• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
11 /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
12 /// algorithm.
13 ///
14 /// The SCC iterator has the important property that if a node in SCC S1 has an
15 /// edge to a node in SCC S2, then it visits S1 *after* S2.
16 ///
17 /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
18 /// This requires some simple wrappers and is not supported yet.)
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_ADT_SCCITERATOR_H
23 #define LLVM_ADT_SCCITERATOR_H
24 
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/GraphTraits.h"
27 #include "llvm/ADT/iterator.h"
28 #include <cassert>
29 #include <cstddef>
30 #include <iterator>
31 #include <vector>
32 
33 namespace llvm {
34 
35 /// Enumerate the SCCs of a directed graph in reverse topological order
36 /// of the SCC DAG.
37 ///
38 /// This is implemented using Tarjan's DFS algorithm using an internal stack to
39 /// build up a vector of nodes in a particular SCC. Note that it is a forward
40 /// iterator and thus you cannot backtrack or re-visit nodes.
41 template <class GraphT, class GT = GraphTraits<GraphT>>
42 class scc_iterator : public iterator_facade_base<
43                          scc_iterator<GraphT, GT>, std::forward_iterator_tag,
44                          const std::vector<typename GT::NodeRef>, ptrdiff_t> {
45   using NodeRef = typename GT::NodeRef;
46   using ChildItTy = typename GT::ChildIteratorType;
47   using SccTy = std::vector<NodeRef>;
48   using reference = typename scc_iterator::reference;
49 
50   /// Element of VisitStack during DFS.
51   struct StackElement {
52     NodeRef Node;         ///< The current node pointer.
53     ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
54     unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
55 
StackElementStackElement56     StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
57         : Node(Node), NextChild(Child), MinVisited(Min) {}
58 
59     bool operator==(const StackElement &Other) const {
60       return Node == Other.Node &&
61              NextChild == Other.NextChild &&
62              MinVisited == Other.MinVisited;
63     }
64   };
65 
66   /// The visit counters used to detect when a complete SCC is on the stack.
67   /// visitNum is the global counter.
68   ///
69   /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
70   unsigned visitNum;
71   DenseMap<NodeRef, unsigned> nodeVisitNumbers;
72 
73   /// Stack holding nodes of the SCC.
74   std::vector<NodeRef> SCCNodeStack;
75 
76   /// The current SCC, retrieved using operator*().
77   SccTy CurrentSCC;
78 
79   /// DFS stack, Used to maintain the ordering.  The top contains the current
80   /// node, the next child to visit, and the minimum uplink value of all child
81   std::vector<StackElement> VisitStack;
82 
83   /// A single "visit" within the non-recursive DFS traversal.
84   void DFSVisitOne(NodeRef N);
85 
86   /// The stack-based DFS traversal; defined below.
87   void DFSVisitChildren();
88 
89   /// Compute the next SCC using the DFS traversal.
90   void GetNextSCC();
91 
scc_iterator(NodeRef entryN)92   scc_iterator(NodeRef entryN) : visitNum(0) {
93     DFSVisitOne(entryN);
94     GetNextSCC();
95   }
96 
97   /// End is when the DFS stack is empty.
98   scc_iterator() = default;
99 
100 public:
begin(const GraphT & G)101   static scc_iterator begin(const GraphT &G) {
102     return scc_iterator(GT::getEntryNode(G));
103   }
end(const GraphT &)104   static scc_iterator end(const GraphT &) { return scc_iterator(); }
105 
106   /// Direct loop termination test which is more efficient than
107   /// comparison with \c end().
isAtEnd()108   bool isAtEnd() const {
109     assert(!CurrentSCC.empty() || VisitStack.empty());
110     return CurrentSCC.empty();
111   }
112 
113   bool operator==(const scc_iterator &x) const {
114     return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
115   }
116 
117   scc_iterator &operator++() {
118     GetNextSCC();
119     return *this;
120   }
121 
122   reference operator*() const {
123     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
124     return CurrentSCC;
125   }
126 
127   /// Test if the current SCC has a loop.
128   ///
129   /// If the SCC has more than one node, this is trivially true.  If not, it may
130   /// still contain a loop if the node has an edge back to itself.
131   bool hasLoop() const;
132 
133   /// This informs the \c scc_iterator that the specified \c Old node
134   /// has been deleted, and \c New is to be used in its place.
ReplaceNode(NodeRef Old,NodeRef New)135   void ReplaceNode(NodeRef Old, NodeRef New) {
136     assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
137     // Do the assignment in two steps, in case 'New' is not yet in the map, and
138     // inserting it causes the map to grow.
139     auto tempVal = nodeVisitNumbers[Old];
140     nodeVisitNumbers[New] = tempVal;
141     nodeVisitNumbers.erase(Old);
142   }
143 };
144 
145 template <class GraphT, class GT>
DFSVisitOne(NodeRef N)146 void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
147   ++visitNum;
148   nodeVisitNumbers[N] = visitNum;
149   SCCNodeStack.push_back(N);
150   VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
151 #if 0 // Enable if needed when debugging.
152   dbgs() << "TarjanSCC: Node " << N <<
153         " : visitNum = " << visitNum << "\n";
154 #endif
155 }
156 
157 template <class GraphT, class GT>
DFSVisitChildren()158 void scc_iterator<GraphT, GT>::DFSVisitChildren() {
159   assert(!VisitStack.empty());
160   while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
161     // TOS has at least one more child so continue DFS
162     NodeRef childN = *VisitStack.back().NextChild++;
163     typename DenseMap<NodeRef, unsigned>::iterator Visited =
164         nodeVisitNumbers.find(childN);
165     if (Visited == nodeVisitNumbers.end()) {
166       // this node has never been seen.
167       DFSVisitOne(childN);
168       continue;
169     }
170 
171     unsigned childNum = Visited->second;
172     if (VisitStack.back().MinVisited > childNum)
173       VisitStack.back().MinVisited = childNum;
174   }
175 }
176 
GetNextSCC()177 template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
178   CurrentSCC.clear(); // Prepare to compute the next SCC
179   while (!VisitStack.empty()) {
180     DFSVisitChildren();
181 
182     // Pop the leaf on top of the VisitStack.
183     NodeRef visitingN = VisitStack.back().Node;
184     unsigned minVisitNum = VisitStack.back().MinVisited;
185     assert(VisitStack.back().NextChild == GT::child_end(visitingN));
186     VisitStack.pop_back();
187 
188     // Propagate MinVisitNum to parent so we can detect the SCC starting node.
189     if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
190       VisitStack.back().MinVisited = minVisitNum;
191 
192 #if 0 // Enable if needed when debugging.
193     dbgs() << "TarjanSCC: Popped node " << visitingN <<
194           " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
195           nodeVisitNumbers[visitingN] << "\n";
196 #endif
197 
198     if (minVisitNum != nodeVisitNumbers[visitingN])
199       continue;
200 
201     // A full SCC is on the SCCNodeStack!  It includes all nodes below
202     // visitingN on the stack.  Copy those nodes to CurrentSCC,
203     // reset their minVisit values, and return (this suspends
204     // the DFS traversal till the next ++).
205     do {
206       CurrentSCC.push_back(SCCNodeStack.back());
207       SCCNodeStack.pop_back();
208       nodeVisitNumbers[CurrentSCC.back()] = ~0U;
209     } while (CurrentSCC.back() != visitingN);
210     return;
211   }
212 }
213 
214 template <class GraphT, class GT>
hasLoop()215 bool scc_iterator<GraphT, GT>::hasLoop() const {
216     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
217     if (CurrentSCC.size() > 1)
218       return true;
219     NodeRef N = CurrentSCC.front();
220     for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
221          ++CI)
222       if (*CI == N)
223         return true;
224     return false;
225   }
226 
227 /// Construct the begin iterator for a deduced graph type T.
scc_begin(const T & G)228 template <class T> scc_iterator<T> scc_begin(const T &G) {
229   return scc_iterator<T>::begin(G);
230 }
231 
232 /// Construct the end iterator for a deduced graph type T.
scc_end(const T & G)233 template <class T> scc_iterator<T> scc_end(const T &G) {
234   return scc_iterator<T>::end(G);
235 }
236 
237 } // end namespace llvm
238 
239 #endif // LLVM_ADT_SCCITERATOR_H
240