• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/genhd.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/siphash.h>
55 #include <linux/uio.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62 
63 /*********************************************************************
64  *
65  * Initialization and readiness waiting.
66  *
67  * Much of the RNG infrastructure is devoted to various dependencies
68  * being able to wait until the RNG has collected enough entropy and
69  * is ready for safe consumption.
70  *
71  *********************************************************************/
72 
73 /*
74  * crng_init is protected by base_crng->lock, and only increases
75  * its value (from empty->early->ready).
76  */
77 static enum {
78 	CRNG_EMPTY = 0, /* Little to no entropy collected */
79 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 } crng_init __read_mostly = CRNG_EMPTY;
82 #define crng_ready() (likely(crng_init >= CRNG_READY))
83 /* Various types of waiters for crng_init->CRNG_READY transition. */
84 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
85 static struct fasync_struct *fasync;
86 static DEFINE_SPINLOCK(random_ready_chain_lock);
87 static RAW_NOTIFIER_HEAD(random_ready_chain);
88 
89 /* Control how we warn userspace. */
90 static struct ratelimit_state urandom_warning =
91 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
92 static int ratelimit_disable __read_mostly =
93 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
94 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
95 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
96 
97 /*
98  * Returns whether or not the input pool has been seeded and thus guaranteed
99  * to supply cryptographically secure random numbers. This applies to: the
100  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
101  * ,u64,int,long} family of functions.
102  *
103  * Returns: true if the input pool has been seeded.
104  *          false if the input pool has not been seeded.
105  */
rng_is_initialized(void)106 bool rng_is_initialized(void)
107 {
108 	return crng_ready();
109 }
110 EXPORT_SYMBOL(rng_is_initialized);
111 
112 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
113 static void try_to_generate_entropy(void);
114 
115 /*
116  * Wait for the input pool to be seeded and thus guaranteed to supply
117  * cryptographically secure random numbers. This applies to: the /dev/urandom
118  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
119  * family of functions. Using any of these functions without first calling
120  * this function forfeits the guarantee of security.
121  *
122  * Returns: 0 if the input pool has been seeded.
123  *          -ERESTARTSYS if the function was interrupted by a signal.
124  */
wait_for_random_bytes(void)125 int wait_for_random_bytes(void)
126 {
127 	while (!crng_ready()) {
128 		int ret;
129 
130 		try_to_generate_entropy();
131 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
132 		if (ret)
133 			return ret > 0 ? 0 : ret;
134 	}
135 	return 0;
136 }
137 EXPORT_SYMBOL(wait_for_random_bytes);
138 
139 /*
140  * Add a callback function that will be invoked when the input
141  * pool is initialised.
142  *
143  * returns: 0 if callback is successfully added
144  *	    -EALREADY if pool is already initialised (callback not called)
145  */
register_random_ready_notifier(struct notifier_block * nb)146 int __cold register_random_ready_notifier(struct notifier_block *nb)
147 {
148 	unsigned long flags;
149 	int ret = -EALREADY;
150 
151 	if (crng_ready())
152 		return ret;
153 
154 	spin_lock_irqsave(&random_ready_chain_lock, flags);
155 	if (!crng_ready())
156 		ret = raw_notifier_chain_register(&random_ready_chain, nb);
157 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
158 	return ret;
159 }
160 
161 /*
162  * Delete a previously registered readiness callback function.
163  */
unregister_random_ready_notifier(struct notifier_block * nb)164 int __cold unregister_random_ready_notifier(struct notifier_block *nb)
165 {
166 	unsigned long flags;
167 	int ret;
168 
169 	spin_lock_irqsave(&random_ready_chain_lock, flags);
170 	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
171 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
172 	return ret;
173 }
174 
process_random_ready_list(void)175 static void __cold process_random_ready_list(void)
176 {
177 	unsigned long flags;
178 
179 	spin_lock_irqsave(&random_ready_chain_lock, flags);
180 	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
181 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
182 }
183 
184 #define warn_unseeded_randomness() \
185 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
186 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
187 				__func__, (void *)_RET_IP_, crng_init)
188 
189 
190 /*********************************************************************
191  *
192  * Fast key erasure RNG, the "crng".
193  *
194  * These functions expand entropy from the entropy extractor into
195  * long streams for external consumption using the "fast key erasure"
196  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
197  *
198  * There are a few exported interfaces for use by other drivers:
199  *
200  *	void get_random_bytes(void *buf, size_t len)
201  *	u32 get_random_u32()
202  *	u64 get_random_u64()
203  *	unsigned int get_random_int()
204  *	unsigned long get_random_long()
205  *
206  * These interfaces will return the requested number of random bytes
207  * into the given buffer or as a return value. This is equivalent to
208  * a read from /dev/urandom. The u32, u64, int, and long family of
209  * functions may be higher performance for one-off random integers,
210  * because they do a bit of buffering and do not invoke reseeding
211  * until the buffer is emptied.
212  *
213  *********************************************************************/
214 
215 enum {
216 	CRNG_RESEED_START_INTERVAL = HZ,
217 	CRNG_RESEED_INTERVAL = 60 * HZ
218 };
219 
220 static struct {
221 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
222 	unsigned long birth;
223 	unsigned long generation;
224 	spinlock_t lock;
225 } base_crng = {
226 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
227 };
228 
229 struct crng {
230 	u8 key[CHACHA_KEY_SIZE];
231 	unsigned long generation;
232 	local_lock_t lock;
233 };
234 
235 static DEFINE_PER_CPU(struct crng, crngs) = {
236 	.generation = ULONG_MAX,
237 	.lock = INIT_LOCAL_LOCK(crngs.lock),
238 };
239 
240 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
241 static void extract_entropy(void *buf, size_t len);
242 
243 /* This extracts a new crng key from the input pool. */
crng_reseed(void)244 static void crng_reseed(void)
245 {
246 	unsigned long flags;
247 	unsigned long next_gen;
248 	u8 key[CHACHA_KEY_SIZE];
249 
250 	extract_entropy(key, sizeof(key));
251 
252 	/*
253 	 * We copy the new key into the base_crng, overwriting the old one,
254 	 * and update the generation counter. We avoid hitting ULONG_MAX,
255 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
256 	 * forces new CPUs that come online to always initialize.
257 	 */
258 	spin_lock_irqsave(&base_crng.lock, flags);
259 	memcpy(base_crng.key, key, sizeof(base_crng.key));
260 	next_gen = base_crng.generation + 1;
261 	if (next_gen == ULONG_MAX)
262 		++next_gen;
263 	WRITE_ONCE(base_crng.generation, next_gen);
264 	WRITE_ONCE(base_crng.birth, jiffies);
265 	if (!crng_ready())
266 		crng_init = CRNG_READY;
267 	spin_unlock_irqrestore(&base_crng.lock, flags);
268 	memzero_explicit(key, sizeof(key));
269 }
270 
271 /*
272  * This generates a ChaCha block using the provided key, and then
273  * immediately overwites that key with half the block. It returns
274  * the resultant ChaCha state to the user, along with the second
275  * half of the block containing 32 bytes of random data that may
276  * be used; random_data_len may not be greater than 32.
277  *
278  * The returned ChaCha state contains within it a copy of the old
279  * key value, at index 4, so the state should always be zeroed out
280  * immediately after using in order to maintain forward secrecy.
281  * If the state cannot be erased in a timely manner, then it is
282  * safer to set the random_data parameter to &chacha_state[4] so
283  * that this function overwrites it before returning.
284  */
crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)285 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
286 				  u32 chacha_state[CHACHA_STATE_WORDS],
287 				  u8 *random_data, size_t random_data_len)
288 {
289 	u8 first_block[CHACHA_BLOCK_SIZE];
290 
291 	BUG_ON(random_data_len > 32);
292 
293 	chacha_init_consts(chacha_state);
294 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
295 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
296 	chacha20_block(chacha_state, first_block);
297 
298 	memcpy(key, first_block, CHACHA_KEY_SIZE);
299 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
300 	memzero_explicit(first_block, sizeof(first_block));
301 }
302 
303 /*
304  * Return whether the crng seed is considered to be sufficiently old
305  * that a reseeding is needed. This happens if the last reseeding
306  * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
307  * proportional to the uptime.
308  */
crng_has_old_seed(void)309 static bool crng_has_old_seed(void)
310 {
311 	static bool early_boot = true;
312 	unsigned long interval = CRNG_RESEED_INTERVAL;
313 
314 	if (unlikely(READ_ONCE(early_boot))) {
315 		time64_t uptime = ktime_get_seconds();
316 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
317 			WRITE_ONCE(early_boot, false);
318 		else
319 			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
320 					 (unsigned int)uptime / 2 * HZ);
321 	}
322 	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
323 }
324 
325 /*
326  * This function returns a ChaCha state that you may use for generating
327  * random data. It also returns up to 32 bytes on its own of random data
328  * that may be used; random_data_len may not be greater than 32.
329  */
crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)330 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
331 			    u8 *random_data, size_t random_data_len)
332 {
333 	unsigned long flags;
334 	struct crng *crng;
335 
336 	BUG_ON(random_data_len > 32);
337 
338 	/*
339 	 * For the fast path, we check whether we're ready, unlocked first, and
340 	 * then re-check once locked later. In the case where we're really not
341 	 * ready, we do fast key erasure with the base_crng directly, extracting
342 	 * when crng_init is CRNG_EMPTY.
343 	 */
344 	if (!crng_ready()) {
345 		bool ready;
346 
347 		spin_lock_irqsave(&base_crng.lock, flags);
348 		ready = crng_ready();
349 		if (!ready) {
350 			if (crng_init == CRNG_EMPTY)
351 				extract_entropy(base_crng.key, sizeof(base_crng.key));
352 			crng_fast_key_erasure(base_crng.key, chacha_state,
353 					      random_data, random_data_len);
354 		}
355 		spin_unlock_irqrestore(&base_crng.lock, flags);
356 		if (!ready)
357 			return;
358 	}
359 
360 	/*
361 	 * If the base_crng is old enough, we reseed, which in turn bumps the
362 	 * generation counter that we check below.
363 	 */
364 	if (unlikely(crng_has_old_seed()))
365 		crng_reseed();
366 
367 	local_lock_irqsave(&crngs.lock, flags);
368 	crng = raw_cpu_ptr(&crngs);
369 
370 	/*
371 	 * If our per-cpu crng is older than the base_crng, then it means
372 	 * somebody reseeded the base_crng. In that case, we do fast key
373 	 * erasure on the base_crng, and use its output as the new key
374 	 * for our per-cpu crng. This brings us up to date with base_crng.
375 	 */
376 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
377 		spin_lock(&base_crng.lock);
378 		crng_fast_key_erasure(base_crng.key, chacha_state,
379 				      crng->key, sizeof(crng->key));
380 		crng->generation = base_crng.generation;
381 		spin_unlock(&base_crng.lock);
382 	}
383 
384 	/*
385 	 * Finally, when we've made it this far, our per-cpu crng has an up
386 	 * to date key, and we can do fast key erasure with it to produce
387 	 * some random data and a ChaCha state for the caller. All other
388 	 * branches of this function are "unlikely", so most of the time we
389 	 * should wind up here immediately.
390 	 */
391 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
392 	local_unlock_irqrestore(&crngs.lock, flags);
393 }
394 
_get_random_bytes(void * buf,size_t len)395 static void _get_random_bytes(void *buf, size_t len)
396 {
397 	u32 chacha_state[CHACHA_STATE_WORDS];
398 	u8 tmp[CHACHA_BLOCK_SIZE];
399 	size_t first_block_len;
400 
401 	if (!len)
402 		return;
403 
404 	first_block_len = min_t(size_t, 32, len);
405 	crng_make_state(chacha_state, buf, first_block_len);
406 	len -= first_block_len;
407 	buf += first_block_len;
408 
409 	while (len) {
410 		if (len < CHACHA_BLOCK_SIZE) {
411 			chacha20_block(chacha_state, tmp);
412 			memcpy(buf, tmp, len);
413 			memzero_explicit(tmp, sizeof(tmp));
414 			break;
415 		}
416 
417 		chacha20_block(chacha_state, buf);
418 		if (unlikely(chacha_state[12] == 0))
419 			++chacha_state[13];
420 		len -= CHACHA_BLOCK_SIZE;
421 		buf += CHACHA_BLOCK_SIZE;
422 	}
423 
424 	memzero_explicit(chacha_state, sizeof(chacha_state));
425 }
426 
427 /*
428  * This function is the exported kernel interface.  It returns some
429  * number of good random numbers, suitable for key generation, seeding
430  * TCP sequence numbers, etc.  It does not rely on the hardware random
431  * number generator.  For random bytes direct from the hardware RNG
432  * (when available), use get_random_bytes_arch(). In order to ensure
433  * that the randomness provided by this function is okay, the function
434  * wait_for_random_bytes() should be called and return 0 at least once
435  * at any point prior.
436  */
get_random_bytes(void * buf,size_t len)437 void get_random_bytes(void *buf, size_t len)
438 {
439 	warn_unseeded_randomness();
440 	_get_random_bytes(buf, len);
441 }
442 EXPORT_SYMBOL(get_random_bytes);
443 
get_random_bytes_user(struct iov_iter * iter)444 static ssize_t get_random_bytes_user(struct iov_iter *iter)
445 {
446 	u32 chacha_state[CHACHA_STATE_WORDS];
447 	u8 block[CHACHA_BLOCK_SIZE];
448 	size_t ret = 0, copied;
449 
450 	if (unlikely(!iov_iter_count(iter)))
451 		return 0;
452 
453 	/*
454 	 * Immediately overwrite the ChaCha key at index 4 with random
455 	 * bytes, in case userspace causes copy_to_iter() below to sleep
456 	 * forever, so that we still retain forward secrecy in that case.
457 	 */
458 	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
459 	/*
460 	 * However, if we're doing a read of len <= 32, we don't need to
461 	 * use chacha_state after, so we can simply return those bytes to
462 	 * the user directly.
463 	 */
464 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
465 		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
466 		goto out_zero_chacha;
467 	}
468 
469 	for (;;) {
470 		chacha20_block(chacha_state, block);
471 		if (unlikely(chacha_state[12] == 0))
472 			++chacha_state[13];
473 
474 		copied = copy_to_iter(block, sizeof(block), iter);
475 		ret += copied;
476 		if (!iov_iter_count(iter) || copied != sizeof(block))
477 			break;
478 
479 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
480 		if (ret % PAGE_SIZE == 0) {
481 			if (signal_pending(current))
482 				break;
483 			cond_resched();
484 		}
485 	}
486 
487 	memzero_explicit(block, sizeof(block));
488 out_zero_chacha:
489 	memzero_explicit(chacha_state, sizeof(chacha_state));
490 	return ret ? ret : -EFAULT;
491 }
492 
493 /*
494  * Batched entropy returns random integers. The quality of the random
495  * number is good as /dev/urandom. In order to ensure that the randomness
496  * provided by this function is okay, the function wait_for_random_bytes()
497  * should be called and return 0 at least once at any point prior.
498  */
499 
500 #define DEFINE_BATCHED_ENTROPY(type)						\
501 struct batch_ ##type {								\
502 	/*									\
503 	 * We make this 1.5x a ChaCha block, so that we get the			\
504 	 * remaining 32 bytes from fast key erasure, plus one full		\
505 	 * block from the detached ChaCha state. We can increase		\
506 	 * the size of this later if needed so long as we keep the		\
507 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
508 	 */									\
509 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
510 	local_lock_t lock;							\
511 	unsigned long generation;						\
512 	unsigned int position;							\
513 };										\
514 										\
515 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
516 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
517 	.position = UINT_MAX							\
518 };										\
519 										\
520 type get_random_ ##type(void)							\
521 {										\
522 	type ret;								\
523 	unsigned long flags;							\
524 	struct batch_ ##type *batch;						\
525 	unsigned long next_gen;							\
526 										\
527 	warn_unseeded_randomness();						\
528 										\
529 	if  (!crng_ready()) {							\
530 		_get_random_bytes(&ret, sizeof(ret));				\
531 		return ret;							\
532 	}									\
533 										\
534 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
535 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
536 										\
537 	next_gen = READ_ONCE(base_crng.generation);				\
538 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
539 	    next_gen != batch->generation) {					\
540 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
541 		batch->position = 0;						\
542 		batch->generation = next_gen;					\
543 	}									\
544 										\
545 	ret = batch->entropy[batch->position];					\
546 	batch->entropy[batch->position] = 0;					\
547 	++batch->position;							\
548 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
549 	return ret;								\
550 }										\
551 EXPORT_SYMBOL(get_random_ ##type);
552 
553 DEFINE_BATCHED_ENTROPY(u64)
DEFINE_BATCHED_ENTROPY(u32)554 DEFINE_BATCHED_ENTROPY(u32)
555 
556 #ifdef CONFIG_SMP
557 /*
558  * This function is called when the CPU is coming up, with entry
559  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
560  */
561 int __cold random_prepare_cpu(unsigned int cpu)
562 {
563 	/*
564 	 * When the cpu comes back online, immediately invalidate both
565 	 * the per-cpu crng and all batches, so that we serve fresh
566 	 * randomness.
567 	 */
568 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
569 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
570 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
571 	return 0;
572 }
573 #endif
574 
575 /*
576  * This function will use the architecture-specific hardware random
577  * number generator if it is available. It is not recommended for
578  * use. Use get_random_bytes() instead. It returns the number of
579  * bytes filled in.
580  */
get_random_bytes_arch(void * buf,size_t len)581 size_t __must_check get_random_bytes_arch(void *buf, size_t len)
582 {
583 	size_t left = len;
584 	u8 *p = buf;
585 
586 	while (left) {
587 		unsigned long v;
588 		size_t block_len = min_t(size_t, left, sizeof(unsigned long));
589 
590 		if (!arch_get_random_long(&v))
591 			break;
592 
593 		memcpy(p, &v, block_len);
594 		p += block_len;
595 		left -= block_len;
596 	}
597 
598 	return len - left;
599 }
600 EXPORT_SYMBOL(get_random_bytes_arch);
601 
602 
603 /**********************************************************************
604  *
605  * Entropy accumulation and extraction routines.
606  *
607  * Callers may add entropy via:
608  *
609  *     static void mix_pool_bytes(const void *buf, size_t len)
610  *
611  * After which, if added entropy should be credited:
612  *
613  *     static void credit_init_bits(size_t bits)
614  *
615  * Finally, extract entropy via:
616  *
617  *     static void extract_entropy(void *buf, size_t len)
618  *
619  **********************************************************************/
620 
621 enum {
622 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
623 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
624 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
625 };
626 
627 static struct {
628 	struct blake2s_state hash;
629 	spinlock_t lock;
630 	unsigned int init_bits;
631 } input_pool = {
632 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
633 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
634 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
635 	.hash.outlen = BLAKE2S_HASH_SIZE,
636 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
637 };
638 
_mix_pool_bytes(const void * buf,size_t len)639 static void _mix_pool_bytes(const void *buf, size_t len)
640 {
641 	blake2s_update(&input_pool.hash, buf, len);
642 }
643 
644 /*
645  * This function adds bytes into the input pool. It does not
646  * update the initialization bit counter; the caller should call
647  * credit_init_bits if this is appropriate.
648  */
mix_pool_bytes(const void * buf,size_t len)649 static void mix_pool_bytes(const void *buf, size_t len)
650 {
651 	unsigned long flags;
652 
653 	spin_lock_irqsave(&input_pool.lock, flags);
654 	_mix_pool_bytes(buf, len);
655 	spin_unlock_irqrestore(&input_pool.lock, flags);
656 }
657 
658 /*
659  * This is an HKDF-like construction for using the hashed collected entropy
660  * as a PRF key, that's then expanded block-by-block.
661  */
extract_entropy(void * buf,size_t len)662 static void extract_entropy(void *buf, size_t len)
663 {
664 	unsigned long flags;
665 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
666 	struct {
667 		unsigned long rdseed[32 / sizeof(long)];
668 		size_t counter;
669 	} block;
670 	size_t i;
671 
672 	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
673 		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
674 		    !arch_get_random_long(&block.rdseed[i]))
675 			block.rdseed[i] = random_get_entropy();
676 	}
677 
678 	spin_lock_irqsave(&input_pool.lock, flags);
679 
680 	/* seed = HASHPRF(last_key, entropy_input) */
681 	blake2s_final(&input_pool.hash, seed);
682 
683 	/* next_key = HASHPRF(seed, RDSEED || 0) */
684 	block.counter = 0;
685 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
686 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
687 
688 	spin_unlock_irqrestore(&input_pool.lock, flags);
689 	memzero_explicit(next_key, sizeof(next_key));
690 
691 	while (len) {
692 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
693 		/* output = HASHPRF(seed, RDSEED || ++counter) */
694 		++block.counter;
695 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
696 		len -= i;
697 		buf += i;
698 	}
699 
700 	memzero_explicit(seed, sizeof(seed));
701 	memzero_explicit(&block, sizeof(block));
702 }
703 
704 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
705 
_credit_init_bits(size_t bits)706 static void __cold _credit_init_bits(size_t bits)
707 {
708 	unsigned int new, orig, add;
709 	unsigned long flags;
710 
711 	if (!bits)
712 		return;
713 
714 	add = min_t(size_t, bits, POOL_BITS);
715 
716 	do {
717 		orig = READ_ONCE(input_pool.init_bits);
718 		new = min_t(unsigned int, POOL_BITS, orig + add);
719 	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
720 
721 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
722 		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
723 		process_random_ready_list();
724 		wake_up_interruptible(&crng_init_wait);
725 		kill_fasync(&fasync, SIGIO, POLL_IN);
726 		pr_notice("crng init done\n");
727 		if (urandom_warning.missed)
728 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
729 				  urandom_warning.missed);
730 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
731 		spin_lock_irqsave(&base_crng.lock, flags);
732 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
733 		if (crng_init == CRNG_EMPTY) {
734 			extract_entropy(base_crng.key, sizeof(base_crng.key));
735 			crng_init = CRNG_EARLY;
736 		}
737 		spin_unlock_irqrestore(&base_crng.lock, flags);
738 	}
739 }
740 
741 
742 /**********************************************************************
743  *
744  * Entropy collection routines.
745  *
746  * The following exported functions are used for pushing entropy into
747  * the above entropy accumulation routines:
748  *
749  *	void add_device_randomness(const void *buf, size_t len);
750  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
751  *	void add_bootloader_randomness(const void *buf, size_t len);
752  *	void add_interrupt_randomness(int irq);
753  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
754  *	void add_disk_randomness(struct gendisk *disk);
755  *
756  * add_device_randomness() adds data to the input pool that
757  * is likely to differ between two devices (or possibly even per boot).
758  * This would be things like MAC addresses or serial numbers, or the
759  * read-out of the RTC. This does *not* credit any actual entropy to
760  * the pool, but it initializes the pool to different values for devices
761  * that might otherwise be identical and have very little entropy
762  * available to them (particularly common in the embedded world).
763  *
764  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
765  * entropy as specified by the caller. If the entropy pool is full it will
766  * block until more entropy is needed.
767  *
768  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
769  * and device tree, and credits its input depending on whether or not the
770  * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
771  *
772  * add_interrupt_randomness() uses the interrupt timing as random
773  * inputs to the entropy pool. Using the cycle counters and the irq source
774  * as inputs, it feeds the input pool roughly once a second or after 64
775  * interrupts, crediting 1 bit of entropy for whichever comes first.
776  *
777  * add_input_randomness() uses the input layer interrupt timing, as well
778  * as the event type information from the hardware.
779  *
780  * add_disk_randomness() uses what amounts to the seek time of block
781  * layer request events, on a per-disk_devt basis, as input to the
782  * entropy pool. Note that high-speed solid state drives with very low
783  * seek times do not make for good sources of entropy, as their seek
784  * times are usually fairly consistent.
785  *
786  * The last two routines try to estimate how many bits of entropy
787  * to credit. They do this by keeping track of the first and second
788  * order deltas of the event timings.
789  *
790  **********************************************************************/
791 
792 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
793 static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
parse_trust_cpu(char * arg)794 static int __init parse_trust_cpu(char *arg)
795 {
796 	return kstrtobool(arg, &trust_cpu);
797 }
parse_trust_bootloader(char * arg)798 static int __init parse_trust_bootloader(char *arg)
799 {
800 	return kstrtobool(arg, &trust_bootloader);
801 }
802 early_param("random.trust_cpu", parse_trust_cpu);
803 early_param("random.trust_bootloader", parse_trust_bootloader);
804 
805 /*
806  * The first collection of entropy occurs at system boot while interrupts
807  * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
808  * utsname(), and the command line. Depending on the above configuration knob,
809  * RDSEED may be considered sufficient for initialization. Note that much
810  * earlier setup may already have pushed entropy into the input pool by the
811  * time we get here.
812  */
random_init(const char * command_line)813 int __init random_init(const char *command_line)
814 {
815 	ktime_t now = ktime_get_real();
816 	unsigned int i, arch_bytes;
817 	unsigned long entropy;
818 
819 #if defined(LATENT_ENTROPY_PLUGIN)
820 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
821 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
822 #endif
823 
824 	for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
825 	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
826 		if (!arch_get_random_seed_long_early(&entropy) &&
827 		    !arch_get_random_long_early(&entropy)) {
828 			entropy = random_get_entropy();
829 			arch_bytes -= sizeof(entropy);
830 		}
831 		_mix_pool_bytes(&entropy, sizeof(entropy));
832 	}
833 	_mix_pool_bytes(&now, sizeof(now));
834 	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
835 	_mix_pool_bytes(command_line, strlen(command_line));
836 	add_latent_entropy();
837 
838 	if (crng_ready())
839 		crng_reseed();
840 	else if (trust_cpu)
841 		credit_init_bits(arch_bytes * 8);
842 
843 	return 0;
844 }
845 
846 /*
847  * Add device- or boot-specific data to the input pool to help
848  * initialize it.
849  *
850  * None of this adds any entropy; it is meant to avoid the problem of
851  * the entropy pool having similar initial state across largely
852  * identical devices.
853  */
add_device_randomness(const void * buf,size_t len)854 void add_device_randomness(const void *buf, size_t len)
855 {
856 	unsigned long entropy = random_get_entropy();
857 	unsigned long flags;
858 
859 	spin_lock_irqsave(&input_pool.lock, flags);
860 	_mix_pool_bytes(&entropy, sizeof(entropy));
861 	_mix_pool_bytes(buf, len);
862 	spin_unlock_irqrestore(&input_pool.lock, flags);
863 }
864 EXPORT_SYMBOL(add_device_randomness);
865 
866 /*
867  * Interface for in-kernel drivers of true hardware RNGs.
868  * Those devices may produce endless random bits and will be throttled
869  * when our pool is full.
870  */
add_hwgenerator_randomness(const void * buf,size_t len,size_t entropy)871 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
872 {
873 	mix_pool_bytes(buf, len);
874 	credit_init_bits(entropy);
875 
876 	/*
877 	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
878 	 * we're not yet initialized.
879 	 */
880 	if (!kthread_should_stop() && crng_ready())
881 		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
882 }
883 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
884 
885 /*
886  * Handle random seed passed by bootloader, and credit it if
887  * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
888  */
add_bootloader_randomness(const void * buf,size_t len)889 void __cold add_bootloader_randomness(const void *buf, size_t len)
890 {
891 	mix_pool_bytes(buf, len);
892 	if (trust_bootloader)
893 		credit_init_bits(len * 8);
894 }
895 EXPORT_SYMBOL_GPL(add_bootloader_randomness);
896 
897 struct fast_pool {
898 	unsigned long pool[4];
899 	unsigned long last;
900 	unsigned int count;
901 	struct timer_list mix;
902 };
903 
904 static void mix_interrupt_randomness(struct timer_list *work);
905 
906 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
907 #ifdef CONFIG_64BIT
908 #define FASTMIX_PERM SIPHASH_PERMUTATION
909 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
910 #else
911 #define FASTMIX_PERM HSIPHASH_PERMUTATION
912 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
913 #endif
914 	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
915 };
916 
917 /*
918  * This is [Half]SipHash-1-x, starting from an empty key. Because
919  * the key is fixed, it assumes that its inputs are non-malicious,
920  * and therefore this has no security on its own. s represents the
921  * four-word SipHash state, while v represents a two-word input.
922  */
fast_mix(unsigned long s[4],unsigned long v1,unsigned long v2)923 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
924 {
925 	s[3] ^= v1;
926 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
927 	s[0] ^= v1;
928 	s[3] ^= v2;
929 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
930 	s[0] ^= v2;
931 }
932 
933 #ifdef CONFIG_SMP
934 /*
935  * This function is called when the CPU has just come online, with
936  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
937  */
random_online_cpu(unsigned int cpu)938 int __cold random_online_cpu(unsigned int cpu)
939 {
940 	/*
941 	 * During CPU shutdown and before CPU onlining, add_interrupt_
942 	 * randomness() may schedule mix_interrupt_randomness(), and
943 	 * set the MIX_INFLIGHT flag. However, because the worker can
944 	 * be scheduled on a different CPU during this period, that
945 	 * flag will never be cleared. For that reason, we zero out
946 	 * the flag here, which runs just after workqueues are onlined
947 	 * for the CPU again. This also has the effect of setting the
948 	 * irq randomness count to zero so that new accumulated irqs
949 	 * are fresh.
950 	 */
951 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
952 	return 0;
953 }
954 #endif
955 
mix_interrupt_randomness(struct timer_list * work)956 static void mix_interrupt_randomness(struct timer_list *work)
957 {
958 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
959 	/*
960 	 * The size of the copied stack pool is explicitly 2 longs so that we
961 	 * only ever ingest half of the siphash output each time, retaining
962 	 * the other half as the next "key" that carries over. The entropy is
963 	 * supposed to be sufficiently dispersed between bits so on average
964 	 * we don't wind up "losing" some.
965 	 */
966 	unsigned long pool[2];
967 	unsigned int count;
968 
969 	/* Check to see if we're running on the wrong CPU due to hotplug. */
970 	local_irq_disable();
971 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
972 		local_irq_enable();
973 		return;
974 	}
975 
976 	/*
977 	 * Copy the pool to the stack so that the mixer always has a
978 	 * consistent view, before we reenable irqs again.
979 	 */
980 	memcpy(pool, fast_pool->pool, sizeof(pool));
981 	count = fast_pool->count;
982 	fast_pool->count = 0;
983 	fast_pool->last = jiffies;
984 	local_irq_enable();
985 
986 	mix_pool_bytes(pool, sizeof(pool));
987 	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
988 
989 	memzero_explicit(pool, sizeof(pool));
990 }
991 
add_interrupt_randomness(int irq)992 void add_interrupt_randomness(int irq)
993 {
994 	enum { MIX_INFLIGHT = 1U << 31 };
995 	unsigned long entropy = random_get_entropy();
996 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
997 	struct pt_regs *regs = get_irq_regs();
998 	unsigned int new_count;
999 
1000 	fast_mix(fast_pool->pool, entropy,
1001 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1002 	new_count = ++fast_pool->count;
1003 
1004 	if (new_count & MIX_INFLIGHT)
1005 		return;
1006 
1007 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1008 		return;
1009 
1010 	fast_pool->count |= MIX_INFLIGHT;
1011 	if (!timer_pending(&fast_pool->mix)) {
1012 		fast_pool->mix.expires = jiffies;
1013 		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1014 	}
1015 }
1016 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1017 
1018 /* There is one of these per entropy source */
1019 struct timer_rand_state {
1020 	unsigned long last_time;
1021 	long last_delta, last_delta2;
1022 };
1023 
1024 /*
1025  * This function adds entropy to the entropy "pool" by using timing
1026  * delays. It uses the timer_rand_state structure to make an estimate
1027  * of how many bits of entropy this call has added to the pool. The
1028  * value "num" is also added to the pool; it should somehow describe
1029  * the type of event that just happened.
1030  */
add_timer_randomness(struct timer_rand_state * state,unsigned int num)1031 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1032 {
1033 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1034 	long delta, delta2, delta3;
1035 	unsigned int bits;
1036 
1037 	/*
1038 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1039 	 * sometime after, so mix into the fast pool.
1040 	 */
1041 	if (in_irq()) {
1042 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1043 	} else {
1044 		spin_lock_irqsave(&input_pool.lock, flags);
1045 		_mix_pool_bytes(&entropy, sizeof(entropy));
1046 		_mix_pool_bytes(&num, sizeof(num));
1047 		spin_unlock_irqrestore(&input_pool.lock, flags);
1048 	}
1049 
1050 	if (crng_ready())
1051 		return;
1052 
1053 	/*
1054 	 * Calculate number of bits of randomness we probably added.
1055 	 * We take into account the first, second and third-order deltas
1056 	 * in order to make our estimate.
1057 	 */
1058 	delta = now - READ_ONCE(state->last_time);
1059 	WRITE_ONCE(state->last_time, now);
1060 
1061 	delta2 = delta - READ_ONCE(state->last_delta);
1062 	WRITE_ONCE(state->last_delta, delta);
1063 
1064 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1065 	WRITE_ONCE(state->last_delta2, delta2);
1066 
1067 	if (delta < 0)
1068 		delta = -delta;
1069 	if (delta2 < 0)
1070 		delta2 = -delta2;
1071 	if (delta3 < 0)
1072 		delta3 = -delta3;
1073 	if (delta > delta2)
1074 		delta = delta2;
1075 	if (delta > delta3)
1076 		delta = delta3;
1077 
1078 	/*
1079 	 * delta is now minimum absolute delta. Round down by 1 bit
1080 	 * on general principles, and limit entropy estimate to 11 bits.
1081 	 */
1082 	bits = min(fls(delta >> 1), 11);
1083 
1084 	/*
1085 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1086 	 * will run after this, which uses a different crediting scheme of 1 bit
1087 	 * per every 64 interrupts. In order to let that function do accounting
1088 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1089 	 * and then subtract one to account for the extra one added.
1090 	 */
1091 	if (in_irq())
1092 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1093 	else
1094 		_credit_init_bits(bits);
1095 }
1096 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1097 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1098 {
1099 	static unsigned char last_value;
1100 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1101 
1102 	/* Ignore autorepeat and the like. */
1103 	if (value == last_value)
1104 		return;
1105 
1106 	last_value = value;
1107 	add_timer_randomness(&input_timer_state,
1108 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1109 }
1110 EXPORT_SYMBOL_GPL(add_input_randomness);
1111 
1112 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1113 void add_disk_randomness(struct gendisk *disk)
1114 {
1115 	if (!disk || !disk->random)
1116 		return;
1117 	/* First major is 1, so we get >= 0x200 here. */
1118 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1119 }
1120 EXPORT_SYMBOL_GPL(add_disk_randomness);
1121 
rand_initialize_disk(struct gendisk * disk)1122 void __cold rand_initialize_disk(struct gendisk *disk)
1123 {
1124 	struct timer_rand_state *state;
1125 
1126 	/*
1127 	 * If kzalloc returns null, we just won't use that entropy
1128 	 * source.
1129 	 */
1130 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1131 	if (state) {
1132 		state->last_time = INITIAL_JIFFIES;
1133 		disk->random = state;
1134 	}
1135 }
1136 #endif
1137 
1138 /*
1139  * Each time the timer fires, we expect that we got an unpredictable
1140  * jump in the cycle counter. Even if the timer is running on another
1141  * CPU, the timer activity will be touching the stack of the CPU that is
1142  * generating entropy..
1143  *
1144  * Note that we don't re-arm the timer in the timer itself - we are
1145  * happy to be scheduled away, since that just makes the load more
1146  * complex, but we do not want the timer to keep ticking unless the
1147  * entropy loop is running.
1148  *
1149  * So the re-arming always happens in the entropy loop itself.
1150  */
entropy_timer(struct timer_list * t)1151 static void __cold entropy_timer(struct timer_list *t)
1152 {
1153 	credit_init_bits(1);
1154 }
1155 
1156 /*
1157  * If we have an actual cycle counter, see if we can
1158  * generate enough entropy with timing noise
1159  */
try_to_generate_entropy(void)1160 static void __cold try_to_generate_entropy(void)
1161 {
1162 	struct {
1163 		unsigned long entropy;
1164 		struct timer_list timer;
1165 	} stack;
1166 
1167 	stack.entropy = random_get_entropy();
1168 
1169 	/* Slow counter - or none. Don't even bother */
1170 	if (stack.entropy == random_get_entropy())
1171 		return;
1172 
1173 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1174 	while (!crng_ready() && !signal_pending(current)) {
1175 		if (!timer_pending(&stack.timer))
1176 			mod_timer(&stack.timer, jiffies + 1);
1177 		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1178 		schedule();
1179 		stack.entropy = random_get_entropy();
1180 	}
1181 
1182 	del_timer_sync(&stack.timer);
1183 	destroy_timer_on_stack(&stack.timer);
1184 	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1185 }
1186 
1187 
1188 /**********************************************************************
1189  *
1190  * Userspace reader/writer interfaces.
1191  *
1192  * getrandom(2) is the primary modern interface into the RNG and should
1193  * be used in preference to anything else.
1194  *
1195  * Reading from /dev/random has the same functionality as calling
1196  * getrandom(2) with flags=0. In earlier versions, however, it had
1197  * vastly different semantics and should therefore be avoided, to
1198  * prevent backwards compatibility issues.
1199  *
1200  * Reading from /dev/urandom has the same functionality as calling
1201  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1202  * waiting for the RNG to be ready, it should not be used.
1203  *
1204  * Writing to either /dev/random or /dev/urandom adds entropy to
1205  * the input pool but does not credit it.
1206  *
1207  * Polling on /dev/random indicates when the RNG is initialized, on
1208  * the read side, and when it wants new entropy, on the write side.
1209  *
1210  * Both /dev/random and /dev/urandom have the same set of ioctls for
1211  * adding entropy, getting the entropy count, zeroing the count, and
1212  * reseeding the crng.
1213  *
1214  **********************************************************************/
1215 
SYSCALL_DEFINE3(getrandom,char __user *,ubuf,size_t,len,unsigned int,flags)1216 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1217 {
1218 	struct iov_iter iter;
1219 	struct iovec iov;
1220 	int ret;
1221 
1222 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1223 		return -EINVAL;
1224 
1225 	/*
1226 	 * Requesting insecure and blocking randomness at the same time makes
1227 	 * no sense.
1228 	 */
1229 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1230 		return -EINVAL;
1231 
1232 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1233 		if (flags & GRND_NONBLOCK)
1234 			return -EAGAIN;
1235 		ret = wait_for_random_bytes();
1236 		if (unlikely(ret))
1237 			return ret;
1238 	}
1239 
1240 	ret = import_single_range(READ, ubuf, len, &iov, &iter);
1241 	if (unlikely(ret))
1242 		return ret;
1243 	return get_random_bytes_user(&iter);
1244 }
1245 
random_poll(struct file * file,poll_table * wait)1246 static __poll_t random_poll(struct file *file, poll_table *wait)
1247 {
1248 	poll_wait(file, &crng_init_wait, wait);
1249 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1250 }
1251 
write_pool_user(struct iov_iter * iter)1252 static ssize_t write_pool_user(struct iov_iter *iter)
1253 {
1254 	u8 block[BLAKE2S_BLOCK_SIZE];
1255 	ssize_t ret = 0;
1256 	size_t copied;
1257 
1258 	if (unlikely(!iov_iter_count(iter)))
1259 		return 0;
1260 
1261 	for (;;) {
1262 		copied = copy_from_iter(block, sizeof(block), iter);
1263 		ret += copied;
1264 		mix_pool_bytes(block, copied);
1265 		if (!iov_iter_count(iter) || copied != sizeof(block))
1266 			break;
1267 
1268 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1269 		if (ret % PAGE_SIZE == 0) {
1270 			if (signal_pending(current))
1271 				break;
1272 			cond_resched();
1273 		}
1274 	}
1275 
1276 	memzero_explicit(block, sizeof(block));
1277 	return ret ? ret : -EFAULT;
1278 }
1279 
random_write_iter(struct kiocb * kiocb,struct iov_iter * iter)1280 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1281 {
1282 	return write_pool_user(iter);
1283 }
1284 
urandom_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1285 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1286 {
1287 	static int maxwarn = 10;
1288 
1289 	if (!crng_ready()) {
1290 		if (!ratelimit_disable && maxwarn <= 0)
1291 			++urandom_warning.missed;
1292 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1293 			--maxwarn;
1294 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1295 				  current->comm, iov_iter_count(iter));
1296 		}
1297 	}
1298 
1299 	return get_random_bytes_user(iter);
1300 }
1301 
random_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1302 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1303 {
1304 	int ret;
1305 
1306 	if (!crng_ready() &&
1307 	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1308 	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1309 		return -EAGAIN;
1310 
1311 	ret = wait_for_random_bytes();
1312 	if (ret != 0)
1313 		return ret;
1314 	return get_random_bytes_user(iter);
1315 }
1316 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1317 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1318 {
1319 	int __user *p = (int __user *)arg;
1320 	int ent_count;
1321 
1322 	switch (cmd) {
1323 	case RNDGETENTCNT:
1324 		/* Inherently racy, no point locking. */
1325 		if (put_user(input_pool.init_bits, p))
1326 			return -EFAULT;
1327 		return 0;
1328 	case RNDADDTOENTCNT:
1329 		if (!capable(CAP_SYS_ADMIN))
1330 			return -EPERM;
1331 		if (get_user(ent_count, p))
1332 			return -EFAULT;
1333 		if (ent_count < 0)
1334 			return -EINVAL;
1335 		credit_init_bits(ent_count);
1336 		return 0;
1337 	case RNDADDENTROPY: {
1338 		struct iov_iter iter;
1339 		struct iovec iov;
1340 		ssize_t ret;
1341 		int len;
1342 
1343 		if (!capable(CAP_SYS_ADMIN))
1344 			return -EPERM;
1345 		if (get_user(ent_count, p++))
1346 			return -EFAULT;
1347 		if (ent_count < 0)
1348 			return -EINVAL;
1349 		if (get_user(len, p++))
1350 			return -EFAULT;
1351 		ret = import_single_range(WRITE, p, len, &iov, &iter);
1352 		if (unlikely(ret))
1353 			return ret;
1354 		ret = write_pool_user(&iter);
1355 		if (unlikely(ret < 0))
1356 			return ret;
1357 		/* Since we're crediting, enforce that it was all written into the pool. */
1358 		if (unlikely(ret != len))
1359 			return -EFAULT;
1360 		credit_init_bits(ent_count);
1361 		return 0;
1362 	}
1363 	case RNDZAPENTCNT:
1364 	case RNDCLEARPOOL:
1365 		/* No longer has any effect. */
1366 		if (!capable(CAP_SYS_ADMIN))
1367 			return -EPERM;
1368 		return 0;
1369 	case RNDRESEEDCRNG:
1370 		if (!capable(CAP_SYS_ADMIN))
1371 			return -EPERM;
1372 		if (!crng_ready())
1373 			return -ENODATA;
1374 		crng_reseed();
1375 		return 0;
1376 	default:
1377 		return -EINVAL;
1378 	}
1379 }
1380 
random_fasync(int fd,struct file * filp,int on)1381 static int random_fasync(int fd, struct file *filp, int on)
1382 {
1383 	return fasync_helper(fd, filp, on, &fasync);
1384 }
1385 
1386 const struct file_operations random_fops = {
1387 	.read_iter = random_read_iter,
1388 	.write_iter = random_write_iter,
1389 	.poll = random_poll,
1390 	.unlocked_ioctl = random_ioctl,
1391 	.compat_ioctl = compat_ptr_ioctl,
1392 	.fasync = random_fasync,
1393 	.llseek = noop_llseek,
1394 	.splice_read = generic_file_splice_read,
1395 	.splice_write = iter_file_splice_write,
1396 };
1397 
1398 const struct file_operations urandom_fops = {
1399 	.read_iter = urandom_read_iter,
1400 	.write_iter = random_write_iter,
1401 	.unlocked_ioctl = random_ioctl,
1402 	.compat_ioctl = compat_ptr_ioctl,
1403 	.fasync = random_fasync,
1404 	.llseek = noop_llseek,
1405 	.splice_read = generic_file_splice_read,
1406 	.splice_write = iter_file_splice_write,
1407 };
1408 
1409 
1410 /********************************************************************
1411  *
1412  * Sysctl interface.
1413  *
1414  * These are partly unused legacy knobs with dummy values to not break
1415  * userspace and partly still useful things. They are usually accessible
1416  * in /proc/sys/kernel/random/ and are as follows:
1417  *
1418  * - boot_id - a UUID representing the current boot.
1419  *
1420  * - uuid - a random UUID, different each time the file is read.
1421  *
1422  * - poolsize - the number of bits of entropy that the input pool can
1423  *   hold, tied to the POOL_BITS constant.
1424  *
1425  * - entropy_avail - the number of bits of entropy currently in the
1426  *   input pool. Always <= poolsize.
1427  *
1428  * - write_wakeup_threshold - the amount of entropy in the input pool
1429  *   below which write polls to /dev/random will unblock, requesting
1430  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1431  *   to avoid breaking old userspaces, but writing to it does not
1432  *   change any behavior of the RNG.
1433  *
1434  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1435  *   It is writable to avoid breaking old userspaces, but writing
1436  *   to it does not change any behavior of the RNG.
1437  *
1438  ********************************************************************/
1439 
1440 #ifdef CONFIG_SYSCTL
1441 
1442 #include <linux/sysctl.h>
1443 
1444 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1445 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1446 static int sysctl_poolsize = POOL_BITS;
1447 static u8 sysctl_bootid[UUID_SIZE];
1448 
1449 /*
1450  * This function is used to return both the bootid UUID, and random
1451  * UUID. The difference is in whether table->data is NULL; if it is,
1452  * then a new UUID is generated and returned to the user.
1453  */
proc_do_uuid(struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1454 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1455 			size_t *lenp, loff_t *ppos)
1456 {
1457 	u8 tmp_uuid[UUID_SIZE], *uuid;
1458 	char uuid_string[UUID_STRING_LEN + 1];
1459 	struct ctl_table fake_table = {
1460 		.data = uuid_string,
1461 		.maxlen = UUID_STRING_LEN
1462 	};
1463 
1464 	if (write)
1465 		return -EPERM;
1466 
1467 	uuid = table->data;
1468 	if (!uuid) {
1469 		uuid = tmp_uuid;
1470 		generate_random_uuid(uuid);
1471 	} else {
1472 		static DEFINE_SPINLOCK(bootid_spinlock);
1473 
1474 		spin_lock(&bootid_spinlock);
1475 		if (!uuid[8])
1476 			generate_random_uuid(uuid);
1477 		spin_unlock(&bootid_spinlock);
1478 	}
1479 
1480 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1481 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1482 }
1483 
1484 /* The same as proc_dointvec, but writes don't change anything. */
proc_do_rointvec(struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1485 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1486 			    size_t *lenp, loff_t *ppos)
1487 {
1488 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1489 }
1490 
1491 extern struct ctl_table random_table[];
1492 struct ctl_table random_table[] = {
1493 	{
1494 		.procname	= "poolsize",
1495 		.data		= &sysctl_poolsize,
1496 		.maxlen		= sizeof(int),
1497 		.mode		= 0444,
1498 		.proc_handler	= proc_dointvec,
1499 	},
1500 	{
1501 		.procname	= "entropy_avail",
1502 		.data		= &input_pool.init_bits,
1503 		.maxlen		= sizeof(int),
1504 		.mode		= 0444,
1505 		.proc_handler	= proc_dointvec,
1506 	},
1507 	{
1508 		.procname	= "write_wakeup_threshold",
1509 		.data		= &sysctl_random_write_wakeup_bits,
1510 		.maxlen		= sizeof(int),
1511 		.mode		= 0644,
1512 		.proc_handler	= proc_do_rointvec,
1513 	},
1514 	{
1515 		.procname	= "urandom_min_reseed_secs",
1516 		.data		= &sysctl_random_min_urandom_seed,
1517 		.maxlen		= sizeof(int),
1518 		.mode		= 0644,
1519 		.proc_handler	= proc_do_rointvec,
1520 	},
1521 	{
1522 		.procname	= "boot_id",
1523 		.data		= &sysctl_bootid,
1524 		.mode		= 0444,
1525 		.proc_handler	= proc_do_uuid,
1526 	},
1527 	{
1528 		.procname	= "uuid",
1529 		.mode		= 0444,
1530 		.proc_handler	= proc_do_uuid,
1531 	},
1532 	{ }
1533 };
1534 #endif	/* CONFIG_SYSCTL */
1535