 0)
633 		return 0;
634 
635 	/* X = 1/m * (Y * 10^-R - b) */
636 	R = -R;
637 	/* scale result to milli-units for everything but fans */
638 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
639 		R += 3;
640 		b *= 1000;
641 	}
642 
643 	/* scale result to micro-units for power sensors */
644 	if (sensor->class == PSC_POWER) {
645 		R += 3;
646 		b *= 1000;
647 	}
648 
649 	while (R > 0) {
650 		val *= 10;
651 		R--;
652 	}
653 	while (R < 0) {
654 		val = div_s64(val + 5LL, 10L);  /* round closest */
655 		R++;
656 	}
657 
658 	val = div_s64(val - b, m);
659 	return val;
660 }
661 
662 /*
663  * Convert VID sensor values to milli- or micro-units
664  * depending on sensor type.
665  */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)666 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
667 			      struct pmbus_sensor *sensor)
668 {
669 	long val = sensor->data;
670 	long rv = 0;
671 
672 	switch (data->info->vrm_version[sensor->page]) {
673 	case vr11:
674 		if (val >= 0x02 && val <= 0xb2)
675 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
676 		break;
677 	case vr12:
678 		if (val >= 0x01)
679 			rv = 250 + (val - 1) * 5;
680 		break;
681 	case vr13:
682 		if (val >= 0x01)
683 			rv = 500 + (val - 1) * 10;
684 		break;
685 	case imvp9:
686 		if (val >= 0x01)
687 			rv = 200 + (val - 1) * 10;
688 		break;
689 	case amd625mv:
690 		if (val >= 0x0 && val <= 0xd8)
691 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
692 		break;
693 	}
694 	return rv;
695 }
696 
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)697 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
698 {
699 	s64 val;
700 
701 	if (!sensor->convert)
702 		return sensor->data;
703 
704 	switch (data->info->format[sensor->class]) {
705 	case direct:
706 		val = pmbus_reg2data_direct(data, sensor);
707 		break;
708 	case vid:
709 		val = pmbus_reg2data_vid(data, sensor);
710 		break;
711 	case linear:
712 	default:
713 		val = pmbus_reg2data_linear(data, sensor);
714 		break;
715 	}
716 	return val;
717 }
718 
719 #define MAX_MANTISSA	(1023 * 1000)
720 #define MIN_MANTISSA	(511 * 1000)
721 
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)722 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
723 				 struct pmbus_sensor *sensor, s64 val)
724 {
725 	s16 exponent = 0, mantissa;
726 	bool negative = false;
727 
728 	/* simple case */
729 	if (val == 0)
730 		return 0;
731 
732 	if (sensor->class == PSC_VOLTAGE_OUT) {
733 		/* LINEAR16 does not support negative voltages */
734 		if (val < 0)
735 			return 0;
736 
737 		/*
738 		 * For a static exponents, we don't have a choice
739 		 * but to adjust the value to it.
740 		 */
741 		if (data->exponent[sensor->page] < 0)
742 			val <<= -data->exponent[sensor->page];
743 		else
744 			val >>= data->exponent[sensor->page];
745 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
746 		return clamp_val(val, 0, 0xffff);
747 	}
748 
749 	if (val < 0) {
750 		negative = true;
751 		val = -val;
752 	}
753 
754 	/* Power is in uW. Convert to mW before converting. */
755 	if (sensor->class == PSC_POWER)
756 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
757 
758 	/*
759 	 * For simplicity, convert fan data to milli-units
760 	 * before calculating the exponent.
761 	 */
762 	if (sensor->class == PSC_FAN)
763 		val = val * 1000LL;
764 
765 	/* Reduce large mantissa until it fits into 10 bit */
766 	while (val >= MAX_MANTISSA && exponent < 15) {
767 		exponent++;
768 		val >>= 1;
769 	}
770 	/* Increase small mantissa to improve precision */
771 	while (val < MIN_MANTISSA && exponent > -15) {
772 		exponent--;
773 		val <<= 1;
774 	}
775 
776 	/* Convert mantissa from milli-units to units */
777 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
778 
779 	/* restore sign */
780 	if (negative)
781 		mantissa = -mantissa;
782 
783 	/* Convert to 5 bit exponent, 11 bit mantissa */
784 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
785 }
786 
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)787 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
788 				 struct pmbus_sensor *sensor, s64 val)
789 {
790 	s64 b;
791 	s32 m, R;
792 
793 	m = data->info->m[sensor->class];
794 	b = data->info->b[sensor->class];
795 	R = data->info->R[sensor->class];
796 
797 	/* Power is in uW. Adjust R and b. */
798 	if (sensor->class == PSC_POWER) {
799 		R -= 3;
800 		b *= 1000;
801 	}
802 
803 	/* Calculate Y = (m * X + b) * 10^R */
804 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
805 		R -= 3;		/* Adjust R and b for data in milli-units */
806 		b *= 1000;
807 	}
808 	val = val * m + b;
809 
810 	while (R > 0) {
811 		val *= 10;
812 		R--;
813 	}
814 	while (R < 0) {
815 		val = div_s64(val + 5LL, 10L);  /* round closest */
816 		R++;
817 	}
818 
819 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
820 }
821 
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)822 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
823 			      struct pmbus_sensor *sensor, s64 val)
824 {
825 	val = clamp_val(val, 500, 1600);
826 
827 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
828 }
829 
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)830 static u16 pmbus_data2reg(struct pmbus_data *data,
831 			  struct pmbus_sensor *sensor, s64 val)
832 {
833 	u16 regval;
834 
835 	if (!sensor->convert)
836 		return val;
837 
838 	switch (data->info->format[sensor->class]) {
839 	case direct:
840 		regval = pmbus_data2reg_direct(data, sensor, val);
841 		break;
842 	case vid:
843 		regval = pmbus_data2reg_vid(data, sensor, val);
844 		break;
845 	case linear:
846 	default:
847 		regval = pmbus_data2reg_linear(data, sensor, val);
848 		break;
849 	}
850 	return regval;
851 }
852 
853 /*
854  * Return boolean calculated from converted data.
855  * <index> defines a status register index and mask.
856  * The mask is in the lower 8 bits, the register index is in bits 8..23.
857  *
858  * The associated pmbus_boolean structure contains optional pointers to two
859  * sensor attributes. If specified, those attributes are compared against each
860  * other to determine if a limit has been exceeded.
861  *
862  * If the sensor attribute pointers are NULL, the function returns true if
863  * (status[reg] & mask) is true.
864  *
865  * If sensor attribute pointers are provided, a comparison against a specified
866  * limit has to be performed to determine the boolean result.
867  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
868  * sensor values referenced by sensor attribute pointers s1 and s2).
869  *
870  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
871  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
872  *
873  * If a negative value is stored in any of the referenced registers, this value
874  * reflects an error code which will be returned.
875  */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)876 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
877 			     int index)
878 {
879 	struct pmbus_data *data = i2c_get_clientdata(client);
880 	struct pmbus_sensor *s1 = b->s1;
881 	struct pmbus_sensor *s2 = b->s2;
882 	u16 mask = pb_index_to_mask(index);
883 	u8 page = pb_index_to_page(index);
884 	u16 reg = pb_index_to_reg(index);
885 	int ret, status;
886 	u16 regval;
887 
888 	mutex_lock(&data->update_lock);
889 	status = pmbus_get_status(client, page, reg);
890 	if (status < 0) {
891 		ret = status;
892 		goto unlock;
893 	}
894 
895 	if (s1)
896 		pmbus_update_sensor_data(client, s1);
897 	if (s2)
898 		pmbus_update_sensor_data(client, s2);
899 
900 	regval = status & mask;
901 	if (regval) {
902 		ret = pmbus_write_byte_data(client, page, reg, regval);
903 		if (ret)
904 			goto unlock;
905 	}
906 	if (s1 && s2) {
907 		s64 v1, v2;
908 
909 		if (s1->data < 0) {
910 			ret = s1->data;
911 			goto unlock;
912 		}
913 		if (s2->data < 0) {
914 			ret = s2->data;
915 			goto unlock;
916 		}
917 
918 		v1 = pmbus_reg2data(data, s1);
919 		v2 = pmbus_reg2data(data, s2);
920 		ret = !!(regval && v1 >= v2);
921 	} else {
922 		ret = !!regval;
923 	}
924 unlock:
925 	mutex_unlock(&data->update_lock);
926 	return ret;
927 }
928 
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)929 static ssize_t pmbus_show_boolean(struct device *dev,
930 				  struct device_attribute *da, char *buf)
931 {
932 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
933 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
934 	struct i2c_client *client = to_i2c_client(dev->parent);
935 	int val;
936 
937 	val = pmbus_get_boolean(client, boolean, attr->index);
938 	if (val < 0)
939 		return val;
940 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
941 }
942 
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)943 static ssize_t pmbus_show_sensor(struct device *dev,
944 				 struct device_attribute *devattr, char *buf)
945 {
946 	struct i2c_client *client = to_i2c_client(dev->parent);
947 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
948 	struct pmbus_data *data = i2c_get_clientdata(client);
949 	ssize_t ret;
950 
951 	mutex_lock(&data->update_lock);
952 	pmbus_update_sensor_data(client, sensor);
953 	if (sensor->data < 0)
954 		ret = sensor->data;
955 	else
956 		ret = snprintf(buf, PAGE_SIZE, "%lld\n", pmbus_reg2data(data, sensor));
957 	mutex_unlock(&data->update_lock);
958 	return ret;
959 }
960 
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)961 static ssize_t pmbus_set_sensor(struct device *dev,
962 				struct device_attribute *devattr,
963 				const char *buf, size_t count)
964 {
965 	struct i2c_client *client = to_i2c_client(dev->parent);
966 	struct pmbus_data *data = i2c_get_clientdata(client);
967 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
968 	ssize_t rv = count;
969 	s64 val;
970 	int ret;
971 	u16 regval;
972 
973 	if (kstrtos64(buf, 10, &val) < 0)
974 		return -EINVAL;
975 
976 	mutex_lock(&data->update_lock);
977 	regval = pmbus_data2reg(data, sensor, val);
978 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
979 	if (ret < 0)
980 		rv = ret;
981 	else
982 		sensor->data = regval;
983 	mutex_unlock(&data->update_lock);
984 	return rv;
985 }
986 
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)987 static ssize_t pmbus_show_label(struct device *dev,
988 				struct device_attribute *da, char *buf)
989 {
990 	struct pmbus_label *label = to_pmbus_label(da);
991 
992 	return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
993 }
994 
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)995 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
996 {
997 	if (data->num_attributes >= data->max_attributes - 1) {
998 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
999 		void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1000 						new_max_attrs * sizeof(void *),
1001 						GFP_KERNEL);
1002 		if (!new_attrs)
1003 			return -ENOMEM;
1004 		data->group.attrs = new_attrs;
1005 		data->max_attributes = new_max_attrs;
1006 	}
1007 
1008 	data->group.attrs[data->num_attributes++] = attr;
1009 	data->group.attrs[data->num_attributes] = NULL;
1010 	return 0;
1011 }
1012 
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1013 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1014 				const char *name,
1015 				umode_t mode,
1016 				ssize_t (*show)(struct device *dev,
1017 						struct device_attribute *attr,
1018 						char *buf),
1019 				ssize_t (*store)(struct device *dev,
1020 						 struct device_attribute *attr,
1021 						 const char *buf, size_t count))
1022 {
1023 	sysfs_attr_init(&dev_attr->attr);
1024 	dev_attr->attr.name = name;
1025 	dev_attr->attr.mode = mode;
1026 	dev_attr->show = show;
1027 	dev_attr->store = store;
1028 }
1029 
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1030 static void pmbus_attr_init(struct sensor_device_attribute *a,
1031 			    const char *name,
1032 			    umode_t mode,
1033 			    ssize_t (*show)(struct device *dev,
1034 					    struct device_attribute *attr,
1035 					    char *buf),
1036 			    ssize_t (*store)(struct device *dev,
1037 					     struct device_attribute *attr,
1038 					     const char *buf, size_t count),
1039 			    int idx)
1040 {
1041 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1042 	a->index = idx;
1043 }
1044 
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1045 static int pmbus_add_boolean(struct pmbus_data *data,
1046 			     const char *name, const char *type, int seq,
1047 			     struct pmbus_sensor *s1,
1048 			     struct pmbus_sensor *s2,
1049 			     u8 page, u16 reg, u16 mask)
1050 {
1051 	struct pmbus_boolean *boolean;
1052 	struct sensor_device_attribute *a;
1053 
1054 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1055 		return -EINVAL;
1056 
1057 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1058 	if (!boolean)
1059 		return -ENOMEM;
1060 
1061 	a = &boolean->attribute;
1062 
1063 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1064 		 name, seq, type);
1065 	boolean->s1 = s1;
1066 	boolean->s2 = s2;
1067 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1068 			pb_reg_to_index(page, reg, mask));
1069 
1070 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1071 }
1072 
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1073 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1074 					     const char *name, const char *type,
1075 					     int seq, int page, int phase,
1076 					     int reg,
1077 					     enum pmbus_sensor_classes class,
1078 					     bool update, bool readonly,
1079 					     bool convert)
1080 {
1081 	struct pmbus_sensor *sensor;
1082 	struct device_attribute *a;
1083 
1084 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1085 	if (!sensor)
1086 		return NULL;
1087 	a = &sensor->attribute;
1088 
1089 	if (type)
1090 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1091 			 name, seq, type);
1092 	else
1093 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1094 			 name, seq);
1095 
1096 	if (data->flags & PMBUS_WRITE_PROTECTED)
1097 		readonly = true;
1098 
1099 	sensor->page = page;
1100 	sensor->phase = phase;
1101 	sensor->reg = reg;
1102 	sensor->class = class;
1103 	sensor->update = update;
1104 	sensor->convert = convert;
1105 	sensor->data = -ENODATA;
1106 	pmbus_dev_attr_init(a, sensor->name,
1107 			    readonly ? 0444 : 0644,
1108 			    pmbus_show_sensor, pmbus_set_sensor);
1109 
1110 	if (pmbus_add_attribute(data, &a->attr))
1111 		return NULL;
1112 
1113 	sensor->next = data->sensors;
1114 	data->sensors = sensor;
1115 
1116 	return sensor;
1117 }
1118 
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1119 static int pmbus_add_label(struct pmbus_data *data,
1120 			   const char *name, int seq,
1121 			   const char *lstring, int index, int phase)
1122 {
1123 	struct pmbus_label *label;
1124 	struct device_attribute *a;
1125 
1126 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1127 	if (!label)
1128 		return -ENOMEM;
1129 
1130 	a = &label->attribute;
1131 
1132 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1133 	if (!index) {
1134 		if (phase == 0xff)
1135 			strncpy(label->label, lstring,
1136 				sizeof(label->label) - 1);
1137 		else
1138 			snprintf(label->label, sizeof(label->label), "%s.%d",
1139 				 lstring, phase);
1140 	} else {
1141 		if (phase == 0xff)
1142 			snprintf(label->label, sizeof(label->label), "%s%d",
1143 				 lstring, index);
1144 		else
1145 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1146 				 lstring, index, phase);
1147 	}
1148 
1149 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1150 	return pmbus_add_attribute(data, &a->attr);
1151 }
1152 
1153 /*
1154  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1155  */
1156 
1157 /*
1158  * The pmbus_limit_attr structure describes a single limit attribute
1159  * and its associated alarm attribute.
1160  */
1161 struct pmbus_limit_attr {
1162 	u16 reg;		/* Limit register */
1163 	u16 sbit;		/* Alarm attribute status bit */
1164 	bool update;		/* True if register needs updates */
1165 	bool low;		/* True if low limit; for limits with compare
1166 				   functions only */
1167 	const char *attr;	/* Attribute name */
1168 	const char *alarm;	/* Alarm attribute name */
1169 };
1170 
1171 /*
1172  * The pmbus_sensor_attr structure describes one sensor attribute. This
1173  * description includes a reference to the associated limit attributes.
1174  */
1175 struct pmbus_sensor_attr {
1176 	u16 reg;			/* sensor register */
1177 	u16 gbit;			/* generic status bit */
1178 	u8 nlimit;			/* # of limit registers */
1179 	enum pmbus_sensor_classes class;/* sensor class */
1180 	const char *label;		/* sensor label */
1181 	bool paged;			/* true if paged sensor */
1182 	bool update;			/* true if update needed */
1183 	bool compare;			/* true if compare function needed */
1184 	u32 func;			/* sensor mask */
1185 	u32 sfunc;			/* sensor status mask */
1186 	int sreg;			/* status register */
1187 	const struct pmbus_limit_attr *limit;/* limit registers */
1188 };
1189 
1190 /*
1191  * Add a set of limit attributes and, if supported, the associated
1192  * alarm attributes.
1193  * returns 0 if no alarm register found, 1 if an alarm register was found,
1194  * < 0 on errors.
1195  */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1196 static int pmbus_add_limit_attrs(struct i2c_client *client,
1197 				 struct pmbus_data *data,
1198 				 const struct pmbus_driver_info *info,
1199 				 const char *name, int index, int page,
1200 				 struct pmbus_sensor *base,
1201 				 const struct pmbus_sensor_attr *attr)
1202 {
1203 	const struct pmbus_limit_attr *l = attr->limit;
1204 	int nlimit = attr->nlimit;
1205 	int have_alarm = 0;
1206 	int i, ret;
1207 	struct pmbus_sensor *curr;
1208 
1209 	for (i = 0; i < nlimit; i++) {
1210 		if (pmbus_check_word_register(client, page, l->reg)) {
1211 			curr = pmbus_add_sensor(data, name, l->attr, index,
1212 						page, 0xff, l->reg, attr->class,
1213 						attr->update || l->update,
1214 						false, true);
1215 			if (!curr)
1216 				return -ENOMEM;
1217 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1218 				ret = pmbus_add_boolean(data, name,
1219 					l->alarm, index,
1220 					attr->compare ?  l->low ? curr : base
1221 						      : NULL,
1222 					attr->compare ? l->low ? base : curr
1223 						      : NULL,
1224 					page, attr->sreg, l->sbit);
1225 				if (ret)
1226 					return ret;
1227 				have_alarm = 1;
1228 			}
1229 		}
1230 		l++;
1231 	}
1232 	return have_alarm;
1233 }
1234 
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1235 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1236 				      struct pmbus_data *data,
1237 				      const struct pmbus_driver_info *info,
1238 				      const char *name,
1239 				      int index, int page, int phase,
1240 				      const struct pmbus_sensor_attr *attr,
1241 				      bool paged)
1242 {
1243 	struct pmbus_sensor *base;
1244 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1245 	int ret;
1246 
1247 	if (attr->label) {
1248 		ret = pmbus_add_label(data, name, index, attr->label,
1249 				      paged ? page + 1 : 0, phase);
1250 		if (ret)
1251 			return ret;
1252 	}
1253 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1254 				attr->reg, attr->class, true, true, true);
1255 	if (!base)
1256 		return -ENOMEM;
1257 	/* No limit and alarm attributes for phase specific sensors */
1258 	if (attr->sfunc && phase == 0xff) {
1259 		ret = pmbus_add_limit_attrs(client, data, info, name,
1260 					    index, page, base, attr);
1261 		if (ret < 0)
1262 			return ret;
1263 		/*
1264 		 * Add generic alarm attribute only if there are no individual
1265 		 * alarm attributes, if there is a global alarm bit, and if
1266 		 * the generic status register (word or byte, depending on
1267 		 * which global bit is set) for this page is accessible.
1268 		 */
1269 		if (!ret && attr->gbit &&
1270 		    (!upper || (upper && data->has_status_word)) &&
1271 		    pmbus_check_status_register(client, page)) {
1272 			ret = pmbus_add_boolean(data, name, "alarm", index,
1273 						NULL, NULL,
1274 						page, PMBUS_STATUS_WORD,
1275 						attr->gbit);
1276 			if (ret)
1277 				return ret;
1278 		}
1279 	}
1280 	return 0;
1281 }
1282 
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1283 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1284 				  const struct pmbus_sensor_attr *attr)
1285 {
1286 	int p;
1287 
1288 	if (attr->paged)
1289 		return true;
1290 
1291 	/*
1292 	 * Some attributes may be present on more than one page despite
1293 	 * not being marked with the paged attribute. If that is the case,
1294 	 * then treat the sensor as being paged and add the page suffix to the
1295 	 * attribute name.
1296 	 * We don't just add the paged attribute to all such attributes, in
1297 	 * order to maintain the un-suffixed labels in the case where the
1298 	 * attribute is only on page 0.
1299 	 */
1300 	for (p = 1; p < info->pages; p++) {
1301 		if (info->func[p] & attr->func)
1302 			return true;
1303 	}
1304 	return false;
1305 }
1306 
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1307 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1308 				  struct pmbus_data *data,
1309 				  const char *name,
1310 				  const struct pmbus_sensor_attr *attrs,
1311 				  int nattrs)
1312 {
1313 	const struct pmbus_driver_info *info = data->info;
1314 	int index, i;
1315 	int ret;
1316 
1317 	index = 1;
1318 	for (i = 0; i < nattrs; i++) {
1319 		int page, pages;
1320 		bool paged = pmbus_sensor_is_paged(info, attrs);
1321 
1322 		pages = paged ? info->pages : 1;
1323 		for (page = 0; page < pages; page++) {
1324 			if (!(info->func[page] & attrs->func))
1325 				continue;
1326 			ret = pmbus_add_sensor_attrs_one(client, data, info,
1327 							 name, index, page,
1328 							 0xff, attrs, paged);
1329 			if (ret)
1330 				return ret;
1331 			index++;
1332 			if (info->phases[page]) {
1333 				int phase;
1334 
1335 				for (phase = 0; phase < info->phases[page];
1336 				     phase++) {
1337 					if (!(info->pfunc[phase] & attrs->func))
1338 						continue;
1339 					ret = pmbus_add_sensor_attrs_one(client,
1340 						data, info, name, index, page,
1341 						phase, attrs, paged);
1342 					if (ret)
1343 						return ret;
1344 					index++;
1345 				}
1346 			}
1347 		}
1348 		attrs++;
1349 	}
1350 	return 0;
1351 }
1352 
1353 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1354 	{
1355 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1356 		.attr = "min",
1357 		.alarm = "min_alarm",
1358 		.sbit = PB_VOLTAGE_UV_WARNING,
1359 	}, {
1360 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1361 		.attr = "lcrit",
1362 		.alarm = "lcrit_alarm",
1363 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1364 	}, {
1365 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1366 		.attr = "max",
1367 		.alarm = "max_alarm",
1368 		.sbit = PB_VOLTAGE_OV_WARNING,
1369 	}, {
1370 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1371 		.attr = "crit",
1372 		.alarm = "crit_alarm",
1373 		.sbit = PB_VOLTAGE_OV_FAULT,
1374 	}, {
1375 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1376 		.update = true,
1377 		.attr = "average",
1378 	}, {
1379 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1380 		.update = true,
1381 		.attr = "lowest",
1382 	}, {
1383 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1384 		.update = true,
1385 		.attr = "highest",
1386 	}, {
1387 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1388 		.attr = "reset_history",
1389 	}, {
1390 		.reg = PMBUS_MFR_VIN_MIN,
1391 		.attr = "rated_min",
1392 	}, {
1393 		.reg = PMBUS_MFR_VIN_MAX,
1394 		.attr = "rated_max",
1395 	},
1396 };
1397 
1398 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1399 	{
1400 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1401 		.attr = "min",
1402 		.alarm = "min_alarm",
1403 		.sbit = PB_VOLTAGE_UV_WARNING,
1404 	}, {
1405 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1406 		.attr = "lcrit",
1407 		.alarm = "lcrit_alarm",
1408 		.sbit = PB_VOLTAGE_UV_FAULT,
1409 	}, {
1410 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1411 		.attr = "max",
1412 		.alarm = "max_alarm",
1413 		.sbit = PB_VOLTAGE_OV_WARNING,
1414 	}, {
1415 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1416 		.attr = "crit",
1417 		.alarm = "crit_alarm",
1418 		.sbit = PB_VOLTAGE_OV_FAULT,
1419 	}
1420 };
1421 
1422 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1423 	{
1424 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1425 		.attr = "min",
1426 		.alarm = "min_alarm",
1427 		.sbit = PB_VOLTAGE_UV_WARNING,
1428 	}, {
1429 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1430 		.attr = "lcrit",
1431 		.alarm = "lcrit_alarm",
1432 		.sbit = PB_VOLTAGE_UV_FAULT,
1433 	}, {
1434 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1435 		.attr = "max",
1436 		.alarm = "max_alarm",
1437 		.sbit = PB_VOLTAGE_OV_WARNING,
1438 	}, {
1439 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1440 		.attr = "crit",
1441 		.alarm = "crit_alarm",
1442 		.sbit = PB_VOLTAGE_OV_FAULT,
1443 	}, {
1444 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1445 		.update = true,
1446 		.attr = "average",
1447 	}, {
1448 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1449 		.update = true,
1450 		.attr = "lowest",
1451 	}, {
1452 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1453 		.update = true,
1454 		.attr = "highest",
1455 	}, {
1456 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1457 		.attr = "reset_history",
1458 	}, {
1459 		.reg = PMBUS_MFR_VOUT_MIN,
1460 		.attr = "rated_min",
1461 	}, {
1462 		.reg = PMBUS_MFR_VOUT_MAX,
1463 		.attr = "rated_max",
1464 	},
1465 };
1466 
1467 static const struct pmbus_sensor_attr voltage_attributes[] = {
1468 	{
1469 		.reg = PMBUS_READ_VIN,
1470 		.class = PSC_VOLTAGE_IN,
1471 		.label = "vin",
1472 		.func = PMBUS_HAVE_VIN,
1473 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1474 		.sreg = PMBUS_STATUS_INPUT,
1475 		.gbit = PB_STATUS_VIN_UV,
1476 		.limit = vin_limit_attrs,
1477 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1478 	}, {
1479 		.reg = PMBUS_VIRT_READ_VMON,
1480 		.class = PSC_VOLTAGE_IN,
1481 		.label = "vmon",
1482 		.func = PMBUS_HAVE_VMON,
1483 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1484 		.sreg = PMBUS_VIRT_STATUS_VMON,
1485 		.limit = vmon_limit_attrs,
1486 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1487 	}, {
1488 		.reg = PMBUS_READ_VCAP,
1489 		.class = PSC_VOLTAGE_IN,
1490 		.label = "vcap",
1491 		.func = PMBUS_HAVE_VCAP,
1492 	}, {
1493 		.reg = PMBUS_READ_VOUT,
1494 		.class = PSC_VOLTAGE_OUT,
1495 		.label = "vout",
1496 		.paged = true,
1497 		.func = PMBUS_HAVE_VOUT,
1498 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1499 		.sreg = PMBUS_STATUS_VOUT,
1500 		.gbit = PB_STATUS_VOUT_OV,
1501 		.limit = vout_limit_attrs,
1502 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1503 	}
1504 };
1505 
1506 /* Current attributes */
1507 
1508 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1509 	{
1510 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1511 		.attr = "max",
1512 		.alarm = "max_alarm",
1513 		.sbit = PB_IIN_OC_WARNING,
1514 	}, {
1515 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1516 		.attr = "crit",
1517 		.alarm = "crit_alarm",
1518 		.sbit = PB_IIN_OC_FAULT,
1519 	}, {
1520 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1521 		.update = true,
1522 		.attr = "average",
1523 	}, {
1524 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1525 		.update = true,
1526 		.attr = "lowest",
1527 	}, {
1528 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1529 		.update = true,
1530 		.attr = "highest",
1531 	}, {
1532 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1533 		.attr = "reset_history",
1534 	}, {
1535 		.reg = PMBUS_MFR_IIN_MAX,
1536 		.attr = "rated_max",
1537 	},
1538 };
1539 
1540 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1541 	{
1542 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1543 		.attr = "max",
1544 		.alarm = "max_alarm",
1545 		.sbit = PB_IOUT_OC_WARNING,
1546 	}, {
1547 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1548 		.attr = "lcrit",
1549 		.alarm = "lcrit_alarm",
1550 		.sbit = PB_IOUT_UC_FAULT,
1551 	}, {
1552 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1553 		.attr = "crit",
1554 		.alarm = "crit_alarm",
1555 		.sbit = PB_IOUT_OC_FAULT,
1556 	}, {
1557 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1558 		.update = true,
1559 		.attr = "average",
1560 	}, {
1561 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1562 		.update = true,
1563 		.attr = "lowest",
1564 	}, {
1565 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1566 		.update = true,
1567 		.attr = "highest",
1568 	}, {
1569 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1570 		.attr = "reset_history",
1571 	}, {
1572 		.reg = PMBUS_MFR_IOUT_MAX,
1573 		.attr = "rated_max",
1574 	},
1575 };
1576 
1577 static const struct pmbus_sensor_attr current_attributes[] = {
1578 	{
1579 		.reg = PMBUS_READ_IIN,
1580 		.class = PSC_CURRENT_IN,
1581 		.label = "iin",
1582 		.func = PMBUS_HAVE_IIN,
1583 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1584 		.sreg = PMBUS_STATUS_INPUT,
1585 		.gbit = PB_STATUS_INPUT,
1586 		.limit = iin_limit_attrs,
1587 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1588 	}, {
1589 		.reg = PMBUS_READ_IOUT,
1590 		.class = PSC_CURRENT_OUT,
1591 		.label = "iout",
1592 		.paged = true,
1593 		.func = PMBUS_HAVE_IOUT,
1594 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1595 		.sreg = PMBUS_STATUS_IOUT,
1596 		.gbit = PB_STATUS_IOUT_OC,
1597 		.limit = iout_limit_attrs,
1598 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1599 	}
1600 };
1601 
1602 /* Power attributes */
1603 
1604 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1605 	{
1606 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1607 		.attr = "max",
1608 		.alarm = "alarm",
1609 		.sbit = PB_PIN_OP_WARNING,
1610 	}, {
1611 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1612 		.update = true,
1613 		.attr = "average",
1614 	}, {
1615 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1616 		.update = true,
1617 		.attr = "input_lowest",
1618 	}, {
1619 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1620 		.update = true,
1621 		.attr = "input_highest",
1622 	}, {
1623 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1624 		.attr = "reset_history",
1625 	}, {
1626 		.reg = PMBUS_MFR_PIN_MAX,
1627 		.attr = "rated_max",
1628 	},
1629 };
1630 
1631 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1632 	{
1633 		.reg = PMBUS_POUT_MAX,
1634 		.attr = "cap",
1635 		.alarm = "cap_alarm",
1636 		.sbit = PB_POWER_LIMITING,
1637 	}, {
1638 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1639 		.attr = "max",
1640 		.alarm = "max_alarm",
1641 		.sbit = PB_POUT_OP_WARNING,
1642 	}, {
1643 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1644 		.attr = "crit",
1645 		.alarm = "crit_alarm",
1646 		.sbit = PB_POUT_OP_FAULT,
1647 	}, {
1648 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1649 		.update = true,
1650 		.attr = "average",
1651 	}, {
1652 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1653 		.update = true,
1654 		.attr = "input_lowest",
1655 	}, {
1656 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1657 		.update = true,
1658 		.attr = "input_highest",
1659 	}, {
1660 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1661 		.attr = "reset_history",
1662 	}, {
1663 		.reg = PMBUS_MFR_POUT_MAX,
1664 		.attr = "rated_max",
1665 	},
1666 };
1667 
1668 static const struct pmbus_sensor_attr power_attributes[] = {
1669 	{
1670 		.reg = PMBUS_READ_PIN,
1671 		.class = PSC_POWER,
1672 		.label = "pin",
1673 		.func = PMBUS_HAVE_PIN,
1674 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1675 		.sreg = PMBUS_STATUS_INPUT,
1676 		.gbit = PB_STATUS_INPUT,
1677 		.limit = pin_limit_attrs,
1678 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1679 	}, {
1680 		.reg = PMBUS_READ_POUT,
1681 		.class = PSC_POWER,
1682 		.label = "pout",
1683 		.paged = true,
1684 		.func = PMBUS_HAVE_POUT,
1685 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1686 		.sreg = PMBUS_STATUS_IOUT,
1687 		.limit = pout_limit_attrs,
1688 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1689 	}
1690 };
1691 
1692 /* Temperature atributes */
1693 
1694 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1695 	{
1696 		.reg = PMBUS_UT_WARN_LIMIT,
1697 		.low = true,
1698 		.attr = "min",
1699 		.alarm = "min_alarm",
1700 		.sbit = PB_TEMP_UT_WARNING,
1701 	}, {
1702 		.reg = PMBUS_UT_FAULT_LIMIT,
1703 		.low = true,
1704 		.attr = "lcrit",
1705 		.alarm = "lcrit_alarm",
1706 		.sbit = PB_TEMP_UT_FAULT,
1707 	}, {
1708 		.reg = PMBUS_OT_WARN_LIMIT,
1709 		.attr = "max",
1710 		.alarm = "max_alarm",
1711 		.sbit = PB_TEMP_OT_WARNING,
1712 	}, {
1713 		.reg = PMBUS_OT_FAULT_LIMIT,
1714 		.attr = "crit",
1715 		.alarm = "crit_alarm",
1716 		.sbit = PB_TEMP_OT_FAULT,
1717 	}, {
1718 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1719 		.attr = "lowest",
1720 	}, {
1721 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1722 		.attr = "average",
1723 	}, {
1724 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1725 		.attr = "highest",
1726 	}, {
1727 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1728 		.attr = "reset_history",
1729 	}, {
1730 		.reg = PMBUS_MFR_MAX_TEMP_1,
1731 		.attr = "rated_max",
1732 	},
1733 };
1734 
1735 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1736 	{
1737 		.reg = PMBUS_UT_WARN_LIMIT,
1738 		.low = true,
1739 		.attr = "min",
1740 		.alarm = "min_alarm",
1741 		.sbit = PB_TEMP_UT_WARNING,
1742 	}, {
1743 		.reg = PMBUS_UT_FAULT_LIMIT,
1744 		.low = true,
1745 		.attr = "lcrit",
1746 		.alarm = "lcrit_alarm",
1747 		.sbit = PB_TEMP_UT_FAULT,
1748 	}, {
1749 		.reg = PMBUS_OT_WARN_LIMIT,
1750 		.attr = "max",
1751 		.alarm = "max_alarm",
1752 		.sbit = PB_TEMP_OT_WARNING,
1753 	}, {
1754 		.reg = PMBUS_OT_FAULT_LIMIT,
1755 		.attr = "crit",
1756 		.alarm = "crit_alarm",
1757 		.sbit = PB_TEMP_OT_FAULT,
1758 	}, {
1759 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1760 		.attr = "lowest",
1761 	}, {
1762 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1763 		.attr = "average",
1764 	}, {
1765 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1766 		.attr = "highest",
1767 	}, {
1768 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1769 		.attr = "reset_history",
1770 	}, {
1771 		.reg = PMBUS_MFR_MAX_TEMP_2,
1772 		.attr = "rated_max",
1773 	},
1774 };
1775 
1776 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1777 	{
1778 		.reg = PMBUS_UT_WARN_LIMIT,
1779 		.low = true,
1780 		.attr = "min",
1781 		.alarm = "min_alarm",
1782 		.sbit = PB_TEMP_UT_WARNING,
1783 	}, {
1784 		.reg = PMBUS_UT_FAULT_LIMIT,
1785 		.low = true,
1786 		.attr = "lcrit",
1787 		.alarm = "lcrit_alarm",
1788 		.sbit = PB_TEMP_UT_FAULT,
1789 	}, {
1790 		.reg = PMBUS_OT_WARN_LIMIT,
1791 		.attr = "max",
1792 		.alarm = "max_alarm",
1793 		.sbit = PB_TEMP_OT_WARNING,
1794 	}, {
1795 		.reg = PMBUS_OT_FAULT_LIMIT,
1796 		.attr = "crit",
1797 		.alarm = "crit_alarm",
1798 		.sbit = PB_TEMP_OT_FAULT,
1799 	}, {
1800 		.reg = PMBUS_MFR_MAX_TEMP_3,
1801 		.attr = "rated_max",
1802 	},
1803 };
1804 
1805 static const struct pmbus_sensor_attr temp_attributes[] = {
1806 	{
1807 		.reg = PMBUS_READ_TEMPERATURE_1,
1808 		.class = PSC_TEMPERATURE,
1809 		.paged = true,
1810 		.update = true,
1811 		.compare = true,
1812 		.func = PMBUS_HAVE_TEMP,
1813 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1814 		.sreg = PMBUS_STATUS_TEMPERATURE,
1815 		.gbit = PB_STATUS_TEMPERATURE,
1816 		.limit = temp_limit_attrs,
1817 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1818 	}, {
1819 		.reg = PMBUS_READ_TEMPERATURE_2,
1820 		.class = PSC_TEMPERATURE,
1821 		.paged = true,
1822 		.update = true,
1823 		.compare = true,
1824 		.func = PMBUS_HAVE_TEMP2,
1825 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1826 		.sreg = PMBUS_STATUS_TEMPERATURE,
1827 		.gbit = PB_STATUS_TEMPERATURE,
1828 		.limit = temp_limit_attrs2,
1829 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1830 	}, {
1831 		.reg = PMBUS_READ_TEMPERATURE_3,
1832 		.class = PSC_TEMPERATURE,
1833 		.paged = true,
1834 		.update = true,
1835 		.compare = true,
1836 		.func = PMBUS_HAVE_TEMP3,
1837 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1838 		.sreg = PMBUS_STATUS_TEMPERATURE,
1839 		.gbit = PB_STATUS_TEMPERATURE,
1840 		.limit = temp_limit_attrs3,
1841 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1842 	}
1843 };
1844 
1845 static const int pmbus_fan_registers[] = {
1846 	PMBUS_READ_FAN_SPEED_1,
1847 	PMBUS_READ_FAN_SPEED_2,
1848 	PMBUS_READ_FAN_SPEED_3,
1849 	PMBUS_READ_FAN_SPEED_4
1850 };
1851 
1852 static const int pmbus_fan_status_registers[] = {
1853 	PMBUS_STATUS_FAN_12,
1854 	PMBUS_STATUS_FAN_12,
1855 	PMBUS_STATUS_FAN_34,
1856 	PMBUS_STATUS_FAN_34
1857 };
1858 
1859 static const u32 pmbus_fan_flags[] = {
1860 	PMBUS_HAVE_FAN12,
1861 	PMBUS_HAVE_FAN12,
1862 	PMBUS_HAVE_FAN34,
1863 	PMBUS_HAVE_FAN34
1864 };
1865 
1866 static const u32 pmbus_fan_status_flags[] = {
1867 	PMBUS_HAVE_STATUS_FAN12,
1868 	PMBUS_HAVE_STATUS_FAN12,
1869 	PMBUS_HAVE_STATUS_FAN34,
1870 	PMBUS_HAVE_STATUS_FAN34
1871 };
1872 
1873 /* Fans */
1874 
1875 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)1876 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1877 		struct pmbus_data *data, int index, int page, int id,
1878 		u8 config)
1879 {
1880 	struct pmbus_sensor *sensor;
1881 
1882 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1883 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1884 				  false, false, true);
1885 
1886 	if (!sensor)
1887 		return -ENOMEM;
1888 
1889 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1890 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
1891 		return 0;
1892 
1893 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1894 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1895 				  false, false, true);
1896 
1897 	if (!sensor)
1898 		return -ENOMEM;
1899 
1900 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1901 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1902 				  true, false, false);
1903 
1904 	if (!sensor)
1905 		return -ENOMEM;
1906 
1907 	return 0;
1908 }
1909 
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)1910 static int pmbus_add_fan_attributes(struct i2c_client *client,
1911 				    struct pmbus_data *data)
1912 {
1913 	const struct pmbus_driver_info *info = data->info;
1914 	int index = 1;
1915 	int page;
1916 	int ret;
1917 
1918 	for (page = 0; page < info->pages; page++) {
1919 		int f;
1920 
1921 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1922 			int regval;
1923 
1924 			if (!(info->func[page] & pmbus_fan_flags[f]))
1925 				break;
1926 
1927 			if (!pmbus_check_word_register(client, page,
1928 						       pmbus_fan_registers[f]))
1929 				break;
1930 
1931 			/*
1932 			 * Skip fan if not installed.
1933 			 * Each fan configuration register covers multiple fans,
1934 			 * so we have to do some magic.
1935 			 */
1936 			regval = _pmbus_read_byte_data(client, page,
1937 				pmbus_fan_config_registers[f]);
1938 			if (regval < 0 ||
1939 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1940 				continue;
1941 
1942 			if (pmbus_add_sensor(data, "fan", "input", index,
1943 					     page, 0xff, pmbus_fan_registers[f],
1944 					     PSC_FAN, true, true, true) == NULL)
1945 				return -ENOMEM;
1946 
1947 			/* Fan control */
1948 			if (pmbus_check_word_register(client, page,
1949 					pmbus_fan_command_registers[f])) {
1950 				ret = pmbus_add_fan_ctrl(client, data, index,
1951 							 page, f, regval);
1952 				if (ret < 0)
1953 					return ret;
1954 			}
1955 
1956 			/*
1957 			 * Each fan status register covers multiple fans,
1958 			 * so we have to do some magic.
1959 			 */
1960 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1961 			    pmbus_check_byte_register(client,
1962 					page, pmbus_fan_status_registers[f])) {
1963 				int reg;
1964 
1965 				if (f > 1)	/* fan 3, 4 */
1966 					reg = PMBUS_STATUS_FAN_34;
1967 				else
1968 					reg = PMBUS_STATUS_FAN_12;
1969 				ret = pmbus_add_boolean(data, "fan",
1970 					"alarm", index, NULL, NULL, page, reg,
1971 					PB_FAN_FAN1_WARNING >> (f & 1));
1972 				if (ret)
1973 					return ret;
1974 				ret = pmbus_add_boolean(data, "fan",
1975 					"fault", index, NULL, NULL, page, reg,
1976 					PB_FAN_FAN1_FAULT >> (f & 1));
1977 				if (ret)
1978 					return ret;
1979 			}
1980 			index++;
1981 		}
1982 	}
1983 	return 0;
1984 }
1985 
1986 struct pmbus_samples_attr {
1987 	int reg;
1988 	char *name;
1989 };
1990 
1991 struct pmbus_samples_reg {
1992 	int page;
1993 	struct pmbus_samples_attr *attr;
1994 	struct device_attribute dev_attr;
1995 };
1996 
1997 static struct pmbus_samples_attr pmbus_samples_registers[] = {
1998 	{
1999 		.reg = PMBUS_VIRT_SAMPLES,
2000 		.name = "samples",
2001 	}, {
2002 		.reg = PMBUS_VIRT_IN_SAMPLES,
2003 		.name = "in_samples",
2004 	}, {
2005 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2006 		.name = "curr_samples",
2007 	}, {
2008 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2009 		.name = "power_samples",
2010 	}, {
2011 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2012 		.name = "temp_samples",
2013 	}
2014 };
2015 
2016 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2017 
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2018 static ssize_t pmbus_show_samples(struct device *dev,
2019 				  struct device_attribute *devattr, char *buf)
2020 {
2021 	int val;
2022 	struct i2c_client *client = to_i2c_client(dev->parent);
2023 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2024 	struct pmbus_data *data = i2c_get_clientdata(client);
2025 
2026 	mutex_lock(&data->update_lock);
2027 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2028 	mutex_unlock(&data->update_lock);
2029 	if (val < 0)
2030 		return val;
2031 
2032 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
2033 }
2034 
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2035 static ssize_t pmbus_set_samples(struct device *dev,
2036 				 struct device_attribute *devattr,
2037 				 const char *buf, size_t count)
2038 {
2039 	int ret;
2040 	long val;
2041 	struct i2c_client *client = to_i2c_client(dev->parent);
2042 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2043 	struct pmbus_data *data = i2c_get_clientdata(client);
2044 
2045 	if (kstrtol(buf, 0, &val) < 0)
2046 		return -EINVAL;
2047 
2048 	mutex_lock(&data->update_lock);
2049 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2050 	mutex_unlock(&data->update_lock);
2051 
2052 	return ret ? : count;
2053 }
2054 
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2055 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2056 				  struct pmbus_samples_attr *attr)
2057 {
2058 	struct pmbus_samples_reg *reg;
2059 
2060 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2061 	if (!reg)
2062 		return -ENOMEM;
2063 
2064 	reg->attr = attr;
2065 	reg->page = page;
2066 
2067 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2068 			    pmbus_show_samples, pmbus_set_samples);
2069 
2070 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2071 }
2072 
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2073 static int pmbus_add_samples_attributes(struct i2c_client *client,
2074 					struct pmbus_data *data)
2075 {
2076 	const struct pmbus_driver_info *info = data->info;
2077 	int s;
2078 
2079 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2080 		return 0;
2081 
2082 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2083 		struct pmbus_samples_attr *attr;
2084 		int ret;
2085 
2086 		attr = &pmbus_samples_registers[s];
2087 		if (!pmbus_check_word_register(client, 0, attr->reg))
2088 			continue;
2089 
2090 		ret = pmbus_add_samples_attr(data, 0, attr);
2091 		if (ret)
2092 			return ret;
2093 	}
2094 
2095 	return 0;
2096 }
2097 
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2098 static int pmbus_find_attributes(struct i2c_client *client,
2099 				 struct pmbus_data *data)
2100 {
2101 	int ret;
2102 
2103 	/* Voltage sensors */
2104 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2105 				     ARRAY_SIZE(voltage_attributes));
2106 	if (ret)
2107 		return ret;
2108 
2109 	/* Current sensors */
2110 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2111 				     ARRAY_SIZE(current_attributes));
2112 	if (ret)
2113 		return ret;
2114 
2115 	/* Power sensors */
2116 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2117 				     ARRAY_SIZE(power_attributes));
2118 	if (ret)
2119 		return ret;
2120 
2121 	/* Temperature sensors */
2122 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2123 				     ARRAY_SIZE(temp_attributes));
2124 	if (ret)
2125 		return ret;
2126 
2127 	/* Fans */
2128 	ret = pmbus_add_fan_attributes(client, data);
2129 	if (ret)
2130 		return ret;
2131 
2132 	ret = pmbus_add_samples_attributes(client, data);
2133 	return ret;
2134 }
2135 
2136 /*
2137  * Identify chip parameters.
2138  * This function is called for all chips.
2139  */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2140 static int pmbus_identify_common(struct i2c_client *client,
2141 				 struct pmbus_data *data, int page)
2142 {
2143 	int vout_mode = -1;
2144 
2145 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2146 		vout_mode = _pmbus_read_byte_data(client, page,
2147 						  PMBUS_VOUT_MODE);
2148 	if (vout_mode >= 0 && vout_mode != 0xff) {
2149 		/*
2150 		 * Not all chips support the VOUT_MODE command,
2151 		 * so a failure to read it is not an error.
2152 		 */
2153 		switch (vout_mode >> 5) {
2154 		case 0:	/* linear mode      */
2155 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2156 				return -ENODEV;
2157 
2158 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2159 			break;
2160 		case 1: /* VID mode         */
2161 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2162 				return -ENODEV;
2163 			break;
2164 		case 2:	/* direct mode      */
2165 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2166 				return -ENODEV;
2167 			break;
2168 		default:
2169 			return -ENODEV;
2170 		}
2171 	}
2172 
2173 	pmbus_clear_fault_page(client, page);
2174 	return 0;
2175 }
2176 
pmbus_read_status_byte(struct i2c_client * client,int page)2177 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2178 {
2179 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2180 }
2181 
pmbus_read_status_word(struct i2c_client * client,int page)2182 static int pmbus_read_status_word(struct i2c_client *client, int page)
2183 {
2184 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2185 }
2186 
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2187 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2188 			     struct pmbus_driver_info *info)
2189 {
2190 	struct device *dev = &client->dev;
2191 	int page, ret;
2192 
2193 	/*
2194 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2195 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2196 	 * Bail out if both registers are not supported.
2197 	 */
2198 	data->read_status = pmbus_read_status_word;
2199 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2200 	if (ret < 0 || ret == 0xffff) {
2201 		data->read_status = pmbus_read_status_byte;
2202 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2203 		if (ret < 0 || ret == 0xff) {
2204 			dev_err(dev, "PMBus status register not found\n");
2205 			return -ENODEV;
2206 		}
2207 	} else {
2208 		data->has_status_word = true;
2209 	}
2210 
2211 	/* Enable PEC if the controller supports it */
2212 	ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2213 	if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK))
2214 		client->flags |= I2C_CLIENT_PEC;
2215 
2216 	/*
2217 	 * Check if the chip is write protected. If it is, we can not clear
2218 	 * faults, and we should not try it. Also, in that case, writes into
2219 	 * limit registers need to be disabled.
2220 	 */
2221 	ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2222 	if (ret > 0 && (ret & PB_WP_ANY))
2223 		data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2224 
2225 	if (data->info->pages)
2226 		pmbus_clear_faults(client);
2227 	else
2228 		pmbus_clear_fault_page(client, -1);
2229 
2230 	if (info->identify) {
2231 		ret = (*info->identify)(client, info);
2232 		if (ret < 0) {
2233 			dev_err(dev, "Chip identification failed\n");
2234 			return ret;
2235 		}
2236 	}
2237 
2238 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2239 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2240 		return -ENODEV;
2241 	}
2242 
2243 	for (page = 0; page < info->pages; page++) {
2244 		ret = pmbus_identify_common(client, data, page);
2245 		if (ret < 0) {
2246 			dev_err(dev, "Failed to identify chip capabilities\n");
2247 			return ret;
2248 		}
2249 	}
2250 	return 0;
2251 }
2252 
2253 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2254 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2255 {
2256 	struct device *dev = rdev_get_dev(rdev);
2257 	struct i2c_client *client = to_i2c_client(dev->parent);
2258 	struct pmbus_data *data = i2c_get_clientdata(client);
2259 	u8 page = rdev_get_id(rdev);
2260 	int ret;
2261 
2262 	mutex_lock(&data->update_lock);
2263 	ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2264 	mutex_unlock(&data->update_lock);
2265 
2266 	if (ret < 0)
2267 		return ret;
2268 
2269 	return !!(ret & PB_OPERATION_CONTROL_ON);
2270 }
2271 
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2272 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2273 {
2274 	struct device *dev = rdev_get_dev(rdev);
2275 	struct i2c_client *client = to_i2c_client(dev->parent);
2276 	struct pmbus_data *data = i2c_get_clientdata(client);
2277 	u8 page = rdev_get_id(rdev);
2278 	int ret;
2279 
2280 	mutex_lock(&data->update_lock);
2281 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2282 				     PB_OPERATION_CONTROL_ON,
2283 				     enable ? PB_OPERATION_CONTROL_ON : 0);
2284 	mutex_unlock(&data->update_lock);
2285 
2286 	return ret;
2287 }
2288 
pmbus_regulator_enable(struct regulator_dev * rdev)2289 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2290 {
2291 	return _pmbus_regulator_on_off(rdev, 1);
2292 }
2293 
pmbus_regulator_disable(struct regulator_dev * rdev)2294 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2295 {
2296 	return _pmbus_regulator_on_off(rdev, 0);
2297 }
2298 
2299 const struct regulator_ops pmbus_regulator_ops = {
2300 	.enable = pmbus_regulator_enable,
2301 	.disable = pmbus_regulator_disable,
2302 	.is_enabled = pmbus_regulator_is_enabled,
2303 };
2304 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
2305 
pmbus_regulator_register(struct pmbus_data * data)2306 static int pmbus_regulator_register(struct pmbus_data *data)
2307 {
2308 	struct device *dev = data->dev;
2309 	const struct pmbus_driver_info *info = data->info;
2310 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2311 	struct regulator_dev *rdev;
2312 	int i;
2313 
2314 	for (i = 0; i < info->num_regulators; i++) {
2315 		struct regulator_config config = { };
2316 
2317 		config.dev = dev;
2318 		config.driver_data = data;
2319 
2320 		if (pdata && pdata->reg_init_data)
2321 			config.init_data = &pdata->reg_init_data[i];
2322 
2323 		rdev = devm_regulator_register(dev, &info->reg_desc[i],
2324 					       &config);
2325 		if (IS_ERR(rdev)) {
2326 			dev_err(dev, "Failed to register %s regulator\n",
2327 				info->reg_desc[i].name);
2328 			return PTR_ERR(rdev);
2329 		}
2330 	}
2331 
2332 	return 0;
2333 }
2334 #else
pmbus_regulator_register(struct pmbus_data * data)2335 static int pmbus_regulator_register(struct pmbus_data *data)
2336 {
2337 	return 0;
2338 }
2339 #endif
2340 
2341 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
2342 
2343 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)2344 static int pmbus_debugfs_get(void *data, u64 *val)
2345 {
2346 	int rc;
2347 	struct pmbus_debugfs_entry *entry = data;
2348 
2349 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2350 	if (rc < 0)
2351 		return rc;
2352 
2353 	*val = rc;
2354 
2355 	return 0;
2356 }
2357 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2358 			 "0x%02llx\n");
2359 
pmbus_debugfs_get_status(void * data,u64 * val)2360 static int pmbus_debugfs_get_status(void *data, u64 *val)
2361 {
2362 	int rc;
2363 	struct pmbus_debugfs_entry *entry = data;
2364 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2365 
2366 	rc = pdata->read_status(entry->client, entry->page);
2367 	if (rc < 0)
2368 		return rc;
2369 
2370 	*val = rc;
2371 
2372 	return 0;
2373 }
2374 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2375 			 NULL, "0x%04llx\n");
2376 
pmbus_debugfs_get_pec(void * data,u64 * val)2377 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2378 {
2379 	struct i2c_client *client = data;
2380 
2381 	*val = !!(client->flags & I2C_CLIENT_PEC);
2382 
2383 	return 0;
2384 }
2385 
pmbus_debugfs_set_pec(void * data,u64 val)2386 static int pmbus_debugfs_set_pec(void *data, u64 val)
2387 {
2388 	int rc;
2389 	struct i2c_client *client = data;
2390 
2391 	if (!val) {
2392 		client->flags &= ~I2C_CLIENT_PEC;
2393 		return 0;
2394 	}
2395 
2396 	if (val != 1)
2397 		return -EINVAL;
2398 
2399 	rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2400 	if (rc < 0)
2401 		return rc;
2402 
2403 	if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2404 		return -EOPNOTSUPP;
2405 
2406 	client->flags |= I2C_CLIENT_PEC;
2407 
2408 	return 0;
2409 }
2410 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2411 			 pmbus_debugfs_set_pec, "%llu\n");
2412 
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2413 static int pmbus_init_debugfs(struct i2c_client *client,
2414 			      struct pmbus_data *data)
2415 {
2416 	int i, idx = 0;
2417 	char name[PMBUS_NAME_SIZE];
2418 	struct pmbus_debugfs_entry *entries;
2419 
2420 	if (!pmbus_debugfs_dir)
2421 		return -ENODEV;
2422 
2423 	/*
2424 	 * Create the debugfs directory for this device. Use the hwmon device
2425 	 * name to avoid conflicts (hwmon numbers are globally unique).
2426 	 */
2427 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2428 					   pmbus_debugfs_dir);
2429 	if (IS_ERR_OR_NULL(data->debugfs)) {
2430 		data->debugfs = NULL;
2431 		return -ENODEV;
2432 	}
2433 
2434 	/* Allocate the max possible entries we need. */
2435 	entries = devm_kcalloc(data->dev,
2436 			       data->info->pages * 10, sizeof(*entries),
2437 			       GFP_KERNEL);
2438 	if (!entries)
2439 		return -ENOMEM;
2440 
2441 	debugfs_create_file("pec", 0664, data->debugfs, client,
2442 			    &pmbus_debugfs_ops_pec);
2443 
2444 	for (i = 0; i < data->info->pages; ++i) {
2445 		/* Check accessibility of status register if it's not page 0 */
2446 		if (!i || pmbus_check_status_register(client, i)) {
2447 			/* No need to set reg as we have special read op. */
2448 			entries[idx].client = client;
2449 			entries[idx].page = i;
2450 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2451 			debugfs_create_file(name, 0444, data->debugfs,
2452 					    &entries[idx++],
2453 					    &pmbus_debugfs_ops_status);
2454 		}
2455 
2456 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2457 			entries[idx].client = client;
2458 			entries[idx].page = i;
2459 			entries[idx].reg = PMBUS_STATUS_VOUT;
2460 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2461 			debugfs_create_file(name, 0444, data->debugfs,
2462 					    &entries[idx++],
2463 					    &pmbus_debugfs_ops);
2464 		}
2465 
2466 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2467 			entries[idx].client = client;
2468 			entries[idx].page = i;
2469 			entries[idx].reg = PMBUS_STATUS_IOUT;
2470 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2471 			debugfs_create_file(name, 0444, data->debugfs,
2472 					    &entries[idx++],
2473 					    &pmbus_debugfs_ops);
2474 		}
2475 
2476 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2477 			entries[idx].client = client;
2478 			entries[idx].page = i;
2479 			entries[idx].reg = PMBUS_STATUS_INPUT;
2480 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2481 			debugfs_create_file(name, 0444, data->debugfs,
2482 					    &entries[idx++],
2483 					    &pmbus_debugfs_ops);
2484 		}
2485 
2486 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2487 			entries[idx].client = client;
2488 			entries[idx].page = i;
2489 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2490 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2491 			debugfs_create_file(name, 0444, data->debugfs,
2492 					    &entries[idx++],
2493 					    &pmbus_debugfs_ops);
2494 		}
2495 
2496 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2497 			entries[idx].client = client;
2498 			entries[idx].page = i;
2499 			entries[idx].reg = PMBUS_STATUS_CML;
2500 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2501 			debugfs_create_file(name, 0444, data->debugfs,
2502 					    &entries[idx++],
2503 					    &pmbus_debugfs_ops);
2504 		}
2505 
2506 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2507 			entries[idx].client = client;
2508 			entries[idx].page = i;
2509 			entries[idx].reg = PMBUS_STATUS_OTHER;
2510 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2511 			debugfs_create_file(name, 0444, data->debugfs,
2512 					    &entries[idx++],
2513 					    &pmbus_debugfs_ops);
2514 		}
2515 
2516 		if (pmbus_check_byte_register(client, i,
2517 					      PMBUS_STATUS_MFR_SPECIFIC)) {
2518 			entries[idx].client = client;
2519 			entries[idx].page = i;
2520 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2521 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2522 			debugfs_create_file(name, 0444, data->debugfs,
2523 					    &entries[idx++],
2524 					    &pmbus_debugfs_ops);
2525 		}
2526 
2527 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2528 			entries[idx].client = client;
2529 			entries[idx].page = i;
2530 			entries[idx].reg = PMBUS_STATUS_FAN_12;
2531 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2532 			debugfs_create_file(name, 0444, data->debugfs,
2533 					    &entries[idx++],
2534 					    &pmbus_debugfs_ops);
2535 		}
2536 
2537 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2538 			entries[idx].client = client;
2539 			entries[idx].page = i;
2540 			entries[idx].reg = PMBUS_STATUS_FAN_34;
2541 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2542 			debugfs_create_file(name, 0444, data->debugfs,
2543 					    &entries[idx++],
2544 					    &pmbus_debugfs_ops);
2545 		}
2546 	}
2547 
2548 	return 0;
2549 }
2550 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2551 static int pmbus_init_debugfs(struct i2c_client *client,
2552 			      struct pmbus_data *data)
2553 {
2554 	return 0;
2555 }
2556 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
2557 
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)2558 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2559 {
2560 	struct device *dev = &client->dev;
2561 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2562 	struct pmbus_data *data;
2563 	size_t groups_num = 0;
2564 	int ret;
2565 
2566 	if (!info)
2567 		return -ENODEV;
2568 
2569 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2570 				     | I2C_FUNC_SMBUS_BYTE_DATA
2571 				     | I2C_FUNC_SMBUS_WORD_DATA))
2572 		return -ENODEV;
2573 
2574 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2575 	if (!data)
2576 		return -ENOMEM;
2577 
2578 	if (info->groups)
2579 		while (info->groups[groups_num])
2580 			groups_num++;
2581 
2582 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
2583 				    GFP_KERNEL);
2584 	if (!data->groups)
2585 		return -ENOMEM;
2586 
2587 	i2c_set_clientdata(client, data);
2588 	mutex_init(&data->update_lock);
2589 	data->dev = dev;
2590 
2591 	if (pdata)
2592 		data->flags = pdata->flags;
2593 	data->info = info;
2594 	data->currpage = -1;
2595 	data->currphase = -1;
2596 
2597 	ret = pmbus_init_common(client, data, info);
2598 	if (ret < 0)
2599 		return ret;
2600 
2601 	ret = pmbus_find_attributes(client, data);
2602 	if (ret)
2603 		return ret;
2604 
2605 	/*
2606 	 * If there are no attributes, something is wrong.
2607 	 * Bail out instead of trying to register nothing.
2608 	 */
2609 	if (!data->num_attributes) {
2610 		dev_err(dev, "No attributes found\n");
2611 		return -ENODEV;
2612 	}
2613 
2614 	data->groups[0] = &data->group;
2615 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
2616 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
2617 					client->name, data, data->groups);
2618 	if (IS_ERR(data->hwmon_dev)) {
2619 		dev_err(dev, "Failed to register hwmon device\n");
2620 		return PTR_ERR(data->hwmon_dev);
2621 	}
2622 
2623 	ret = pmbus_regulator_register(data);
2624 	if (ret)
2625 		return ret;
2626 
2627 	ret = pmbus_init_debugfs(client, data);
2628 	if (ret)
2629 		dev_warn(dev, "Failed to register debugfs\n");
2630 
2631 	return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(pmbus_do_probe);
2634 
pmbus_do_remove(struct i2c_client * client)2635 int pmbus_do_remove(struct i2c_client *client)
2636 {
2637 	struct pmbus_data *data = i2c_get_clientdata(client);
2638 
2639 	debugfs_remove_recursive(data->debugfs);
2640 
2641 	return 0;
2642 }
2643 EXPORT_SYMBOL_GPL(pmbus_do_remove);
2644 
pmbus_get_debugfs_dir(struct i2c_client * client)2645 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2646 {
2647 	struct pmbus_data *data = i2c_get_clientdata(client);
2648 
2649 	return data->debugfs;
2650 }
2651 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir);
2652 
pmbus_core_init(void)2653 static int __init pmbus_core_init(void)
2654 {
2655 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2656 	if (IS_ERR(pmbus_debugfs_dir))
2657 		pmbus_debugfs_dir = NULL;
2658 
2659 	return 0;
2660 }
2661 
pmbus_core_exit(void)2662 static void __exit pmbus_core_exit(void)
2663 {
2664 	debugfs_remove_recursive(pmbus_debugfs_dir);
2665 }
2666 
2667 module_init(pmbus_core_init);
2668 module_exit(pmbus_core_exit);
2669 
2670 MODULE_AUTHOR("Guenter Roeck");
2671 MODULE_DESCRIPTION("PMBus core driver");
2672 MODULE_LICENSE("GPL");
2673