• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 
16 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 #endif
20 
21 /*
22  * On almost all architectures and configurations, 0 can be used as the
23  * upper ceiling to free_pgtables(): on many architectures it has the same
24  * effect as using TASK_SIZE.  However, there is one configuration which
25  * must impose a more careful limit, to avoid freeing kernel pgtables.
26  */
27 #ifndef USER_PGTABLES_CEILING
28 #define USER_PGTABLES_CEILING	0UL
29 #endif
30 
31 /*
32  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
33  *
34  * The pXx_index() functions return the index of the entry in the page
35  * table page which would control the given virtual address
36  *
37  * As these functions may be used by the same code for different levels of
38  * the page table folding, they are always available, regardless of
39  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
40  * because in such cases PTRS_PER_PxD equals 1.
41  */
42 
pte_index(unsigned long address)43 static inline unsigned long pte_index(unsigned long address)
44 {
45 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
46 }
47 #define pte_index pte_index
48 
49 #ifndef pmd_index
pmd_index(unsigned long address)50 static inline unsigned long pmd_index(unsigned long address)
51 {
52 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
53 }
54 #define pmd_index pmd_index
55 #endif
56 
57 #ifndef pud_index
pud_index(unsigned long address)58 static inline unsigned long pud_index(unsigned long address)
59 {
60 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
61 }
62 #define pud_index pud_index
63 #endif
64 
65 #ifndef pgd_index
66 /* Must be a compile-time constant, so implement it as a macro */
67 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
68 #endif
69 
70 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)71 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
72 {
73 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
74 }
75 #define pte_offset_kernel pte_offset_kernel
76 #endif
77 
78 #if defined(CONFIG_HIGHPTE)
79 #define pte_offset_map(dir, address)				\
80 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
81 	 pte_index((address)))
82 #define pte_unmap(pte) kunmap_atomic((pte))
83 #else
84 #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
85 #define pte_unmap(pte) ((void)(pte))	/* NOP */
86 #endif
87 
88 /* Find an entry in the second-level page table.. */
89 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)90 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
91 {
92 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
93 }
94 #define pmd_offset pmd_offset
95 #endif
96 
97 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)98 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
99 {
100 	return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
101 }
102 #define pud_offset pud_offset
103 #endif
104 
pgd_offset_pgd(pgd_t * pgd,unsigned long address)105 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
106 {
107 	return (pgd + pgd_index(address));
108 };
109 
110 /*
111  * a shortcut to get a pgd_t in a given mm
112  */
113 #ifndef pgd_offset
114 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
115 #endif
116 
117 /*
118  * a shortcut which implies the use of the kernel's pgd, instead
119  * of a process's
120  */
121 #ifndef pgd_offset_k
122 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
123 #endif
124 
125 /*
126  * In many cases it is known that a virtual address is mapped at PMD or PTE
127  * level, so instead of traversing all the page table levels, we can get a
128  * pointer to the PMD entry in user or kernel page table or translate a virtual
129  * address to the pointer in the PTE in the kernel page tables with simple
130  * helpers.
131  */
pmd_off(struct mm_struct * mm,unsigned long va)132 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
133 {
134 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
135 }
136 
pmd_off_k(unsigned long va)137 static inline pmd_t *pmd_off_k(unsigned long va)
138 {
139 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
140 }
141 
virt_to_kpte(unsigned long vaddr)142 static inline pte_t *virt_to_kpte(unsigned long vaddr)
143 {
144 	pmd_t *pmd = pmd_off_k(vaddr);
145 
146 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
147 }
148 
149 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
150 extern int ptep_set_access_flags(struct vm_area_struct *vma,
151 				 unsigned long address, pte_t *ptep,
152 				 pte_t entry, int dirty);
153 #endif
154 
155 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
157 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
158 				 unsigned long address, pmd_t *pmdp,
159 				 pmd_t entry, int dirty);
160 extern int pudp_set_access_flags(struct vm_area_struct *vma,
161 				 unsigned long address, pud_t *pudp,
162 				 pud_t entry, int dirty);
163 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)164 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
165 					unsigned long address, pmd_t *pmdp,
166 					pmd_t entry, int dirty)
167 {
168 	BUILD_BUG();
169 	return 0;
170 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)171 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
172 					unsigned long address, pud_t *pudp,
173 					pud_t entry, int dirty)
174 {
175 	BUILD_BUG();
176 	return 0;
177 }
178 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
179 #endif
180 
181 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)182 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
183 					    unsigned long address,
184 					    pte_t *ptep)
185 {
186 	pte_t pte = *ptep;
187 	int r = 1;
188 	if (!pte_young(pte))
189 		r = 0;
190 	else
191 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
192 	return r;
193 }
194 #endif
195 
196 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
197 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)198 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
199 					    unsigned long address,
200 					    pmd_t *pmdp)
201 {
202 	pmd_t pmd = *pmdp;
203 	int r = 1;
204 	if (!pmd_young(pmd))
205 		r = 0;
206 	else
207 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
208 	return r;
209 }
210 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)211 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
212 					    unsigned long address,
213 					    pmd_t *pmdp)
214 {
215 	BUILD_BUG();
216 	return 0;
217 }
218 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
219 #endif
220 
221 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
222 int ptep_clear_flush_young(struct vm_area_struct *vma,
223 			   unsigned long address, pte_t *ptep);
224 #endif
225 
226 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
228 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
229 				  unsigned long address, pmd_t *pmdp);
230 #else
231 /*
232  * Despite relevant to THP only, this API is called from generic rmap code
233  * under PageTransHuge(), hence needs a dummy implementation for !THP
234  */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)235 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
236 					 unsigned long address, pmd_t *pmdp)
237 {
238 	BUILD_BUG();
239 	return 0;
240 }
241 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
242 #endif
243 
244 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)245 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
246 				       unsigned long address,
247 				       pte_t *ptep)
248 {
249 	pte_t pte = *ptep;
250 	pte_clear(mm, address, ptep);
251 	return pte;
252 }
253 #endif
254 
255 #ifndef __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)256 static inline pte_t ptep_get(pte_t *ptep)
257 {
258 	return READ_ONCE(*ptep);
259 }
260 #endif
261 
262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)264 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
265 					    unsigned long address,
266 					    pmd_t *pmdp)
267 {
268 	pmd_t pmd = *pmdp;
269 	pmd_clear(pmdp);
270 	return pmd;
271 }
272 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
273 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)274 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
275 					    unsigned long address,
276 					    pud_t *pudp)
277 {
278 	pud_t pud = *pudp;
279 
280 	pud_clear(pudp);
281 	return pud;
282 }
283 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
284 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
285 
286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)288 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
289 					    unsigned long address, pmd_t *pmdp,
290 					    int full)
291 {
292 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
293 }
294 #endif
295 
296 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)297 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
298 					    unsigned long address, pud_t *pudp,
299 					    int full)
300 {
301 	return pudp_huge_get_and_clear(mm, address, pudp);
302 }
303 #endif
304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
305 
306 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)307 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
308 					    unsigned long address, pte_t *ptep,
309 					    int full)
310 {
311 	pte_t pte;
312 	pte = ptep_get_and_clear(mm, address, ptep);
313 	return pte;
314 }
315 #endif
316 
317 
318 /*
319  * If two threads concurrently fault at the same page, the thread that
320  * won the race updates the PTE and its local TLB/Cache. The other thread
321  * gives up, simply does nothing, and continues; on architectures where
322  * software can update TLB,  local TLB can be updated here to avoid next page
323  * fault. This function updates TLB only, do nothing with cache or others.
324  * It is the difference with function update_mmu_cache.
325  */
326 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)327 static inline void update_mmu_tlb(struct vm_area_struct *vma,
328 				unsigned long address, pte_t *ptep)
329 {
330 }
331 #define __HAVE_ARCH_UPDATE_MMU_TLB
332 #endif
333 
334 /*
335  * Some architectures may be able to avoid expensive synchronization
336  * primitives when modifications are made to PTE's which are already
337  * not present, or in the process of an address space destruction.
338  */
339 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)340 static inline void pte_clear_not_present_full(struct mm_struct *mm,
341 					      unsigned long address,
342 					      pte_t *ptep,
343 					      int full)
344 {
345 	pte_clear(mm, address, ptep);
346 }
347 #endif
348 
349 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
350 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
351 			      unsigned long address,
352 			      pte_t *ptep);
353 #endif
354 
355 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
356 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
357 			      unsigned long address,
358 			      pmd_t *pmdp);
359 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
360 			      unsigned long address,
361 			      pud_t *pudp);
362 #endif
363 
364 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
365 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)366 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
367 {
368 	pte_t old_pte = *ptep;
369 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
370 }
371 #endif
372 
373 /*
374  * On some architectures hardware does not set page access bit when accessing
375  * memory page, it is responsibilty of software setting this bit. It brings
376  * out extra page fault penalty to track page access bit. For optimization page
377  * access bit can be set during all page fault flow on these arches.
378  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
379  * where software maintains page access bit.
380  */
381 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)382 static inline pte_t pte_sw_mkyoung(pte_t pte)
383 {
384 	return pte;
385 }
386 #define pte_sw_mkyoung	pte_sw_mkyoung
387 #endif
388 
389 #ifndef pte_savedwrite
390 #define pte_savedwrite pte_write
391 #endif
392 
393 #ifndef pte_mk_savedwrite
394 #define pte_mk_savedwrite pte_mkwrite
395 #endif
396 
397 #ifndef pte_clear_savedwrite
398 #define pte_clear_savedwrite pte_wrprotect
399 #endif
400 
401 #ifndef pmd_savedwrite
402 #define pmd_savedwrite pmd_write
403 #endif
404 
405 #ifndef pmd_mk_savedwrite
406 #define pmd_mk_savedwrite pmd_mkwrite
407 #endif
408 
409 #ifndef pmd_clear_savedwrite
410 #define pmd_clear_savedwrite pmd_wrprotect
411 #endif
412 
413 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
414 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)415 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
416 				      unsigned long address, pmd_t *pmdp)
417 {
418 	pmd_t old_pmd = *pmdp;
419 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
420 }
421 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)422 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
423 				      unsigned long address, pmd_t *pmdp)
424 {
425 	BUILD_BUG();
426 }
427 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
428 #endif
429 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
430 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)431 static inline void pudp_set_wrprotect(struct mm_struct *mm,
432 				      unsigned long address, pud_t *pudp)
433 {
434 	pud_t old_pud = *pudp;
435 
436 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
437 }
438 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)439 static inline void pudp_set_wrprotect(struct mm_struct *mm,
440 				      unsigned long address, pud_t *pudp)
441 {
442 	BUILD_BUG();
443 }
444 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
445 #endif
446 
447 #ifndef pmdp_collapse_flush
448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
449 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
450 				 unsigned long address, pmd_t *pmdp);
451 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)452 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
453 					unsigned long address,
454 					pmd_t *pmdp)
455 {
456 	BUILD_BUG();
457 	return *pmdp;
458 }
459 #define pmdp_collapse_flush pmdp_collapse_flush
460 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
461 #endif
462 
463 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
464 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
465 				       pgtable_t pgtable);
466 #endif
467 
468 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
469 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
470 #endif
471 
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /*
474  * This is an implementation of pmdp_establish() that is only suitable for an
475  * architecture that doesn't have hardware dirty/accessed bits. In this case we
476  * can't race with CPU which sets these bits and non-atomic aproach is fine.
477  */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)478 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
479 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
480 {
481 	pmd_t old_pmd = *pmdp;
482 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
483 	return old_pmd;
484 }
485 #endif
486 
487 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
488 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
489 			    pmd_t *pmdp);
490 #endif
491 
492 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)493 static inline int pte_same(pte_t pte_a, pte_t pte_b)
494 {
495 	return pte_val(pte_a) == pte_val(pte_b);
496 }
497 #endif
498 
499 #ifndef __HAVE_ARCH_PTE_UNUSED
500 /*
501  * Some architectures provide facilities to virtualization guests
502  * so that they can flag allocated pages as unused. This allows the
503  * host to transparently reclaim unused pages. This function returns
504  * whether the pte's page is unused.
505  */
pte_unused(pte_t pte)506 static inline int pte_unused(pte_t pte)
507 {
508 	return 0;
509 }
510 #endif
511 
512 #ifndef pte_access_permitted
513 #define pte_access_permitted(pte, write) \
514 	(pte_present(pte) && (!(write) || pte_write(pte)))
515 #endif
516 
517 #ifndef pmd_access_permitted
518 #define pmd_access_permitted(pmd, write) \
519 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
520 #endif
521 
522 #ifndef pud_access_permitted
523 #define pud_access_permitted(pud, write) \
524 	(pud_present(pud) && (!(write) || pud_write(pud)))
525 #endif
526 
527 #ifndef p4d_access_permitted
528 #define p4d_access_permitted(p4d, write) \
529 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
530 #endif
531 
532 #ifndef pgd_access_permitted
533 #define pgd_access_permitted(pgd, write) \
534 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
535 #endif
536 
537 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)538 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
539 {
540 	return pmd_val(pmd_a) == pmd_val(pmd_b);
541 }
542 
pud_same(pud_t pud_a,pud_t pud_b)543 static inline int pud_same(pud_t pud_a, pud_t pud_b)
544 {
545 	return pud_val(pud_a) == pud_val(pud_b);
546 }
547 #endif
548 
549 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)550 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
551 {
552 	return p4d_val(p4d_a) == p4d_val(p4d_b);
553 }
554 #endif
555 
556 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)557 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
558 {
559 	return pgd_val(pgd_a) == pgd_val(pgd_b);
560 }
561 #endif
562 
563 /*
564  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
565  * TLB flush will be required as a result of the "set". For example, use
566  * in scenarios where it is known ahead of time that the routine is
567  * setting non-present entries, or re-setting an existing entry to the
568  * same value. Otherwise, use the typical "set" helpers and flush the
569  * TLB.
570  */
571 #define set_pte_safe(ptep, pte) \
572 ({ \
573 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
574 	set_pte(ptep, pte); \
575 })
576 
577 #define set_pmd_safe(pmdp, pmd) \
578 ({ \
579 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
580 	set_pmd(pmdp, pmd); \
581 })
582 
583 #define set_pud_safe(pudp, pud) \
584 ({ \
585 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
586 	set_pud(pudp, pud); \
587 })
588 
589 #define set_p4d_safe(p4dp, p4d) \
590 ({ \
591 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
592 	set_p4d(p4dp, p4d); \
593 })
594 
595 #define set_pgd_safe(pgdp, pgd) \
596 ({ \
597 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
598 	set_pgd(pgdp, pgd); \
599 })
600 
601 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
602 /*
603  * Some architectures support metadata associated with a page. When a
604  * page is being swapped out, this metadata must be saved so it can be
605  * restored when the page is swapped back in. SPARC M7 and newer
606  * processors support an ADI (Application Data Integrity) tag for the
607  * page as metadata for the page. arch_do_swap_page() can restore this
608  * metadata when a page is swapped back in.
609  */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)610 static inline void arch_do_swap_page(struct mm_struct *mm,
611 				     struct vm_area_struct *vma,
612 				     unsigned long addr,
613 				     pte_t pte, pte_t oldpte)
614 {
615 
616 }
617 #endif
618 
619 #ifndef __HAVE_ARCH_UNMAP_ONE
620 /*
621  * Some architectures support metadata associated with a page. When a
622  * page is being swapped out, this metadata must be saved so it can be
623  * restored when the page is swapped back in. SPARC M7 and newer
624  * processors support an ADI (Application Data Integrity) tag for the
625  * page as metadata for the page. arch_unmap_one() can save this
626  * metadata on a swap-out of a page.
627  */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)628 static inline int arch_unmap_one(struct mm_struct *mm,
629 				  struct vm_area_struct *vma,
630 				  unsigned long addr,
631 				  pte_t orig_pte)
632 {
633 	return 0;
634 }
635 #endif
636 
637 /*
638  * Allow architectures to preserve additional metadata associated with
639  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
640  * prototypes must be defined in the arch-specific asm/pgtable.h file.
641  */
642 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)643 static inline int arch_prepare_to_swap(struct page *page)
644 {
645 	return 0;
646 }
647 #endif
648 
649 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)650 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
651 {
652 }
653 
arch_swap_invalidate_area(int type)654 static inline void arch_swap_invalidate_area(int type)
655 {
656 }
657 #endif
658 
659 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct page * page)660 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
661 {
662 }
663 #endif
664 
665 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
666 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
667 #endif
668 
669 #ifndef __HAVE_ARCH_MOVE_PTE
670 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
671 #endif
672 
673 #ifndef pte_accessible
674 # define pte_accessible(mm, pte)	((void)(pte), 1)
675 #endif
676 
677 #ifndef flush_tlb_fix_spurious_fault
678 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
679 #endif
680 
681 /*
682  * When walking page tables, get the address of the next boundary,
683  * or the end address of the range if that comes earlier.  Although no
684  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
685  */
686 
687 #define pgd_addr_end(addr, end)						\
688 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
689 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
690 })
691 
692 #ifndef p4d_addr_end
693 #define p4d_addr_end(addr, end)						\
694 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
695 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
696 })
697 #endif
698 
699 #ifndef pud_addr_end
700 #define pud_addr_end(addr, end)						\
701 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
702 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
703 })
704 #endif
705 
706 #ifndef pmd_addr_end
707 #define pmd_addr_end(addr, end)						\
708 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
709 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
710 })
711 #endif
712 
713 /*
714  * When walking page tables, we usually want to skip any p?d_none entries;
715  * and any p?d_bad entries - reporting the error before resetting to none.
716  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
717  */
718 void pgd_clear_bad(pgd_t *);
719 
720 #ifndef __PAGETABLE_P4D_FOLDED
721 void p4d_clear_bad(p4d_t *);
722 #else
723 #define p4d_clear_bad(p4d)        do { } while (0)
724 #endif
725 
726 #ifndef __PAGETABLE_PUD_FOLDED
727 void pud_clear_bad(pud_t *);
728 #else
729 #define pud_clear_bad(p4d)        do { } while (0)
730 #endif
731 
732 void pmd_clear_bad(pmd_t *);
733 
pgd_none_or_clear_bad(pgd_t * pgd)734 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
735 {
736 	if (pgd_none(*pgd))
737 		return 1;
738 	if (unlikely(pgd_bad(*pgd))) {
739 		pgd_clear_bad(pgd);
740 		return 1;
741 	}
742 	return 0;
743 }
744 
p4d_none_or_clear_bad(p4d_t * p4d)745 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
746 {
747 	if (p4d_none(*p4d))
748 		return 1;
749 	if (unlikely(p4d_bad(*p4d))) {
750 		p4d_clear_bad(p4d);
751 		return 1;
752 	}
753 	return 0;
754 }
755 
pud_none_or_clear_bad(pud_t * pud)756 static inline int pud_none_or_clear_bad(pud_t *pud)
757 {
758 	if (pud_none(*pud))
759 		return 1;
760 	if (unlikely(pud_bad(*pud))) {
761 		pud_clear_bad(pud);
762 		return 1;
763 	}
764 	return 0;
765 }
766 
pmd_none_or_clear_bad(pmd_t * pmd)767 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
768 {
769 	if (pmd_none(*pmd))
770 		return 1;
771 	if (unlikely(pmd_bad(*pmd))) {
772 		pmd_clear_bad(pmd);
773 		return 1;
774 	}
775 	return 0;
776 }
777 
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)778 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
779 					     unsigned long addr,
780 					     pte_t *ptep)
781 {
782 	/*
783 	 * Get the current pte state, but zero it out to make it
784 	 * non-present, preventing the hardware from asynchronously
785 	 * updating it.
786 	 */
787 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
788 }
789 
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)790 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
791 					     unsigned long addr,
792 					     pte_t *ptep, pte_t pte)
793 {
794 	/*
795 	 * The pte is non-present, so there's no hardware state to
796 	 * preserve.
797 	 */
798 	set_pte_at(vma->vm_mm, addr, ptep, pte);
799 }
800 
801 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
802 /*
803  * Start a pte protection read-modify-write transaction, which
804  * protects against asynchronous hardware modifications to the pte.
805  * The intention is not to prevent the hardware from making pte
806  * updates, but to prevent any updates it may make from being lost.
807  *
808  * This does not protect against other software modifications of the
809  * pte; the appropriate pte lock must be held over the transation.
810  *
811  * Note that this interface is intended to be batchable, meaning that
812  * ptep_modify_prot_commit may not actually update the pte, but merely
813  * queue the update to be done at some later time.  The update must be
814  * actually committed before the pte lock is released, however.
815  */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)816 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
817 					   unsigned long addr,
818 					   pte_t *ptep)
819 {
820 	return __ptep_modify_prot_start(vma, addr, ptep);
821 }
822 
823 /*
824  * Commit an update to a pte, leaving any hardware-controlled bits in
825  * the PTE unmodified.
826  */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)827 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
828 					   unsigned long addr,
829 					   pte_t *ptep, pte_t old_pte, pte_t pte)
830 {
831 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
832 }
833 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
834 #endif /* CONFIG_MMU */
835 
836 /*
837  * No-op macros that just return the current protection value. Defined here
838  * because these macros can be used even if CONFIG_MMU is not defined.
839  */
840 
841 #ifndef pgprot_nx
842 #define pgprot_nx(prot)	(prot)
843 #endif
844 
845 #ifndef pgprot_noncached
846 #define pgprot_noncached(prot)	(prot)
847 #endif
848 
849 #ifndef pgprot_writecombine
850 #define pgprot_writecombine pgprot_noncached
851 #endif
852 
853 #ifndef pgprot_writethrough
854 #define pgprot_writethrough pgprot_noncached
855 #endif
856 
857 #ifndef pgprot_device
858 #define pgprot_device pgprot_noncached
859 #endif
860 
861 #ifndef pgprot_mhp
862 #define pgprot_mhp(prot)	(prot)
863 #endif
864 
865 #ifdef CONFIG_MMU
866 #ifndef pgprot_modify
867 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)868 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
869 {
870 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
871 		newprot = pgprot_noncached(newprot);
872 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
873 		newprot = pgprot_writecombine(newprot);
874 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
875 		newprot = pgprot_device(newprot);
876 	return newprot;
877 }
878 #endif
879 #endif /* CONFIG_MMU */
880 
881 #ifndef pgprot_encrypted
882 #define pgprot_encrypted(prot)	(prot)
883 #endif
884 
885 #ifndef pgprot_decrypted
886 #define pgprot_decrypted(prot)	(prot)
887 #endif
888 
889 /*
890  * A facility to provide lazy MMU batching.  This allows PTE updates and
891  * page invalidations to be delayed until a call to leave lazy MMU mode
892  * is issued.  Some architectures may benefit from doing this, and it is
893  * beneficial for both shadow and direct mode hypervisors, which may batch
894  * the PTE updates which happen during this window.  Note that using this
895  * interface requires that read hazards be removed from the code.  A read
896  * hazard could result in the direct mode hypervisor case, since the actual
897  * write to the page tables may not yet have taken place, so reads though
898  * a raw PTE pointer after it has been modified are not guaranteed to be
899  * up to date.  This mode can only be entered and left under the protection of
900  * the page table locks for all page tables which may be modified.  In the UP
901  * case, this is required so that preemption is disabled, and in the SMP case,
902  * it must synchronize the delayed page table writes properly on other CPUs.
903  */
904 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
905 #define arch_enter_lazy_mmu_mode()	do {} while (0)
906 #define arch_leave_lazy_mmu_mode()	do {} while (0)
907 #define arch_flush_lazy_mmu_mode()	do {} while (0)
908 #endif
909 
910 /*
911  * A facility to provide batching of the reload of page tables and
912  * other process state with the actual context switch code for
913  * paravirtualized guests.  By convention, only one of the batched
914  * update (lazy) modes (CPU, MMU) should be active at any given time,
915  * entry should never be nested, and entry and exits should always be
916  * paired.  This is for sanity of maintaining and reasoning about the
917  * kernel code.  In this case, the exit (end of the context switch) is
918  * in architecture-specific code, and so doesn't need a generic
919  * definition.
920  */
921 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
922 #define arch_start_context_switch(prev)	do {} while (0)
923 #endif
924 
925 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
926 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)927 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
928 {
929 	return pmd;
930 }
931 
pmd_swp_soft_dirty(pmd_t pmd)932 static inline int pmd_swp_soft_dirty(pmd_t pmd)
933 {
934 	return 0;
935 }
936 
pmd_swp_clear_soft_dirty(pmd_t pmd)937 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
938 {
939 	return pmd;
940 }
941 #endif
942 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)943 static inline int pte_soft_dirty(pte_t pte)
944 {
945 	return 0;
946 }
947 
pmd_soft_dirty(pmd_t pmd)948 static inline int pmd_soft_dirty(pmd_t pmd)
949 {
950 	return 0;
951 }
952 
pte_mksoft_dirty(pte_t pte)953 static inline pte_t pte_mksoft_dirty(pte_t pte)
954 {
955 	return pte;
956 }
957 
pmd_mksoft_dirty(pmd_t pmd)958 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
959 {
960 	return pmd;
961 }
962 
pte_clear_soft_dirty(pte_t pte)963 static inline pte_t pte_clear_soft_dirty(pte_t pte)
964 {
965 	return pte;
966 }
967 
pmd_clear_soft_dirty(pmd_t pmd)968 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
969 {
970 	return pmd;
971 }
972 
pte_swp_mksoft_dirty(pte_t pte)973 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
974 {
975 	return pte;
976 }
977 
pte_swp_soft_dirty(pte_t pte)978 static inline int pte_swp_soft_dirty(pte_t pte)
979 {
980 	return 0;
981 }
982 
pte_swp_clear_soft_dirty(pte_t pte)983 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
984 {
985 	return pte;
986 }
987 
pmd_swp_mksoft_dirty(pmd_t pmd)988 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
989 {
990 	return pmd;
991 }
992 
pmd_swp_soft_dirty(pmd_t pmd)993 static inline int pmd_swp_soft_dirty(pmd_t pmd)
994 {
995 	return 0;
996 }
997 
pmd_swp_clear_soft_dirty(pmd_t pmd)998 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
999 {
1000 	return pmd;
1001 }
1002 #endif
1003 
1004 #ifndef __HAVE_PFNMAP_TRACKING
1005 /*
1006  * Interfaces that can be used by architecture code to keep track of
1007  * memory type of pfn mappings specified by the remap_pfn_range,
1008  * vmf_insert_pfn.
1009  */
1010 
1011 /*
1012  * track_pfn_remap is called when a _new_ pfn mapping is being established
1013  * by remap_pfn_range() for physical range indicated by pfn and size.
1014  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1015 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1016 				  unsigned long pfn, unsigned long addr,
1017 				  unsigned long size)
1018 {
1019 	return 0;
1020 }
1021 
1022 /*
1023  * track_pfn_insert is called when a _new_ single pfn is established
1024  * by vmf_insert_pfn().
1025  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1026 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1027 				    pfn_t pfn)
1028 {
1029 }
1030 
1031 /*
1032  * track_pfn_copy is called when vma that is covering the pfnmap gets
1033  * copied through copy_page_range().
1034  */
track_pfn_copy(struct vm_area_struct * vma)1035 static inline int track_pfn_copy(struct vm_area_struct *vma)
1036 {
1037 	return 0;
1038 }
1039 
1040 /*
1041  * untrack_pfn is called while unmapping a pfnmap for a region.
1042  * untrack can be called for a specific region indicated by pfn and size or
1043  * can be for the entire vma (in which case pfn, size are zero).
1044  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1045 static inline void untrack_pfn(struct vm_area_struct *vma,
1046 			       unsigned long pfn, unsigned long size)
1047 {
1048 }
1049 
1050 /*
1051  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1052  */
untrack_pfn_moved(struct vm_area_struct * vma)1053 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1054 {
1055 }
1056 #else
1057 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1058 			   unsigned long pfn, unsigned long addr,
1059 			   unsigned long size);
1060 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1061 			     pfn_t pfn);
1062 extern int track_pfn_copy(struct vm_area_struct *vma);
1063 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1064 			unsigned long size);
1065 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1066 #endif
1067 
1068 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1069 static inline int is_zero_pfn(unsigned long pfn)
1070 {
1071 	extern unsigned long zero_pfn;
1072 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1073 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1074 }
1075 
1076 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1077 
1078 #else
is_zero_pfn(unsigned long pfn)1079 static inline int is_zero_pfn(unsigned long pfn)
1080 {
1081 	extern unsigned long zero_pfn;
1082 	return pfn == zero_pfn;
1083 }
1084 
my_zero_pfn(unsigned long addr)1085 static inline unsigned long my_zero_pfn(unsigned long addr)
1086 {
1087 	extern unsigned long zero_pfn;
1088 	return zero_pfn;
1089 }
1090 #endif
1091 
1092 #ifdef CONFIG_MMU
1093 
1094 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1095 static inline int pmd_trans_huge(pmd_t pmd)
1096 {
1097 	return 0;
1098 }
1099 #ifndef pmd_write
pmd_write(pmd_t pmd)1100 static inline int pmd_write(pmd_t pmd)
1101 {
1102 	BUG();
1103 	return 0;
1104 }
1105 #endif /* pmd_write */
1106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1107 
1108 #ifndef pud_write
pud_write(pud_t pud)1109 static inline int pud_write(pud_t pud)
1110 {
1111 	BUG();
1112 	return 0;
1113 }
1114 #endif /* pud_write */
1115 
1116 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1117 static inline int pmd_devmap(pmd_t pmd)
1118 {
1119 	return 0;
1120 }
pud_devmap(pud_t pud)1121 static inline int pud_devmap(pud_t pud)
1122 {
1123 	return 0;
1124 }
pgd_devmap(pgd_t pgd)1125 static inline int pgd_devmap(pgd_t pgd)
1126 {
1127 	return 0;
1128 }
1129 #endif
1130 
1131 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1132 	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1133 	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
pud_trans_huge(pud_t pud)1134 static inline int pud_trans_huge(pud_t pud)
1135 {
1136 	return 0;
1137 }
1138 #endif
1139 
1140 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t * pud)1141 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1142 {
1143 	pud_t pudval = READ_ONCE(*pud);
1144 
1145 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1146 		return 1;
1147 	if (unlikely(pud_bad(pudval))) {
1148 		pud_clear_bad(pud);
1149 		return 1;
1150 	}
1151 	return 0;
1152 }
1153 
1154 /* See pmd_trans_unstable for discussion. */
pud_trans_unstable(pud_t * pud)1155 static inline int pud_trans_unstable(pud_t *pud)
1156 {
1157 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1158 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1159 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1160 #else
1161 	return 0;
1162 #endif
1163 }
1164 
1165 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)1166 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1167 {
1168 	/*
1169 	 * Depend on compiler for an atomic pmd read. NOTE: this is
1170 	 * only going to work, if the pmdval_t isn't larger than
1171 	 * an unsigned long.
1172 	 */
1173 	return *pmdp;
1174 }
1175 #endif
1176 
1177 #ifndef arch_needs_pgtable_deposit
1178 #define arch_needs_pgtable_deposit() (false)
1179 #endif
1180 /*
1181  * This function is meant to be used by sites walking pagetables with
1182  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1183  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1184  * into a null pmd and the transhuge page fault can convert a null pmd
1185  * into an hugepmd or into a regular pmd (if the hugepage allocation
1186  * fails). While holding the mmap_lock in read mode the pmd becomes
1187  * stable and stops changing under us only if it's not null and not a
1188  * transhuge pmd. When those races occurs and this function makes a
1189  * difference vs the standard pmd_none_or_clear_bad, the result is
1190  * undefined so behaving like if the pmd was none is safe (because it
1191  * can return none anyway). The compiler level barrier() is critically
1192  * important to compute the two checks atomically on the same pmdval.
1193  *
1194  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1195  * care of reading the pmd atomically to avoid SMP race conditions
1196  * against pmd_populate() when the mmap_lock is hold for reading by the
1197  * caller (a special atomic read not done by "gcc" as in the generic
1198  * version above, is also needed when THP is disabled because the page
1199  * fault can populate the pmd from under us).
1200  */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)1201 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1202 {
1203 	pmd_t pmdval = pmd_read_atomic(pmd);
1204 	/*
1205 	 * The barrier will stabilize the pmdval in a register or on
1206 	 * the stack so that it will stop changing under the code.
1207 	 *
1208 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1209 	 * pmd_read_atomic is allowed to return a not atomic pmdval
1210 	 * (for example pointing to an hugepage that has never been
1211 	 * mapped in the pmd). The below checks will only care about
1212 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1213 	 * exception of pmd_none(). So the important thing is that if
1214 	 * the low part of the pmd is found null, the high part will
1215 	 * be also null or the pmd_none() check below would be
1216 	 * confused.
1217 	 */
1218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219 	barrier();
1220 #endif
1221 	/*
1222 	 * !pmd_present() checks for pmd migration entries
1223 	 *
1224 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1225 	 * But using that requires moving current function and pmd_trans_unstable()
1226 	 * to linux/swapops.h to resovle dependency, which is too much code move.
1227 	 *
1228 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1229 	 * because !pmd_present() pages can only be under migration not swapped
1230 	 * out.
1231 	 *
1232 	 * pmd_none() is preseved for future condition checks on pmd migration
1233 	 * entries and not confusing with this function name, although it is
1234 	 * redundant with !pmd_present().
1235 	 */
1236 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1237 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1238 		return 1;
1239 	if (unlikely(pmd_bad(pmdval))) {
1240 		pmd_clear_bad(pmd);
1241 		return 1;
1242 	}
1243 	return 0;
1244 }
1245 
1246 /*
1247  * This is a noop if Transparent Hugepage Support is not built into
1248  * the kernel. Otherwise it is equivalent to
1249  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1250  * places that already verified the pmd is not none and they want to
1251  * walk ptes while holding the mmap sem in read mode (write mode don't
1252  * need this). If THP is not enabled, the pmd can't go away under the
1253  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1254  * run a pmd_trans_unstable before walking the ptes after
1255  * split_huge_pmd returns (because it may have run when the pmd become
1256  * null, but then a page fault can map in a THP and not a regular page).
1257  */
pmd_trans_unstable(pmd_t * pmd)1258 static inline int pmd_trans_unstable(pmd_t *pmd)
1259 {
1260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1261 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1262 #else
1263 	return 0;
1264 #endif
1265 }
1266 
1267 #ifndef CONFIG_NUMA_BALANCING
1268 /*
1269  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1270  * the only case the kernel cares is for NUMA balancing and is only ever set
1271  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1272  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1273  * is the responsibility of the caller to distinguish between PROT_NONE
1274  * protections and NUMA hinting fault protections.
1275  */
pte_protnone(pte_t pte)1276 static inline int pte_protnone(pte_t pte)
1277 {
1278 	return 0;
1279 }
1280 
pmd_protnone(pmd_t pmd)1281 static inline int pmd_protnone(pmd_t pmd)
1282 {
1283 	return 0;
1284 }
1285 #endif /* CONFIG_NUMA_BALANCING */
1286 
1287 #endif /* CONFIG_MMU */
1288 
1289 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1290 
1291 #ifndef __PAGETABLE_P4D_FOLDED
1292 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1293 int p4d_clear_huge(p4d_t *p4d);
1294 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1295 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1296 {
1297 	return 0;
1298 }
p4d_clear_huge(p4d_t * p4d)1299 static inline int p4d_clear_huge(p4d_t *p4d)
1300 {
1301 	return 0;
1302 }
1303 #endif /* !__PAGETABLE_P4D_FOLDED */
1304 
1305 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1306 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1307 int pud_clear_huge(pud_t *pud);
1308 int pmd_clear_huge(pmd_t *pmd);
1309 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1310 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1311 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1312 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1313 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1314 {
1315 	return 0;
1316 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1317 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1318 {
1319 	return 0;
1320 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1321 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1322 {
1323 	return 0;
1324 }
p4d_clear_huge(p4d_t * p4d)1325 static inline int p4d_clear_huge(p4d_t *p4d)
1326 {
1327 	return 0;
1328 }
pud_clear_huge(pud_t * pud)1329 static inline int pud_clear_huge(pud_t *pud)
1330 {
1331 	return 0;
1332 }
pmd_clear_huge(pmd_t * pmd)1333 static inline int pmd_clear_huge(pmd_t *pmd)
1334 {
1335 	return 0;
1336 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1337 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1338 {
1339 	return 0;
1340 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1341 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1342 {
1343 	return 0;
1344 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1345 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1346 {
1347 	return 0;
1348 }
1349 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1350 
1351 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353 /*
1354  * ARCHes with special requirements for evicting THP backing TLB entries can
1355  * implement this. Otherwise also, it can help optimize normal TLB flush in
1356  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1357  * entire TLB if flush span is greater than a threshold, which will
1358  * likely be true for a single huge page. Thus a single THP flush will
1359  * invalidate the entire TLB which is not desirable.
1360  * e.g. see arch/arc: flush_pmd_tlb_range
1361  */
1362 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1363 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1364 #else
1365 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1366 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1367 #endif
1368 #endif
1369 
1370 struct file;
1371 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1372 			unsigned long size, pgprot_t *vma_prot);
1373 
1374 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1375 static inline void init_espfix_bsp(void) { }
1376 #endif
1377 
1378 extern void __init pgtable_cache_init(void);
1379 
1380 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1381 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1382 {
1383 	return true;
1384 }
1385 
arch_has_pfn_modify_check(void)1386 static inline bool arch_has_pfn_modify_check(void)
1387 {
1388 	return false;
1389 }
1390 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1391 
1392 /*
1393  * Architecture PAGE_KERNEL_* fallbacks
1394  *
1395  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1396  * because they really don't support them, or the port needs to be updated to
1397  * reflect the required functionality. Below are a set of relatively safe
1398  * fallbacks, as best effort, which we can count on in lieu of the architectures
1399  * not defining them on their own yet.
1400  */
1401 
1402 #ifndef PAGE_KERNEL_RO
1403 # define PAGE_KERNEL_RO PAGE_KERNEL
1404 #endif
1405 
1406 #ifndef PAGE_KERNEL_EXEC
1407 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1408 #endif
1409 
1410 /*
1411  * Page Table Modification bits for pgtbl_mod_mask.
1412  *
1413  * These are used by the p?d_alloc_track*() set of functions an in the generic
1414  * vmalloc/ioremap code to track at which page-table levels entries have been
1415  * modified. Based on that the code can better decide when vmalloc and ioremap
1416  * mapping changes need to be synchronized to other page-tables in the system.
1417  */
1418 #define		__PGTBL_PGD_MODIFIED	0
1419 #define		__PGTBL_P4D_MODIFIED	1
1420 #define		__PGTBL_PUD_MODIFIED	2
1421 #define		__PGTBL_PMD_MODIFIED	3
1422 #define		__PGTBL_PTE_MODIFIED	4
1423 
1424 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1425 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1426 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1427 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1428 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1429 
1430 /* Page-Table Modification Mask */
1431 typedef unsigned int pgtbl_mod_mask;
1432 
1433 #endif /* !__ASSEMBLY__ */
1434 
1435 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1436 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1437 /*
1438  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1439  * with physical address space extension, but falls back to
1440  * BITS_PER_LONG otherwise.
1441  */
1442 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1443 #else
1444 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1445 #endif
1446 #endif
1447 
1448 #ifndef has_transparent_hugepage
1449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1450 #define has_transparent_hugepage() 1
1451 #else
1452 #define has_transparent_hugepage() 0
1453 #endif
1454 #endif
1455 
1456 /*
1457  * On some architectures it depends on the mm if the p4d/pud or pmd
1458  * layer of the page table hierarchy is folded or not.
1459  */
1460 #ifndef mm_p4d_folded
1461 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1462 #endif
1463 
1464 #ifndef mm_pud_folded
1465 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1466 #endif
1467 
1468 #ifndef mm_pmd_folded
1469 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1470 #endif
1471 
1472 #ifndef p4d_offset_lockless
1473 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1474 #endif
1475 #ifndef pud_offset_lockless
1476 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1477 #endif
1478 #ifndef pmd_offset_lockless
1479 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1480 #endif
1481 
1482 /*
1483  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1484  * This differs from p?d_huge() by the fact that they are always available (if
1485  * the architecture supports large pages at the appropriate level) even
1486  * if CONFIG_HUGETLB_PAGE is not defined.
1487  * Only meaningful when called on a valid entry.
1488  */
1489 #ifndef pgd_leaf
1490 #define pgd_leaf(x)	0
1491 #endif
1492 #ifndef p4d_leaf
1493 #define p4d_leaf(x)	0
1494 #endif
1495 #ifndef pud_leaf
1496 #define pud_leaf(x)	0
1497 #endif
1498 #ifndef pmd_leaf
1499 #define pmd_leaf(x)	0
1500 #endif
1501 
1502 #endif /* _LINUX_PGTABLE_H */
1503