1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * verbs.c
44 *
45 * Encapsulates the major functions managing:
46 * o adapters
47 * o endpoints
48 * o connections
49 * o buffer memory
50 */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67 * Globals/Macros
68 */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY RPCDBG_TRANS
72 #endif
73
74 /*
75 * internal functions
76 */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80 struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
89 static struct rpcrdma_regbuf *
90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
91 gfp_t flags);
92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
94
95 /* Wait for outstanding transport work to finish. ib_drain_qp
96 * handles the drains in the wrong order for us, so open code
97 * them here.
98 */
rpcrdma_xprt_drain(struct rpcrdma_xprt * r_xprt)99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
100 {
101 struct rpcrdma_ep *ep = r_xprt->rx_ep;
102 struct rdma_cm_id *id = ep->re_id;
103
104 /* Flush Receives, then wait for deferred Reply work
105 * to complete.
106 */
107 ib_drain_rq(id->qp);
108
109 /* Deferred Reply processing might have scheduled
110 * local invalidations.
111 */
112 ib_drain_sq(id->qp);
113
114 rpcrdma_ep_put(ep);
115 }
116
117 /**
118 * rpcrdma_qp_event_handler - Handle one QP event (error notification)
119 * @event: details of the event
120 * @context: ep that owns QP where event occurred
121 *
122 * Called from the RDMA provider (device driver) possibly in an interrupt
123 * context. The QP is always destroyed before the ID, so the ID will be
124 * reliably available when this handler is invoked.
125 */
rpcrdma_qp_event_handler(struct ib_event * event,void * context)126 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context)
127 {
128 struct rpcrdma_ep *ep = context;
129
130 trace_xprtrdma_qp_event(ep, event);
131 }
132
133 /* Ensure xprt_force_disconnect() is invoked exactly once when a
134 * connection is closed or lost. (The important thing is it needs
135 * to be invoked "at least" once).
136 */
rpcrdma_force_disconnect(struct rpcrdma_ep * ep)137 static void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
138 {
139 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
140 xprt_force_disconnect(ep->re_xprt);
141 }
142
143 /**
144 * rpcrdma_flush_disconnect - Disconnect on flushed completion
145 * @r_xprt: transport to disconnect
146 * @wc: work completion entry
147 *
148 * Must be called in process context.
149 */
rpcrdma_flush_disconnect(struct rpcrdma_xprt * r_xprt,struct ib_wc * wc)150 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
151 {
152 if (wc->status != IB_WC_SUCCESS)
153 rpcrdma_force_disconnect(r_xprt->rx_ep);
154 }
155
156 /**
157 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
158 * @cq: completion queue
159 * @wc: WCE for a completed Send WR
160 *
161 */
rpcrdma_wc_send(struct ib_cq * cq,struct ib_wc * wc)162 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
163 {
164 struct ib_cqe *cqe = wc->wr_cqe;
165 struct rpcrdma_sendctx *sc =
166 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
167 struct rpcrdma_xprt *r_xprt = cq->cq_context;
168
169 /* WARNING: Only wr_cqe and status are reliable at this point */
170 trace_xprtrdma_wc_send(sc, wc);
171 rpcrdma_sendctx_put_locked(r_xprt, sc);
172 rpcrdma_flush_disconnect(r_xprt, wc);
173 }
174
175 /**
176 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
177 * @cq: completion queue
178 * @wc: WCE for a completed Receive WR
179 *
180 */
rpcrdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)181 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
182 {
183 struct ib_cqe *cqe = wc->wr_cqe;
184 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
185 rr_cqe);
186 struct rpcrdma_xprt *r_xprt = cq->cq_context;
187
188 /* WARNING: Only wr_cqe and status are reliable at this point */
189 trace_xprtrdma_wc_receive(wc);
190 --r_xprt->rx_ep->re_receive_count;
191 if (wc->status != IB_WC_SUCCESS)
192 goto out_flushed;
193
194 /* status == SUCCESS means all fields in wc are trustworthy */
195 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
196 rep->rr_wc_flags = wc->wc_flags;
197 rep->rr_inv_rkey = wc->ex.invalidate_rkey;
198
199 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
200 rdmab_addr(rep->rr_rdmabuf),
201 wc->byte_len, DMA_FROM_DEVICE);
202
203 rpcrdma_reply_handler(rep);
204 return;
205
206 out_flushed:
207 rpcrdma_flush_disconnect(r_xprt, wc);
208 rpcrdma_rep_destroy(rep);
209 }
210
rpcrdma_update_cm_private(struct rpcrdma_ep * ep,struct rdma_conn_param * param)211 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
212 struct rdma_conn_param *param)
213 {
214 const struct rpcrdma_connect_private *pmsg = param->private_data;
215 unsigned int rsize, wsize;
216
217 /* Default settings for RPC-over-RDMA Version One */
218 ep->re_implicit_roundup = xprt_rdma_pad_optimize;
219 rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
220 wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
221
222 if (pmsg &&
223 pmsg->cp_magic == rpcrdma_cmp_magic &&
224 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
225 ep->re_implicit_roundup = true;
226 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
227 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
228 }
229
230 if (rsize < ep->re_inline_recv)
231 ep->re_inline_recv = rsize;
232 if (wsize < ep->re_inline_send)
233 ep->re_inline_send = wsize;
234
235 rpcrdma_set_max_header_sizes(ep);
236 }
237
238 /**
239 * rpcrdma_cm_event_handler - Handle RDMA CM events
240 * @id: rdma_cm_id on which an event has occurred
241 * @event: details of the event
242 *
243 * Called with @id's mutex held. Returns 1 if caller should
244 * destroy @id, otherwise 0.
245 */
246 static int
rpcrdma_cm_event_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)247 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
248 {
249 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
250 struct rpcrdma_ep *ep = id->context;
251
252 might_sleep();
253
254 switch (event->event) {
255 case RDMA_CM_EVENT_ADDR_RESOLVED:
256 case RDMA_CM_EVENT_ROUTE_RESOLVED:
257 ep->re_async_rc = 0;
258 complete(&ep->re_done);
259 return 0;
260 case RDMA_CM_EVENT_ADDR_ERROR:
261 ep->re_async_rc = -EPROTO;
262 complete(&ep->re_done);
263 return 0;
264 case RDMA_CM_EVENT_ROUTE_ERROR:
265 ep->re_async_rc = -ENETUNREACH;
266 complete(&ep->re_done);
267 return 0;
268 case RDMA_CM_EVENT_DEVICE_REMOVAL:
269 pr_info("rpcrdma: removing device %s for %pISpc\n",
270 ep->re_id->device->name, sap);
271 fallthrough;
272 case RDMA_CM_EVENT_ADDR_CHANGE:
273 ep->re_connect_status = -ENODEV;
274 goto disconnected;
275 case RDMA_CM_EVENT_ESTABLISHED:
276 rpcrdma_ep_get(ep);
277 ep->re_connect_status = 1;
278 rpcrdma_update_cm_private(ep, &event->param.conn);
279 trace_xprtrdma_inline_thresh(ep);
280 wake_up_all(&ep->re_connect_wait);
281 break;
282 case RDMA_CM_EVENT_CONNECT_ERROR:
283 ep->re_connect_status = -ENOTCONN;
284 goto wake_connect_worker;
285 case RDMA_CM_EVENT_UNREACHABLE:
286 ep->re_connect_status = -ENETUNREACH;
287 goto wake_connect_worker;
288 case RDMA_CM_EVENT_REJECTED:
289 dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
290 sap, rdma_reject_msg(id, event->status));
291 ep->re_connect_status = -ECONNREFUSED;
292 if (event->status == IB_CM_REJ_STALE_CONN)
293 ep->re_connect_status = -ENOTCONN;
294 wake_connect_worker:
295 wake_up_all(&ep->re_connect_wait);
296 return 0;
297 case RDMA_CM_EVENT_DISCONNECTED:
298 ep->re_connect_status = -ECONNABORTED;
299 disconnected:
300 rpcrdma_force_disconnect(ep);
301 return rpcrdma_ep_put(ep);
302 default:
303 break;
304 }
305
306 dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap,
307 ep->re_id->device->name, rdma_event_msg(event->event));
308 return 0;
309 }
310
rpcrdma_create_id(struct rpcrdma_xprt * r_xprt,struct rpcrdma_ep * ep)311 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
312 struct rpcrdma_ep *ep)
313 {
314 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
315 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
316 struct rdma_cm_id *id;
317 int rc;
318
319 init_completion(&ep->re_done);
320
321 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
322 RDMA_PS_TCP, IB_QPT_RC);
323 if (IS_ERR(id))
324 return id;
325
326 ep->re_async_rc = -ETIMEDOUT;
327 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
328 RDMA_RESOLVE_TIMEOUT);
329 if (rc)
330 goto out;
331 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
332 if (rc < 0)
333 goto out;
334
335 rc = ep->re_async_rc;
336 if (rc)
337 goto out;
338
339 ep->re_async_rc = -ETIMEDOUT;
340 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
341 if (rc)
342 goto out;
343 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
344 if (rc < 0)
345 goto out;
346 rc = ep->re_async_rc;
347 if (rc)
348 goto out;
349
350 return id;
351
352 out:
353 rdma_destroy_id(id);
354 return ERR_PTR(rc);
355 }
356
rpcrdma_ep_destroy(struct kref * kref)357 static void rpcrdma_ep_destroy(struct kref *kref)
358 {
359 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
360
361 if (ep->re_id->qp) {
362 rdma_destroy_qp(ep->re_id);
363 ep->re_id->qp = NULL;
364 }
365
366 if (ep->re_attr.recv_cq)
367 ib_free_cq(ep->re_attr.recv_cq);
368 ep->re_attr.recv_cq = NULL;
369 if (ep->re_attr.send_cq)
370 ib_free_cq(ep->re_attr.send_cq);
371 ep->re_attr.send_cq = NULL;
372
373 if (ep->re_pd)
374 ib_dealloc_pd(ep->re_pd);
375 ep->re_pd = NULL;
376
377 kfree(ep);
378 module_put(THIS_MODULE);
379 }
380
rpcrdma_ep_get(struct rpcrdma_ep * ep)381 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
382 {
383 kref_get(&ep->re_kref);
384 }
385
386 /* Returns:
387 * %0 if @ep still has a positive kref count, or
388 * %1 if @ep was destroyed successfully.
389 */
rpcrdma_ep_put(struct rpcrdma_ep * ep)390 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
391 {
392 return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
393 }
394
rpcrdma_ep_create(struct rpcrdma_xprt * r_xprt)395 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
396 {
397 struct rpcrdma_connect_private *pmsg;
398 struct ib_device *device;
399 struct rdma_cm_id *id;
400 struct rpcrdma_ep *ep;
401 int rc;
402
403 ep = kzalloc(sizeof(*ep), GFP_NOFS);
404 if (!ep)
405 return -ENOTCONN;
406 ep->re_xprt = &r_xprt->rx_xprt;
407 kref_init(&ep->re_kref);
408
409 id = rpcrdma_create_id(r_xprt, ep);
410 if (IS_ERR(id)) {
411 kfree(ep);
412 return PTR_ERR(id);
413 }
414 __module_get(THIS_MODULE);
415 device = id->device;
416 ep->re_id = id;
417
418 ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
419 ep->re_inline_send = xprt_rdma_max_inline_write;
420 ep->re_inline_recv = xprt_rdma_max_inline_read;
421 rc = frwr_query_device(ep, device);
422 if (rc)
423 goto out_destroy;
424
425 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
426
427 ep->re_attr.event_handler = rpcrdma_qp_event_handler;
428 ep->re_attr.qp_context = ep;
429 ep->re_attr.srq = NULL;
430 ep->re_attr.cap.max_inline_data = 0;
431 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
432 ep->re_attr.qp_type = IB_QPT_RC;
433 ep->re_attr.port_num = ~0;
434
435 dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
436 "iovs: send %d recv %d\n",
437 __func__,
438 ep->re_attr.cap.max_send_wr,
439 ep->re_attr.cap.max_recv_wr,
440 ep->re_attr.cap.max_send_sge,
441 ep->re_attr.cap.max_recv_sge);
442
443 ep->re_send_batch = ep->re_max_requests >> 3;
444 ep->re_send_count = ep->re_send_batch;
445 init_waitqueue_head(&ep->re_connect_wait);
446
447 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
448 ep->re_attr.cap.max_send_wr,
449 IB_POLL_WORKQUEUE);
450 if (IS_ERR(ep->re_attr.send_cq)) {
451 rc = PTR_ERR(ep->re_attr.send_cq);
452 ep->re_attr.send_cq = NULL;
453 goto out_destroy;
454 }
455
456 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
457 ep->re_attr.cap.max_recv_wr,
458 IB_POLL_WORKQUEUE);
459 if (IS_ERR(ep->re_attr.recv_cq)) {
460 rc = PTR_ERR(ep->re_attr.recv_cq);
461 ep->re_attr.recv_cq = NULL;
462 goto out_destroy;
463 }
464 ep->re_receive_count = 0;
465
466 /* Initialize cma parameters */
467 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
468
469 /* Prepare RDMA-CM private message */
470 pmsg = &ep->re_cm_private;
471 pmsg->cp_magic = rpcrdma_cmp_magic;
472 pmsg->cp_version = RPCRDMA_CMP_VERSION;
473 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
474 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
475 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
476 ep->re_remote_cma.private_data = pmsg;
477 ep->re_remote_cma.private_data_len = sizeof(*pmsg);
478
479 /* Client offers RDMA Read but does not initiate */
480 ep->re_remote_cma.initiator_depth = 0;
481 ep->re_remote_cma.responder_resources =
482 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
483
484 /* Limit transport retries so client can detect server
485 * GID changes quickly. RPC layer handles re-establishing
486 * transport connection and retransmission.
487 */
488 ep->re_remote_cma.retry_count = 6;
489
490 /* RPC-over-RDMA handles its own flow control. In addition,
491 * make all RNR NAKs visible so we know that RPC-over-RDMA
492 * flow control is working correctly (no NAKs should be seen).
493 */
494 ep->re_remote_cma.flow_control = 0;
495 ep->re_remote_cma.rnr_retry_count = 0;
496
497 ep->re_pd = ib_alloc_pd(device, 0);
498 if (IS_ERR(ep->re_pd)) {
499 rc = PTR_ERR(ep->re_pd);
500 ep->re_pd = NULL;
501 goto out_destroy;
502 }
503
504 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
505 if (rc)
506 goto out_destroy;
507
508 r_xprt->rx_ep = ep;
509 return 0;
510
511 out_destroy:
512 rpcrdma_ep_put(ep);
513 rdma_destroy_id(id);
514 return rc;
515 }
516
517 /**
518 * rpcrdma_xprt_connect - Connect an unconnected transport
519 * @r_xprt: controlling transport instance
520 *
521 * Returns 0 on success or a negative errno.
522 */
rpcrdma_xprt_connect(struct rpcrdma_xprt * r_xprt)523 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
524 {
525 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
526 struct rpcrdma_ep *ep;
527 int rc;
528
529 rc = rpcrdma_ep_create(r_xprt);
530 if (rc)
531 return rc;
532 ep = r_xprt->rx_ep;
533
534 xprt_clear_connected(xprt);
535 rpcrdma_reset_cwnd(r_xprt);
536
537 /* Bump the ep's reference count while there are
538 * outstanding Receives.
539 */
540 rpcrdma_ep_get(ep);
541 rpcrdma_post_recvs(r_xprt, 1, true);
542
543 rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
544 if (rc)
545 goto out;
546
547 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
548 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
549 wait_event_interruptible(ep->re_connect_wait,
550 ep->re_connect_status != 0);
551 if (ep->re_connect_status <= 0) {
552 rc = ep->re_connect_status;
553 goto out;
554 }
555
556 rc = rpcrdma_sendctxs_create(r_xprt);
557 if (rc) {
558 rc = -ENOTCONN;
559 goto out;
560 }
561
562 rc = rpcrdma_reqs_setup(r_xprt);
563 if (rc) {
564 rc = -ENOTCONN;
565 goto out;
566 }
567 rpcrdma_mrs_create(r_xprt);
568
569 out:
570 trace_xprtrdma_connect(r_xprt, rc);
571 return rc;
572 }
573
574 /**
575 * rpcrdma_xprt_disconnect - Disconnect underlying transport
576 * @r_xprt: controlling transport instance
577 *
578 * Caller serializes. Either the transport send lock is held,
579 * or we're being called to destroy the transport.
580 *
581 * On return, @r_xprt is completely divested of all hardware
582 * resources and prepared for the next ->connect operation.
583 */
rpcrdma_xprt_disconnect(struct rpcrdma_xprt * r_xprt)584 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
585 {
586 struct rpcrdma_ep *ep = r_xprt->rx_ep;
587 struct rdma_cm_id *id;
588 int rc;
589
590 if (!ep)
591 return;
592
593 id = ep->re_id;
594 rc = rdma_disconnect(id);
595 trace_xprtrdma_disconnect(r_xprt, rc);
596
597 rpcrdma_xprt_drain(r_xprt);
598 rpcrdma_reps_unmap(r_xprt);
599 rpcrdma_reqs_reset(r_xprt);
600 rpcrdma_mrs_destroy(r_xprt);
601 rpcrdma_sendctxs_destroy(r_xprt);
602
603 if (rpcrdma_ep_put(ep))
604 rdma_destroy_id(id);
605
606 r_xprt->rx_ep = NULL;
607 }
608
609 /* Fixed-size circular FIFO queue. This implementation is wait-free and
610 * lock-free.
611 *
612 * Consumer is the code path that posts Sends. This path dequeues a
613 * sendctx for use by a Send operation. Multiple consumer threads
614 * are serialized by the RPC transport lock, which allows only one
615 * ->send_request call at a time.
616 *
617 * Producer is the code path that handles Send completions. This path
618 * enqueues a sendctx that has been completed. Multiple producer
619 * threads are serialized by the ib_poll_cq() function.
620 */
621
622 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
623 * queue activity, and rpcrdma_xprt_drain has flushed all remaining
624 * Send requests.
625 */
rpcrdma_sendctxs_destroy(struct rpcrdma_xprt * r_xprt)626 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
627 {
628 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
629 unsigned long i;
630
631 if (!buf->rb_sc_ctxs)
632 return;
633 for (i = 0; i <= buf->rb_sc_last; i++)
634 kfree(buf->rb_sc_ctxs[i]);
635 kfree(buf->rb_sc_ctxs);
636 buf->rb_sc_ctxs = NULL;
637 }
638
rpcrdma_sendctx_create(struct rpcrdma_ep * ep)639 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
640 {
641 struct rpcrdma_sendctx *sc;
642
643 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
644 GFP_KERNEL);
645 if (!sc)
646 return NULL;
647
648 sc->sc_cqe.done = rpcrdma_wc_send;
649 return sc;
650 }
651
rpcrdma_sendctxs_create(struct rpcrdma_xprt * r_xprt)652 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
653 {
654 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
655 struct rpcrdma_sendctx *sc;
656 unsigned long i;
657
658 /* Maximum number of concurrent outstanding Send WRs. Capping
659 * the circular queue size stops Send Queue overflow by causing
660 * the ->send_request call to fail temporarily before too many
661 * Sends are posted.
662 */
663 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
664 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
665 if (!buf->rb_sc_ctxs)
666 return -ENOMEM;
667
668 buf->rb_sc_last = i - 1;
669 for (i = 0; i <= buf->rb_sc_last; i++) {
670 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
671 if (!sc)
672 return -ENOMEM;
673
674 buf->rb_sc_ctxs[i] = sc;
675 }
676
677 buf->rb_sc_head = 0;
678 buf->rb_sc_tail = 0;
679 return 0;
680 }
681
682 /* The sendctx queue is not guaranteed to have a size that is a
683 * power of two, thus the helpers in circ_buf.h cannot be used.
684 * The other option is to use modulus (%), which can be expensive.
685 */
rpcrdma_sendctx_next(struct rpcrdma_buffer * buf,unsigned long item)686 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
687 unsigned long item)
688 {
689 return likely(item < buf->rb_sc_last) ? item + 1 : 0;
690 }
691
692 /**
693 * rpcrdma_sendctx_get_locked - Acquire a send context
694 * @r_xprt: controlling transport instance
695 *
696 * Returns pointer to a free send completion context; or NULL if
697 * the queue is empty.
698 *
699 * Usage: Called to acquire an SGE array before preparing a Send WR.
700 *
701 * The caller serializes calls to this function (per transport), and
702 * provides an effective memory barrier that flushes the new value
703 * of rb_sc_head.
704 */
rpcrdma_sendctx_get_locked(struct rpcrdma_xprt * r_xprt)705 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
706 {
707 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
708 struct rpcrdma_sendctx *sc;
709 unsigned long next_head;
710
711 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
712
713 if (next_head == READ_ONCE(buf->rb_sc_tail))
714 goto out_emptyq;
715
716 /* ORDER: item must be accessed _before_ head is updated */
717 sc = buf->rb_sc_ctxs[next_head];
718
719 /* Releasing the lock in the caller acts as a memory
720 * barrier that flushes rb_sc_head.
721 */
722 buf->rb_sc_head = next_head;
723
724 return sc;
725
726 out_emptyq:
727 /* The queue is "empty" if there have not been enough Send
728 * completions recently. This is a sign the Send Queue is
729 * backing up. Cause the caller to pause and try again.
730 */
731 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
732 r_xprt->rx_stats.empty_sendctx_q++;
733 return NULL;
734 }
735
736 /**
737 * rpcrdma_sendctx_put_locked - Release a send context
738 * @r_xprt: controlling transport instance
739 * @sc: send context to release
740 *
741 * Usage: Called from Send completion to return a sendctxt
742 * to the queue.
743 *
744 * The caller serializes calls to this function (per transport).
745 */
rpcrdma_sendctx_put_locked(struct rpcrdma_xprt * r_xprt,struct rpcrdma_sendctx * sc)746 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
747 struct rpcrdma_sendctx *sc)
748 {
749 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
750 unsigned long next_tail;
751
752 /* Unmap SGEs of previously completed but unsignaled
753 * Sends by walking up the queue until @sc is found.
754 */
755 next_tail = buf->rb_sc_tail;
756 do {
757 next_tail = rpcrdma_sendctx_next(buf, next_tail);
758
759 /* ORDER: item must be accessed _before_ tail is updated */
760 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
761
762 } while (buf->rb_sc_ctxs[next_tail] != sc);
763
764 /* Paired with READ_ONCE */
765 smp_store_release(&buf->rb_sc_tail, next_tail);
766
767 xprt_write_space(&r_xprt->rx_xprt);
768 }
769
770 static void
rpcrdma_mrs_create(struct rpcrdma_xprt * r_xprt)771 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
772 {
773 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
774 struct rpcrdma_ep *ep = r_xprt->rx_ep;
775 unsigned int count;
776
777 for (count = 0; count < ep->re_max_rdma_segs; count++) {
778 struct rpcrdma_mr *mr;
779 int rc;
780
781 mr = kzalloc(sizeof(*mr), GFP_NOFS);
782 if (!mr)
783 break;
784
785 rc = frwr_mr_init(r_xprt, mr);
786 if (rc) {
787 kfree(mr);
788 break;
789 }
790
791 spin_lock(&buf->rb_lock);
792 rpcrdma_mr_push(mr, &buf->rb_mrs);
793 list_add(&mr->mr_all, &buf->rb_all_mrs);
794 spin_unlock(&buf->rb_lock);
795 }
796
797 r_xprt->rx_stats.mrs_allocated += count;
798 trace_xprtrdma_createmrs(r_xprt, count);
799 }
800
801 static void
rpcrdma_mr_refresh_worker(struct work_struct * work)802 rpcrdma_mr_refresh_worker(struct work_struct *work)
803 {
804 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
805 rb_refresh_worker);
806 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
807 rx_buf);
808
809 rpcrdma_mrs_create(r_xprt);
810 xprt_write_space(&r_xprt->rx_xprt);
811 }
812
813 /**
814 * rpcrdma_mrs_refresh - Wake the MR refresh worker
815 * @r_xprt: controlling transport instance
816 *
817 */
rpcrdma_mrs_refresh(struct rpcrdma_xprt * r_xprt)818 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
819 {
820 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
821 struct rpcrdma_ep *ep = r_xprt->rx_ep;
822
823 /* If there is no underlying connection, it's no use
824 * to wake the refresh worker.
825 */
826 if (ep->re_connect_status == 1) {
827 /* The work is scheduled on a WQ_MEM_RECLAIM
828 * workqueue in order to prevent MR allocation
829 * from recursing into NFS during direct reclaim.
830 */
831 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
832 }
833 }
834
835 /**
836 * rpcrdma_req_create - Allocate an rpcrdma_req object
837 * @r_xprt: controlling r_xprt
838 * @size: initial size, in bytes, of send and receive buffers
839 * @flags: GFP flags passed to memory allocators
840 *
841 * Returns an allocated and fully initialized rpcrdma_req or NULL.
842 */
rpcrdma_req_create(struct rpcrdma_xprt * r_xprt,size_t size,gfp_t flags)843 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
844 gfp_t flags)
845 {
846 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
847 struct rpcrdma_req *req;
848
849 req = kzalloc(sizeof(*req), flags);
850 if (req == NULL)
851 goto out1;
852
853 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
854 if (!req->rl_sendbuf)
855 goto out2;
856
857 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
858 if (!req->rl_recvbuf)
859 goto out3;
860
861 INIT_LIST_HEAD(&req->rl_free_mrs);
862 INIT_LIST_HEAD(&req->rl_registered);
863 spin_lock(&buffer->rb_lock);
864 list_add(&req->rl_all, &buffer->rb_allreqs);
865 spin_unlock(&buffer->rb_lock);
866 return req;
867
868 out3:
869 rpcrdma_regbuf_free(req->rl_sendbuf);
870 out2:
871 kfree(req);
872 out1:
873 return NULL;
874 }
875
876 /**
877 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
878 * @r_xprt: controlling transport instance
879 * @req: rpcrdma_req object to set up
880 *
881 * Returns zero on success, and a negative errno on failure.
882 */
rpcrdma_req_setup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)883 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
884 {
885 struct rpcrdma_regbuf *rb;
886 size_t maxhdrsize;
887
888 /* Compute maximum header buffer size in bytes */
889 maxhdrsize = rpcrdma_fixed_maxsz + 3 +
890 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
891 maxhdrsize *= sizeof(__be32);
892 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
893 DMA_TO_DEVICE, GFP_KERNEL);
894 if (!rb)
895 goto out;
896
897 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
898 goto out_free;
899
900 req->rl_rdmabuf = rb;
901 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
902 return 0;
903
904 out_free:
905 rpcrdma_regbuf_free(rb);
906 out:
907 return -ENOMEM;
908 }
909
910 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
911 * and thus can be walked without holding rb_lock. Eg. the
912 * caller is holding the transport send lock to exclude
913 * device removal or disconnection.
914 */
rpcrdma_reqs_setup(struct rpcrdma_xprt * r_xprt)915 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
916 {
917 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
918 struct rpcrdma_req *req;
919 int rc;
920
921 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
922 rc = rpcrdma_req_setup(r_xprt, req);
923 if (rc)
924 return rc;
925 }
926 return 0;
927 }
928
rpcrdma_req_reset(struct rpcrdma_req * req)929 static void rpcrdma_req_reset(struct rpcrdma_req *req)
930 {
931 /* Credits are valid for only one connection */
932 req->rl_slot.rq_cong = 0;
933
934 rpcrdma_regbuf_free(req->rl_rdmabuf);
935 req->rl_rdmabuf = NULL;
936
937 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
938 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
939
940 frwr_reset(req);
941 }
942
943 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
944 * and thus can be walked without holding rb_lock. Eg. the
945 * caller is holding the transport send lock to exclude
946 * device removal or disconnection.
947 */
rpcrdma_reqs_reset(struct rpcrdma_xprt * r_xprt)948 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
949 {
950 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
951 struct rpcrdma_req *req;
952
953 list_for_each_entry(req, &buf->rb_allreqs, rl_all)
954 rpcrdma_req_reset(req);
955 }
956
957 /* No locking needed here. This function is called only by the
958 * Receive completion handler.
959 */
960 static noinline
rpcrdma_rep_create(struct rpcrdma_xprt * r_xprt,bool temp)961 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
962 bool temp)
963 {
964 struct rpcrdma_rep *rep;
965
966 rep = kzalloc(sizeof(*rep), GFP_KERNEL);
967 if (rep == NULL)
968 goto out;
969
970 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
971 DMA_FROM_DEVICE, GFP_KERNEL);
972 if (!rep->rr_rdmabuf)
973 goto out_free;
974
975 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
976 goto out_free_regbuf;
977
978 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
979 rdmab_length(rep->rr_rdmabuf));
980 rep->rr_cqe.done = rpcrdma_wc_receive;
981 rep->rr_rxprt = r_xprt;
982 rep->rr_recv_wr.next = NULL;
983 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
984 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
985 rep->rr_recv_wr.num_sge = 1;
986 rep->rr_temp = temp;
987 list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
988 return rep;
989
990 out_free_regbuf:
991 rpcrdma_regbuf_free(rep->rr_rdmabuf);
992 out_free:
993 kfree(rep);
994 out:
995 return NULL;
996 }
997
998 /* No locking needed here. This function is invoked only by the
999 * Receive completion handler, or during transport shutdown.
1000 */
rpcrdma_rep_destroy(struct rpcrdma_rep * rep)1001 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
1002 {
1003 list_del(&rep->rr_all);
1004 rpcrdma_regbuf_free(rep->rr_rdmabuf);
1005 kfree(rep);
1006 }
1007
rpcrdma_rep_get_locked(struct rpcrdma_buffer * buf)1008 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1009 {
1010 struct llist_node *node;
1011
1012 /* Calls to llist_del_first are required to be serialized */
1013 node = llist_del_first(&buf->rb_free_reps);
1014 if (!node)
1015 return NULL;
1016 return llist_entry(node, struct rpcrdma_rep, rr_node);
1017 }
1018
rpcrdma_rep_put(struct rpcrdma_buffer * buf,struct rpcrdma_rep * rep)1019 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1020 struct rpcrdma_rep *rep)
1021 {
1022 llist_add(&rep->rr_node, &buf->rb_free_reps);
1023 }
1024
rpcrdma_reps_unmap(struct rpcrdma_xprt * r_xprt)1025 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1026 {
1027 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1028 struct rpcrdma_rep *rep;
1029
1030 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1031 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1032 rep->rr_temp = true;
1033 }
1034 }
1035
rpcrdma_reps_destroy(struct rpcrdma_buffer * buf)1036 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1037 {
1038 struct rpcrdma_rep *rep;
1039
1040 while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1041 rpcrdma_rep_destroy(rep);
1042 }
1043
1044 /**
1045 * rpcrdma_buffer_create - Create initial set of req/rep objects
1046 * @r_xprt: transport instance to (re)initialize
1047 *
1048 * Returns zero on success, otherwise a negative errno.
1049 */
rpcrdma_buffer_create(struct rpcrdma_xprt * r_xprt)1050 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1051 {
1052 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1053 int i, rc;
1054
1055 buf->rb_bc_srv_max_requests = 0;
1056 spin_lock_init(&buf->rb_lock);
1057 INIT_LIST_HEAD(&buf->rb_mrs);
1058 INIT_LIST_HEAD(&buf->rb_all_mrs);
1059 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1060
1061 INIT_LIST_HEAD(&buf->rb_send_bufs);
1062 INIT_LIST_HEAD(&buf->rb_allreqs);
1063 INIT_LIST_HEAD(&buf->rb_all_reps);
1064
1065 rc = -ENOMEM;
1066 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1067 struct rpcrdma_req *req;
1068
1069 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1070 GFP_KERNEL);
1071 if (!req)
1072 goto out;
1073 list_add(&req->rl_list, &buf->rb_send_bufs);
1074 }
1075
1076 init_llist_head(&buf->rb_free_reps);
1077
1078 return 0;
1079 out:
1080 rpcrdma_buffer_destroy(buf);
1081 return rc;
1082 }
1083
1084 /**
1085 * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1086 * @req: unused object to be destroyed
1087 *
1088 * Relies on caller holding the transport send lock to protect
1089 * removing req->rl_all from buf->rb_all_reqs safely.
1090 */
rpcrdma_req_destroy(struct rpcrdma_req * req)1091 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1092 {
1093 struct rpcrdma_mr *mr;
1094
1095 list_del(&req->rl_all);
1096
1097 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1098 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1099
1100 spin_lock(&buf->rb_lock);
1101 list_del(&mr->mr_all);
1102 spin_unlock(&buf->rb_lock);
1103
1104 frwr_release_mr(mr);
1105 }
1106
1107 rpcrdma_regbuf_free(req->rl_recvbuf);
1108 rpcrdma_regbuf_free(req->rl_sendbuf);
1109 rpcrdma_regbuf_free(req->rl_rdmabuf);
1110 kfree(req);
1111 }
1112
1113 /**
1114 * rpcrdma_mrs_destroy - Release all of a transport's MRs
1115 * @r_xprt: controlling transport instance
1116 *
1117 * Relies on caller holding the transport send lock to protect
1118 * removing mr->mr_list from req->rl_free_mrs safely.
1119 */
rpcrdma_mrs_destroy(struct rpcrdma_xprt * r_xprt)1120 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1121 {
1122 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1123 struct rpcrdma_mr *mr;
1124
1125 cancel_work_sync(&buf->rb_refresh_worker);
1126
1127 spin_lock(&buf->rb_lock);
1128 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1129 struct rpcrdma_mr,
1130 mr_all)) != NULL) {
1131 list_del(&mr->mr_list);
1132 list_del(&mr->mr_all);
1133 spin_unlock(&buf->rb_lock);
1134
1135 frwr_release_mr(mr);
1136
1137 spin_lock(&buf->rb_lock);
1138 }
1139 spin_unlock(&buf->rb_lock);
1140 }
1141
1142 /**
1143 * rpcrdma_buffer_destroy - Release all hw resources
1144 * @buf: root control block for resources
1145 *
1146 * ORDERING: relies on a prior rpcrdma_xprt_drain :
1147 * - No more Send or Receive completions can occur
1148 * - All MRs, reps, and reqs are returned to their free lists
1149 */
1150 void
rpcrdma_buffer_destroy(struct rpcrdma_buffer * buf)1151 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1152 {
1153 rpcrdma_reps_destroy(buf);
1154
1155 while (!list_empty(&buf->rb_send_bufs)) {
1156 struct rpcrdma_req *req;
1157
1158 req = list_first_entry(&buf->rb_send_bufs,
1159 struct rpcrdma_req, rl_list);
1160 list_del(&req->rl_list);
1161 rpcrdma_req_destroy(req);
1162 }
1163 }
1164
1165 /**
1166 * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1167 * @r_xprt: controlling transport
1168 *
1169 * Returns an initialized rpcrdma_mr or NULL if no free
1170 * rpcrdma_mr objects are available.
1171 */
1172 struct rpcrdma_mr *
rpcrdma_mr_get(struct rpcrdma_xprt * r_xprt)1173 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1174 {
1175 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1176 struct rpcrdma_mr *mr;
1177
1178 spin_lock(&buf->rb_lock);
1179 mr = rpcrdma_mr_pop(&buf->rb_mrs);
1180 spin_unlock(&buf->rb_lock);
1181 return mr;
1182 }
1183
1184 /**
1185 * rpcrdma_mr_put - DMA unmap an MR and release it
1186 * @mr: MR to release
1187 *
1188 */
rpcrdma_mr_put(struct rpcrdma_mr * mr)1189 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1190 {
1191 struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1192
1193 if (mr->mr_dir != DMA_NONE) {
1194 trace_xprtrdma_mr_unmap(mr);
1195 ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
1196 mr->mr_sg, mr->mr_nents, mr->mr_dir);
1197 mr->mr_dir = DMA_NONE;
1198 }
1199
1200 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1201 }
1202
1203 /**
1204 * rpcrdma_reply_put - Put reply buffers back into pool
1205 * @buffers: buffer pool
1206 * @req: object to return
1207 *
1208 */
rpcrdma_reply_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1209 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1210 {
1211 if (req->rl_reply) {
1212 rpcrdma_rep_put(buffers, req->rl_reply);
1213 req->rl_reply = NULL;
1214 }
1215 }
1216
1217 /**
1218 * rpcrdma_buffer_get - Get a request buffer
1219 * @buffers: Buffer pool from which to obtain a buffer
1220 *
1221 * Returns a fresh rpcrdma_req, or NULL if none are available.
1222 */
1223 struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer * buffers)1224 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1225 {
1226 struct rpcrdma_req *req;
1227
1228 spin_lock(&buffers->rb_lock);
1229 req = list_first_entry_or_null(&buffers->rb_send_bufs,
1230 struct rpcrdma_req, rl_list);
1231 if (req)
1232 list_del_init(&req->rl_list);
1233 spin_unlock(&buffers->rb_lock);
1234 return req;
1235 }
1236
1237 /**
1238 * rpcrdma_buffer_put - Put request/reply buffers back into pool
1239 * @buffers: buffer pool
1240 * @req: object to return
1241 *
1242 */
rpcrdma_buffer_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1243 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1244 {
1245 rpcrdma_reply_put(buffers, req);
1246
1247 spin_lock(&buffers->rb_lock);
1248 list_add(&req->rl_list, &buffers->rb_send_bufs);
1249 spin_unlock(&buffers->rb_lock);
1250 }
1251
1252 /**
1253 * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1254 * @rep: rep to release
1255 *
1256 * Used after error conditions.
1257 */
rpcrdma_recv_buffer_put(struct rpcrdma_rep * rep)1258 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1259 {
1260 rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1261 }
1262
1263 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1264 *
1265 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1266 * receiving the payload of RDMA RECV operations. During Long Calls
1267 * or Replies they may be registered externally via frwr_map.
1268 */
1269 static struct rpcrdma_regbuf *
rpcrdma_regbuf_alloc(size_t size,enum dma_data_direction direction,gfp_t flags)1270 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1271 gfp_t flags)
1272 {
1273 struct rpcrdma_regbuf *rb;
1274
1275 rb = kmalloc(sizeof(*rb), flags);
1276 if (!rb)
1277 return NULL;
1278 rb->rg_data = kmalloc(size, flags);
1279 if (!rb->rg_data) {
1280 kfree(rb);
1281 return NULL;
1282 }
1283
1284 rb->rg_device = NULL;
1285 rb->rg_direction = direction;
1286 rb->rg_iov.length = size;
1287 return rb;
1288 }
1289
1290 /**
1291 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1292 * @rb: regbuf to reallocate
1293 * @size: size of buffer to be allocated, in bytes
1294 * @flags: GFP flags
1295 *
1296 * Returns true if reallocation was successful. If false is
1297 * returned, @rb is left untouched.
1298 */
rpcrdma_regbuf_realloc(struct rpcrdma_regbuf * rb,size_t size,gfp_t flags)1299 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1300 {
1301 void *buf;
1302
1303 buf = kmalloc(size, flags);
1304 if (!buf)
1305 return false;
1306
1307 rpcrdma_regbuf_dma_unmap(rb);
1308 kfree(rb->rg_data);
1309
1310 rb->rg_data = buf;
1311 rb->rg_iov.length = size;
1312 return true;
1313 }
1314
1315 /**
1316 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1317 * @r_xprt: controlling transport instance
1318 * @rb: regbuf to be mapped
1319 *
1320 * Returns true if the buffer is now DMA mapped to @r_xprt's device
1321 */
__rpcrdma_regbuf_dma_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_regbuf * rb)1322 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1323 struct rpcrdma_regbuf *rb)
1324 {
1325 struct ib_device *device = r_xprt->rx_ep->re_id->device;
1326
1327 if (rb->rg_direction == DMA_NONE)
1328 return false;
1329
1330 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1331 rdmab_length(rb), rb->rg_direction);
1332 if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1333 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1334 return false;
1335 }
1336
1337 rb->rg_device = device;
1338 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1339 return true;
1340 }
1341
rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf * rb)1342 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1343 {
1344 if (!rb)
1345 return;
1346
1347 if (!rpcrdma_regbuf_is_mapped(rb))
1348 return;
1349
1350 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1351 rb->rg_direction);
1352 rb->rg_device = NULL;
1353 }
1354
rpcrdma_regbuf_free(struct rpcrdma_regbuf * rb)1355 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1356 {
1357 rpcrdma_regbuf_dma_unmap(rb);
1358 if (rb)
1359 kfree(rb->rg_data);
1360 kfree(rb);
1361 }
1362
1363 /**
1364 * rpcrdma_post_sends - Post WRs to a transport's Send Queue
1365 * @r_xprt: controlling transport instance
1366 * @req: rpcrdma_req containing the Send WR to post
1367 *
1368 * Returns 0 if the post was successful, otherwise -ENOTCONN
1369 * is returned.
1370 */
rpcrdma_post_sends(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)1371 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1372 {
1373 struct ib_send_wr *send_wr = &req->rl_wr;
1374 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1375 int rc;
1376
1377 if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) {
1378 send_wr->send_flags |= IB_SEND_SIGNALED;
1379 ep->re_send_count = ep->re_send_batch;
1380 } else {
1381 send_wr->send_flags &= ~IB_SEND_SIGNALED;
1382 --ep->re_send_count;
1383 }
1384
1385 trace_xprtrdma_post_send(req);
1386 rc = frwr_send(r_xprt, req);
1387 if (rc)
1388 return -ENOTCONN;
1389 return 0;
1390 }
1391
1392 /**
1393 * rpcrdma_post_recvs - Refill the Receive Queue
1394 * @r_xprt: controlling transport instance
1395 * @needed: current credit grant
1396 * @temp: mark Receive buffers to be deleted after one use
1397 *
1398 */
rpcrdma_post_recvs(struct rpcrdma_xprt * r_xprt,int needed,bool temp)1399 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1400 {
1401 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1402 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1403 struct ib_recv_wr *wr, *bad_wr;
1404 struct rpcrdma_rep *rep;
1405 int count, rc;
1406
1407 rc = 0;
1408 count = 0;
1409
1410 if (likely(ep->re_receive_count > needed))
1411 goto out;
1412 needed -= ep->re_receive_count;
1413 if (!temp)
1414 needed += RPCRDMA_MAX_RECV_BATCH;
1415
1416 /* fast path: all needed reps can be found on the free list */
1417 wr = NULL;
1418 while (needed) {
1419 rep = rpcrdma_rep_get_locked(buf);
1420 if (rep && rep->rr_temp) {
1421 rpcrdma_rep_destroy(rep);
1422 continue;
1423 }
1424 if (!rep)
1425 rep = rpcrdma_rep_create(r_xprt, temp);
1426 if (!rep)
1427 break;
1428
1429 trace_xprtrdma_post_recv(rep);
1430 rep->rr_recv_wr.next = wr;
1431 wr = &rep->rr_recv_wr;
1432 --needed;
1433 ++count;
1434 }
1435 if (!wr)
1436 goto out;
1437
1438 rc = ib_post_recv(ep->re_id->qp, wr,
1439 (const struct ib_recv_wr **)&bad_wr);
1440 out:
1441 trace_xprtrdma_post_recvs(r_xprt, count, rc);
1442 if (rc) {
1443 for (wr = bad_wr; wr;) {
1444 struct rpcrdma_rep *rep;
1445
1446 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1447 wr = wr->next;
1448 rpcrdma_recv_buffer_put(rep);
1449 --count;
1450 }
1451 }
1452 ep->re_receive_count += count;
1453 return;
1454 }
1455