1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * rpc_rdma.c
44 *
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
48 */
49
50 #include <linux/highmem.h>
51
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62 *
63 * The largest Call header contains a full-size Read list and a
64 * minimal Reply chunk.
65 */
rpcrdma_max_call_header_size(unsigned int maxsegs)66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68 unsigned int size;
69
70 /* Fixed header fields and list discriminators */
71 size = RPCRDMA_HDRLEN_MIN;
72
73 /* Maximum Read list size */
74 size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75
76 /* Minimal Read chunk size */
77 size += sizeof(__be32); /* segment count */
78 size += rpcrdma_segment_maxsz * sizeof(__be32);
79 size += sizeof(__be32); /* list discriminator */
80
81 return size;
82 }
83
84 /* Returns size of largest RPC-over-RDMA header in a Reply message
85 *
86 * There is only one Write list or one Reply chunk per Reply
87 * message. The larger list is the Write list.
88 */
rpcrdma_max_reply_header_size(unsigned int maxsegs)89 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
90 {
91 unsigned int size;
92
93 /* Fixed header fields and list discriminators */
94 size = RPCRDMA_HDRLEN_MIN;
95
96 /* Maximum Write list size */
97 size += sizeof(__be32); /* segment count */
98 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
99 size += sizeof(__be32); /* list discriminator */
100
101 return size;
102 }
103
104 /**
105 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
106 * @ep: endpoint to initialize
107 *
108 * The max_inline fields contain the maximum size of an RPC message
109 * so the marshaling code doesn't have to repeat this calculation
110 * for every RPC.
111 */
rpcrdma_set_max_header_sizes(struct rpcrdma_ep * ep)112 void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
113 {
114 unsigned int maxsegs = ep->re_max_rdma_segs;
115
116 ep->re_max_inline_send =
117 ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
118 ep->re_max_inline_recv =
119 ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
120 }
121
122 /* The client can send a request inline as long as the RPCRDMA header
123 * plus the RPC call fit under the transport's inline limit. If the
124 * combined call message size exceeds that limit, the client must use
125 * a Read chunk for this operation.
126 *
127 * A Read chunk is also required if sending the RPC call inline would
128 * exceed this device's max_sge limit.
129 */
rpcrdma_args_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)130 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
131 struct rpc_rqst *rqst)
132 {
133 struct xdr_buf *xdr = &rqst->rq_snd_buf;
134 struct rpcrdma_ep *ep = r_xprt->rx_ep;
135 unsigned int count, remaining, offset;
136
137 if (xdr->len > ep->re_max_inline_send)
138 return false;
139
140 if (xdr->page_len) {
141 remaining = xdr->page_len;
142 offset = offset_in_page(xdr->page_base);
143 count = RPCRDMA_MIN_SEND_SGES;
144 while (remaining) {
145 remaining -= min_t(unsigned int,
146 PAGE_SIZE - offset, remaining);
147 offset = 0;
148 if (++count > ep->re_attr.cap.max_send_sge)
149 return false;
150 }
151 }
152
153 return true;
154 }
155
156 /* The client can't know how large the actual reply will be. Thus it
157 * plans for the largest possible reply for that particular ULP
158 * operation. If the maximum combined reply message size exceeds that
159 * limit, the client must provide a write list or a reply chunk for
160 * this request.
161 */
rpcrdma_results_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)162 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
163 struct rpc_rqst *rqst)
164 {
165 return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
166 }
167
168 /* The client is required to provide a Reply chunk if the maximum
169 * size of the non-payload part of the RPC Reply is larger than
170 * the inline threshold.
171 */
172 static bool
rpcrdma_nonpayload_inline(const struct rpcrdma_xprt * r_xprt,const struct rpc_rqst * rqst)173 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
174 const struct rpc_rqst *rqst)
175 {
176 const struct xdr_buf *buf = &rqst->rq_rcv_buf;
177
178 return (buf->head[0].iov_len + buf->tail[0].iov_len) <
179 r_xprt->rx_ep->re_max_inline_recv;
180 }
181
182 /* ACL likes to be lazy in allocating pages. For TCP, these
183 * pages can be allocated during receive processing. Not true
184 * for RDMA, which must always provision receive buffers
185 * up front.
186 */
187 static noinline int
rpcrdma_alloc_sparse_pages(struct xdr_buf * buf)188 rpcrdma_alloc_sparse_pages(struct xdr_buf *buf)
189 {
190 struct page **ppages;
191 int len;
192
193 len = buf->page_len;
194 ppages = buf->pages + (buf->page_base >> PAGE_SHIFT);
195 while (len > 0) {
196 if (!*ppages)
197 *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
198 if (!*ppages)
199 return -ENOBUFS;
200 ppages++;
201 len -= PAGE_SIZE;
202 }
203
204 return 0;
205 }
206
207 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
208 * a byte range. Other modes coalesce these SGEs into a single MR
209 * when they can.
210 *
211 * Returns pointer to next available SGE, and bumps the total number
212 * of SGEs consumed.
213 */
214 static struct rpcrdma_mr_seg *
rpcrdma_convert_kvec(struct kvec * vec,struct rpcrdma_mr_seg * seg,unsigned int * n)215 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
216 unsigned int *n)
217 {
218 u32 remaining, page_offset;
219 char *base;
220
221 base = vec->iov_base;
222 page_offset = offset_in_page(base);
223 remaining = vec->iov_len;
224 while (remaining) {
225 seg->mr_page = NULL;
226 seg->mr_offset = base;
227 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
228 remaining -= seg->mr_len;
229 base += seg->mr_len;
230 ++seg;
231 ++(*n);
232 page_offset = 0;
233 }
234 return seg;
235 }
236
237 /* Convert @xdrbuf into SGEs no larger than a page each. As they
238 * are registered, these SGEs are then coalesced into RDMA segments
239 * when the selected memreg mode supports it.
240 *
241 * Returns positive number of SGEs consumed, or a negative errno.
242 */
243
244 static int
rpcrdma_convert_iovs(struct rpcrdma_xprt * r_xprt,struct xdr_buf * xdrbuf,unsigned int pos,enum rpcrdma_chunktype type,struct rpcrdma_mr_seg * seg)245 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
246 unsigned int pos, enum rpcrdma_chunktype type,
247 struct rpcrdma_mr_seg *seg)
248 {
249 unsigned long page_base;
250 unsigned int len, n;
251 struct page **ppages;
252
253 n = 0;
254 if (pos == 0)
255 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
256
257 len = xdrbuf->page_len;
258 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
259 page_base = offset_in_page(xdrbuf->page_base);
260 while (len) {
261 seg->mr_page = *ppages;
262 seg->mr_offset = (char *)page_base;
263 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
264 len -= seg->mr_len;
265 ++ppages;
266 ++seg;
267 ++n;
268 page_base = 0;
269 }
270
271 /* When encoding a Read chunk, the tail iovec contains an
272 * XDR pad and may be omitted.
273 */
274 if (type == rpcrdma_readch && r_xprt->rx_ep->re_implicit_roundup)
275 goto out;
276
277 /* When encoding a Write chunk, some servers need to see an
278 * extra segment for non-XDR-aligned Write chunks. The upper
279 * layer provides space in the tail iovec that may be used
280 * for this purpose.
281 */
282 if (type == rpcrdma_writech && r_xprt->rx_ep->re_implicit_roundup)
283 goto out;
284
285 if (xdrbuf->tail[0].iov_len)
286 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
287
288 out:
289 if (unlikely(n > RPCRDMA_MAX_SEGS))
290 return -EIO;
291 return n;
292 }
293
294 static int
encode_rdma_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr)295 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
296 {
297 __be32 *p;
298
299 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
300 if (unlikely(!p))
301 return -EMSGSIZE;
302
303 xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset);
304 return 0;
305 }
306
307 static int
encode_read_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr,u32 position)308 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
309 u32 position)
310 {
311 __be32 *p;
312
313 p = xdr_reserve_space(xdr, 6 * sizeof(*p));
314 if (unlikely(!p))
315 return -EMSGSIZE;
316
317 *p++ = xdr_one; /* Item present */
318 xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length,
319 mr->mr_offset);
320 return 0;
321 }
322
rpcrdma_mr_prepare(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpcrdma_mr_seg * seg,int nsegs,bool writing,struct rpcrdma_mr ** mr)323 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
324 struct rpcrdma_req *req,
325 struct rpcrdma_mr_seg *seg,
326 int nsegs, bool writing,
327 struct rpcrdma_mr **mr)
328 {
329 *mr = rpcrdma_mr_pop(&req->rl_free_mrs);
330 if (!*mr) {
331 *mr = rpcrdma_mr_get(r_xprt);
332 if (!*mr)
333 goto out_getmr_err;
334 trace_xprtrdma_mr_get(req);
335 (*mr)->mr_req = req;
336 }
337
338 rpcrdma_mr_push(*mr, &req->rl_registered);
339 return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
340
341 out_getmr_err:
342 trace_xprtrdma_nomrs(req);
343 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
344 rpcrdma_mrs_refresh(r_xprt);
345 return ERR_PTR(-EAGAIN);
346 }
347
348 /* Register and XDR encode the Read list. Supports encoding a list of read
349 * segments that belong to a single read chunk.
350 *
351 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
352 *
353 * Read chunklist (a linked list):
354 * N elements, position P (same P for all chunks of same arg!):
355 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
356 *
357 * Returns zero on success, or a negative errno if a failure occurred.
358 * @xdr is advanced to the next position in the stream.
359 *
360 * Only a single @pos value is currently supported.
361 */
rpcrdma_encode_read_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype rtype)362 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
363 struct rpcrdma_req *req,
364 struct rpc_rqst *rqst,
365 enum rpcrdma_chunktype rtype)
366 {
367 struct xdr_stream *xdr = &req->rl_stream;
368 struct rpcrdma_mr_seg *seg;
369 struct rpcrdma_mr *mr;
370 unsigned int pos;
371 int nsegs;
372
373 if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
374 goto done;
375
376 pos = rqst->rq_snd_buf.head[0].iov_len;
377 if (rtype == rpcrdma_areadch)
378 pos = 0;
379 seg = req->rl_segments;
380 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
381 rtype, seg);
382 if (nsegs < 0)
383 return nsegs;
384
385 do {
386 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
387 if (IS_ERR(seg))
388 return PTR_ERR(seg);
389
390 if (encode_read_segment(xdr, mr, pos) < 0)
391 return -EMSGSIZE;
392
393 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
394 r_xprt->rx_stats.read_chunk_count++;
395 nsegs -= mr->mr_nents;
396 } while (nsegs);
397
398 done:
399 if (xdr_stream_encode_item_absent(xdr) < 0)
400 return -EMSGSIZE;
401 return 0;
402 }
403
404 /* Register and XDR encode the Write list. Supports encoding a list
405 * containing one array of plain segments that belong to a single
406 * write chunk.
407 *
408 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
409 *
410 * Write chunklist (a list of (one) counted array):
411 * N elements:
412 * 1 - N - HLOO - HLOO - ... - HLOO - 0
413 *
414 * Returns zero on success, or a negative errno if a failure occurred.
415 * @xdr is advanced to the next position in the stream.
416 *
417 * Only a single Write chunk is currently supported.
418 */
rpcrdma_encode_write_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)419 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
420 struct rpcrdma_req *req,
421 struct rpc_rqst *rqst,
422 enum rpcrdma_chunktype wtype)
423 {
424 struct xdr_stream *xdr = &req->rl_stream;
425 struct rpcrdma_mr_seg *seg;
426 struct rpcrdma_mr *mr;
427 int nsegs, nchunks;
428 __be32 *segcount;
429
430 if (wtype != rpcrdma_writech)
431 goto done;
432
433 seg = req->rl_segments;
434 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
435 rqst->rq_rcv_buf.head[0].iov_len,
436 wtype, seg);
437 if (nsegs < 0)
438 return nsegs;
439
440 if (xdr_stream_encode_item_present(xdr) < 0)
441 return -EMSGSIZE;
442 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
443 if (unlikely(!segcount))
444 return -EMSGSIZE;
445 /* Actual value encoded below */
446
447 nchunks = 0;
448 do {
449 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
450 if (IS_ERR(seg))
451 return PTR_ERR(seg);
452
453 if (encode_rdma_segment(xdr, mr) < 0)
454 return -EMSGSIZE;
455
456 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
457 r_xprt->rx_stats.write_chunk_count++;
458 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
459 nchunks++;
460 nsegs -= mr->mr_nents;
461 } while (nsegs);
462
463 /* Update count of segments in this Write chunk */
464 *segcount = cpu_to_be32(nchunks);
465
466 done:
467 if (xdr_stream_encode_item_absent(xdr) < 0)
468 return -EMSGSIZE;
469 return 0;
470 }
471
472 /* Register and XDR encode the Reply chunk. Supports encoding an array
473 * of plain segments that belong to a single write (reply) chunk.
474 *
475 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
476 *
477 * Reply chunk (a counted array):
478 * N elements:
479 * 1 - N - HLOO - HLOO - ... - HLOO
480 *
481 * Returns zero on success, or a negative errno if a failure occurred.
482 * @xdr is advanced to the next position in the stream.
483 */
rpcrdma_encode_reply_chunk(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)484 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
485 struct rpcrdma_req *req,
486 struct rpc_rqst *rqst,
487 enum rpcrdma_chunktype wtype)
488 {
489 struct xdr_stream *xdr = &req->rl_stream;
490 struct rpcrdma_mr_seg *seg;
491 struct rpcrdma_mr *mr;
492 int nsegs, nchunks;
493 __be32 *segcount;
494
495 if (wtype != rpcrdma_replych) {
496 if (xdr_stream_encode_item_absent(xdr) < 0)
497 return -EMSGSIZE;
498 return 0;
499 }
500
501 seg = req->rl_segments;
502 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
503 if (nsegs < 0)
504 return nsegs;
505
506 if (xdr_stream_encode_item_present(xdr) < 0)
507 return -EMSGSIZE;
508 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
509 if (unlikely(!segcount))
510 return -EMSGSIZE;
511 /* Actual value encoded below */
512
513 nchunks = 0;
514 do {
515 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
516 if (IS_ERR(seg))
517 return PTR_ERR(seg);
518
519 if (encode_rdma_segment(xdr, mr) < 0)
520 return -EMSGSIZE;
521
522 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
523 r_xprt->rx_stats.reply_chunk_count++;
524 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
525 nchunks++;
526 nsegs -= mr->mr_nents;
527 } while (nsegs);
528
529 /* Update count of segments in the Reply chunk */
530 *segcount = cpu_to_be32(nchunks);
531
532 return 0;
533 }
534
rpcrdma_sendctx_done(struct kref * kref)535 static void rpcrdma_sendctx_done(struct kref *kref)
536 {
537 struct rpcrdma_req *req =
538 container_of(kref, struct rpcrdma_req, rl_kref);
539 struct rpcrdma_rep *rep = req->rl_reply;
540
541 rpcrdma_complete_rqst(rep);
542 rep->rr_rxprt->rx_stats.reply_waits_for_send++;
543 }
544
545 /**
546 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
547 * @sc: sendctx containing SGEs to unmap
548 *
549 */
rpcrdma_sendctx_unmap(struct rpcrdma_sendctx * sc)550 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
551 {
552 struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
553 struct ib_sge *sge;
554
555 if (!sc->sc_unmap_count)
556 return;
557
558 /* The first two SGEs contain the transport header and
559 * the inline buffer. These are always left mapped so
560 * they can be cheaply re-used.
561 */
562 for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
563 ++sge, --sc->sc_unmap_count)
564 ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
565 DMA_TO_DEVICE);
566
567 kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
568 }
569
570 /* Prepare an SGE for the RPC-over-RDMA transport header.
571 */
rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 len)572 static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
573 struct rpcrdma_req *req, u32 len)
574 {
575 struct rpcrdma_sendctx *sc = req->rl_sendctx;
576 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
577 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
578
579 sge->addr = rdmab_addr(rb);
580 sge->length = len;
581 sge->lkey = rdmab_lkey(rb);
582
583 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
584 DMA_TO_DEVICE);
585 }
586
587 /* The head iovec is straightforward, as it is usually already
588 * DMA-mapped. Sync the content that has changed.
589 */
rpcrdma_prepare_head_iov(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,unsigned int len)590 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
591 struct rpcrdma_req *req, unsigned int len)
592 {
593 struct rpcrdma_sendctx *sc = req->rl_sendctx;
594 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
595 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
596
597 if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
598 return false;
599
600 sge->addr = rdmab_addr(rb);
601 sge->length = len;
602 sge->lkey = rdmab_lkey(rb);
603
604 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
605 DMA_TO_DEVICE);
606 return true;
607 }
608
609 /* If there is a page list present, DMA map and prepare an
610 * SGE for each page to be sent.
611 */
rpcrdma_prepare_pagelist(struct rpcrdma_req * req,struct xdr_buf * xdr)612 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
613 struct xdr_buf *xdr)
614 {
615 struct rpcrdma_sendctx *sc = req->rl_sendctx;
616 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
617 unsigned int page_base, len, remaining;
618 struct page **ppages;
619 struct ib_sge *sge;
620
621 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
622 page_base = offset_in_page(xdr->page_base);
623 remaining = xdr->page_len;
624 while (remaining) {
625 sge = &sc->sc_sges[req->rl_wr.num_sge++];
626 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
627 sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
628 page_base, len, DMA_TO_DEVICE);
629 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
630 goto out_mapping_err;
631
632 sge->length = len;
633 sge->lkey = rdmab_lkey(rb);
634
635 sc->sc_unmap_count++;
636 ppages++;
637 remaining -= len;
638 page_base = 0;
639 }
640
641 return true;
642
643 out_mapping_err:
644 trace_xprtrdma_dma_maperr(sge->addr);
645 return false;
646 }
647
648 /* The tail iovec may include an XDR pad for the page list,
649 * as well as additional content, and may not reside in the
650 * same page as the head iovec.
651 */
rpcrdma_prepare_tail_iov(struct rpcrdma_req * req,struct xdr_buf * xdr,unsigned int page_base,unsigned int len)652 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
653 struct xdr_buf *xdr,
654 unsigned int page_base, unsigned int len)
655 {
656 struct rpcrdma_sendctx *sc = req->rl_sendctx;
657 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
658 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
659 struct page *page = virt_to_page(xdr->tail[0].iov_base);
660
661 sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
662 DMA_TO_DEVICE);
663 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
664 goto out_mapping_err;
665
666 sge->length = len;
667 sge->lkey = rdmab_lkey(rb);
668 ++sc->sc_unmap_count;
669 return true;
670
671 out_mapping_err:
672 trace_xprtrdma_dma_maperr(sge->addr);
673 return false;
674 }
675
676 /* Copy the tail to the end of the head buffer.
677 */
rpcrdma_pullup_tail_iov(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)678 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
679 struct rpcrdma_req *req,
680 struct xdr_buf *xdr)
681 {
682 unsigned char *dst;
683
684 dst = (unsigned char *)xdr->head[0].iov_base;
685 dst += xdr->head[0].iov_len + xdr->page_len;
686 memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
687 r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
688 }
689
690 /* Copy pagelist content into the head buffer.
691 */
rpcrdma_pullup_pagelist(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)692 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
693 struct rpcrdma_req *req,
694 struct xdr_buf *xdr)
695 {
696 unsigned int len, page_base, remaining;
697 struct page **ppages;
698 unsigned char *src, *dst;
699
700 dst = (unsigned char *)xdr->head[0].iov_base;
701 dst += xdr->head[0].iov_len;
702 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
703 page_base = offset_in_page(xdr->page_base);
704 remaining = xdr->page_len;
705 while (remaining) {
706 src = page_address(*ppages);
707 src += page_base;
708 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
709 memcpy(dst, src, len);
710 r_xprt->rx_stats.pullup_copy_count += len;
711
712 ppages++;
713 dst += len;
714 remaining -= len;
715 page_base = 0;
716 }
717 }
718
719 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
720 * When the head, pagelist, and tail are small, a pull-up copy
721 * is considerably less costly than DMA mapping the components
722 * of @xdr.
723 *
724 * Assumptions:
725 * - the caller has already verified that the total length
726 * of the RPC Call body will fit into @rl_sendbuf.
727 */
rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)728 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
729 struct rpcrdma_req *req,
730 struct xdr_buf *xdr)
731 {
732 if (unlikely(xdr->tail[0].iov_len))
733 rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
734
735 if (unlikely(xdr->page_len))
736 rpcrdma_pullup_pagelist(r_xprt, req, xdr);
737
738 /* The whole RPC message resides in the head iovec now */
739 return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
740 }
741
rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)742 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
743 struct rpcrdma_req *req,
744 struct xdr_buf *xdr)
745 {
746 struct kvec *tail = &xdr->tail[0];
747
748 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
749 return false;
750 if (xdr->page_len)
751 if (!rpcrdma_prepare_pagelist(req, xdr))
752 return false;
753 if (tail->iov_len)
754 if (!rpcrdma_prepare_tail_iov(req, xdr,
755 offset_in_page(tail->iov_base),
756 tail->iov_len))
757 return false;
758
759 if (req->rl_sendctx->sc_unmap_count)
760 kref_get(&req->rl_kref);
761 return true;
762 }
763
rpcrdma_prepare_readch(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)764 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
765 struct rpcrdma_req *req,
766 struct xdr_buf *xdr)
767 {
768 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
769 return false;
770
771 /* If there is a Read chunk, the page list is being handled
772 * via explicit RDMA, and thus is skipped here.
773 */
774
775 /* Do not include the tail if it is only an XDR pad */
776 if (xdr->tail[0].iov_len > 3) {
777 unsigned int page_base, len;
778
779 /* If the content in the page list is an odd length,
780 * xdr_write_pages() adds a pad at the beginning of
781 * the tail iovec. Force the tail's non-pad content to
782 * land at the next XDR position in the Send message.
783 */
784 page_base = offset_in_page(xdr->tail[0].iov_base);
785 len = xdr->tail[0].iov_len;
786 page_base += len & 3;
787 len -= len & 3;
788 if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
789 return false;
790 kref_get(&req->rl_kref);
791 }
792
793 return true;
794 }
795
796 /**
797 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
798 * @r_xprt: controlling transport
799 * @req: context of RPC Call being marshalled
800 * @hdrlen: size of transport header, in bytes
801 * @xdr: xdr_buf containing RPC Call
802 * @rtype: chunk type being encoded
803 *
804 * Returns 0 on success; otherwise a negative errno is returned.
805 */
rpcrdma_prepare_send_sges(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 hdrlen,struct xdr_buf * xdr,enum rpcrdma_chunktype rtype)806 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
807 struct rpcrdma_req *req, u32 hdrlen,
808 struct xdr_buf *xdr,
809 enum rpcrdma_chunktype rtype)
810 {
811 int ret;
812
813 ret = -EAGAIN;
814 req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
815 if (!req->rl_sendctx)
816 goto out_nosc;
817 req->rl_sendctx->sc_unmap_count = 0;
818 req->rl_sendctx->sc_req = req;
819 kref_init(&req->rl_kref);
820 req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
821 req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
822 req->rl_wr.num_sge = 0;
823 req->rl_wr.opcode = IB_WR_SEND;
824
825 rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
826
827 ret = -EIO;
828 switch (rtype) {
829 case rpcrdma_noch_pullup:
830 if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
831 goto out_unmap;
832 break;
833 case rpcrdma_noch_mapped:
834 if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
835 goto out_unmap;
836 break;
837 case rpcrdma_readch:
838 if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
839 goto out_unmap;
840 break;
841 case rpcrdma_areadch:
842 break;
843 default:
844 goto out_unmap;
845 }
846
847 return 0;
848
849 out_unmap:
850 rpcrdma_sendctx_unmap(req->rl_sendctx);
851 out_nosc:
852 trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
853 return ret;
854 }
855
856 /**
857 * rpcrdma_marshal_req - Marshal and send one RPC request
858 * @r_xprt: controlling transport
859 * @rqst: RPC request to be marshaled
860 *
861 * For the RPC in "rqst", this function:
862 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
863 * - Registers Read, Write, and Reply chunks
864 * - Constructs the transport header
865 * - Posts a Send WR to send the transport header and request
866 *
867 * Returns:
868 * %0 if the RPC was sent successfully,
869 * %-ENOTCONN if the connection was lost,
870 * %-EAGAIN if the caller should call again with the same arguments,
871 * %-ENOBUFS if the caller should call again after a delay,
872 * %-EMSGSIZE if the transport header is too small,
873 * %-EIO if a permanent problem occurred while marshaling.
874 */
875 int
rpcrdma_marshal_req(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)876 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
877 {
878 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
879 struct xdr_stream *xdr = &req->rl_stream;
880 enum rpcrdma_chunktype rtype, wtype;
881 struct xdr_buf *buf = &rqst->rq_snd_buf;
882 bool ddp_allowed;
883 __be32 *p;
884 int ret;
885
886 if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) {
887 ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf);
888 if (ret)
889 return ret;
890 }
891
892 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
893 xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
894 rqst);
895
896 /* Fixed header fields */
897 ret = -EMSGSIZE;
898 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
899 if (!p)
900 goto out_err;
901 *p++ = rqst->rq_xid;
902 *p++ = rpcrdma_version;
903 *p++ = r_xprt->rx_buf.rb_max_requests;
904
905 /* When the ULP employs a GSS flavor that guarantees integrity
906 * or privacy, direct data placement of individual data items
907 * is not allowed.
908 */
909 ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
910 &rqst->rq_cred->cr_auth->au_flags);
911
912 /*
913 * Chunks needed for results?
914 *
915 * o If the expected result is under the inline threshold, all ops
916 * return as inline.
917 * o Large read ops return data as write chunk(s), header as
918 * inline.
919 * o Large non-read ops return as a single reply chunk.
920 */
921 if (rpcrdma_results_inline(r_xprt, rqst))
922 wtype = rpcrdma_noch;
923 else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
924 rpcrdma_nonpayload_inline(r_xprt, rqst))
925 wtype = rpcrdma_writech;
926 else
927 wtype = rpcrdma_replych;
928
929 /*
930 * Chunks needed for arguments?
931 *
932 * o If the total request is under the inline threshold, all ops
933 * are sent as inline.
934 * o Large write ops transmit data as read chunk(s), header as
935 * inline.
936 * o Large non-write ops are sent with the entire message as a
937 * single read chunk (protocol 0-position special case).
938 *
939 * This assumes that the upper layer does not present a request
940 * that both has a data payload, and whose non-data arguments
941 * by themselves are larger than the inline threshold.
942 */
943 if (rpcrdma_args_inline(r_xprt, rqst)) {
944 *p++ = rdma_msg;
945 rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
946 rpcrdma_noch_pullup : rpcrdma_noch_mapped;
947 } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
948 *p++ = rdma_msg;
949 rtype = rpcrdma_readch;
950 } else {
951 r_xprt->rx_stats.nomsg_call_count++;
952 *p++ = rdma_nomsg;
953 rtype = rpcrdma_areadch;
954 }
955
956 /* This implementation supports the following combinations
957 * of chunk lists in one RPC-over-RDMA Call message:
958 *
959 * - Read list
960 * - Write list
961 * - Reply chunk
962 * - Read list + Reply chunk
963 *
964 * It might not yet support the following combinations:
965 *
966 * - Read list + Write list
967 *
968 * It does not support the following combinations:
969 *
970 * - Write list + Reply chunk
971 * - Read list + Write list + Reply chunk
972 *
973 * This implementation supports only a single chunk in each
974 * Read or Write list. Thus for example the client cannot
975 * send a Call message with a Position Zero Read chunk and a
976 * regular Read chunk at the same time.
977 */
978 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
979 if (ret)
980 goto out_err;
981 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
982 if (ret)
983 goto out_err;
984 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
985 if (ret)
986 goto out_err;
987
988 ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
989 buf, rtype);
990 if (ret)
991 goto out_err;
992
993 trace_xprtrdma_marshal(req, rtype, wtype);
994 return 0;
995
996 out_err:
997 trace_xprtrdma_marshal_failed(rqst, ret);
998 r_xprt->rx_stats.failed_marshal_count++;
999 frwr_reset(req);
1000 return ret;
1001 }
1002
__rpcrdma_update_cwnd_locked(struct rpc_xprt * xprt,struct rpcrdma_buffer * buf,u32 grant)1003 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
1004 struct rpcrdma_buffer *buf,
1005 u32 grant)
1006 {
1007 buf->rb_credits = grant;
1008 xprt->cwnd = grant << RPC_CWNDSHIFT;
1009 }
1010
rpcrdma_update_cwnd(struct rpcrdma_xprt * r_xprt,u32 grant)1011 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
1012 {
1013 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1014
1015 spin_lock(&xprt->transport_lock);
1016 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1017 spin_unlock(&xprt->transport_lock);
1018 }
1019
1020 /**
1021 * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1022 * @r_xprt: controlling transport instance
1023 *
1024 * Prepare @r_xprt for the next connection by reinitializing
1025 * its credit grant to one (see RFC 8166, Section 3.3.3).
1026 */
rpcrdma_reset_cwnd(struct rpcrdma_xprt * r_xprt)1027 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1028 {
1029 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1030
1031 spin_lock(&xprt->transport_lock);
1032 xprt->cong = 0;
1033 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1034 spin_unlock(&xprt->transport_lock);
1035 }
1036
1037 /**
1038 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1039 * @rqst: controlling RPC request
1040 * @srcp: points to RPC message payload in receive buffer
1041 * @copy_len: remaining length of receive buffer content
1042 * @pad: Write chunk pad bytes needed (zero for pure inline)
1043 *
1044 * The upper layer has set the maximum number of bytes it can
1045 * receive in each component of rq_rcv_buf. These values are set in
1046 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1047 *
1048 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1049 * many cases this function simply updates iov_base pointers in
1050 * rq_rcv_buf to point directly to the received reply data, to
1051 * avoid copying reply data.
1052 *
1053 * Returns the count of bytes which had to be memcopied.
1054 */
1055 static unsigned long
rpcrdma_inline_fixup(struct rpc_rqst * rqst,char * srcp,int copy_len,int pad)1056 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1057 {
1058 unsigned long fixup_copy_count;
1059 int i, npages, curlen;
1060 char *destp;
1061 struct page **ppages;
1062 int page_base;
1063
1064 /* The head iovec is redirected to the RPC reply message
1065 * in the receive buffer, to avoid a memcopy.
1066 */
1067 rqst->rq_rcv_buf.head[0].iov_base = srcp;
1068 rqst->rq_private_buf.head[0].iov_base = srcp;
1069
1070 /* The contents of the receive buffer that follow
1071 * head.iov_len bytes are copied into the page list.
1072 */
1073 curlen = rqst->rq_rcv_buf.head[0].iov_len;
1074 if (curlen > copy_len)
1075 curlen = copy_len;
1076 srcp += curlen;
1077 copy_len -= curlen;
1078
1079 ppages = rqst->rq_rcv_buf.pages +
1080 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1081 page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1082 fixup_copy_count = 0;
1083 if (copy_len && rqst->rq_rcv_buf.page_len) {
1084 int pagelist_len;
1085
1086 pagelist_len = rqst->rq_rcv_buf.page_len;
1087 if (pagelist_len > copy_len)
1088 pagelist_len = copy_len;
1089 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1090 for (i = 0; i < npages; i++) {
1091 curlen = PAGE_SIZE - page_base;
1092 if (curlen > pagelist_len)
1093 curlen = pagelist_len;
1094
1095 destp = kmap_atomic(ppages[i]);
1096 memcpy(destp + page_base, srcp, curlen);
1097 flush_dcache_page(ppages[i]);
1098 kunmap_atomic(destp);
1099 srcp += curlen;
1100 copy_len -= curlen;
1101 fixup_copy_count += curlen;
1102 pagelist_len -= curlen;
1103 if (!pagelist_len)
1104 break;
1105 page_base = 0;
1106 }
1107
1108 /* Implicit padding for the last segment in a Write
1109 * chunk is inserted inline at the front of the tail
1110 * iovec. The upper layer ignores the content of
1111 * the pad. Simply ensure inline content in the tail
1112 * that follows the Write chunk is properly aligned.
1113 */
1114 if (pad)
1115 srcp -= pad;
1116 }
1117
1118 /* The tail iovec is redirected to the remaining data
1119 * in the receive buffer, to avoid a memcopy.
1120 */
1121 if (copy_len || pad) {
1122 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1123 rqst->rq_private_buf.tail[0].iov_base = srcp;
1124 }
1125
1126 if (fixup_copy_count)
1127 trace_xprtrdma_fixup(rqst, fixup_copy_count);
1128 return fixup_copy_count;
1129 }
1130
1131 /* By convention, backchannel calls arrive via rdma_msg type
1132 * messages, and never populate the chunk lists. This makes
1133 * the RPC/RDMA header small and fixed in size, so it is
1134 * straightforward to check the RPC header's direction field.
1135 */
1136 static bool
rpcrdma_is_bcall(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1137 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1138 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1139 {
1140 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1141 struct xdr_stream *xdr = &rep->rr_stream;
1142 __be32 *p;
1143
1144 if (rep->rr_proc != rdma_msg)
1145 return false;
1146
1147 /* Peek at stream contents without advancing. */
1148 p = xdr_inline_decode(xdr, 0);
1149
1150 /* Chunk lists */
1151 if (xdr_item_is_present(p++))
1152 return false;
1153 if (xdr_item_is_present(p++))
1154 return false;
1155 if (xdr_item_is_present(p++))
1156 return false;
1157
1158 /* RPC header */
1159 if (*p++ != rep->rr_xid)
1160 return false;
1161 if (*p != cpu_to_be32(RPC_CALL))
1162 return false;
1163
1164 /* No bc service. */
1165 if (xprt->bc_serv == NULL)
1166 return false;
1167
1168 /* Now that we are sure this is a backchannel call,
1169 * advance to the RPC header.
1170 */
1171 p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1172 if (unlikely(!p))
1173 goto out_short;
1174
1175 rpcrdma_bc_receive_call(r_xprt, rep);
1176 return true;
1177
1178 out_short:
1179 pr_warn("RPC/RDMA short backward direction call\n");
1180 return true;
1181 }
1182 #else /* CONFIG_SUNRPC_BACKCHANNEL */
1183 {
1184 return false;
1185 }
1186 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1187
decode_rdma_segment(struct xdr_stream * xdr,u32 * length)1188 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1189 {
1190 u32 handle;
1191 u64 offset;
1192 __be32 *p;
1193
1194 p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1195 if (unlikely(!p))
1196 return -EIO;
1197
1198 xdr_decode_rdma_segment(p, &handle, length, &offset);
1199 trace_xprtrdma_decode_seg(handle, *length, offset);
1200 return 0;
1201 }
1202
decode_write_chunk(struct xdr_stream * xdr,u32 * length)1203 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1204 {
1205 u32 segcount, seglength;
1206 __be32 *p;
1207
1208 p = xdr_inline_decode(xdr, sizeof(*p));
1209 if (unlikely(!p))
1210 return -EIO;
1211
1212 *length = 0;
1213 segcount = be32_to_cpup(p);
1214 while (segcount--) {
1215 if (decode_rdma_segment(xdr, &seglength))
1216 return -EIO;
1217 *length += seglength;
1218 }
1219
1220 return 0;
1221 }
1222
1223 /* In RPC-over-RDMA Version One replies, a Read list is never
1224 * expected. This decoder is a stub that returns an error if
1225 * a Read list is present.
1226 */
decode_read_list(struct xdr_stream * xdr)1227 static int decode_read_list(struct xdr_stream *xdr)
1228 {
1229 __be32 *p;
1230
1231 p = xdr_inline_decode(xdr, sizeof(*p));
1232 if (unlikely(!p))
1233 return -EIO;
1234 if (unlikely(xdr_item_is_present(p)))
1235 return -EIO;
1236 return 0;
1237 }
1238
1239 /* Supports only one Write chunk in the Write list
1240 */
decode_write_list(struct xdr_stream * xdr,u32 * length)1241 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1242 {
1243 u32 chunklen;
1244 bool first;
1245 __be32 *p;
1246
1247 *length = 0;
1248 first = true;
1249 do {
1250 p = xdr_inline_decode(xdr, sizeof(*p));
1251 if (unlikely(!p))
1252 return -EIO;
1253 if (xdr_item_is_absent(p))
1254 break;
1255 if (!first)
1256 return -EIO;
1257
1258 if (decode_write_chunk(xdr, &chunklen))
1259 return -EIO;
1260 *length += chunklen;
1261 first = false;
1262 } while (true);
1263 return 0;
1264 }
1265
decode_reply_chunk(struct xdr_stream * xdr,u32 * length)1266 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1267 {
1268 __be32 *p;
1269
1270 p = xdr_inline_decode(xdr, sizeof(*p));
1271 if (unlikely(!p))
1272 return -EIO;
1273
1274 *length = 0;
1275 if (xdr_item_is_present(p))
1276 if (decode_write_chunk(xdr, length))
1277 return -EIO;
1278 return 0;
1279 }
1280
1281 static int
rpcrdma_decode_msg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1282 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1283 struct rpc_rqst *rqst)
1284 {
1285 struct xdr_stream *xdr = &rep->rr_stream;
1286 u32 writelist, replychunk, rpclen;
1287 char *base;
1288
1289 /* Decode the chunk lists */
1290 if (decode_read_list(xdr))
1291 return -EIO;
1292 if (decode_write_list(xdr, &writelist))
1293 return -EIO;
1294 if (decode_reply_chunk(xdr, &replychunk))
1295 return -EIO;
1296
1297 /* RDMA_MSG sanity checks */
1298 if (unlikely(replychunk))
1299 return -EIO;
1300
1301 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1302 base = (char *)xdr_inline_decode(xdr, 0);
1303 rpclen = xdr_stream_remaining(xdr);
1304 r_xprt->rx_stats.fixup_copy_count +=
1305 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1306
1307 r_xprt->rx_stats.total_rdma_reply += writelist;
1308 return rpclen + xdr_align_size(writelist);
1309 }
1310
1311 static noinline int
rpcrdma_decode_nomsg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1312 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1313 {
1314 struct xdr_stream *xdr = &rep->rr_stream;
1315 u32 writelist, replychunk;
1316
1317 /* Decode the chunk lists */
1318 if (decode_read_list(xdr))
1319 return -EIO;
1320 if (decode_write_list(xdr, &writelist))
1321 return -EIO;
1322 if (decode_reply_chunk(xdr, &replychunk))
1323 return -EIO;
1324
1325 /* RDMA_NOMSG sanity checks */
1326 if (unlikely(writelist))
1327 return -EIO;
1328 if (unlikely(!replychunk))
1329 return -EIO;
1330
1331 /* Reply chunk buffer already is the reply vector */
1332 r_xprt->rx_stats.total_rdma_reply += replychunk;
1333 return replychunk;
1334 }
1335
1336 static noinline int
rpcrdma_decode_error(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1337 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1338 struct rpc_rqst *rqst)
1339 {
1340 struct xdr_stream *xdr = &rep->rr_stream;
1341 __be32 *p;
1342
1343 p = xdr_inline_decode(xdr, sizeof(*p));
1344 if (unlikely(!p))
1345 return -EIO;
1346
1347 switch (*p) {
1348 case err_vers:
1349 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1350 if (!p)
1351 break;
1352 dprintk("RPC: %s: server reports "
1353 "version error (%u-%u), xid %08x\n", __func__,
1354 be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1355 be32_to_cpu(rep->rr_xid));
1356 break;
1357 case err_chunk:
1358 dprintk("RPC: %s: server reports "
1359 "header decoding error, xid %08x\n", __func__,
1360 be32_to_cpu(rep->rr_xid));
1361 break;
1362 default:
1363 dprintk("RPC: %s: server reports "
1364 "unrecognized error %d, xid %08x\n", __func__,
1365 be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1366 }
1367
1368 return -EIO;
1369 }
1370
1371 /* Perform XID lookup, reconstruction of the RPC reply, and
1372 * RPC completion while holding the transport lock to ensure
1373 * the rep, rqst, and rq_task pointers remain stable.
1374 */
rpcrdma_complete_rqst(struct rpcrdma_rep * rep)1375 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1376 {
1377 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1378 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1379 struct rpc_rqst *rqst = rep->rr_rqst;
1380 int status;
1381
1382 switch (rep->rr_proc) {
1383 case rdma_msg:
1384 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1385 break;
1386 case rdma_nomsg:
1387 status = rpcrdma_decode_nomsg(r_xprt, rep);
1388 break;
1389 case rdma_error:
1390 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1391 break;
1392 default:
1393 status = -EIO;
1394 }
1395 if (status < 0)
1396 goto out_badheader;
1397
1398 out:
1399 spin_lock(&xprt->queue_lock);
1400 xprt_complete_rqst(rqst->rq_task, status);
1401 xprt_unpin_rqst(rqst);
1402 spin_unlock(&xprt->queue_lock);
1403 return;
1404
1405 out_badheader:
1406 trace_xprtrdma_reply_hdr(rep);
1407 r_xprt->rx_stats.bad_reply_count++;
1408 rqst->rq_task->tk_status = status;
1409 status = 0;
1410 goto out;
1411 }
1412
rpcrdma_reply_done(struct kref * kref)1413 static void rpcrdma_reply_done(struct kref *kref)
1414 {
1415 struct rpcrdma_req *req =
1416 container_of(kref, struct rpcrdma_req, rl_kref);
1417
1418 rpcrdma_complete_rqst(req->rl_reply);
1419 }
1420
1421 /**
1422 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1423 * @rep: Incoming rpcrdma_rep object to process
1424 *
1425 * Errors must result in the RPC task either being awakened, or
1426 * allowed to timeout, to discover the errors at that time.
1427 */
rpcrdma_reply_handler(struct rpcrdma_rep * rep)1428 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1429 {
1430 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1431 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1432 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1433 struct rpcrdma_req *req;
1434 struct rpc_rqst *rqst;
1435 u32 credits;
1436 __be32 *p;
1437
1438 /* Any data means we had a useful conversation, so
1439 * then we don't need to delay the next reconnect.
1440 */
1441 if (xprt->reestablish_timeout)
1442 xprt->reestablish_timeout = 0;
1443
1444 /* Fixed transport header fields */
1445 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1446 rep->rr_hdrbuf.head[0].iov_base, NULL);
1447 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1448 if (unlikely(!p))
1449 goto out_shortreply;
1450 rep->rr_xid = *p++;
1451 rep->rr_vers = *p++;
1452 credits = be32_to_cpu(*p++);
1453 rep->rr_proc = *p++;
1454
1455 if (rep->rr_vers != rpcrdma_version)
1456 goto out_badversion;
1457
1458 if (rpcrdma_is_bcall(r_xprt, rep))
1459 return;
1460
1461 /* Match incoming rpcrdma_rep to an rpcrdma_req to
1462 * get context for handling any incoming chunks.
1463 */
1464 spin_lock(&xprt->queue_lock);
1465 rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1466 if (!rqst)
1467 goto out_norqst;
1468 xprt_pin_rqst(rqst);
1469 spin_unlock(&xprt->queue_lock);
1470
1471 if (credits == 0)
1472 credits = 1; /* don't deadlock */
1473 else if (credits > r_xprt->rx_ep->re_max_requests)
1474 credits = r_xprt->rx_ep->re_max_requests;
1475 rpcrdma_post_recvs(r_xprt, credits + (buf->rb_bc_srv_max_requests << 1),
1476 false);
1477 if (buf->rb_credits != credits)
1478 rpcrdma_update_cwnd(r_xprt, credits);
1479
1480 req = rpcr_to_rdmar(rqst);
1481 if (req->rl_reply) {
1482 trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1483 rpcrdma_recv_buffer_put(req->rl_reply);
1484 }
1485 req->rl_reply = rep;
1486 rep->rr_rqst = rqst;
1487
1488 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1489
1490 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1491 frwr_reminv(rep, &req->rl_registered);
1492 if (!list_empty(&req->rl_registered))
1493 frwr_unmap_async(r_xprt, req);
1494 /* LocalInv completion will complete the RPC */
1495 else
1496 kref_put(&req->rl_kref, rpcrdma_reply_done);
1497 return;
1498
1499 out_badversion:
1500 trace_xprtrdma_reply_vers(rep);
1501 goto out;
1502
1503 out_norqst:
1504 spin_unlock(&xprt->queue_lock);
1505 trace_xprtrdma_reply_rqst(rep);
1506 goto out;
1507
1508 out_shortreply:
1509 trace_xprtrdma_reply_short(rep);
1510
1511 out:
1512 rpcrdma_recv_buffer_put(rep);
1513 }
1514