• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/register_allocate.h"
25 #include "brw_vec4.h"
26 #include "brw_cfg.h"
27 
28 using namespace brw;
29 
30 namespace brw {
31 
32 static void
assign(unsigned int * reg_hw_locations,backend_reg * reg)33 assign(unsigned int *reg_hw_locations, backend_reg *reg)
34 {
35    if (reg->file == VGRF) {
36       reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
37       reg->offset %= REG_SIZE;
38    }
39 }
40 
41 bool
reg_allocate_trivial()42 vec4_visitor::reg_allocate_trivial()
43 {
44    unsigned int hw_reg_mapping[this->alloc.count];
45    bool virtual_grf_used[this->alloc.count];
46    int next;
47 
48    /* Calculate which virtual GRFs are actually in use after whatever
49     * optimization passes have occurred.
50     */
51    for (unsigned i = 0; i < this->alloc.count; i++) {
52       virtual_grf_used[i] = false;
53    }
54 
55    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
56       if (inst->dst.file == VGRF)
57          virtual_grf_used[inst->dst.nr] = true;
58 
59       for (unsigned i = 0; i < 3; i++) {
60 	 if (inst->src[i].file == VGRF)
61             virtual_grf_used[inst->src[i].nr] = true;
62       }
63    }
64 
65    hw_reg_mapping[0] = this->first_non_payload_grf;
66    next = hw_reg_mapping[0] + this->alloc.sizes[0];
67    for (unsigned i = 1; i < this->alloc.count; i++) {
68       if (virtual_grf_used[i]) {
69 	 hw_reg_mapping[i] = next;
70 	 next += this->alloc.sizes[i];
71       }
72    }
73    prog_data->total_grf = next;
74 
75    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
76       assign(hw_reg_mapping, &inst->dst);
77       assign(hw_reg_mapping, &inst->src[0]);
78       assign(hw_reg_mapping, &inst->src[1]);
79       assign(hw_reg_mapping, &inst->src[2]);
80    }
81 
82    if (prog_data->total_grf > max_grf) {
83       fail("Ran out of regs on trivial allocator (%d/%d)\n",
84 	   prog_data->total_grf, max_grf);
85       return false;
86    }
87 
88    return true;
89 }
90 
91 extern "C" void
brw_vec4_alloc_reg_set(struct brw_compiler * compiler)92 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
93 {
94    int base_reg_count =
95       compiler->devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
96 
97    assert(compiler->devinfo->ver < 8);
98 
99    /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
100     * SEND-from-GRF sources cannot be split, so we also need classes for each
101     * potential message length.
102     */
103    const int class_count = MAX_VGRF_SIZE;
104    int class_sizes[MAX_VGRF_SIZE];
105 
106    for (int i = 0; i < class_count; i++)
107       class_sizes[i] = i + 1;
108 
109 
110    ralloc_free(compiler->vec4_reg_set.regs);
111    compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, base_reg_count, false);
112    if (compiler->devinfo->ver >= 6)
113       ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
114    ralloc_free(compiler->vec4_reg_set.classes);
115    compiler->vec4_reg_set.classes = ralloc_array(compiler, struct ra_class *, class_count);
116 
117    /* Now, add the registers to their classes, and add the conflicts
118     * between them and the base GRF registers (and also each other).
119     */
120    for (int i = 0; i < class_count; i++) {
121       int class_reg_count = base_reg_count - (class_sizes[i] - 1);
122       compiler->vec4_reg_set.classes[i] =
123          ra_alloc_contig_reg_class(compiler->vec4_reg_set.regs, class_sizes[i]);
124 
125       for (int j = 0; j < class_reg_count; j++)
126          ra_class_add_reg(compiler->vec4_reg_set.classes[i], j);
127    }
128 
129    ra_set_finalize(compiler->vec4_reg_set.regs, NULL);
130 }
131 
132 void
setup_payload_interference(struct ra_graph * g,int first_payload_node,int reg_node_count)133 vec4_visitor::setup_payload_interference(struct ra_graph *g,
134                                          int first_payload_node,
135                                          int reg_node_count)
136 {
137    int payload_node_count = this->first_non_payload_grf;
138 
139    for (int i = 0; i < payload_node_count; i++) {
140       /* Mark each payload reg node as being allocated to its physical register.
141        *
142        * The alternative would be to have per-physical register classes, which
143        * would just be silly.
144        */
145       ra_set_node_reg(g, first_payload_node + i, i);
146 
147       /* For now, just mark each payload node as interfering with every other
148        * node to be allocated.
149        */
150       for (int j = 0; j < reg_node_count; j++) {
151          ra_add_node_interference(g, first_payload_node + i, j);
152       }
153    }
154 }
155 
156 bool
reg_allocate()157 vec4_visitor::reg_allocate()
158 {
159    unsigned int hw_reg_mapping[alloc.count];
160    int payload_reg_count = this->first_non_payload_grf;
161 
162    /* Using the trivial allocator can be useful in debugging undefined
163     * register access as a result of broken optimization passes.
164     */
165    if (0)
166       return reg_allocate_trivial();
167 
168    assert(devinfo->ver < 8);
169 
170    const vec4_live_variables &live = live_analysis.require();
171    int node_count = alloc.count;
172    int first_payload_node = node_count;
173    node_count += payload_reg_count;
174    struct ra_graph *g =
175       ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
176 
177    for (unsigned i = 0; i < alloc.count; i++) {
178       int size = this->alloc.sizes[i];
179       assert(size >= 1 && size <= MAX_VGRF_SIZE);
180       ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
181 
182       for (unsigned j = 0; j < i; j++) {
183 	 if (live.vgrfs_interfere(i, j)) {
184 	    ra_add_node_interference(g, i, j);
185 	 }
186       }
187    }
188 
189    /* Certain instructions can't safely use the same register for their
190     * sources and destination.  Add interference.
191     */
192    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
193       if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
194          for (unsigned i = 0; i < 3; i++) {
195             if (inst->src[i].file == VGRF) {
196                ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
197             }
198          }
199       }
200    }
201 
202    setup_payload_interference(g, first_payload_node, node_count);
203 
204    if (!ra_allocate(g)) {
205       /* Failed to allocate registers.  Spill a reg, and the caller will
206        * loop back into here to try again.
207        */
208       int reg = choose_spill_reg(g);
209       if (this->no_spills) {
210          fail("Failure to register allocate.  Reduce number of live "
211               "values to avoid this.");
212       } else if (reg == -1) {
213          fail("no register to spill\n");
214       } else {
215          spill_reg(reg);
216       }
217       ralloc_free(g);
218       return false;
219    }
220 
221    /* Get the chosen virtual registers for each node, and map virtual
222     * regs in the register classes back down to real hardware reg
223     * numbers.
224     */
225    prog_data->total_grf = payload_reg_count;
226    for (unsigned i = 0; i < alloc.count; i++) {
227       hw_reg_mapping[i] = ra_get_node_reg(g, i);
228       prog_data->total_grf = MAX2(prog_data->total_grf,
229 				  hw_reg_mapping[i] + alloc.sizes[i]);
230    }
231 
232    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
233       assign(hw_reg_mapping, &inst->dst);
234       assign(hw_reg_mapping, &inst->src[0]);
235       assign(hw_reg_mapping, &inst->src[1]);
236       assign(hw_reg_mapping, &inst->src[2]);
237    }
238 
239    ralloc_free(g);
240 
241    return true;
242 }
243 
244 /**
245  * When we decide to spill a register, instead of blindly spilling every use,
246  * save unspills when the spill register is used (read) in consecutive
247  * instructions. This can potentially save a bunch of unspills that would
248  * have very little impact in register allocation anyway.
249  *
250  * Notice that we need to account for this behavior when spilling a register
251  * and when evaluating spilling costs. This function is designed so it can
252  * be called from both places and avoid repeating the logic.
253  *
254  *  - When we call this function from spill_reg(), we pass in scratch_reg the
255  *    actual unspill/spill register that we want to reuse in the current
256  *    instruction.
257  *
258  *  - When we call this from evaluate_spill_costs(), we pass the register for
259  *    which we are evaluating spilling costs.
260  *
261  * In either case, we check if the previous instructions read scratch_reg until
262  * we find one that writes to it with a compatible mask or does not read/write
263  * scratch_reg at all.
264  */
265 static bool
can_use_scratch_for_source(const vec4_instruction * inst,unsigned i,unsigned scratch_reg)266 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
267                            unsigned scratch_reg)
268 {
269    assert(inst->src[i].file == VGRF);
270    bool prev_inst_read_scratch_reg = false;
271 
272    /* See if any previous source in the same instructions reads scratch_reg */
273    for (unsigned n = 0; n < i; n++) {
274       if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
275          prev_inst_read_scratch_reg = true;
276    }
277 
278    /* Now check if previous instructions read/write scratch_reg */
279    for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
280         !prev_inst->is_head_sentinel();
281         prev_inst = (vec4_instruction *) prev_inst->prev) {
282 
283       /* If the previous instruction writes to scratch_reg then we can reuse
284        * it if the write is not conditional and the channels we write are
285        * compatible with our read mask
286        */
287       if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
288          return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
289                 (brw_mask_for_swizzle(inst->src[i].swizzle) &
290                  ~prev_inst->dst.writemask) == 0;
291       }
292 
293       /* Skip scratch read/writes so that instructions generated by spilling
294        * other registers (that won't read/write scratch_reg) do not stop us from
295        * reusing scratch_reg for this instruction.
296        */
297       if (prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_WRITE ||
298           prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ)
299          continue;
300 
301       /* If the previous instruction does not write to scratch_reg, then check
302        * if it reads it
303        */
304       int n;
305       for (n = 0; n < 3; n++) {
306          if (prev_inst->src[n].file == VGRF &&
307              prev_inst->src[n].nr == scratch_reg) {
308             prev_inst_read_scratch_reg = true;
309             break;
310          }
311       }
312       if (n == 3) {
313          /* The previous instruction does not read scratch_reg. At this point,
314           * if no previous instruction has read scratch_reg it means that we
315           * will need to unspill it here and we can't reuse it (so we return
316           * false). Otherwise, if we found at least one consecutive instruction
317           * that read scratch_reg, then we know that we got here from
318           * evaluate_spill_costs (since for the spill_reg path any block of
319           * consecutive instructions using scratch_reg must start with a write
320           * to that register, so we would've exited the loop in the check for
321           * the write that we have at the start of this loop), and in that case
322           * it means that we found the point at which the scratch_reg would be
323           * unspilled. Since we always unspill a full vec4, it means that we
324           * have all the channels available and we can just return true to
325           * signal that we can reuse the register in the current instruction
326           * too.
327           */
328          return prev_inst_read_scratch_reg;
329       }
330    }
331 
332    return prev_inst_read_scratch_reg;
333 }
334 
335 static inline float
spill_cost_for_type(enum brw_reg_type type)336 spill_cost_for_type(enum brw_reg_type type)
337 {
338    /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
339     * messages plus the 64b/32b shuffling code.
340     */
341    return type_sz(type) == 8 ? 2.25f : 1.0f;
342 }
343 
344 void
evaluate_spill_costs(float * spill_costs,bool * no_spill)345 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
346 {
347    float loop_scale = 1.0;
348 
349    unsigned *reg_type_size = (unsigned *)
350       ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
351 
352    for (unsigned i = 0; i < this->alloc.count; i++) {
353       spill_costs[i] = 0.0;
354       no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
355       reg_type_size[i] = 0;
356    }
357 
358    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
359     * spill/unspill we'll have to do, and guess that the insides of
360     * loops run 10 times.
361     */
362    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
363       for (unsigned int i = 0; i < 3; i++) {
364          if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
365             /* We will only unspill src[i] it it wasn't unspilled for the
366              * previous instruction, in which case we'll just reuse the scratch
367              * reg for this instruction.
368              */
369             if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
370                spill_costs[inst->src[i].nr] +=
371                   loop_scale * spill_cost_for_type(inst->src[i].type);
372                if (inst->src[i].reladdr ||
373                    inst->src[i].offset >= REG_SIZE)
374                   no_spill[inst->src[i].nr] = true;
375 
376                /* We don't support unspills of partial DF reads.
377                 *
378                 * Our 64-bit unspills are implemented with two 32-bit scratch
379                 * messages, each one reading that for both SIMD4x2 threads that
380                 * we need to shuffle into correct 64-bit data. Ensure that we
381                 * are reading data for both threads.
382                 */
383                if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
384                   no_spill[inst->src[i].nr] = true;
385             }
386 
387             /* We can't spill registers that mix 32-bit and 64-bit access (that
388              * contain 64-bit data that is operated on via 32-bit instructions)
389              */
390             unsigned type_size = type_sz(inst->src[i].type);
391             if (reg_type_size[inst->src[i].nr] == 0)
392                reg_type_size[inst->src[i].nr] = type_size;
393             else if (reg_type_size[inst->src[i].nr] != type_size)
394                no_spill[inst->src[i].nr] = true;
395          }
396       }
397 
398       if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
399          spill_costs[inst->dst.nr] +=
400             loop_scale * spill_cost_for_type(inst->dst.type);
401          if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
402             no_spill[inst->dst.nr] = true;
403 
404          /* We don't support spills of partial DF writes.
405           *
406           * Our 64-bit spills are implemented with two 32-bit scratch messages,
407           * each one writing that for both SIMD4x2 threads. Ensure that we
408           * are writing data for both threads.
409           */
410          if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
411             no_spill[inst->dst.nr] = true;
412 
413          /* We can't spill registers that mix 32-bit and 64-bit access (that
414           * contain 64-bit data that is operated on via 32-bit instructions)
415           */
416          unsigned type_size = type_sz(inst->dst.type);
417          if (reg_type_size[inst->dst.nr] == 0)
418             reg_type_size[inst->dst.nr] = type_size;
419          else if (reg_type_size[inst->dst.nr] != type_size)
420             no_spill[inst->dst.nr] = true;
421       }
422 
423       switch (inst->opcode) {
424 
425       case BRW_OPCODE_DO:
426          loop_scale *= 10;
427          break;
428 
429       case BRW_OPCODE_WHILE:
430          loop_scale /= 10;
431          break;
432 
433       case SHADER_OPCODE_GFX4_SCRATCH_READ:
434       case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
435       case VEC4_OPCODE_MOV_FOR_SCRATCH:
436          for (int i = 0; i < 3; i++) {
437             if (inst->src[i].file == VGRF)
438                no_spill[inst->src[i].nr] = true;
439          }
440          if (inst->dst.file == VGRF)
441             no_spill[inst->dst.nr] = true;
442          break;
443 
444       default:
445          break;
446       }
447    }
448 
449    ralloc_free(reg_type_size);
450 }
451 
452 int
choose_spill_reg(struct ra_graph * g)453 vec4_visitor::choose_spill_reg(struct ra_graph *g)
454 {
455    float spill_costs[this->alloc.count];
456    bool no_spill[this->alloc.count];
457 
458    evaluate_spill_costs(spill_costs, no_spill);
459 
460    for (unsigned i = 0; i < this->alloc.count; i++) {
461       if (!no_spill[i])
462          ra_set_node_spill_cost(g, i, spill_costs[i]);
463    }
464 
465    return ra_get_best_spill_node(g);
466 }
467 
468 void
spill_reg(unsigned spill_reg_nr)469 vec4_visitor::spill_reg(unsigned spill_reg_nr)
470 {
471    assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
472    unsigned spill_offset = last_scratch;
473    last_scratch += alloc.sizes[spill_reg_nr];
474 
475    /* Generate spill/unspill instructions for the objects being spilled. */
476    unsigned scratch_reg = ~0u;
477    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
478       for (unsigned i = 0; i < 3; i++) {
479          if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
480             if (scratch_reg == ~0u ||
481                 !can_use_scratch_for_source(inst, i, scratch_reg)) {
482                /* We need to unspill anyway so make sure we read the full vec4
483                 * in any case. This way, the cached register can be reused
484                 * for consecutive instructions that read different channels of
485                 * the same vec4.
486                 */
487                scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
488                src_reg temp = inst->src[i];
489                temp.nr = scratch_reg;
490                temp.offset = 0;
491                temp.swizzle = BRW_SWIZZLE_XYZW;
492                emit_scratch_read(block, inst,
493                                  dst_reg(temp), inst->src[i], spill_offset);
494                temp.offset = inst->src[i].offset;
495             }
496             assert(scratch_reg != ~0u);
497             inst->src[i].nr = scratch_reg;
498          }
499       }
500 
501       if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
502          emit_scratch_write(block, inst, spill_offset);
503          scratch_reg = inst->dst.nr;
504       }
505    }
506 
507    invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
508 }
509 
510 } /* namespace brw */
511