1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32
33
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44
45
46 /* Constants */
47
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50
51 /* Macros */
52
53 #define REG(reg_name) \
54 (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55
56
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
rn_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)58 int rn_get_active_display_cnt_wa(
59 struct dc *dc,
60 struct dc_state *context)
61 {
62 int i, display_count;
63 bool tmds_present = false;
64
65 display_count = 0;
66 for (i = 0; i < context->stream_count; i++) {
67 const struct dc_stream_state *stream = context->streams[i];
68
69 /* Extend the WA to DP for Linux*/
70 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
71 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
72 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK ||
73 stream->signal == SIGNAL_TYPE_DISPLAY_PORT)
74 tmds_present = true;
75 }
76
77 for (i = 0; i < dc->link_count; i++) {
78 const struct dc_link *link = dc->links[i];
79
80 /*
81 * Only notify active stream or virtual stream.
82 * Need to notify virtual stream to work around
83 * headless case. HPD does not fire when system is in
84 * S0i2.
85 */
86 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
87 if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
88 link->link_enc->funcs->is_dig_enabled(link->link_enc))
89 display_count++;
90 }
91
92 /* WA for hang on HDMI after display off back back on*/
93 if (display_count == 0 && tmds_present)
94 display_count = 1;
95
96 return display_count;
97 }
98
rn_set_low_power_state(struct clk_mgr * clk_mgr_base)99 void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
100 {
101 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
102
103 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
104 /* update power state */
105 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
106 }
107
rn_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)108 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
109 struct dc_state *context,
110 bool safe_to_lower)
111 {
112 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
113 struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
114 struct dc *dc = clk_mgr_base->ctx->dc;
115 int display_count;
116 bool update_dppclk = false;
117 bool update_dispclk = false;
118 bool dpp_clock_lowered = false;
119
120 struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
121
122 if (dc->work_arounds.skip_clock_update)
123 return;
124
125 /*
126 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
127 * also if safe to lower is false, we just go in the higher state
128 */
129 if (safe_to_lower) {
130 /* check that we're not already in lower */
131 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
132
133 display_count = rn_get_active_display_cnt_wa(dc, context);
134 /* if we can go lower, go lower */
135 if (display_count == 0) {
136 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
137 /* update power state */
138 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
139 }
140 }
141 } else {
142 /* check that we're not already in D0 */
143 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
144 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
145 /* update power state */
146 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
147 }
148 }
149
150 if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
151 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
152 rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
153 }
154
155 if (should_set_clock(safe_to_lower,
156 new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
157 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
158 rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
159 }
160
161 // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
162 // Do not adjust dppclk if dppclk is 0 to avoid unexpected result
163 if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
164 if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
165 new_clocks->dppclk_khz = 100000;
166 }
167
168 /*
169 * Temporally ignore thew 0 cases for disp and dpp clks.
170 * We may have a new feature that requires 0 clks in the future.
171 */
172 if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
173 new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
174 new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
175 }
176
177 if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
178 if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
179 dpp_clock_lowered = true;
180 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
181 update_dppclk = true;
182 }
183
184 if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
185 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
186 rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
187
188 update_dispclk = true;
189 }
190
191 if (dpp_clock_lowered) {
192 // increase per DPP DTO before lowering global dppclk
193 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
194 rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
195 } else {
196 // increase global DPPCLK before lowering per DPP DTO
197 if (update_dppclk || update_dispclk)
198 rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
199 // always update dtos unless clock is lowered and not safe to lower
200 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
201 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
202 }
203
204 if (update_dispclk &&
205 dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
206 /*update dmcu for wait_loop count*/
207 dmcu->funcs->set_psr_wait_loop(dmcu,
208 clk_mgr_base->clks.dispclk_khz / 1000 / 7);
209 }
210 }
211
212
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)213 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
214 {
215 /* get FbMult value */
216 struct fixed31_32 pll_req;
217 unsigned int fbmult_frac_val = 0;
218 unsigned int fbmult_int_val = 0;
219
220
221 /*
222 * Register value of fbmult is in 8.16 format, we are converting to 31.32
223 * to leverage the fix point operations available in driver
224 */
225
226 REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
227 REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
228
229 pll_req = dc_fixpt_from_int(fbmult_int_val);
230
231 /*
232 * since fractional part is only 16 bit in register definition but is 32 bit
233 * in our fix point definiton, need to shift left by 16 to obtain correct value
234 */
235 pll_req.value |= fbmult_frac_val << 16;
236
237 /* multiply by REFCLK period */
238 pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
239
240 /* integer part is now VCO frequency in kHz */
241 return dc_fixpt_floor(pll_req);
242 }
243
rn_dump_clk_registers_internal(struct rn_clk_internal * internal,struct clk_mgr * clk_mgr_base)244 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
245 {
246 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
247
248 internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
249 internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
250
251 internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL); //dcf deep sleep divider
252 internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
253
254 internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
255 internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
256
257 internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
258 internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
259
260 internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
261 internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
262 }
263
264 /* This function collect raw clk register values */
rn_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)265 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
266 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
267 {
268 struct rn_clk_internal internal = {0};
269 char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
270 unsigned int chars_printed = 0;
271 unsigned int remaining_buffer = log_info->bufSize;
272
273 rn_dump_clk_registers_internal(&internal, clk_mgr_base);
274
275 regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
276 regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
277 regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
278 regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
279 regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
280 regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
281
282 regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
283 if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
284 regs_and_bypass->dppclk_bypass = 0;
285 regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
286 if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
287 regs_and_bypass->dcfclk_bypass = 0;
288 regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
289 if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
290 regs_and_bypass->dispclk_bypass = 0;
291 regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
292 if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
293 regs_and_bypass->dprefclk_bypass = 0;
294
295 if (log_info->enabled) {
296 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
297 remaining_buffer -= chars_printed;
298 *log_info->sum_chars_printed += chars_printed;
299 log_info->pBuf += chars_printed;
300
301 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
302 regs_and_bypass->dcfclk,
303 regs_and_bypass->dcf_deep_sleep_divider,
304 regs_and_bypass->dcf_deep_sleep_allow,
305 bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
306 remaining_buffer -= chars_printed;
307 *log_info->sum_chars_printed += chars_printed;
308 log_info->pBuf += chars_printed;
309
310 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
311 regs_and_bypass->dprefclk,
312 bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
313 remaining_buffer -= chars_printed;
314 *log_info->sum_chars_printed += chars_printed;
315 log_info->pBuf += chars_printed;
316
317 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
318 regs_and_bypass->dispclk,
319 bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
320 remaining_buffer -= chars_printed;
321 *log_info->sum_chars_printed += chars_printed;
322 log_info->pBuf += chars_printed;
323
324 //split
325 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
326 remaining_buffer -= chars_printed;
327 *log_info->sum_chars_printed += chars_printed;
328 log_info->pBuf += chars_printed;
329
330 // REGISTER VALUES
331 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
332 remaining_buffer -= chars_printed;
333 *log_info->sum_chars_printed += chars_printed;
334 log_info->pBuf += chars_printed;
335
336 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
337 internal.CLK1_CLK3_CURRENT_CNT);
338 remaining_buffer -= chars_printed;
339 *log_info->sum_chars_printed += chars_printed;
340 log_info->pBuf += chars_printed;
341
342 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
343 internal.CLK1_CLK3_DS_CNTL);
344 remaining_buffer -= chars_printed;
345 *log_info->sum_chars_printed += chars_printed;
346 log_info->pBuf += chars_printed;
347
348 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
349 internal.CLK1_CLK3_ALLOW_DS);
350 remaining_buffer -= chars_printed;
351 *log_info->sum_chars_printed += chars_printed;
352 log_info->pBuf += chars_printed;
353
354 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
355 internal.CLK1_CLK2_CURRENT_CNT);
356 remaining_buffer -= chars_printed;
357 *log_info->sum_chars_printed += chars_printed;
358 log_info->pBuf += chars_printed;
359
360 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
361 internal.CLK1_CLK0_CURRENT_CNT);
362 remaining_buffer -= chars_printed;
363 *log_info->sum_chars_printed += chars_printed;
364 log_info->pBuf += chars_printed;
365
366 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
367 internal.CLK1_CLK1_CURRENT_CNT);
368 remaining_buffer -= chars_printed;
369 *log_info->sum_chars_printed += chars_printed;
370 log_info->pBuf += chars_printed;
371
372 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
373 internal.CLK1_CLK3_BYPASS_CNTL);
374 remaining_buffer -= chars_printed;
375 *log_info->sum_chars_printed += chars_printed;
376 log_info->pBuf += chars_printed;
377
378 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
379 internal.CLK1_CLK2_BYPASS_CNTL);
380 remaining_buffer -= chars_printed;
381 *log_info->sum_chars_printed += chars_printed;
382 log_info->pBuf += chars_printed;
383
384 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
385 internal.CLK1_CLK0_BYPASS_CNTL);
386 remaining_buffer -= chars_printed;
387 *log_info->sum_chars_printed += chars_printed;
388 log_info->pBuf += chars_printed;
389
390 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
391 internal.CLK1_CLK1_BYPASS_CNTL);
392 remaining_buffer -= chars_printed;
393 *log_info->sum_chars_printed += chars_printed;
394 log_info->pBuf += chars_printed;
395 }
396 }
397
398 /* This function produce translated logical clk state values*/
rn_get_clk_states(struct clk_mgr * clk_mgr_base,struct clk_states * s)399 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
400 {
401 struct clk_state_registers_and_bypass sb = { 0 };
402 struct clk_log_info log_info = { 0 };
403
404 rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
405
406 s->dprefclk_khz = sb.dprefclk * 1000;
407 }
408
rn_enable_pme_wa(struct clk_mgr * clk_mgr_base)409 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
410 {
411 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
412
413 rn_vbios_smu_enable_pme_wa(clk_mgr);
414 }
415
rn_init_clocks(struct clk_mgr * clk_mgr)416 void rn_init_clocks(struct clk_mgr *clk_mgr)
417 {
418 memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
419 // Assumption is that boot state always supports pstate
420 clk_mgr->clks.p_state_change_support = true;
421 clk_mgr->clks.prev_p_state_change_support = true;
422 clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
423 }
424
build_watermark_ranges(struct clk_bw_params * bw_params,struct pp_smu_wm_range_sets * ranges)425 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
426 {
427 int i, num_valid_sets;
428
429 num_valid_sets = 0;
430
431 for (i = 0; i < WM_SET_COUNT; i++) {
432 /* skip empty entries, the smu array has no holes*/
433 if (!bw_params->wm_table.entries[i].valid)
434 continue;
435
436 ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
437 ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
438 /* We will not select WM based on fclk, so leave it as unconstrained */
439 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
440 ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
441 /* dcfclk wil be used to select WM*/
442
443 if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
444 if (i == 0)
445 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
446 else {
447 /* add 1 to make it non-overlapping with next lvl */
448 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
449 }
450 ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
451
452 } else {
453 /* unconstrained for memory retraining */
454 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
455 ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
456
457 /* Modify previous watermark range to cover up to max */
458 ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
459 }
460 num_valid_sets++;
461 }
462
463 ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
464 ranges->num_reader_wm_sets = num_valid_sets;
465
466 /* modify the min and max to make sure we cover the whole range*/
467 ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
468 ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
469 ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
470 ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
471
472 /* This is for writeback only, does not matter currently as no writeback support*/
473 ranges->num_writer_wm_sets = 1;
474 ranges->writer_wm_sets[0].wm_inst = WM_A;
475 ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
476 ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
477 ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
478 ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
479
480 }
481
rn_notify_wm_ranges(struct clk_mgr * clk_mgr_base)482 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
483 {
484 struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
485 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
486 struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
487
488 if (!debug->disable_pplib_wm_range) {
489 build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
490
491 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
492 if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
493 pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
494 }
495
496 }
497
rn_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)498 static bool rn_are_clock_states_equal(struct dc_clocks *a,
499 struct dc_clocks *b)
500 {
501 if (a->dispclk_khz != b->dispclk_khz)
502 return false;
503 else if (a->dppclk_khz != b->dppclk_khz)
504 return false;
505 else if (a->dcfclk_khz != b->dcfclk_khz)
506 return false;
507 else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
508 return false;
509
510 return true;
511 }
512
513
514 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
rn_notify_link_rate_change(struct clk_mgr * clk_mgr_base,struct dc_link * link)515 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
516 {
517 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
518 unsigned int i, max_phyclk_req = 0;
519
520 clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
521
522 for (i = 0; i < MAX_PIPES * 2; i++) {
523 if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
524 max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
525 }
526
527 if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
528 clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
529 rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
530 }
531 }
532
533 static struct clk_mgr_funcs dcn21_funcs = {
534 .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
535 .update_clocks = rn_update_clocks,
536 .init_clocks = rn_init_clocks,
537 .enable_pme_wa = rn_enable_pme_wa,
538 .are_clock_states_equal = rn_are_clock_states_equal,
539 .set_low_power_state = rn_set_low_power_state,
540 .notify_wm_ranges = rn_notify_wm_ranges,
541 .notify_link_rate_change = rn_notify_link_rate_change,
542 };
543
544 static struct clk_bw_params rn_bw_params = {
545 .vram_type = Ddr4MemType,
546 .num_channels = 1,
547 .clk_table = {
548 .entries = {
549 {
550 .voltage = 0,
551 .dcfclk_mhz = 400,
552 .fclk_mhz = 400,
553 .memclk_mhz = 800,
554 .socclk_mhz = 0,
555 },
556 {
557 .voltage = 0,
558 .dcfclk_mhz = 483,
559 .fclk_mhz = 800,
560 .memclk_mhz = 1600,
561 .socclk_mhz = 0,
562 },
563 {
564 .voltage = 0,
565 .dcfclk_mhz = 602,
566 .fclk_mhz = 1067,
567 .memclk_mhz = 1067,
568 .socclk_mhz = 0,
569 },
570 {
571 .voltage = 0,
572 .dcfclk_mhz = 738,
573 .fclk_mhz = 1333,
574 .memclk_mhz = 1600,
575 .socclk_mhz = 0,
576 },
577 },
578
579 .num_entries = 4,
580 },
581
582 };
583
584 static struct wm_table ddr4_wm_table_gs = {
585 .entries = {
586 {
587 .wm_inst = WM_A,
588 .wm_type = WM_TYPE_PSTATE_CHG,
589 .pstate_latency_us = 11.72,
590 .sr_exit_time_us = 6.09,
591 .sr_enter_plus_exit_time_us = 7.14,
592 .valid = true,
593 },
594 {
595 .wm_inst = WM_B,
596 .wm_type = WM_TYPE_PSTATE_CHG,
597 .pstate_latency_us = 11.72,
598 .sr_exit_time_us = 10.12,
599 .sr_enter_plus_exit_time_us = 11.48,
600 .valid = true,
601 },
602 {
603 .wm_inst = WM_C,
604 .wm_type = WM_TYPE_PSTATE_CHG,
605 .pstate_latency_us = 11.72,
606 .sr_exit_time_us = 10.12,
607 .sr_enter_plus_exit_time_us = 11.48,
608 .valid = true,
609 },
610 {
611 .wm_inst = WM_D,
612 .wm_type = WM_TYPE_PSTATE_CHG,
613 .pstate_latency_us = 11.72,
614 .sr_exit_time_us = 10.12,
615 .sr_enter_plus_exit_time_us = 11.48,
616 .valid = true,
617 },
618 }
619 };
620
621 static struct wm_table lpddr4_wm_table_gs = {
622 .entries = {
623 {
624 .wm_inst = WM_A,
625 .wm_type = WM_TYPE_PSTATE_CHG,
626 .pstate_latency_us = 11.65333,
627 .sr_exit_time_us = 5.32,
628 .sr_enter_plus_exit_time_us = 6.38,
629 .valid = true,
630 },
631 {
632 .wm_inst = WM_B,
633 .wm_type = WM_TYPE_PSTATE_CHG,
634 .pstate_latency_us = 11.65333,
635 .sr_exit_time_us = 9.82,
636 .sr_enter_plus_exit_time_us = 11.196,
637 .valid = true,
638 },
639 {
640 .wm_inst = WM_C,
641 .wm_type = WM_TYPE_PSTATE_CHG,
642 .pstate_latency_us = 11.65333,
643 .sr_exit_time_us = 9.89,
644 .sr_enter_plus_exit_time_us = 11.24,
645 .valid = true,
646 },
647 {
648 .wm_inst = WM_D,
649 .wm_type = WM_TYPE_PSTATE_CHG,
650 .pstate_latency_us = 11.65333,
651 .sr_exit_time_us = 9.748,
652 .sr_enter_plus_exit_time_us = 11.102,
653 .valid = true,
654 },
655 }
656 };
657
658 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
659 .entries = {
660 {
661 .wm_inst = WM_A,
662 .wm_type = WM_TYPE_PSTATE_CHG,
663 .pstate_latency_us = 11.65333,
664 .sr_exit_time_us = 8.32,
665 .sr_enter_plus_exit_time_us = 9.38,
666 .valid = true,
667 },
668 {
669 .wm_inst = WM_B,
670 .wm_type = WM_TYPE_PSTATE_CHG,
671 .pstate_latency_us = 11.65333,
672 .sr_exit_time_us = 9.82,
673 .sr_enter_plus_exit_time_us = 11.196,
674 .valid = true,
675 },
676 {
677 .wm_inst = WM_C,
678 .wm_type = WM_TYPE_PSTATE_CHG,
679 .pstate_latency_us = 11.65333,
680 .sr_exit_time_us = 9.89,
681 .sr_enter_plus_exit_time_us = 11.24,
682 .valid = true,
683 },
684 {
685 .wm_inst = WM_D,
686 .wm_type = WM_TYPE_PSTATE_CHG,
687 .pstate_latency_us = 11.65333,
688 .sr_exit_time_us = 9.748,
689 .sr_enter_plus_exit_time_us = 11.102,
690 .valid = true,
691 },
692 }
693 };
694
695 static struct wm_table ddr4_wm_table_rn = {
696 .entries = {
697 {
698 .wm_inst = WM_A,
699 .wm_type = WM_TYPE_PSTATE_CHG,
700 .pstate_latency_us = 11.72,
701 .sr_exit_time_us = 9.09,
702 .sr_enter_plus_exit_time_us = 10.14,
703 .valid = true,
704 },
705 {
706 .wm_inst = WM_B,
707 .wm_type = WM_TYPE_PSTATE_CHG,
708 .pstate_latency_us = 11.72,
709 .sr_exit_time_us = 11.12,
710 .sr_enter_plus_exit_time_us = 12.48,
711 .valid = true,
712 },
713 {
714 .wm_inst = WM_C,
715 .wm_type = WM_TYPE_PSTATE_CHG,
716 .pstate_latency_us = 11.72,
717 .sr_exit_time_us = 11.12,
718 .sr_enter_plus_exit_time_us = 12.48,
719 .valid = true,
720 },
721 {
722 .wm_inst = WM_D,
723 .wm_type = WM_TYPE_PSTATE_CHG,
724 .pstate_latency_us = 11.72,
725 .sr_exit_time_us = 11.12,
726 .sr_enter_plus_exit_time_us = 12.48,
727 .valid = true,
728 },
729 }
730 };
731
732 static struct wm_table lpddr4_wm_table_rn = {
733 .entries = {
734 {
735 .wm_inst = WM_A,
736 .wm_type = WM_TYPE_PSTATE_CHG,
737 .pstate_latency_us = 11.65333,
738 .sr_exit_time_us = 7.32,
739 .sr_enter_plus_exit_time_us = 8.38,
740 .valid = true,
741 },
742 {
743 .wm_inst = WM_B,
744 .wm_type = WM_TYPE_PSTATE_CHG,
745 .pstate_latency_us = 11.65333,
746 .sr_exit_time_us = 9.82,
747 .sr_enter_plus_exit_time_us = 11.196,
748 .valid = true,
749 },
750 {
751 .wm_inst = WM_C,
752 .wm_type = WM_TYPE_PSTATE_CHG,
753 .pstate_latency_us = 11.65333,
754 .sr_exit_time_us = 9.89,
755 .sr_enter_plus_exit_time_us = 11.24,
756 .valid = true,
757 },
758 {
759 .wm_inst = WM_D,
760 .wm_type = WM_TYPE_PSTATE_CHG,
761 .pstate_latency_us = 11.65333,
762 .sr_exit_time_us = 9.748,
763 .sr_enter_plus_exit_time_us = 11.102,
764 .valid = true,
765 },
766 }
767 };
768
find_dcfclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)769 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
770 {
771 int i;
772
773 for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
774 if (clock_table->DcfClocks[i].Vol == voltage)
775 return clock_table->DcfClocks[i].Freq;
776 }
777
778 ASSERT(0);
779 return 0;
780 }
781
rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params * bw_params,struct dpm_clocks * clock_table,struct integrated_info * bios_info)782 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
783 {
784 int i, j = 0;
785
786 j = -1;
787
788 ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
789
790 /* Find lowest DPM, FCLK is filled in reverse order*/
791
792 for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
793 if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
794 j = i;
795 break;
796 }
797 }
798
799 if (j == -1) {
800 /* clock table is all 0s, just use our own hardcode */
801 ASSERT(0);
802 return;
803 }
804
805 bw_params->clk_table.num_entries = j + 1;
806
807 for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
808 bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
809 bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
810 bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
811 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
812 }
813
814 bw_params->vram_type = bios_info->memory_type;
815 bw_params->num_channels = bios_info->ma_channel_number;
816
817 for (i = 0; i < WM_SET_COUNT; i++) {
818 bw_params->wm_table.entries[i].wm_inst = i;
819
820 if (i >= bw_params->clk_table.num_entries) {
821 bw_params->wm_table.entries[i].valid = false;
822 continue;
823 }
824
825 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
826 bw_params->wm_table.entries[i].valid = true;
827 }
828
829 if (bw_params->vram_type == LpDdr4MemType) {
830 /*
831 * WM set D will be re-purposed for memory retraining
832 */
833 bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
834 bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
835 bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
836 bw_params->wm_table.entries[WM_D].valid = true;
837 }
838
839 }
840
rn_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_internal * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)841 void rn_clk_mgr_construct(
842 struct dc_context *ctx,
843 struct clk_mgr_internal *clk_mgr,
844 struct pp_smu_funcs *pp_smu,
845 struct dccg *dccg)
846 {
847 struct dc_debug_options *debug = &ctx->dc->debug;
848 struct dpm_clocks clock_table = { 0 };
849 enum pp_smu_status status = 0;
850 int is_green_sardine = 0;
851
852 #if defined(CONFIG_DRM_AMD_DC_DCN)
853 is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
854 #endif
855
856 clk_mgr->base.ctx = ctx;
857 clk_mgr->base.funcs = &dcn21_funcs;
858
859 clk_mgr->pp_smu = pp_smu;
860
861 clk_mgr->dccg = dccg;
862 clk_mgr->dfs_bypass_disp_clk = 0;
863
864 clk_mgr->dprefclk_ss_percentage = 0;
865 clk_mgr->dprefclk_ss_divider = 1000;
866 clk_mgr->ss_on_dprefclk = false;
867 clk_mgr->dfs_ref_freq_khz = 48000;
868
869 clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
870
871 if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
872 dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
873 clk_mgr->base.dentist_vco_freq_khz = 3600000;
874 } else {
875 struct clk_log_info log_info = {0};
876
877 clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
878
879 /* SMU Version 55.51.0 and up no longer have an issue
880 * that needs to limit minimum dispclk */
881 if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
882 debug->min_disp_clk_khz = 0;
883
884 /* TODO: Check we get what we expect during bringup */
885 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
886
887 /* in case we don't get a value from the register, use default */
888 if (clk_mgr->base.dentist_vco_freq_khz == 0)
889 clk_mgr->base.dentist_vco_freq_khz = 3600000;
890
891 if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
892 if (clk_mgr->periodic_retraining_disabled) {
893 rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
894 } else {
895 if (is_green_sardine)
896 rn_bw_params.wm_table = lpddr4_wm_table_gs;
897 else
898 rn_bw_params.wm_table = lpddr4_wm_table_rn;
899 }
900 } else {
901 if (is_green_sardine)
902 rn_bw_params.wm_table = ddr4_wm_table_gs;
903 else
904 rn_bw_params.wm_table = ddr4_wm_table_rn;
905 }
906 /* Saved clocks configured at boot for debug purposes */
907 rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
908 }
909
910 clk_mgr->base.dprefclk_khz = 600000;
911 dce_clock_read_ss_info(clk_mgr);
912
913
914 clk_mgr->base.bw_params = &rn_bw_params;
915
916 if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
917 status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
918
919 if (status == PP_SMU_RESULT_OK &&
920 ctx->dc_bios && ctx->dc_bios->integrated_info) {
921 rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
922 }
923 }
924
925 if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
926 /* enable powerfeatures when displaycount goes to 0 */
927 rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
928 }
929 }
930
931