1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/bug.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/iommu.h>
18 #include <linux/idr.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/pci.h>
22 #include <linux/bitops.h>
23 #include <linux/property.h>
24 #include <linux/fsl/mc.h>
25 #include <linux/module.h>
26 #include <trace/events/iommu.h>
27
28 static struct kset *iommu_group_kset;
29 static DEFINE_IDA(iommu_group_ida);
30
31 static unsigned int iommu_def_domain_type __read_mostly;
32 static bool iommu_dma_strict __read_mostly = true;
33 static u32 iommu_cmd_line __read_mostly;
34
35 struct iommu_group {
36 struct kobject kobj;
37 struct kobject *devices_kobj;
38 struct list_head devices;
39 struct mutex mutex;
40 struct blocking_notifier_head notifier;
41 void *iommu_data;
42 void (*iommu_data_release)(void *iommu_data);
43 char *name;
44 int id;
45 struct iommu_domain *default_domain;
46 struct iommu_domain *domain;
47 struct list_head entry;
48 };
49
50 struct group_device {
51 struct list_head list;
52 struct device *dev;
53 char *name;
54 };
55
56 struct iommu_group_attribute {
57 struct attribute attr;
58 ssize_t (*show)(struct iommu_group *group, char *buf);
59 ssize_t (*store)(struct iommu_group *group,
60 const char *buf, size_t count);
61 };
62
63 static const char * const iommu_group_resv_type_string[] = {
64 [IOMMU_RESV_DIRECT] = "direct",
65 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
66 [IOMMU_RESV_RESERVED] = "reserved",
67 [IOMMU_RESV_MSI] = "msi",
68 [IOMMU_RESV_SW_MSI] = "msi",
69 };
70
71 #define IOMMU_CMD_LINE_DMA_API BIT(0)
72
iommu_set_cmd_line_dma_api(void)73 static void iommu_set_cmd_line_dma_api(void)
74 {
75 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
76 }
77
iommu_cmd_line_dma_api(void)78 static bool iommu_cmd_line_dma_api(void)
79 {
80 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API);
81 }
82
83 static int iommu_alloc_default_domain(struct iommu_group *group,
84 struct device *dev);
85 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
86 unsigned type);
87 static int __iommu_attach_device(struct iommu_domain *domain,
88 struct device *dev);
89 static int __iommu_attach_group(struct iommu_domain *domain,
90 struct iommu_group *group);
91 static void __iommu_detach_group(struct iommu_domain *domain,
92 struct iommu_group *group);
93 static int iommu_create_device_direct_mappings(struct iommu_group *group,
94 struct device *dev);
95 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
96
97 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
98 struct iommu_group_attribute iommu_group_attr_##_name = \
99 __ATTR(_name, _mode, _show, _store)
100
101 #define to_iommu_group_attr(_attr) \
102 container_of(_attr, struct iommu_group_attribute, attr)
103 #define to_iommu_group(_kobj) \
104 container_of(_kobj, struct iommu_group, kobj)
105
106 static LIST_HEAD(iommu_device_list);
107 static DEFINE_SPINLOCK(iommu_device_lock);
108
109 /*
110 * Use a function instead of an array here because the domain-type is a
111 * bit-field, so an array would waste memory.
112 */
iommu_domain_type_str(unsigned int t)113 static const char *iommu_domain_type_str(unsigned int t)
114 {
115 switch (t) {
116 case IOMMU_DOMAIN_BLOCKED:
117 return "Blocked";
118 case IOMMU_DOMAIN_IDENTITY:
119 return "Passthrough";
120 case IOMMU_DOMAIN_UNMANAGED:
121 return "Unmanaged";
122 case IOMMU_DOMAIN_DMA:
123 return "Translated";
124 default:
125 return "Unknown";
126 }
127 }
128
iommu_subsys_init(void)129 static int __init iommu_subsys_init(void)
130 {
131 bool cmd_line = iommu_cmd_line_dma_api();
132
133 if (!cmd_line) {
134 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
135 iommu_set_default_passthrough(false);
136 else
137 iommu_set_default_translated(false);
138
139 if (iommu_default_passthrough() && mem_encrypt_active()) {
140 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
141 iommu_set_default_translated(false);
142 }
143 }
144
145 pr_info("Default domain type: %s %s\n",
146 iommu_domain_type_str(iommu_def_domain_type),
147 cmd_line ? "(set via kernel command line)" : "");
148
149 return 0;
150 }
151 subsys_initcall(iommu_subsys_init);
152
iommu_device_register(struct iommu_device * iommu)153 int iommu_device_register(struct iommu_device *iommu)
154 {
155 spin_lock(&iommu_device_lock);
156 list_add_tail(&iommu->list, &iommu_device_list);
157 spin_unlock(&iommu_device_lock);
158 return 0;
159 }
160 EXPORT_SYMBOL_GPL(iommu_device_register);
161
iommu_device_unregister(struct iommu_device * iommu)162 void iommu_device_unregister(struct iommu_device *iommu)
163 {
164 spin_lock(&iommu_device_lock);
165 list_del(&iommu->list);
166 spin_unlock(&iommu_device_lock);
167 }
168 EXPORT_SYMBOL_GPL(iommu_device_unregister);
169
dev_iommu_get(struct device * dev)170 static struct dev_iommu *dev_iommu_get(struct device *dev)
171 {
172 struct dev_iommu *param = dev->iommu;
173
174 if (param)
175 return param;
176
177 param = kzalloc(sizeof(*param), GFP_KERNEL);
178 if (!param)
179 return NULL;
180
181 mutex_init(¶m->lock);
182 dev->iommu = param;
183 return param;
184 }
185
dev_iommu_free(struct device * dev)186 static void dev_iommu_free(struct device *dev)
187 {
188 struct dev_iommu *param = dev->iommu;
189
190 dev->iommu = NULL;
191 if (param->fwspec) {
192 fwnode_handle_put(param->fwspec->iommu_fwnode);
193 kfree(param->fwspec);
194 }
195 kfree(param);
196 }
197
__iommu_probe_device(struct device * dev,struct list_head * group_list)198 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
199 {
200 const struct iommu_ops *ops = dev->bus->iommu_ops;
201 struct iommu_device *iommu_dev;
202 struct iommu_group *group;
203 int ret;
204
205 if (!ops)
206 return -ENODEV;
207
208 if (!dev_iommu_get(dev))
209 return -ENOMEM;
210
211 if (!try_module_get(ops->owner)) {
212 ret = -EINVAL;
213 goto err_free;
214 }
215
216 iommu_dev = ops->probe_device(dev);
217 if (IS_ERR(iommu_dev)) {
218 ret = PTR_ERR(iommu_dev);
219 goto out_module_put;
220 }
221
222 dev->iommu->iommu_dev = iommu_dev;
223
224 group = iommu_group_get_for_dev(dev);
225 if (IS_ERR(group)) {
226 ret = PTR_ERR(group);
227 goto out_release;
228 }
229 iommu_group_put(group);
230
231 if (group_list && !group->default_domain && list_empty(&group->entry))
232 list_add_tail(&group->entry, group_list);
233
234 iommu_device_link(iommu_dev, dev);
235
236 return 0;
237
238 out_release:
239 ops->release_device(dev);
240
241 out_module_put:
242 module_put(ops->owner);
243
244 err_free:
245 dev_iommu_free(dev);
246
247 return ret;
248 }
249
iommu_probe_device(struct device * dev)250 int iommu_probe_device(struct device *dev)
251 {
252 const struct iommu_ops *ops = dev->bus->iommu_ops;
253 struct iommu_group *group;
254 int ret;
255
256 ret = __iommu_probe_device(dev, NULL);
257 if (ret)
258 goto err_out;
259
260 group = iommu_group_get(dev);
261 if (!group)
262 goto err_release;
263
264 /*
265 * Try to allocate a default domain - needs support from the
266 * IOMMU driver. There are still some drivers which don't
267 * support default domains, so the return value is not yet
268 * checked.
269 */
270 iommu_alloc_default_domain(group, dev);
271
272 if (group->default_domain) {
273 ret = __iommu_attach_device(group->default_domain, dev);
274 if (ret) {
275 iommu_group_put(group);
276 goto err_release;
277 }
278 }
279
280 iommu_create_device_direct_mappings(group, dev);
281
282 iommu_group_put(group);
283
284 if (ops->probe_finalize)
285 ops->probe_finalize(dev);
286
287 return 0;
288
289 err_release:
290 iommu_release_device(dev);
291
292 err_out:
293 return ret;
294
295 }
296
iommu_release_device(struct device * dev)297 void iommu_release_device(struct device *dev)
298 {
299 const struct iommu_ops *ops = dev->bus->iommu_ops;
300
301 if (!dev->iommu)
302 return;
303
304 iommu_device_unlink(dev->iommu->iommu_dev, dev);
305
306 ops->release_device(dev);
307
308 iommu_group_remove_device(dev);
309 module_put(ops->owner);
310 dev_iommu_free(dev);
311 }
312
iommu_set_def_domain_type(char * str)313 static int __init iommu_set_def_domain_type(char *str)
314 {
315 bool pt;
316 int ret;
317
318 ret = kstrtobool(str, &pt);
319 if (ret)
320 return ret;
321
322 if (pt)
323 iommu_set_default_passthrough(true);
324 else
325 iommu_set_default_translated(true);
326
327 return 0;
328 }
329 early_param("iommu.passthrough", iommu_set_def_domain_type);
330
iommu_dma_setup(char * str)331 static int __init iommu_dma_setup(char *str)
332 {
333 return kstrtobool(str, &iommu_dma_strict);
334 }
335 early_param("iommu.strict", iommu_dma_setup);
336
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)337 static ssize_t iommu_group_attr_show(struct kobject *kobj,
338 struct attribute *__attr, char *buf)
339 {
340 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
341 struct iommu_group *group = to_iommu_group(kobj);
342 ssize_t ret = -EIO;
343
344 if (attr->show)
345 ret = attr->show(group, buf);
346 return ret;
347 }
348
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)349 static ssize_t iommu_group_attr_store(struct kobject *kobj,
350 struct attribute *__attr,
351 const char *buf, size_t count)
352 {
353 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
354 struct iommu_group *group = to_iommu_group(kobj);
355 ssize_t ret = -EIO;
356
357 if (attr->store)
358 ret = attr->store(group, buf, count);
359 return ret;
360 }
361
362 static const struct sysfs_ops iommu_group_sysfs_ops = {
363 .show = iommu_group_attr_show,
364 .store = iommu_group_attr_store,
365 };
366
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)367 static int iommu_group_create_file(struct iommu_group *group,
368 struct iommu_group_attribute *attr)
369 {
370 return sysfs_create_file(&group->kobj, &attr->attr);
371 }
372
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)373 static void iommu_group_remove_file(struct iommu_group *group,
374 struct iommu_group_attribute *attr)
375 {
376 sysfs_remove_file(&group->kobj, &attr->attr);
377 }
378
iommu_group_show_name(struct iommu_group * group,char * buf)379 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
380 {
381 return sprintf(buf, "%s\n", group->name);
382 }
383
384 /**
385 * iommu_insert_resv_region - Insert a new region in the
386 * list of reserved regions.
387 * @new: new region to insert
388 * @regions: list of regions
389 *
390 * Elements are sorted by start address and overlapping segments
391 * of the same type are merged.
392 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)393 static int iommu_insert_resv_region(struct iommu_resv_region *new,
394 struct list_head *regions)
395 {
396 struct iommu_resv_region *iter, *tmp, *nr, *top;
397 LIST_HEAD(stack);
398
399 nr = iommu_alloc_resv_region(new->start, new->length,
400 new->prot, new->type);
401 if (!nr)
402 return -ENOMEM;
403
404 /* First add the new element based on start address sorting */
405 list_for_each_entry(iter, regions, list) {
406 if (nr->start < iter->start ||
407 (nr->start == iter->start && nr->type <= iter->type))
408 break;
409 }
410 list_add_tail(&nr->list, &iter->list);
411
412 /* Merge overlapping segments of type nr->type in @regions, if any */
413 list_for_each_entry_safe(iter, tmp, regions, list) {
414 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
415
416 /* no merge needed on elements of different types than @new */
417 if (iter->type != new->type) {
418 list_move_tail(&iter->list, &stack);
419 continue;
420 }
421
422 /* look for the last stack element of same type as @iter */
423 list_for_each_entry_reverse(top, &stack, list)
424 if (top->type == iter->type)
425 goto check_overlap;
426
427 list_move_tail(&iter->list, &stack);
428 continue;
429
430 check_overlap:
431 top_end = top->start + top->length - 1;
432
433 if (iter->start > top_end + 1) {
434 list_move_tail(&iter->list, &stack);
435 } else {
436 top->length = max(top_end, iter_end) - top->start + 1;
437 list_del(&iter->list);
438 kfree(iter);
439 }
440 }
441 list_splice(&stack, regions);
442 return 0;
443 }
444
445 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)446 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
447 struct list_head *group_resv_regions)
448 {
449 struct iommu_resv_region *entry;
450 int ret = 0;
451
452 list_for_each_entry(entry, dev_resv_regions, list) {
453 ret = iommu_insert_resv_region(entry, group_resv_regions);
454 if (ret)
455 break;
456 }
457 return ret;
458 }
459
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)460 int iommu_get_group_resv_regions(struct iommu_group *group,
461 struct list_head *head)
462 {
463 struct group_device *device;
464 int ret = 0;
465
466 mutex_lock(&group->mutex);
467 list_for_each_entry(device, &group->devices, list) {
468 struct list_head dev_resv_regions;
469
470 INIT_LIST_HEAD(&dev_resv_regions);
471 iommu_get_resv_regions(device->dev, &dev_resv_regions);
472 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
473 iommu_put_resv_regions(device->dev, &dev_resv_regions);
474 if (ret)
475 break;
476 }
477 mutex_unlock(&group->mutex);
478 return ret;
479 }
480 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
481
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)482 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
483 char *buf)
484 {
485 struct iommu_resv_region *region, *next;
486 struct list_head group_resv_regions;
487 char *str = buf;
488
489 INIT_LIST_HEAD(&group_resv_regions);
490 iommu_get_group_resv_regions(group, &group_resv_regions);
491
492 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
493 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
494 (long long int)region->start,
495 (long long int)(region->start +
496 region->length - 1),
497 iommu_group_resv_type_string[region->type]);
498 kfree(region);
499 }
500
501 return (str - buf);
502 }
503
iommu_group_show_type(struct iommu_group * group,char * buf)504 static ssize_t iommu_group_show_type(struct iommu_group *group,
505 char *buf)
506 {
507 char *type = "unknown\n";
508
509 if (group->default_domain) {
510 switch (group->default_domain->type) {
511 case IOMMU_DOMAIN_BLOCKED:
512 type = "blocked\n";
513 break;
514 case IOMMU_DOMAIN_IDENTITY:
515 type = "identity\n";
516 break;
517 case IOMMU_DOMAIN_UNMANAGED:
518 type = "unmanaged\n";
519 break;
520 case IOMMU_DOMAIN_DMA:
521 type = "DMA\n";
522 break;
523 }
524 }
525 strcpy(buf, type);
526
527 return strlen(type);
528 }
529
530 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
531
532 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
533 iommu_group_show_resv_regions, NULL);
534
535 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
536
iommu_group_release(struct kobject * kobj)537 static void iommu_group_release(struct kobject *kobj)
538 {
539 struct iommu_group *group = to_iommu_group(kobj);
540
541 pr_debug("Releasing group %d\n", group->id);
542
543 if (group->iommu_data_release)
544 group->iommu_data_release(group->iommu_data);
545
546 ida_simple_remove(&iommu_group_ida, group->id);
547
548 if (group->default_domain)
549 iommu_domain_free(group->default_domain);
550
551 kfree(group->name);
552 kfree(group);
553 }
554
555 static struct kobj_type iommu_group_ktype = {
556 .sysfs_ops = &iommu_group_sysfs_ops,
557 .release = iommu_group_release,
558 };
559
560 /**
561 * iommu_group_alloc - Allocate a new group
562 *
563 * This function is called by an iommu driver to allocate a new iommu
564 * group. The iommu group represents the minimum granularity of the iommu.
565 * Upon successful return, the caller holds a reference to the supplied
566 * group in order to hold the group until devices are added. Use
567 * iommu_group_put() to release this extra reference count, allowing the
568 * group to be automatically reclaimed once it has no devices or external
569 * references.
570 */
iommu_group_alloc(void)571 struct iommu_group *iommu_group_alloc(void)
572 {
573 struct iommu_group *group;
574 int ret;
575
576 group = kzalloc(sizeof(*group), GFP_KERNEL);
577 if (!group)
578 return ERR_PTR(-ENOMEM);
579
580 group->kobj.kset = iommu_group_kset;
581 mutex_init(&group->mutex);
582 INIT_LIST_HEAD(&group->devices);
583 INIT_LIST_HEAD(&group->entry);
584 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
585
586 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
587 if (ret < 0) {
588 kfree(group);
589 return ERR_PTR(ret);
590 }
591 group->id = ret;
592
593 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
594 NULL, "%d", group->id);
595 if (ret) {
596 ida_simple_remove(&iommu_group_ida, group->id);
597 kobject_put(&group->kobj);
598 return ERR_PTR(ret);
599 }
600
601 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
602 if (!group->devices_kobj) {
603 kobject_put(&group->kobj); /* triggers .release & free */
604 return ERR_PTR(-ENOMEM);
605 }
606
607 /*
608 * The devices_kobj holds a reference on the group kobject, so
609 * as long as that exists so will the group. We can therefore
610 * use the devices_kobj for reference counting.
611 */
612 kobject_put(&group->kobj);
613
614 ret = iommu_group_create_file(group,
615 &iommu_group_attr_reserved_regions);
616 if (ret)
617 return ERR_PTR(ret);
618
619 ret = iommu_group_create_file(group, &iommu_group_attr_type);
620 if (ret)
621 return ERR_PTR(ret);
622
623 pr_debug("Allocated group %d\n", group->id);
624
625 return group;
626 }
627 EXPORT_SYMBOL_GPL(iommu_group_alloc);
628
iommu_group_get_by_id(int id)629 struct iommu_group *iommu_group_get_by_id(int id)
630 {
631 struct kobject *group_kobj;
632 struct iommu_group *group;
633 const char *name;
634
635 if (!iommu_group_kset)
636 return NULL;
637
638 name = kasprintf(GFP_KERNEL, "%d", id);
639 if (!name)
640 return NULL;
641
642 group_kobj = kset_find_obj(iommu_group_kset, name);
643 kfree(name);
644
645 if (!group_kobj)
646 return NULL;
647
648 group = container_of(group_kobj, struct iommu_group, kobj);
649 BUG_ON(group->id != id);
650
651 kobject_get(group->devices_kobj);
652 kobject_put(&group->kobj);
653
654 return group;
655 }
656 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
657
658 /**
659 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
660 * @group: the group
661 *
662 * iommu drivers can store data in the group for use when doing iommu
663 * operations. This function provides a way to retrieve it. Caller
664 * should hold a group reference.
665 */
iommu_group_get_iommudata(struct iommu_group * group)666 void *iommu_group_get_iommudata(struct iommu_group *group)
667 {
668 return group->iommu_data;
669 }
670 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
671
672 /**
673 * iommu_group_set_iommudata - set iommu_data for a group
674 * @group: the group
675 * @iommu_data: new data
676 * @release: release function for iommu_data
677 *
678 * iommu drivers can store data in the group for use when doing iommu
679 * operations. This function provides a way to set the data after
680 * the group has been allocated. Caller should hold a group reference.
681 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))682 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
683 void (*release)(void *iommu_data))
684 {
685 group->iommu_data = iommu_data;
686 group->iommu_data_release = release;
687 }
688 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
689
690 /**
691 * iommu_group_set_name - set name for a group
692 * @group: the group
693 * @name: name
694 *
695 * Allow iommu driver to set a name for a group. When set it will
696 * appear in a name attribute file under the group in sysfs.
697 */
iommu_group_set_name(struct iommu_group * group,const char * name)698 int iommu_group_set_name(struct iommu_group *group, const char *name)
699 {
700 int ret;
701
702 if (group->name) {
703 iommu_group_remove_file(group, &iommu_group_attr_name);
704 kfree(group->name);
705 group->name = NULL;
706 if (!name)
707 return 0;
708 }
709
710 group->name = kstrdup(name, GFP_KERNEL);
711 if (!group->name)
712 return -ENOMEM;
713
714 ret = iommu_group_create_file(group, &iommu_group_attr_name);
715 if (ret) {
716 kfree(group->name);
717 group->name = NULL;
718 return ret;
719 }
720
721 return 0;
722 }
723 EXPORT_SYMBOL_GPL(iommu_group_set_name);
724
iommu_create_device_direct_mappings(struct iommu_group * group,struct device * dev)725 static int iommu_create_device_direct_mappings(struct iommu_group *group,
726 struct device *dev)
727 {
728 struct iommu_domain *domain = group->default_domain;
729 struct iommu_resv_region *entry;
730 struct list_head mappings;
731 unsigned long pg_size;
732 int ret = 0;
733
734 if (!domain || domain->type != IOMMU_DOMAIN_DMA)
735 return 0;
736
737 BUG_ON(!domain->pgsize_bitmap);
738
739 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
740 INIT_LIST_HEAD(&mappings);
741
742 iommu_get_resv_regions(dev, &mappings);
743
744 /* We need to consider overlapping regions for different devices */
745 list_for_each_entry(entry, &mappings, list) {
746 dma_addr_t start, end, addr;
747
748 if (domain->ops->apply_resv_region)
749 domain->ops->apply_resv_region(dev, domain, entry);
750
751 start = ALIGN(entry->start, pg_size);
752 end = ALIGN(entry->start + entry->length, pg_size);
753
754 if (entry->type != IOMMU_RESV_DIRECT &&
755 entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
756 continue;
757
758 for (addr = start; addr < end; addr += pg_size) {
759 phys_addr_t phys_addr;
760
761 phys_addr = iommu_iova_to_phys(domain, addr);
762 if (phys_addr)
763 continue;
764
765 ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
766 if (ret)
767 goto out;
768 }
769
770 }
771
772 iommu_flush_iotlb_all(domain);
773
774 out:
775 iommu_put_resv_regions(dev, &mappings);
776
777 return ret;
778 }
779
iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)780 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
781 struct device *dev)
782 {
783 if (domain->ops->is_attach_deferred)
784 return domain->ops->is_attach_deferred(domain, dev);
785
786 return false;
787 }
788
789 /**
790 * iommu_group_add_device - add a device to an iommu group
791 * @group: the group into which to add the device (reference should be held)
792 * @dev: the device
793 *
794 * This function is called by an iommu driver to add a device into a
795 * group. Adding a device increments the group reference count.
796 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)797 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
798 {
799 int ret, i = 0;
800 struct group_device *device;
801
802 device = kzalloc(sizeof(*device), GFP_KERNEL);
803 if (!device)
804 return -ENOMEM;
805
806 device->dev = dev;
807
808 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
809 if (ret)
810 goto err_free_device;
811
812 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
813 rename:
814 if (!device->name) {
815 ret = -ENOMEM;
816 goto err_remove_link;
817 }
818
819 ret = sysfs_create_link_nowarn(group->devices_kobj,
820 &dev->kobj, device->name);
821 if (ret) {
822 if (ret == -EEXIST && i >= 0) {
823 /*
824 * Account for the slim chance of collision
825 * and append an instance to the name.
826 */
827 kfree(device->name);
828 device->name = kasprintf(GFP_KERNEL, "%s.%d",
829 kobject_name(&dev->kobj), i++);
830 goto rename;
831 }
832 goto err_free_name;
833 }
834
835 kobject_get(group->devices_kobj);
836
837 dev->iommu_group = group;
838
839 mutex_lock(&group->mutex);
840 list_add_tail(&device->list, &group->devices);
841 if (group->domain && !iommu_is_attach_deferred(group->domain, dev))
842 ret = __iommu_attach_device(group->domain, dev);
843 mutex_unlock(&group->mutex);
844 if (ret)
845 goto err_put_group;
846
847 /* Notify any listeners about change to group. */
848 blocking_notifier_call_chain(&group->notifier,
849 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
850
851 trace_add_device_to_group(group->id, dev);
852
853 dev_info(dev, "Adding to iommu group %d\n", group->id);
854
855 return 0;
856
857 err_put_group:
858 mutex_lock(&group->mutex);
859 list_del(&device->list);
860 mutex_unlock(&group->mutex);
861 dev->iommu_group = NULL;
862 kobject_put(group->devices_kobj);
863 sysfs_remove_link(group->devices_kobj, device->name);
864 err_free_name:
865 kfree(device->name);
866 err_remove_link:
867 sysfs_remove_link(&dev->kobj, "iommu_group");
868 err_free_device:
869 kfree(device);
870 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
871 return ret;
872 }
873 EXPORT_SYMBOL_GPL(iommu_group_add_device);
874
875 /**
876 * iommu_group_remove_device - remove a device from it's current group
877 * @dev: device to be removed
878 *
879 * This function is called by an iommu driver to remove the device from
880 * it's current group. This decrements the iommu group reference count.
881 */
iommu_group_remove_device(struct device * dev)882 void iommu_group_remove_device(struct device *dev)
883 {
884 struct iommu_group *group = dev->iommu_group;
885 struct group_device *tmp_device, *device = NULL;
886
887 if (!group)
888 return;
889
890 dev_info(dev, "Removing from iommu group %d\n", group->id);
891
892 /* Pre-notify listeners that a device is being removed. */
893 blocking_notifier_call_chain(&group->notifier,
894 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
895
896 mutex_lock(&group->mutex);
897 list_for_each_entry(tmp_device, &group->devices, list) {
898 if (tmp_device->dev == dev) {
899 device = tmp_device;
900 list_del(&device->list);
901 break;
902 }
903 }
904 mutex_unlock(&group->mutex);
905
906 if (!device)
907 return;
908
909 sysfs_remove_link(group->devices_kobj, device->name);
910 sysfs_remove_link(&dev->kobj, "iommu_group");
911
912 trace_remove_device_from_group(group->id, dev);
913
914 kfree(device->name);
915 kfree(device);
916 dev->iommu_group = NULL;
917 kobject_put(group->devices_kobj);
918 }
919 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
920
iommu_group_device_count(struct iommu_group * group)921 static int iommu_group_device_count(struct iommu_group *group)
922 {
923 struct group_device *entry;
924 int ret = 0;
925
926 list_for_each_entry(entry, &group->devices, list)
927 ret++;
928
929 return ret;
930 }
931
932 /**
933 * iommu_group_for_each_dev - iterate over each device in the group
934 * @group: the group
935 * @data: caller opaque data to be passed to callback function
936 * @fn: caller supplied callback function
937 *
938 * This function is called by group users to iterate over group devices.
939 * Callers should hold a reference count to the group during callback.
940 * The group->mutex is held across callbacks, which will block calls to
941 * iommu_group_add/remove_device.
942 */
__iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))943 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
944 int (*fn)(struct device *, void *))
945 {
946 struct group_device *device;
947 int ret = 0;
948
949 list_for_each_entry(device, &group->devices, list) {
950 ret = fn(device->dev, data);
951 if (ret)
952 break;
953 }
954 return ret;
955 }
956
957
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))958 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
959 int (*fn)(struct device *, void *))
960 {
961 int ret;
962
963 mutex_lock(&group->mutex);
964 ret = __iommu_group_for_each_dev(group, data, fn);
965 mutex_unlock(&group->mutex);
966
967 return ret;
968 }
969 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
970
971 /**
972 * iommu_group_get - Return the group for a device and increment reference
973 * @dev: get the group that this device belongs to
974 *
975 * This function is called by iommu drivers and users to get the group
976 * for the specified device. If found, the group is returned and the group
977 * reference in incremented, else NULL.
978 */
iommu_group_get(struct device * dev)979 struct iommu_group *iommu_group_get(struct device *dev)
980 {
981 struct iommu_group *group = dev->iommu_group;
982
983 if (group)
984 kobject_get(group->devices_kobj);
985
986 return group;
987 }
988 EXPORT_SYMBOL_GPL(iommu_group_get);
989
990 /**
991 * iommu_group_ref_get - Increment reference on a group
992 * @group: the group to use, must not be NULL
993 *
994 * This function is called by iommu drivers to take additional references on an
995 * existing group. Returns the given group for convenience.
996 */
iommu_group_ref_get(struct iommu_group * group)997 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
998 {
999 kobject_get(group->devices_kobj);
1000 return group;
1001 }
1002 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1003
1004 /**
1005 * iommu_group_put - Decrement group reference
1006 * @group: the group to use
1007 *
1008 * This function is called by iommu drivers and users to release the
1009 * iommu group. Once the reference count is zero, the group is released.
1010 */
iommu_group_put(struct iommu_group * group)1011 void iommu_group_put(struct iommu_group *group)
1012 {
1013 if (group)
1014 kobject_put(group->devices_kobj);
1015 }
1016 EXPORT_SYMBOL_GPL(iommu_group_put);
1017
1018 /**
1019 * iommu_group_register_notifier - Register a notifier for group changes
1020 * @group: the group to watch
1021 * @nb: notifier block to signal
1022 *
1023 * This function allows iommu group users to track changes in a group.
1024 * See include/linux/iommu.h for actions sent via this notifier. Caller
1025 * should hold a reference to the group throughout notifier registration.
1026 */
iommu_group_register_notifier(struct iommu_group * group,struct notifier_block * nb)1027 int iommu_group_register_notifier(struct iommu_group *group,
1028 struct notifier_block *nb)
1029 {
1030 return blocking_notifier_chain_register(&group->notifier, nb);
1031 }
1032 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1033
1034 /**
1035 * iommu_group_unregister_notifier - Unregister a notifier
1036 * @group: the group to watch
1037 * @nb: notifier block to signal
1038 *
1039 * Unregister a previously registered group notifier block.
1040 */
iommu_group_unregister_notifier(struct iommu_group * group,struct notifier_block * nb)1041 int iommu_group_unregister_notifier(struct iommu_group *group,
1042 struct notifier_block *nb)
1043 {
1044 return blocking_notifier_chain_unregister(&group->notifier, nb);
1045 }
1046 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1047
1048 /**
1049 * iommu_register_device_fault_handler() - Register a device fault handler
1050 * @dev: the device
1051 * @handler: the fault handler
1052 * @data: private data passed as argument to the handler
1053 *
1054 * When an IOMMU fault event is received, this handler gets called with the
1055 * fault event and data as argument. The handler should return 0 on success. If
1056 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1057 * complete the fault by calling iommu_page_response() with one of the following
1058 * response code:
1059 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1060 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1061 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1062 * page faults if possible.
1063 *
1064 * Return 0 if the fault handler was installed successfully, or an error.
1065 */
iommu_register_device_fault_handler(struct device * dev,iommu_dev_fault_handler_t handler,void * data)1066 int iommu_register_device_fault_handler(struct device *dev,
1067 iommu_dev_fault_handler_t handler,
1068 void *data)
1069 {
1070 struct dev_iommu *param = dev->iommu;
1071 int ret = 0;
1072
1073 if (!param)
1074 return -EINVAL;
1075
1076 mutex_lock(¶m->lock);
1077 /* Only allow one fault handler registered for each device */
1078 if (param->fault_param) {
1079 ret = -EBUSY;
1080 goto done_unlock;
1081 }
1082
1083 get_device(dev);
1084 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1085 if (!param->fault_param) {
1086 put_device(dev);
1087 ret = -ENOMEM;
1088 goto done_unlock;
1089 }
1090 param->fault_param->handler = handler;
1091 param->fault_param->data = data;
1092 mutex_init(¶m->fault_param->lock);
1093 INIT_LIST_HEAD(¶m->fault_param->faults);
1094
1095 done_unlock:
1096 mutex_unlock(¶m->lock);
1097
1098 return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1101
1102 /**
1103 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1104 * @dev: the device
1105 *
1106 * Remove the device fault handler installed with
1107 * iommu_register_device_fault_handler().
1108 *
1109 * Return 0 on success, or an error.
1110 */
iommu_unregister_device_fault_handler(struct device * dev)1111 int iommu_unregister_device_fault_handler(struct device *dev)
1112 {
1113 struct dev_iommu *param = dev->iommu;
1114 int ret = 0;
1115
1116 if (!param)
1117 return -EINVAL;
1118
1119 mutex_lock(¶m->lock);
1120
1121 if (!param->fault_param)
1122 goto unlock;
1123
1124 /* we cannot unregister handler if there are pending faults */
1125 if (!list_empty(¶m->fault_param->faults)) {
1126 ret = -EBUSY;
1127 goto unlock;
1128 }
1129
1130 kfree(param->fault_param);
1131 param->fault_param = NULL;
1132 put_device(dev);
1133 unlock:
1134 mutex_unlock(¶m->lock);
1135
1136 return ret;
1137 }
1138 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1139
1140 /**
1141 * iommu_report_device_fault() - Report fault event to device driver
1142 * @dev: the device
1143 * @evt: fault event data
1144 *
1145 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1146 * handler. When this function fails and the fault is recoverable, it is the
1147 * caller's responsibility to complete the fault.
1148 *
1149 * Return 0 on success, or an error.
1150 */
iommu_report_device_fault(struct device * dev,struct iommu_fault_event * evt)1151 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1152 {
1153 struct dev_iommu *param = dev->iommu;
1154 struct iommu_fault_event *evt_pending = NULL;
1155 struct iommu_fault_param *fparam;
1156 int ret = 0;
1157
1158 if (!param || !evt)
1159 return -EINVAL;
1160
1161 /* we only report device fault if there is a handler registered */
1162 mutex_lock(¶m->lock);
1163 fparam = param->fault_param;
1164 if (!fparam || !fparam->handler) {
1165 ret = -EINVAL;
1166 goto done_unlock;
1167 }
1168
1169 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1170 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1171 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1172 GFP_KERNEL);
1173 if (!evt_pending) {
1174 ret = -ENOMEM;
1175 goto done_unlock;
1176 }
1177 mutex_lock(&fparam->lock);
1178 list_add_tail(&evt_pending->list, &fparam->faults);
1179 mutex_unlock(&fparam->lock);
1180 }
1181
1182 ret = fparam->handler(&evt->fault, fparam->data);
1183 if (ret && evt_pending) {
1184 mutex_lock(&fparam->lock);
1185 list_del(&evt_pending->list);
1186 mutex_unlock(&fparam->lock);
1187 kfree(evt_pending);
1188 }
1189 done_unlock:
1190 mutex_unlock(¶m->lock);
1191 return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1194
iommu_page_response(struct device * dev,struct iommu_page_response * msg)1195 int iommu_page_response(struct device *dev,
1196 struct iommu_page_response *msg)
1197 {
1198 bool needs_pasid;
1199 int ret = -EINVAL;
1200 struct iommu_fault_event *evt;
1201 struct iommu_fault_page_request *prm;
1202 struct dev_iommu *param = dev->iommu;
1203 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1204 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1205
1206 if (!domain || !domain->ops->page_response)
1207 return -ENODEV;
1208
1209 if (!param || !param->fault_param)
1210 return -EINVAL;
1211
1212 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1213 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1214 return -EINVAL;
1215
1216 /* Only send response if there is a fault report pending */
1217 mutex_lock(¶m->fault_param->lock);
1218 if (list_empty(¶m->fault_param->faults)) {
1219 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1220 goto done_unlock;
1221 }
1222 /*
1223 * Check if we have a matching page request pending to respond,
1224 * otherwise return -EINVAL
1225 */
1226 list_for_each_entry(evt, ¶m->fault_param->faults, list) {
1227 prm = &evt->fault.prm;
1228 if (prm->grpid != msg->grpid)
1229 continue;
1230
1231 /*
1232 * If the PASID is required, the corresponding request is
1233 * matched using the group ID, the PASID valid bit and the PASID
1234 * value. Otherwise only the group ID matches request and
1235 * response.
1236 */
1237 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1238 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1239 continue;
1240
1241 if (!needs_pasid && has_pasid) {
1242 /* No big deal, just clear it. */
1243 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1244 msg->pasid = 0;
1245 }
1246
1247 ret = domain->ops->page_response(dev, evt, msg);
1248 list_del(&evt->list);
1249 kfree(evt);
1250 break;
1251 }
1252
1253 done_unlock:
1254 mutex_unlock(¶m->fault_param->lock);
1255 return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(iommu_page_response);
1258
1259 /**
1260 * iommu_group_id - Return ID for a group
1261 * @group: the group to ID
1262 *
1263 * Return the unique ID for the group matching the sysfs group number.
1264 */
iommu_group_id(struct iommu_group * group)1265 int iommu_group_id(struct iommu_group *group)
1266 {
1267 return group->id;
1268 }
1269 EXPORT_SYMBOL_GPL(iommu_group_id);
1270
1271 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1272 unsigned long *devfns);
1273
1274 /*
1275 * To consider a PCI device isolated, we require ACS to support Source
1276 * Validation, Request Redirection, Completer Redirection, and Upstream
1277 * Forwarding. This effectively means that devices cannot spoof their
1278 * requester ID, requests and completions cannot be redirected, and all
1279 * transactions are forwarded upstream, even as it passes through a
1280 * bridge where the target device is downstream.
1281 */
1282 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1283
1284 /*
1285 * For multifunction devices which are not isolated from each other, find
1286 * all the other non-isolated functions and look for existing groups. For
1287 * each function, we also need to look for aliases to or from other devices
1288 * that may already have a group.
1289 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1290 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1291 unsigned long *devfns)
1292 {
1293 struct pci_dev *tmp = NULL;
1294 struct iommu_group *group;
1295
1296 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1297 return NULL;
1298
1299 for_each_pci_dev(tmp) {
1300 if (tmp == pdev || tmp->bus != pdev->bus ||
1301 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1302 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1303 continue;
1304
1305 group = get_pci_alias_group(tmp, devfns);
1306 if (group) {
1307 pci_dev_put(tmp);
1308 return group;
1309 }
1310 }
1311
1312 return NULL;
1313 }
1314
1315 /*
1316 * Look for aliases to or from the given device for existing groups. DMA
1317 * aliases are only supported on the same bus, therefore the search
1318 * space is quite small (especially since we're really only looking at pcie
1319 * device, and therefore only expect multiple slots on the root complex or
1320 * downstream switch ports). It's conceivable though that a pair of
1321 * multifunction devices could have aliases between them that would cause a
1322 * loop. To prevent this, we use a bitmap to track where we've been.
1323 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1324 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1325 unsigned long *devfns)
1326 {
1327 struct pci_dev *tmp = NULL;
1328 struct iommu_group *group;
1329
1330 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1331 return NULL;
1332
1333 group = iommu_group_get(&pdev->dev);
1334 if (group)
1335 return group;
1336
1337 for_each_pci_dev(tmp) {
1338 if (tmp == pdev || tmp->bus != pdev->bus)
1339 continue;
1340
1341 /* We alias them or they alias us */
1342 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1343 group = get_pci_alias_group(tmp, devfns);
1344 if (group) {
1345 pci_dev_put(tmp);
1346 return group;
1347 }
1348
1349 group = get_pci_function_alias_group(tmp, devfns);
1350 if (group) {
1351 pci_dev_put(tmp);
1352 return group;
1353 }
1354 }
1355 }
1356
1357 return NULL;
1358 }
1359
1360 struct group_for_pci_data {
1361 struct pci_dev *pdev;
1362 struct iommu_group *group;
1363 };
1364
1365 /*
1366 * DMA alias iterator callback, return the last seen device. Stop and return
1367 * the IOMMU group if we find one along the way.
1368 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1369 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1370 {
1371 struct group_for_pci_data *data = opaque;
1372
1373 data->pdev = pdev;
1374 data->group = iommu_group_get(&pdev->dev);
1375
1376 return data->group != NULL;
1377 }
1378
1379 /*
1380 * Generic device_group call-back function. It just allocates one
1381 * iommu-group per device.
1382 */
generic_device_group(struct device * dev)1383 struct iommu_group *generic_device_group(struct device *dev)
1384 {
1385 return iommu_group_alloc();
1386 }
1387 EXPORT_SYMBOL_GPL(generic_device_group);
1388
1389 /*
1390 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1391 * to find or create an IOMMU group for a device.
1392 */
pci_device_group(struct device * dev)1393 struct iommu_group *pci_device_group(struct device *dev)
1394 {
1395 struct pci_dev *pdev = to_pci_dev(dev);
1396 struct group_for_pci_data data;
1397 struct pci_bus *bus;
1398 struct iommu_group *group = NULL;
1399 u64 devfns[4] = { 0 };
1400
1401 if (WARN_ON(!dev_is_pci(dev)))
1402 return ERR_PTR(-EINVAL);
1403
1404 /*
1405 * Find the upstream DMA alias for the device. A device must not
1406 * be aliased due to topology in order to have its own IOMMU group.
1407 * If we find an alias along the way that already belongs to a
1408 * group, use it.
1409 */
1410 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1411 return data.group;
1412
1413 pdev = data.pdev;
1414
1415 /*
1416 * Continue upstream from the point of minimum IOMMU granularity
1417 * due to aliases to the point where devices are protected from
1418 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1419 * group, use it.
1420 */
1421 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1422 if (!bus->self)
1423 continue;
1424
1425 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1426 break;
1427
1428 pdev = bus->self;
1429
1430 group = iommu_group_get(&pdev->dev);
1431 if (group)
1432 return group;
1433 }
1434
1435 /*
1436 * Look for existing groups on device aliases. If we alias another
1437 * device or another device aliases us, use the same group.
1438 */
1439 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1440 if (group)
1441 return group;
1442
1443 /*
1444 * Look for existing groups on non-isolated functions on the same
1445 * slot and aliases of those funcions, if any. No need to clear
1446 * the search bitmap, the tested devfns are still valid.
1447 */
1448 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1449 if (group)
1450 return group;
1451
1452 /* No shared group found, allocate new */
1453 return iommu_group_alloc();
1454 }
1455 EXPORT_SYMBOL_GPL(pci_device_group);
1456
1457 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1458 struct iommu_group *fsl_mc_device_group(struct device *dev)
1459 {
1460 struct device *cont_dev = fsl_mc_cont_dev(dev);
1461 struct iommu_group *group;
1462
1463 group = iommu_group_get(cont_dev);
1464 if (!group)
1465 group = iommu_group_alloc();
1466 return group;
1467 }
1468 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1469
iommu_get_def_domain_type(struct device * dev)1470 static int iommu_get_def_domain_type(struct device *dev)
1471 {
1472 const struct iommu_ops *ops = dev->bus->iommu_ops;
1473 unsigned int type = 0;
1474
1475 if (ops->def_domain_type)
1476 type = ops->def_domain_type(dev);
1477
1478 return (type == 0) ? iommu_def_domain_type : type;
1479 }
1480
iommu_group_alloc_default_domain(struct bus_type * bus,struct iommu_group * group,unsigned int type)1481 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1482 struct iommu_group *group,
1483 unsigned int type)
1484 {
1485 struct iommu_domain *dom;
1486
1487 dom = __iommu_domain_alloc(bus, type);
1488 if (!dom && type != IOMMU_DOMAIN_DMA) {
1489 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1490 if (dom)
1491 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1492 type, group->name);
1493 }
1494
1495 if (!dom)
1496 return -ENOMEM;
1497
1498 group->default_domain = dom;
1499 if (!group->domain)
1500 group->domain = dom;
1501
1502 if (!iommu_dma_strict) {
1503 int attr = 1;
1504 iommu_domain_set_attr(dom,
1505 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1506 &attr);
1507 }
1508
1509 return 0;
1510 }
1511
iommu_alloc_default_domain(struct iommu_group * group,struct device * dev)1512 static int iommu_alloc_default_domain(struct iommu_group *group,
1513 struct device *dev)
1514 {
1515 unsigned int type;
1516
1517 if (group->default_domain)
1518 return 0;
1519
1520 type = iommu_get_def_domain_type(dev);
1521
1522 return iommu_group_alloc_default_domain(dev->bus, group, type);
1523 }
1524
1525 /**
1526 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1527 * @dev: target device
1528 *
1529 * This function is intended to be called by IOMMU drivers and extended to
1530 * support common, bus-defined algorithms when determining or creating the
1531 * IOMMU group for a device. On success, the caller will hold a reference
1532 * to the returned IOMMU group, which will already include the provided
1533 * device. The reference should be released with iommu_group_put().
1534 */
iommu_group_get_for_dev(struct device * dev)1535 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1536 {
1537 const struct iommu_ops *ops = dev->bus->iommu_ops;
1538 struct iommu_group *group;
1539 int ret;
1540
1541 group = iommu_group_get(dev);
1542 if (group)
1543 return group;
1544
1545 if (!ops)
1546 return ERR_PTR(-EINVAL);
1547
1548 group = ops->device_group(dev);
1549 if (WARN_ON_ONCE(group == NULL))
1550 return ERR_PTR(-EINVAL);
1551
1552 if (IS_ERR(group))
1553 return group;
1554
1555 ret = iommu_group_add_device(group, dev);
1556 if (ret)
1557 goto out_put_group;
1558
1559 return group;
1560
1561 out_put_group:
1562 iommu_group_put(group);
1563
1564 return ERR_PTR(ret);
1565 }
1566
iommu_group_default_domain(struct iommu_group * group)1567 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1568 {
1569 return group->default_domain;
1570 }
1571
probe_iommu_group(struct device * dev,void * data)1572 static int probe_iommu_group(struct device *dev, void *data)
1573 {
1574 struct list_head *group_list = data;
1575 struct iommu_group *group;
1576 int ret;
1577
1578 /* Device is probed already if in a group */
1579 group = iommu_group_get(dev);
1580 if (group) {
1581 iommu_group_put(group);
1582 return 0;
1583 }
1584
1585 ret = __iommu_probe_device(dev, group_list);
1586 if (ret == -ENODEV)
1587 ret = 0;
1588
1589 return ret;
1590 }
1591
remove_iommu_group(struct device * dev,void * data)1592 static int remove_iommu_group(struct device *dev, void *data)
1593 {
1594 iommu_release_device(dev);
1595
1596 return 0;
1597 }
1598
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1599 static int iommu_bus_notifier(struct notifier_block *nb,
1600 unsigned long action, void *data)
1601 {
1602 unsigned long group_action = 0;
1603 struct device *dev = data;
1604 struct iommu_group *group;
1605
1606 /*
1607 * ADD/DEL call into iommu driver ops if provided, which may
1608 * result in ADD/DEL notifiers to group->notifier
1609 */
1610 if (action == BUS_NOTIFY_ADD_DEVICE) {
1611 int ret;
1612
1613 ret = iommu_probe_device(dev);
1614 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1615 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1616 iommu_release_device(dev);
1617 return NOTIFY_OK;
1618 }
1619
1620 /*
1621 * Remaining BUS_NOTIFYs get filtered and republished to the
1622 * group, if anyone is listening
1623 */
1624 group = iommu_group_get(dev);
1625 if (!group)
1626 return 0;
1627
1628 switch (action) {
1629 case BUS_NOTIFY_BIND_DRIVER:
1630 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1631 break;
1632 case BUS_NOTIFY_BOUND_DRIVER:
1633 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1634 break;
1635 case BUS_NOTIFY_UNBIND_DRIVER:
1636 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1637 break;
1638 case BUS_NOTIFY_UNBOUND_DRIVER:
1639 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1640 break;
1641 }
1642
1643 if (group_action)
1644 blocking_notifier_call_chain(&group->notifier,
1645 group_action, dev);
1646
1647 iommu_group_put(group);
1648 return 0;
1649 }
1650
1651 struct __group_domain_type {
1652 struct device *dev;
1653 unsigned int type;
1654 };
1655
probe_get_default_domain_type(struct device * dev,void * data)1656 static int probe_get_default_domain_type(struct device *dev, void *data)
1657 {
1658 const struct iommu_ops *ops = dev->bus->iommu_ops;
1659 struct __group_domain_type *gtype = data;
1660 unsigned int type = 0;
1661
1662 if (ops->def_domain_type)
1663 type = ops->def_domain_type(dev);
1664
1665 if (type) {
1666 if (gtype->type && gtype->type != type) {
1667 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1668 iommu_domain_type_str(type),
1669 dev_name(gtype->dev),
1670 iommu_domain_type_str(gtype->type));
1671 gtype->type = 0;
1672 }
1673
1674 if (!gtype->dev) {
1675 gtype->dev = dev;
1676 gtype->type = type;
1677 }
1678 }
1679
1680 return 0;
1681 }
1682
probe_alloc_default_domain(struct bus_type * bus,struct iommu_group * group)1683 static void probe_alloc_default_domain(struct bus_type *bus,
1684 struct iommu_group *group)
1685 {
1686 struct __group_domain_type gtype;
1687
1688 memset(>ype, 0, sizeof(gtype));
1689
1690 /* Ask for default domain requirements of all devices in the group */
1691 __iommu_group_for_each_dev(group, >ype,
1692 probe_get_default_domain_type);
1693
1694 if (!gtype.type)
1695 gtype.type = iommu_def_domain_type;
1696
1697 iommu_group_alloc_default_domain(bus, group, gtype.type);
1698
1699 }
1700
iommu_group_do_dma_attach(struct device * dev,void * data)1701 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1702 {
1703 struct iommu_domain *domain = data;
1704 int ret = 0;
1705
1706 if (!iommu_is_attach_deferred(domain, dev))
1707 ret = __iommu_attach_device(domain, dev);
1708
1709 return ret;
1710 }
1711
__iommu_group_dma_attach(struct iommu_group * group)1712 static int __iommu_group_dma_attach(struct iommu_group *group)
1713 {
1714 return __iommu_group_for_each_dev(group, group->default_domain,
1715 iommu_group_do_dma_attach);
1716 }
1717
iommu_group_do_probe_finalize(struct device * dev,void * data)1718 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1719 {
1720 struct iommu_domain *domain = data;
1721
1722 if (domain->ops->probe_finalize)
1723 domain->ops->probe_finalize(dev);
1724
1725 return 0;
1726 }
1727
__iommu_group_dma_finalize(struct iommu_group * group)1728 static void __iommu_group_dma_finalize(struct iommu_group *group)
1729 {
1730 __iommu_group_for_each_dev(group, group->default_domain,
1731 iommu_group_do_probe_finalize);
1732 }
1733
iommu_do_create_direct_mappings(struct device * dev,void * data)1734 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1735 {
1736 struct iommu_group *group = data;
1737
1738 iommu_create_device_direct_mappings(group, dev);
1739
1740 return 0;
1741 }
1742
iommu_group_create_direct_mappings(struct iommu_group * group)1743 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1744 {
1745 return __iommu_group_for_each_dev(group, group,
1746 iommu_do_create_direct_mappings);
1747 }
1748
bus_iommu_probe(struct bus_type * bus)1749 int bus_iommu_probe(struct bus_type *bus)
1750 {
1751 struct iommu_group *group, *next;
1752 LIST_HEAD(group_list);
1753 int ret;
1754
1755 /*
1756 * This code-path does not allocate the default domain when
1757 * creating the iommu group, so do it after the groups are
1758 * created.
1759 */
1760 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1761 if (ret)
1762 return ret;
1763
1764 list_for_each_entry_safe(group, next, &group_list, entry) {
1765 /* Remove item from the list */
1766 list_del_init(&group->entry);
1767
1768 mutex_lock(&group->mutex);
1769
1770 /* Try to allocate default domain */
1771 probe_alloc_default_domain(bus, group);
1772
1773 if (!group->default_domain) {
1774 mutex_unlock(&group->mutex);
1775 continue;
1776 }
1777
1778 iommu_group_create_direct_mappings(group);
1779
1780 ret = __iommu_group_dma_attach(group);
1781
1782 mutex_unlock(&group->mutex);
1783
1784 if (ret)
1785 break;
1786
1787 __iommu_group_dma_finalize(group);
1788 }
1789
1790 return ret;
1791 }
1792
iommu_bus_init(struct bus_type * bus,const struct iommu_ops * ops)1793 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1794 {
1795 struct notifier_block *nb;
1796 int err;
1797
1798 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1799 if (!nb)
1800 return -ENOMEM;
1801
1802 nb->notifier_call = iommu_bus_notifier;
1803
1804 err = bus_register_notifier(bus, nb);
1805 if (err)
1806 goto out_free;
1807
1808 err = bus_iommu_probe(bus);
1809 if (err)
1810 goto out_err;
1811
1812
1813 return 0;
1814
1815 out_err:
1816 /* Clean up */
1817 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1818 bus_unregister_notifier(bus, nb);
1819
1820 out_free:
1821 kfree(nb);
1822
1823 return err;
1824 }
1825
1826 /**
1827 * bus_set_iommu - set iommu-callbacks for the bus
1828 * @bus: bus.
1829 * @ops: the callbacks provided by the iommu-driver
1830 *
1831 * This function is called by an iommu driver to set the iommu methods
1832 * used for a particular bus. Drivers for devices on that bus can use
1833 * the iommu-api after these ops are registered.
1834 * This special function is needed because IOMMUs are usually devices on
1835 * the bus itself, so the iommu drivers are not initialized when the bus
1836 * is set up. With this function the iommu-driver can set the iommu-ops
1837 * afterwards.
1838 */
bus_set_iommu(struct bus_type * bus,const struct iommu_ops * ops)1839 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1840 {
1841 int err;
1842
1843 if (ops == NULL) {
1844 bus->iommu_ops = NULL;
1845 return 0;
1846 }
1847
1848 if (bus->iommu_ops != NULL)
1849 return -EBUSY;
1850
1851 bus->iommu_ops = ops;
1852
1853 /* Do IOMMU specific setup for this bus-type */
1854 err = iommu_bus_init(bus, ops);
1855 if (err)
1856 bus->iommu_ops = NULL;
1857
1858 return err;
1859 }
1860 EXPORT_SYMBOL_GPL(bus_set_iommu);
1861
iommu_present(struct bus_type * bus)1862 bool iommu_present(struct bus_type *bus)
1863 {
1864 return bus->iommu_ops != NULL;
1865 }
1866 EXPORT_SYMBOL_GPL(iommu_present);
1867
iommu_capable(struct bus_type * bus,enum iommu_cap cap)1868 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1869 {
1870 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1871 return false;
1872
1873 return bus->iommu_ops->capable(cap);
1874 }
1875 EXPORT_SYMBOL_GPL(iommu_capable);
1876
1877 /**
1878 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1879 * @domain: iommu domain
1880 * @handler: fault handler
1881 * @token: user data, will be passed back to the fault handler
1882 *
1883 * This function should be used by IOMMU users which want to be notified
1884 * whenever an IOMMU fault happens.
1885 *
1886 * The fault handler itself should return 0 on success, and an appropriate
1887 * error code otherwise.
1888 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1889 void iommu_set_fault_handler(struct iommu_domain *domain,
1890 iommu_fault_handler_t handler,
1891 void *token)
1892 {
1893 BUG_ON(!domain);
1894
1895 domain->handler = handler;
1896 domain->handler_token = token;
1897 }
1898 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1899
__iommu_domain_alloc(struct bus_type * bus,unsigned type)1900 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1901 unsigned type)
1902 {
1903 struct iommu_domain *domain;
1904
1905 if (bus == NULL || bus->iommu_ops == NULL)
1906 return NULL;
1907
1908 domain = bus->iommu_ops->domain_alloc(type);
1909 if (!domain)
1910 return NULL;
1911
1912 domain->ops = bus->iommu_ops;
1913 domain->type = type;
1914 /* Assume all sizes by default; the driver may override this later */
1915 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1916
1917 return domain;
1918 }
1919
iommu_domain_alloc(struct bus_type * bus)1920 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1921 {
1922 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1923 }
1924 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1925
iommu_domain_free(struct iommu_domain * domain)1926 void iommu_domain_free(struct iommu_domain *domain)
1927 {
1928 domain->ops->domain_free(domain);
1929 }
1930 EXPORT_SYMBOL_GPL(iommu_domain_free);
1931
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)1932 static int __iommu_attach_device(struct iommu_domain *domain,
1933 struct device *dev)
1934 {
1935 int ret;
1936
1937 if (unlikely(domain->ops->attach_dev == NULL))
1938 return -ENODEV;
1939
1940 ret = domain->ops->attach_dev(domain, dev);
1941 if (!ret)
1942 trace_attach_device_to_domain(dev);
1943 return ret;
1944 }
1945
iommu_attach_device(struct iommu_domain * domain,struct device * dev)1946 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1947 {
1948 struct iommu_group *group;
1949 int ret;
1950
1951 group = iommu_group_get(dev);
1952 if (!group)
1953 return -ENODEV;
1954
1955 /*
1956 * Lock the group to make sure the device-count doesn't
1957 * change while we are attaching
1958 */
1959 mutex_lock(&group->mutex);
1960 ret = -EINVAL;
1961 if (iommu_group_device_count(group) != 1)
1962 goto out_unlock;
1963
1964 ret = __iommu_attach_group(domain, group);
1965
1966 out_unlock:
1967 mutex_unlock(&group->mutex);
1968 iommu_group_put(group);
1969
1970 return ret;
1971 }
1972 EXPORT_SYMBOL_GPL(iommu_attach_device);
1973
1974 /*
1975 * Check flags and other user provided data for valid combinations. We also
1976 * make sure no reserved fields or unused flags are set. This is to ensure
1977 * not breaking userspace in the future when these fields or flags are used.
1978 */
iommu_check_cache_invl_data(struct iommu_cache_invalidate_info * info)1979 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
1980 {
1981 u32 mask;
1982 int i;
1983
1984 if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
1985 return -EINVAL;
1986
1987 mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
1988 if (info->cache & ~mask)
1989 return -EINVAL;
1990
1991 if (info->granularity >= IOMMU_INV_GRANU_NR)
1992 return -EINVAL;
1993
1994 switch (info->granularity) {
1995 case IOMMU_INV_GRANU_ADDR:
1996 if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
1997 return -EINVAL;
1998
1999 mask = IOMMU_INV_ADDR_FLAGS_PASID |
2000 IOMMU_INV_ADDR_FLAGS_ARCHID |
2001 IOMMU_INV_ADDR_FLAGS_LEAF;
2002
2003 if (info->granu.addr_info.flags & ~mask)
2004 return -EINVAL;
2005 break;
2006 case IOMMU_INV_GRANU_PASID:
2007 mask = IOMMU_INV_PASID_FLAGS_PASID |
2008 IOMMU_INV_PASID_FLAGS_ARCHID;
2009 if (info->granu.pasid_info.flags & ~mask)
2010 return -EINVAL;
2011
2012 break;
2013 case IOMMU_INV_GRANU_DOMAIN:
2014 if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2015 return -EINVAL;
2016 break;
2017 default:
2018 return -EINVAL;
2019 }
2020
2021 /* Check reserved padding fields */
2022 for (i = 0; i < sizeof(info->padding); i++) {
2023 if (info->padding[i])
2024 return -EINVAL;
2025 }
2026
2027 return 0;
2028 }
2029
iommu_uapi_cache_invalidate(struct iommu_domain * domain,struct device * dev,void __user * uinfo)2030 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2031 void __user *uinfo)
2032 {
2033 struct iommu_cache_invalidate_info inv_info = { 0 };
2034 u32 minsz;
2035 int ret;
2036
2037 if (unlikely(!domain->ops->cache_invalidate))
2038 return -ENODEV;
2039
2040 /*
2041 * No new spaces can be added before the variable sized union, the
2042 * minimum size is the offset to the union.
2043 */
2044 minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2045
2046 /* Copy minsz from user to get flags and argsz */
2047 if (copy_from_user(&inv_info, uinfo, minsz))
2048 return -EFAULT;
2049
2050 /* Fields before the variable size union are mandatory */
2051 if (inv_info.argsz < minsz)
2052 return -EINVAL;
2053
2054 /* PASID and address granu require additional info beyond minsz */
2055 if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2056 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2057 return -EINVAL;
2058
2059 if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2060 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2061 return -EINVAL;
2062
2063 /*
2064 * User might be using a newer UAPI header which has a larger data
2065 * size, we shall support the existing flags within the current
2066 * size. Copy the remaining user data _after_ minsz but not more
2067 * than the current kernel supported size.
2068 */
2069 if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2070 min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2071 return -EFAULT;
2072
2073 /* Now the argsz is validated, check the content */
2074 ret = iommu_check_cache_invl_data(&inv_info);
2075 if (ret)
2076 return ret;
2077
2078 return domain->ops->cache_invalidate(domain, dev, &inv_info);
2079 }
2080 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2081
iommu_check_bind_data(struct iommu_gpasid_bind_data * data)2082 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2083 {
2084 u64 mask;
2085 int i;
2086
2087 if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2088 return -EINVAL;
2089
2090 /* Check the range of supported formats */
2091 if (data->format >= IOMMU_PASID_FORMAT_LAST)
2092 return -EINVAL;
2093
2094 /* Check all flags */
2095 mask = IOMMU_SVA_GPASID_VAL;
2096 if (data->flags & ~mask)
2097 return -EINVAL;
2098
2099 /* Check reserved padding fields */
2100 for (i = 0; i < sizeof(data->padding); i++) {
2101 if (data->padding[i])
2102 return -EINVAL;
2103 }
2104
2105 return 0;
2106 }
2107
iommu_sva_prepare_bind_data(void __user * udata,struct iommu_gpasid_bind_data * data)2108 static int iommu_sva_prepare_bind_data(void __user *udata,
2109 struct iommu_gpasid_bind_data *data)
2110 {
2111 u32 minsz;
2112
2113 /*
2114 * No new spaces can be added before the variable sized union, the
2115 * minimum size is the offset to the union.
2116 */
2117 minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2118
2119 /* Copy minsz from user to get flags and argsz */
2120 if (copy_from_user(data, udata, minsz))
2121 return -EFAULT;
2122
2123 /* Fields before the variable size union are mandatory */
2124 if (data->argsz < minsz)
2125 return -EINVAL;
2126 /*
2127 * User might be using a newer UAPI header, we shall let IOMMU vendor
2128 * driver decide on what size it needs. Since the guest PASID bind data
2129 * can be vendor specific, larger argsz could be the result of extension
2130 * for one vendor but it should not affect another vendor.
2131 * Copy the remaining user data _after_ minsz
2132 */
2133 if (copy_from_user((void *)data + minsz, udata + minsz,
2134 min_t(u32, data->argsz, sizeof(*data)) - minsz))
2135 return -EFAULT;
2136
2137 return iommu_check_bind_data(data);
2138 }
2139
iommu_uapi_sva_bind_gpasid(struct iommu_domain * domain,struct device * dev,void __user * udata)2140 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2141 void __user *udata)
2142 {
2143 struct iommu_gpasid_bind_data data = { 0 };
2144 int ret;
2145
2146 if (unlikely(!domain->ops->sva_bind_gpasid))
2147 return -ENODEV;
2148
2149 ret = iommu_sva_prepare_bind_data(udata, &data);
2150 if (ret)
2151 return ret;
2152
2153 return domain->ops->sva_bind_gpasid(domain, dev, &data);
2154 }
2155 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2156
iommu_sva_unbind_gpasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)2157 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2158 ioasid_t pasid)
2159 {
2160 if (unlikely(!domain->ops->sva_unbind_gpasid))
2161 return -ENODEV;
2162
2163 return domain->ops->sva_unbind_gpasid(dev, pasid);
2164 }
2165 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2166
iommu_uapi_sva_unbind_gpasid(struct iommu_domain * domain,struct device * dev,void __user * udata)2167 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2168 void __user *udata)
2169 {
2170 struct iommu_gpasid_bind_data data = { 0 };
2171 int ret;
2172
2173 if (unlikely(!domain->ops->sva_bind_gpasid))
2174 return -ENODEV;
2175
2176 ret = iommu_sva_prepare_bind_data(udata, &data);
2177 if (ret)
2178 return ret;
2179
2180 return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2181 }
2182 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2183
__iommu_detach_device(struct iommu_domain * domain,struct device * dev)2184 static void __iommu_detach_device(struct iommu_domain *domain,
2185 struct device *dev)
2186 {
2187 if (iommu_is_attach_deferred(domain, dev))
2188 return;
2189
2190 if (unlikely(domain->ops->detach_dev == NULL))
2191 return;
2192
2193 domain->ops->detach_dev(domain, dev);
2194 trace_detach_device_from_domain(dev);
2195 }
2196
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2197 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2198 {
2199 struct iommu_group *group;
2200
2201 group = iommu_group_get(dev);
2202 if (!group)
2203 return;
2204
2205 mutex_lock(&group->mutex);
2206 if (iommu_group_device_count(group) != 1) {
2207 WARN_ON(1);
2208 goto out_unlock;
2209 }
2210
2211 __iommu_detach_group(domain, group);
2212
2213 out_unlock:
2214 mutex_unlock(&group->mutex);
2215 iommu_group_put(group);
2216 }
2217 EXPORT_SYMBOL_GPL(iommu_detach_device);
2218
iommu_get_domain_for_dev(struct device * dev)2219 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2220 {
2221 struct iommu_domain *domain;
2222 struct iommu_group *group;
2223
2224 group = iommu_group_get(dev);
2225 if (!group)
2226 return NULL;
2227
2228 domain = group->domain;
2229
2230 iommu_group_put(group);
2231
2232 return domain;
2233 }
2234 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2235
2236 /*
2237 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2238 * guarantees that the group and its default domain are valid and correct.
2239 */
iommu_get_dma_domain(struct device * dev)2240 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2241 {
2242 return dev->iommu_group->default_domain;
2243 }
2244
2245 /*
2246 * IOMMU groups are really the natural working unit of the IOMMU, but
2247 * the IOMMU API works on domains and devices. Bridge that gap by
2248 * iterating over the devices in a group. Ideally we'd have a single
2249 * device which represents the requestor ID of the group, but we also
2250 * allow IOMMU drivers to create policy defined minimum sets, where
2251 * the physical hardware may be able to distiguish members, but we
2252 * wish to group them at a higher level (ex. untrusted multi-function
2253 * PCI devices). Thus we attach each device.
2254 */
iommu_group_do_attach_device(struct device * dev,void * data)2255 static int iommu_group_do_attach_device(struct device *dev, void *data)
2256 {
2257 struct iommu_domain *domain = data;
2258
2259 return __iommu_attach_device(domain, dev);
2260 }
2261
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2262 static int __iommu_attach_group(struct iommu_domain *domain,
2263 struct iommu_group *group)
2264 {
2265 int ret;
2266
2267 if (group->default_domain && group->domain != group->default_domain)
2268 return -EBUSY;
2269
2270 ret = __iommu_group_for_each_dev(group, domain,
2271 iommu_group_do_attach_device);
2272 if (ret == 0)
2273 group->domain = domain;
2274
2275 return ret;
2276 }
2277
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2278 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2279 {
2280 int ret;
2281
2282 mutex_lock(&group->mutex);
2283 ret = __iommu_attach_group(domain, group);
2284 mutex_unlock(&group->mutex);
2285
2286 return ret;
2287 }
2288 EXPORT_SYMBOL_GPL(iommu_attach_group);
2289
iommu_group_do_detach_device(struct device * dev,void * data)2290 static int iommu_group_do_detach_device(struct device *dev, void *data)
2291 {
2292 struct iommu_domain *domain = data;
2293
2294 __iommu_detach_device(domain, dev);
2295
2296 return 0;
2297 }
2298
__iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2299 static void __iommu_detach_group(struct iommu_domain *domain,
2300 struct iommu_group *group)
2301 {
2302 int ret;
2303
2304 if (!group->default_domain) {
2305 __iommu_group_for_each_dev(group, domain,
2306 iommu_group_do_detach_device);
2307 group->domain = NULL;
2308 return;
2309 }
2310
2311 if (group->domain == group->default_domain)
2312 return;
2313
2314 /* Detach by re-attaching to the default domain */
2315 ret = __iommu_group_for_each_dev(group, group->default_domain,
2316 iommu_group_do_attach_device);
2317 if (ret != 0)
2318 WARN_ON(1);
2319 else
2320 group->domain = group->default_domain;
2321 }
2322
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2323 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2324 {
2325 mutex_lock(&group->mutex);
2326 __iommu_detach_group(domain, group);
2327 mutex_unlock(&group->mutex);
2328 }
2329 EXPORT_SYMBOL_GPL(iommu_detach_group);
2330
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2331 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2332 {
2333 if (unlikely(domain->ops->iova_to_phys == NULL))
2334 return 0;
2335
2336 return domain->ops->iova_to_phys(domain, iova);
2337 }
2338 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2339
iommu_pgsize(struct iommu_domain * domain,unsigned long addr_merge,size_t size)2340 static size_t iommu_pgsize(struct iommu_domain *domain,
2341 unsigned long addr_merge, size_t size)
2342 {
2343 unsigned int pgsize_idx;
2344 size_t pgsize;
2345
2346 /* Max page size that still fits into 'size' */
2347 pgsize_idx = __fls(size);
2348
2349 /* need to consider alignment requirements ? */
2350 if (likely(addr_merge)) {
2351 /* Max page size allowed by address */
2352 unsigned int align_pgsize_idx = __ffs(addr_merge);
2353 pgsize_idx = min(pgsize_idx, align_pgsize_idx);
2354 }
2355
2356 /* build a mask of acceptable page sizes */
2357 pgsize = (1UL << (pgsize_idx + 1)) - 1;
2358
2359 /* throw away page sizes not supported by the hardware */
2360 pgsize &= domain->pgsize_bitmap;
2361
2362 /* make sure we're still sane */
2363 BUG_ON(!pgsize);
2364
2365 /* pick the biggest page */
2366 pgsize_idx = __fls(pgsize);
2367 pgsize = 1UL << pgsize_idx;
2368
2369 return pgsize;
2370 }
2371
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2372 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2373 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2374 {
2375 const struct iommu_ops *ops = domain->ops;
2376 unsigned long orig_iova = iova;
2377 unsigned int min_pagesz;
2378 size_t orig_size = size;
2379 phys_addr_t orig_paddr = paddr;
2380 int ret = 0;
2381
2382 if (unlikely(ops->map == NULL ||
2383 domain->pgsize_bitmap == 0UL))
2384 return -ENODEV;
2385
2386 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2387 return -EINVAL;
2388
2389 /* find out the minimum page size supported */
2390 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2391
2392 /*
2393 * both the virtual address and the physical one, as well as
2394 * the size of the mapping, must be aligned (at least) to the
2395 * size of the smallest page supported by the hardware
2396 */
2397 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2398 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2399 iova, &paddr, size, min_pagesz);
2400 return -EINVAL;
2401 }
2402
2403 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2404
2405 while (size) {
2406 size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
2407
2408 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
2409 iova, &paddr, pgsize);
2410 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2411
2412 if (ret)
2413 break;
2414
2415 iova += pgsize;
2416 paddr += pgsize;
2417 size -= pgsize;
2418 }
2419
2420 /* unroll mapping in case something went wrong */
2421 if (ret)
2422 iommu_unmap(domain, orig_iova, orig_size - size);
2423 else
2424 trace_map(orig_iova, orig_paddr, orig_size);
2425
2426 return ret;
2427 }
2428
_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2429 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2430 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2431 {
2432 const struct iommu_ops *ops = domain->ops;
2433 int ret;
2434
2435 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2436 if (ret == 0 && ops->iotlb_sync_map)
2437 ops->iotlb_sync_map(domain);
2438
2439 return ret;
2440 }
2441
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2442 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2443 phys_addr_t paddr, size_t size, int prot)
2444 {
2445 might_sleep();
2446 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2447 }
2448 EXPORT_SYMBOL_GPL(iommu_map);
2449
iommu_map_atomic(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2450 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2451 phys_addr_t paddr, size_t size, int prot)
2452 {
2453 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2454 }
2455 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2456
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2457 static size_t __iommu_unmap(struct iommu_domain *domain,
2458 unsigned long iova, size_t size,
2459 struct iommu_iotlb_gather *iotlb_gather)
2460 {
2461 const struct iommu_ops *ops = domain->ops;
2462 size_t unmapped_page, unmapped = 0;
2463 unsigned long orig_iova = iova;
2464 unsigned int min_pagesz;
2465
2466 if (unlikely(ops->unmap == NULL ||
2467 domain->pgsize_bitmap == 0UL))
2468 return 0;
2469
2470 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2471 return 0;
2472
2473 /* find out the minimum page size supported */
2474 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2475
2476 /*
2477 * The virtual address, as well as the size of the mapping, must be
2478 * aligned (at least) to the size of the smallest page supported
2479 * by the hardware
2480 */
2481 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2482 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2483 iova, size, min_pagesz);
2484 return 0;
2485 }
2486
2487 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2488
2489 /*
2490 * Keep iterating until we either unmap 'size' bytes (or more)
2491 * or we hit an area that isn't mapped.
2492 */
2493 while (unmapped < size) {
2494 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
2495
2496 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather);
2497 if (!unmapped_page)
2498 break;
2499
2500 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2501 iova, unmapped_page);
2502
2503 iova += unmapped_page;
2504 unmapped += unmapped_page;
2505 }
2506
2507 trace_unmap(orig_iova, size, unmapped);
2508 return unmapped;
2509 }
2510
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2511 size_t iommu_unmap(struct iommu_domain *domain,
2512 unsigned long iova, size_t size)
2513 {
2514 struct iommu_iotlb_gather iotlb_gather;
2515 size_t ret;
2516
2517 iommu_iotlb_gather_init(&iotlb_gather);
2518 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2519 iommu_iotlb_sync(domain, &iotlb_gather);
2520
2521 return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(iommu_unmap);
2524
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2525 size_t iommu_unmap_fast(struct iommu_domain *domain,
2526 unsigned long iova, size_t size,
2527 struct iommu_iotlb_gather *iotlb_gather)
2528 {
2529 return __iommu_unmap(domain, iova, size, iotlb_gather);
2530 }
2531 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2532
__iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2533 static size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2534 struct scatterlist *sg, unsigned int nents, int prot,
2535 gfp_t gfp)
2536 {
2537 const struct iommu_ops *ops = domain->ops;
2538 size_t len = 0, mapped = 0;
2539 phys_addr_t start;
2540 unsigned int i = 0;
2541 int ret;
2542
2543 while (i <= nents) {
2544 phys_addr_t s_phys = sg_phys(sg);
2545
2546 if (len && s_phys != start + len) {
2547 ret = __iommu_map(domain, iova + mapped, start,
2548 len, prot, gfp);
2549
2550 if (ret)
2551 goto out_err;
2552
2553 mapped += len;
2554 len = 0;
2555 }
2556
2557 if (len) {
2558 len += sg->length;
2559 } else {
2560 len = sg->length;
2561 start = s_phys;
2562 }
2563
2564 if (++i < nents)
2565 sg = sg_next(sg);
2566 }
2567
2568 if (ops->iotlb_sync_map)
2569 ops->iotlb_sync_map(domain);
2570 return mapped;
2571
2572 out_err:
2573 /* undo mappings already done */
2574 iommu_unmap(domain, iova, mapped);
2575
2576 return 0;
2577
2578 }
2579
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2580 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2581 struct scatterlist *sg, unsigned int nents, int prot)
2582 {
2583 might_sleep();
2584 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2585 }
2586 EXPORT_SYMBOL_GPL(iommu_map_sg);
2587
iommu_map_sg_atomic(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2588 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2589 struct scatterlist *sg, unsigned int nents, int prot)
2590 {
2591 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2592 }
2593 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic);
2594
iommu_domain_window_enable(struct iommu_domain * domain,u32 wnd_nr,phys_addr_t paddr,u64 size,int prot)2595 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
2596 phys_addr_t paddr, u64 size, int prot)
2597 {
2598 if (unlikely(domain->ops->domain_window_enable == NULL))
2599 return -ENODEV;
2600
2601 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
2602 prot);
2603 }
2604 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
2605
iommu_domain_window_disable(struct iommu_domain * domain,u32 wnd_nr)2606 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
2607 {
2608 if (unlikely(domain->ops->domain_window_disable == NULL))
2609 return;
2610
2611 return domain->ops->domain_window_disable(domain, wnd_nr);
2612 }
2613 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
2614
2615 /**
2616 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2617 * @domain: the iommu domain where the fault has happened
2618 * @dev: the device where the fault has happened
2619 * @iova: the faulting address
2620 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2621 *
2622 * This function should be called by the low-level IOMMU implementations
2623 * whenever IOMMU faults happen, to allow high-level users, that are
2624 * interested in such events, to know about them.
2625 *
2626 * This event may be useful for several possible use cases:
2627 * - mere logging of the event
2628 * - dynamic TLB/PTE loading
2629 * - if restarting of the faulting device is required
2630 *
2631 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2632 * PTE/TLB loading will one day be supported, implementations will be able
2633 * to tell whether it succeeded or not according to this return value).
2634 *
2635 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2636 * (though fault handlers can also return -ENOSYS, in case they want to
2637 * elicit the default behavior of the IOMMU drivers).
2638 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2639 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2640 unsigned long iova, int flags)
2641 {
2642 int ret = -ENOSYS;
2643
2644 /*
2645 * if upper layers showed interest and installed a fault handler,
2646 * invoke it.
2647 */
2648 if (domain->handler)
2649 ret = domain->handler(domain, dev, iova, flags,
2650 domain->handler_token);
2651
2652 trace_io_page_fault(dev, iova, flags);
2653 return ret;
2654 }
2655 EXPORT_SYMBOL_GPL(report_iommu_fault);
2656
iommu_init(void)2657 static int __init iommu_init(void)
2658 {
2659 iommu_group_kset = kset_create_and_add("iommu_groups",
2660 NULL, kernel_kobj);
2661 BUG_ON(!iommu_group_kset);
2662
2663 iommu_debugfs_setup();
2664
2665 return 0;
2666 }
2667 core_initcall(iommu_init);
2668
iommu_domain_get_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)2669 int iommu_domain_get_attr(struct iommu_domain *domain,
2670 enum iommu_attr attr, void *data)
2671 {
2672 struct iommu_domain_geometry *geometry;
2673 bool *paging;
2674 int ret = 0;
2675
2676 switch (attr) {
2677 case DOMAIN_ATTR_GEOMETRY:
2678 geometry = data;
2679 *geometry = domain->geometry;
2680
2681 break;
2682 case DOMAIN_ATTR_PAGING:
2683 paging = data;
2684 *paging = (domain->pgsize_bitmap != 0UL);
2685 break;
2686 default:
2687 if (!domain->ops->domain_get_attr)
2688 return -EINVAL;
2689
2690 ret = domain->ops->domain_get_attr(domain, attr, data);
2691 }
2692
2693 return ret;
2694 }
2695 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
2696
iommu_domain_set_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)2697 int iommu_domain_set_attr(struct iommu_domain *domain,
2698 enum iommu_attr attr, void *data)
2699 {
2700 int ret = 0;
2701
2702 switch (attr) {
2703 default:
2704 if (domain->ops->domain_set_attr == NULL)
2705 return -EINVAL;
2706
2707 ret = domain->ops->domain_set_attr(domain, attr, data);
2708 }
2709
2710 return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
2713
iommu_get_resv_regions(struct device * dev,struct list_head * list)2714 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2715 {
2716 const struct iommu_ops *ops = dev->bus->iommu_ops;
2717
2718 if (ops && ops->get_resv_regions)
2719 ops->get_resv_regions(dev, list);
2720 }
2721
iommu_put_resv_regions(struct device * dev,struct list_head * list)2722 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2723 {
2724 const struct iommu_ops *ops = dev->bus->iommu_ops;
2725
2726 if (ops && ops->put_resv_regions)
2727 ops->put_resv_regions(dev, list);
2728 }
2729
2730 /**
2731 * generic_iommu_put_resv_regions - Reserved region driver helper
2732 * @dev: device for which to free reserved regions
2733 * @list: reserved region list for device
2734 *
2735 * IOMMU drivers can use this to implement their .put_resv_regions() callback
2736 * for simple reservations. Memory allocated for each reserved region will be
2737 * freed. If an IOMMU driver allocates additional resources per region, it is
2738 * going to have to implement a custom callback.
2739 */
generic_iommu_put_resv_regions(struct device * dev,struct list_head * list)2740 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2741 {
2742 struct iommu_resv_region *entry, *next;
2743
2744 list_for_each_entry_safe(entry, next, list, list)
2745 kfree(entry);
2746 }
2747 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2748
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type)2749 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2750 size_t length, int prot,
2751 enum iommu_resv_type type)
2752 {
2753 struct iommu_resv_region *region;
2754
2755 region = kzalloc(sizeof(*region), GFP_KERNEL);
2756 if (!region)
2757 return NULL;
2758
2759 INIT_LIST_HEAD(®ion->list);
2760 region->start = start;
2761 region->length = length;
2762 region->prot = prot;
2763 region->type = type;
2764 return region;
2765 }
2766 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2767
iommu_set_default_passthrough(bool cmd_line)2768 void iommu_set_default_passthrough(bool cmd_line)
2769 {
2770 if (cmd_line)
2771 iommu_set_cmd_line_dma_api();
2772
2773 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2774 }
2775
iommu_set_default_translated(bool cmd_line)2776 void iommu_set_default_translated(bool cmd_line)
2777 {
2778 if (cmd_line)
2779 iommu_set_cmd_line_dma_api();
2780
2781 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2782 }
2783
iommu_default_passthrough(void)2784 bool iommu_default_passthrough(void)
2785 {
2786 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2787 }
2788 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2789
iommu_ops_from_fwnode(struct fwnode_handle * fwnode)2790 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2791 {
2792 const struct iommu_ops *ops = NULL;
2793 struct iommu_device *iommu;
2794
2795 spin_lock(&iommu_device_lock);
2796 list_for_each_entry(iommu, &iommu_device_list, list)
2797 if (iommu->fwnode == fwnode) {
2798 ops = iommu->ops;
2799 break;
2800 }
2801 spin_unlock(&iommu_device_lock);
2802 return ops;
2803 }
2804
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode,const struct iommu_ops * ops)2805 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2806 const struct iommu_ops *ops)
2807 {
2808 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2809
2810 if (fwspec)
2811 return ops == fwspec->ops ? 0 : -EINVAL;
2812
2813 if (!dev_iommu_get(dev))
2814 return -ENOMEM;
2815
2816 /* Preallocate for the overwhelmingly common case of 1 ID */
2817 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2818 if (!fwspec)
2819 return -ENOMEM;
2820
2821 of_node_get(to_of_node(iommu_fwnode));
2822 fwspec->iommu_fwnode = iommu_fwnode;
2823 fwspec->ops = ops;
2824 dev_iommu_fwspec_set(dev, fwspec);
2825 return 0;
2826 }
2827 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2828
iommu_fwspec_free(struct device * dev)2829 void iommu_fwspec_free(struct device *dev)
2830 {
2831 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2832
2833 if (fwspec) {
2834 fwnode_handle_put(fwspec->iommu_fwnode);
2835 kfree(fwspec);
2836 dev_iommu_fwspec_set(dev, NULL);
2837 }
2838 }
2839 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2840
iommu_fwspec_add_ids(struct device * dev,u32 * ids,int num_ids)2841 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2842 {
2843 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2844 int i, new_num;
2845
2846 if (!fwspec)
2847 return -EINVAL;
2848
2849 new_num = fwspec->num_ids + num_ids;
2850 if (new_num > 1) {
2851 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2852 GFP_KERNEL);
2853 if (!fwspec)
2854 return -ENOMEM;
2855
2856 dev_iommu_fwspec_set(dev, fwspec);
2857 }
2858
2859 for (i = 0; i < num_ids; i++)
2860 fwspec->ids[fwspec->num_ids + i] = ids[i];
2861
2862 fwspec->num_ids = new_num;
2863 return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2866
2867 /*
2868 * Per device IOMMU features.
2869 */
iommu_dev_has_feature(struct device * dev,enum iommu_dev_features feat)2870 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat)
2871 {
2872 const struct iommu_ops *ops = dev->bus->iommu_ops;
2873
2874 if (ops && ops->dev_has_feat)
2875 return ops->dev_has_feat(dev, feat);
2876
2877 return false;
2878 }
2879 EXPORT_SYMBOL_GPL(iommu_dev_has_feature);
2880
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2881 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2882 {
2883 if (dev->iommu && dev->iommu->iommu_dev) {
2884 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2885
2886 if (ops->dev_enable_feat)
2887 return ops->dev_enable_feat(dev, feat);
2888 }
2889
2890 return -ENODEV;
2891 }
2892 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2893
2894 /*
2895 * The device drivers should do the necessary cleanups before calling this.
2896 * For example, before disabling the aux-domain feature, the device driver
2897 * should detach all aux-domains. Otherwise, this will return -EBUSY.
2898 */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2899 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2900 {
2901 if (dev->iommu && dev->iommu->iommu_dev) {
2902 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2903
2904 if (ops->dev_disable_feat)
2905 return ops->dev_disable_feat(dev, feat);
2906 }
2907
2908 return -EBUSY;
2909 }
2910 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2911
iommu_dev_feature_enabled(struct device * dev,enum iommu_dev_features feat)2912 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2913 {
2914 if (dev->iommu && dev->iommu->iommu_dev) {
2915 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2916
2917 if (ops->dev_feat_enabled)
2918 return ops->dev_feat_enabled(dev, feat);
2919 }
2920
2921 return false;
2922 }
2923 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2924
2925 /*
2926 * Aux-domain specific attach/detach.
2927 *
2928 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2929 * true. Also, as long as domains are attached to a device through this
2930 * interface, any tries to call iommu_attach_device() should fail
2931 * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2932 * This should make us safe against a device being attached to a guest as a
2933 * whole while there are still pasid users on it (aux and sva).
2934 */
iommu_aux_attach_device(struct iommu_domain * domain,struct device * dev)2935 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2936 {
2937 int ret = -ENODEV;
2938
2939 if (domain->ops->aux_attach_dev)
2940 ret = domain->ops->aux_attach_dev(domain, dev);
2941
2942 if (!ret)
2943 trace_attach_device_to_domain(dev);
2944
2945 return ret;
2946 }
2947 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2948
iommu_aux_detach_device(struct iommu_domain * domain,struct device * dev)2949 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2950 {
2951 if (domain->ops->aux_detach_dev) {
2952 domain->ops->aux_detach_dev(domain, dev);
2953 trace_detach_device_from_domain(dev);
2954 }
2955 }
2956 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2957
iommu_aux_get_pasid(struct iommu_domain * domain,struct device * dev)2958 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2959 {
2960 int ret = -ENODEV;
2961
2962 if (domain->ops->aux_get_pasid)
2963 ret = domain->ops->aux_get_pasid(domain, dev);
2964
2965 return ret;
2966 }
2967 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2968
2969 /**
2970 * iommu_sva_bind_device() - Bind a process address space to a device
2971 * @dev: the device
2972 * @mm: the mm to bind, caller must hold a reference to it
2973 *
2974 * Create a bond between device and address space, allowing the device to access
2975 * the mm using the returned PASID. If a bond already exists between @device and
2976 * @mm, it is returned and an additional reference is taken. Caller must call
2977 * iommu_sva_unbind_device() to release each reference.
2978 *
2979 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2980 * initialize the required SVA features.
2981 *
2982 * On error, returns an ERR_PTR value.
2983 */
2984 struct iommu_sva *
iommu_sva_bind_device(struct device * dev,struct mm_struct * mm,void * drvdata)2985 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2986 {
2987 struct iommu_group *group;
2988 struct iommu_sva *handle = ERR_PTR(-EINVAL);
2989 const struct iommu_ops *ops = dev->bus->iommu_ops;
2990
2991 if (!ops || !ops->sva_bind)
2992 return ERR_PTR(-ENODEV);
2993
2994 group = iommu_group_get(dev);
2995 if (!group)
2996 return ERR_PTR(-ENODEV);
2997
2998 /* Ensure device count and domain don't change while we're binding */
2999 mutex_lock(&group->mutex);
3000
3001 /*
3002 * To keep things simple, SVA currently doesn't support IOMMU groups
3003 * with more than one device. Existing SVA-capable systems are not
3004 * affected by the problems that required IOMMU groups (lack of ACS
3005 * isolation, device ID aliasing and other hardware issues).
3006 */
3007 if (iommu_group_device_count(group) != 1)
3008 goto out_unlock;
3009
3010 handle = ops->sva_bind(dev, mm, drvdata);
3011
3012 out_unlock:
3013 mutex_unlock(&group->mutex);
3014 iommu_group_put(group);
3015
3016 return handle;
3017 }
3018 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
3019
3020 /**
3021 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
3022 * @handle: the handle returned by iommu_sva_bind_device()
3023 *
3024 * Put reference to a bond between device and address space. The device should
3025 * not be issuing any more transaction for this PASID. All outstanding page
3026 * requests for this PASID must have been flushed to the IOMMU.
3027 *
3028 * Returns 0 on success, or an error value
3029 */
iommu_sva_unbind_device(struct iommu_sva * handle)3030 void iommu_sva_unbind_device(struct iommu_sva *handle)
3031 {
3032 struct iommu_group *group;
3033 struct device *dev = handle->dev;
3034 const struct iommu_ops *ops = dev->bus->iommu_ops;
3035
3036 if (!ops || !ops->sva_unbind)
3037 return;
3038
3039 group = iommu_group_get(dev);
3040 if (!group)
3041 return;
3042
3043 mutex_lock(&group->mutex);
3044 ops->sva_unbind(handle);
3045 mutex_unlock(&group->mutex);
3046
3047 iommu_group_put(group);
3048 }
3049 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3050
iommu_sva_get_pasid(struct iommu_sva * handle)3051 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3052 {
3053 const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3054
3055 if (!ops || !ops->sva_get_pasid)
3056 return IOMMU_PASID_INVALID;
3057
3058 return ops->sva_get_pasid(handle);
3059 }
3060 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3061