1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KVM guest address space mapping code
4 *
5 * Copyright IBM Corp. 2007, 2016, 2018
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * David Hildenbrand <david@redhat.com>
8 * Janosch Frank <frankja@linux.vnet.ibm.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27
28 /**
29 * gmap_alloc - allocate and initialize a guest address space
30 * @mm: pointer to the parent mm_struct
31 * @limit: maximum address of the gmap address space
32 *
33 * Returns a guest address space structure.
34 */
gmap_alloc(unsigned long limit)35 static struct gmap *gmap_alloc(unsigned long limit)
36 {
37 struct gmap *gmap;
38 struct page *page;
39 unsigned long *table;
40 unsigned long etype, atype;
41
42 if (limit < _REGION3_SIZE) {
43 limit = _REGION3_SIZE - 1;
44 atype = _ASCE_TYPE_SEGMENT;
45 etype = _SEGMENT_ENTRY_EMPTY;
46 } else if (limit < _REGION2_SIZE) {
47 limit = _REGION2_SIZE - 1;
48 atype = _ASCE_TYPE_REGION3;
49 etype = _REGION3_ENTRY_EMPTY;
50 } else if (limit < _REGION1_SIZE) {
51 limit = _REGION1_SIZE - 1;
52 atype = _ASCE_TYPE_REGION2;
53 etype = _REGION2_ENTRY_EMPTY;
54 } else {
55 limit = -1UL;
56 atype = _ASCE_TYPE_REGION1;
57 etype = _REGION1_ENTRY_EMPTY;
58 }
59 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
60 if (!gmap)
61 goto out;
62 INIT_LIST_HEAD(&gmap->crst_list);
63 INIT_LIST_HEAD(&gmap->children);
64 INIT_LIST_HEAD(&gmap->pt_list);
65 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
66 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
67 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
68 spin_lock_init(&gmap->guest_table_lock);
69 spin_lock_init(&gmap->shadow_lock);
70 refcount_set(&gmap->ref_count, 1);
71 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
72 if (!page)
73 goto out_free;
74 page->index = 0;
75 list_add(&page->lru, &gmap->crst_list);
76 table = (unsigned long *) page_to_phys(page);
77 crst_table_init(table, etype);
78 gmap->table = table;
79 gmap->asce = atype | _ASCE_TABLE_LENGTH |
80 _ASCE_USER_BITS | __pa(table);
81 gmap->asce_end = limit;
82 return gmap;
83
84 out_free:
85 kfree(gmap);
86 out:
87 return NULL;
88 }
89
90 /**
91 * gmap_create - create a guest address space
92 * @mm: pointer to the parent mm_struct
93 * @limit: maximum size of the gmap address space
94 *
95 * Returns a guest address space structure.
96 */
gmap_create(struct mm_struct * mm,unsigned long limit)97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
98 {
99 struct gmap *gmap;
100 unsigned long gmap_asce;
101
102 gmap = gmap_alloc(limit);
103 if (!gmap)
104 return NULL;
105 gmap->mm = mm;
106 spin_lock(&mm->context.lock);
107 list_add_rcu(&gmap->list, &mm->context.gmap_list);
108 if (list_is_singular(&mm->context.gmap_list))
109 gmap_asce = gmap->asce;
110 else
111 gmap_asce = -1UL;
112 WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
113 spin_unlock(&mm->context.lock);
114 return gmap;
115 }
116 EXPORT_SYMBOL_GPL(gmap_create);
117
gmap_flush_tlb(struct gmap * gmap)118 static void gmap_flush_tlb(struct gmap *gmap)
119 {
120 if (MACHINE_HAS_IDTE)
121 __tlb_flush_idte(gmap->asce);
122 else
123 __tlb_flush_global();
124 }
125
gmap_radix_tree_free(struct radix_tree_root * root)126 static void gmap_radix_tree_free(struct radix_tree_root *root)
127 {
128 struct radix_tree_iter iter;
129 unsigned long indices[16];
130 unsigned long index;
131 void __rcu **slot;
132 int i, nr;
133
134 /* A radix tree is freed by deleting all of its entries */
135 index = 0;
136 do {
137 nr = 0;
138 radix_tree_for_each_slot(slot, root, &iter, index) {
139 indices[nr] = iter.index;
140 if (++nr == 16)
141 break;
142 }
143 for (i = 0; i < nr; i++) {
144 index = indices[i];
145 radix_tree_delete(root, index);
146 }
147 } while (nr > 0);
148 }
149
gmap_rmap_radix_tree_free(struct radix_tree_root * root)150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
151 {
152 struct gmap_rmap *rmap, *rnext, *head;
153 struct radix_tree_iter iter;
154 unsigned long indices[16];
155 unsigned long index;
156 void __rcu **slot;
157 int i, nr;
158
159 /* A radix tree is freed by deleting all of its entries */
160 index = 0;
161 do {
162 nr = 0;
163 radix_tree_for_each_slot(slot, root, &iter, index) {
164 indices[nr] = iter.index;
165 if (++nr == 16)
166 break;
167 }
168 for (i = 0; i < nr; i++) {
169 index = indices[i];
170 head = radix_tree_delete(root, index);
171 gmap_for_each_rmap_safe(rmap, rnext, head)
172 kfree(rmap);
173 }
174 } while (nr > 0);
175 }
176
177 /**
178 * gmap_free - free a guest address space
179 * @gmap: pointer to the guest address space structure
180 *
181 * No locks required. There are no references to this gmap anymore.
182 */
gmap_free(struct gmap * gmap)183 static void gmap_free(struct gmap *gmap)
184 {
185 struct page *page, *next;
186
187 /* Flush tlb of all gmaps (if not already done for shadows) */
188 if (!(gmap_is_shadow(gmap) && gmap->removed))
189 gmap_flush_tlb(gmap);
190 /* Free all segment & region tables. */
191 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
192 __free_pages(page, CRST_ALLOC_ORDER);
193 gmap_radix_tree_free(&gmap->guest_to_host);
194 gmap_radix_tree_free(&gmap->host_to_guest);
195
196 /* Free additional data for a shadow gmap */
197 if (gmap_is_shadow(gmap)) {
198 /* Free all page tables. */
199 list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
200 page_table_free_pgste(page);
201 gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
202 /* Release reference to the parent */
203 gmap_put(gmap->parent);
204 }
205
206 kfree(gmap);
207 }
208
209 /**
210 * gmap_get - increase reference counter for guest address space
211 * @gmap: pointer to the guest address space structure
212 *
213 * Returns the gmap pointer
214 */
gmap_get(struct gmap * gmap)215 struct gmap *gmap_get(struct gmap *gmap)
216 {
217 refcount_inc(&gmap->ref_count);
218 return gmap;
219 }
220 EXPORT_SYMBOL_GPL(gmap_get);
221
222 /**
223 * gmap_put - decrease reference counter for guest address space
224 * @gmap: pointer to the guest address space structure
225 *
226 * If the reference counter reaches zero the guest address space is freed.
227 */
gmap_put(struct gmap * gmap)228 void gmap_put(struct gmap *gmap)
229 {
230 if (refcount_dec_and_test(&gmap->ref_count))
231 gmap_free(gmap);
232 }
233 EXPORT_SYMBOL_GPL(gmap_put);
234
235 /**
236 * gmap_remove - remove a guest address space but do not free it yet
237 * @gmap: pointer to the guest address space structure
238 */
gmap_remove(struct gmap * gmap)239 void gmap_remove(struct gmap *gmap)
240 {
241 struct gmap *sg, *next;
242 unsigned long gmap_asce;
243
244 /* Remove all shadow gmaps linked to this gmap */
245 if (!list_empty(&gmap->children)) {
246 spin_lock(&gmap->shadow_lock);
247 list_for_each_entry_safe(sg, next, &gmap->children, list) {
248 list_del(&sg->list);
249 gmap_put(sg);
250 }
251 spin_unlock(&gmap->shadow_lock);
252 }
253 /* Remove gmap from the pre-mm list */
254 spin_lock(&gmap->mm->context.lock);
255 list_del_rcu(&gmap->list);
256 if (list_empty(&gmap->mm->context.gmap_list))
257 gmap_asce = 0;
258 else if (list_is_singular(&gmap->mm->context.gmap_list))
259 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
260 struct gmap, list)->asce;
261 else
262 gmap_asce = -1UL;
263 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
264 spin_unlock(&gmap->mm->context.lock);
265 synchronize_rcu();
266 /* Put reference */
267 gmap_put(gmap);
268 }
269 EXPORT_SYMBOL_GPL(gmap_remove);
270
271 /**
272 * gmap_enable - switch primary space to the guest address space
273 * @gmap: pointer to the guest address space structure
274 */
gmap_enable(struct gmap * gmap)275 void gmap_enable(struct gmap *gmap)
276 {
277 S390_lowcore.gmap = (unsigned long) gmap;
278 }
279 EXPORT_SYMBOL_GPL(gmap_enable);
280
281 /**
282 * gmap_disable - switch back to the standard primary address space
283 * @gmap: pointer to the guest address space structure
284 */
gmap_disable(struct gmap * gmap)285 void gmap_disable(struct gmap *gmap)
286 {
287 S390_lowcore.gmap = 0UL;
288 }
289 EXPORT_SYMBOL_GPL(gmap_disable);
290
291 /**
292 * gmap_get_enabled - get a pointer to the currently enabled gmap
293 *
294 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
295 */
gmap_get_enabled(void)296 struct gmap *gmap_get_enabled(void)
297 {
298 return (struct gmap *) S390_lowcore.gmap;
299 }
300 EXPORT_SYMBOL_GPL(gmap_get_enabled);
301
302 /*
303 * gmap_alloc_table is assumed to be called with mmap_lock held
304 */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
306 unsigned long init, unsigned long gaddr)
307 {
308 struct page *page;
309 unsigned long *new;
310
311 /* since we dont free the gmap table until gmap_free we can unlock */
312 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
313 if (!page)
314 return -ENOMEM;
315 new = (unsigned long *) page_to_phys(page);
316 crst_table_init(new, init);
317 spin_lock(&gmap->guest_table_lock);
318 if (*table & _REGION_ENTRY_INVALID) {
319 list_add(&page->lru, &gmap->crst_list);
320 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
321 (*table & _REGION_ENTRY_TYPE_MASK);
322 page->index = gaddr;
323 page = NULL;
324 }
325 spin_unlock(&gmap->guest_table_lock);
326 if (page)
327 __free_pages(page, CRST_ALLOC_ORDER);
328 return 0;
329 }
330
331 /**
332 * __gmap_segment_gaddr - find virtual address from segment pointer
333 * @entry: pointer to a segment table entry in the guest address space
334 *
335 * Returns the virtual address in the guest address space for the segment
336 */
__gmap_segment_gaddr(unsigned long * entry)337 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
338 {
339 struct page *page;
340 unsigned long offset, mask;
341
342 offset = (unsigned long) entry / sizeof(unsigned long);
343 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
344 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
345 page = virt_to_page((void *)((unsigned long) entry & mask));
346 return page->index + offset;
347 }
348
349 /**
350 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
351 * @gmap: pointer to the guest address space structure
352 * @vmaddr: address in the host process address space
353 *
354 * Returns 1 if a TLB flush is required
355 */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
357 {
358 unsigned long *entry;
359 int flush = 0;
360
361 BUG_ON(gmap_is_shadow(gmap));
362 spin_lock(&gmap->guest_table_lock);
363 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
364 if (entry) {
365 flush = (*entry != _SEGMENT_ENTRY_EMPTY);
366 *entry = _SEGMENT_ENTRY_EMPTY;
367 }
368 spin_unlock(&gmap->guest_table_lock);
369 return flush;
370 }
371
372 /**
373 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
374 * @gmap: pointer to the guest address space structure
375 * @gaddr: address in the guest address space
376 *
377 * Returns 1 if a TLB flush is required
378 */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
380 {
381 unsigned long vmaddr;
382
383 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
384 gaddr >> PMD_SHIFT);
385 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
386 }
387
388 /**
389 * gmap_unmap_segment - unmap segment from the guest address space
390 * @gmap: pointer to the guest address space structure
391 * @to: address in the guest address space
392 * @len: length of the memory area to unmap
393 *
394 * Returns 0 if the unmap succeeded, -EINVAL if not.
395 */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
397 {
398 unsigned long off;
399 int flush;
400
401 BUG_ON(gmap_is_shadow(gmap));
402 if ((to | len) & (PMD_SIZE - 1))
403 return -EINVAL;
404 if (len == 0 || to + len < to)
405 return -EINVAL;
406
407 flush = 0;
408 mmap_write_lock(gmap->mm);
409 for (off = 0; off < len; off += PMD_SIZE)
410 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
411 mmap_write_unlock(gmap->mm);
412 if (flush)
413 gmap_flush_tlb(gmap);
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
417
418 /**
419 * gmap_map_segment - map a segment to the guest address space
420 * @gmap: pointer to the guest address space structure
421 * @from: source address in the parent address space
422 * @to: target address in the guest address space
423 * @len: length of the memory area to map
424 *
425 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
426 */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)427 int gmap_map_segment(struct gmap *gmap, unsigned long from,
428 unsigned long to, unsigned long len)
429 {
430 unsigned long off;
431 int flush;
432
433 BUG_ON(gmap_is_shadow(gmap));
434 if ((from | to | len) & (PMD_SIZE - 1))
435 return -EINVAL;
436 if (len == 0 || from + len < from || to + len < to ||
437 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
438 return -EINVAL;
439
440 flush = 0;
441 mmap_write_lock(gmap->mm);
442 for (off = 0; off < len; off += PMD_SIZE) {
443 /* Remove old translation */
444 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
445 /* Store new translation */
446 if (radix_tree_insert(&gmap->guest_to_host,
447 (to + off) >> PMD_SHIFT,
448 (void *) from + off))
449 break;
450 }
451 mmap_write_unlock(gmap->mm);
452 if (flush)
453 gmap_flush_tlb(gmap);
454 if (off >= len)
455 return 0;
456 gmap_unmap_segment(gmap, to, len);
457 return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(gmap_map_segment);
460
461 /**
462 * __gmap_translate - translate a guest address to a user space address
463 * @gmap: pointer to guest mapping meta data structure
464 * @gaddr: guest address
465 *
466 * Returns user space address which corresponds to the guest address or
467 * -EFAULT if no such mapping exists.
468 * This function does not establish potentially missing page table entries.
469 * The mmap_lock of the mm that belongs to the address space must be held
470 * when this function gets called.
471 *
472 * Note: Can also be called for shadow gmaps.
473 */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
475 {
476 unsigned long vmaddr;
477
478 vmaddr = (unsigned long)
479 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
480 /* Note: guest_to_host is empty for a shadow gmap */
481 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
482 }
483 EXPORT_SYMBOL_GPL(__gmap_translate);
484
485 /**
486 * gmap_translate - translate a guest address to a user space address
487 * @gmap: pointer to guest mapping meta data structure
488 * @gaddr: guest address
489 *
490 * Returns user space address which corresponds to the guest address or
491 * -EFAULT if no such mapping exists.
492 * This function does not establish potentially missing page table entries.
493 */
gmap_translate(struct gmap * gmap,unsigned long gaddr)494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
495 {
496 unsigned long rc;
497
498 mmap_read_lock(gmap->mm);
499 rc = __gmap_translate(gmap, gaddr);
500 mmap_read_unlock(gmap->mm);
501 return rc;
502 }
503 EXPORT_SYMBOL_GPL(gmap_translate);
504
505 /**
506 * gmap_unlink - disconnect a page table from the gmap shadow tables
507 * @gmap: pointer to guest mapping meta data structure
508 * @table: pointer to the host page table
509 * @vmaddr: vm address associated with the host page table
510 */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)511 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
512 unsigned long vmaddr)
513 {
514 struct gmap *gmap;
515 int flush;
516
517 rcu_read_lock();
518 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
519 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
520 if (flush)
521 gmap_flush_tlb(gmap);
522 }
523 rcu_read_unlock();
524 }
525
526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
527 unsigned long gaddr);
528
529 /**
530 * gmap_link - set up shadow page tables to connect a host to a guest address
531 * @gmap: pointer to guest mapping meta data structure
532 * @gaddr: guest address
533 * @vmaddr: vm address
534 *
535 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
536 * if the vm address is already mapped to a different guest segment.
537 * The mmap_lock of the mm that belongs to the address space must be held
538 * when this function gets called.
539 */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
541 {
542 struct mm_struct *mm;
543 unsigned long *table;
544 spinlock_t *ptl;
545 pgd_t *pgd;
546 p4d_t *p4d;
547 pud_t *pud;
548 pmd_t *pmd;
549 u64 unprot;
550 int rc;
551
552 BUG_ON(gmap_is_shadow(gmap));
553 /* Create higher level tables in the gmap page table */
554 table = gmap->table;
555 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
556 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
557 if ((*table & _REGION_ENTRY_INVALID) &&
558 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
559 gaddr & _REGION1_MASK))
560 return -ENOMEM;
561 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
562 }
563 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
564 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
565 if ((*table & _REGION_ENTRY_INVALID) &&
566 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
567 gaddr & _REGION2_MASK))
568 return -ENOMEM;
569 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
570 }
571 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
572 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
573 if ((*table & _REGION_ENTRY_INVALID) &&
574 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
575 gaddr & _REGION3_MASK))
576 return -ENOMEM;
577 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
578 }
579 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
580 /* Walk the parent mm page table */
581 mm = gmap->mm;
582 pgd = pgd_offset(mm, vmaddr);
583 VM_BUG_ON(pgd_none(*pgd));
584 p4d = p4d_offset(pgd, vmaddr);
585 VM_BUG_ON(p4d_none(*p4d));
586 pud = pud_offset(p4d, vmaddr);
587 VM_BUG_ON(pud_none(*pud));
588 /* large puds cannot yet be handled */
589 if (pud_large(*pud))
590 return -EFAULT;
591 pmd = pmd_offset(pud, vmaddr);
592 VM_BUG_ON(pmd_none(*pmd));
593 /* Are we allowed to use huge pages? */
594 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
595 return -EFAULT;
596 /* Link gmap segment table entry location to page table. */
597 rc = radix_tree_preload(GFP_KERNEL);
598 if (rc)
599 return rc;
600 ptl = pmd_lock(mm, pmd);
601 spin_lock(&gmap->guest_table_lock);
602 if (*table == _SEGMENT_ENTRY_EMPTY) {
603 rc = radix_tree_insert(&gmap->host_to_guest,
604 vmaddr >> PMD_SHIFT, table);
605 if (!rc) {
606 if (pmd_large(*pmd)) {
607 *table = (pmd_val(*pmd) &
608 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
609 | _SEGMENT_ENTRY_GMAP_UC;
610 } else
611 *table = pmd_val(*pmd) &
612 _SEGMENT_ENTRY_HARDWARE_BITS;
613 }
614 } else if (*table & _SEGMENT_ENTRY_PROTECT &&
615 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
616 unprot = (u64)*table;
617 unprot &= ~_SEGMENT_ENTRY_PROTECT;
618 unprot |= _SEGMENT_ENTRY_GMAP_UC;
619 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
620 }
621 spin_unlock(&gmap->guest_table_lock);
622 spin_unlock(ptl);
623 radix_tree_preload_end();
624 return rc;
625 }
626
627 /**
628 * gmap_fault - resolve a fault on a guest address
629 * @gmap: pointer to guest mapping meta data structure
630 * @gaddr: guest address
631 * @fault_flags: flags to pass down to handle_mm_fault()
632 *
633 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
634 * if the vm address is already mapped to a different guest segment.
635 */
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)636 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
637 unsigned int fault_flags)
638 {
639 unsigned long vmaddr;
640 int rc;
641 bool unlocked;
642
643 mmap_read_lock(gmap->mm);
644
645 retry:
646 unlocked = false;
647 vmaddr = __gmap_translate(gmap, gaddr);
648 if (IS_ERR_VALUE(vmaddr)) {
649 rc = vmaddr;
650 goto out_up;
651 }
652 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
653 &unlocked)) {
654 rc = -EFAULT;
655 goto out_up;
656 }
657 /*
658 * In the case that fixup_user_fault unlocked the mmap_lock during
659 * faultin redo __gmap_translate to not race with a map/unmap_segment.
660 */
661 if (unlocked)
662 goto retry;
663
664 rc = __gmap_link(gmap, gaddr, vmaddr);
665 out_up:
666 mmap_read_unlock(gmap->mm);
667 return rc;
668 }
669 EXPORT_SYMBOL_GPL(gmap_fault);
670
671 /*
672 * this function is assumed to be called with mmap_lock held
673 */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
675 {
676 unsigned long vmaddr;
677 spinlock_t *ptl;
678 pte_t *ptep;
679
680 /* Find the vm address for the guest address */
681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 gaddr >> PMD_SHIFT);
683 if (vmaddr) {
684 vmaddr |= gaddr & ~PMD_MASK;
685 /* Get pointer to the page table entry */
686 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
687 if (likely(ptep)) {
688 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
689 pte_unmap_unlock(ptep, ptl);
690 }
691 }
692 }
693 EXPORT_SYMBOL_GPL(__gmap_zap);
694
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)695 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
696 {
697 unsigned long gaddr, vmaddr, size;
698 struct vm_area_struct *vma;
699
700 mmap_read_lock(gmap->mm);
701 for (gaddr = from; gaddr < to;
702 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
703 /* Find the vm address for the guest address */
704 vmaddr = (unsigned long)
705 radix_tree_lookup(&gmap->guest_to_host,
706 gaddr >> PMD_SHIFT);
707 if (!vmaddr)
708 continue;
709 vmaddr |= gaddr & ~PMD_MASK;
710 /* Find vma in the parent mm */
711 vma = find_vma(gmap->mm, vmaddr);
712 if (!vma)
713 continue;
714 /*
715 * We do not discard pages that are backed by
716 * hugetlbfs, so we don't have to refault them.
717 */
718 if (is_vm_hugetlb_page(vma))
719 continue;
720 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
721 zap_page_range(vma, vmaddr, size);
722 }
723 mmap_read_unlock(gmap->mm);
724 }
725 EXPORT_SYMBOL_GPL(gmap_discard);
726
727 static LIST_HEAD(gmap_notifier_list);
728 static DEFINE_SPINLOCK(gmap_notifier_lock);
729
730 /**
731 * gmap_register_pte_notifier - register a pte invalidation callback
732 * @nb: pointer to the gmap notifier block
733 */
gmap_register_pte_notifier(struct gmap_notifier * nb)734 void gmap_register_pte_notifier(struct gmap_notifier *nb)
735 {
736 spin_lock(&gmap_notifier_lock);
737 list_add_rcu(&nb->list, &gmap_notifier_list);
738 spin_unlock(&gmap_notifier_lock);
739 }
740 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
741
742 /**
743 * gmap_unregister_pte_notifier - remove a pte invalidation callback
744 * @nb: pointer to the gmap notifier block
745 */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)746 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
747 {
748 spin_lock(&gmap_notifier_lock);
749 list_del_rcu(&nb->list);
750 spin_unlock(&gmap_notifier_lock);
751 synchronize_rcu();
752 }
753 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
754
755 /**
756 * gmap_call_notifier - call all registered invalidation callbacks
757 * @gmap: pointer to guest mapping meta data structure
758 * @start: start virtual address in the guest address space
759 * @end: end virtual address in the guest address space
760 */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)761 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
762 unsigned long end)
763 {
764 struct gmap_notifier *nb;
765
766 list_for_each_entry(nb, &gmap_notifier_list, list)
767 nb->notifier_call(gmap, start, end);
768 }
769
770 /**
771 * gmap_table_walk - walk the gmap page tables
772 * @gmap: pointer to guest mapping meta data structure
773 * @gaddr: virtual address in the guest address space
774 * @level: page table level to stop at
775 *
776 * Returns a table entry pointer for the given guest address and @level
777 * @level=0 : returns a pointer to a page table table entry (or NULL)
778 * @level=1 : returns a pointer to a segment table entry (or NULL)
779 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
780 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
781 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
782 *
783 * Returns NULL if the gmap page tables could not be walked to the
784 * requested level.
785 *
786 * Note: Can also be called for shadow gmaps.
787 */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)788 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
789 unsigned long gaddr, int level)
790 {
791 const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
792 unsigned long *table = gmap->table;
793
794 if (gmap_is_shadow(gmap) && gmap->removed)
795 return NULL;
796
797 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
798 return NULL;
799
800 if (asce_type != _ASCE_TYPE_REGION1 &&
801 gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
802 return NULL;
803
804 switch (asce_type) {
805 case _ASCE_TYPE_REGION1:
806 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
807 if (level == 4)
808 break;
809 if (*table & _REGION_ENTRY_INVALID)
810 return NULL;
811 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
812 fallthrough;
813 case _ASCE_TYPE_REGION2:
814 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
815 if (level == 3)
816 break;
817 if (*table & _REGION_ENTRY_INVALID)
818 return NULL;
819 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
820 fallthrough;
821 case _ASCE_TYPE_REGION3:
822 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
823 if (level == 2)
824 break;
825 if (*table & _REGION_ENTRY_INVALID)
826 return NULL;
827 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
828 fallthrough;
829 case _ASCE_TYPE_SEGMENT:
830 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
831 if (level == 1)
832 break;
833 if (*table & _REGION_ENTRY_INVALID)
834 return NULL;
835 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
836 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
837 }
838 return table;
839 }
840
841 /**
842 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
843 * and return the pte pointer
844 * @gmap: pointer to guest mapping meta data structure
845 * @gaddr: virtual address in the guest address space
846 * @ptl: pointer to the spinlock pointer
847 *
848 * Returns a pointer to the locked pte for a guest address, or NULL
849 */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)850 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
851 spinlock_t **ptl)
852 {
853 unsigned long *table;
854
855 BUG_ON(gmap_is_shadow(gmap));
856 /* Walk the gmap page table, lock and get pte pointer */
857 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
858 if (!table || *table & _SEGMENT_ENTRY_INVALID)
859 return NULL;
860 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
861 }
862
863 /**
864 * gmap_pte_op_fixup - force a page in and connect the gmap page table
865 * @gmap: pointer to guest mapping meta data structure
866 * @gaddr: virtual address in the guest address space
867 * @vmaddr: address in the host process address space
868 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
869 *
870 * Returns 0 if the caller can retry __gmap_translate (might fail again),
871 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
872 * up or connecting the gmap page table.
873 */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)874 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
875 unsigned long vmaddr, int prot)
876 {
877 struct mm_struct *mm = gmap->mm;
878 unsigned int fault_flags;
879 bool unlocked = false;
880
881 BUG_ON(gmap_is_shadow(gmap));
882 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
883 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
884 return -EFAULT;
885 if (unlocked)
886 /* lost mmap_lock, caller has to retry __gmap_translate */
887 return 0;
888 /* Connect the page tables */
889 return __gmap_link(gmap, gaddr, vmaddr);
890 }
891
892 /**
893 * gmap_pte_op_end - release the page table lock
894 * @ptl: pointer to the spinlock pointer
895 */
gmap_pte_op_end(spinlock_t * ptl)896 static void gmap_pte_op_end(spinlock_t *ptl)
897 {
898 if (ptl)
899 spin_unlock(ptl);
900 }
901
902 /**
903 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
904 * and return the pmd pointer
905 * @gmap: pointer to guest mapping meta data structure
906 * @gaddr: virtual address in the guest address space
907 *
908 * Returns a pointer to the pmd for a guest address, or NULL
909 */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)910 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
911 {
912 pmd_t *pmdp;
913
914 BUG_ON(gmap_is_shadow(gmap));
915 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
916 if (!pmdp)
917 return NULL;
918
919 /* without huge pages, there is no need to take the table lock */
920 if (!gmap->mm->context.allow_gmap_hpage_1m)
921 return pmd_none(*pmdp) ? NULL : pmdp;
922
923 spin_lock(&gmap->guest_table_lock);
924 if (pmd_none(*pmdp)) {
925 spin_unlock(&gmap->guest_table_lock);
926 return NULL;
927 }
928
929 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
930 if (!pmd_large(*pmdp))
931 spin_unlock(&gmap->guest_table_lock);
932 return pmdp;
933 }
934
935 /**
936 * gmap_pmd_op_end - release the guest_table_lock if needed
937 * @gmap: pointer to the guest mapping meta data structure
938 * @pmdp: pointer to the pmd
939 */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)940 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
941 {
942 if (pmd_large(*pmdp))
943 spin_unlock(&gmap->guest_table_lock);
944 }
945
946 /*
947 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
948 * @pmdp: pointer to the pmd to be protected
949 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
950 * @bits: notification bits to set
951 *
952 * Returns:
953 * 0 if successfully protected
954 * -EAGAIN if a fixup is needed
955 * -EINVAL if unsupported notifier bits have been specified
956 *
957 * Expected to be called with sg->mm->mmap_lock in read and
958 * guest_table_lock held.
959 */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)960 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
961 pmd_t *pmdp, int prot, unsigned long bits)
962 {
963 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
964 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
965 pmd_t new = *pmdp;
966
967 /* Fixup needed */
968 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
969 return -EAGAIN;
970
971 if (prot == PROT_NONE && !pmd_i) {
972 pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
973 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
974 }
975
976 if (prot == PROT_READ && !pmd_p) {
977 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
978 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
979 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
980 }
981
982 if (bits & GMAP_NOTIFY_MPROT)
983 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
984
985 /* Shadow GMAP protection needs split PMDs */
986 if (bits & GMAP_NOTIFY_SHADOW)
987 return -EINVAL;
988
989 return 0;
990 }
991
992 /*
993 * gmap_protect_pte - remove access rights to memory and set pgste bits
994 * @gmap: pointer to guest mapping meta data structure
995 * @gaddr: virtual address in the guest address space
996 * @pmdp: pointer to the pmd associated with the pte
997 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
998 * @bits: notification bits to set
999 *
1000 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1001 * -EAGAIN if a fixup is needed.
1002 *
1003 * Expected to be called with sg->mm->mmap_lock in read
1004 */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)1005 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1006 pmd_t *pmdp, int prot, unsigned long bits)
1007 {
1008 int rc;
1009 pte_t *ptep;
1010 spinlock_t *ptl = NULL;
1011 unsigned long pbits = 0;
1012
1013 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1014 return -EAGAIN;
1015
1016 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1017 if (!ptep)
1018 return -ENOMEM;
1019
1020 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1021 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1022 /* Protect and unlock. */
1023 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1024 gmap_pte_op_end(ptl);
1025 return rc;
1026 }
1027
1028 /*
1029 * gmap_protect_range - remove access rights to memory and set pgste bits
1030 * @gmap: pointer to guest mapping meta data structure
1031 * @gaddr: virtual address in the guest address space
1032 * @len: size of area
1033 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1034 * @bits: pgste notification bits to set
1035 *
1036 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1037 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1038 *
1039 * Called with sg->mm->mmap_lock in read.
1040 */
gmap_protect_range(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot,unsigned long bits)1041 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1042 unsigned long len, int prot, unsigned long bits)
1043 {
1044 unsigned long vmaddr, dist;
1045 pmd_t *pmdp;
1046 int rc;
1047
1048 BUG_ON(gmap_is_shadow(gmap));
1049 while (len) {
1050 rc = -EAGAIN;
1051 pmdp = gmap_pmd_op_walk(gmap, gaddr);
1052 if (pmdp) {
1053 if (!pmd_large(*pmdp)) {
1054 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1055 bits);
1056 if (!rc) {
1057 len -= PAGE_SIZE;
1058 gaddr += PAGE_SIZE;
1059 }
1060 } else {
1061 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1062 bits);
1063 if (!rc) {
1064 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1065 len = len < dist ? 0 : len - dist;
1066 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1067 }
1068 }
1069 gmap_pmd_op_end(gmap, pmdp);
1070 }
1071 if (rc) {
1072 if (rc == -EINVAL)
1073 return rc;
1074
1075 /* -EAGAIN, fixup of userspace mm and gmap */
1076 vmaddr = __gmap_translate(gmap, gaddr);
1077 if (IS_ERR_VALUE(vmaddr))
1078 return vmaddr;
1079 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1080 if (rc)
1081 return rc;
1082 }
1083 }
1084 return 0;
1085 }
1086
1087 /**
1088 * gmap_mprotect_notify - change access rights for a range of ptes and
1089 * call the notifier if any pte changes again
1090 * @gmap: pointer to guest mapping meta data structure
1091 * @gaddr: virtual address in the guest address space
1092 * @len: size of area
1093 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1094 *
1095 * Returns 0 if for each page in the given range a gmap mapping exists,
1096 * the new access rights could be set and the notifier could be armed.
1097 * If the gmap mapping is missing for one or more pages -EFAULT is
1098 * returned. If no memory could be allocated -ENOMEM is returned.
1099 * This function establishes missing page table entries.
1100 */
gmap_mprotect_notify(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot)1101 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1102 unsigned long len, int prot)
1103 {
1104 int rc;
1105
1106 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1107 return -EINVAL;
1108 if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1109 return -EINVAL;
1110 mmap_read_lock(gmap->mm);
1111 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1112 mmap_read_unlock(gmap->mm);
1113 return rc;
1114 }
1115 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1116
1117 /**
1118 * gmap_read_table - get an unsigned long value from a guest page table using
1119 * absolute addressing, without marking the page referenced.
1120 * @gmap: pointer to guest mapping meta data structure
1121 * @gaddr: virtual address in the guest address space
1122 * @val: pointer to the unsigned long value to return
1123 *
1124 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1125 * if reading using the virtual address failed. -EINVAL if called on a gmap
1126 * shadow.
1127 *
1128 * Called with gmap->mm->mmap_lock in read.
1129 */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1130 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1131 {
1132 unsigned long address, vmaddr;
1133 spinlock_t *ptl;
1134 pte_t *ptep, pte;
1135 int rc;
1136
1137 if (gmap_is_shadow(gmap))
1138 return -EINVAL;
1139
1140 while (1) {
1141 rc = -EAGAIN;
1142 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1143 if (ptep) {
1144 pte = *ptep;
1145 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1146 address = pte_val(pte) & PAGE_MASK;
1147 address += gaddr & ~PAGE_MASK;
1148 *val = *(unsigned long *) address;
1149 pte_val(*ptep) |= _PAGE_YOUNG;
1150 /* Do *NOT* clear the _PAGE_INVALID bit! */
1151 rc = 0;
1152 }
1153 gmap_pte_op_end(ptl);
1154 }
1155 if (!rc)
1156 break;
1157 vmaddr = __gmap_translate(gmap, gaddr);
1158 if (IS_ERR_VALUE(vmaddr)) {
1159 rc = vmaddr;
1160 break;
1161 }
1162 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1163 if (rc)
1164 break;
1165 }
1166 return rc;
1167 }
1168 EXPORT_SYMBOL_GPL(gmap_read_table);
1169
1170 /**
1171 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1172 * @sg: pointer to the shadow guest address space structure
1173 * @vmaddr: vm address associated with the rmap
1174 * @rmap: pointer to the rmap structure
1175 *
1176 * Called with the sg->guest_table_lock
1177 */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1178 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1179 struct gmap_rmap *rmap)
1180 {
1181 void __rcu **slot;
1182
1183 BUG_ON(!gmap_is_shadow(sg));
1184 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1185 if (slot) {
1186 rmap->next = radix_tree_deref_slot_protected(slot,
1187 &sg->guest_table_lock);
1188 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1189 } else {
1190 rmap->next = NULL;
1191 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1192 rmap);
1193 }
1194 }
1195
1196 /**
1197 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1198 * @sg: pointer to the shadow guest address space structure
1199 * @raddr: rmap address in the shadow gmap
1200 * @paddr: address in the parent guest address space
1201 * @len: length of the memory area to protect
1202 *
1203 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1204 * if out of memory and -EFAULT if paddr is invalid.
1205 */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1206 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1207 unsigned long paddr, unsigned long len)
1208 {
1209 struct gmap *parent;
1210 struct gmap_rmap *rmap;
1211 unsigned long vmaddr;
1212 spinlock_t *ptl;
1213 pte_t *ptep;
1214 int rc;
1215
1216 BUG_ON(!gmap_is_shadow(sg));
1217 parent = sg->parent;
1218 while (len) {
1219 vmaddr = __gmap_translate(parent, paddr);
1220 if (IS_ERR_VALUE(vmaddr))
1221 return vmaddr;
1222 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1223 if (!rmap)
1224 return -ENOMEM;
1225 rmap->raddr = raddr;
1226 rc = radix_tree_preload(GFP_KERNEL);
1227 if (rc) {
1228 kfree(rmap);
1229 return rc;
1230 }
1231 rc = -EAGAIN;
1232 ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1233 if (ptep) {
1234 spin_lock(&sg->guest_table_lock);
1235 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1236 PGSTE_VSIE_BIT);
1237 if (!rc)
1238 gmap_insert_rmap(sg, vmaddr, rmap);
1239 spin_unlock(&sg->guest_table_lock);
1240 gmap_pte_op_end(ptl);
1241 }
1242 radix_tree_preload_end();
1243 if (rc) {
1244 kfree(rmap);
1245 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1246 if (rc)
1247 return rc;
1248 continue;
1249 }
1250 paddr += PAGE_SIZE;
1251 len -= PAGE_SIZE;
1252 }
1253 return 0;
1254 }
1255
1256 #define _SHADOW_RMAP_MASK 0x7
1257 #define _SHADOW_RMAP_REGION1 0x5
1258 #define _SHADOW_RMAP_REGION2 0x4
1259 #define _SHADOW_RMAP_REGION3 0x3
1260 #define _SHADOW_RMAP_SEGMENT 0x2
1261 #define _SHADOW_RMAP_PGTABLE 0x1
1262
1263 /**
1264 * gmap_idte_one - invalidate a single region or segment table entry
1265 * @asce: region or segment table *origin* + table-type bits
1266 * @vaddr: virtual address to identify the table entry to flush
1267 *
1268 * The invalid bit of a single region or segment table entry is set
1269 * and the associated TLB entries depending on the entry are flushed.
1270 * The table-type of the @asce identifies the portion of the @vaddr
1271 * that is used as the invalidation index.
1272 */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1273 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1274 {
1275 asm volatile(
1276 " .insn rrf,0xb98e0000,%0,%1,0,0"
1277 : : "a" (asce), "a" (vaddr) : "cc", "memory");
1278 }
1279
1280 /**
1281 * gmap_unshadow_page - remove a page from a shadow page table
1282 * @sg: pointer to the shadow guest address space structure
1283 * @raddr: rmap address in the shadow guest address space
1284 *
1285 * Called with the sg->guest_table_lock
1286 */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1287 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1288 {
1289 unsigned long *table;
1290
1291 BUG_ON(!gmap_is_shadow(sg));
1292 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1293 if (!table || *table & _PAGE_INVALID)
1294 return;
1295 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1296 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1297 }
1298
1299 /**
1300 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1301 * @sg: pointer to the shadow guest address space structure
1302 * @raddr: rmap address in the shadow guest address space
1303 * @pgt: pointer to the start of a shadow page table
1304 *
1305 * Called with the sg->guest_table_lock
1306 */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1307 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1308 unsigned long *pgt)
1309 {
1310 int i;
1311
1312 BUG_ON(!gmap_is_shadow(sg));
1313 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1314 pgt[i] = _PAGE_INVALID;
1315 }
1316
1317 /**
1318 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1319 * @sg: pointer to the shadow guest address space structure
1320 * @raddr: address in the shadow guest address space
1321 *
1322 * Called with the sg->guest_table_lock
1323 */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1324 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1325 {
1326 unsigned long sto, *ste, *pgt;
1327 struct page *page;
1328
1329 BUG_ON(!gmap_is_shadow(sg));
1330 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1331 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1332 return;
1333 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1334 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1335 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1336 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1337 *ste = _SEGMENT_ENTRY_EMPTY;
1338 __gmap_unshadow_pgt(sg, raddr, pgt);
1339 /* Free page table */
1340 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1341 list_del(&page->lru);
1342 page_table_free_pgste(page);
1343 }
1344
1345 /**
1346 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1347 * @sg: pointer to the shadow guest address space structure
1348 * @raddr: rmap address in the shadow guest address space
1349 * @sgt: pointer to the start of a shadow segment table
1350 *
1351 * Called with the sg->guest_table_lock
1352 */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1353 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1354 unsigned long *sgt)
1355 {
1356 unsigned long *pgt;
1357 struct page *page;
1358 int i;
1359
1360 BUG_ON(!gmap_is_shadow(sg));
1361 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1362 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1363 continue;
1364 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1365 sgt[i] = _SEGMENT_ENTRY_EMPTY;
1366 __gmap_unshadow_pgt(sg, raddr, pgt);
1367 /* Free page table */
1368 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1369 list_del(&page->lru);
1370 page_table_free_pgste(page);
1371 }
1372 }
1373
1374 /**
1375 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1376 * @sg: pointer to the shadow guest address space structure
1377 * @raddr: rmap address in the shadow guest address space
1378 *
1379 * Called with the shadow->guest_table_lock
1380 */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1381 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1382 {
1383 unsigned long r3o, *r3e, *sgt;
1384 struct page *page;
1385
1386 BUG_ON(!gmap_is_shadow(sg));
1387 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1388 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1389 return;
1390 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1391 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1392 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1393 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1394 *r3e = _REGION3_ENTRY_EMPTY;
1395 __gmap_unshadow_sgt(sg, raddr, sgt);
1396 /* Free segment table */
1397 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1398 list_del(&page->lru);
1399 __free_pages(page, CRST_ALLOC_ORDER);
1400 }
1401
1402 /**
1403 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1404 * @sg: pointer to the shadow guest address space structure
1405 * @raddr: address in the shadow guest address space
1406 * @r3t: pointer to the start of a shadow region-3 table
1407 *
1408 * Called with the sg->guest_table_lock
1409 */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1410 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1411 unsigned long *r3t)
1412 {
1413 unsigned long *sgt;
1414 struct page *page;
1415 int i;
1416
1417 BUG_ON(!gmap_is_shadow(sg));
1418 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1419 if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1420 continue;
1421 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1422 r3t[i] = _REGION3_ENTRY_EMPTY;
1423 __gmap_unshadow_sgt(sg, raddr, sgt);
1424 /* Free segment table */
1425 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1426 list_del(&page->lru);
1427 __free_pages(page, CRST_ALLOC_ORDER);
1428 }
1429 }
1430
1431 /**
1432 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1433 * @sg: pointer to the shadow guest address space structure
1434 * @raddr: rmap address in the shadow guest address space
1435 *
1436 * Called with the sg->guest_table_lock
1437 */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1438 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1439 {
1440 unsigned long r2o, *r2e, *r3t;
1441 struct page *page;
1442
1443 BUG_ON(!gmap_is_shadow(sg));
1444 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1445 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1446 return;
1447 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1448 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1449 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1450 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1451 *r2e = _REGION2_ENTRY_EMPTY;
1452 __gmap_unshadow_r3t(sg, raddr, r3t);
1453 /* Free region 3 table */
1454 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1455 list_del(&page->lru);
1456 __free_pages(page, CRST_ALLOC_ORDER);
1457 }
1458
1459 /**
1460 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1461 * @sg: pointer to the shadow guest address space structure
1462 * @raddr: rmap address in the shadow guest address space
1463 * @r2t: pointer to the start of a shadow region-2 table
1464 *
1465 * Called with the sg->guest_table_lock
1466 */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1467 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1468 unsigned long *r2t)
1469 {
1470 unsigned long *r3t;
1471 struct page *page;
1472 int i;
1473
1474 BUG_ON(!gmap_is_shadow(sg));
1475 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1476 if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1477 continue;
1478 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1479 r2t[i] = _REGION2_ENTRY_EMPTY;
1480 __gmap_unshadow_r3t(sg, raddr, r3t);
1481 /* Free region 3 table */
1482 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1483 list_del(&page->lru);
1484 __free_pages(page, CRST_ALLOC_ORDER);
1485 }
1486 }
1487
1488 /**
1489 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1490 * @sg: pointer to the shadow guest address space structure
1491 * @raddr: rmap address in the shadow guest address space
1492 *
1493 * Called with the sg->guest_table_lock
1494 */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1495 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1496 {
1497 unsigned long r1o, *r1e, *r2t;
1498 struct page *page;
1499
1500 BUG_ON(!gmap_is_shadow(sg));
1501 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1502 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1503 return;
1504 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1505 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1506 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1507 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1508 *r1e = _REGION1_ENTRY_EMPTY;
1509 __gmap_unshadow_r2t(sg, raddr, r2t);
1510 /* Free region 2 table */
1511 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1512 list_del(&page->lru);
1513 __free_pages(page, CRST_ALLOC_ORDER);
1514 }
1515
1516 /**
1517 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1518 * @sg: pointer to the shadow guest address space structure
1519 * @raddr: rmap address in the shadow guest address space
1520 * @r1t: pointer to the start of a shadow region-1 table
1521 *
1522 * Called with the shadow->guest_table_lock
1523 */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1524 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1525 unsigned long *r1t)
1526 {
1527 unsigned long asce, *r2t;
1528 struct page *page;
1529 int i;
1530
1531 BUG_ON(!gmap_is_shadow(sg));
1532 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1533 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1534 if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1535 continue;
1536 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1537 __gmap_unshadow_r2t(sg, raddr, r2t);
1538 /* Clear entry and flush translation r1t -> r2t */
1539 gmap_idte_one(asce, raddr);
1540 r1t[i] = _REGION1_ENTRY_EMPTY;
1541 /* Free region 2 table */
1542 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1543 list_del(&page->lru);
1544 __free_pages(page, CRST_ALLOC_ORDER);
1545 }
1546 }
1547
1548 /**
1549 * gmap_unshadow - remove a shadow page table completely
1550 * @sg: pointer to the shadow guest address space structure
1551 *
1552 * Called with sg->guest_table_lock
1553 */
gmap_unshadow(struct gmap * sg)1554 static void gmap_unshadow(struct gmap *sg)
1555 {
1556 unsigned long *table;
1557
1558 BUG_ON(!gmap_is_shadow(sg));
1559 if (sg->removed)
1560 return;
1561 sg->removed = 1;
1562 gmap_call_notifier(sg, 0, -1UL);
1563 gmap_flush_tlb(sg);
1564 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1565 switch (sg->asce & _ASCE_TYPE_MASK) {
1566 case _ASCE_TYPE_REGION1:
1567 __gmap_unshadow_r1t(sg, 0, table);
1568 break;
1569 case _ASCE_TYPE_REGION2:
1570 __gmap_unshadow_r2t(sg, 0, table);
1571 break;
1572 case _ASCE_TYPE_REGION3:
1573 __gmap_unshadow_r3t(sg, 0, table);
1574 break;
1575 case _ASCE_TYPE_SEGMENT:
1576 __gmap_unshadow_sgt(sg, 0, table);
1577 break;
1578 }
1579 }
1580
1581 /**
1582 * gmap_find_shadow - find a specific asce in the list of shadow tables
1583 * @parent: pointer to the parent gmap
1584 * @asce: ASCE for which the shadow table is created
1585 * @edat_level: edat level to be used for the shadow translation
1586 *
1587 * Returns the pointer to a gmap if a shadow table with the given asce is
1588 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1589 * otherwise NULL
1590 */
gmap_find_shadow(struct gmap * parent,unsigned long asce,int edat_level)1591 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1592 int edat_level)
1593 {
1594 struct gmap *sg;
1595
1596 list_for_each_entry(sg, &parent->children, list) {
1597 if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1598 sg->removed)
1599 continue;
1600 if (!sg->initialized)
1601 return ERR_PTR(-EAGAIN);
1602 refcount_inc(&sg->ref_count);
1603 return sg;
1604 }
1605 return NULL;
1606 }
1607
1608 /**
1609 * gmap_shadow_valid - check if a shadow guest address space matches the
1610 * given properties and is still valid
1611 * @sg: pointer to the shadow guest address space structure
1612 * @asce: ASCE for which the shadow table is requested
1613 * @edat_level: edat level to be used for the shadow translation
1614 *
1615 * Returns 1 if the gmap shadow is still valid and matches the given
1616 * properties, the caller can continue using it. Returns 0 otherwise, the
1617 * caller has to request a new shadow gmap in this case.
1618 *
1619 */
gmap_shadow_valid(struct gmap * sg,unsigned long asce,int edat_level)1620 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1621 {
1622 if (sg->removed)
1623 return 0;
1624 return sg->orig_asce == asce && sg->edat_level == edat_level;
1625 }
1626 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1627
1628 /**
1629 * gmap_shadow - create/find a shadow guest address space
1630 * @parent: pointer to the parent gmap
1631 * @asce: ASCE for which the shadow table is created
1632 * @edat_level: edat level to be used for the shadow translation
1633 *
1634 * The pages of the top level page table referred by the asce parameter
1635 * will be set to read-only and marked in the PGSTEs of the kvm process.
1636 * The shadow table will be removed automatically on any change to the
1637 * PTE mapping for the source table.
1638 *
1639 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1640 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1641 * parent gmap table could not be protected.
1642 */
gmap_shadow(struct gmap * parent,unsigned long asce,int edat_level)1643 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1644 int edat_level)
1645 {
1646 struct gmap *sg, *new;
1647 unsigned long limit;
1648 int rc;
1649
1650 BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1651 BUG_ON(gmap_is_shadow(parent));
1652 spin_lock(&parent->shadow_lock);
1653 sg = gmap_find_shadow(parent, asce, edat_level);
1654 spin_unlock(&parent->shadow_lock);
1655 if (sg)
1656 return sg;
1657 /* Create a new shadow gmap */
1658 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1659 if (asce & _ASCE_REAL_SPACE)
1660 limit = -1UL;
1661 new = gmap_alloc(limit);
1662 if (!new)
1663 return ERR_PTR(-ENOMEM);
1664 new->mm = parent->mm;
1665 new->parent = gmap_get(parent);
1666 new->orig_asce = asce;
1667 new->edat_level = edat_level;
1668 new->initialized = false;
1669 spin_lock(&parent->shadow_lock);
1670 /* Recheck if another CPU created the same shadow */
1671 sg = gmap_find_shadow(parent, asce, edat_level);
1672 if (sg) {
1673 spin_unlock(&parent->shadow_lock);
1674 gmap_free(new);
1675 return sg;
1676 }
1677 if (asce & _ASCE_REAL_SPACE) {
1678 /* only allow one real-space gmap shadow */
1679 list_for_each_entry(sg, &parent->children, list) {
1680 if (sg->orig_asce & _ASCE_REAL_SPACE) {
1681 spin_lock(&sg->guest_table_lock);
1682 gmap_unshadow(sg);
1683 spin_unlock(&sg->guest_table_lock);
1684 list_del(&sg->list);
1685 gmap_put(sg);
1686 break;
1687 }
1688 }
1689 }
1690 refcount_set(&new->ref_count, 2);
1691 list_add(&new->list, &parent->children);
1692 if (asce & _ASCE_REAL_SPACE) {
1693 /* nothing to protect, return right away */
1694 new->initialized = true;
1695 spin_unlock(&parent->shadow_lock);
1696 return new;
1697 }
1698 spin_unlock(&parent->shadow_lock);
1699 /* protect after insertion, so it will get properly invalidated */
1700 mmap_read_lock(parent->mm);
1701 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1702 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1703 PROT_READ, GMAP_NOTIFY_SHADOW);
1704 mmap_read_unlock(parent->mm);
1705 spin_lock(&parent->shadow_lock);
1706 new->initialized = true;
1707 if (rc) {
1708 list_del(&new->list);
1709 gmap_free(new);
1710 new = ERR_PTR(rc);
1711 }
1712 spin_unlock(&parent->shadow_lock);
1713 return new;
1714 }
1715 EXPORT_SYMBOL_GPL(gmap_shadow);
1716
1717 /**
1718 * gmap_shadow_r2t - create an empty shadow region 2 table
1719 * @sg: pointer to the shadow guest address space structure
1720 * @saddr: faulting address in the shadow gmap
1721 * @r2t: parent gmap address of the region 2 table to get shadowed
1722 * @fake: r2t references contiguous guest memory block, not a r2t
1723 *
1724 * The r2t parameter specifies the address of the source table. The
1725 * four pages of the source table are made read-only in the parent gmap
1726 * address space. A write to the source table area @r2t will automatically
1727 * remove the shadow r2 table and all of its decendents.
1728 *
1729 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1730 * shadow table structure is incomplete, -ENOMEM if out of memory and
1731 * -EFAULT if an address in the parent gmap could not be resolved.
1732 *
1733 * Called with sg->mm->mmap_lock in read.
1734 */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1735 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1736 int fake)
1737 {
1738 unsigned long raddr, origin, offset, len;
1739 unsigned long *s_r2t, *table;
1740 struct page *page;
1741 int rc;
1742
1743 BUG_ON(!gmap_is_shadow(sg));
1744 /* Allocate a shadow region second table */
1745 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1746 if (!page)
1747 return -ENOMEM;
1748 page->index = r2t & _REGION_ENTRY_ORIGIN;
1749 if (fake)
1750 page->index |= GMAP_SHADOW_FAKE_TABLE;
1751 s_r2t = (unsigned long *) page_to_phys(page);
1752 /* Install shadow region second table */
1753 spin_lock(&sg->guest_table_lock);
1754 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1755 if (!table) {
1756 rc = -EAGAIN; /* Race with unshadow */
1757 goto out_free;
1758 }
1759 if (!(*table & _REGION_ENTRY_INVALID)) {
1760 rc = 0; /* Already established */
1761 goto out_free;
1762 } else if (*table & _REGION_ENTRY_ORIGIN) {
1763 rc = -EAGAIN; /* Race with shadow */
1764 goto out_free;
1765 }
1766 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1767 /* mark as invalid as long as the parent table is not protected */
1768 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1769 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1770 if (sg->edat_level >= 1)
1771 *table |= (r2t & _REGION_ENTRY_PROTECT);
1772 list_add(&page->lru, &sg->crst_list);
1773 if (fake) {
1774 /* nothing to protect for fake tables */
1775 *table &= ~_REGION_ENTRY_INVALID;
1776 spin_unlock(&sg->guest_table_lock);
1777 return 0;
1778 }
1779 spin_unlock(&sg->guest_table_lock);
1780 /* Make r2t read-only in parent gmap page table */
1781 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1782 origin = r2t & _REGION_ENTRY_ORIGIN;
1783 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1784 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1785 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1786 spin_lock(&sg->guest_table_lock);
1787 if (!rc) {
1788 table = gmap_table_walk(sg, saddr, 4);
1789 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1790 (unsigned long) s_r2t)
1791 rc = -EAGAIN; /* Race with unshadow */
1792 else
1793 *table &= ~_REGION_ENTRY_INVALID;
1794 } else {
1795 gmap_unshadow_r2t(sg, raddr);
1796 }
1797 spin_unlock(&sg->guest_table_lock);
1798 return rc;
1799 out_free:
1800 spin_unlock(&sg->guest_table_lock);
1801 __free_pages(page, CRST_ALLOC_ORDER);
1802 return rc;
1803 }
1804 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1805
1806 /**
1807 * gmap_shadow_r3t - create a shadow region 3 table
1808 * @sg: pointer to the shadow guest address space structure
1809 * @saddr: faulting address in the shadow gmap
1810 * @r3t: parent gmap address of the region 3 table to get shadowed
1811 * @fake: r3t references contiguous guest memory block, not a r3t
1812 *
1813 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1814 * shadow table structure is incomplete, -ENOMEM if out of memory and
1815 * -EFAULT if an address in the parent gmap could not be resolved.
1816 *
1817 * Called with sg->mm->mmap_lock in read.
1818 */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1819 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1820 int fake)
1821 {
1822 unsigned long raddr, origin, offset, len;
1823 unsigned long *s_r3t, *table;
1824 struct page *page;
1825 int rc;
1826
1827 BUG_ON(!gmap_is_shadow(sg));
1828 /* Allocate a shadow region second table */
1829 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1830 if (!page)
1831 return -ENOMEM;
1832 page->index = r3t & _REGION_ENTRY_ORIGIN;
1833 if (fake)
1834 page->index |= GMAP_SHADOW_FAKE_TABLE;
1835 s_r3t = (unsigned long *) page_to_phys(page);
1836 /* Install shadow region second table */
1837 spin_lock(&sg->guest_table_lock);
1838 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1839 if (!table) {
1840 rc = -EAGAIN; /* Race with unshadow */
1841 goto out_free;
1842 }
1843 if (!(*table & _REGION_ENTRY_INVALID)) {
1844 rc = 0; /* Already established */
1845 goto out_free;
1846 } else if (*table & _REGION_ENTRY_ORIGIN) {
1847 rc = -EAGAIN; /* Race with shadow */
1848 goto out_free;
1849 }
1850 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1851 /* mark as invalid as long as the parent table is not protected */
1852 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1853 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1854 if (sg->edat_level >= 1)
1855 *table |= (r3t & _REGION_ENTRY_PROTECT);
1856 list_add(&page->lru, &sg->crst_list);
1857 if (fake) {
1858 /* nothing to protect for fake tables */
1859 *table &= ~_REGION_ENTRY_INVALID;
1860 spin_unlock(&sg->guest_table_lock);
1861 return 0;
1862 }
1863 spin_unlock(&sg->guest_table_lock);
1864 /* Make r3t read-only in parent gmap page table */
1865 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1866 origin = r3t & _REGION_ENTRY_ORIGIN;
1867 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1868 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1869 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1870 spin_lock(&sg->guest_table_lock);
1871 if (!rc) {
1872 table = gmap_table_walk(sg, saddr, 3);
1873 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1874 (unsigned long) s_r3t)
1875 rc = -EAGAIN; /* Race with unshadow */
1876 else
1877 *table &= ~_REGION_ENTRY_INVALID;
1878 } else {
1879 gmap_unshadow_r3t(sg, raddr);
1880 }
1881 spin_unlock(&sg->guest_table_lock);
1882 return rc;
1883 out_free:
1884 spin_unlock(&sg->guest_table_lock);
1885 __free_pages(page, CRST_ALLOC_ORDER);
1886 return rc;
1887 }
1888 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1889
1890 /**
1891 * gmap_shadow_sgt - create a shadow segment table
1892 * @sg: pointer to the shadow guest address space structure
1893 * @saddr: faulting address in the shadow gmap
1894 * @sgt: parent gmap address of the segment table to get shadowed
1895 * @fake: sgt references contiguous guest memory block, not a sgt
1896 *
1897 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1898 * shadow table structure is incomplete, -ENOMEM if out of memory and
1899 * -EFAULT if an address in the parent gmap could not be resolved.
1900 *
1901 * Called with sg->mm->mmap_lock in read.
1902 */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1903 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1904 int fake)
1905 {
1906 unsigned long raddr, origin, offset, len;
1907 unsigned long *s_sgt, *table;
1908 struct page *page;
1909 int rc;
1910
1911 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1912 /* Allocate a shadow segment table */
1913 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1914 if (!page)
1915 return -ENOMEM;
1916 page->index = sgt & _REGION_ENTRY_ORIGIN;
1917 if (fake)
1918 page->index |= GMAP_SHADOW_FAKE_TABLE;
1919 s_sgt = (unsigned long *) page_to_phys(page);
1920 /* Install shadow region second table */
1921 spin_lock(&sg->guest_table_lock);
1922 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1923 if (!table) {
1924 rc = -EAGAIN; /* Race with unshadow */
1925 goto out_free;
1926 }
1927 if (!(*table & _REGION_ENTRY_INVALID)) {
1928 rc = 0; /* Already established */
1929 goto out_free;
1930 } else if (*table & _REGION_ENTRY_ORIGIN) {
1931 rc = -EAGAIN; /* Race with shadow */
1932 goto out_free;
1933 }
1934 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1935 /* mark as invalid as long as the parent table is not protected */
1936 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1937 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1938 if (sg->edat_level >= 1)
1939 *table |= sgt & _REGION_ENTRY_PROTECT;
1940 list_add(&page->lru, &sg->crst_list);
1941 if (fake) {
1942 /* nothing to protect for fake tables */
1943 *table &= ~_REGION_ENTRY_INVALID;
1944 spin_unlock(&sg->guest_table_lock);
1945 return 0;
1946 }
1947 spin_unlock(&sg->guest_table_lock);
1948 /* Make sgt read-only in parent gmap page table */
1949 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1950 origin = sgt & _REGION_ENTRY_ORIGIN;
1951 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1952 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1953 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1954 spin_lock(&sg->guest_table_lock);
1955 if (!rc) {
1956 table = gmap_table_walk(sg, saddr, 2);
1957 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1958 (unsigned long) s_sgt)
1959 rc = -EAGAIN; /* Race with unshadow */
1960 else
1961 *table &= ~_REGION_ENTRY_INVALID;
1962 } else {
1963 gmap_unshadow_sgt(sg, raddr);
1964 }
1965 spin_unlock(&sg->guest_table_lock);
1966 return rc;
1967 out_free:
1968 spin_unlock(&sg->guest_table_lock);
1969 __free_pages(page, CRST_ALLOC_ORDER);
1970 return rc;
1971 }
1972 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1973
1974 /**
1975 * gmap_shadow_lookup_pgtable - find a shadow page table
1976 * @sg: pointer to the shadow guest address space structure
1977 * @saddr: the address in the shadow aguest address space
1978 * @pgt: parent gmap address of the page table to get shadowed
1979 * @dat_protection: if the pgtable is marked as protected by dat
1980 * @fake: pgt references contiguous guest memory block, not a pgtable
1981 *
1982 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1983 * table was not found.
1984 *
1985 * Called with sg->mm->mmap_lock in read.
1986 */
gmap_shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)1987 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1988 unsigned long *pgt, int *dat_protection,
1989 int *fake)
1990 {
1991 unsigned long *table;
1992 struct page *page;
1993 int rc;
1994
1995 BUG_ON(!gmap_is_shadow(sg));
1996 spin_lock(&sg->guest_table_lock);
1997 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1998 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1999 /* Shadow page tables are full pages (pte+pgste) */
2000 page = pfn_to_page(*table >> PAGE_SHIFT);
2001 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2002 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2003 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2004 rc = 0;
2005 } else {
2006 rc = -EAGAIN;
2007 }
2008 spin_unlock(&sg->guest_table_lock);
2009 return rc;
2010
2011 }
2012 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2013
2014 /**
2015 * gmap_shadow_pgt - instantiate a shadow page table
2016 * @sg: pointer to the shadow guest address space structure
2017 * @saddr: faulting address in the shadow gmap
2018 * @pgt: parent gmap address of the page table to get shadowed
2019 * @fake: pgt references contiguous guest memory block, not a pgtable
2020 *
2021 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2022 * shadow table structure is incomplete, -ENOMEM if out of memory,
2023 * -EFAULT if an address in the parent gmap could not be resolved and
2024 *
2025 * Called with gmap->mm->mmap_lock in read
2026 */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)2027 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2028 int fake)
2029 {
2030 unsigned long raddr, origin;
2031 unsigned long *s_pgt, *table;
2032 struct page *page;
2033 int rc;
2034
2035 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2036 /* Allocate a shadow page table */
2037 page = page_table_alloc_pgste(sg->mm);
2038 if (!page)
2039 return -ENOMEM;
2040 page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2041 if (fake)
2042 page->index |= GMAP_SHADOW_FAKE_TABLE;
2043 s_pgt = (unsigned long *) page_to_phys(page);
2044 /* Install shadow page table */
2045 spin_lock(&sg->guest_table_lock);
2046 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2047 if (!table) {
2048 rc = -EAGAIN; /* Race with unshadow */
2049 goto out_free;
2050 }
2051 if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2052 rc = 0; /* Already established */
2053 goto out_free;
2054 } else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2055 rc = -EAGAIN; /* Race with shadow */
2056 goto out_free;
2057 }
2058 /* mark as invalid as long as the parent table is not protected */
2059 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2060 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2061 list_add(&page->lru, &sg->pt_list);
2062 if (fake) {
2063 /* nothing to protect for fake tables */
2064 *table &= ~_SEGMENT_ENTRY_INVALID;
2065 spin_unlock(&sg->guest_table_lock);
2066 return 0;
2067 }
2068 spin_unlock(&sg->guest_table_lock);
2069 /* Make pgt read-only in parent gmap page table (not the pgste) */
2070 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2071 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2072 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2073 spin_lock(&sg->guest_table_lock);
2074 if (!rc) {
2075 table = gmap_table_walk(sg, saddr, 1);
2076 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2077 (unsigned long) s_pgt)
2078 rc = -EAGAIN; /* Race with unshadow */
2079 else
2080 *table &= ~_SEGMENT_ENTRY_INVALID;
2081 } else {
2082 gmap_unshadow_pgt(sg, raddr);
2083 }
2084 spin_unlock(&sg->guest_table_lock);
2085 return rc;
2086 out_free:
2087 spin_unlock(&sg->guest_table_lock);
2088 page_table_free_pgste(page);
2089 return rc;
2090
2091 }
2092 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2093
2094 /**
2095 * gmap_shadow_page - create a shadow page mapping
2096 * @sg: pointer to the shadow guest address space structure
2097 * @saddr: faulting address in the shadow gmap
2098 * @pte: pte in parent gmap address space to get shadowed
2099 *
2100 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2101 * shadow table structure is incomplete, -ENOMEM if out of memory and
2102 * -EFAULT if an address in the parent gmap could not be resolved.
2103 *
2104 * Called with sg->mm->mmap_lock in read.
2105 */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)2106 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2107 {
2108 struct gmap *parent;
2109 struct gmap_rmap *rmap;
2110 unsigned long vmaddr, paddr;
2111 spinlock_t *ptl;
2112 pte_t *sptep, *tptep;
2113 int prot;
2114 int rc;
2115
2116 BUG_ON(!gmap_is_shadow(sg));
2117 parent = sg->parent;
2118 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2119
2120 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
2121 if (!rmap)
2122 return -ENOMEM;
2123 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2124
2125 while (1) {
2126 paddr = pte_val(pte) & PAGE_MASK;
2127 vmaddr = __gmap_translate(parent, paddr);
2128 if (IS_ERR_VALUE(vmaddr)) {
2129 rc = vmaddr;
2130 break;
2131 }
2132 rc = radix_tree_preload(GFP_KERNEL);
2133 if (rc)
2134 break;
2135 rc = -EAGAIN;
2136 sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2137 if (sptep) {
2138 spin_lock(&sg->guest_table_lock);
2139 /* Get page table pointer */
2140 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2141 if (!tptep) {
2142 spin_unlock(&sg->guest_table_lock);
2143 gmap_pte_op_end(ptl);
2144 radix_tree_preload_end();
2145 break;
2146 }
2147 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2148 if (rc > 0) {
2149 /* Success and a new mapping */
2150 gmap_insert_rmap(sg, vmaddr, rmap);
2151 rmap = NULL;
2152 rc = 0;
2153 }
2154 gmap_pte_op_end(ptl);
2155 spin_unlock(&sg->guest_table_lock);
2156 }
2157 radix_tree_preload_end();
2158 if (!rc)
2159 break;
2160 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2161 if (rc)
2162 break;
2163 }
2164 kfree(rmap);
2165 return rc;
2166 }
2167 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2168
2169 /**
2170 * gmap_shadow_notify - handle notifications for shadow gmap
2171 *
2172 * Called with sg->parent->shadow_lock.
2173 */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)2174 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2175 unsigned long gaddr)
2176 {
2177 struct gmap_rmap *rmap, *rnext, *head;
2178 unsigned long start, end, bits, raddr;
2179
2180 BUG_ON(!gmap_is_shadow(sg));
2181
2182 spin_lock(&sg->guest_table_lock);
2183 if (sg->removed) {
2184 spin_unlock(&sg->guest_table_lock);
2185 return;
2186 }
2187 /* Check for top level table */
2188 start = sg->orig_asce & _ASCE_ORIGIN;
2189 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2190 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2191 gaddr < end) {
2192 /* The complete shadow table has to go */
2193 gmap_unshadow(sg);
2194 spin_unlock(&sg->guest_table_lock);
2195 list_del(&sg->list);
2196 gmap_put(sg);
2197 return;
2198 }
2199 /* Remove the page table tree from on specific entry */
2200 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2201 gmap_for_each_rmap_safe(rmap, rnext, head) {
2202 bits = rmap->raddr & _SHADOW_RMAP_MASK;
2203 raddr = rmap->raddr ^ bits;
2204 switch (bits) {
2205 case _SHADOW_RMAP_REGION1:
2206 gmap_unshadow_r2t(sg, raddr);
2207 break;
2208 case _SHADOW_RMAP_REGION2:
2209 gmap_unshadow_r3t(sg, raddr);
2210 break;
2211 case _SHADOW_RMAP_REGION3:
2212 gmap_unshadow_sgt(sg, raddr);
2213 break;
2214 case _SHADOW_RMAP_SEGMENT:
2215 gmap_unshadow_pgt(sg, raddr);
2216 break;
2217 case _SHADOW_RMAP_PGTABLE:
2218 gmap_unshadow_page(sg, raddr);
2219 break;
2220 }
2221 kfree(rmap);
2222 }
2223 spin_unlock(&sg->guest_table_lock);
2224 }
2225
2226 /**
2227 * ptep_notify - call all invalidation callbacks for a specific pte.
2228 * @mm: pointer to the process mm_struct
2229 * @addr: virtual address in the process address space
2230 * @pte: pointer to the page table entry
2231 * @bits: bits from the pgste that caused the notify call
2232 *
2233 * This function is assumed to be called with the page table lock held
2234 * for the pte to notify.
2235 */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)2236 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2237 pte_t *pte, unsigned long bits)
2238 {
2239 unsigned long offset, gaddr = 0;
2240 unsigned long *table;
2241 struct gmap *gmap, *sg, *next;
2242
2243 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2244 offset = offset * (PAGE_SIZE / sizeof(pte_t));
2245 rcu_read_lock();
2246 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2247 spin_lock(&gmap->guest_table_lock);
2248 table = radix_tree_lookup(&gmap->host_to_guest,
2249 vmaddr >> PMD_SHIFT);
2250 if (table)
2251 gaddr = __gmap_segment_gaddr(table) + offset;
2252 spin_unlock(&gmap->guest_table_lock);
2253 if (!table)
2254 continue;
2255
2256 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2257 spin_lock(&gmap->shadow_lock);
2258 list_for_each_entry_safe(sg, next,
2259 &gmap->children, list)
2260 gmap_shadow_notify(sg, vmaddr, gaddr);
2261 spin_unlock(&gmap->shadow_lock);
2262 }
2263 if (bits & PGSTE_IN_BIT)
2264 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2265 }
2266 rcu_read_unlock();
2267 }
2268 EXPORT_SYMBOL_GPL(ptep_notify);
2269
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2270 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2271 unsigned long gaddr)
2272 {
2273 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2274 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2275 }
2276
2277 /**
2278 * gmap_pmdp_xchg - exchange a gmap pmd with another
2279 * @gmap: pointer to the guest address space structure
2280 * @pmdp: pointer to the pmd entry
2281 * @new: replacement entry
2282 * @gaddr: the affected guest address
2283 *
2284 * This function is assumed to be called with the guest_table_lock
2285 * held.
2286 */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2287 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2288 unsigned long gaddr)
2289 {
2290 gaddr &= HPAGE_MASK;
2291 pmdp_notify_gmap(gmap, pmdp, gaddr);
2292 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2293 if (MACHINE_HAS_TLB_GUEST)
2294 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2295 IDTE_GLOBAL);
2296 else if (MACHINE_HAS_IDTE)
2297 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2298 else
2299 __pmdp_csp(pmdp);
2300 *pmdp = new;
2301 }
2302
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2303 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2304 int purge)
2305 {
2306 pmd_t *pmdp;
2307 struct gmap *gmap;
2308 unsigned long gaddr;
2309
2310 rcu_read_lock();
2311 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2312 spin_lock(&gmap->guest_table_lock);
2313 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2314 vmaddr >> PMD_SHIFT);
2315 if (pmdp) {
2316 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2317 pmdp_notify_gmap(gmap, pmdp, gaddr);
2318 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2319 _SEGMENT_ENTRY_GMAP_UC));
2320 if (purge)
2321 __pmdp_csp(pmdp);
2322 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2323 }
2324 spin_unlock(&gmap->guest_table_lock);
2325 }
2326 rcu_read_unlock();
2327 }
2328
2329 /**
2330 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2331 * flushing
2332 * @mm: pointer to the process mm_struct
2333 * @vmaddr: virtual address in the process address space
2334 */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2335 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2336 {
2337 gmap_pmdp_clear(mm, vmaddr, 0);
2338 }
2339 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2340
2341 /**
2342 * gmap_pmdp_csp - csp all affected guest pmd entries
2343 * @mm: pointer to the process mm_struct
2344 * @vmaddr: virtual address in the process address space
2345 */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2346 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2347 {
2348 gmap_pmdp_clear(mm, vmaddr, 1);
2349 }
2350 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2351
2352 /**
2353 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2354 * @mm: pointer to the process mm_struct
2355 * @vmaddr: virtual address in the process address space
2356 */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2357 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2358 {
2359 unsigned long *entry, gaddr;
2360 struct gmap *gmap;
2361 pmd_t *pmdp;
2362
2363 rcu_read_lock();
2364 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2365 spin_lock(&gmap->guest_table_lock);
2366 entry = radix_tree_delete(&gmap->host_to_guest,
2367 vmaddr >> PMD_SHIFT);
2368 if (entry) {
2369 pmdp = (pmd_t *)entry;
2370 gaddr = __gmap_segment_gaddr(entry);
2371 pmdp_notify_gmap(gmap, pmdp, gaddr);
2372 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2373 _SEGMENT_ENTRY_GMAP_UC));
2374 if (MACHINE_HAS_TLB_GUEST)
2375 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2376 gmap->asce, IDTE_LOCAL);
2377 else if (MACHINE_HAS_IDTE)
2378 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2379 *entry = _SEGMENT_ENTRY_EMPTY;
2380 }
2381 spin_unlock(&gmap->guest_table_lock);
2382 }
2383 rcu_read_unlock();
2384 }
2385 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2386
2387 /**
2388 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2389 * @mm: pointer to the process mm_struct
2390 * @vmaddr: virtual address in the process address space
2391 */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2392 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2393 {
2394 unsigned long *entry, gaddr;
2395 struct gmap *gmap;
2396 pmd_t *pmdp;
2397
2398 rcu_read_lock();
2399 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2400 spin_lock(&gmap->guest_table_lock);
2401 entry = radix_tree_delete(&gmap->host_to_guest,
2402 vmaddr >> PMD_SHIFT);
2403 if (entry) {
2404 pmdp = (pmd_t *)entry;
2405 gaddr = __gmap_segment_gaddr(entry);
2406 pmdp_notify_gmap(gmap, pmdp, gaddr);
2407 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2408 _SEGMENT_ENTRY_GMAP_UC));
2409 if (MACHINE_HAS_TLB_GUEST)
2410 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2411 gmap->asce, IDTE_GLOBAL);
2412 else if (MACHINE_HAS_IDTE)
2413 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2414 else
2415 __pmdp_csp(pmdp);
2416 *entry = _SEGMENT_ENTRY_EMPTY;
2417 }
2418 spin_unlock(&gmap->guest_table_lock);
2419 }
2420 rcu_read_unlock();
2421 }
2422 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2423
2424 /**
2425 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2426 * @gmap: pointer to guest address space
2427 * @pmdp: pointer to the pmd to be tested
2428 * @gaddr: virtual address in the guest address space
2429 *
2430 * This function is assumed to be called with the guest_table_lock
2431 * held.
2432 */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2433 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2434 unsigned long gaddr)
2435 {
2436 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2437 return false;
2438
2439 /* Already protected memory, which did not change is clean */
2440 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2441 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2442 return false;
2443
2444 /* Clear UC indication and reset protection */
2445 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2446 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2447 return true;
2448 }
2449
2450 /**
2451 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2452 * @gmap: pointer to guest address space
2453 * @bitmap: dirty bitmap for this pmd
2454 * @gaddr: virtual address in the guest address space
2455 * @vmaddr: virtual address in the host address space
2456 *
2457 * This function is assumed to be called with the guest_table_lock
2458 * held.
2459 */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2460 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2461 unsigned long gaddr, unsigned long vmaddr)
2462 {
2463 int i;
2464 pmd_t *pmdp;
2465 pte_t *ptep;
2466 spinlock_t *ptl;
2467
2468 pmdp = gmap_pmd_op_walk(gmap, gaddr);
2469 if (!pmdp)
2470 return;
2471
2472 if (pmd_large(*pmdp)) {
2473 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2474 bitmap_fill(bitmap, _PAGE_ENTRIES);
2475 } else {
2476 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2477 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2478 if (!ptep)
2479 continue;
2480 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2481 set_bit(i, bitmap);
2482 spin_unlock(ptl);
2483 }
2484 }
2485 gmap_pmd_op_end(gmap, pmdp);
2486 }
2487 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2488
2489 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2490 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2491 unsigned long end, struct mm_walk *walk)
2492 {
2493 struct vm_area_struct *vma = walk->vma;
2494
2495 split_huge_pmd(vma, pmd, addr);
2496 return 0;
2497 }
2498
2499 static const struct mm_walk_ops thp_split_walk_ops = {
2500 .pmd_entry = thp_split_walk_pmd_entry,
2501 };
2502
thp_split_mm(struct mm_struct * mm)2503 static inline void thp_split_mm(struct mm_struct *mm)
2504 {
2505 struct vm_area_struct *vma;
2506
2507 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2508 vma->vm_flags &= ~VM_HUGEPAGE;
2509 vma->vm_flags |= VM_NOHUGEPAGE;
2510 walk_page_vma(vma, &thp_split_walk_ops, NULL);
2511 }
2512 mm->def_flags |= VM_NOHUGEPAGE;
2513 }
2514 #else
thp_split_mm(struct mm_struct * mm)2515 static inline void thp_split_mm(struct mm_struct *mm)
2516 {
2517 }
2518 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2519
2520 /*
2521 * Remove all empty zero pages from the mapping for lazy refaulting
2522 * - This must be called after mm->context.has_pgste is set, to avoid
2523 * future creation of zero pages
2524 * - This must be called after THP was enabled
2525 */
__zap_zero_pages(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2526 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2527 unsigned long end, struct mm_walk *walk)
2528 {
2529 unsigned long addr;
2530
2531 for (addr = start; addr != end; addr += PAGE_SIZE) {
2532 pte_t *ptep;
2533 spinlock_t *ptl;
2534
2535 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2536 if (is_zero_pfn(pte_pfn(*ptep)))
2537 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2538 pte_unmap_unlock(ptep, ptl);
2539 }
2540 return 0;
2541 }
2542
2543 static const struct mm_walk_ops zap_zero_walk_ops = {
2544 .pmd_entry = __zap_zero_pages,
2545 };
2546
2547 /*
2548 * switch on pgstes for its userspace process (for kvm)
2549 */
s390_enable_sie(void)2550 int s390_enable_sie(void)
2551 {
2552 struct mm_struct *mm = current->mm;
2553
2554 /* Do we have pgstes? if yes, we are done */
2555 if (mm_has_pgste(mm))
2556 return 0;
2557 /* Fail if the page tables are 2K */
2558 if (!mm_alloc_pgste(mm))
2559 return -EINVAL;
2560 mmap_write_lock(mm);
2561 mm->context.has_pgste = 1;
2562 /* split thp mappings and disable thp for future mappings */
2563 thp_split_mm(mm);
2564 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2565 mmap_write_unlock(mm);
2566 return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(s390_enable_sie);
2569
gmap_mark_unmergeable(void)2570 int gmap_mark_unmergeable(void)
2571 {
2572 struct mm_struct *mm = current->mm;
2573 struct vm_area_struct *vma;
2574 int ret;
2575
2576 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2577 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2578 MADV_UNMERGEABLE, &vma->vm_flags);
2579 if (ret)
2580 return ret;
2581 }
2582 mm->def_flags &= ~VM_MERGEABLE;
2583 return 0;
2584 }
2585 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2586
2587 /*
2588 * Enable storage key handling from now on and initialize the storage
2589 * keys with the default key.
2590 */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2591 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2592 unsigned long next, struct mm_walk *walk)
2593 {
2594 /* Clear storage key */
2595 ptep_zap_key(walk->mm, addr, pte);
2596 return 0;
2597 }
2598
2599 /*
2600 * Give a chance to schedule after setting a key to 256 pages.
2601 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2602 * Both can sleep.
2603 */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2604 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2605 unsigned long next, struct mm_walk *walk)
2606 {
2607 cond_resched();
2608 return 0;
2609 }
2610
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2611 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2612 unsigned long hmask, unsigned long next,
2613 struct mm_walk *walk)
2614 {
2615 pmd_t *pmd = (pmd_t *)pte;
2616 unsigned long start, end;
2617 struct page *page = pmd_page(*pmd);
2618
2619 /*
2620 * The write check makes sure we do not set a key on shared
2621 * memory. This is needed as the walker does not differentiate
2622 * between actual guest memory and the process executable or
2623 * shared libraries.
2624 */
2625 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2626 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2627 return 0;
2628
2629 start = pmd_val(*pmd) & HPAGE_MASK;
2630 end = start + HPAGE_SIZE - 1;
2631 __storage_key_init_range(start, end);
2632 set_bit(PG_arch_1, &page->flags);
2633 cond_resched();
2634 return 0;
2635 }
2636
2637 static const struct mm_walk_ops enable_skey_walk_ops = {
2638 .hugetlb_entry = __s390_enable_skey_hugetlb,
2639 .pte_entry = __s390_enable_skey_pte,
2640 .pmd_entry = __s390_enable_skey_pmd,
2641 };
2642
s390_enable_skey(void)2643 int s390_enable_skey(void)
2644 {
2645 struct mm_struct *mm = current->mm;
2646 int rc = 0;
2647
2648 mmap_write_lock(mm);
2649 if (mm_uses_skeys(mm))
2650 goto out_up;
2651
2652 mm->context.uses_skeys = 1;
2653 rc = gmap_mark_unmergeable();
2654 if (rc) {
2655 mm->context.uses_skeys = 0;
2656 goto out_up;
2657 }
2658 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2659
2660 out_up:
2661 mmap_write_unlock(mm);
2662 return rc;
2663 }
2664 EXPORT_SYMBOL_GPL(s390_enable_skey);
2665
2666 /*
2667 * Reset CMMA state, make all pages stable again.
2668 */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2669 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2670 unsigned long next, struct mm_walk *walk)
2671 {
2672 ptep_zap_unused(walk->mm, addr, pte, 1);
2673 return 0;
2674 }
2675
2676 static const struct mm_walk_ops reset_cmma_walk_ops = {
2677 .pte_entry = __s390_reset_cmma,
2678 };
2679
s390_reset_cmma(struct mm_struct * mm)2680 void s390_reset_cmma(struct mm_struct *mm)
2681 {
2682 mmap_write_lock(mm);
2683 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2684 mmap_write_unlock(mm);
2685 }
2686 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2687
2688 /*
2689 * make inaccessible pages accessible again
2690 */
__s390_reset_acc(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2691 static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2692 unsigned long next, struct mm_walk *walk)
2693 {
2694 pte_t pte = READ_ONCE(*ptep);
2695
2696 if (pte_present(pte))
2697 WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK));
2698 return 0;
2699 }
2700
2701 static const struct mm_walk_ops reset_acc_walk_ops = {
2702 .pte_entry = __s390_reset_acc,
2703 };
2704
2705 #include <linux/sched/mm.h>
s390_reset_acc(struct mm_struct * mm)2706 void s390_reset_acc(struct mm_struct *mm)
2707 {
2708 if (!mm_is_protected(mm))
2709 return;
2710 /*
2711 * we might be called during
2712 * reset: we walk the pages and clear
2713 * close of all kvm file descriptors: we walk the pages and clear
2714 * exit of process on fd closure: vma already gone, do nothing
2715 */
2716 if (!mmget_not_zero(mm))
2717 return;
2718 mmap_read_lock(mm);
2719 walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2720 mmap_read_unlock(mm);
2721 mmput(mm);
2722 }
2723 EXPORT_SYMBOL_GPL(s390_reset_acc);
2724
2725 /**
2726 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2727 * list of page tables of the gmap.
2728 * @gmap: the gmap whose table is to be removed
2729 *
2730 * On s390x, KVM keeps a list of all pages containing the page tables of the
2731 * gmap (the CRST list). This list is used at tear down time to free all
2732 * pages that are now not needed anymore.
2733 *
2734 * This function removes the topmost page of the tree (the one pointed to by
2735 * the ASCE) from the CRST list.
2736 *
2737 * This means that it will not be freed when the VM is torn down, and needs
2738 * to be handled separately by the caller, unless a leak is actually
2739 * intended. Notice that this function will only remove the page from the
2740 * list, the page will still be used as a top level page table (and ASCE).
2741 */
s390_unlist_old_asce(struct gmap * gmap)2742 void s390_unlist_old_asce(struct gmap *gmap)
2743 {
2744 struct page *old;
2745
2746 old = virt_to_page(gmap->table);
2747 spin_lock(&gmap->guest_table_lock);
2748 list_del(&old->lru);
2749 /*
2750 * Sometimes the topmost page might need to be "removed" multiple
2751 * times, for example if the VM is rebooted into secure mode several
2752 * times concurrently, or if s390_replace_asce fails after calling
2753 * s390_remove_old_asce and is attempted again later. In that case
2754 * the old asce has been removed from the list, and therefore it
2755 * will not be freed when the VM terminates, but the ASCE is still
2756 * in use and still pointed to.
2757 * A subsequent call to replace_asce will follow the pointer and try
2758 * to remove the same page from the list again.
2759 * Therefore it's necessary that the page of the ASCE has valid
2760 * pointers, so list_del can work (and do nothing) without
2761 * dereferencing stale or invalid pointers.
2762 */
2763 INIT_LIST_HEAD(&old->lru);
2764 spin_unlock(&gmap->guest_table_lock);
2765 }
2766 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2767
2768 /**
2769 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2770 * @gmap: the gmap whose ASCE needs to be replaced
2771 *
2772 * If the allocation of the new top level page table fails, the ASCE is not
2773 * replaced.
2774 * In any case, the old ASCE is always removed from the gmap CRST list.
2775 * Therefore the caller has to make sure to save a pointer to it
2776 * beforehand, unless a leak is actually intended.
2777 */
s390_replace_asce(struct gmap * gmap)2778 int s390_replace_asce(struct gmap *gmap)
2779 {
2780 unsigned long asce;
2781 struct page *page;
2782 void *table;
2783
2784 s390_unlist_old_asce(gmap);
2785
2786 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2787 if (!page)
2788 return -ENOMEM;
2789 table = page_to_virt(page);
2790 memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2791
2792 /*
2793 * The caller has to deal with the old ASCE, but here we make sure
2794 * the new one is properly added to the CRST list, so that
2795 * it will be freed when the VM is torn down.
2796 */
2797 spin_lock(&gmap->guest_table_lock);
2798 list_add(&page->lru, &gmap->crst_list);
2799 spin_unlock(&gmap->guest_table_lock);
2800
2801 /* Set new table origin while preserving existing ASCE control bits */
2802 asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2803 WRITE_ONCE(gmap->asce, asce);
2804 WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2805 WRITE_ONCE(gmap->table, table);
2806
2807 return 0;
2808 }
2809 EXPORT_SYMBOL_GPL(s390_replace_asce);
2810