• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38 
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44 
45 #ifdef CONFIG_PREEMPT_RCU
46 
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49 
50 /*
51  * Defined as a macro as it is a very low level header included from
52  * areas that don't even know about current.  This gives the rcu_read_lock()
53  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55  */
56 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
57 
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59 
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65 
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 	preempt_disable();
69 }
70 
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 	preempt_enable();
74 	rcu_read_unlock_strict();
75 }
76 
rcu_preempt_depth(void)77 static inline int rcu_preempt_depth(void)
78 {
79 	return 0;
80 }
81 
82 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
83 
84 /* Internal to kernel */
85 void rcu_init(void);
86 extern int rcu_scheduler_active __read_mostly;
87 void rcu_sched_clock_irq(int user);
88 void rcu_report_dead(unsigned int cpu);
89 void rcutree_migrate_callbacks(int cpu);
90 
91 #ifdef CONFIG_TASKS_RCU_GENERIC
92 void rcu_init_tasks_generic(void);
93 #else
rcu_init_tasks_generic(void)94 static inline void rcu_init_tasks_generic(void) { }
95 #endif
96 
97 #ifdef CONFIG_RCU_STALL_COMMON
98 void rcu_sysrq_start(void);
99 void rcu_sysrq_end(void);
100 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)101 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)102 static inline void rcu_sysrq_end(void) { }
103 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
104 
105 #ifdef CONFIG_NO_HZ_FULL
106 void rcu_user_enter(void);
107 void rcu_user_exit(void);
108 #else
rcu_user_enter(void)109 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)110 static inline void rcu_user_exit(void) { }
111 #endif /* CONFIG_NO_HZ_FULL */
112 
113 #ifdef CONFIG_RCU_NOCB_CPU
114 void rcu_init_nohz(void);
115 void rcu_nocb_flush_deferred_wakeup(void);
116 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)117 static inline void rcu_init_nohz(void) { }
rcu_nocb_flush_deferred_wakeup(void)118 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
119 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
120 
121 /**
122  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
123  * @a: Code that RCU needs to pay attention to.
124  *
125  * RCU read-side critical sections are forbidden in the inner idle loop,
126  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
127  * will happily ignore any such read-side critical sections.  However,
128  * things like powertop need tracepoints in the inner idle loop.
129  *
130  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
131  * will tell RCU that it needs to pay attention, invoke its argument
132  * (in this example, calling the do_something_with_RCU() function),
133  * and then tell RCU to go back to ignoring this CPU.  It is permissible
134  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
135  * on the order of a million or so, even on 32-bit systems).  It is
136  * not legal to block within RCU_NONIDLE(), nor is it permissible to
137  * transfer control either into or out of RCU_NONIDLE()'s statement.
138  */
139 #define RCU_NONIDLE(a) \
140 	do { \
141 		rcu_irq_enter_irqson(); \
142 		do { a; } while (0); \
143 		rcu_irq_exit_irqson(); \
144 	} while (0)
145 
146 /*
147  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
148  * This is a macro rather than an inline function to avoid #include hell.
149  */
150 #ifdef CONFIG_TASKS_RCU_GENERIC
151 
152 # ifdef CONFIG_TASKS_RCU
153 # define rcu_tasks_classic_qs(t, preempt)				\
154 	do {								\
155 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
156 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
157 	} while (0)
158 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
159 void synchronize_rcu_tasks(void);
160 # else
161 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
162 # define call_rcu_tasks call_rcu
163 # define synchronize_rcu_tasks synchronize_rcu
164 # endif
165 
166 # ifdef CONFIG_TASKS_TRACE_RCU
167 # define rcu_tasks_trace_qs(t)						\
168 	do {								\
169 		if (!likely(READ_ONCE((t)->trc_reader_checked)) &&	\
170 		    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {	\
171 			smp_store_release(&(t)->trc_reader_checked, true); \
172 			smp_mb(); /* Readers partitioned by store. */	\
173 		}							\
174 	} while (0)
175 # else
176 # define rcu_tasks_trace_qs(t) do { } while (0)
177 # endif
178 
179 #define rcu_tasks_qs(t, preempt)					\
180 do {									\
181 	rcu_tasks_classic_qs((t), (preempt));				\
182 	rcu_tasks_trace_qs((t));					\
183 } while (0)
184 
185 # ifdef CONFIG_TASKS_RUDE_RCU
186 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
187 void synchronize_rcu_tasks_rude(void);
188 # endif
189 
190 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
191 void exit_tasks_rcu_start(void);
192 void exit_tasks_rcu_finish(void);
193 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
194 #define rcu_tasks_qs(t, preempt) do { } while (0)
195 #define rcu_note_voluntary_context_switch(t) do { } while (0)
196 #define call_rcu_tasks call_rcu
197 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)198 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)199 static inline void exit_tasks_rcu_finish(void) { }
200 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
201 
202 /**
203  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
204  *
205  * This macro resembles cond_resched(), except that it is defined to
206  * report potential quiescent states to RCU-tasks even if the cond_resched()
207  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
208  */
209 #define cond_resched_tasks_rcu_qs() \
210 do { \
211 	rcu_tasks_qs(current, false); \
212 	cond_resched(); \
213 } while (0)
214 
215 /*
216  * Infrastructure to implement the synchronize_() primitives in
217  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
218  */
219 
220 #if defined(CONFIG_TREE_RCU)
221 #include <linux/rcutree.h>
222 #elif defined(CONFIG_TINY_RCU)
223 #include <linux/rcutiny.h>
224 #else
225 #error "Unknown RCU implementation specified to kernel configuration"
226 #endif
227 
228 /*
229  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
230  * are needed for dynamic initialization and destruction of rcu_head
231  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
232  * dynamic initialization and destruction of statically allocated rcu_head
233  * structures.  However, rcu_head structures allocated dynamically in the
234  * heap don't need any initialization.
235  */
236 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
237 void init_rcu_head(struct rcu_head *head);
238 void destroy_rcu_head(struct rcu_head *head);
239 void init_rcu_head_on_stack(struct rcu_head *head);
240 void destroy_rcu_head_on_stack(struct rcu_head *head);
241 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)242 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)243 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)244 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)245 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
246 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
247 
248 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
249 bool rcu_lockdep_current_cpu_online(void);
250 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)251 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
252 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
253 
254 #ifdef CONFIG_DEBUG_LOCK_ALLOC
255 
rcu_lock_acquire(struct lockdep_map * map)256 static inline void rcu_lock_acquire(struct lockdep_map *map)
257 {
258 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
259 }
260 
rcu_lock_release(struct lockdep_map * map)261 static inline void rcu_lock_release(struct lockdep_map *map)
262 {
263 	lock_release(map, _THIS_IP_);
264 }
265 
266 extern struct lockdep_map rcu_lock_map;
267 extern struct lockdep_map rcu_bh_lock_map;
268 extern struct lockdep_map rcu_sched_lock_map;
269 extern struct lockdep_map rcu_callback_map;
270 int debug_lockdep_rcu_enabled(void);
271 int rcu_read_lock_held(void);
272 int rcu_read_lock_bh_held(void);
273 int rcu_read_lock_sched_held(void);
274 int rcu_read_lock_any_held(void);
275 
276 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
277 
278 # define rcu_lock_acquire(a)		do { } while (0)
279 # define rcu_lock_release(a)		do { } while (0)
280 
rcu_read_lock_held(void)281 static inline int rcu_read_lock_held(void)
282 {
283 	return 1;
284 }
285 
rcu_read_lock_bh_held(void)286 static inline int rcu_read_lock_bh_held(void)
287 {
288 	return 1;
289 }
290 
rcu_read_lock_sched_held(void)291 static inline int rcu_read_lock_sched_held(void)
292 {
293 	return !preemptible();
294 }
295 
rcu_read_lock_any_held(void)296 static inline int rcu_read_lock_any_held(void)
297 {
298 	return !preemptible();
299 }
300 
301 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
302 
303 #ifdef CONFIG_PROVE_RCU
304 
305 /**
306  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
307  * @c: condition to check
308  * @s: informative message
309  */
310 #define RCU_LOCKDEP_WARN(c, s)						\
311 	do {								\
312 		static bool __section(".data.unlikely") __warned;	\
313 		if ((c) && debug_lockdep_rcu_enabled() && !__warned) {	\
314 			__warned = true;				\
315 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
316 		}							\
317 	} while (0)
318 
319 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)320 static inline void rcu_preempt_sleep_check(void)
321 {
322 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
323 			 "Illegal context switch in RCU read-side critical section");
324 }
325 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)326 static inline void rcu_preempt_sleep_check(void) { }
327 #endif /* #else #ifdef CONFIG_PROVE_RCU */
328 
329 #define rcu_sleep_check()						\
330 	do {								\
331 		rcu_preempt_sleep_check();				\
332 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
333 				 "Illegal context switch in RCU-bh read-side critical section"); \
334 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
335 				 "Illegal context switch in RCU-sched read-side critical section"); \
336 	} while (0)
337 
338 #else /* #ifdef CONFIG_PROVE_RCU */
339 
340 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
341 #define rcu_sleep_check() do { } while (0)
342 
343 #endif /* #else #ifdef CONFIG_PROVE_RCU */
344 
345 /*
346  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
347  * and rcu_assign_pointer().  Some of these could be folded into their
348  * callers, but they are left separate in order to ease introduction of
349  * multiple pointers markings to match different RCU implementations
350  * (e.g., __srcu), should this make sense in the future.
351  */
352 
353 #ifdef __CHECKER__
354 #define rcu_check_sparse(p, space) \
355 	((void)(((typeof(*p) space *)p) == p))
356 #else /* #ifdef __CHECKER__ */
357 #define rcu_check_sparse(p, space)
358 #endif /* #else #ifdef __CHECKER__ */
359 
360 #define __rcu_access_pointer(p, space) \
361 ({ \
362 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
363 	rcu_check_sparse(p, space); \
364 	((typeof(*p) __force __kernel *)(_________p1)); \
365 })
366 #define __rcu_dereference_check(p, c, space) \
367 ({ \
368 	/* Dependency order vs. p above. */ \
369 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
370 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
371 	rcu_check_sparse(p, space); \
372 	((typeof(*p) __force __kernel *)(________p1)); \
373 })
374 #define __rcu_dereference_protected(p, c, space) \
375 ({ \
376 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
377 	rcu_check_sparse(p, space); \
378 	((typeof(*p) __force __kernel *)(p)); \
379 })
380 #define rcu_dereference_raw(p) \
381 ({ \
382 	/* Dependency order vs. p above. */ \
383 	typeof(p) ________p1 = READ_ONCE(p); \
384 	((typeof(*p) __force __kernel *)(________p1)); \
385 })
386 
387 /**
388  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
389  * @v: The value to statically initialize with.
390  */
391 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
392 
393 /**
394  * rcu_assign_pointer() - assign to RCU-protected pointer
395  * @p: pointer to assign to
396  * @v: value to assign (publish)
397  *
398  * Assigns the specified value to the specified RCU-protected
399  * pointer, ensuring that any concurrent RCU readers will see
400  * any prior initialization.
401  *
402  * Inserts memory barriers on architectures that require them
403  * (which is most of them), and also prevents the compiler from
404  * reordering the code that initializes the structure after the pointer
405  * assignment.  More importantly, this call documents which pointers
406  * will be dereferenced by RCU read-side code.
407  *
408  * In some special cases, you may use RCU_INIT_POINTER() instead
409  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
410  * to the fact that it does not constrain either the CPU or the compiler.
411  * That said, using RCU_INIT_POINTER() when you should have used
412  * rcu_assign_pointer() is a very bad thing that results in
413  * impossible-to-diagnose memory corruption.  So please be careful.
414  * See the RCU_INIT_POINTER() comment header for details.
415  *
416  * Note that rcu_assign_pointer() evaluates each of its arguments only
417  * once, appearances notwithstanding.  One of the "extra" evaluations
418  * is in typeof() and the other visible only to sparse (__CHECKER__),
419  * neither of which actually execute the argument.  As with most cpp
420  * macros, this execute-arguments-only-once property is important, so
421  * please be careful when making changes to rcu_assign_pointer() and the
422  * other macros that it invokes.
423  */
424 #define rcu_assign_pointer(p, v)					      \
425 do {									      \
426 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
427 	rcu_check_sparse(p, __rcu);					      \
428 									      \
429 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
430 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
431 	else								      \
432 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
433 } while (0)
434 
435 /**
436  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
437  * @rcu_ptr: RCU pointer, whose old value is returned
438  * @ptr: regular pointer
439  * @c: the lockdep conditions under which the dereference will take place
440  *
441  * Perform a replacement, where @rcu_ptr is an RCU-annotated
442  * pointer and @c is the lockdep argument that is passed to the
443  * rcu_dereference_protected() call used to read that pointer.  The old
444  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
445  */
446 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
447 ({									\
448 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
449 	rcu_assign_pointer((rcu_ptr), (ptr));				\
450 	__tmp;								\
451 })
452 
453 /**
454  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
455  * @p: The pointer to read
456  *
457  * Return the value of the specified RCU-protected pointer, but omit the
458  * lockdep checks for being in an RCU read-side critical section.  This is
459  * useful when the value of this pointer is accessed, but the pointer is
460  * not dereferenced, for example, when testing an RCU-protected pointer
461  * against NULL.  Although rcu_access_pointer() may also be used in cases
462  * where update-side locks prevent the value of the pointer from changing,
463  * you should instead use rcu_dereference_protected() for this use case.
464  *
465  * It is also permissible to use rcu_access_pointer() when read-side
466  * access to the pointer was removed at least one grace period ago, as
467  * is the case in the context of the RCU callback that is freeing up
468  * the data, or after a synchronize_rcu() returns.  This can be useful
469  * when tearing down multi-linked structures after a grace period
470  * has elapsed.
471  */
472 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
473 
474 /**
475  * rcu_dereference_check() - rcu_dereference with debug checking
476  * @p: The pointer to read, prior to dereferencing
477  * @c: The conditions under which the dereference will take place
478  *
479  * Do an rcu_dereference(), but check that the conditions under which the
480  * dereference will take place are correct.  Typically the conditions
481  * indicate the various locking conditions that should be held at that
482  * point.  The check should return true if the conditions are satisfied.
483  * An implicit check for being in an RCU read-side critical section
484  * (rcu_read_lock()) is included.
485  *
486  * For example:
487  *
488  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
489  *
490  * could be used to indicate to lockdep that foo->bar may only be dereferenced
491  * if either rcu_read_lock() is held, or that the lock required to replace
492  * the bar struct at foo->bar is held.
493  *
494  * Note that the list of conditions may also include indications of when a lock
495  * need not be held, for example during initialisation or destruction of the
496  * target struct:
497  *
498  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
499  *					      atomic_read(&foo->usage) == 0);
500  *
501  * Inserts memory barriers on architectures that require them
502  * (currently only the Alpha), prevents the compiler from refetching
503  * (and from merging fetches), and, more importantly, documents exactly
504  * which pointers are protected by RCU and checks that the pointer is
505  * annotated as __rcu.
506  */
507 #define rcu_dereference_check(p, c) \
508 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
509 
510 /**
511  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
512  * @p: The pointer to read, prior to dereferencing
513  * @c: The conditions under which the dereference will take place
514  *
515  * This is the RCU-bh counterpart to rcu_dereference_check().
516  */
517 #define rcu_dereference_bh_check(p, c) \
518 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
519 
520 /**
521  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
522  * @p: The pointer to read, prior to dereferencing
523  * @c: The conditions under which the dereference will take place
524  *
525  * This is the RCU-sched counterpart to rcu_dereference_check().
526  */
527 #define rcu_dereference_sched_check(p, c) \
528 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
529 				__rcu)
530 
531 /*
532  * The tracing infrastructure traces RCU (we want that), but unfortunately
533  * some of the RCU checks causes tracing to lock up the system.
534  *
535  * The no-tracing version of rcu_dereference_raw() must not call
536  * rcu_read_lock_held().
537  */
538 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
539 
540 /**
541  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
542  * @p: The pointer to read, prior to dereferencing
543  * @c: The conditions under which the dereference will take place
544  *
545  * Return the value of the specified RCU-protected pointer, but omit
546  * the READ_ONCE().  This is useful in cases where update-side locks
547  * prevent the value of the pointer from changing.  Please note that this
548  * primitive does *not* prevent the compiler from repeating this reference
549  * or combining it with other references, so it should not be used without
550  * protection of appropriate locks.
551  *
552  * This function is only for update-side use.  Using this function
553  * when protected only by rcu_read_lock() will result in infrequent
554  * but very ugly failures.
555  */
556 #define rcu_dereference_protected(p, c) \
557 	__rcu_dereference_protected((p), (c), __rcu)
558 
559 
560 /**
561  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
562  * @p: The pointer to read, prior to dereferencing
563  *
564  * This is a simple wrapper around rcu_dereference_check().
565  */
566 #define rcu_dereference(p) rcu_dereference_check(p, 0)
567 
568 /**
569  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
570  * @p: The pointer to read, prior to dereferencing
571  *
572  * Makes rcu_dereference_check() do the dirty work.
573  */
574 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
575 
576 /**
577  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
578  * @p: The pointer to read, prior to dereferencing
579  *
580  * Makes rcu_dereference_check() do the dirty work.
581  */
582 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
583 
584 /**
585  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
586  * @p: The pointer to hand off
587  *
588  * This is simply an identity function, but it documents where a pointer
589  * is handed off from RCU to some other synchronization mechanism, for
590  * example, reference counting or locking.  In C11, it would map to
591  * kill_dependency().  It could be used as follows::
592  *
593  *	rcu_read_lock();
594  *	p = rcu_dereference(gp);
595  *	long_lived = is_long_lived(p);
596  *	if (long_lived) {
597  *		if (!atomic_inc_not_zero(p->refcnt))
598  *			long_lived = false;
599  *		else
600  *			p = rcu_pointer_handoff(p);
601  *	}
602  *	rcu_read_unlock();
603  */
604 #define rcu_pointer_handoff(p) (p)
605 
606 /**
607  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
608  *
609  * When synchronize_rcu() is invoked on one CPU while other CPUs
610  * are within RCU read-side critical sections, then the
611  * synchronize_rcu() is guaranteed to block until after all the other
612  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
613  * on one CPU while other CPUs are within RCU read-side critical
614  * sections, invocation of the corresponding RCU callback is deferred
615  * until after the all the other CPUs exit their critical sections.
616  *
617  * Note, however, that RCU callbacks are permitted to run concurrently
618  * with new RCU read-side critical sections.  One way that this can happen
619  * is via the following sequence of events: (1) CPU 0 enters an RCU
620  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
621  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
622  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
623  * callback is invoked.  This is legal, because the RCU read-side critical
624  * section that was running concurrently with the call_rcu() (and which
625  * therefore might be referencing something that the corresponding RCU
626  * callback would free up) has completed before the corresponding
627  * RCU callback is invoked.
628  *
629  * RCU read-side critical sections may be nested.  Any deferred actions
630  * will be deferred until the outermost RCU read-side critical section
631  * completes.
632  *
633  * You can avoid reading and understanding the next paragraph by
634  * following this rule: don't put anything in an rcu_read_lock() RCU
635  * read-side critical section that would block in a !PREEMPTION kernel.
636  * But if you want the full story, read on!
637  *
638  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
639  * it is illegal to block while in an RCU read-side critical section.
640  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
641  * kernel builds, RCU read-side critical sections may be preempted,
642  * but explicit blocking is illegal.  Finally, in preemptible RCU
643  * implementations in real-time (with -rt patchset) kernel builds, RCU
644  * read-side critical sections may be preempted and they may also block, but
645  * only when acquiring spinlocks that are subject to priority inheritance.
646  */
rcu_read_lock(void)647 static __always_inline void rcu_read_lock(void)
648 {
649 	__rcu_read_lock();
650 	__acquire(RCU);
651 	rcu_lock_acquire(&rcu_lock_map);
652 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
653 			 "rcu_read_lock() used illegally while idle");
654 }
655 
656 /*
657  * So where is rcu_write_lock()?  It does not exist, as there is no
658  * way for writers to lock out RCU readers.  This is a feature, not
659  * a bug -- this property is what provides RCU's performance benefits.
660  * Of course, writers must coordinate with each other.  The normal
661  * spinlock primitives work well for this, but any other technique may be
662  * used as well.  RCU does not care how the writers keep out of each
663  * others' way, as long as they do so.
664  */
665 
666 /**
667  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
668  *
669  * In most situations, rcu_read_unlock() is immune from deadlock.
670  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
671  * is responsible for deboosting, which it does via rt_mutex_unlock().
672  * Unfortunately, this function acquires the scheduler's runqueue and
673  * priority-inheritance spinlocks.  This means that deadlock could result
674  * if the caller of rcu_read_unlock() already holds one of these locks or
675  * any lock that is ever acquired while holding them.
676  *
677  * That said, RCU readers are never priority boosted unless they were
678  * preempted.  Therefore, one way to avoid deadlock is to make sure
679  * that preemption never happens within any RCU read-side critical
680  * section whose outermost rcu_read_unlock() is called with one of
681  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
682  * a number of ways, for example, by invoking preempt_disable() before
683  * critical section's outermost rcu_read_lock().
684  *
685  * Given that the set of locks acquired by rt_mutex_unlock() might change
686  * at any time, a somewhat more future-proofed approach is to make sure
687  * that that preemption never happens within any RCU read-side critical
688  * section whose outermost rcu_read_unlock() is called with irqs disabled.
689  * This approach relies on the fact that rt_mutex_unlock() currently only
690  * acquires irq-disabled locks.
691  *
692  * The second of these two approaches is best in most situations,
693  * however, the first approach can also be useful, at least to those
694  * developers willing to keep abreast of the set of locks acquired by
695  * rt_mutex_unlock().
696  *
697  * See rcu_read_lock() for more information.
698  */
rcu_read_unlock(void)699 static inline void rcu_read_unlock(void)
700 {
701 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
702 			 "rcu_read_unlock() used illegally while idle");
703 	__release(RCU);
704 	__rcu_read_unlock();
705 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
706 }
707 
708 /**
709  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
710  *
711  * This is equivalent of rcu_read_lock(), but also disables softirqs.
712  * Note that anything else that disables softirqs can also serve as
713  * an RCU read-side critical section.
714  *
715  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
716  * must occur in the same context, for example, it is illegal to invoke
717  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
718  * was invoked from some other task.
719  */
rcu_read_lock_bh(void)720 static inline void rcu_read_lock_bh(void)
721 {
722 	local_bh_disable();
723 	__acquire(RCU_BH);
724 	rcu_lock_acquire(&rcu_bh_lock_map);
725 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
726 			 "rcu_read_lock_bh() used illegally while idle");
727 }
728 
729 /**
730  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
731  *
732  * See rcu_read_lock_bh() for more information.
733  */
rcu_read_unlock_bh(void)734 static inline void rcu_read_unlock_bh(void)
735 {
736 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
737 			 "rcu_read_unlock_bh() used illegally while idle");
738 	rcu_lock_release(&rcu_bh_lock_map);
739 	__release(RCU_BH);
740 	local_bh_enable();
741 }
742 
743 /**
744  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
745  *
746  * This is equivalent of rcu_read_lock(), but disables preemption.
747  * Read-side critical sections can also be introduced by anything else
748  * that disables preemption, including local_irq_disable() and friends.
749  *
750  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
751  * must occur in the same context, for example, it is illegal to invoke
752  * rcu_read_unlock_sched() from process context if the matching
753  * rcu_read_lock_sched() was invoked from an NMI handler.
754  */
rcu_read_lock_sched(void)755 static inline void rcu_read_lock_sched(void)
756 {
757 	preempt_disable();
758 	__acquire(RCU_SCHED);
759 	rcu_lock_acquire(&rcu_sched_lock_map);
760 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
761 			 "rcu_read_lock_sched() used illegally while idle");
762 }
763 
764 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)765 static inline notrace void rcu_read_lock_sched_notrace(void)
766 {
767 	preempt_disable_notrace();
768 	__acquire(RCU_SCHED);
769 }
770 
771 /**
772  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
773  *
774  * See rcu_read_lock_sched() for more information.
775  */
rcu_read_unlock_sched(void)776 static inline void rcu_read_unlock_sched(void)
777 {
778 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
779 			 "rcu_read_unlock_sched() used illegally while idle");
780 	rcu_lock_release(&rcu_sched_lock_map);
781 	__release(RCU_SCHED);
782 	preempt_enable();
783 }
784 
785 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)786 static inline notrace void rcu_read_unlock_sched_notrace(void)
787 {
788 	__release(RCU_SCHED);
789 	preempt_enable_notrace();
790 }
791 
792 /**
793  * RCU_INIT_POINTER() - initialize an RCU protected pointer
794  * @p: The pointer to be initialized.
795  * @v: The value to initialized the pointer to.
796  *
797  * Initialize an RCU-protected pointer in special cases where readers
798  * do not need ordering constraints on the CPU or the compiler.  These
799  * special cases are:
800  *
801  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
802  * 2.	The caller has taken whatever steps are required to prevent
803  *	RCU readers from concurrently accessing this pointer *or*
804  * 3.	The referenced data structure has already been exposed to
805  *	readers either at compile time or via rcu_assign_pointer() *and*
806  *
807  *	a.	You have not made *any* reader-visible changes to
808  *		this structure since then *or*
809  *	b.	It is OK for readers accessing this structure from its
810  *		new location to see the old state of the structure.  (For
811  *		example, the changes were to statistical counters or to
812  *		other state where exact synchronization is not required.)
813  *
814  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
815  * result in impossible-to-diagnose memory corruption.  As in the structures
816  * will look OK in crash dumps, but any concurrent RCU readers might
817  * see pre-initialized values of the referenced data structure.  So
818  * please be very careful how you use RCU_INIT_POINTER()!!!
819  *
820  * If you are creating an RCU-protected linked structure that is accessed
821  * by a single external-to-structure RCU-protected pointer, then you may
822  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
823  * pointers, but you must use rcu_assign_pointer() to initialize the
824  * external-to-structure pointer *after* you have completely initialized
825  * the reader-accessible portions of the linked structure.
826  *
827  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
828  * ordering guarantees for either the CPU or the compiler.
829  */
830 #define RCU_INIT_POINTER(p, v) \
831 	do { \
832 		rcu_check_sparse(p, __rcu); \
833 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
834 	} while (0)
835 
836 /**
837  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
838  * @p: The pointer to be initialized.
839  * @v: The value to initialized the pointer to.
840  *
841  * GCC-style initialization for an RCU-protected pointer in a structure field.
842  */
843 #define RCU_POINTER_INITIALIZER(p, v) \
844 		.p = RCU_INITIALIZER(v)
845 
846 /*
847  * Does the specified offset indicate that the corresponding rcu_head
848  * structure can be handled by kvfree_rcu()?
849  */
850 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
851 
852 /*
853  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
854  */
855 #define __kvfree_rcu(head, offset) \
856 	do { \
857 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
858 		kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
859 	} while (0)
860 
861 /**
862  * kfree_rcu() - kfree an object after a grace period.
863  * @ptr:	pointer to kfree
864  * @rhf:	the name of the struct rcu_head within the type of @ptr.
865  *
866  * Many rcu callbacks functions just call kfree() on the base structure.
867  * These functions are trivial, but their size adds up, and furthermore
868  * when they are used in a kernel module, that module must invoke the
869  * high-latency rcu_barrier() function at module-unload time.
870  *
871  * The kfree_rcu() function handles this issue.  Rather than encoding a
872  * function address in the embedded rcu_head structure, kfree_rcu() instead
873  * encodes the offset of the rcu_head structure within the base structure.
874  * Because the functions are not allowed in the low-order 4096 bytes of
875  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
876  * If the offset is larger than 4095 bytes, a compile-time error will
877  * be generated in __kvfree_rcu(). If this error is triggered, you can
878  * either fall back to use of call_rcu() or rearrange the structure to
879  * position the rcu_head structure into the first 4096 bytes.
880  *
881  * Note that the allowable offset might decrease in the future, for example,
882  * to allow something like kmem_cache_free_rcu().
883  *
884  * The BUILD_BUG_ON check must not involve any function calls, hence the
885  * checks are done in macros here.
886  */
887 #define kfree_rcu(ptr, rhf)						\
888 do {									\
889 	typeof (ptr) ___p = (ptr);					\
890 									\
891 	if (___p)							\
892 		__kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
893 } while (0)
894 
895 /**
896  * kvfree_rcu() - kvfree an object after a grace period.
897  *
898  * This macro consists of one or two arguments and it is
899  * based on whether an object is head-less or not. If it
900  * has a head then a semantic stays the same as it used
901  * to be before:
902  *
903  *     kvfree_rcu(ptr, rhf);
904  *
905  * where @ptr is a pointer to kvfree(), @rhf is the name
906  * of the rcu_head structure within the type of @ptr.
907  *
908  * When it comes to head-less variant, only one argument
909  * is passed and that is just a pointer which has to be
910  * freed after a grace period. Therefore the semantic is
911  *
912  *     kvfree_rcu(ptr);
913  *
914  * where @ptr is a pointer to kvfree().
915  *
916  * Please note, head-less way of freeing is permitted to
917  * use from a context that has to follow might_sleep()
918  * annotation. Otherwise, please switch and embed the
919  * rcu_head structure within the type of @ptr.
920  */
921 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
922 	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
923 
924 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
925 #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
926 #define kvfree_rcu_arg_1(ptr)					\
927 do {								\
928 	typeof(ptr) ___p = (ptr);				\
929 								\
930 	if (___p)						\
931 		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
932 } while (0)
933 
934 /*
935  * Place this after a lock-acquisition primitive to guarantee that
936  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
937  * if the UNLOCK and LOCK are executed by the same CPU or if the
938  * UNLOCK and LOCK operate on the same lock variable.
939  */
940 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
941 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
942 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
943 #define smp_mb__after_unlock_lock()	do { } while (0)
944 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
945 
946 
947 /* Has the specified rcu_head structure been handed to call_rcu()? */
948 
949 /**
950  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
951  * @rhp: The rcu_head structure to initialize.
952  *
953  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
954  * given rcu_head structure has already been passed to call_rcu(), then
955  * you must also invoke this rcu_head_init() function on it just after
956  * allocating that structure.  Calls to this function must not race with
957  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
958  */
rcu_head_init(struct rcu_head * rhp)959 static inline void rcu_head_init(struct rcu_head *rhp)
960 {
961 	rhp->func = (rcu_callback_t)~0L;
962 }
963 
964 /**
965  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
966  * @rhp: The rcu_head structure to test.
967  * @f: The function passed to call_rcu() along with @rhp.
968  *
969  * Returns @true if the @rhp has been passed to call_rcu() with @func,
970  * and @false otherwise.  Emits a warning in any other case, including
971  * the case where @rhp has already been invoked after a grace period.
972  * Calls to this function must not race with callback invocation.  One way
973  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
974  * in an RCU read-side critical section that includes a read-side fetch
975  * of the pointer to the structure containing @rhp.
976  */
977 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)978 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
979 {
980 	rcu_callback_t func = READ_ONCE(rhp->func);
981 
982 	if (func == f)
983 		return true;
984 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
985 	return false;
986 }
987 
988 /* kernel/ksysfs.c definitions */
989 extern int rcu_expedited;
990 extern int rcu_normal;
991 
992 #endif /* __LINUX_RCUPDATE_H */
993