1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41
42 unsigned int irq_reg_stride;
43 unsigned int type_reg_stride;
44
45 bool clear_status:1;
46 };
47
48 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 int irq)
51 {
52 return &data->chip->irqs[irq];
53 }
54
regmap_irq_lock(struct irq_data * data)55 static void regmap_irq_lock(struct irq_data *data)
56 {
57 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58
59 mutex_lock(&d->lock);
60 }
61
regmap_irq_update_bits(struct regmap_irq_chip_data * d,unsigned int reg,unsigned int mask,unsigned int val)62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 unsigned int reg, unsigned int mask,
64 unsigned int val)
65 {
66 if (d->chip->mask_writeonly)
67 return regmap_write_bits(d->map, reg, mask, val);
68 else
69 return regmap_update_bits(d->map, reg, mask, val);
70 }
71
regmap_irq_sync_unlock(struct irq_data * data)72 static void regmap_irq_sync_unlock(struct irq_data *data)
73 {
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 struct regmap *map = d->map;
76 int i, ret;
77 u32 reg;
78 u32 unmask_offset;
79 u32 val;
80
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
86 }
87
88 if (d->clear_status) {
89 for (i = 0; i < d->chip->num_regs; i++) {
90 reg = d->chip->status_base +
91 (i * map->reg_stride * d->irq_reg_stride);
92
93 ret = regmap_read(map, reg, &val);
94 if (ret)
95 dev_err(d->map->dev,
96 "Failed to clear the interrupt status bits\n");
97 }
98
99 d->clear_status = false;
100 }
101
102 /*
103 * If there's been a change in the mask write it back to the
104 * hardware. We rely on the use of the regmap core cache to
105 * suppress pointless writes.
106 */
107 for (i = 0; i < d->chip->num_regs; i++) {
108 if (!d->chip->mask_base)
109 continue;
110
111 reg = d->chip->mask_base +
112 (i * map->reg_stride * d->irq_reg_stride);
113 if (d->chip->mask_invert) {
114 ret = regmap_irq_update_bits(d, reg,
115 d->mask_buf_def[i], ~d->mask_buf[i]);
116 } else if (d->chip->unmask_base) {
117 /* set mask with mask_base register */
118 ret = regmap_irq_update_bits(d, reg,
119 d->mask_buf_def[i], ~d->mask_buf[i]);
120 if (ret < 0)
121 dev_err(d->map->dev,
122 "Failed to sync unmasks in %x\n",
123 reg);
124 unmask_offset = d->chip->unmask_base -
125 d->chip->mask_base;
126 /* clear mask with unmask_base register */
127 ret = regmap_irq_update_bits(d,
128 reg + unmask_offset,
129 d->mask_buf_def[i],
130 d->mask_buf[i]);
131 } else {
132 ret = regmap_irq_update_bits(d, reg,
133 d->mask_buf_def[i], d->mask_buf[i]);
134 }
135 if (ret != 0)
136 dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 reg);
138
139 reg = d->chip->wake_base +
140 (i * map->reg_stride * d->irq_reg_stride);
141 if (d->wake_buf) {
142 if (d->chip->wake_invert)
143 ret = regmap_irq_update_bits(d, reg,
144 d->mask_buf_def[i],
145 ~d->wake_buf[i]);
146 else
147 ret = regmap_irq_update_bits(d, reg,
148 d->mask_buf_def[i],
149 d->wake_buf[i]);
150 if (ret != 0)
151 dev_err(d->map->dev,
152 "Failed to sync wakes in %x: %d\n",
153 reg, ret);
154 }
155
156 if (!d->chip->init_ack_masked)
157 continue;
158 /*
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
162 */
163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 reg = d->chip->ack_base +
165 (i * map->reg_stride * d->irq_reg_stride);
166 /* some chips ack by write 0 */
167 if (d->chip->ack_invert)
168 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 else
170 ret = regmap_write(map, reg, d->mask_buf[i]);
171 if (d->chip->clear_ack) {
172 if (d->chip->ack_invert && !ret)
173 ret = regmap_write(map, reg, UINT_MAX);
174 else if (!ret)
175 ret = regmap_write(map, reg, 0);
176 }
177 if (ret != 0)
178 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
179 reg, ret);
180 }
181 }
182
183 /* Don't update the type bits if we're using mask bits for irq type. */
184 if (!d->chip->type_in_mask) {
185 for (i = 0; i < d->chip->num_type_reg; i++) {
186 if (!d->type_buf_def[i])
187 continue;
188 reg = d->chip->type_base +
189 (i * map->reg_stride * d->type_reg_stride);
190 if (d->chip->type_invert)
191 ret = regmap_irq_update_bits(d, reg,
192 d->type_buf_def[i], ~d->type_buf[i]);
193 else
194 ret = regmap_irq_update_bits(d, reg,
195 d->type_buf_def[i], d->type_buf[i]);
196 if (ret != 0)
197 dev_err(d->map->dev, "Failed to sync type in %x\n",
198 reg);
199 }
200 }
201
202 if (d->chip->runtime_pm)
203 pm_runtime_put(map->dev);
204
205 /* If we've changed our wakeup count propagate it to the parent */
206 if (d->wake_count < 0)
207 for (i = d->wake_count; i < 0; i++)
208 irq_set_irq_wake(d->irq, 0);
209 else if (d->wake_count > 0)
210 for (i = 0; i < d->wake_count; i++)
211 irq_set_irq_wake(d->irq, 1);
212
213 d->wake_count = 0;
214
215 mutex_unlock(&d->lock);
216 }
217
regmap_irq_enable(struct irq_data * data)218 static void regmap_irq_enable(struct irq_data *data)
219 {
220 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
221 struct regmap *map = d->map;
222 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
223 unsigned int reg = irq_data->reg_offset / map->reg_stride;
224 unsigned int mask, type;
225
226 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
227
228 /*
229 * The type_in_mask flag means that the underlying hardware uses
230 * separate mask bits for rising and falling edge interrupts, but
231 * we want to make them into a single virtual interrupt with
232 * configurable edge.
233 *
234 * If the interrupt we're enabling defines the falling or rising
235 * masks then instead of using the regular mask bits for this
236 * interrupt, use the value previously written to the type buffer
237 * at the corresponding offset in regmap_irq_set_type().
238 */
239 if (d->chip->type_in_mask && type)
240 mask = d->type_buf[reg] & irq_data->mask;
241 else
242 mask = irq_data->mask;
243
244 if (d->chip->clear_on_unmask)
245 d->clear_status = true;
246
247 d->mask_buf[reg] &= ~mask;
248 }
249
regmap_irq_disable(struct irq_data * data)250 static void regmap_irq_disable(struct irq_data *data)
251 {
252 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
253 struct regmap *map = d->map;
254 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
255
256 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
257 }
258
regmap_irq_set_type(struct irq_data * data,unsigned int type)259 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
260 {
261 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
262 struct regmap *map = d->map;
263 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
264 int reg;
265 const struct regmap_irq_type *t = &irq_data->type;
266
267 if ((t->types_supported & type) != type)
268 return 0;
269
270 reg = t->type_reg_offset / map->reg_stride;
271
272 if (t->type_reg_mask)
273 d->type_buf[reg] &= ~t->type_reg_mask;
274 else
275 d->type_buf[reg] &= ~(t->type_falling_val |
276 t->type_rising_val |
277 t->type_level_low_val |
278 t->type_level_high_val);
279 switch (type) {
280 case IRQ_TYPE_EDGE_FALLING:
281 d->type_buf[reg] |= t->type_falling_val;
282 break;
283
284 case IRQ_TYPE_EDGE_RISING:
285 d->type_buf[reg] |= t->type_rising_val;
286 break;
287
288 case IRQ_TYPE_EDGE_BOTH:
289 d->type_buf[reg] |= (t->type_falling_val |
290 t->type_rising_val);
291 break;
292
293 case IRQ_TYPE_LEVEL_HIGH:
294 d->type_buf[reg] |= t->type_level_high_val;
295 break;
296
297 case IRQ_TYPE_LEVEL_LOW:
298 d->type_buf[reg] |= t->type_level_low_val;
299 break;
300 default:
301 return -EINVAL;
302 }
303 return 0;
304 }
305
regmap_irq_set_wake(struct irq_data * data,unsigned int on)306 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
307 {
308 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
309 struct regmap *map = d->map;
310 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
311
312 if (on) {
313 if (d->wake_buf)
314 d->wake_buf[irq_data->reg_offset / map->reg_stride]
315 &= ~irq_data->mask;
316 d->wake_count++;
317 } else {
318 if (d->wake_buf)
319 d->wake_buf[irq_data->reg_offset / map->reg_stride]
320 |= irq_data->mask;
321 d->wake_count--;
322 }
323
324 return 0;
325 }
326
327 static const struct irq_chip regmap_irq_chip = {
328 .irq_bus_lock = regmap_irq_lock,
329 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
330 .irq_disable = regmap_irq_disable,
331 .irq_enable = regmap_irq_enable,
332 .irq_set_type = regmap_irq_set_type,
333 .irq_set_wake = regmap_irq_set_wake,
334 };
335
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)336 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
337 unsigned int b)
338 {
339 const struct regmap_irq_chip *chip = data->chip;
340 struct regmap *map = data->map;
341 struct regmap_irq_sub_irq_map *subreg;
342 int i, ret = 0;
343
344 if (!chip->sub_reg_offsets) {
345 /* Assume linear mapping */
346 ret = regmap_read(map, chip->status_base +
347 (b * map->reg_stride * data->irq_reg_stride),
348 &data->status_buf[b]);
349 } else {
350 subreg = &chip->sub_reg_offsets[b];
351 for (i = 0; i < subreg->num_regs; i++) {
352 unsigned int offset = subreg->offset[i];
353
354 ret = regmap_read(map, chip->status_base + offset,
355 &data->status_buf[offset]);
356 if (ret)
357 break;
358 }
359 }
360 return ret;
361 }
362
regmap_irq_thread(int irq,void * d)363 static irqreturn_t regmap_irq_thread(int irq, void *d)
364 {
365 struct regmap_irq_chip_data *data = d;
366 const struct regmap_irq_chip *chip = data->chip;
367 struct regmap *map = data->map;
368 int ret, i;
369 bool handled = false;
370 u32 reg;
371
372 if (chip->handle_pre_irq)
373 chip->handle_pre_irq(chip->irq_drv_data);
374
375 if (chip->runtime_pm) {
376 ret = pm_runtime_get_sync(map->dev);
377 if (ret < 0) {
378 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
379 ret);
380 goto exit;
381 }
382 }
383
384 /*
385 * Read only registers with active IRQs if the chip has 'main status
386 * register'. Else read in the statuses, using a single bulk read if
387 * possible in order to reduce the I/O overheads.
388 */
389
390 if (chip->num_main_regs) {
391 unsigned int max_main_bits;
392 unsigned long size;
393
394 size = chip->num_regs * sizeof(unsigned int);
395
396 max_main_bits = (chip->num_main_status_bits) ?
397 chip->num_main_status_bits : chip->num_regs;
398 /* Clear the status buf as we don't read all status regs */
399 memset(data->status_buf, 0, size);
400
401 /* We could support bulk read for main status registers
402 * but I don't expect to see devices with really many main
403 * status registers so let's only support single reads for the
404 * sake of simplicity. and add bulk reads only if needed
405 */
406 for (i = 0; i < chip->num_main_regs; i++) {
407 ret = regmap_read(map, chip->main_status +
408 (i * map->reg_stride
409 * data->irq_reg_stride),
410 &data->main_status_buf[i]);
411 if (ret) {
412 dev_err(map->dev,
413 "Failed to read IRQ status %d\n",
414 ret);
415 goto exit;
416 }
417 }
418
419 /* Read sub registers with active IRQs */
420 for (i = 0; i < chip->num_main_regs; i++) {
421 unsigned int b;
422 const unsigned long mreg = data->main_status_buf[i];
423
424 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
425 if (i * map->format.val_bytes * 8 + b >
426 max_main_bits)
427 break;
428 ret = read_sub_irq_data(data, b);
429
430 if (ret != 0) {
431 dev_err(map->dev,
432 "Failed to read IRQ status %d\n",
433 ret);
434 goto exit;
435 }
436 }
437
438 }
439 } else if (!map->use_single_read && map->reg_stride == 1 &&
440 data->irq_reg_stride == 1) {
441
442 u8 *buf8 = data->status_reg_buf;
443 u16 *buf16 = data->status_reg_buf;
444 u32 *buf32 = data->status_reg_buf;
445
446 BUG_ON(!data->status_reg_buf);
447
448 ret = regmap_bulk_read(map, chip->status_base,
449 data->status_reg_buf,
450 chip->num_regs);
451 if (ret != 0) {
452 dev_err(map->dev, "Failed to read IRQ status: %d\n",
453 ret);
454 goto exit;
455 }
456
457 for (i = 0; i < data->chip->num_regs; i++) {
458 switch (map->format.val_bytes) {
459 case 1:
460 data->status_buf[i] = buf8[i];
461 break;
462 case 2:
463 data->status_buf[i] = buf16[i];
464 break;
465 case 4:
466 data->status_buf[i] = buf32[i];
467 break;
468 default:
469 BUG();
470 goto exit;
471 }
472 }
473
474 } else {
475 for (i = 0; i < data->chip->num_regs; i++) {
476 ret = regmap_read(map, chip->status_base +
477 (i * map->reg_stride
478 * data->irq_reg_stride),
479 &data->status_buf[i]);
480
481 if (ret != 0) {
482 dev_err(map->dev,
483 "Failed to read IRQ status: %d\n",
484 ret);
485 goto exit;
486 }
487 }
488 }
489
490 /*
491 * Ignore masked IRQs and ack if we need to; we ack early so
492 * there is no race between handling and acknowleding the
493 * interrupt. We assume that typically few of the interrupts
494 * will fire simultaneously so don't worry about overhead from
495 * doing a write per register.
496 */
497 for (i = 0; i < data->chip->num_regs; i++) {
498 data->status_buf[i] &= ~data->mask_buf[i];
499
500 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
501 reg = chip->ack_base +
502 (i * map->reg_stride * data->irq_reg_stride);
503 if (chip->ack_invert)
504 ret = regmap_write(map, reg,
505 ~data->status_buf[i]);
506 else
507 ret = regmap_write(map, reg,
508 data->status_buf[i]);
509 if (chip->clear_ack) {
510 if (chip->ack_invert && !ret)
511 ret = regmap_write(map, reg, UINT_MAX);
512 else if (!ret)
513 ret = regmap_write(map, reg, 0);
514 }
515 if (ret != 0)
516 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
517 reg, ret);
518 }
519 }
520
521 for (i = 0; i < chip->num_irqs; i++) {
522 if (data->status_buf[chip->irqs[i].reg_offset /
523 map->reg_stride] & chip->irqs[i].mask) {
524 handle_nested_irq(irq_find_mapping(data->domain, i));
525 handled = true;
526 }
527 }
528
529 exit:
530 if (chip->runtime_pm)
531 pm_runtime_put(map->dev);
532
533 if (chip->handle_post_irq)
534 chip->handle_post_irq(chip->irq_drv_data);
535
536 if (handled)
537 return IRQ_HANDLED;
538 else
539 return IRQ_NONE;
540 }
541
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)542 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
543 irq_hw_number_t hw)
544 {
545 struct regmap_irq_chip_data *data = h->host_data;
546
547 irq_set_chip_data(virq, data);
548 irq_set_chip(virq, &data->irq_chip);
549 irq_set_nested_thread(virq, 1);
550 irq_set_parent(virq, data->irq);
551 irq_set_noprobe(virq);
552
553 return 0;
554 }
555
556 static const struct irq_domain_ops regmap_domain_ops = {
557 .map = regmap_irq_map,
558 .xlate = irq_domain_xlate_onetwocell,
559 };
560
561 /**
562 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
563 *
564 * @fwnode: The firmware node where the IRQ domain should be added to.
565 * @map: The regmap for the device.
566 * @irq: The IRQ the device uses to signal interrupts.
567 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
568 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
569 * @chip: Configuration for the interrupt controller.
570 * @data: Runtime data structure for the controller, allocated on success.
571 *
572 * Returns 0 on success or an errno on failure.
573 *
574 * In order for this to be efficient the chip really should use a
575 * register cache. The chip driver is responsible for restoring the
576 * register values used by the IRQ controller over suspend and resume.
577 */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)578 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
579 struct regmap *map, int irq,
580 int irq_flags, int irq_base,
581 const struct regmap_irq_chip *chip,
582 struct regmap_irq_chip_data **data)
583 {
584 struct regmap_irq_chip_data *d;
585 int i;
586 int ret = -ENOMEM;
587 int num_type_reg;
588 u32 reg;
589 u32 unmask_offset;
590
591 if (chip->num_regs <= 0)
592 return -EINVAL;
593
594 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
595 return -EINVAL;
596
597 for (i = 0; i < chip->num_irqs; i++) {
598 if (chip->irqs[i].reg_offset % map->reg_stride)
599 return -EINVAL;
600 if (chip->irqs[i].reg_offset / map->reg_stride >=
601 chip->num_regs)
602 return -EINVAL;
603 }
604
605 if (irq_base) {
606 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
607 if (irq_base < 0) {
608 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
609 irq_base);
610 return irq_base;
611 }
612 }
613
614 d = kzalloc(sizeof(*d), GFP_KERNEL);
615 if (!d)
616 return -ENOMEM;
617
618 if (chip->num_main_regs) {
619 d->main_status_buf = kcalloc(chip->num_main_regs,
620 sizeof(unsigned int),
621 GFP_KERNEL);
622
623 if (!d->main_status_buf)
624 goto err_alloc;
625 }
626
627 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
628 GFP_KERNEL);
629 if (!d->status_buf)
630 goto err_alloc;
631
632 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
633 GFP_KERNEL);
634 if (!d->mask_buf)
635 goto err_alloc;
636
637 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
638 GFP_KERNEL);
639 if (!d->mask_buf_def)
640 goto err_alloc;
641
642 if (chip->wake_base) {
643 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
644 GFP_KERNEL);
645 if (!d->wake_buf)
646 goto err_alloc;
647 }
648
649 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
650 if (num_type_reg) {
651 d->type_buf_def = kcalloc(num_type_reg,
652 sizeof(unsigned int), GFP_KERNEL);
653 if (!d->type_buf_def)
654 goto err_alloc;
655
656 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
657 GFP_KERNEL);
658 if (!d->type_buf)
659 goto err_alloc;
660 }
661
662 d->irq_chip = regmap_irq_chip;
663 d->irq_chip.name = chip->name;
664 d->irq = irq;
665 d->map = map;
666 d->chip = chip;
667 d->irq_base = irq_base;
668
669 if (chip->irq_reg_stride)
670 d->irq_reg_stride = chip->irq_reg_stride;
671 else
672 d->irq_reg_stride = 1;
673
674 if (chip->type_reg_stride)
675 d->type_reg_stride = chip->type_reg_stride;
676 else
677 d->type_reg_stride = 1;
678
679 if (!map->use_single_read && map->reg_stride == 1 &&
680 d->irq_reg_stride == 1) {
681 d->status_reg_buf = kmalloc_array(chip->num_regs,
682 map->format.val_bytes,
683 GFP_KERNEL);
684 if (!d->status_reg_buf)
685 goto err_alloc;
686 }
687
688 mutex_init(&d->lock);
689
690 for (i = 0; i < chip->num_irqs; i++)
691 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
692 |= chip->irqs[i].mask;
693
694 /* Mask all the interrupts by default */
695 for (i = 0; i < chip->num_regs; i++) {
696 d->mask_buf[i] = d->mask_buf_def[i];
697 if (!chip->mask_base)
698 continue;
699
700 reg = chip->mask_base +
701 (i * map->reg_stride * d->irq_reg_stride);
702 if (chip->mask_invert)
703 ret = regmap_irq_update_bits(d, reg,
704 d->mask_buf[i], ~d->mask_buf[i]);
705 else if (d->chip->unmask_base) {
706 unmask_offset = d->chip->unmask_base -
707 d->chip->mask_base;
708 ret = regmap_irq_update_bits(d,
709 reg + unmask_offset,
710 d->mask_buf[i],
711 d->mask_buf[i]);
712 } else
713 ret = regmap_irq_update_bits(d, reg,
714 d->mask_buf[i], d->mask_buf[i]);
715 if (ret != 0) {
716 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
717 reg, ret);
718 goto err_alloc;
719 }
720
721 if (!chip->init_ack_masked)
722 continue;
723
724 /* Ack masked but set interrupts */
725 reg = chip->status_base +
726 (i * map->reg_stride * d->irq_reg_stride);
727 ret = regmap_read(map, reg, &d->status_buf[i]);
728 if (ret != 0) {
729 dev_err(map->dev, "Failed to read IRQ status: %d\n",
730 ret);
731 goto err_alloc;
732 }
733
734 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
735 reg = chip->ack_base +
736 (i * map->reg_stride * d->irq_reg_stride);
737 if (chip->ack_invert)
738 ret = regmap_write(map, reg,
739 ~(d->status_buf[i] & d->mask_buf[i]));
740 else
741 ret = regmap_write(map, reg,
742 d->status_buf[i] & d->mask_buf[i]);
743 if (chip->clear_ack) {
744 if (chip->ack_invert && !ret)
745 ret = regmap_write(map, reg, UINT_MAX);
746 else if (!ret)
747 ret = regmap_write(map, reg, 0);
748 }
749 if (ret != 0) {
750 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
751 reg, ret);
752 goto err_alloc;
753 }
754 }
755 }
756
757 /* Wake is disabled by default */
758 if (d->wake_buf) {
759 for (i = 0; i < chip->num_regs; i++) {
760 d->wake_buf[i] = d->mask_buf_def[i];
761 reg = chip->wake_base +
762 (i * map->reg_stride * d->irq_reg_stride);
763
764 if (chip->wake_invert)
765 ret = regmap_irq_update_bits(d, reg,
766 d->mask_buf_def[i],
767 0);
768 else
769 ret = regmap_irq_update_bits(d, reg,
770 d->mask_buf_def[i],
771 d->wake_buf[i]);
772 if (ret != 0) {
773 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
774 reg, ret);
775 goto err_alloc;
776 }
777 }
778 }
779
780 if (chip->num_type_reg && !chip->type_in_mask) {
781 for (i = 0; i < chip->num_type_reg; ++i) {
782 reg = chip->type_base +
783 (i * map->reg_stride * d->type_reg_stride);
784
785 ret = regmap_read(map, reg, &d->type_buf_def[i]);
786
787 if (d->chip->type_invert)
788 d->type_buf_def[i] = ~d->type_buf_def[i];
789
790 if (ret) {
791 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
792 reg, ret);
793 goto err_alloc;
794 }
795 }
796 }
797
798 if (irq_base)
799 d->domain = irq_domain_add_legacy(to_of_node(fwnode),
800 chip->num_irqs, irq_base,
801 0, ®map_domain_ops, d);
802 else
803 d->domain = irq_domain_add_linear(to_of_node(fwnode),
804 chip->num_irqs,
805 ®map_domain_ops, d);
806 if (!d->domain) {
807 dev_err(map->dev, "Failed to create IRQ domain\n");
808 ret = -ENOMEM;
809 goto err_alloc;
810 }
811
812 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
813 irq_flags | IRQF_ONESHOT,
814 chip->name, d);
815 if (ret != 0) {
816 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
817 irq, chip->name, ret);
818 goto err_domain;
819 }
820
821 *data = d;
822
823 return 0;
824
825 err_domain:
826 /* Should really dispose of the domain but... */
827 err_alloc:
828 kfree(d->type_buf);
829 kfree(d->type_buf_def);
830 kfree(d->wake_buf);
831 kfree(d->mask_buf_def);
832 kfree(d->mask_buf);
833 kfree(d->status_buf);
834 kfree(d->status_reg_buf);
835 kfree(d);
836 return ret;
837 }
838 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
839
840 /**
841 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
842 *
843 * @map: The regmap for the device.
844 * @irq: The IRQ the device uses to signal interrupts.
845 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
846 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
847 * @chip: Configuration for the interrupt controller.
848 * @data: Runtime data structure for the controller, allocated on success.
849 *
850 * Returns 0 on success or an errno on failure.
851 *
852 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
853 * node of the regmap is used.
854 */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)855 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
856 int irq_base, const struct regmap_irq_chip *chip,
857 struct regmap_irq_chip_data **data)
858 {
859 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
860 irq_flags, irq_base, chip, data);
861 }
862 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
863
864 /**
865 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
866 *
867 * @irq: Primary IRQ for the device
868 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
869 *
870 * This function also disposes of all mapped IRQs on the chip.
871 */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)872 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
873 {
874 unsigned int virq;
875 int hwirq;
876
877 if (!d)
878 return;
879
880 free_irq(irq, d);
881
882 /* Dispose all virtual irq from irq domain before removing it */
883 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
884 /* Ignore hwirq if holes in the IRQ list */
885 if (!d->chip->irqs[hwirq].mask)
886 continue;
887
888 /*
889 * Find the virtual irq of hwirq on chip and if it is
890 * there then dispose it
891 */
892 virq = irq_find_mapping(d->domain, hwirq);
893 if (virq)
894 irq_dispose_mapping(virq);
895 }
896
897 irq_domain_remove(d->domain);
898 kfree(d->type_buf);
899 kfree(d->type_buf_def);
900 kfree(d->wake_buf);
901 kfree(d->mask_buf_def);
902 kfree(d->mask_buf);
903 kfree(d->status_reg_buf);
904 kfree(d->status_buf);
905 kfree(d);
906 }
907 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
908
devm_regmap_irq_chip_release(struct device * dev,void * res)909 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
910 {
911 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
912
913 regmap_del_irq_chip(d->irq, d);
914 }
915
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)916 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
917
918 {
919 struct regmap_irq_chip_data **r = res;
920
921 if (!r || !*r) {
922 WARN_ON(!r || !*r);
923 return 0;
924 }
925 return *r == data;
926 }
927
928 /**
929 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
930 *
931 * @dev: The device pointer on which irq_chip belongs to.
932 * @fwnode: The firmware node where the IRQ domain should be added to.
933 * @map: The regmap for the device.
934 * @irq: The IRQ the device uses to signal interrupts
935 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
936 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
937 * @chip: Configuration for the interrupt controller.
938 * @data: Runtime data structure for the controller, allocated on success
939 *
940 * Returns 0 on success or an errno on failure.
941 *
942 * The ®map_irq_chip_data will be automatically released when the device is
943 * unbound.
944 */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)945 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
946 struct fwnode_handle *fwnode,
947 struct regmap *map, int irq,
948 int irq_flags, int irq_base,
949 const struct regmap_irq_chip *chip,
950 struct regmap_irq_chip_data **data)
951 {
952 struct regmap_irq_chip_data **ptr, *d;
953 int ret;
954
955 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
956 GFP_KERNEL);
957 if (!ptr)
958 return -ENOMEM;
959
960 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
961 chip, &d);
962 if (ret < 0) {
963 devres_free(ptr);
964 return ret;
965 }
966
967 *ptr = d;
968 devres_add(dev, ptr);
969 *data = d;
970 return 0;
971 }
972 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
973
974 /**
975 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
976 *
977 * @dev: The device pointer on which irq_chip belongs to.
978 * @map: The regmap for the device.
979 * @irq: The IRQ the device uses to signal interrupts
980 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
981 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
982 * @chip: Configuration for the interrupt controller.
983 * @data: Runtime data structure for the controller, allocated on success
984 *
985 * Returns 0 on success or an errno on failure.
986 *
987 * The ®map_irq_chip_data will be automatically released when the device is
988 * unbound.
989 */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)990 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
991 int irq_flags, int irq_base,
992 const struct regmap_irq_chip *chip,
993 struct regmap_irq_chip_data **data)
994 {
995 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
996 irq, irq_flags, irq_base, chip,
997 data);
998 }
999 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1000
1001 /**
1002 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1003 *
1004 * @dev: Device for which which resource was allocated.
1005 * @irq: Primary IRQ for the device.
1006 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1007 *
1008 * A resource managed version of regmap_del_irq_chip().
1009 */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1010 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1011 struct regmap_irq_chip_data *data)
1012 {
1013 int rc;
1014
1015 WARN_ON(irq != data->irq);
1016 rc = devres_release(dev, devm_regmap_irq_chip_release,
1017 devm_regmap_irq_chip_match, data);
1018
1019 if (rc != 0)
1020 WARN_ON(rc);
1021 }
1022 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1023
1024 /**
1025 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1026 *
1027 * @data: regmap irq controller to operate on.
1028 *
1029 * Useful for drivers to request their own IRQs.
1030 */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1031 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1032 {
1033 WARN_ON(!data->irq_base);
1034 return data->irq_base;
1035 }
1036 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1037
1038 /**
1039 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1040 *
1041 * @data: regmap irq controller to operate on.
1042 * @irq: index of the interrupt requested in the chip IRQs.
1043 *
1044 * Useful for drivers to request their own IRQs.
1045 */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1046 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1047 {
1048 /* Handle holes in the IRQ list */
1049 if (!data->chip->irqs[irq].mask)
1050 return -EINVAL;
1051
1052 return irq_create_mapping(data->domain, irq);
1053 }
1054 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1055
1056 /**
1057 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1058 *
1059 * @data: regmap_irq controller to operate on.
1060 *
1061 * Useful for drivers to request their own IRQs and for integration
1062 * with subsystems. For ease of integration NULL is accepted as a
1063 * domain, allowing devices to just call this even if no domain is
1064 * allocated.
1065 */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1066 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1067 {
1068 if (data)
1069 return data->domain;
1070 else
1071 return NULL;
1072 }
1073 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1074