1 //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
11 /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
12 /// algorithm.
13 ///
14 /// The SCC iterator has the important property that if a node in SCC S1 has an
15 /// edge to a node in SCC S2, then it visits S1 *after* S2.
16 ///
17 /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
18 /// This requires some simple wrappers and is not supported yet.)
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #ifndef LLVM_ADT_SCCITERATOR_H
23 #define LLVM_ADT_SCCITERATOR_H
24
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/GraphTraits.h"
27 #include "llvm/ADT/iterator.h"
28 #include <cassert>
29 #include <cstddef>
30 #include <iterator>
31 #include <vector>
32
33 namespace llvm {
34
35 /// Enumerate the SCCs of a directed graph in reverse topological order
36 /// of the SCC DAG.
37 ///
38 /// This is implemented using Tarjan's DFS algorithm using an internal stack to
39 /// build up a vector of nodes in a particular SCC. Note that it is a forward
40 /// iterator and thus you cannot backtrack or re-visit nodes.
41 template <class GraphT, class GT = GraphTraits<GraphT>>
42 class scc_iterator : public iterator_facade_base<
43 scc_iterator<GraphT, GT>, std::forward_iterator_tag,
44 const std::vector<typename GT::NodeRef>, ptrdiff_t> {
45 using NodeRef = typename GT::NodeRef;
46 using ChildItTy = typename GT::ChildIteratorType;
47 using SccTy = std::vector<NodeRef>;
48 using reference = typename scc_iterator::reference;
49
50 /// Element of VisitStack during DFS.
51 struct StackElement {
52 NodeRef Node; ///< The current node pointer.
53 ChildItTy NextChild; ///< The next child, modified inplace during DFS.
54 unsigned MinVisited; ///< Minimum uplink value of all children of Node.
55
StackElementStackElement56 StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
57 : Node(Node), NextChild(Child), MinVisited(Min) {}
58
59 bool operator==(const StackElement &Other) const {
60 return Node == Other.Node &&
61 NextChild == Other.NextChild &&
62 MinVisited == Other.MinVisited;
63 }
64 };
65
66 /// The visit counters used to detect when a complete SCC is on the stack.
67 /// visitNum is the global counter.
68 ///
69 /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
70 unsigned visitNum;
71 DenseMap<NodeRef, unsigned> nodeVisitNumbers;
72
73 /// Stack holding nodes of the SCC.
74 std::vector<NodeRef> SCCNodeStack;
75
76 /// The current SCC, retrieved using operator*().
77 SccTy CurrentSCC;
78
79 /// DFS stack, Used to maintain the ordering. The top contains the current
80 /// node, the next child to visit, and the minimum uplink value of all child
81 std::vector<StackElement> VisitStack;
82
83 /// A single "visit" within the non-recursive DFS traversal.
84 void DFSVisitOne(NodeRef N);
85
86 /// The stack-based DFS traversal; defined below.
87 void DFSVisitChildren();
88
89 /// Compute the next SCC using the DFS traversal.
90 void GetNextSCC();
91
scc_iterator(NodeRef entryN)92 scc_iterator(NodeRef entryN) : visitNum(0) {
93 DFSVisitOne(entryN);
94 GetNextSCC();
95 }
96
97 /// End is when the DFS stack is empty.
98 scc_iterator() = default;
99
100 public:
begin(const GraphT & G)101 static scc_iterator begin(const GraphT &G) {
102 return scc_iterator(GT::getEntryNode(G));
103 }
end(const GraphT &)104 static scc_iterator end(const GraphT &) { return scc_iterator(); }
105
106 /// Direct loop termination test which is more efficient than
107 /// comparison with \c end().
isAtEnd()108 bool isAtEnd() const {
109 assert(!CurrentSCC.empty() || VisitStack.empty());
110 return CurrentSCC.empty();
111 }
112
113 bool operator==(const scc_iterator &x) const {
114 return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
115 }
116
117 scc_iterator &operator++() {
118 GetNextSCC();
119 return *this;
120 }
121
122 reference operator*() const {
123 assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
124 return CurrentSCC;
125 }
126
127 /// Test if the current SCC has a loop.
128 ///
129 /// If the SCC has more than one node, this is trivially true. If not, it may
130 /// still contain a loop if the node has an edge back to itself.
131 bool hasLoop() const;
132
133 /// This informs the \c scc_iterator that the specified \c Old node
134 /// has been deleted, and \c New is to be used in its place.
ReplaceNode(NodeRef Old,NodeRef New)135 void ReplaceNode(NodeRef Old, NodeRef New) {
136 assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
137 // Do the assignment in two steps, in case 'New' is not yet in the map, and
138 // inserting it causes the map to grow.
139 auto tempVal = nodeVisitNumbers[Old];
140 nodeVisitNumbers[New] = tempVal;
141 nodeVisitNumbers.erase(Old);
142 }
143 };
144
145 template <class GraphT, class GT>
DFSVisitOne(NodeRef N)146 void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
147 ++visitNum;
148 nodeVisitNumbers[N] = visitNum;
149 SCCNodeStack.push_back(N);
150 VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
151 #if 0 // Enable if needed when debugging.
152 dbgs() << "TarjanSCC: Node " << N <<
153 " : visitNum = " << visitNum << "\n";
154 #endif
155 }
156
157 template <class GraphT, class GT>
DFSVisitChildren()158 void scc_iterator<GraphT, GT>::DFSVisitChildren() {
159 assert(!VisitStack.empty());
160 while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
161 // TOS has at least one more child so continue DFS
162 NodeRef childN = *VisitStack.back().NextChild++;
163 typename DenseMap<NodeRef, unsigned>::iterator Visited =
164 nodeVisitNumbers.find(childN);
165 if (Visited == nodeVisitNumbers.end()) {
166 // this node has never been seen.
167 DFSVisitOne(childN);
168 continue;
169 }
170
171 unsigned childNum = Visited->second;
172 if (VisitStack.back().MinVisited > childNum)
173 VisitStack.back().MinVisited = childNum;
174 }
175 }
176
GetNextSCC()177 template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
178 CurrentSCC.clear(); // Prepare to compute the next SCC
179 while (!VisitStack.empty()) {
180 DFSVisitChildren();
181
182 // Pop the leaf on top of the VisitStack.
183 NodeRef visitingN = VisitStack.back().Node;
184 unsigned minVisitNum = VisitStack.back().MinVisited;
185 assert(VisitStack.back().NextChild == GT::child_end(visitingN));
186 VisitStack.pop_back();
187
188 // Propagate MinVisitNum to parent so we can detect the SCC starting node.
189 if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
190 VisitStack.back().MinVisited = minVisitNum;
191
192 #if 0 // Enable if needed when debugging.
193 dbgs() << "TarjanSCC: Popped node " << visitingN <<
194 " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
195 nodeVisitNumbers[visitingN] << "\n";
196 #endif
197
198 if (minVisitNum != nodeVisitNumbers[visitingN])
199 continue;
200
201 // A full SCC is on the SCCNodeStack! It includes all nodes below
202 // visitingN on the stack. Copy those nodes to CurrentSCC,
203 // reset their minVisit values, and return (this suspends
204 // the DFS traversal till the next ++).
205 do {
206 CurrentSCC.push_back(SCCNodeStack.back());
207 SCCNodeStack.pop_back();
208 nodeVisitNumbers[CurrentSCC.back()] = ~0U;
209 } while (CurrentSCC.back() != visitingN);
210 return;
211 }
212 }
213
214 template <class GraphT, class GT>
hasLoop()215 bool scc_iterator<GraphT, GT>::hasLoop() const {
216 assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
217 if (CurrentSCC.size() > 1)
218 return true;
219 NodeRef N = CurrentSCC.front();
220 for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
221 ++CI)
222 if (*CI == N)
223 return true;
224 return false;
225 }
226
227 /// Construct the begin iterator for a deduced graph type T.
scc_begin(const T & G)228 template <class T> scc_iterator<T> scc_begin(const T &G) {
229 return scc_iterator<T>::begin(G);
230 }
231
232 /// Construct the end iterator for a deduced graph type T.
scc_end(const T & G)233 template <class T> scc_iterator<T> scc_end(const T &G) {
234 return scc_iterator<T>::end(G);
235 }
236
237 } // end namespace llvm
238
239 #endif // LLVM_ADT_SCCITERATOR_H
240