• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2016, 2018
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @mm: pointer to the parent mm_struct
31  * @limit: maximum address of the gmap address space
32  *
33  * Returns a guest address space structure.
34  */
gmap_alloc(unsigned long limit)35 static struct gmap *gmap_alloc(unsigned long limit)
36 {
37 	struct gmap *gmap;
38 	struct page *page;
39 	unsigned long *table;
40 	unsigned long etype, atype;
41 
42 	if (limit < _REGION3_SIZE) {
43 		limit = _REGION3_SIZE - 1;
44 		atype = _ASCE_TYPE_SEGMENT;
45 		etype = _SEGMENT_ENTRY_EMPTY;
46 	} else if (limit < _REGION2_SIZE) {
47 		limit = _REGION2_SIZE - 1;
48 		atype = _ASCE_TYPE_REGION3;
49 		etype = _REGION3_ENTRY_EMPTY;
50 	} else if (limit < _REGION1_SIZE) {
51 		limit = _REGION1_SIZE - 1;
52 		atype = _ASCE_TYPE_REGION2;
53 		etype = _REGION2_ENTRY_EMPTY;
54 	} else {
55 		limit = -1UL;
56 		atype = _ASCE_TYPE_REGION1;
57 		etype = _REGION1_ENTRY_EMPTY;
58 	}
59 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
60 	if (!gmap)
61 		goto out;
62 	INIT_LIST_HEAD(&gmap->crst_list);
63 	INIT_LIST_HEAD(&gmap->children);
64 	INIT_LIST_HEAD(&gmap->pt_list);
65 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
66 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
67 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
68 	spin_lock_init(&gmap->guest_table_lock);
69 	spin_lock_init(&gmap->shadow_lock);
70 	refcount_set(&gmap->ref_count, 1);
71 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
72 	if (!page)
73 		goto out_free;
74 	page->index = 0;
75 	list_add(&page->lru, &gmap->crst_list);
76 	table = (unsigned long *) page_to_phys(page);
77 	crst_table_init(table, etype);
78 	gmap->table = table;
79 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
80 		_ASCE_USER_BITS | __pa(table);
81 	gmap->asce_end = limit;
82 	return gmap;
83 
84 out_free:
85 	kfree(gmap);
86 out:
87 	return NULL;
88 }
89 
90 /**
91  * gmap_create - create a guest address space
92  * @mm: pointer to the parent mm_struct
93  * @limit: maximum size of the gmap address space
94  *
95  * Returns a guest address space structure.
96  */
gmap_create(struct mm_struct * mm,unsigned long limit)97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
98 {
99 	struct gmap *gmap;
100 	unsigned long gmap_asce;
101 
102 	gmap = gmap_alloc(limit);
103 	if (!gmap)
104 		return NULL;
105 	gmap->mm = mm;
106 	spin_lock(&mm->context.lock);
107 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
108 	if (list_is_singular(&mm->context.gmap_list))
109 		gmap_asce = gmap->asce;
110 	else
111 		gmap_asce = -1UL;
112 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
113 	spin_unlock(&mm->context.lock);
114 	return gmap;
115 }
116 EXPORT_SYMBOL_GPL(gmap_create);
117 
gmap_flush_tlb(struct gmap * gmap)118 static void gmap_flush_tlb(struct gmap *gmap)
119 {
120 	if (MACHINE_HAS_IDTE)
121 		__tlb_flush_idte(gmap->asce);
122 	else
123 		__tlb_flush_global();
124 }
125 
gmap_radix_tree_free(struct radix_tree_root * root)126 static void gmap_radix_tree_free(struct radix_tree_root *root)
127 {
128 	struct radix_tree_iter iter;
129 	unsigned long indices[16];
130 	unsigned long index;
131 	void __rcu **slot;
132 	int i, nr;
133 
134 	/* A radix tree is freed by deleting all of its entries */
135 	index = 0;
136 	do {
137 		nr = 0;
138 		radix_tree_for_each_slot(slot, root, &iter, index) {
139 			indices[nr] = iter.index;
140 			if (++nr == 16)
141 				break;
142 		}
143 		for (i = 0; i < nr; i++) {
144 			index = indices[i];
145 			radix_tree_delete(root, index);
146 		}
147 	} while (nr > 0);
148 }
149 
gmap_rmap_radix_tree_free(struct radix_tree_root * root)150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
151 {
152 	struct gmap_rmap *rmap, *rnext, *head;
153 	struct radix_tree_iter iter;
154 	unsigned long indices[16];
155 	unsigned long index;
156 	void __rcu **slot;
157 	int i, nr;
158 
159 	/* A radix tree is freed by deleting all of its entries */
160 	index = 0;
161 	do {
162 		nr = 0;
163 		radix_tree_for_each_slot(slot, root, &iter, index) {
164 			indices[nr] = iter.index;
165 			if (++nr == 16)
166 				break;
167 		}
168 		for (i = 0; i < nr; i++) {
169 			index = indices[i];
170 			head = radix_tree_delete(root, index);
171 			gmap_for_each_rmap_safe(rmap, rnext, head)
172 				kfree(rmap);
173 		}
174 	} while (nr > 0);
175 }
176 
177 /**
178  * gmap_free - free a guest address space
179  * @gmap: pointer to the guest address space structure
180  *
181  * No locks required. There are no references to this gmap anymore.
182  */
gmap_free(struct gmap * gmap)183 static void gmap_free(struct gmap *gmap)
184 {
185 	struct page *page, *next;
186 
187 	/* Flush tlb of all gmaps (if not already done for shadows) */
188 	if (!(gmap_is_shadow(gmap) && gmap->removed))
189 		gmap_flush_tlb(gmap);
190 	/* Free all segment & region tables. */
191 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
192 		__free_pages(page, CRST_ALLOC_ORDER);
193 	gmap_radix_tree_free(&gmap->guest_to_host);
194 	gmap_radix_tree_free(&gmap->host_to_guest);
195 
196 	/* Free additional data for a shadow gmap */
197 	if (gmap_is_shadow(gmap)) {
198 		/* Free all page tables. */
199 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
200 			page_table_free_pgste(page);
201 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
202 		/* Release reference to the parent */
203 		gmap_put(gmap->parent);
204 	}
205 
206 	kfree(gmap);
207 }
208 
209 /**
210  * gmap_get - increase reference counter for guest address space
211  * @gmap: pointer to the guest address space structure
212  *
213  * Returns the gmap pointer
214  */
gmap_get(struct gmap * gmap)215 struct gmap *gmap_get(struct gmap *gmap)
216 {
217 	refcount_inc(&gmap->ref_count);
218 	return gmap;
219 }
220 EXPORT_SYMBOL_GPL(gmap_get);
221 
222 /**
223  * gmap_put - decrease reference counter for guest address space
224  * @gmap: pointer to the guest address space structure
225  *
226  * If the reference counter reaches zero the guest address space is freed.
227  */
gmap_put(struct gmap * gmap)228 void gmap_put(struct gmap *gmap)
229 {
230 	if (refcount_dec_and_test(&gmap->ref_count))
231 		gmap_free(gmap);
232 }
233 EXPORT_SYMBOL_GPL(gmap_put);
234 
235 /**
236  * gmap_remove - remove a guest address space but do not free it yet
237  * @gmap: pointer to the guest address space structure
238  */
gmap_remove(struct gmap * gmap)239 void gmap_remove(struct gmap *gmap)
240 {
241 	struct gmap *sg, *next;
242 	unsigned long gmap_asce;
243 
244 	/* Remove all shadow gmaps linked to this gmap */
245 	if (!list_empty(&gmap->children)) {
246 		spin_lock(&gmap->shadow_lock);
247 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
248 			list_del(&sg->list);
249 			gmap_put(sg);
250 		}
251 		spin_unlock(&gmap->shadow_lock);
252 	}
253 	/* Remove gmap from the pre-mm list */
254 	spin_lock(&gmap->mm->context.lock);
255 	list_del_rcu(&gmap->list);
256 	if (list_empty(&gmap->mm->context.gmap_list))
257 		gmap_asce = 0;
258 	else if (list_is_singular(&gmap->mm->context.gmap_list))
259 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
260 					     struct gmap, list)->asce;
261 	else
262 		gmap_asce = -1UL;
263 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
264 	spin_unlock(&gmap->mm->context.lock);
265 	synchronize_rcu();
266 	/* Put reference */
267 	gmap_put(gmap);
268 }
269 EXPORT_SYMBOL_GPL(gmap_remove);
270 
271 /**
272  * gmap_enable - switch primary space to the guest address space
273  * @gmap: pointer to the guest address space structure
274  */
gmap_enable(struct gmap * gmap)275 void gmap_enable(struct gmap *gmap)
276 {
277 	S390_lowcore.gmap = (unsigned long) gmap;
278 }
279 EXPORT_SYMBOL_GPL(gmap_enable);
280 
281 /**
282  * gmap_disable - switch back to the standard primary address space
283  * @gmap: pointer to the guest address space structure
284  */
gmap_disable(struct gmap * gmap)285 void gmap_disable(struct gmap *gmap)
286 {
287 	S390_lowcore.gmap = 0UL;
288 }
289 EXPORT_SYMBOL_GPL(gmap_disable);
290 
291 /**
292  * gmap_get_enabled - get a pointer to the currently enabled gmap
293  *
294  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
295  */
gmap_get_enabled(void)296 struct gmap *gmap_get_enabled(void)
297 {
298 	return (struct gmap *) S390_lowcore.gmap;
299 }
300 EXPORT_SYMBOL_GPL(gmap_get_enabled);
301 
302 /*
303  * gmap_alloc_table is assumed to be called with mmap_lock held
304  */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
306 			    unsigned long init, unsigned long gaddr)
307 {
308 	struct page *page;
309 	unsigned long *new;
310 
311 	/* since we dont free the gmap table until gmap_free we can unlock */
312 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
313 	if (!page)
314 		return -ENOMEM;
315 	new = (unsigned long *) page_to_phys(page);
316 	crst_table_init(new, init);
317 	spin_lock(&gmap->guest_table_lock);
318 	if (*table & _REGION_ENTRY_INVALID) {
319 		list_add(&page->lru, &gmap->crst_list);
320 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
321 			(*table & _REGION_ENTRY_TYPE_MASK);
322 		page->index = gaddr;
323 		page = NULL;
324 	}
325 	spin_unlock(&gmap->guest_table_lock);
326 	if (page)
327 		__free_pages(page, CRST_ALLOC_ORDER);
328 	return 0;
329 }
330 
331 /**
332  * __gmap_segment_gaddr - find virtual address from segment pointer
333  * @entry: pointer to a segment table entry in the guest address space
334  *
335  * Returns the virtual address in the guest address space for the segment
336  */
__gmap_segment_gaddr(unsigned long * entry)337 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
338 {
339 	struct page *page;
340 	unsigned long offset, mask;
341 
342 	offset = (unsigned long) entry / sizeof(unsigned long);
343 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
344 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
345 	page = virt_to_page((void *)((unsigned long) entry & mask));
346 	return page->index + offset;
347 }
348 
349 /**
350  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
351  * @gmap: pointer to the guest address space structure
352  * @vmaddr: address in the host process address space
353  *
354  * Returns 1 if a TLB flush is required
355  */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
357 {
358 	unsigned long *entry;
359 	int flush = 0;
360 
361 	BUG_ON(gmap_is_shadow(gmap));
362 	spin_lock(&gmap->guest_table_lock);
363 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
364 	if (entry) {
365 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
366 		*entry = _SEGMENT_ENTRY_EMPTY;
367 	}
368 	spin_unlock(&gmap->guest_table_lock);
369 	return flush;
370 }
371 
372 /**
373  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
374  * @gmap: pointer to the guest address space structure
375  * @gaddr: address in the guest address space
376  *
377  * Returns 1 if a TLB flush is required
378  */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
380 {
381 	unsigned long vmaddr;
382 
383 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
384 						   gaddr >> PMD_SHIFT);
385 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
386 }
387 
388 /**
389  * gmap_unmap_segment - unmap segment from the guest address space
390  * @gmap: pointer to the guest address space structure
391  * @to: address in the guest address space
392  * @len: length of the memory area to unmap
393  *
394  * Returns 0 if the unmap succeeded, -EINVAL if not.
395  */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
397 {
398 	unsigned long off;
399 	int flush;
400 
401 	BUG_ON(gmap_is_shadow(gmap));
402 	if ((to | len) & (PMD_SIZE - 1))
403 		return -EINVAL;
404 	if (len == 0 || to + len < to)
405 		return -EINVAL;
406 
407 	flush = 0;
408 	mmap_write_lock(gmap->mm);
409 	for (off = 0; off < len; off += PMD_SIZE)
410 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
411 	mmap_write_unlock(gmap->mm);
412 	if (flush)
413 		gmap_flush_tlb(gmap);
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
417 
418 /**
419  * gmap_map_segment - map a segment to the guest address space
420  * @gmap: pointer to the guest address space structure
421  * @from: source address in the parent address space
422  * @to: target address in the guest address space
423  * @len: length of the memory area to map
424  *
425  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
426  */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)427 int gmap_map_segment(struct gmap *gmap, unsigned long from,
428 		     unsigned long to, unsigned long len)
429 {
430 	unsigned long off;
431 	int flush;
432 
433 	BUG_ON(gmap_is_shadow(gmap));
434 	if ((from | to | len) & (PMD_SIZE - 1))
435 		return -EINVAL;
436 	if (len == 0 || from + len < from || to + len < to ||
437 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
438 		return -EINVAL;
439 
440 	flush = 0;
441 	mmap_write_lock(gmap->mm);
442 	for (off = 0; off < len; off += PMD_SIZE) {
443 		/* Remove old translation */
444 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
445 		/* Store new translation */
446 		if (radix_tree_insert(&gmap->guest_to_host,
447 				      (to + off) >> PMD_SHIFT,
448 				      (void *) from + off))
449 			break;
450 	}
451 	mmap_write_unlock(gmap->mm);
452 	if (flush)
453 		gmap_flush_tlb(gmap);
454 	if (off >= len)
455 		return 0;
456 	gmap_unmap_segment(gmap, to, len);
457 	return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(gmap_map_segment);
460 
461 /**
462  * __gmap_translate - translate a guest address to a user space address
463  * @gmap: pointer to guest mapping meta data structure
464  * @gaddr: guest address
465  *
466  * Returns user space address which corresponds to the guest address or
467  * -EFAULT if no such mapping exists.
468  * This function does not establish potentially missing page table entries.
469  * The mmap_lock of the mm that belongs to the address space must be held
470  * when this function gets called.
471  *
472  * Note: Can also be called for shadow gmaps.
473  */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
475 {
476 	unsigned long vmaddr;
477 
478 	vmaddr = (unsigned long)
479 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
480 	/* Note: guest_to_host is empty for a shadow gmap */
481 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
482 }
483 EXPORT_SYMBOL_GPL(__gmap_translate);
484 
485 /**
486  * gmap_translate - translate a guest address to a user space address
487  * @gmap: pointer to guest mapping meta data structure
488  * @gaddr: guest address
489  *
490  * Returns user space address which corresponds to the guest address or
491  * -EFAULT if no such mapping exists.
492  * This function does not establish potentially missing page table entries.
493  */
gmap_translate(struct gmap * gmap,unsigned long gaddr)494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
495 {
496 	unsigned long rc;
497 
498 	mmap_read_lock(gmap->mm);
499 	rc = __gmap_translate(gmap, gaddr);
500 	mmap_read_unlock(gmap->mm);
501 	return rc;
502 }
503 EXPORT_SYMBOL_GPL(gmap_translate);
504 
505 /**
506  * gmap_unlink - disconnect a page table from the gmap shadow tables
507  * @gmap: pointer to guest mapping meta data structure
508  * @table: pointer to the host page table
509  * @vmaddr: vm address associated with the host page table
510  */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)511 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
512 		 unsigned long vmaddr)
513 {
514 	struct gmap *gmap;
515 	int flush;
516 
517 	rcu_read_lock();
518 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
519 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
520 		if (flush)
521 			gmap_flush_tlb(gmap);
522 	}
523 	rcu_read_unlock();
524 }
525 
526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
527 			   unsigned long gaddr);
528 
529 /**
530  * gmap_link - set up shadow page tables to connect a host to a guest address
531  * @gmap: pointer to guest mapping meta data structure
532  * @gaddr: guest address
533  * @vmaddr: vm address
534  *
535  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
536  * if the vm address is already mapped to a different guest segment.
537  * The mmap_lock of the mm that belongs to the address space must be held
538  * when this function gets called.
539  */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
541 {
542 	struct mm_struct *mm;
543 	unsigned long *table;
544 	spinlock_t *ptl;
545 	pgd_t *pgd;
546 	p4d_t *p4d;
547 	pud_t *pud;
548 	pmd_t *pmd;
549 	u64 unprot;
550 	int rc;
551 
552 	BUG_ON(gmap_is_shadow(gmap));
553 	/* Create higher level tables in the gmap page table */
554 	table = gmap->table;
555 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
556 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
557 		if ((*table & _REGION_ENTRY_INVALID) &&
558 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
559 				     gaddr & _REGION1_MASK))
560 			return -ENOMEM;
561 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
562 	}
563 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
564 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
565 		if ((*table & _REGION_ENTRY_INVALID) &&
566 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
567 				     gaddr & _REGION2_MASK))
568 			return -ENOMEM;
569 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
570 	}
571 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
572 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
573 		if ((*table & _REGION_ENTRY_INVALID) &&
574 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
575 				     gaddr & _REGION3_MASK))
576 			return -ENOMEM;
577 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
578 	}
579 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
580 	/* Walk the parent mm page table */
581 	mm = gmap->mm;
582 	pgd = pgd_offset(mm, vmaddr);
583 	VM_BUG_ON(pgd_none(*pgd));
584 	p4d = p4d_offset(pgd, vmaddr);
585 	VM_BUG_ON(p4d_none(*p4d));
586 	pud = pud_offset(p4d, vmaddr);
587 	VM_BUG_ON(pud_none(*pud));
588 	/* large puds cannot yet be handled */
589 	if (pud_large(*pud))
590 		return -EFAULT;
591 	pmd = pmd_offset(pud, vmaddr);
592 	VM_BUG_ON(pmd_none(*pmd));
593 	/* Are we allowed to use huge pages? */
594 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
595 		return -EFAULT;
596 	/* Link gmap segment table entry location to page table. */
597 	rc = radix_tree_preload(GFP_KERNEL);
598 	if (rc)
599 		return rc;
600 	ptl = pmd_lock(mm, pmd);
601 	spin_lock(&gmap->guest_table_lock);
602 	if (*table == _SEGMENT_ENTRY_EMPTY) {
603 		rc = radix_tree_insert(&gmap->host_to_guest,
604 				       vmaddr >> PMD_SHIFT, table);
605 		if (!rc) {
606 			if (pmd_large(*pmd)) {
607 				*table = (pmd_val(*pmd) &
608 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
609 					| _SEGMENT_ENTRY_GMAP_UC;
610 			} else
611 				*table = pmd_val(*pmd) &
612 					_SEGMENT_ENTRY_HARDWARE_BITS;
613 		}
614 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
615 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
616 		unprot = (u64)*table;
617 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
618 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
619 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
620 	}
621 	spin_unlock(&gmap->guest_table_lock);
622 	spin_unlock(ptl);
623 	radix_tree_preload_end();
624 	return rc;
625 }
626 
627 /**
628  * gmap_fault - resolve a fault on a guest address
629  * @gmap: pointer to guest mapping meta data structure
630  * @gaddr: guest address
631  * @fault_flags: flags to pass down to handle_mm_fault()
632  *
633  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
634  * if the vm address is already mapped to a different guest segment.
635  */
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)636 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
637 	       unsigned int fault_flags)
638 {
639 	unsigned long vmaddr;
640 	int rc;
641 	bool unlocked;
642 
643 	mmap_read_lock(gmap->mm);
644 
645 retry:
646 	unlocked = false;
647 	vmaddr = __gmap_translate(gmap, gaddr);
648 	if (IS_ERR_VALUE(vmaddr)) {
649 		rc = vmaddr;
650 		goto out_up;
651 	}
652 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
653 			     &unlocked)) {
654 		rc = -EFAULT;
655 		goto out_up;
656 	}
657 	/*
658 	 * In the case that fixup_user_fault unlocked the mmap_lock during
659 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
660 	 */
661 	if (unlocked)
662 		goto retry;
663 
664 	rc = __gmap_link(gmap, gaddr, vmaddr);
665 out_up:
666 	mmap_read_unlock(gmap->mm);
667 	return rc;
668 }
669 EXPORT_SYMBOL_GPL(gmap_fault);
670 
671 /*
672  * this function is assumed to be called with mmap_lock held
673  */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
675 {
676 	unsigned long vmaddr;
677 	spinlock_t *ptl;
678 	pte_t *ptep;
679 
680 	/* Find the vm address for the guest address */
681 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 						   gaddr >> PMD_SHIFT);
683 	if (vmaddr) {
684 		vmaddr |= gaddr & ~PMD_MASK;
685 		/* Get pointer to the page table entry */
686 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
687 		if (likely(ptep)) {
688 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
689 			pte_unmap_unlock(ptep, ptl);
690 		}
691 	}
692 }
693 EXPORT_SYMBOL_GPL(__gmap_zap);
694 
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)695 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
696 {
697 	unsigned long gaddr, vmaddr, size;
698 	struct vm_area_struct *vma;
699 
700 	mmap_read_lock(gmap->mm);
701 	for (gaddr = from; gaddr < to;
702 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
703 		/* Find the vm address for the guest address */
704 		vmaddr = (unsigned long)
705 			radix_tree_lookup(&gmap->guest_to_host,
706 					  gaddr >> PMD_SHIFT);
707 		if (!vmaddr)
708 			continue;
709 		vmaddr |= gaddr & ~PMD_MASK;
710 		/* Find vma in the parent mm */
711 		vma = find_vma(gmap->mm, vmaddr);
712 		if (!vma)
713 			continue;
714 		/*
715 		 * We do not discard pages that are backed by
716 		 * hugetlbfs, so we don't have to refault them.
717 		 */
718 		if (is_vm_hugetlb_page(vma))
719 			continue;
720 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
721 		zap_page_range(vma, vmaddr, size);
722 	}
723 	mmap_read_unlock(gmap->mm);
724 }
725 EXPORT_SYMBOL_GPL(gmap_discard);
726 
727 static LIST_HEAD(gmap_notifier_list);
728 static DEFINE_SPINLOCK(gmap_notifier_lock);
729 
730 /**
731  * gmap_register_pte_notifier - register a pte invalidation callback
732  * @nb: pointer to the gmap notifier block
733  */
gmap_register_pte_notifier(struct gmap_notifier * nb)734 void gmap_register_pte_notifier(struct gmap_notifier *nb)
735 {
736 	spin_lock(&gmap_notifier_lock);
737 	list_add_rcu(&nb->list, &gmap_notifier_list);
738 	spin_unlock(&gmap_notifier_lock);
739 }
740 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
741 
742 /**
743  * gmap_unregister_pte_notifier - remove a pte invalidation callback
744  * @nb: pointer to the gmap notifier block
745  */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)746 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
747 {
748 	spin_lock(&gmap_notifier_lock);
749 	list_del_rcu(&nb->list);
750 	spin_unlock(&gmap_notifier_lock);
751 	synchronize_rcu();
752 }
753 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
754 
755 /**
756  * gmap_call_notifier - call all registered invalidation callbacks
757  * @gmap: pointer to guest mapping meta data structure
758  * @start: start virtual address in the guest address space
759  * @end: end virtual address in the guest address space
760  */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)761 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
762 			       unsigned long end)
763 {
764 	struct gmap_notifier *nb;
765 
766 	list_for_each_entry(nb, &gmap_notifier_list, list)
767 		nb->notifier_call(gmap, start, end);
768 }
769 
770 /**
771  * gmap_table_walk - walk the gmap page tables
772  * @gmap: pointer to guest mapping meta data structure
773  * @gaddr: virtual address in the guest address space
774  * @level: page table level to stop at
775  *
776  * Returns a table entry pointer for the given guest address and @level
777  * @level=0 : returns a pointer to a page table table entry (or NULL)
778  * @level=1 : returns a pointer to a segment table entry (or NULL)
779  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
780  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
781  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
782  *
783  * Returns NULL if the gmap page tables could not be walked to the
784  * requested level.
785  *
786  * Note: Can also be called for shadow gmaps.
787  */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)788 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
789 					     unsigned long gaddr, int level)
790 {
791 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
792 	unsigned long *table = gmap->table;
793 
794 	if (gmap_is_shadow(gmap) && gmap->removed)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
798 		return NULL;
799 
800 	if (asce_type != _ASCE_TYPE_REGION1 &&
801 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
802 		return NULL;
803 
804 	switch (asce_type) {
805 	case _ASCE_TYPE_REGION1:
806 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
807 		if (level == 4)
808 			break;
809 		if (*table & _REGION_ENTRY_INVALID)
810 			return NULL;
811 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
812 		fallthrough;
813 	case _ASCE_TYPE_REGION2:
814 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
815 		if (level == 3)
816 			break;
817 		if (*table & _REGION_ENTRY_INVALID)
818 			return NULL;
819 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
820 		fallthrough;
821 	case _ASCE_TYPE_REGION3:
822 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
823 		if (level == 2)
824 			break;
825 		if (*table & _REGION_ENTRY_INVALID)
826 			return NULL;
827 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
828 		fallthrough;
829 	case _ASCE_TYPE_SEGMENT:
830 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
831 		if (level == 1)
832 			break;
833 		if (*table & _REGION_ENTRY_INVALID)
834 			return NULL;
835 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
836 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
837 	}
838 	return table;
839 }
840 
841 /**
842  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
843  *		      and return the pte pointer
844  * @gmap: pointer to guest mapping meta data structure
845  * @gaddr: virtual address in the guest address space
846  * @ptl: pointer to the spinlock pointer
847  *
848  * Returns a pointer to the locked pte for a guest address, or NULL
849  */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)850 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
851 			       spinlock_t **ptl)
852 {
853 	unsigned long *table;
854 
855 	BUG_ON(gmap_is_shadow(gmap));
856 	/* Walk the gmap page table, lock and get pte pointer */
857 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
858 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
859 		return NULL;
860 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
861 }
862 
863 /**
864  * gmap_pte_op_fixup - force a page in and connect the gmap page table
865  * @gmap: pointer to guest mapping meta data structure
866  * @gaddr: virtual address in the guest address space
867  * @vmaddr: address in the host process address space
868  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
869  *
870  * Returns 0 if the caller can retry __gmap_translate (might fail again),
871  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
872  * up or connecting the gmap page table.
873  */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)874 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
875 			     unsigned long vmaddr, int prot)
876 {
877 	struct mm_struct *mm = gmap->mm;
878 	unsigned int fault_flags;
879 	bool unlocked = false;
880 
881 	BUG_ON(gmap_is_shadow(gmap));
882 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
883 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
884 		return -EFAULT;
885 	if (unlocked)
886 		/* lost mmap_lock, caller has to retry __gmap_translate */
887 		return 0;
888 	/* Connect the page tables */
889 	return __gmap_link(gmap, gaddr, vmaddr);
890 }
891 
892 /**
893  * gmap_pte_op_end - release the page table lock
894  * @ptl: pointer to the spinlock pointer
895  */
gmap_pte_op_end(spinlock_t * ptl)896 static void gmap_pte_op_end(spinlock_t *ptl)
897 {
898 	if (ptl)
899 		spin_unlock(ptl);
900 }
901 
902 /**
903  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
904  *		      and return the pmd pointer
905  * @gmap: pointer to guest mapping meta data structure
906  * @gaddr: virtual address in the guest address space
907  *
908  * Returns a pointer to the pmd for a guest address, or NULL
909  */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)910 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
911 {
912 	pmd_t *pmdp;
913 
914 	BUG_ON(gmap_is_shadow(gmap));
915 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
916 	if (!pmdp)
917 		return NULL;
918 
919 	/* without huge pages, there is no need to take the table lock */
920 	if (!gmap->mm->context.allow_gmap_hpage_1m)
921 		return pmd_none(*pmdp) ? NULL : pmdp;
922 
923 	spin_lock(&gmap->guest_table_lock);
924 	if (pmd_none(*pmdp)) {
925 		spin_unlock(&gmap->guest_table_lock);
926 		return NULL;
927 	}
928 
929 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
930 	if (!pmd_large(*pmdp))
931 		spin_unlock(&gmap->guest_table_lock);
932 	return pmdp;
933 }
934 
935 /**
936  * gmap_pmd_op_end - release the guest_table_lock if needed
937  * @gmap: pointer to the guest mapping meta data structure
938  * @pmdp: pointer to the pmd
939  */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)940 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
941 {
942 	if (pmd_large(*pmdp))
943 		spin_unlock(&gmap->guest_table_lock);
944 }
945 
946 /*
947  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
948  * @pmdp: pointer to the pmd to be protected
949  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
950  * @bits: notification bits to set
951  *
952  * Returns:
953  * 0 if successfully protected
954  * -EAGAIN if a fixup is needed
955  * -EINVAL if unsupported notifier bits have been specified
956  *
957  * Expected to be called with sg->mm->mmap_lock in read and
958  * guest_table_lock held.
959  */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)960 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
961 			    pmd_t *pmdp, int prot, unsigned long bits)
962 {
963 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
964 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
965 	pmd_t new = *pmdp;
966 
967 	/* Fixup needed */
968 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
969 		return -EAGAIN;
970 
971 	if (prot == PROT_NONE && !pmd_i) {
972 		pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
973 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
974 	}
975 
976 	if (prot == PROT_READ && !pmd_p) {
977 		pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
978 		pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
979 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
980 	}
981 
982 	if (bits & GMAP_NOTIFY_MPROT)
983 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
984 
985 	/* Shadow GMAP protection needs split PMDs */
986 	if (bits & GMAP_NOTIFY_SHADOW)
987 		return -EINVAL;
988 
989 	return 0;
990 }
991 
992 /*
993  * gmap_protect_pte - remove access rights to memory and set pgste bits
994  * @gmap: pointer to guest mapping meta data structure
995  * @gaddr: virtual address in the guest address space
996  * @pmdp: pointer to the pmd associated with the pte
997  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
998  * @bits: notification bits to set
999  *
1000  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1001  * -EAGAIN if a fixup is needed.
1002  *
1003  * Expected to be called with sg->mm->mmap_lock in read
1004  */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)1005 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1006 			    pmd_t *pmdp, int prot, unsigned long bits)
1007 {
1008 	int rc;
1009 	pte_t *ptep;
1010 	spinlock_t *ptl = NULL;
1011 	unsigned long pbits = 0;
1012 
1013 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1014 		return -EAGAIN;
1015 
1016 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1017 	if (!ptep)
1018 		return -ENOMEM;
1019 
1020 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1021 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1022 	/* Protect and unlock. */
1023 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1024 	gmap_pte_op_end(ptl);
1025 	return rc;
1026 }
1027 
1028 /*
1029  * gmap_protect_range - remove access rights to memory and set pgste bits
1030  * @gmap: pointer to guest mapping meta data structure
1031  * @gaddr: virtual address in the guest address space
1032  * @len: size of area
1033  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1034  * @bits: pgste notification bits to set
1035  *
1036  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1037  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1038  *
1039  * Called with sg->mm->mmap_lock in read.
1040  */
gmap_protect_range(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot,unsigned long bits)1041 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1042 			      unsigned long len, int prot, unsigned long bits)
1043 {
1044 	unsigned long vmaddr, dist;
1045 	pmd_t *pmdp;
1046 	int rc;
1047 
1048 	BUG_ON(gmap_is_shadow(gmap));
1049 	while (len) {
1050 		rc = -EAGAIN;
1051 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1052 		if (pmdp) {
1053 			if (!pmd_large(*pmdp)) {
1054 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1055 						      bits);
1056 				if (!rc) {
1057 					len -= PAGE_SIZE;
1058 					gaddr += PAGE_SIZE;
1059 				}
1060 			} else {
1061 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1062 						      bits);
1063 				if (!rc) {
1064 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1065 					len = len < dist ? 0 : len - dist;
1066 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1067 				}
1068 			}
1069 			gmap_pmd_op_end(gmap, pmdp);
1070 		}
1071 		if (rc) {
1072 			if (rc == -EINVAL)
1073 				return rc;
1074 
1075 			/* -EAGAIN, fixup of userspace mm and gmap */
1076 			vmaddr = __gmap_translate(gmap, gaddr);
1077 			if (IS_ERR_VALUE(vmaddr))
1078 				return vmaddr;
1079 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1080 			if (rc)
1081 				return rc;
1082 		}
1083 	}
1084 	return 0;
1085 }
1086 
1087 /**
1088  * gmap_mprotect_notify - change access rights for a range of ptes and
1089  *                        call the notifier if any pte changes again
1090  * @gmap: pointer to guest mapping meta data structure
1091  * @gaddr: virtual address in the guest address space
1092  * @len: size of area
1093  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1094  *
1095  * Returns 0 if for each page in the given range a gmap mapping exists,
1096  * the new access rights could be set and the notifier could be armed.
1097  * If the gmap mapping is missing for one or more pages -EFAULT is
1098  * returned. If no memory could be allocated -ENOMEM is returned.
1099  * This function establishes missing page table entries.
1100  */
gmap_mprotect_notify(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot)1101 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1102 			 unsigned long len, int prot)
1103 {
1104 	int rc;
1105 
1106 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1107 		return -EINVAL;
1108 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1109 		return -EINVAL;
1110 	mmap_read_lock(gmap->mm);
1111 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1112 	mmap_read_unlock(gmap->mm);
1113 	return rc;
1114 }
1115 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1116 
1117 /**
1118  * gmap_read_table - get an unsigned long value from a guest page table using
1119  *                   absolute addressing, without marking the page referenced.
1120  * @gmap: pointer to guest mapping meta data structure
1121  * @gaddr: virtual address in the guest address space
1122  * @val: pointer to the unsigned long value to return
1123  *
1124  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1125  * if reading using the virtual address failed. -EINVAL if called on a gmap
1126  * shadow.
1127  *
1128  * Called with gmap->mm->mmap_lock in read.
1129  */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1130 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1131 {
1132 	unsigned long address, vmaddr;
1133 	spinlock_t *ptl;
1134 	pte_t *ptep, pte;
1135 	int rc;
1136 
1137 	if (gmap_is_shadow(gmap))
1138 		return -EINVAL;
1139 
1140 	while (1) {
1141 		rc = -EAGAIN;
1142 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1143 		if (ptep) {
1144 			pte = *ptep;
1145 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1146 				address = pte_val(pte) & PAGE_MASK;
1147 				address += gaddr & ~PAGE_MASK;
1148 				*val = *(unsigned long *) address;
1149 				pte_val(*ptep) |= _PAGE_YOUNG;
1150 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1151 				rc = 0;
1152 			}
1153 			gmap_pte_op_end(ptl);
1154 		}
1155 		if (!rc)
1156 			break;
1157 		vmaddr = __gmap_translate(gmap, gaddr);
1158 		if (IS_ERR_VALUE(vmaddr)) {
1159 			rc = vmaddr;
1160 			break;
1161 		}
1162 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1163 		if (rc)
1164 			break;
1165 	}
1166 	return rc;
1167 }
1168 EXPORT_SYMBOL_GPL(gmap_read_table);
1169 
1170 /**
1171  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1172  * @sg: pointer to the shadow guest address space structure
1173  * @vmaddr: vm address associated with the rmap
1174  * @rmap: pointer to the rmap structure
1175  *
1176  * Called with the sg->guest_table_lock
1177  */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1178 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1179 				    struct gmap_rmap *rmap)
1180 {
1181 	void __rcu **slot;
1182 
1183 	BUG_ON(!gmap_is_shadow(sg));
1184 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1185 	if (slot) {
1186 		rmap->next = radix_tree_deref_slot_protected(slot,
1187 							&sg->guest_table_lock);
1188 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1189 	} else {
1190 		rmap->next = NULL;
1191 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1192 				  rmap);
1193 	}
1194 }
1195 
1196 /**
1197  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1198  * @sg: pointer to the shadow guest address space structure
1199  * @raddr: rmap address in the shadow gmap
1200  * @paddr: address in the parent guest address space
1201  * @len: length of the memory area to protect
1202  *
1203  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1204  * if out of memory and -EFAULT if paddr is invalid.
1205  */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1206 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1207 			     unsigned long paddr, unsigned long len)
1208 {
1209 	struct gmap *parent;
1210 	struct gmap_rmap *rmap;
1211 	unsigned long vmaddr;
1212 	spinlock_t *ptl;
1213 	pte_t *ptep;
1214 	int rc;
1215 
1216 	BUG_ON(!gmap_is_shadow(sg));
1217 	parent = sg->parent;
1218 	while (len) {
1219 		vmaddr = __gmap_translate(parent, paddr);
1220 		if (IS_ERR_VALUE(vmaddr))
1221 			return vmaddr;
1222 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1223 		if (!rmap)
1224 			return -ENOMEM;
1225 		rmap->raddr = raddr;
1226 		rc = radix_tree_preload(GFP_KERNEL);
1227 		if (rc) {
1228 			kfree(rmap);
1229 			return rc;
1230 		}
1231 		rc = -EAGAIN;
1232 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1233 		if (ptep) {
1234 			spin_lock(&sg->guest_table_lock);
1235 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1236 					     PGSTE_VSIE_BIT);
1237 			if (!rc)
1238 				gmap_insert_rmap(sg, vmaddr, rmap);
1239 			spin_unlock(&sg->guest_table_lock);
1240 			gmap_pte_op_end(ptl);
1241 		}
1242 		radix_tree_preload_end();
1243 		if (rc) {
1244 			kfree(rmap);
1245 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1246 			if (rc)
1247 				return rc;
1248 			continue;
1249 		}
1250 		paddr += PAGE_SIZE;
1251 		len -= PAGE_SIZE;
1252 	}
1253 	return 0;
1254 }
1255 
1256 #define _SHADOW_RMAP_MASK	0x7
1257 #define _SHADOW_RMAP_REGION1	0x5
1258 #define _SHADOW_RMAP_REGION2	0x4
1259 #define _SHADOW_RMAP_REGION3	0x3
1260 #define _SHADOW_RMAP_SEGMENT	0x2
1261 #define _SHADOW_RMAP_PGTABLE	0x1
1262 
1263 /**
1264  * gmap_idte_one - invalidate a single region or segment table entry
1265  * @asce: region or segment table *origin* + table-type bits
1266  * @vaddr: virtual address to identify the table entry to flush
1267  *
1268  * The invalid bit of a single region or segment table entry is set
1269  * and the associated TLB entries depending on the entry are flushed.
1270  * The table-type of the @asce identifies the portion of the @vaddr
1271  * that is used as the invalidation index.
1272  */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1273 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1274 {
1275 	asm volatile(
1276 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1277 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1278 }
1279 
1280 /**
1281  * gmap_unshadow_page - remove a page from a shadow page table
1282  * @sg: pointer to the shadow guest address space structure
1283  * @raddr: rmap address in the shadow guest address space
1284  *
1285  * Called with the sg->guest_table_lock
1286  */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1287 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1288 {
1289 	unsigned long *table;
1290 
1291 	BUG_ON(!gmap_is_shadow(sg));
1292 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1293 	if (!table || *table & _PAGE_INVALID)
1294 		return;
1295 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1296 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1297 }
1298 
1299 /**
1300  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1301  * @sg: pointer to the shadow guest address space structure
1302  * @raddr: rmap address in the shadow guest address space
1303  * @pgt: pointer to the start of a shadow page table
1304  *
1305  * Called with the sg->guest_table_lock
1306  */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1307 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1308 				unsigned long *pgt)
1309 {
1310 	int i;
1311 
1312 	BUG_ON(!gmap_is_shadow(sg));
1313 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1314 		pgt[i] = _PAGE_INVALID;
1315 }
1316 
1317 /**
1318  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1319  * @sg: pointer to the shadow guest address space structure
1320  * @raddr: address in the shadow guest address space
1321  *
1322  * Called with the sg->guest_table_lock
1323  */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1324 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1325 {
1326 	unsigned long sto, *ste, *pgt;
1327 	struct page *page;
1328 
1329 	BUG_ON(!gmap_is_shadow(sg));
1330 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1331 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1332 		return;
1333 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1334 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1335 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1336 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1337 	*ste = _SEGMENT_ENTRY_EMPTY;
1338 	__gmap_unshadow_pgt(sg, raddr, pgt);
1339 	/* Free page table */
1340 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1341 	list_del(&page->lru);
1342 	page_table_free_pgste(page);
1343 }
1344 
1345 /**
1346  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1347  * @sg: pointer to the shadow guest address space structure
1348  * @raddr: rmap address in the shadow guest address space
1349  * @sgt: pointer to the start of a shadow segment table
1350  *
1351  * Called with the sg->guest_table_lock
1352  */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1353 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1354 				unsigned long *sgt)
1355 {
1356 	unsigned long *pgt;
1357 	struct page *page;
1358 	int i;
1359 
1360 	BUG_ON(!gmap_is_shadow(sg));
1361 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1362 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1363 			continue;
1364 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1365 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1366 		__gmap_unshadow_pgt(sg, raddr, pgt);
1367 		/* Free page table */
1368 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1369 		list_del(&page->lru);
1370 		page_table_free_pgste(page);
1371 	}
1372 }
1373 
1374 /**
1375  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1376  * @sg: pointer to the shadow guest address space structure
1377  * @raddr: rmap address in the shadow guest address space
1378  *
1379  * Called with the shadow->guest_table_lock
1380  */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1381 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1382 {
1383 	unsigned long r3o, *r3e, *sgt;
1384 	struct page *page;
1385 
1386 	BUG_ON(!gmap_is_shadow(sg));
1387 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1388 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1389 		return;
1390 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1391 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1392 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1393 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1394 	*r3e = _REGION3_ENTRY_EMPTY;
1395 	__gmap_unshadow_sgt(sg, raddr, sgt);
1396 	/* Free segment table */
1397 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1398 	list_del(&page->lru);
1399 	__free_pages(page, CRST_ALLOC_ORDER);
1400 }
1401 
1402 /**
1403  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1404  * @sg: pointer to the shadow guest address space structure
1405  * @raddr: address in the shadow guest address space
1406  * @r3t: pointer to the start of a shadow region-3 table
1407  *
1408  * Called with the sg->guest_table_lock
1409  */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1410 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1411 				unsigned long *r3t)
1412 {
1413 	unsigned long *sgt;
1414 	struct page *page;
1415 	int i;
1416 
1417 	BUG_ON(!gmap_is_shadow(sg));
1418 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1419 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1420 			continue;
1421 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1422 		r3t[i] = _REGION3_ENTRY_EMPTY;
1423 		__gmap_unshadow_sgt(sg, raddr, sgt);
1424 		/* Free segment table */
1425 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1426 		list_del(&page->lru);
1427 		__free_pages(page, CRST_ALLOC_ORDER);
1428 	}
1429 }
1430 
1431 /**
1432  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1433  * @sg: pointer to the shadow guest address space structure
1434  * @raddr: rmap address in the shadow guest address space
1435  *
1436  * Called with the sg->guest_table_lock
1437  */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1438 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1439 {
1440 	unsigned long r2o, *r2e, *r3t;
1441 	struct page *page;
1442 
1443 	BUG_ON(!gmap_is_shadow(sg));
1444 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1445 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1446 		return;
1447 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1448 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1449 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1450 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1451 	*r2e = _REGION2_ENTRY_EMPTY;
1452 	__gmap_unshadow_r3t(sg, raddr, r3t);
1453 	/* Free region 3 table */
1454 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1455 	list_del(&page->lru);
1456 	__free_pages(page, CRST_ALLOC_ORDER);
1457 }
1458 
1459 /**
1460  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1461  * @sg: pointer to the shadow guest address space structure
1462  * @raddr: rmap address in the shadow guest address space
1463  * @r2t: pointer to the start of a shadow region-2 table
1464  *
1465  * Called with the sg->guest_table_lock
1466  */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1467 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1468 				unsigned long *r2t)
1469 {
1470 	unsigned long *r3t;
1471 	struct page *page;
1472 	int i;
1473 
1474 	BUG_ON(!gmap_is_shadow(sg));
1475 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1476 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1477 			continue;
1478 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1479 		r2t[i] = _REGION2_ENTRY_EMPTY;
1480 		__gmap_unshadow_r3t(sg, raddr, r3t);
1481 		/* Free region 3 table */
1482 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1483 		list_del(&page->lru);
1484 		__free_pages(page, CRST_ALLOC_ORDER);
1485 	}
1486 }
1487 
1488 /**
1489  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1490  * @sg: pointer to the shadow guest address space structure
1491  * @raddr: rmap address in the shadow guest address space
1492  *
1493  * Called with the sg->guest_table_lock
1494  */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1495 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1496 {
1497 	unsigned long r1o, *r1e, *r2t;
1498 	struct page *page;
1499 
1500 	BUG_ON(!gmap_is_shadow(sg));
1501 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1502 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1503 		return;
1504 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1505 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1506 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1507 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1508 	*r1e = _REGION1_ENTRY_EMPTY;
1509 	__gmap_unshadow_r2t(sg, raddr, r2t);
1510 	/* Free region 2 table */
1511 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1512 	list_del(&page->lru);
1513 	__free_pages(page, CRST_ALLOC_ORDER);
1514 }
1515 
1516 /**
1517  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1518  * @sg: pointer to the shadow guest address space structure
1519  * @raddr: rmap address in the shadow guest address space
1520  * @r1t: pointer to the start of a shadow region-1 table
1521  *
1522  * Called with the shadow->guest_table_lock
1523  */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1524 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1525 				unsigned long *r1t)
1526 {
1527 	unsigned long asce, *r2t;
1528 	struct page *page;
1529 	int i;
1530 
1531 	BUG_ON(!gmap_is_shadow(sg));
1532 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1533 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1534 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1535 			continue;
1536 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1537 		__gmap_unshadow_r2t(sg, raddr, r2t);
1538 		/* Clear entry and flush translation r1t -> r2t */
1539 		gmap_idte_one(asce, raddr);
1540 		r1t[i] = _REGION1_ENTRY_EMPTY;
1541 		/* Free region 2 table */
1542 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1543 		list_del(&page->lru);
1544 		__free_pages(page, CRST_ALLOC_ORDER);
1545 	}
1546 }
1547 
1548 /**
1549  * gmap_unshadow - remove a shadow page table completely
1550  * @sg: pointer to the shadow guest address space structure
1551  *
1552  * Called with sg->guest_table_lock
1553  */
gmap_unshadow(struct gmap * sg)1554 static void gmap_unshadow(struct gmap *sg)
1555 {
1556 	unsigned long *table;
1557 
1558 	BUG_ON(!gmap_is_shadow(sg));
1559 	if (sg->removed)
1560 		return;
1561 	sg->removed = 1;
1562 	gmap_call_notifier(sg, 0, -1UL);
1563 	gmap_flush_tlb(sg);
1564 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1565 	switch (sg->asce & _ASCE_TYPE_MASK) {
1566 	case _ASCE_TYPE_REGION1:
1567 		__gmap_unshadow_r1t(sg, 0, table);
1568 		break;
1569 	case _ASCE_TYPE_REGION2:
1570 		__gmap_unshadow_r2t(sg, 0, table);
1571 		break;
1572 	case _ASCE_TYPE_REGION3:
1573 		__gmap_unshadow_r3t(sg, 0, table);
1574 		break;
1575 	case _ASCE_TYPE_SEGMENT:
1576 		__gmap_unshadow_sgt(sg, 0, table);
1577 		break;
1578 	}
1579 }
1580 
1581 /**
1582  * gmap_find_shadow - find a specific asce in the list of shadow tables
1583  * @parent: pointer to the parent gmap
1584  * @asce: ASCE for which the shadow table is created
1585  * @edat_level: edat level to be used for the shadow translation
1586  *
1587  * Returns the pointer to a gmap if a shadow table with the given asce is
1588  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1589  * otherwise NULL
1590  */
gmap_find_shadow(struct gmap * parent,unsigned long asce,int edat_level)1591 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1592 				     int edat_level)
1593 {
1594 	struct gmap *sg;
1595 
1596 	list_for_each_entry(sg, &parent->children, list) {
1597 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1598 		    sg->removed)
1599 			continue;
1600 		if (!sg->initialized)
1601 			return ERR_PTR(-EAGAIN);
1602 		refcount_inc(&sg->ref_count);
1603 		return sg;
1604 	}
1605 	return NULL;
1606 }
1607 
1608 /**
1609  * gmap_shadow_valid - check if a shadow guest address space matches the
1610  *                     given properties and is still valid
1611  * @sg: pointer to the shadow guest address space structure
1612  * @asce: ASCE for which the shadow table is requested
1613  * @edat_level: edat level to be used for the shadow translation
1614  *
1615  * Returns 1 if the gmap shadow is still valid and matches the given
1616  * properties, the caller can continue using it. Returns 0 otherwise, the
1617  * caller has to request a new shadow gmap in this case.
1618  *
1619  */
gmap_shadow_valid(struct gmap * sg,unsigned long asce,int edat_level)1620 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1621 {
1622 	if (sg->removed)
1623 		return 0;
1624 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1625 }
1626 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1627 
1628 /**
1629  * gmap_shadow - create/find a shadow guest address space
1630  * @parent: pointer to the parent gmap
1631  * @asce: ASCE for which the shadow table is created
1632  * @edat_level: edat level to be used for the shadow translation
1633  *
1634  * The pages of the top level page table referred by the asce parameter
1635  * will be set to read-only and marked in the PGSTEs of the kvm process.
1636  * The shadow table will be removed automatically on any change to the
1637  * PTE mapping for the source table.
1638  *
1639  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1640  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1641  * parent gmap table could not be protected.
1642  */
gmap_shadow(struct gmap * parent,unsigned long asce,int edat_level)1643 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1644 			 int edat_level)
1645 {
1646 	struct gmap *sg, *new;
1647 	unsigned long limit;
1648 	int rc;
1649 
1650 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1651 	BUG_ON(gmap_is_shadow(parent));
1652 	spin_lock(&parent->shadow_lock);
1653 	sg = gmap_find_shadow(parent, asce, edat_level);
1654 	spin_unlock(&parent->shadow_lock);
1655 	if (sg)
1656 		return sg;
1657 	/* Create a new shadow gmap */
1658 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1659 	if (asce & _ASCE_REAL_SPACE)
1660 		limit = -1UL;
1661 	new = gmap_alloc(limit);
1662 	if (!new)
1663 		return ERR_PTR(-ENOMEM);
1664 	new->mm = parent->mm;
1665 	new->parent = gmap_get(parent);
1666 	new->orig_asce = asce;
1667 	new->edat_level = edat_level;
1668 	new->initialized = false;
1669 	spin_lock(&parent->shadow_lock);
1670 	/* Recheck if another CPU created the same shadow */
1671 	sg = gmap_find_shadow(parent, asce, edat_level);
1672 	if (sg) {
1673 		spin_unlock(&parent->shadow_lock);
1674 		gmap_free(new);
1675 		return sg;
1676 	}
1677 	if (asce & _ASCE_REAL_SPACE) {
1678 		/* only allow one real-space gmap shadow */
1679 		list_for_each_entry(sg, &parent->children, list) {
1680 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1681 				spin_lock(&sg->guest_table_lock);
1682 				gmap_unshadow(sg);
1683 				spin_unlock(&sg->guest_table_lock);
1684 				list_del(&sg->list);
1685 				gmap_put(sg);
1686 				break;
1687 			}
1688 		}
1689 	}
1690 	refcount_set(&new->ref_count, 2);
1691 	list_add(&new->list, &parent->children);
1692 	if (asce & _ASCE_REAL_SPACE) {
1693 		/* nothing to protect, return right away */
1694 		new->initialized = true;
1695 		spin_unlock(&parent->shadow_lock);
1696 		return new;
1697 	}
1698 	spin_unlock(&parent->shadow_lock);
1699 	/* protect after insertion, so it will get properly invalidated */
1700 	mmap_read_lock(parent->mm);
1701 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1702 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1703 				PROT_READ, GMAP_NOTIFY_SHADOW);
1704 	mmap_read_unlock(parent->mm);
1705 	spin_lock(&parent->shadow_lock);
1706 	new->initialized = true;
1707 	if (rc) {
1708 		list_del(&new->list);
1709 		gmap_free(new);
1710 		new = ERR_PTR(rc);
1711 	}
1712 	spin_unlock(&parent->shadow_lock);
1713 	return new;
1714 }
1715 EXPORT_SYMBOL_GPL(gmap_shadow);
1716 
1717 /**
1718  * gmap_shadow_r2t - create an empty shadow region 2 table
1719  * @sg: pointer to the shadow guest address space structure
1720  * @saddr: faulting address in the shadow gmap
1721  * @r2t: parent gmap address of the region 2 table to get shadowed
1722  * @fake: r2t references contiguous guest memory block, not a r2t
1723  *
1724  * The r2t parameter specifies the address of the source table. The
1725  * four pages of the source table are made read-only in the parent gmap
1726  * address space. A write to the source table area @r2t will automatically
1727  * remove the shadow r2 table and all of its decendents.
1728  *
1729  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1730  * shadow table structure is incomplete, -ENOMEM if out of memory and
1731  * -EFAULT if an address in the parent gmap could not be resolved.
1732  *
1733  * Called with sg->mm->mmap_lock in read.
1734  */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1735 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1736 		    int fake)
1737 {
1738 	unsigned long raddr, origin, offset, len;
1739 	unsigned long *s_r2t, *table;
1740 	struct page *page;
1741 	int rc;
1742 
1743 	BUG_ON(!gmap_is_shadow(sg));
1744 	/* Allocate a shadow region second table */
1745 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1746 	if (!page)
1747 		return -ENOMEM;
1748 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1749 	if (fake)
1750 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1751 	s_r2t = (unsigned long *) page_to_phys(page);
1752 	/* Install shadow region second table */
1753 	spin_lock(&sg->guest_table_lock);
1754 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1755 	if (!table) {
1756 		rc = -EAGAIN;		/* Race with unshadow */
1757 		goto out_free;
1758 	}
1759 	if (!(*table & _REGION_ENTRY_INVALID)) {
1760 		rc = 0;			/* Already established */
1761 		goto out_free;
1762 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1763 		rc = -EAGAIN;		/* Race with shadow */
1764 		goto out_free;
1765 	}
1766 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1767 	/* mark as invalid as long as the parent table is not protected */
1768 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1769 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1770 	if (sg->edat_level >= 1)
1771 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1772 	list_add(&page->lru, &sg->crst_list);
1773 	if (fake) {
1774 		/* nothing to protect for fake tables */
1775 		*table &= ~_REGION_ENTRY_INVALID;
1776 		spin_unlock(&sg->guest_table_lock);
1777 		return 0;
1778 	}
1779 	spin_unlock(&sg->guest_table_lock);
1780 	/* Make r2t read-only in parent gmap page table */
1781 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1782 	origin = r2t & _REGION_ENTRY_ORIGIN;
1783 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1784 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1785 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1786 	spin_lock(&sg->guest_table_lock);
1787 	if (!rc) {
1788 		table = gmap_table_walk(sg, saddr, 4);
1789 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1790 			      (unsigned long) s_r2t)
1791 			rc = -EAGAIN;		/* Race with unshadow */
1792 		else
1793 			*table &= ~_REGION_ENTRY_INVALID;
1794 	} else {
1795 		gmap_unshadow_r2t(sg, raddr);
1796 	}
1797 	spin_unlock(&sg->guest_table_lock);
1798 	return rc;
1799 out_free:
1800 	spin_unlock(&sg->guest_table_lock);
1801 	__free_pages(page, CRST_ALLOC_ORDER);
1802 	return rc;
1803 }
1804 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1805 
1806 /**
1807  * gmap_shadow_r3t - create a shadow region 3 table
1808  * @sg: pointer to the shadow guest address space structure
1809  * @saddr: faulting address in the shadow gmap
1810  * @r3t: parent gmap address of the region 3 table to get shadowed
1811  * @fake: r3t references contiguous guest memory block, not a r3t
1812  *
1813  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1814  * shadow table structure is incomplete, -ENOMEM if out of memory and
1815  * -EFAULT if an address in the parent gmap could not be resolved.
1816  *
1817  * Called with sg->mm->mmap_lock in read.
1818  */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1819 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1820 		    int fake)
1821 {
1822 	unsigned long raddr, origin, offset, len;
1823 	unsigned long *s_r3t, *table;
1824 	struct page *page;
1825 	int rc;
1826 
1827 	BUG_ON(!gmap_is_shadow(sg));
1828 	/* Allocate a shadow region second table */
1829 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1830 	if (!page)
1831 		return -ENOMEM;
1832 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1833 	if (fake)
1834 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1835 	s_r3t = (unsigned long *) page_to_phys(page);
1836 	/* Install shadow region second table */
1837 	spin_lock(&sg->guest_table_lock);
1838 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1839 	if (!table) {
1840 		rc = -EAGAIN;		/* Race with unshadow */
1841 		goto out_free;
1842 	}
1843 	if (!(*table & _REGION_ENTRY_INVALID)) {
1844 		rc = 0;			/* Already established */
1845 		goto out_free;
1846 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1847 		rc = -EAGAIN;		/* Race with shadow */
1848 		goto out_free;
1849 	}
1850 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1851 	/* mark as invalid as long as the parent table is not protected */
1852 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1853 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1854 	if (sg->edat_level >= 1)
1855 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1856 	list_add(&page->lru, &sg->crst_list);
1857 	if (fake) {
1858 		/* nothing to protect for fake tables */
1859 		*table &= ~_REGION_ENTRY_INVALID;
1860 		spin_unlock(&sg->guest_table_lock);
1861 		return 0;
1862 	}
1863 	spin_unlock(&sg->guest_table_lock);
1864 	/* Make r3t read-only in parent gmap page table */
1865 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1866 	origin = r3t & _REGION_ENTRY_ORIGIN;
1867 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1868 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1869 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1870 	spin_lock(&sg->guest_table_lock);
1871 	if (!rc) {
1872 		table = gmap_table_walk(sg, saddr, 3);
1873 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1874 			      (unsigned long) s_r3t)
1875 			rc = -EAGAIN;		/* Race with unshadow */
1876 		else
1877 			*table &= ~_REGION_ENTRY_INVALID;
1878 	} else {
1879 		gmap_unshadow_r3t(sg, raddr);
1880 	}
1881 	spin_unlock(&sg->guest_table_lock);
1882 	return rc;
1883 out_free:
1884 	spin_unlock(&sg->guest_table_lock);
1885 	__free_pages(page, CRST_ALLOC_ORDER);
1886 	return rc;
1887 }
1888 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1889 
1890 /**
1891  * gmap_shadow_sgt - create a shadow segment table
1892  * @sg: pointer to the shadow guest address space structure
1893  * @saddr: faulting address in the shadow gmap
1894  * @sgt: parent gmap address of the segment table to get shadowed
1895  * @fake: sgt references contiguous guest memory block, not a sgt
1896  *
1897  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1898  * shadow table structure is incomplete, -ENOMEM if out of memory and
1899  * -EFAULT if an address in the parent gmap could not be resolved.
1900  *
1901  * Called with sg->mm->mmap_lock in read.
1902  */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1903 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1904 		    int fake)
1905 {
1906 	unsigned long raddr, origin, offset, len;
1907 	unsigned long *s_sgt, *table;
1908 	struct page *page;
1909 	int rc;
1910 
1911 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1912 	/* Allocate a shadow segment table */
1913 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1914 	if (!page)
1915 		return -ENOMEM;
1916 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1917 	if (fake)
1918 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1919 	s_sgt = (unsigned long *) page_to_phys(page);
1920 	/* Install shadow region second table */
1921 	spin_lock(&sg->guest_table_lock);
1922 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1923 	if (!table) {
1924 		rc = -EAGAIN;		/* Race with unshadow */
1925 		goto out_free;
1926 	}
1927 	if (!(*table & _REGION_ENTRY_INVALID)) {
1928 		rc = 0;			/* Already established */
1929 		goto out_free;
1930 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1931 		rc = -EAGAIN;		/* Race with shadow */
1932 		goto out_free;
1933 	}
1934 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1935 	/* mark as invalid as long as the parent table is not protected */
1936 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1937 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1938 	if (sg->edat_level >= 1)
1939 		*table |= sgt & _REGION_ENTRY_PROTECT;
1940 	list_add(&page->lru, &sg->crst_list);
1941 	if (fake) {
1942 		/* nothing to protect for fake tables */
1943 		*table &= ~_REGION_ENTRY_INVALID;
1944 		spin_unlock(&sg->guest_table_lock);
1945 		return 0;
1946 	}
1947 	spin_unlock(&sg->guest_table_lock);
1948 	/* Make sgt read-only in parent gmap page table */
1949 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1950 	origin = sgt & _REGION_ENTRY_ORIGIN;
1951 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1952 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1953 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1954 	spin_lock(&sg->guest_table_lock);
1955 	if (!rc) {
1956 		table = gmap_table_walk(sg, saddr, 2);
1957 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1958 			      (unsigned long) s_sgt)
1959 			rc = -EAGAIN;		/* Race with unshadow */
1960 		else
1961 			*table &= ~_REGION_ENTRY_INVALID;
1962 	} else {
1963 		gmap_unshadow_sgt(sg, raddr);
1964 	}
1965 	spin_unlock(&sg->guest_table_lock);
1966 	return rc;
1967 out_free:
1968 	spin_unlock(&sg->guest_table_lock);
1969 	__free_pages(page, CRST_ALLOC_ORDER);
1970 	return rc;
1971 }
1972 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1973 
1974 /**
1975  * gmap_shadow_lookup_pgtable - find a shadow page table
1976  * @sg: pointer to the shadow guest address space structure
1977  * @saddr: the address in the shadow aguest address space
1978  * @pgt: parent gmap address of the page table to get shadowed
1979  * @dat_protection: if the pgtable is marked as protected by dat
1980  * @fake: pgt references contiguous guest memory block, not a pgtable
1981  *
1982  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1983  * table was not found.
1984  *
1985  * Called with sg->mm->mmap_lock in read.
1986  */
gmap_shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)1987 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1988 			   unsigned long *pgt, int *dat_protection,
1989 			   int *fake)
1990 {
1991 	unsigned long *table;
1992 	struct page *page;
1993 	int rc;
1994 
1995 	BUG_ON(!gmap_is_shadow(sg));
1996 	spin_lock(&sg->guest_table_lock);
1997 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1998 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1999 		/* Shadow page tables are full pages (pte+pgste) */
2000 		page = pfn_to_page(*table >> PAGE_SHIFT);
2001 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2002 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2003 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2004 		rc = 0;
2005 	} else  {
2006 		rc = -EAGAIN;
2007 	}
2008 	spin_unlock(&sg->guest_table_lock);
2009 	return rc;
2010 
2011 }
2012 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2013 
2014 /**
2015  * gmap_shadow_pgt - instantiate a shadow page table
2016  * @sg: pointer to the shadow guest address space structure
2017  * @saddr: faulting address in the shadow gmap
2018  * @pgt: parent gmap address of the page table to get shadowed
2019  * @fake: pgt references contiguous guest memory block, not a pgtable
2020  *
2021  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2022  * shadow table structure is incomplete, -ENOMEM if out of memory,
2023  * -EFAULT if an address in the parent gmap could not be resolved and
2024  *
2025  * Called with gmap->mm->mmap_lock in read
2026  */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)2027 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2028 		    int fake)
2029 {
2030 	unsigned long raddr, origin;
2031 	unsigned long *s_pgt, *table;
2032 	struct page *page;
2033 	int rc;
2034 
2035 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2036 	/* Allocate a shadow page table */
2037 	page = page_table_alloc_pgste(sg->mm);
2038 	if (!page)
2039 		return -ENOMEM;
2040 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2041 	if (fake)
2042 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2043 	s_pgt = (unsigned long *) page_to_phys(page);
2044 	/* Install shadow page table */
2045 	spin_lock(&sg->guest_table_lock);
2046 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2047 	if (!table) {
2048 		rc = -EAGAIN;		/* Race with unshadow */
2049 		goto out_free;
2050 	}
2051 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2052 		rc = 0;			/* Already established */
2053 		goto out_free;
2054 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2055 		rc = -EAGAIN;		/* Race with shadow */
2056 		goto out_free;
2057 	}
2058 	/* mark as invalid as long as the parent table is not protected */
2059 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2060 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2061 	list_add(&page->lru, &sg->pt_list);
2062 	if (fake) {
2063 		/* nothing to protect for fake tables */
2064 		*table &= ~_SEGMENT_ENTRY_INVALID;
2065 		spin_unlock(&sg->guest_table_lock);
2066 		return 0;
2067 	}
2068 	spin_unlock(&sg->guest_table_lock);
2069 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2070 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2071 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2072 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2073 	spin_lock(&sg->guest_table_lock);
2074 	if (!rc) {
2075 		table = gmap_table_walk(sg, saddr, 1);
2076 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2077 			      (unsigned long) s_pgt)
2078 			rc = -EAGAIN;		/* Race with unshadow */
2079 		else
2080 			*table &= ~_SEGMENT_ENTRY_INVALID;
2081 	} else {
2082 		gmap_unshadow_pgt(sg, raddr);
2083 	}
2084 	spin_unlock(&sg->guest_table_lock);
2085 	return rc;
2086 out_free:
2087 	spin_unlock(&sg->guest_table_lock);
2088 	page_table_free_pgste(page);
2089 	return rc;
2090 
2091 }
2092 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2093 
2094 /**
2095  * gmap_shadow_page - create a shadow page mapping
2096  * @sg: pointer to the shadow guest address space structure
2097  * @saddr: faulting address in the shadow gmap
2098  * @pte: pte in parent gmap address space to get shadowed
2099  *
2100  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2101  * shadow table structure is incomplete, -ENOMEM if out of memory and
2102  * -EFAULT if an address in the parent gmap could not be resolved.
2103  *
2104  * Called with sg->mm->mmap_lock in read.
2105  */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)2106 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2107 {
2108 	struct gmap *parent;
2109 	struct gmap_rmap *rmap;
2110 	unsigned long vmaddr, paddr;
2111 	spinlock_t *ptl;
2112 	pte_t *sptep, *tptep;
2113 	int prot;
2114 	int rc;
2115 
2116 	BUG_ON(!gmap_is_shadow(sg));
2117 	parent = sg->parent;
2118 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2119 
2120 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
2121 	if (!rmap)
2122 		return -ENOMEM;
2123 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2124 
2125 	while (1) {
2126 		paddr = pte_val(pte) & PAGE_MASK;
2127 		vmaddr = __gmap_translate(parent, paddr);
2128 		if (IS_ERR_VALUE(vmaddr)) {
2129 			rc = vmaddr;
2130 			break;
2131 		}
2132 		rc = radix_tree_preload(GFP_KERNEL);
2133 		if (rc)
2134 			break;
2135 		rc = -EAGAIN;
2136 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2137 		if (sptep) {
2138 			spin_lock(&sg->guest_table_lock);
2139 			/* Get page table pointer */
2140 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2141 			if (!tptep) {
2142 				spin_unlock(&sg->guest_table_lock);
2143 				gmap_pte_op_end(ptl);
2144 				radix_tree_preload_end();
2145 				break;
2146 			}
2147 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2148 			if (rc > 0) {
2149 				/* Success and a new mapping */
2150 				gmap_insert_rmap(sg, vmaddr, rmap);
2151 				rmap = NULL;
2152 				rc = 0;
2153 			}
2154 			gmap_pte_op_end(ptl);
2155 			spin_unlock(&sg->guest_table_lock);
2156 		}
2157 		radix_tree_preload_end();
2158 		if (!rc)
2159 			break;
2160 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2161 		if (rc)
2162 			break;
2163 	}
2164 	kfree(rmap);
2165 	return rc;
2166 }
2167 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2168 
2169 /**
2170  * gmap_shadow_notify - handle notifications for shadow gmap
2171  *
2172  * Called with sg->parent->shadow_lock.
2173  */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)2174 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2175 			       unsigned long gaddr)
2176 {
2177 	struct gmap_rmap *rmap, *rnext, *head;
2178 	unsigned long start, end, bits, raddr;
2179 
2180 	BUG_ON(!gmap_is_shadow(sg));
2181 
2182 	spin_lock(&sg->guest_table_lock);
2183 	if (sg->removed) {
2184 		spin_unlock(&sg->guest_table_lock);
2185 		return;
2186 	}
2187 	/* Check for top level table */
2188 	start = sg->orig_asce & _ASCE_ORIGIN;
2189 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2190 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2191 	    gaddr < end) {
2192 		/* The complete shadow table has to go */
2193 		gmap_unshadow(sg);
2194 		spin_unlock(&sg->guest_table_lock);
2195 		list_del(&sg->list);
2196 		gmap_put(sg);
2197 		return;
2198 	}
2199 	/* Remove the page table tree from on specific entry */
2200 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2201 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2202 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2203 		raddr = rmap->raddr ^ bits;
2204 		switch (bits) {
2205 		case _SHADOW_RMAP_REGION1:
2206 			gmap_unshadow_r2t(sg, raddr);
2207 			break;
2208 		case _SHADOW_RMAP_REGION2:
2209 			gmap_unshadow_r3t(sg, raddr);
2210 			break;
2211 		case _SHADOW_RMAP_REGION3:
2212 			gmap_unshadow_sgt(sg, raddr);
2213 			break;
2214 		case _SHADOW_RMAP_SEGMENT:
2215 			gmap_unshadow_pgt(sg, raddr);
2216 			break;
2217 		case _SHADOW_RMAP_PGTABLE:
2218 			gmap_unshadow_page(sg, raddr);
2219 			break;
2220 		}
2221 		kfree(rmap);
2222 	}
2223 	spin_unlock(&sg->guest_table_lock);
2224 }
2225 
2226 /**
2227  * ptep_notify - call all invalidation callbacks for a specific pte.
2228  * @mm: pointer to the process mm_struct
2229  * @addr: virtual address in the process address space
2230  * @pte: pointer to the page table entry
2231  * @bits: bits from the pgste that caused the notify call
2232  *
2233  * This function is assumed to be called with the page table lock held
2234  * for the pte to notify.
2235  */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)2236 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2237 		 pte_t *pte, unsigned long bits)
2238 {
2239 	unsigned long offset, gaddr = 0;
2240 	unsigned long *table;
2241 	struct gmap *gmap, *sg, *next;
2242 
2243 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2244 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2245 	rcu_read_lock();
2246 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2247 		spin_lock(&gmap->guest_table_lock);
2248 		table = radix_tree_lookup(&gmap->host_to_guest,
2249 					  vmaddr >> PMD_SHIFT);
2250 		if (table)
2251 			gaddr = __gmap_segment_gaddr(table) + offset;
2252 		spin_unlock(&gmap->guest_table_lock);
2253 		if (!table)
2254 			continue;
2255 
2256 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2257 			spin_lock(&gmap->shadow_lock);
2258 			list_for_each_entry_safe(sg, next,
2259 						 &gmap->children, list)
2260 				gmap_shadow_notify(sg, vmaddr, gaddr);
2261 			spin_unlock(&gmap->shadow_lock);
2262 		}
2263 		if (bits & PGSTE_IN_BIT)
2264 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2265 	}
2266 	rcu_read_unlock();
2267 }
2268 EXPORT_SYMBOL_GPL(ptep_notify);
2269 
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2270 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2271 			     unsigned long gaddr)
2272 {
2273 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2274 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2275 }
2276 
2277 /**
2278  * gmap_pmdp_xchg - exchange a gmap pmd with another
2279  * @gmap: pointer to the guest address space structure
2280  * @pmdp: pointer to the pmd entry
2281  * @new: replacement entry
2282  * @gaddr: the affected guest address
2283  *
2284  * This function is assumed to be called with the guest_table_lock
2285  * held.
2286  */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2287 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2288 			   unsigned long gaddr)
2289 {
2290 	gaddr &= HPAGE_MASK;
2291 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2292 	pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2293 	if (MACHINE_HAS_TLB_GUEST)
2294 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2295 			    IDTE_GLOBAL);
2296 	else if (MACHINE_HAS_IDTE)
2297 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2298 	else
2299 		__pmdp_csp(pmdp);
2300 	*pmdp = new;
2301 }
2302 
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2303 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2304 			    int purge)
2305 {
2306 	pmd_t *pmdp;
2307 	struct gmap *gmap;
2308 	unsigned long gaddr;
2309 
2310 	rcu_read_lock();
2311 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2312 		spin_lock(&gmap->guest_table_lock);
2313 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2314 						  vmaddr >> PMD_SHIFT);
2315 		if (pmdp) {
2316 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2317 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2318 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2319 						   _SEGMENT_ENTRY_GMAP_UC));
2320 			if (purge)
2321 				__pmdp_csp(pmdp);
2322 			pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2323 		}
2324 		spin_unlock(&gmap->guest_table_lock);
2325 	}
2326 	rcu_read_unlock();
2327 }
2328 
2329 /**
2330  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2331  *                        flushing
2332  * @mm: pointer to the process mm_struct
2333  * @vmaddr: virtual address in the process address space
2334  */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2335 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2336 {
2337 	gmap_pmdp_clear(mm, vmaddr, 0);
2338 }
2339 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2340 
2341 /**
2342  * gmap_pmdp_csp - csp all affected guest pmd entries
2343  * @mm: pointer to the process mm_struct
2344  * @vmaddr: virtual address in the process address space
2345  */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2346 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2347 {
2348 	gmap_pmdp_clear(mm, vmaddr, 1);
2349 }
2350 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2351 
2352 /**
2353  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2354  * @mm: pointer to the process mm_struct
2355  * @vmaddr: virtual address in the process address space
2356  */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2357 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2358 {
2359 	unsigned long *entry, gaddr;
2360 	struct gmap *gmap;
2361 	pmd_t *pmdp;
2362 
2363 	rcu_read_lock();
2364 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2365 		spin_lock(&gmap->guest_table_lock);
2366 		entry = radix_tree_delete(&gmap->host_to_guest,
2367 					  vmaddr >> PMD_SHIFT);
2368 		if (entry) {
2369 			pmdp = (pmd_t *)entry;
2370 			gaddr = __gmap_segment_gaddr(entry);
2371 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2372 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2373 					   _SEGMENT_ENTRY_GMAP_UC));
2374 			if (MACHINE_HAS_TLB_GUEST)
2375 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2376 					    gmap->asce, IDTE_LOCAL);
2377 			else if (MACHINE_HAS_IDTE)
2378 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2379 			*entry = _SEGMENT_ENTRY_EMPTY;
2380 		}
2381 		spin_unlock(&gmap->guest_table_lock);
2382 	}
2383 	rcu_read_unlock();
2384 }
2385 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2386 
2387 /**
2388  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2389  * @mm: pointer to the process mm_struct
2390  * @vmaddr: virtual address in the process address space
2391  */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2392 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2393 {
2394 	unsigned long *entry, gaddr;
2395 	struct gmap *gmap;
2396 	pmd_t *pmdp;
2397 
2398 	rcu_read_lock();
2399 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2400 		spin_lock(&gmap->guest_table_lock);
2401 		entry = radix_tree_delete(&gmap->host_to_guest,
2402 					  vmaddr >> PMD_SHIFT);
2403 		if (entry) {
2404 			pmdp = (pmd_t *)entry;
2405 			gaddr = __gmap_segment_gaddr(entry);
2406 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2407 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2408 					   _SEGMENT_ENTRY_GMAP_UC));
2409 			if (MACHINE_HAS_TLB_GUEST)
2410 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2411 					    gmap->asce, IDTE_GLOBAL);
2412 			else if (MACHINE_HAS_IDTE)
2413 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2414 			else
2415 				__pmdp_csp(pmdp);
2416 			*entry = _SEGMENT_ENTRY_EMPTY;
2417 		}
2418 		spin_unlock(&gmap->guest_table_lock);
2419 	}
2420 	rcu_read_unlock();
2421 }
2422 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2423 
2424 /**
2425  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2426  * @gmap: pointer to guest address space
2427  * @pmdp: pointer to the pmd to be tested
2428  * @gaddr: virtual address in the guest address space
2429  *
2430  * This function is assumed to be called with the guest_table_lock
2431  * held.
2432  */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2433 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2434 					  unsigned long gaddr)
2435 {
2436 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2437 		return false;
2438 
2439 	/* Already protected memory, which did not change is clean */
2440 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2441 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2442 		return false;
2443 
2444 	/* Clear UC indication and reset protection */
2445 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2446 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2447 	return true;
2448 }
2449 
2450 /**
2451  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2452  * @gmap: pointer to guest address space
2453  * @bitmap: dirty bitmap for this pmd
2454  * @gaddr: virtual address in the guest address space
2455  * @vmaddr: virtual address in the host address space
2456  *
2457  * This function is assumed to be called with the guest_table_lock
2458  * held.
2459  */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2460 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2461 			     unsigned long gaddr, unsigned long vmaddr)
2462 {
2463 	int i;
2464 	pmd_t *pmdp;
2465 	pte_t *ptep;
2466 	spinlock_t *ptl;
2467 
2468 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2469 	if (!pmdp)
2470 		return;
2471 
2472 	if (pmd_large(*pmdp)) {
2473 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2474 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2475 	} else {
2476 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2477 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2478 			if (!ptep)
2479 				continue;
2480 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2481 				set_bit(i, bitmap);
2482 			spin_unlock(ptl);
2483 		}
2484 	}
2485 	gmap_pmd_op_end(gmap, pmdp);
2486 }
2487 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2488 
2489 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2490 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2491 				    unsigned long end, struct mm_walk *walk)
2492 {
2493 	struct vm_area_struct *vma = walk->vma;
2494 
2495 	split_huge_pmd(vma, pmd, addr);
2496 	return 0;
2497 }
2498 
2499 static const struct mm_walk_ops thp_split_walk_ops = {
2500 	.pmd_entry	= thp_split_walk_pmd_entry,
2501 };
2502 
thp_split_mm(struct mm_struct * mm)2503 static inline void thp_split_mm(struct mm_struct *mm)
2504 {
2505 	struct vm_area_struct *vma;
2506 
2507 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2508 		vma->vm_flags &= ~VM_HUGEPAGE;
2509 		vma->vm_flags |= VM_NOHUGEPAGE;
2510 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2511 	}
2512 	mm->def_flags |= VM_NOHUGEPAGE;
2513 }
2514 #else
thp_split_mm(struct mm_struct * mm)2515 static inline void thp_split_mm(struct mm_struct *mm)
2516 {
2517 }
2518 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2519 
2520 /*
2521  * Remove all empty zero pages from the mapping for lazy refaulting
2522  * - This must be called after mm->context.has_pgste is set, to avoid
2523  *   future creation of zero pages
2524  * - This must be called after THP was enabled
2525  */
__zap_zero_pages(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2526 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2527 			   unsigned long end, struct mm_walk *walk)
2528 {
2529 	unsigned long addr;
2530 
2531 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2532 		pte_t *ptep;
2533 		spinlock_t *ptl;
2534 
2535 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2536 		if (is_zero_pfn(pte_pfn(*ptep)))
2537 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2538 		pte_unmap_unlock(ptep, ptl);
2539 	}
2540 	return 0;
2541 }
2542 
2543 static const struct mm_walk_ops zap_zero_walk_ops = {
2544 	.pmd_entry	= __zap_zero_pages,
2545 };
2546 
2547 /*
2548  * switch on pgstes for its userspace process (for kvm)
2549  */
s390_enable_sie(void)2550 int s390_enable_sie(void)
2551 {
2552 	struct mm_struct *mm = current->mm;
2553 
2554 	/* Do we have pgstes? if yes, we are done */
2555 	if (mm_has_pgste(mm))
2556 		return 0;
2557 	/* Fail if the page tables are 2K */
2558 	if (!mm_alloc_pgste(mm))
2559 		return -EINVAL;
2560 	mmap_write_lock(mm);
2561 	mm->context.has_pgste = 1;
2562 	/* split thp mappings and disable thp for future mappings */
2563 	thp_split_mm(mm);
2564 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2565 	mmap_write_unlock(mm);
2566 	return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(s390_enable_sie);
2569 
gmap_mark_unmergeable(void)2570 int gmap_mark_unmergeable(void)
2571 {
2572 	struct mm_struct *mm = current->mm;
2573 	struct vm_area_struct *vma;
2574 	int ret;
2575 
2576 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2577 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2578 				  MADV_UNMERGEABLE, &vma->vm_flags);
2579 		if (ret)
2580 			return ret;
2581 	}
2582 	mm->def_flags &= ~VM_MERGEABLE;
2583 	return 0;
2584 }
2585 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2586 
2587 /*
2588  * Enable storage key handling from now on and initialize the storage
2589  * keys with the default key.
2590  */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2591 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2592 				  unsigned long next, struct mm_walk *walk)
2593 {
2594 	/* Clear storage key */
2595 	ptep_zap_key(walk->mm, addr, pte);
2596 	return 0;
2597 }
2598 
2599 /*
2600  * Give a chance to schedule after setting a key to 256 pages.
2601  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2602  * Both can sleep.
2603  */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2604 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2605 				  unsigned long next, struct mm_walk *walk)
2606 {
2607 	cond_resched();
2608 	return 0;
2609 }
2610 
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2611 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2612 				      unsigned long hmask, unsigned long next,
2613 				      struct mm_walk *walk)
2614 {
2615 	pmd_t *pmd = (pmd_t *)pte;
2616 	unsigned long start, end;
2617 	struct page *page = pmd_page(*pmd);
2618 
2619 	/*
2620 	 * The write check makes sure we do not set a key on shared
2621 	 * memory. This is needed as the walker does not differentiate
2622 	 * between actual guest memory and the process executable or
2623 	 * shared libraries.
2624 	 */
2625 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2626 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2627 		return 0;
2628 
2629 	start = pmd_val(*pmd) & HPAGE_MASK;
2630 	end = start + HPAGE_SIZE - 1;
2631 	__storage_key_init_range(start, end);
2632 	set_bit(PG_arch_1, &page->flags);
2633 	cond_resched();
2634 	return 0;
2635 }
2636 
2637 static const struct mm_walk_ops enable_skey_walk_ops = {
2638 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2639 	.pte_entry		= __s390_enable_skey_pte,
2640 	.pmd_entry		= __s390_enable_skey_pmd,
2641 };
2642 
s390_enable_skey(void)2643 int s390_enable_skey(void)
2644 {
2645 	struct mm_struct *mm = current->mm;
2646 	int rc = 0;
2647 
2648 	mmap_write_lock(mm);
2649 	if (mm_uses_skeys(mm))
2650 		goto out_up;
2651 
2652 	mm->context.uses_skeys = 1;
2653 	rc = gmap_mark_unmergeable();
2654 	if (rc) {
2655 		mm->context.uses_skeys = 0;
2656 		goto out_up;
2657 	}
2658 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2659 
2660 out_up:
2661 	mmap_write_unlock(mm);
2662 	return rc;
2663 }
2664 EXPORT_SYMBOL_GPL(s390_enable_skey);
2665 
2666 /*
2667  * Reset CMMA state, make all pages stable again.
2668  */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2669 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2670 			     unsigned long next, struct mm_walk *walk)
2671 {
2672 	ptep_zap_unused(walk->mm, addr, pte, 1);
2673 	return 0;
2674 }
2675 
2676 static const struct mm_walk_ops reset_cmma_walk_ops = {
2677 	.pte_entry		= __s390_reset_cmma,
2678 };
2679 
s390_reset_cmma(struct mm_struct * mm)2680 void s390_reset_cmma(struct mm_struct *mm)
2681 {
2682 	mmap_write_lock(mm);
2683 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2684 	mmap_write_unlock(mm);
2685 }
2686 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2687 
2688 /*
2689  * make inaccessible pages accessible again
2690  */
__s390_reset_acc(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2691 static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2692 			    unsigned long next, struct mm_walk *walk)
2693 {
2694 	pte_t pte = READ_ONCE(*ptep);
2695 
2696 	if (pte_present(pte))
2697 		WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK));
2698 	return 0;
2699 }
2700 
2701 static const struct mm_walk_ops reset_acc_walk_ops = {
2702 	.pte_entry		= __s390_reset_acc,
2703 };
2704 
2705 #include <linux/sched/mm.h>
s390_reset_acc(struct mm_struct * mm)2706 void s390_reset_acc(struct mm_struct *mm)
2707 {
2708 	if (!mm_is_protected(mm))
2709 		return;
2710 	/*
2711 	 * we might be called during
2712 	 * reset:                             we walk the pages and clear
2713 	 * close of all kvm file descriptors: we walk the pages and clear
2714 	 * exit of process on fd closure:     vma already gone, do nothing
2715 	 */
2716 	if (!mmget_not_zero(mm))
2717 		return;
2718 	mmap_read_lock(mm);
2719 	walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2720 	mmap_read_unlock(mm);
2721 	mmput(mm);
2722 }
2723 EXPORT_SYMBOL_GPL(s390_reset_acc);
2724 
2725 /**
2726  * s390_unlist_old_asce - Remove the topmost level of page tables from the
2727  * list of page tables of the gmap.
2728  * @gmap: the gmap whose table is to be removed
2729  *
2730  * On s390x, KVM keeps a list of all pages containing the page tables of the
2731  * gmap (the CRST list). This list is used at tear down time to free all
2732  * pages that are now not needed anymore.
2733  *
2734  * This function removes the topmost page of the tree (the one pointed to by
2735  * the ASCE) from the CRST list.
2736  *
2737  * This means that it will not be freed when the VM is torn down, and needs
2738  * to be handled separately by the caller, unless a leak is actually
2739  * intended. Notice that this function will only remove the page from the
2740  * list, the page will still be used as a top level page table (and ASCE).
2741  */
s390_unlist_old_asce(struct gmap * gmap)2742 void s390_unlist_old_asce(struct gmap *gmap)
2743 {
2744 	struct page *old;
2745 
2746 	old = virt_to_page(gmap->table);
2747 	spin_lock(&gmap->guest_table_lock);
2748 	list_del(&old->lru);
2749 	/*
2750 	 * Sometimes the topmost page might need to be "removed" multiple
2751 	 * times, for example if the VM is rebooted into secure mode several
2752 	 * times concurrently, or if s390_replace_asce fails after calling
2753 	 * s390_remove_old_asce and is attempted again later. In that case
2754 	 * the old asce has been removed from the list, and therefore it
2755 	 * will not be freed when the VM terminates, but the ASCE is still
2756 	 * in use and still pointed to.
2757 	 * A subsequent call to replace_asce will follow the pointer and try
2758 	 * to remove the same page from the list again.
2759 	 * Therefore it's necessary that the page of the ASCE has valid
2760 	 * pointers, so list_del can work (and do nothing) without
2761 	 * dereferencing stale or invalid pointers.
2762 	 */
2763 	INIT_LIST_HEAD(&old->lru);
2764 	spin_unlock(&gmap->guest_table_lock);
2765 }
2766 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2767 
2768 /**
2769  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2770  * @gmap: the gmap whose ASCE needs to be replaced
2771  *
2772  * If the allocation of the new top level page table fails, the ASCE is not
2773  * replaced.
2774  * In any case, the old ASCE is always removed from the gmap CRST list.
2775  * Therefore the caller has to make sure to save a pointer to it
2776  * beforehand, unless a leak is actually intended.
2777  */
s390_replace_asce(struct gmap * gmap)2778 int s390_replace_asce(struct gmap *gmap)
2779 {
2780 	unsigned long asce;
2781 	struct page *page;
2782 	void *table;
2783 
2784 	s390_unlist_old_asce(gmap);
2785 
2786 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2787 	if (!page)
2788 		return -ENOMEM;
2789 	table = page_to_virt(page);
2790 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2791 
2792 	/*
2793 	 * The caller has to deal with the old ASCE, but here we make sure
2794 	 * the new one is properly added to the CRST list, so that
2795 	 * it will be freed when the VM is torn down.
2796 	 */
2797 	spin_lock(&gmap->guest_table_lock);
2798 	list_add(&page->lru, &gmap->crst_list);
2799 	spin_unlock(&gmap->guest_table_lock);
2800 
2801 	/* Set new table origin while preserving existing ASCE control bits */
2802 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2803 	WRITE_ONCE(gmap->asce, asce);
2804 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2805 	WRITE_ONCE(gmap->table, table);
2806 
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL_GPL(s390_replace_asce);
2810