• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 enum {
58 	/*
59 	 * worker_pool flags
60 	 *
61 	 * A bound pool is either associated or disassociated with its CPU.
62 	 * While associated (!DISASSOCIATED), all workers are bound to the
63 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 	 * is in effect.
65 	 *
66 	 * While DISASSOCIATED, the cpu may be offline and all workers have
67 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 	 * be executing on any CPU.  The pool behaves as an unbound one.
69 	 *
70 	 * Note that DISASSOCIATED should be flipped only while holding
71 	 * wq_pool_attach_mutex to avoid changing binding state while
72 	 * worker_attach_to_pool() is in progress.
73 	 */
74 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
75 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
76 
77 	/* worker flags */
78 	WORKER_DIE		= 1 << 1,	/* die die die */
79 	WORKER_IDLE		= 1 << 2,	/* is idle */
80 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
81 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
82 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
83 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
84 
85 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
86 				  WORKER_UNBOUND | WORKER_REBOUND,
87 
88 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
89 
90 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
91 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
92 
93 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
94 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
95 
96 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
97 						/* call for help after 10ms
98 						   (min two ticks) */
99 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
100 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
101 
102 	/*
103 	 * Rescue workers are used only on emergencies and shared by
104 	 * all cpus.  Give MIN_NICE.
105 	 */
106 	RESCUER_NICE_LEVEL	= MIN_NICE,
107 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
108 
109 	WQ_NAME_LEN		= 24,
110 };
111 
112 /*
113  * Structure fields follow one of the following exclusion rules.
114  *
115  * I: Modifiable by initialization/destruction paths and read-only for
116  *    everyone else.
117  *
118  * P: Preemption protected.  Disabling preemption is enough and should
119  *    only be modified and accessed from the local cpu.
120  *
121  * L: pool->lock protected.  Access with pool->lock held.
122  *
123  * X: During normal operation, modification requires pool->lock and should
124  *    be done only from local cpu.  Either disabling preemption on local
125  *    cpu or grabbing pool->lock is enough for read access.  If
126  *    POOL_DISASSOCIATED is set, it's identical to L.
127  *
128  * A: wq_pool_attach_mutex protected.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
133  *
134  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
135  *
136  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
137  *      RCU for reads.
138  *
139  * WQ: wq->mutex protected.
140  *
141  * WR: wq->mutex protected for writes.  RCU protected for reads.
142  *
143  * MD: wq_mayday_lock protected.
144  */
145 
146 /* struct worker is defined in workqueue_internal.h */
147 
148 struct worker_pool {
149 	raw_spinlock_t		lock;		/* the pool lock */
150 	int			cpu;		/* I: the associated cpu */
151 	int			node;		/* I: the associated node ID */
152 	int			id;		/* I: pool ID */
153 	unsigned int		flags;		/* X: flags */
154 
155 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
156 
157 	struct list_head	worklist;	/* L: list of pending works */
158 
159 	int			nr_workers;	/* L: total number of workers */
160 	int			nr_idle;	/* L: currently idle workers */
161 
162 	struct list_head	idle_list;	/* X: list of idle workers */
163 	struct timer_list	idle_timer;	/* L: worker idle timeout */
164 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
165 
166 	/* a workers is either on busy_hash or idle_list, or the manager */
167 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 						/* L: hash of busy workers */
169 
170 	struct worker		*manager;	/* L: purely informational */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* MD: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	char			*lock_name;
265 	struct lock_class_key	key;
266 	struct lockdep_map	lockdep_map;
267 #endif
268 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
269 
270 	/*
271 	 * Destruction of workqueue_struct is RCU protected to allow walking
272 	 * the workqueues list without grabbing wq_pool_mutex.
273 	 * This is used to dump all workqueues from sysrq.
274 	 */
275 	struct rcu_head		rcu;
276 
277 	/* hot fields used during command issue, aligned to cacheline */
278 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282 
283 static struct kmem_cache *pwq_cache;
284 
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 					/* possible CPUs of each node */
287 
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290 
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294 
295 static bool wq_online;			/* can kworkers be created yet? */
296 
297 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
298 
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301 
302 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
305 /* wait for manager to go away */
306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307 
308 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
309 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
310 
311 /* PL: allowable cpus for unbound wqs and work items */
312 static cpumask_var_t wq_unbound_cpumask;
313 
314 /* CPU where unbound work was last round robin scheduled from this CPU */
315 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
316 
317 /*
318  * Local execution of unbound work items is no longer guaranteed.  The
319  * following always forces round-robin CPU selection on unbound work items
320  * to uncover usages which depend on it.
321  */
322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
323 static bool wq_debug_force_rr_cpu = true;
324 #else
325 static bool wq_debug_force_rr_cpu = false;
326 #endif
327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328 
329 /* the per-cpu worker pools */
330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331 
332 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
333 
334 /* PL: hash of all unbound pools keyed by pool->attrs */
335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336 
337 /* I: attributes used when instantiating standard unbound pools on demand */
338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 /* I: attributes used when instantiating ordered pools on demand */
341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342 
343 struct workqueue_struct *system_wq __read_mostly;
344 EXPORT_SYMBOL(system_wq);
345 struct workqueue_struct *system_highpri_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_highpri_wq);
347 struct workqueue_struct *system_long_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_long_wq);
349 struct workqueue_struct *system_unbound_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_unbound_wq);
351 struct workqueue_struct *system_freezable_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_wq);
353 struct workqueue_struct *system_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357 
358 static int worker_thread(void *__worker);
359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
360 static void show_pwq(struct pool_workqueue *pwq);
361 
362 #define CREATE_TRACE_POINTS
363 #include <trace/events/workqueue.h>
364 
365 #define assert_rcu_or_pool_mutex()					\
366 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
367 			 !lockdep_is_held(&wq_pool_mutex),		\
368 			 "RCU or wq_pool_mutex should be held")
369 
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
372 			 !lockdep_is_held(&wq->mutex) &&		\
373 			 !lockdep_is_held(&wq_pool_mutex),		\
374 			 "RCU, wq->mutex or wq_pool_mutex should be held")
375 
376 #define for_each_cpu_worker_pool(pool, cpu)				\
377 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
378 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 	     (pool)++)
380 
381 /**
382  * for_each_pool - iterate through all worker_pools in the system
383  * @pool: iteration cursor
384  * @pi: integer used for iteration
385  *
386  * This must be called either with wq_pool_mutex held or RCU read
387  * locked.  If the pool needs to be used beyond the locking in effect, the
388  * caller is responsible for guaranteeing that the pool stays online.
389  *
390  * The if/else clause exists only for the lockdep assertion and can be
391  * ignored.
392  */
393 #define for_each_pool(pool, pi)						\
394 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396 		else
397 
398 /**
399  * for_each_pool_worker - iterate through all workers of a worker_pool
400  * @worker: iteration cursor
401  * @pool: worker_pool to iterate workers of
402  *
403  * This must be called with wq_pool_attach_mutex.
404  *
405  * The if/else clause exists only for the lockdep assertion and can be
406  * ignored.
407  */
408 #define for_each_pool_worker(worker, pool)				\
409 	list_for_each_entry((worker), &(pool)->workers, node)		\
410 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
411 		else
412 
413 /**
414  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415  * @pwq: iteration cursor
416  * @wq: the target workqueue
417  *
418  * This must be called either with wq->mutex held or RCU read locked.
419  * If the pwq needs to be used beyond the locking in effect, the caller is
420  * responsible for guaranteeing that the pwq stays online.
421  *
422  * The if/else clause exists only for the lockdep assertion and can be
423  * ignored.
424  */
425 #define for_each_pwq(pwq, wq)						\
426 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
427 				 lockdep_is_held(&(wq->mutex)))
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static const struct debug_obj_descr work_debug_descr;
432 
work_debug_hint(void * addr)433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
work_is_static_object(void * addr)438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
work_fixup_init(void * addr,enum debug_obj_state state)449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
work_fixup_free(void * addr,enum debug_obj_state state)467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static const struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
debug_work_activate(struct work_struct * work)489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
debug_work_deactivate(struct work_struct * work)494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
__init_work(struct work_struct * work,int onstack)499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
destroy_work_on_stack(struct work_struct * work)508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
destroy_delayed_work_on_stack(struct delayed_work * work)514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
debug_work_activate(struct work_struct * work)522 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
worker_pool_assign_id(struct worker_pool * pool)533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
work_color_to_flags(int color)577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
get_work_color(struct work_struct * work)582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
work_next_color(int color)588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to queue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
clear_work_data(struct work_struct * work)676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
get_work_pwq(struct work_struct * work)682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
get_work_pool(struct work_struct * work)707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
get_work_pool_id(struct work_struct * work)732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
mark_work_canceling(struct work_struct * work)743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
work_is_canceling(struct work_struct * work)751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
__need_more_worker(struct worker_pool * pool)764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
need_more_worker(struct worker_pool * pool)777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * raw_spin_lock_irq(pool->lock).
832  */
wake_up_worker(struct worker_pool * pool)833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_running - a worker is running again
843  * @task: task waking up
844  *
845  * This function is called when a worker returns from schedule()
846  */
wq_worker_running(struct task_struct * task)847 void wq_worker_running(struct task_struct *task)
848 {
849 	struct worker *worker = kthread_data(task);
850 
851 	if (!worker->sleeping)
852 		return;
853 
854 	/*
855 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
856 	 * and the nr_running increment below, we may ruin the nr_running reset
857 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
858 	 * pool. Protect against such race.
859 	 */
860 	preempt_disable();
861 	if (!(worker->flags & WORKER_NOT_RUNNING))
862 		atomic_inc(&worker->pool->nr_running);
863 	preempt_enable();
864 	worker->sleeping = 0;
865 }
866 
867 /**
868  * wq_worker_sleeping - a worker is going to sleep
869  * @task: task going to sleep
870  *
871  * This function is called from schedule() when a busy worker is
872  * going to sleep. Preemption needs to be disabled to protect ->sleeping
873  * assignment.
874  */
wq_worker_sleeping(struct task_struct * task)875 void wq_worker_sleeping(struct task_struct *task)
876 {
877 	struct worker *next, *worker = kthread_data(task);
878 	struct worker_pool *pool;
879 
880 	/*
881 	 * Rescuers, which may not have all the fields set up like normal
882 	 * workers, also reach here, let's not access anything before
883 	 * checking NOT_RUNNING.
884 	 */
885 	if (worker->flags & WORKER_NOT_RUNNING)
886 		return;
887 
888 	pool = worker->pool;
889 
890 	/* Return if preempted before wq_worker_running() was reached */
891 	if (worker->sleeping)
892 		return;
893 
894 	worker->sleeping = 1;
895 	raw_spin_lock_irq(&pool->lock);
896 
897 	/*
898 	 * The counterpart of the following dec_and_test, implied mb,
899 	 * worklist not empty test sequence is in insert_work().
900 	 * Please read comment there.
901 	 *
902 	 * NOT_RUNNING is clear.  This means that we're bound to and
903 	 * running on the local cpu w/ rq lock held and preemption
904 	 * disabled, which in turn means that none else could be
905 	 * manipulating idle_list, so dereferencing idle_list without pool
906 	 * lock is safe.
907 	 */
908 	if (atomic_dec_and_test(&pool->nr_running) &&
909 	    !list_empty(&pool->worklist)) {
910 		next = first_idle_worker(pool);
911 		if (next)
912 			wake_up_process(next->task);
913 	}
914 	raw_spin_unlock_irq(&pool->lock);
915 }
916 
917 /**
918  * wq_worker_last_func - retrieve worker's last work function
919  * @task: Task to retrieve last work function of.
920  *
921  * Determine the last function a worker executed. This is called from
922  * the scheduler to get a worker's last known identity.
923  *
924  * CONTEXT:
925  * raw_spin_lock_irq(rq->lock)
926  *
927  * This function is called during schedule() when a kworker is going
928  * to sleep. It's used by psi to identify aggregation workers during
929  * dequeuing, to allow periodic aggregation to shut-off when that
930  * worker is the last task in the system or cgroup to go to sleep.
931  *
932  * As this function doesn't involve any workqueue-related locking, it
933  * only returns stable values when called from inside the scheduler's
934  * queuing and dequeuing paths, when @task, which must be a kworker,
935  * is guaranteed to not be processing any works.
936  *
937  * Return:
938  * The last work function %current executed as a worker, NULL if it
939  * hasn't executed any work yet.
940  */
wq_worker_last_func(struct task_struct * task)941 work_func_t wq_worker_last_func(struct task_struct *task)
942 {
943 	struct worker *worker = kthread_data(task);
944 
945 	return worker->last_func;
946 }
947 
948 /**
949  * worker_set_flags - set worker flags and adjust nr_running accordingly
950  * @worker: self
951  * @flags: flags to set
952  *
953  * Set @flags in @worker->flags and adjust nr_running accordingly.
954  *
955  * CONTEXT:
956  * raw_spin_lock_irq(pool->lock)
957  */
worker_set_flags(struct worker * worker,unsigned int flags)958 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
959 {
960 	struct worker_pool *pool = worker->pool;
961 
962 	WARN_ON_ONCE(worker->task != current);
963 
964 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
965 	if ((flags & WORKER_NOT_RUNNING) &&
966 	    !(worker->flags & WORKER_NOT_RUNNING)) {
967 		atomic_dec(&pool->nr_running);
968 	}
969 
970 	worker->flags |= flags;
971 }
972 
973 /**
974  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
975  * @worker: self
976  * @flags: flags to clear
977  *
978  * Clear @flags in @worker->flags and adjust nr_running accordingly.
979  *
980  * CONTEXT:
981  * raw_spin_lock_irq(pool->lock)
982  */
worker_clr_flags(struct worker * worker,unsigned int flags)983 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
984 {
985 	struct worker_pool *pool = worker->pool;
986 	unsigned int oflags = worker->flags;
987 
988 	WARN_ON_ONCE(worker->task != current);
989 
990 	worker->flags &= ~flags;
991 
992 	/*
993 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
994 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
995 	 * of multiple flags, not a single flag.
996 	 */
997 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
998 		if (!(worker->flags & WORKER_NOT_RUNNING))
999 			atomic_inc(&pool->nr_running);
1000 }
1001 
1002 /**
1003  * find_worker_executing_work - find worker which is executing a work
1004  * @pool: pool of interest
1005  * @work: work to find worker for
1006  *
1007  * Find a worker which is executing @work on @pool by searching
1008  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1009  * to match, its current execution should match the address of @work and
1010  * its work function.  This is to avoid unwanted dependency between
1011  * unrelated work executions through a work item being recycled while still
1012  * being executed.
1013  *
1014  * This is a bit tricky.  A work item may be freed once its execution
1015  * starts and nothing prevents the freed area from being recycled for
1016  * another work item.  If the same work item address ends up being reused
1017  * before the original execution finishes, workqueue will identify the
1018  * recycled work item as currently executing and make it wait until the
1019  * current execution finishes, introducing an unwanted dependency.
1020  *
1021  * This function checks the work item address and work function to avoid
1022  * false positives.  Note that this isn't complete as one may construct a
1023  * work function which can introduce dependency onto itself through a
1024  * recycled work item.  Well, if somebody wants to shoot oneself in the
1025  * foot that badly, there's only so much we can do, and if such deadlock
1026  * actually occurs, it should be easy to locate the culprit work function.
1027  *
1028  * CONTEXT:
1029  * raw_spin_lock_irq(pool->lock).
1030  *
1031  * Return:
1032  * Pointer to worker which is executing @work if found, %NULL
1033  * otherwise.
1034  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1035 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1036 						 struct work_struct *work)
1037 {
1038 	struct worker *worker;
1039 
1040 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1041 			       (unsigned long)work)
1042 		if (worker->current_work == work &&
1043 		    worker->current_func == work->func)
1044 			return worker;
1045 
1046 	return NULL;
1047 }
1048 
1049 /**
1050  * move_linked_works - move linked works to a list
1051  * @work: start of series of works to be scheduled
1052  * @head: target list to append @work to
1053  * @nextp: out parameter for nested worklist walking
1054  *
1055  * Schedule linked works starting from @work to @head.  Work series to
1056  * be scheduled starts at @work and includes any consecutive work with
1057  * WORK_STRUCT_LINKED set in its predecessor.
1058  *
1059  * If @nextp is not NULL, it's updated to point to the next work of
1060  * the last scheduled work.  This allows move_linked_works() to be
1061  * nested inside outer list_for_each_entry_safe().
1062  *
1063  * CONTEXT:
1064  * raw_spin_lock_irq(pool->lock).
1065  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1066 static void move_linked_works(struct work_struct *work, struct list_head *head,
1067 			      struct work_struct **nextp)
1068 {
1069 	struct work_struct *n;
1070 
1071 	/*
1072 	 * Linked worklist will always end before the end of the list,
1073 	 * use NULL for list head.
1074 	 */
1075 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1076 		list_move_tail(&work->entry, head);
1077 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1078 			break;
1079 	}
1080 
1081 	/*
1082 	 * If we're already inside safe list traversal and have moved
1083 	 * multiple works to the scheduled queue, the next position
1084 	 * needs to be updated.
1085 	 */
1086 	if (nextp)
1087 		*nextp = n;
1088 }
1089 
1090 /**
1091  * get_pwq - get an extra reference on the specified pool_workqueue
1092  * @pwq: pool_workqueue to get
1093  *
1094  * Obtain an extra reference on @pwq.  The caller should guarantee that
1095  * @pwq has positive refcnt and be holding the matching pool->lock.
1096  */
get_pwq(struct pool_workqueue * pwq)1097 static void get_pwq(struct pool_workqueue *pwq)
1098 {
1099 	lockdep_assert_held(&pwq->pool->lock);
1100 	WARN_ON_ONCE(pwq->refcnt <= 0);
1101 	pwq->refcnt++;
1102 }
1103 
1104 /**
1105  * put_pwq - put a pool_workqueue reference
1106  * @pwq: pool_workqueue to put
1107  *
1108  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1109  * destruction.  The caller should be holding the matching pool->lock.
1110  */
put_pwq(struct pool_workqueue * pwq)1111 static void put_pwq(struct pool_workqueue *pwq)
1112 {
1113 	lockdep_assert_held(&pwq->pool->lock);
1114 	if (likely(--pwq->refcnt))
1115 		return;
1116 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1117 		return;
1118 	/*
1119 	 * @pwq can't be released under pool->lock, bounce to
1120 	 * pwq_unbound_release_workfn().  This never recurses on the same
1121 	 * pool->lock as this path is taken only for unbound workqueues and
1122 	 * the release work item is scheduled on a per-cpu workqueue.  To
1123 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1124 	 * subclass of 1 in get_unbound_pool().
1125 	 */
1126 	schedule_work(&pwq->unbound_release_work);
1127 }
1128 
1129 /**
1130  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1131  * @pwq: pool_workqueue to put (can be %NULL)
1132  *
1133  * put_pwq() with locking.  This function also allows %NULL @pwq.
1134  */
put_pwq_unlocked(struct pool_workqueue * pwq)1135 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1136 {
1137 	if (pwq) {
1138 		/*
1139 		 * As both pwqs and pools are RCU protected, the
1140 		 * following lock operations are safe.
1141 		 */
1142 		raw_spin_lock_irq(&pwq->pool->lock);
1143 		put_pwq(pwq);
1144 		raw_spin_unlock_irq(&pwq->pool->lock);
1145 	}
1146 }
1147 
pwq_activate_delayed_work(struct work_struct * work)1148 static void pwq_activate_delayed_work(struct work_struct *work)
1149 {
1150 	struct pool_workqueue *pwq = get_work_pwq(work);
1151 
1152 	trace_workqueue_activate_work(work);
1153 	if (list_empty(&pwq->pool->worklist))
1154 		pwq->pool->watchdog_ts = jiffies;
1155 	move_linked_works(work, &pwq->pool->worklist, NULL);
1156 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1157 	pwq->nr_active++;
1158 }
1159 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1160 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1161 {
1162 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1163 						    struct work_struct, entry);
1164 
1165 	pwq_activate_delayed_work(work);
1166 }
1167 
1168 /**
1169  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1170  * @pwq: pwq of interest
1171  * @color: color of work which left the queue
1172  *
1173  * A work either has completed or is removed from pending queue,
1174  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1175  *
1176  * CONTEXT:
1177  * raw_spin_lock_irq(pool->lock).
1178  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1179 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1180 {
1181 	/* uncolored work items don't participate in flushing or nr_active */
1182 	if (color == WORK_NO_COLOR)
1183 		goto out_put;
1184 
1185 	pwq->nr_in_flight[color]--;
1186 
1187 	pwq->nr_active--;
1188 	if (!list_empty(&pwq->delayed_works)) {
1189 		/* one down, submit a delayed one */
1190 		if (pwq->nr_active < pwq->max_active)
1191 			pwq_activate_first_delayed(pwq);
1192 	}
1193 
1194 	/* is flush in progress and are we at the flushing tip? */
1195 	if (likely(pwq->flush_color != color))
1196 		goto out_put;
1197 
1198 	/* are there still in-flight works? */
1199 	if (pwq->nr_in_flight[color])
1200 		goto out_put;
1201 
1202 	/* this pwq is done, clear flush_color */
1203 	pwq->flush_color = -1;
1204 
1205 	/*
1206 	 * If this was the last pwq, wake up the first flusher.  It
1207 	 * will handle the rest.
1208 	 */
1209 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1210 		complete(&pwq->wq->first_flusher->done);
1211 out_put:
1212 	put_pwq(pwq);
1213 }
1214 
1215 /**
1216  * try_to_grab_pending - steal work item from worklist and disable irq
1217  * @work: work item to steal
1218  * @is_dwork: @work is a delayed_work
1219  * @flags: place to store irq state
1220  *
1221  * Try to grab PENDING bit of @work.  This function can handle @work in any
1222  * stable state - idle, on timer or on worklist.
1223  *
1224  * Return:
1225  *
1226  *  ========	================================================================
1227  *  1		if @work was pending and we successfully stole PENDING
1228  *  0		if @work was idle and we claimed PENDING
1229  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1230  *  -ENOENT	if someone else is canceling @work, this state may persist
1231  *		for arbitrarily long
1232  *  ========	================================================================
1233  *
1234  * Note:
1235  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1236  * interrupted while holding PENDING and @work off queue, irq must be
1237  * disabled on entry.  This, combined with delayed_work->timer being
1238  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1239  *
1240  * On successful return, >= 0, irq is disabled and the caller is
1241  * responsible for releasing it using local_irq_restore(*@flags).
1242  *
1243  * This function is safe to call from any context including IRQ handler.
1244  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1245 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1246 			       unsigned long *flags)
1247 {
1248 	struct worker_pool *pool;
1249 	struct pool_workqueue *pwq;
1250 
1251 	local_irq_save(*flags);
1252 
1253 	/* try to steal the timer if it exists */
1254 	if (is_dwork) {
1255 		struct delayed_work *dwork = to_delayed_work(work);
1256 
1257 		/*
1258 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1259 		 * guaranteed that the timer is not queued anywhere and not
1260 		 * running on the local CPU.
1261 		 */
1262 		if (likely(del_timer(&dwork->timer)))
1263 			return 1;
1264 	}
1265 
1266 	/* try to claim PENDING the normal way */
1267 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1268 		return 0;
1269 
1270 	rcu_read_lock();
1271 	/*
1272 	 * The queueing is in progress, or it is already queued. Try to
1273 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1274 	 */
1275 	pool = get_work_pool(work);
1276 	if (!pool)
1277 		goto fail;
1278 
1279 	raw_spin_lock(&pool->lock);
1280 	/*
1281 	 * work->data is guaranteed to point to pwq only while the work
1282 	 * item is queued on pwq->wq, and both updating work->data to point
1283 	 * to pwq on queueing and to pool on dequeueing are done under
1284 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1285 	 * points to pwq which is associated with a locked pool, the work
1286 	 * item is currently queued on that pool.
1287 	 */
1288 	pwq = get_work_pwq(work);
1289 	if (pwq && pwq->pool == pool) {
1290 		debug_work_deactivate(work);
1291 
1292 		/*
1293 		 * A delayed work item cannot be grabbed directly because
1294 		 * it might have linked NO_COLOR work items which, if left
1295 		 * on the delayed_list, will confuse pwq->nr_active
1296 		 * management later on and cause stall.  Make sure the work
1297 		 * item is activated before grabbing.
1298 		 */
1299 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1300 			pwq_activate_delayed_work(work);
1301 
1302 		list_del_init(&work->entry);
1303 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1304 
1305 		/* work->data points to pwq iff queued, point to pool */
1306 		set_work_pool_and_keep_pending(work, pool->id);
1307 
1308 		raw_spin_unlock(&pool->lock);
1309 		rcu_read_unlock();
1310 		return 1;
1311 	}
1312 	raw_spin_unlock(&pool->lock);
1313 fail:
1314 	rcu_read_unlock();
1315 	local_irq_restore(*flags);
1316 	if (work_is_canceling(work))
1317 		return -ENOENT;
1318 	cpu_relax();
1319 	return -EAGAIN;
1320 }
1321 
1322 /**
1323  * insert_work - insert a work into a pool
1324  * @pwq: pwq @work belongs to
1325  * @work: work to insert
1326  * @head: insertion point
1327  * @extra_flags: extra WORK_STRUCT_* flags to set
1328  *
1329  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1330  * work_struct flags.
1331  *
1332  * CONTEXT:
1333  * raw_spin_lock_irq(pool->lock).
1334  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1335 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1336 			struct list_head *head, unsigned int extra_flags)
1337 {
1338 	struct worker_pool *pool = pwq->pool;
1339 
1340 	/* we own @work, set data and link */
1341 	set_work_pwq(work, pwq, extra_flags);
1342 	list_add_tail(&work->entry, head);
1343 	get_pwq(pwq);
1344 
1345 	/*
1346 	 * Ensure either wq_worker_sleeping() sees the above
1347 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1348 	 * around lazily while there are works to be processed.
1349 	 */
1350 	smp_mb();
1351 
1352 	if (__need_more_worker(pool))
1353 		wake_up_worker(pool);
1354 }
1355 
1356 /*
1357  * Test whether @work is being queued from another work executing on the
1358  * same workqueue.
1359  */
is_chained_work(struct workqueue_struct * wq)1360 static bool is_chained_work(struct workqueue_struct *wq)
1361 {
1362 	struct worker *worker;
1363 
1364 	worker = current_wq_worker();
1365 	/*
1366 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1367 	 * I'm @worker, it's safe to dereference it without locking.
1368 	 */
1369 	return worker && worker->current_pwq->wq == wq;
1370 }
1371 
1372 /*
1373  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1374  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1375  * avoid perturbing sensitive tasks.
1376  */
wq_select_unbound_cpu(int cpu)1377 static int wq_select_unbound_cpu(int cpu)
1378 {
1379 	static bool printed_dbg_warning;
1380 	int new_cpu;
1381 
1382 	if (likely(!wq_debug_force_rr_cpu)) {
1383 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1384 			return cpu;
1385 	} else if (!printed_dbg_warning) {
1386 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1387 		printed_dbg_warning = true;
1388 	}
1389 
1390 	if (cpumask_empty(wq_unbound_cpumask))
1391 		return cpu;
1392 
1393 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1394 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1395 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1396 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1397 		if (unlikely(new_cpu >= nr_cpu_ids))
1398 			return cpu;
1399 	}
1400 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1401 
1402 	return new_cpu;
1403 }
1404 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1405 static void __queue_work(int cpu, struct workqueue_struct *wq,
1406 			 struct work_struct *work)
1407 {
1408 	struct pool_workqueue *pwq;
1409 	struct worker_pool *last_pool;
1410 	struct list_head *worklist;
1411 	unsigned int work_flags;
1412 	unsigned int req_cpu = cpu;
1413 
1414 	/*
1415 	 * While a work item is PENDING && off queue, a task trying to
1416 	 * steal the PENDING will busy-loop waiting for it to either get
1417 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1418 	 * happen with IRQ disabled.
1419 	 */
1420 	lockdep_assert_irqs_disabled();
1421 
1422 
1423 	/* if draining, only works from the same workqueue are allowed */
1424 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1425 	    WARN_ON_ONCE(!is_chained_work(wq)))
1426 		return;
1427 	rcu_read_lock();
1428 retry:
1429 	/* pwq which will be used unless @work is executing elsewhere */
1430 	if (wq->flags & WQ_UNBOUND) {
1431 		if (req_cpu == WORK_CPU_UNBOUND)
1432 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1433 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1434 	} else {
1435 		if (req_cpu == WORK_CPU_UNBOUND)
1436 			cpu = raw_smp_processor_id();
1437 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1438 	}
1439 
1440 	/*
1441 	 * If @work was previously on a different pool, it might still be
1442 	 * running there, in which case the work needs to be queued on that
1443 	 * pool to guarantee non-reentrancy.
1444 	 */
1445 	last_pool = get_work_pool(work);
1446 	if (last_pool && last_pool != pwq->pool) {
1447 		struct worker *worker;
1448 
1449 		raw_spin_lock(&last_pool->lock);
1450 
1451 		worker = find_worker_executing_work(last_pool, work);
1452 
1453 		if (worker && worker->current_pwq->wq == wq) {
1454 			pwq = worker->current_pwq;
1455 		} else {
1456 			/* meh... not running there, queue here */
1457 			raw_spin_unlock(&last_pool->lock);
1458 			raw_spin_lock(&pwq->pool->lock);
1459 		}
1460 	} else {
1461 		raw_spin_lock(&pwq->pool->lock);
1462 	}
1463 
1464 	/*
1465 	 * pwq is determined and locked.  For unbound pools, we could have
1466 	 * raced with pwq release and it could already be dead.  If its
1467 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1468 	 * without another pwq replacing it in the numa_pwq_tbl or while
1469 	 * work items are executing on it, so the retrying is guaranteed to
1470 	 * make forward-progress.
1471 	 */
1472 	if (unlikely(!pwq->refcnt)) {
1473 		if (wq->flags & WQ_UNBOUND) {
1474 			raw_spin_unlock(&pwq->pool->lock);
1475 			cpu_relax();
1476 			goto retry;
1477 		}
1478 		/* oops */
1479 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1480 			  wq->name, cpu);
1481 	}
1482 
1483 	/* pwq determined, queue */
1484 	trace_workqueue_queue_work(req_cpu, pwq, work);
1485 
1486 	if (WARN_ON(!list_empty(&work->entry)))
1487 		goto out;
1488 
1489 	pwq->nr_in_flight[pwq->work_color]++;
1490 	work_flags = work_color_to_flags(pwq->work_color);
1491 
1492 	if (likely(pwq->nr_active < pwq->max_active)) {
1493 		trace_workqueue_activate_work(work);
1494 		pwq->nr_active++;
1495 		worklist = &pwq->pool->worklist;
1496 		if (list_empty(worklist))
1497 			pwq->pool->watchdog_ts = jiffies;
1498 	} else {
1499 		work_flags |= WORK_STRUCT_DELAYED;
1500 		worklist = &pwq->delayed_works;
1501 	}
1502 
1503 	debug_work_activate(work);
1504 	insert_work(pwq, work, worklist, work_flags);
1505 
1506 out:
1507 	raw_spin_unlock(&pwq->pool->lock);
1508 	rcu_read_unlock();
1509 }
1510 
1511 /**
1512  * queue_work_on - queue work on specific cpu
1513  * @cpu: CPU number to execute work on
1514  * @wq: workqueue to use
1515  * @work: work to queue
1516  *
1517  * We queue the work to a specific CPU, the caller must ensure it
1518  * can't go away.
1519  *
1520  * Return: %false if @work was already on a queue, %true otherwise.
1521  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1522 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1523 		   struct work_struct *work)
1524 {
1525 	bool ret = false;
1526 	unsigned long flags;
1527 
1528 	local_irq_save(flags);
1529 
1530 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1531 		__queue_work(cpu, wq, work);
1532 		ret = true;
1533 	}
1534 
1535 	local_irq_restore(flags);
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL(queue_work_on);
1539 
1540 /**
1541  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1542  * @node: NUMA node ID that we want to select a CPU from
1543  *
1544  * This function will attempt to find a "random" cpu available on a given
1545  * node. If there are no CPUs available on the given node it will return
1546  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1547  * available CPU if we need to schedule this work.
1548  */
workqueue_select_cpu_near(int node)1549 static int workqueue_select_cpu_near(int node)
1550 {
1551 	int cpu;
1552 
1553 	/* No point in doing this if NUMA isn't enabled for workqueues */
1554 	if (!wq_numa_enabled)
1555 		return WORK_CPU_UNBOUND;
1556 
1557 	/* Delay binding to CPU if node is not valid or online */
1558 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1559 		return WORK_CPU_UNBOUND;
1560 
1561 	/* Use local node/cpu if we are already there */
1562 	cpu = raw_smp_processor_id();
1563 	if (node == cpu_to_node(cpu))
1564 		return cpu;
1565 
1566 	/* Use "random" otherwise know as "first" online CPU of node */
1567 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1568 
1569 	/* If CPU is valid return that, otherwise just defer */
1570 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1571 }
1572 
1573 /**
1574  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1575  * @node: NUMA node that we are targeting the work for
1576  * @wq: workqueue to use
1577  * @work: work to queue
1578  *
1579  * We queue the work to a "random" CPU within a given NUMA node. The basic
1580  * idea here is to provide a way to somehow associate work with a given
1581  * NUMA node.
1582  *
1583  * This function will only make a best effort attempt at getting this onto
1584  * the right NUMA node. If no node is requested or the requested node is
1585  * offline then we just fall back to standard queue_work behavior.
1586  *
1587  * Currently the "random" CPU ends up being the first available CPU in the
1588  * intersection of cpu_online_mask and the cpumask of the node, unless we
1589  * are running on the node. In that case we just use the current CPU.
1590  *
1591  * Return: %false if @work was already on a queue, %true otherwise.
1592  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1593 bool queue_work_node(int node, struct workqueue_struct *wq,
1594 		     struct work_struct *work)
1595 {
1596 	unsigned long flags;
1597 	bool ret = false;
1598 
1599 	/*
1600 	 * This current implementation is specific to unbound workqueues.
1601 	 * Specifically we only return the first available CPU for a given
1602 	 * node instead of cycling through individual CPUs within the node.
1603 	 *
1604 	 * If this is used with a per-cpu workqueue then the logic in
1605 	 * workqueue_select_cpu_near would need to be updated to allow for
1606 	 * some round robin type logic.
1607 	 */
1608 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1609 
1610 	local_irq_save(flags);
1611 
1612 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1613 		int cpu = workqueue_select_cpu_near(node);
1614 
1615 		__queue_work(cpu, wq, work);
1616 		ret = true;
1617 	}
1618 
1619 	local_irq_restore(flags);
1620 	return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(queue_work_node);
1623 
delayed_work_timer_fn(struct timer_list * t)1624 void delayed_work_timer_fn(struct timer_list *t)
1625 {
1626 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1627 
1628 	/* should have been called from irqsafe timer with irq already off */
1629 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1630 }
1631 EXPORT_SYMBOL(delayed_work_timer_fn);
1632 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1633 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1634 				struct delayed_work *dwork, unsigned long delay)
1635 {
1636 	struct timer_list *timer = &dwork->timer;
1637 	struct work_struct *work = &dwork->work;
1638 
1639 	WARN_ON_ONCE(!wq);
1640 	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1641 	WARN_ON_ONCE(timer_pending(timer));
1642 	WARN_ON_ONCE(!list_empty(&work->entry));
1643 
1644 	/*
1645 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1646 	 * both optimization and correctness.  The earliest @timer can
1647 	 * expire is on the closest next tick and delayed_work users depend
1648 	 * on that there's no such delay when @delay is 0.
1649 	 */
1650 	if (!delay) {
1651 		__queue_work(cpu, wq, &dwork->work);
1652 		return;
1653 	}
1654 
1655 	dwork->wq = wq;
1656 	dwork->cpu = cpu;
1657 	timer->expires = jiffies + delay;
1658 
1659 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1660 		add_timer_on(timer, cpu);
1661 	else
1662 		add_timer(timer);
1663 }
1664 
1665 /**
1666  * queue_delayed_work_on - queue work on specific CPU after delay
1667  * @cpu: CPU number to execute work on
1668  * @wq: workqueue to use
1669  * @dwork: work to queue
1670  * @delay: number of jiffies to wait before queueing
1671  *
1672  * Return: %false if @work was already on a queue, %true otherwise.  If
1673  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1674  * execution.
1675  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1676 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1677 			   struct delayed_work *dwork, unsigned long delay)
1678 {
1679 	struct work_struct *work = &dwork->work;
1680 	bool ret = false;
1681 	unsigned long flags;
1682 
1683 	/* read the comment in __queue_work() */
1684 	local_irq_save(flags);
1685 
1686 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1687 		__queue_delayed_work(cpu, wq, dwork, delay);
1688 		ret = true;
1689 	}
1690 
1691 	local_irq_restore(flags);
1692 	return ret;
1693 }
1694 EXPORT_SYMBOL(queue_delayed_work_on);
1695 
1696 /**
1697  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1698  * @cpu: CPU number to execute work on
1699  * @wq: workqueue to use
1700  * @dwork: work to queue
1701  * @delay: number of jiffies to wait before queueing
1702  *
1703  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1704  * modify @dwork's timer so that it expires after @delay.  If @delay is
1705  * zero, @work is guaranteed to be scheduled immediately regardless of its
1706  * current state.
1707  *
1708  * Return: %false if @dwork was idle and queued, %true if @dwork was
1709  * pending and its timer was modified.
1710  *
1711  * This function is safe to call from any context including IRQ handler.
1712  * See try_to_grab_pending() for details.
1713  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1714 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1715 			 struct delayed_work *dwork, unsigned long delay)
1716 {
1717 	unsigned long flags;
1718 	int ret;
1719 
1720 	do {
1721 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1722 	} while (unlikely(ret == -EAGAIN));
1723 
1724 	if (likely(ret >= 0)) {
1725 		__queue_delayed_work(cpu, wq, dwork, delay);
1726 		local_irq_restore(flags);
1727 	}
1728 
1729 	/* -ENOENT from try_to_grab_pending() becomes %true */
1730 	return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1733 
rcu_work_rcufn(struct rcu_head * rcu)1734 static void rcu_work_rcufn(struct rcu_head *rcu)
1735 {
1736 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1737 
1738 	/* read the comment in __queue_work() */
1739 	local_irq_disable();
1740 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1741 	local_irq_enable();
1742 }
1743 
1744 /**
1745  * queue_rcu_work - queue work after a RCU grace period
1746  * @wq: workqueue to use
1747  * @rwork: work to queue
1748  *
1749  * Return: %false if @rwork was already pending, %true otherwise.  Note
1750  * that a full RCU grace period is guaranteed only after a %true return.
1751  * While @rwork is guaranteed to be executed after a %false return, the
1752  * execution may happen before a full RCU grace period has passed.
1753  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1754 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1755 {
1756 	struct work_struct *work = &rwork->work;
1757 
1758 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1759 		rwork->wq = wq;
1760 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1761 		return true;
1762 	}
1763 
1764 	return false;
1765 }
1766 EXPORT_SYMBOL(queue_rcu_work);
1767 
1768 /**
1769  * worker_enter_idle - enter idle state
1770  * @worker: worker which is entering idle state
1771  *
1772  * @worker is entering idle state.  Update stats and idle timer if
1773  * necessary.
1774  *
1775  * LOCKING:
1776  * raw_spin_lock_irq(pool->lock).
1777  */
worker_enter_idle(struct worker * worker)1778 static void worker_enter_idle(struct worker *worker)
1779 {
1780 	struct worker_pool *pool = worker->pool;
1781 
1782 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1783 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1784 			 (worker->hentry.next || worker->hentry.pprev)))
1785 		return;
1786 
1787 	/* can't use worker_set_flags(), also called from create_worker() */
1788 	worker->flags |= WORKER_IDLE;
1789 	pool->nr_idle++;
1790 	worker->last_active = jiffies;
1791 
1792 	/* idle_list is LIFO */
1793 	list_add(&worker->entry, &pool->idle_list);
1794 
1795 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1796 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1797 
1798 	/*
1799 	 * Sanity check nr_running.  Because unbind_workers() releases
1800 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1801 	 * nr_running, the warning may trigger spuriously.  Check iff
1802 	 * unbind is not in progress.
1803 	 */
1804 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1805 		     pool->nr_workers == pool->nr_idle &&
1806 		     atomic_read(&pool->nr_running));
1807 }
1808 
1809 /**
1810  * worker_leave_idle - leave idle state
1811  * @worker: worker which is leaving idle state
1812  *
1813  * @worker is leaving idle state.  Update stats.
1814  *
1815  * LOCKING:
1816  * raw_spin_lock_irq(pool->lock).
1817  */
worker_leave_idle(struct worker * worker)1818 static void worker_leave_idle(struct worker *worker)
1819 {
1820 	struct worker_pool *pool = worker->pool;
1821 
1822 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1823 		return;
1824 	worker_clr_flags(worker, WORKER_IDLE);
1825 	pool->nr_idle--;
1826 	list_del_init(&worker->entry);
1827 }
1828 
alloc_worker(int node)1829 static struct worker *alloc_worker(int node)
1830 {
1831 	struct worker *worker;
1832 
1833 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1834 	if (worker) {
1835 		INIT_LIST_HEAD(&worker->entry);
1836 		INIT_LIST_HEAD(&worker->scheduled);
1837 		INIT_LIST_HEAD(&worker->node);
1838 		/* on creation a worker is in !idle && prep state */
1839 		worker->flags = WORKER_PREP;
1840 	}
1841 	return worker;
1842 }
1843 
1844 /**
1845  * worker_attach_to_pool() - attach a worker to a pool
1846  * @worker: worker to be attached
1847  * @pool: the target pool
1848  *
1849  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1850  * cpu-binding of @worker are kept coordinated with the pool across
1851  * cpu-[un]hotplugs.
1852  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1853 static void worker_attach_to_pool(struct worker *worker,
1854 				   struct worker_pool *pool)
1855 {
1856 	mutex_lock(&wq_pool_attach_mutex);
1857 
1858 	/*
1859 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1860 	 * stable across this function.  See the comments above the flag
1861 	 * definition for details.
1862 	 */
1863 	if (pool->flags & POOL_DISASSOCIATED)
1864 		worker->flags |= WORKER_UNBOUND;
1865 
1866 	if (worker->rescue_wq)
1867 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1868 
1869 	list_add_tail(&worker->node, &pool->workers);
1870 	worker->pool = pool;
1871 
1872 	mutex_unlock(&wq_pool_attach_mutex);
1873 }
1874 
1875 /**
1876  * worker_detach_from_pool() - detach a worker from its pool
1877  * @worker: worker which is attached to its pool
1878  *
1879  * Undo the attaching which had been done in worker_attach_to_pool().  The
1880  * caller worker shouldn't access to the pool after detached except it has
1881  * other reference to the pool.
1882  */
worker_detach_from_pool(struct worker * worker)1883 static void worker_detach_from_pool(struct worker *worker)
1884 {
1885 	struct worker_pool *pool = worker->pool;
1886 	struct completion *detach_completion = NULL;
1887 
1888 	mutex_lock(&wq_pool_attach_mutex);
1889 
1890 	list_del(&worker->node);
1891 	worker->pool = NULL;
1892 
1893 	if (list_empty(&pool->workers))
1894 		detach_completion = pool->detach_completion;
1895 	mutex_unlock(&wq_pool_attach_mutex);
1896 
1897 	/* clear leftover flags without pool->lock after it is detached */
1898 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1899 
1900 	if (detach_completion)
1901 		complete(detach_completion);
1902 }
1903 
1904 /**
1905  * create_worker - create a new workqueue worker
1906  * @pool: pool the new worker will belong to
1907  *
1908  * Create and start a new worker which is attached to @pool.
1909  *
1910  * CONTEXT:
1911  * Might sleep.  Does GFP_KERNEL allocations.
1912  *
1913  * Return:
1914  * Pointer to the newly created worker.
1915  */
create_worker(struct worker_pool * pool)1916 static struct worker *create_worker(struct worker_pool *pool)
1917 {
1918 	struct worker *worker = NULL;
1919 	int id = -1;
1920 	char id_buf[16];
1921 
1922 	/* ID is needed to determine kthread name */
1923 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1924 	if (id < 0)
1925 		goto fail;
1926 
1927 	worker = alloc_worker(pool->node);
1928 	if (!worker)
1929 		goto fail;
1930 
1931 	worker->id = id;
1932 
1933 	if (pool->cpu >= 0)
1934 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1935 			 pool->attrs->nice < 0  ? "H" : "");
1936 	else
1937 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1938 
1939 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1940 					      "kworker/%s", id_buf);
1941 	if (IS_ERR(worker->task))
1942 		goto fail;
1943 
1944 	set_user_nice(worker->task, pool->attrs->nice);
1945 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1946 
1947 	/* successful, attach the worker to the pool */
1948 	worker_attach_to_pool(worker, pool);
1949 
1950 	/* start the newly created worker */
1951 	raw_spin_lock_irq(&pool->lock);
1952 	worker->pool->nr_workers++;
1953 	worker_enter_idle(worker);
1954 	wake_up_process(worker->task);
1955 	raw_spin_unlock_irq(&pool->lock);
1956 
1957 	return worker;
1958 
1959 fail:
1960 	if (id >= 0)
1961 		ida_simple_remove(&pool->worker_ida, id);
1962 	kfree(worker);
1963 	return NULL;
1964 }
1965 
1966 /**
1967  * destroy_worker - destroy a workqueue worker
1968  * @worker: worker to be destroyed
1969  *
1970  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1971  * be idle.
1972  *
1973  * CONTEXT:
1974  * raw_spin_lock_irq(pool->lock).
1975  */
destroy_worker(struct worker * worker)1976 static void destroy_worker(struct worker *worker)
1977 {
1978 	struct worker_pool *pool = worker->pool;
1979 
1980 	lockdep_assert_held(&pool->lock);
1981 
1982 	/* sanity check frenzy */
1983 	if (WARN_ON(worker->current_work) ||
1984 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1985 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1986 		return;
1987 
1988 	pool->nr_workers--;
1989 	pool->nr_idle--;
1990 
1991 	list_del_init(&worker->entry);
1992 	worker->flags |= WORKER_DIE;
1993 	wake_up_process(worker->task);
1994 }
1995 
idle_worker_timeout(struct timer_list * t)1996 static void idle_worker_timeout(struct timer_list *t)
1997 {
1998 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1999 
2000 	raw_spin_lock_irq(&pool->lock);
2001 
2002 	while (too_many_workers(pool)) {
2003 		struct worker *worker;
2004 		unsigned long expires;
2005 
2006 		/* idle_list is kept in LIFO order, check the last one */
2007 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2008 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2009 
2010 		if (time_before(jiffies, expires)) {
2011 			mod_timer(&pool->idle_timer, expires);
2012 			break;
2013 		}
2014 
2015 		destroy_worker(worker);
2016 	}
2017 
2018 	raw_spin_unlock_irq(&pool->lock);
2019 }
2020 
send_mayday(struct work_struct * work)2021 static void send_mayday(struct work_struct *work)
2022 {
2023 	struct pool_workqueue *pwq = get_work_pwq(work);
2024 	struct workqueue_struct *wq = pwq->wq;
2025 
2026 	lockdep_assert_held(&wq_mayday_lock);
2027 
2028 	if (!wq->rescuer)
2029 		return;
2030 
2031 	/* mayday mayday mayday */
2032 	if (list_empty(&pwq->mayday_node)) {
2033 		/*
2034 		 * If @pwq is for an unbound wq, its base ref may be put at
2035 		 * any time due to an attribute change.  Pin @pwq until the
2036 		 * rescuer is done with it.
2037 		 */
2038 		get_pwq(pwq);
2039 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2040 		wake_up_process(wq->rescuer->task);
2041 	}
2042 }
2043 
pool_mayday_timeout(struct timer_list * t)2044 static void pool_mayday_timeout(struct timer_list *t)
2045 {
2046 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2047 	struct work_struct *work;
2048 
2049 	raw_spin_lock_irq(&pool->lock);
2050 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2051 
2052 	if (need_to_create_worker(pool)) {
2053 		/*
2054 		 * We've been trying to create a new worker but
2055 		 * haven't been successful.  We might be hitting an
2056 		 * allocation deadlock.  Send distress signals to
2057 		 * rescuers.
2058 		 */
2059 		list_for_each_entry(work, &pool->worklist, entry)
2060 			send_mayday(work);
2061 	}
2062 
2063 	raw_spin_unlock(&wq_mayday_lock);
2064 	raw_spin_unlock_irq(&pool->lock);
2065 
2066 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2067 }
2068 
2069 /**
2070  * maybe_create_worker - create a new worker if necessary
2071  * @pool: pool to create a new worker for
2072  *
2073  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2074  * have at least one idle worker on return from this function.  If
2075  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2076  * sent to all rescuers with works scheduled on @pool to resolve
2077  * possible allocation deadlock.
2078  *
2079  * On return, need_to_create_worker() is guaranteed to be %false and
2080  * may_start_working() %true.
2081  *
2082  * LOCKING:
2083  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2084  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2085  * manager.
2086  */
maybe_create_worker(struct worker_pool * pool)2087 static void maybe_create_worker(struct worker_pool *pool)
2088 __releases(&pool->lock)
2089 __acquires(&pool->lock)
2090 {
2091 restart:
2092 	raw_spin_unlock_irq(&pool->lock);
2093 
2094 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2095 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2096 
2097 	while (true) {
2098 		if (create_worker(pool) || !need_to_create_worker(pool))
2099 			break;
2100 
2101 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2102 
2103 		if (!need_to_create_worker(pool))
2104 			break;
2105 	}
2106 
2107 	del_timer_sync(&pool->mayday_timer);
2108 	raw_spin_lock_irq(&pool->lock);
2109 	/*
2110 	 * This is necessary even after a new worker was just successfully
2111 	 * created as @pool->lock was dropped and the new worker might have
2112 	 * already become busy.
2113 	 */
2114 	if (need_to_create_worker(pool))
2115 		goto restart;
2116 }
2117 
2118 /**
2119  * manage_workers - manage worker pool
2120  * @worker: self
2121  *
2122  * Assume the manager role and manage the worker pool @worker belongs
2123  * to.  At any given time, there can be only zero or one manager per
2124  * pool.  The exclusion is handled automatically by this function.
2125  *
2126  * The caller can safely start processing works on false return.  On
2127  * true return, it's guaranteed that need_to_create_worker() is false
2128  * and may_start_working() is true.
2129  *
2130  * CONTEXT:
2131  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2132  * multiple times.  Does GFP_KERNEL allocations.
2133  *
2134  * Return:
2135  * %false if the pool doesn't need management and the caller can safely
2136  * start processing works, %true if management function was performed and
2137  * the conditions that the caller verified before calling the function may
2138  * no longer be true.
2139  */
manage_workers(struct worker * worker)2140 static bool manage_workers(struct worker *worker)
2141 {
2142 	struct worker_pool *pool = worker->pool;
2143 
2144 	if (pool->flags & POOL_MANAGER_ACTIVE)
2145 		return false;
2146 
2147 	pool->flags |= POOL_MANAGER_ACTIVE;
2148 	pool->manager = worker;
2149 
2150 	maybe_create_worker(pool);
2151 
2152 	pool->manager = NULL;
2153 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2154 	rcuwait_wake_up(&manager_wait);
2155 	return true;
2156 }
2157 
2158 /**
2159  * process_one_work - process single work
2160  * @worker: self
2161  * @work: work to process
2162  *
2163  * Process @work.  This function contains all the logics necessary to
2164  * process a single work including synchronization against and
2165  * interaction with other workers on the same cpu, queueing and
2166  * flushing.  As long as context requirement is met, any worker can
2167  * call this function to process a work.
2168  *
2169  * CONTEXT:
2170  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2171  */
process_one_work(struct worker * worker,struct work_struct * work)2172 static void process_one_work(struct worker *worker, struct work_struct *work)
2173 __releases(&pool->lock)
2174 __acquires(&pool->lock)
2175 {
2176 	struct pool_workqueue *pwq = get_work_pwq(work);
2177 	struct worker_pool *pool = worker->pool;
2178 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2179 	int work_color;
2180 	struct worker *collision;
2181 #ifdef CONFIG_LOCKDEP
2182 	/*
2183 	 * It is permissible to free the struct work_struct from
2184 	 * inside the function that is called from it, this we need to
2185 	 * take into account for lockdep too.  To avoid bogus "held
2186 	 * lock freed" warnings as well as problems when looking into
2187 	 * work->lockdep_map, make a copy and use that here.
2188 	 */
2189 	struct lockdep_map lockdep_map;
2190 
2191 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2192 #endif
2193 	/* ensure we're on the correct CPU */
2194 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2195 		     raw_smp_processor_id() != pool->cpu);
2196 
2197 	/*
2198 	 * A single work shouldn't be executed concurrently by
2199 	 * multiple workers on a single cpu.  Check whether anyone is
2200 	 * already processing the work.  If so, defer the work to the
2201 	 * currently executing one.
2202 	 */
2203 	collision = find_worker_executing_work(pool, work);
2204 	if (unlikely(collision)) {
2205 		move_linked_works(work, &collision->scheduled, NULL);
2206 		return;
2207 	}
2208 
2209 	/* claim and dequeue */
2210 	debug_work_deactivate(work);
2211 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2212 	worker->current_work = work;
2213 	worker->current_func = work->func;
2214 	worker->current_pwq = pwq;
2215 	work_color = get_work_color(work);
2216 
2217 	/*
2218 	 * Record wq name for cmdline and debug reporting, may get
2219 	 * overridden through set_worker_desc().
2220 	 */
2221 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2222 
2223 	list_del_init(&work->entry);
2224 
2225 	/*
2226 	 * CPU intensive works don't participate in concurrency management.
2227 	 * They're the scheduler's responsibility.  This takes @worker out
2228 	 * of concurrency management and the next code block will chain
2229 	 * execution of the pending work items.
2230 	 */
2231 	if (unlikely(cpu_intensive))
2232 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2233 
2234 	/*
2235 	 * Wake up another worker if necessary.  The condition is always
2236 	 * false for normal per-cpu workers since nr_running would always
2237 	 * be >= 1 at this point.  This is used to chain execution of the
2238 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2239 	 * UNBOUND and CPU_INTENSIVE ones.
2240 	 */
2241 	if (need_more_worker(pool))
2242 		wake_up_worker(pool);
2243 
2244 	/*
2245 	 * Record the last pool and clear PENDING which should be the last
2246 	 * update to @work.  Also, do this inside @pool->lock so that
2247 	 * PENDING and queued state changes happen together while IRQ is
2248 	 * disabled.
2249 	 */
2250 	set_work_pool_and_clear_pending(work, pool->id);
2251 
2252 	raw_spin_unlock_irq(&pool->lock);
2253 
2254 	lock_map_acquire(&pwq->wq->lockdep_map);
2255 	lock_map_acquire(&lockdep_map);
2256 	/*
2257 	 * Strictly speaking we should mark the invariant state without holding
2258 	 * any locks, that is, before these two lock_map_acquire()'s.
2259 	 *
2260 	 * However, that would result in:
2261 	 *
2262 	 *   A(W1)
2263 	 *   WFC(C)
2264 	 *		A(W1)
2265 	 *		C(C)
2266 	 *
2267 	 * Which would create W1->C->W1 dependencies, even though there is no
2268 	 * actual deadlock possible. There are two solutions, using a
2269 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2270 	 * hit the lockdep limitation on recursive locks, or simply discard
2271 	 * these locks.
2272 	 *
2273 	 * AFAICT there is no possible deadlock scenario between the
2274 	 * flush_work() and complete() primitives (except for single-threaded
2275 	 * workqueues), so hiding them isn't a problem.
2276 	 */
2277 	lockdep_invariant_state(true);
2278 	trace_workqueue_execute_start(work);
2279 	worker->current_func(work);
2280 	/*
2281 	 * While we must be careful to not use "work" after this, the trace
2282 	 * point will only record its address.
2283 	 */
2284 	trace_workqueue_execute_end(work, worker->current_func);
2285 	lock_map_release(&lockdep_map);
2286 	lock_map_release(&pwq->wq->lockdep_map);
2287 
2288 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2289 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2290 		       "     last function: %ps\n",
2291 		       current->comm, preempt_count(), task_pid_nr(current),
2292 		       worker->current_func);
2293 		debug_show_held_locks(current);
2294 		dump_stack();
2295 	}
2296 
2297 	/*
2298 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2299 	 * kernels, where a requeueing work item waiting for something to
2300 	 * happen could deadlock with stop_machine as such work item could
2301 	 * indefinitely requeue itself while all other CPUs are trapped in
2302 	 * stop_machine. At the same time, report a quiescent RCU state so
2303 	 * the same condition doesn't freeze RCU.
2304 	 */
2305 	cond_resched();
2306 
2307 	raw_spin_lock_irq(&pool->lock);
2308 
2309 	/* clear cpu intensive status */
2310 	if (unlikely(cpu_intensive))
2311 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2312 
2313 	/* tag the worker for identification in schedule() */
2314 	worker->last_func = worker->current_func;
2315 
2316 	/* we're done with it, release */
2317 	hash_del(&worker->hentry);
2318 	worker->current_work = NULL;
2319 	worker->current_func = NULL;
2320 	worker->current_pwq = NULL;
2321 	pwq_dec_nr_in_flight(pwq, work_color);
2322 }
2323 
2324 /**
2325  * process_scheduled_works - process scheduled works
2326  * @worker: self
2327  *
2328  * Process all scheduled works.  Please note that the scheduled list
2329  * may change while processing a work, so this function repeatedly
2330  * fetches a work from the top and executes it.
2331  *
2332  * CONTEXT:
2333  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2334  * multiple times.
2335  */
process_scheduled_works(struct worker * worker)2336 static void process_scheduled_works(struct worker *worker)
2337 {
2338 	while (!list_empty(&worker->scheduled)) {
2339 		struct work_struct *work = list_first_entry(&worker->scheduled,
2340 						struct work_struct, entry);
2341 		process_one_work(worker, work);
2342 	}
2343 }
2344 
set_pf_worker(bool val)2345 static void set_pf_worker(bool val)
2346 {
2347 	mutex_lock(&wq_pool_attach_mutex);
2348 	if (val)
2349 		current->flags |= PF_WQ_WORKER;
2350 	else
2351 		current->flags &= ~PF_WQ_WORKER;
2352 	mutex_unlock(&wq_pool_attach_mutex);
2353 }
2354 
2355 /**
2356  * worker_thread - the worker thread function
2357  * @__worker: self
2358  *
2359  * The worker thread function.  All workers belong to a worker_pool -
2360  * either a per-cpu one or dynamic unbound one.  These workers process all
2361  * work items regardless of their specific target workqueue.  The only
2362  * exception is work items which belong to workqueues with a rescuer which
2363  * will be explained in rescuer_thread().
2364  *
2365  * Return: 0
2366  */
worker_thread(void * __worker)2367 static int worker_thread(void *__worker)
2368 {
2369 	struct worker *worker = __worker;
2370 	struct worker_pool *pool = worker->pool;
2371 
2372 	/* tell the scheduler that this is a workqueue worker */
2373 	set_pf_worker(true);
2374 woke_up:
2375 	raw_spin_lock_irq(&pool->lock);
2376 
2377 	/* am I supposed to die? */
2378 	if (unlikely(worker->flags & WORKER_DIE)) {
2379 		raw_spin_unlock_irq(&pool->lock);
2380 		WARN_ON_ONCE(!list_empty(&worker->entry));
2381 		set_pf_worker(false);
2382 
2383 		set_task_comm(worker->task, "kworker/dying");
2384 		ida_simple_remove(&pool->worker_ida, worker->id);
2385 		worker_detach_from_pool(worker);
2386 		kfree(worker);
2387 		return 0;
2388 	}
2389 
2390 	worker_leave_idle(worker);
2391 recheck:
2392 	/* no more worker necessary? */
2393 	if (!need_more_worker(pool))
2394 		goto sleep;
2395 
2396 	/* do we need to manage? */
2397 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2398 		goto recheck;
2399 
2400 	/*
2401 	 * ->scheduled list can only be filled while a worker is
2402 	 * preparing to process a work or actually processing it.
2403 	 * Make sure nobody diddled with it while I was sleeping.
2404 	 */
2405 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2406 
2407 	/*
2408 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2409 	 * worker or that someone else has already assumed the manager
2410 	 * role.  This is where @worker starts participating in concurrency
2411 	 * management if applicable and concurrency management is restored
2412 	 * after being rebound.  See rebind_workers() for details.
2413 	 */
2414 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2415 
2416 	do {
2417 		struct work_struct *work =
2418 			list_first_entry(&pool->worklist,
2419 					 struct work_struct, entry);
2420 
2421 		pool->watchdog_ts = jiffies;
2422 
2423 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2424 			/* optimization path, not strictly necessary */
2425 			process_one_work(worker, work);
2426 			if (unlikely(!list_empty(&worker->scheduled)))
2427 				process_scheduled_works(worker);
2428 		} else {
2429 			move_linked_works(work, &worker->scheduled, NULL);
2430 			process_scheduled_works(worker);
2431 		}
2432 	} while (keep_working(pool));
2433 
2434 	worker_set_flags(worker, WORKER_PREP);
2435 sleep:
2436 	/*
2437 	 * pool->lock is held and there's no work to process and no need to
2438 	 * manage, sleep.  Workers are woken up only while holding
2439 	 * pool->lock or from local cpu, so setting the current state
2440 	 * before releasing pool->lock is enough to prevent losing any
2441 	 * event.
2442 	 */
2443 	worker_enter_idle(worker);
2444 	__set_current_state(TASK_IDLE);
2445 	raw_spin_unlock_irq(&pool->lock);
2446 	schedule();
2447 	goto woke_up;
2448 }
2449 
2450 /**
2451  * rescuer_thread - the rescuer thread function
2452  * @__rescuer: self
2453  *
2454  * Workqueue rescuer thread function.  There's one rescuer for each
2455  * workqueue which has WQ_MEM_RECLAIM set.
2456  *
2457  * Regular work processing on a pool may block trying to create a new
2458  * worker which uses GFP_KERNEL allocation which has slight chance of
2459  * developing into deadlock if some works currently on the same queue
2460  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2461  * the problem rescuer solves.
2462  *
2463  * When such condition is possible, the pool summons rescuers of all
2464  * workqueues which have works queued on the pool and let them process
2465  * those works so that forward progress can be guaranteed.
2466  *
2467  * This should happen rarely.
2468  *
2469  * Return: 0
2470  */
rescuer_thread(void * __rescuer)2471 static int rescuer_thread(void *__rescuer)
2472 {
2473 	struct worker *rescuer = __rescuer;
2474 	struct workqueue_struct *wq = rescuer->rescue_wq;
2475 	struct list_head *scheduled = &rescuer->scheduled;
2476 	bool should_stop;
2477 
2478 	set_user_nice(current, RESCUER_NICE_LEVEL);
2479 
2480 	/*
2481 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2482 	 * doesn't participate in concurrency management.
2483 	 */
2484 	set_pf_worker(true);
2485 repeat:
2486 	set_current_state(TASK_IDLE);
2487 
2488 	/*
2489 	 * By the time the rescuer is requested to stop, the workqueue
2490 	 * shouldn't have any work pending, but @wq->maydays may still have
2491 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2492 	 * all the work items before the rescuer got to them.  Go through
2493 	 * @wq->maydays processing before acting on should_stop so that the
2494 	 * list is always empty on exit.
2495 	 */
2496 	should_stop = kthread_should_stop();
2497 
2498 	/* see whether any pwq is asking for help */
2499 	raw_spin_lock_irq(&wq_mayday_lock);
2500 
2501 	while (!list_empty(&wq->maydays)) {
2502 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2503 					struct pool_workqueue, mayday_node);
2504 		struct worker_pool *pool = pwq->pool;
2505 		struct work_struct *work, *n;
2506 		bool first = true;
2507 
2508 		__set_current_state(TASK_RUNNING);
2509 		list_del_init(&pwq->mayday_node);
2510 
2511 		raw_spin_unlock_irq(&wq_mayday_lock);
2512 
2513 		worker_attach_to_pool(rescuer, pool);
2514 
2515 		raw_spin_lock_irq(&pool->lock);
2516 
2517 		/*
2518 		 * Slurp in all works issued via this workqueue and
2519 		 * process'em.
2520 		 */
2521 		WARN_ON_ONCE(!list_empty(scheduled));
2522 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2523 			if (get_work_pwq(work) == pwq) {
2524 				if (first)
2525 					pool->watchdog_ts = jiffies;
2526 				move_linked_works(work, scheduled, &n);
2527 			}
2528 			first = false;
2529 		}
2530 
2531 		if (!list_empty(scheduled)) {
2532 			process_scheduled_works(rescuer);
2533 
2534 			/*
2535 			 * The above execution of rescued work items could
2536 			 * have created more to rescue through
2537 			 * pwq_activate_first_delayed() or chained
2538 			 * queueing.  Let's put @pwq back on mayday list so
2539 			 * that such back-to-back work items, which may be
2540 			 * being used to relieve memory pressure, don't
2541 			 * incur MAYDAY_INTERVAL delay inbetween.
2542 			 */
2543 			if (pwq->nr_active && need_to_create_worker(pool)) {
2544 				raw_spin_lock(&wq_mayday_lock);
2545 				/*
2546 				 * Queue iff we aren't racing destruction
2547 				 * and somebody else hasn't queued it already.
2548 				 */
2549 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2550 					get_pwq(pwq);
2551 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2552 				}
2553 				raw_spin_unlock(&wq_mayday_lock);
2554 			}
2555 		}
2556 
2557 		/*
2558 		 * Put the reference grabbed by send_mayday().  @pool won't
2559 		 * go away while we're still attached to it.
2560 		 */
2561 		put_pwq(pwq);
2562 
2563 		/*
2564 		 * Leave this pool.  If need_more_worker() is %true, notify a
2565 		 * regular worker; otherwise, we end up with 0 concurrency
2566 		 * and stalling the execution.
2567 		 */
2568 		if (need_more_worker(pool))
2569 			wake_up_worker(pool);
2570 
2571 		raw_spin_unlock_irq(&pool->lock);
2572 
2573 		worker_detach_from_pool(rescuer);
2574 
2575 		raw_spin_lock_irq(&wq_mayday_lock);
2576 	}
2577 
2578 	raw_spin_unlock_irq(&wq_mayday_lock);
2579 
2580 	if (should_stop) {
2581 		__set_current_state(TASK_RUNNING);
2582 		set_pf_worker(false);
2583 		return 0;
2584 	}
2585 
2586 	/* rescuers should never participate in concurrency management */
2587 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2588 	schedule();
2589 	goto repeat;
2590 }
2591 
2592 /**
2593  * check_flush_dependency - check for flush dependency sanity
2594  * @target_wq: workqueue being flushed
2595  * @target_work: work item being flushed (NULL for workqueue flushes)
2596  *
2597  * %current is trying to flush the whole @target_wq or @target_work on it.
2598  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2599  * reclaiming memory or running on a workqueue which doesn't have
2600  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2601  * a deadlock.
2602  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2603 static void check_flush_dependency(struct workqueue_struct *target_wq,
2604 				   struct work_struct *target_work)
2605 {
2606 	work_func_t target_func = target_work ? target_work->func : NULL;
2607 	struct worker *worker;
2608 
2609 	if (target_wq->flags & WQ_MEM_RECLAIM)
2610 		return;
2611 
2612 	worker = current_wq_worker();
2613 
2614 	WARN_ONCE(current->flags & PF_MEMALLOC,
2615 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2616 		  current->pid, current->comm, target_wq->name, target_func);
2617 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2618 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2619 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2620 		  worker->current_pwq->wq->name, worker->current_func,
2621 		  target_wq->name, target_func);
2622 }
2623 
2624 struct wq_barrier {
2625 	struct work_struct	work;
2626 	struct completion	done;
2627 	struct task_struct	*task;	/* purely informational */
2628 };
2629 
wq_barrier_func(struct work_struct * work)2630 static void wq_barrier_func(struct work_struct *work)
2631 {
2632 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2633 	complete(&barr->done);
2634 }
2635 
2636 /**
2637  * insert_wq_barrier - insert a barrier work
2638  * @pwq: pwq to insert barrier into
2639  * @barr: wq_barrier to insert
2640  * @target: target work to attach @barr to
2641  * @worker: worker currently executing @target, NULL if @target is not executing
2642  *
2643  * @barr is linked to @target such that @barr is completed only after
2644  * @target finishes execution.  Please note that the ordering
2645  * guarantee is observed only with respect to @target and on the local
2646  * cpu.
2647  *
2648  * Currently, a queued barrier can't be canceled.  This is because
2649  * try_to_grab_pending() can't determine whether the work to be
2650  * grabbed is at the head of the queue and thus can't clear LINKED
2651  * flag of the previous work while there must be a valid next work
2652  * after a work with LINKED flag set.
2653  *
2654  * Note that when @worker is non-NULL, @target may be modified
2655  * underneath us, so we can't reliably determine pwq from @target.
2656  *
2657  * CONTEXT:
2658  * raw_spin_lock_irq(pool->lock).
2659  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2660 static void insert_wq_barrier(struct pool_workqueue *pwq,
2661 			      struct wq_barrier *barr,
2662 			      struct work_struct *target, struct worker *worker)
2663 {
2664 	struct list_head *head;
2665 	unsigned int linked = 0;
2666 
2667 	/*
2668 	 * debugobject calls are safe here even with pool->lock locked
2669 	 * as we know for sure that this will not trigger any of the
2670 	 * checks and call back into the fixup functions where we
2671 	 * might deadlock.
2672 	 */
2673 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2674 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2675 
2676 	init_completion_map(&barr->done, &target->lockdep_map);
2677 
2678 	barr->task = current;
2679 
2680 	/*
2681 	 * If @target is currently being executed, schedule the
2682 	 * barrier to the worker; otherwise, put it after @target.
2683 	 */
2684 	if (worker)
2685 		head = worker->scheduled.next;
2686 	else {
2687 		unsigned long *bits = work_data_bits(target);
2688 
2689 		head = target->entry.next;
2690 		/* there can already be other linked works, inherit and set */
2691 		linked = *bits & WORK_STRUCT_LINKED;
2692 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2693 	}
2694 
2695 	debug_work_activate(&barr->work);
2696 	insert_work(pwq, &barr->work, head,
2697 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2698 }
2699 
2700 /**
2701  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2702  * @wq: workqueue being flushed
2703  * @flush_color: new flush color, < 0 for no-op
2704  * @work_color: new work color, < 0 for no-op
2705  *
2706  * Prepare pwqs for workqueue flushing.
2707  *
2708  * If @flush_color is non-negative, flush_color on all pwqs should be
2709  * -1.  If no pwq has in-flight commands at the specified color, all
2710  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2711  * has in flight commands, its pwq->flush_color is set to
2712  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2713  * wakeup logic is armed and %true is returned.
2714  *
2715  * The caller should have initialized @wq->first_flusher prior to
2716  * calling this function with non-negative @flush_color.  If
2717  * @flush_color is negative, no flush color update is done and %false
2718  * is returned.
2719  *
2720  * If @work_color is non-negative, all pwqs should have the same
2721  * work_color which is previous to @work_color and all will be
2722  * advanced to @work_color.
2723  *
2724  * CONTEXT:
2725  * mutex_lock(wq->mutex).
2726  *
2727  * Return:
2728  * %true if @flush_color >= 0 and there's something to flush.  %false
2729  * otherwise.
2730  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2731 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2732 				      int flush_color, int work_color)
2733 {
2734 	bool wait = false;
2735 	struct pool_workqueue *pwq;
2736 
2737 	if (flush_color >= 0) {
2738 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2739 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2740 	}
2741 
2742 	for_each_pwq(pwq, wq) {
2743 		struct worker_pool *pool = pwq->pool;
2744 
2745 		raw_spin_lock_irq(&pool->lock);
2746 
2747 		if (flush_color >= 0) {
2748 			WARN_ON_ONCE(pwq->flush_color != -1);
2749 
2750 			if (pwq->nr_in_flight[flush_color]) {
2751 				pwq->flush_color = flush_color;
2752 				atomic_inc(&wq->nr_pwqs_to_flush);
2753 				wait = true;
2754 			}
2755 		}
2756 
2757 		if (work_color >= 0) {
2758 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2759 			pwq->work_color = work_color;
2760 		}
2761 
2762 		raw_spin_unlock_irq(&pool->lock);
2763 	}
2764 
2765 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2766 		complete(&wq->first_flusher->done);
2767 
2768 	return wait;
2769 }
2770 
2771 /**
2772  * flush_workqueue - ensure that any scheduled work has run to completion.
2773  * @wq: workqueue to flush
2774  *
2775  * This function sleeps until all work items which were queued on entry
2776  * have finished execution, but it is not livelocked by new incoming ones.
2777  */
flush_workqueue(struct workqueue_struct * wq)2778 void flush_workqueue(struct workqueue_struct *wq)
2779 {
2780 	struct wq_flusher this_flusher = {
2781 		.list = LIST_HEAD_INIT(this_flusher.list),
2782 		.flush_color = -1,
2783 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2784 	};
2785 	int next_color;
2786 
2787 	if (WARN_ON(!wq_online))
2788 		return;
2789 
2790 	lock_map_acquire(&wq->lockdep_map);
2791 	lock_map_release(&wq->lockdep_map);
2792 
2793 	mutex_lock(&wq->mutex);
2794 
2795 	/*
2796 	 * Start-to-wait phase
2797 	 */
2798 	next_color = work_next_color(wq->work_color);
2799 
2800 	if (next_color != wq->flush_color) {
2801 		/*
2802 		 * Color space is not full.  The current work_color
2803 		 * becomes our flush_color and work_color is advanced
2804 		 * by one.
2805 		 */
2806 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2807 		this_flusher.flush_color = wq->work_color;
2808 		wq->work_color = next_color;
2809 
2810 		if (!wq->first_flusher) {
2811 			/* no flush in progress, become the first flusher */
2812 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2813 
2814 			wq->first_flusher = &this_flusher;
2815 
2816 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2817 						       wq->work_color)) {
2818 				/* nothing to flush, done */
2819 				wq->flush_color = next_color;
2820 				wq->first_flusher = NULL;
2821 				goto out_unlock;
2822 			}
2823 		} else {
2824 			/* wait in queue */
2825 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2826 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2827 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2828 		}
2829 	} else {
2830 		/*
2831 		 * Oops, color space is full, wait on overflow queue.
2832 		 * The next flush completion will assign us
2833 		 * flush_color and transfer to flusher_queue.
2834 		 */
2835 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2836 	}
2837 
2838 	check_flush_dependency(wq, NULL);
2839 
2840 	mutex_unlock(&wq->mutex);
2841 
2842 	wait_for_completion(&this_flusher.done);
2843 
2844 	/*
2845 	 * Wake-up-and-cascade phase
2846 	 *
2847 	 * First flushers are responsible for cascading flushes and
2848 	 * handling overflow.  Non-first flushers can simply return.
2849 	 */
2850 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2851 		return;
2852 
2853 	mutex_lock(&wq->mutex);
2854 
2855 	/* we might have raced, check again with mutex held */
2856 	if (wq->first_flusher != &this_flusher)
2857 		goto out_unlock;
2858 
2859 	WRITE_ONCE(wq->first_flusher, NULL);
2860 
2861 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2862 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2863 
2864 	while (true) {
2865 		struct wq_flusher *next, *tmp;
2866 
2867 		/* complete all the flushers sharing the current flush color */
2868 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2869 			if (next->flush_color != wq->flush_color)
2870 				break;
2871 			list_del_init(&next->list);
2872 			complete(&next->done);
2873 		}
2874 
2875 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2876 			     wq->flush_color != work_next_color(wq->work_color));
2877 
2878 		/* this flush_color is finished, advance by one */
2879 		wq->flush_color = work_next_color(wq->flush_color);
2880 
2881 		/* one color has been freed, handle overflow queue */
2882 		if (!list_empty(&wq->flusher_overflow)) {
2883 			/*
2884 			 * Assign the same color to all overflowed
2885 			 * flushers, advance work_color and append to
2886 			 * flusher_queue.  This is the start-to-wait
2887 			 * phase for these overflowed flushers.
2888 			 */
2889 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2890 				tmp->flush_color = wq->work_color;
2891 
2892 			wq->work_color = work_next_color(wq->work_color);
2893 
2894 			list_splice_tail_init(&wq->flusher_overflow,
2895 					      &wq->flusher_queue);
2896 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2897 		}
2898 
2899 		if (list_empty(&wq->flusher_queue)) {
2900 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2901 			break;
2902 		}
2903 
2904 		/*
2905 		 * Need to flush more colors.  Make the next flusher
2906 		 * the new first flusher and arm pwqs.
2907 		 */
2908 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2909 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2910 
2911 		list_del_init(&next->list);
2912 		wq->first_flusher = next;
2913 
2914 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2915 			break;
2916 
2917 		/*
2918 		 * Meh... this color is already done, clear first
2919 		 * flusher and repeat cascading.
2920 		 */
2921 		wq->first_flusher = NULL;
2922 	}
2923 
2924 out_unlock:
2925 	mutex_unlock(&wq->mutex);
2926 }
2927 EXPORT_SYMBOL(flush_workqueue);
2928 
2929 /**
2930  * drain_workqueue - drain a workqueue
2931  * @wq: workqueue to drain
2932  *
2933  * Wait until the workqueue becomes empty.  While draining is in progress,
2934  * only chain queueing is allowed.  IOW, only currently pending or running
2935  * work items on @wq can queue further work items on it.  @wq is flushed
2936  * repeatedly until it becomes empty.  The number of flushing is determined
2937  * by the depth of chaining and should be relatively short.  Whine if it
2938  * takes too long.
2939  */
drain_workqueue(struct workqueue_struct * wq)2940 void drain_workqueue(struct workqueue_struct *wq)
2941 {
2942 	unsigned int flush_cnt = 0;
2943 	struct pool_workqueue *pwq;
2944 
2945 	/*
2946 	 * __queue_work() needs to test whether there are drainers, is much
2947 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2948 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2949 	 */
2950 	mutex_lock(&wq->mutex);
2951 	if (!wq->nr_drainers++)
2952 		wq->flags |= __WQ_DRAINING;
2953 	mutex_unlock(&wq->mutex);
2954 reflush:
2955 	flush_workqueue(wq);
2956 
2957 	mutex_lock(&wq->mutex);
2958 
2959 	for_each_pwq(pwq, wq) {
2960 		bool drained;
2961 
2962 		raw_spin_lock_irq(&pwq->pool->lock);
2963 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2964 		raw_spin_unlock_irq(&pwq->pool->lock);
2965 
2966 		if (drained)
2967 			continue;
2968 
2969 		if (++flush_cnt == 10 ||
2970 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2971 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2972 				wq->name, flush_cnt);
2973 
2974 		mutex_unlock(&wq->mutex);
2975 		goto reflush;
2976 	}
2977 
2978 	if (!--wq->nr_drainers)
2979 		wq->flags &= ~__WQ_DRAINING;
2980 	mutex_unlock(&wq->mutex);
2981 }
2982 EXPORT_SYMBOL_GPL(drain_workqueue);
2983 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2984 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2985 			     bool from_cancel)
2986 {
2987 	struct worker *worker = NULL;
2988 	struct worker_pool *pool;
2989 	struct pool_workqueue *pwq;
2990 
2991 	might_sleep();
2992 
2993 	rcu_read_lock();
2994 	pool = get_work_pool(work);
2995 	if (!pool) {
2996 		rcu_read_unlock();
2997 		return false;
2998 	}
2999 
3000 	raw_spin_lock_irq(&pool->lock);
3001 	/* see the comment in try_to_grab_pending() with the same code */
3002 	pwq = get_work_pwq(work);
3003 	if (pwq) {
3004 		if (unlikely(pwq->pool != pool))
3005 			goto already_gone;
3006 	} else {
3007 		worker = find_worker_executing_work(pool, work);
3008 		if (!worker)
3009 			goto already_gone;
3010 		pwq = worker->current_pwq;
3011 	}
3012 
3013 	check_flush_dependency(pwq->wq, work);
3014 
3015 	insert_wq_barrier(pwq, barr, work, worker);
3016 	raw_spin_unlock_irq(&pool->lock);
3017 
3018 	/*
3019 	 * Force a lock recursion deadlock when using flush_work() inside a
3020 	 * single-threaded or rescuer equipped workqueue.
3021 	 *
3022 	 * For single threaded workqueues the deadlock happens when the work
3023 	 * is after the work issuing the flush_work(). For rescuer equipped
3024 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3025 	 * forward progress.
3026 	 */
3027 	if (!from_cancel &&
3028 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3029 		lock_map_acquire(&pwq->wq->lockdep_map);
3030 		lock_map_release(&pwq->wq->lockdep_map);
3031 	}
3032 	rcu_read_unlock();
3033 	return true;
3034 already_gone:
3035 	raw_spin_unlock_irq(&pool->lock);
3036 	rcu_read_unlock();
3037 	return false;
3038 }
3039 
__flush_work(struct work_struct * work,bool from_cancel)3040 static bool __flush_work(struct work_struct *work, bool from_cancel)
3041 {
3042 	struct wq_barrier barr;
3043 
3044 	if (WARN_ON(!wq_online))
3045 		return false;
3046 
3047 	if (WARN_ON(!work->func))
3048 		return false;
3049 
3050 	lock_map_acquire(&work->lockdep_map);
3051 	lock_map_release(&work->lockdep_map);
3052 
3053 	if (start_flush_work(work, &barr, from_cancel)) {
3054 		wait_for_completion(&barr.done);
3055 		destroy_work_on_stack(&barr.work);
3056 		return true;
3057 	} else {
3058 		return false;
3059 	}
3060 }
3061 
3062 /**
3063  * flush_work - wait for a work to finish executing the last queueing instance
3064  * @work: the work to flush
3065  *
3066  * Wait until @work has finished execution.  @work is guaranteed to be idle
3067  * on return if it hasn't been requeued since flush started.
3068  *
3069  * Return:
3070  * %true if flush_work() waited for the work to finish execution,
3071  * %false if it was already idle.
3072  */
flush_work(struct work_struct * work)3073 bool flush_work(struct work_struct *work)
3074 {
3075 	return __flush_work(work, false);
3076 }
3077 EXPORT_SYMBOL_GPL(flush_work);
3078 
3079 struct cwt_wait {
3080 	wait_queue_entry_t		wait;
3081 	struct work_struct	*work;
3082 };
3083 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3084 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3085 {
3086 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3087 
3088 	if (cwait->work != key)
3089 		return 0;
3090 	return autoremove_wake_function(wait, mode, sync, key);
3091 }
3092 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3093 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3094 {
3095 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3096 	unsigned long flags;
3097 	int ret;
3098 
3099 	do {
3100 		ret = try_to_grab_pending(work, is_dwork, &flags);
3101 		/*
3102 		 * If someone else is already canceling, wait for it to
3103 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3104 		 * because we may get scheduled between @work's completion
3105 		 * and the other canceling task resuming and clearing
3106 		 * CANCELING - flush_work() will return false immediately
3107 		 * as @work is no longer busy, try_to_grab_pending() will
3108 		 * return -ENOENT as @work is still being canceled and the
3109 		 * other canceling task won't be able to clear CANCELING as
3110 		 * we're hogging the CPU.
3111 		 *
3112 		 * Let's wait for completion using a waitqueue.  As this
3113 		 * may lead to the thundering herd problem, use a custom
3114 		 * wake function which matches @work along with exclusive
3115 		 * wait and wakeup.
3116 		 */
3117 		if (unlikely(ret == -ENOENT)) {
3118 			struct cwt_wait cwait;
3119 
3120 			init_wait(&cwait.wait);
3121 			cwait.wait.func = cwt_wakefn;
3122 			cwait.work = work;
3123 
3124 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3125 						  TASK_UNINTERRUPTIBLE);
3126 			if (work_is_canceling(work))
3127 				schedule();
3128 			finish_wait(&cancel_waitq, &cwait.wait);
3129 		}
3130 	} while (unlikely(ret < 0));
3131 
3132 	/* tell other tasks trying to grab @work to back off */
3133 	mark_work_canceling(work);
3134 	local_irq_restore(flags);
3135 
3136 	/*
3137 	 * This allows canceling during early boot.  We know that @work
3138 	 * isn't executing.
3139 	 */
3140 	if (wq_online)
3141 		__flush_work(work, true);
3142 
3143 	clear_work_data(work);
3144 
3145 	/*
3146 	 * Paired with prepare_to_wait() above so that either
3147 	 * waitqueue_active() is visible here or !work_is_canceling() is
3148 	 * visible there.
3149 	 */
3150 	smp_mb();
3151 	if (waitqueue_active(&cancel_waitq))
3152 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3153 
3154 	return ret;
3155 }
3156 
3157 /**
3158  * cancel_work_sync - cancel a work and wait for it to finish
3159  * @work: the work to cancel
3160  *
3161  * Cancel @work and wait for its execution to finish.  This function
3162  * can be used even if the work re-queues itself or migrates to
3163  * another workqueue.  On return from this function, @work is
3164  * guaranteed to be not pending or executing on any CPU.
3165  *
3166  * cancel_work_sync(&delayed_work->work) must not be used for
3167  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3168  *
3169  * The caller must ensure that the workqueue on which @work was last
3170  * queued can't be destroyed before this function returns.
3171  *
3172  * Return:
3173  * %true if @work was pending, %false otherwise.
3174  */
cancel_work_sync(struct work_struct * work)3175 bool cancel_work_sync(struct work_struct *work)
3176 {
3177 	return __cancel_work_timer(work, false);
3178 }
3179 EXPORT_SYMBOL_GPL(cancel_work_sync);
3180 
3181 /**
3182  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3183  * @dwork: the delayed work to flush
3184  *
3185  * Delayed timer is cancelled and the pending work is queued for
3186  * immediate execution.  Like flush_work(), this function only
3187  * considers the last queueing instance of @dwork.
3188  *
3189  * Return:
3190  * %true if flush_work() waited for the work to finish execution,
3191  * %false if it was already idle.
3192  */
flush_delayed_work(struct delayed_work * dwork)3193 bool flush_delayed_work(struct delayed_work *dwork)
3194 {
3195 	local_irq_disable();
3196 	if (del_timer_sync(&dwork->timer))
3197 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3198 	local_irq_enable();
3199 	return flush_work(&dwork->work);
3200 }
3201 EXPORT_SYMBOL(flush_delayed_work);
3202 
3203 /**
3204  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3205  * @rwork: the rcu work to flush
3206  *
3207  * Return:
3208  * %true if flush_rcu_work() waited for the work to finish execution,
3209  * %false if it was already idle.
3210  */
flush_rcu_work(struct rcu_work * rwork)3211 bool flush_rcu_work(struct rcu_work *rwork)
3212 {
3213 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3214 		rcu_barrier();
3215 		flush_work(&rwork->work);
3216 		return true;
3217 	} else {
3218 		return flush_work(&rwork->work);
3219 	}
3220 }
3221 EXPORT_SYMBOL(flush_rcu_work);
3222 
__cancel_work(struct work_struct * work,bool is_dwork)3223 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3224 {
3225 	unsigned long flags;
3226 	int ret;
3227 
3228 	do {
3229 		ret = try_to_grab_pending(work, is_dwork, &flags);
3230 	} while (unlikely(ret == -EAGAIN));
3231 
3232 	if (unlikely(ret < 0))
3233 		return false;
3234 
3235 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3236 	local_irq_restore(flags);
3237 	return ret;
3238 }
3239 
3240 /**
3241  * cancel_delayed_work - cancel a delayed work
3242  * @dwork: delayed_work to cancel
3243  *
3244  * Kill off a pending delayed_work.
3245  *
3246  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3247  * pending.
3248  *
3249  * Note:
3250  * The work callback function may still be running on return, unless
3251  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3252  * use cancel_delayed_work_sync() to wait on it.
3253  *
3254  * This function is safe to call from any context including IRQ handler.
3255  */
cancel_delayed_work(struct delayed_work * dwork)3256 bool cancel_delayed_work(struct delayed_work *dwork)
3257 {
3258 	return __cancel_work(&dwork->work, true);
3259 }
3260 EXPORT_SYMBOL(cancel_delayed_work);
3261 
3262 /**
3263  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3264  * @dwork: the delayed work cancel
3265  *
3266  * This is cancel_work_sync() for delayed works.
3267  *
3268  * Return:
3269  * %true if @dwork was pending, %false otherwise.
3270  */
cancel_delayed_work_sync(struct delayed_work * dwork)3271 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3272 {
3273 	return __cancel_work_timer(&dwork->work, true);
3274 }
3275 EXPORT_SYMBOL(cancel_delayed_work_sync);
3276 
3277 /**
3278  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3279  * @func: the function to call
3280  *
3281  * schedule_on_each_cpu() executes @func on each online CPU using the
3282  * system workqueue and blocks until all CPUs have completed.
3283  * schedule_on_each_cpu() is very slow.
3284  *
3285  * Return:
3286  * 0 on success, -errno on failure.
3287  */
schedule_on_each_cpu(work_func_t func)3288 int schedule_on_each_cpu(work_func_t func)
3289 {
3290 	int cpu;
3291 	struct work_struct __percpu *works;
3292 
3293 	works = alloc_percpu(struct work_struct);
3294 	if (!works)
3295 		return -ENOMEM;
3296 
3297 	get_online_cpus();
3298 
3299 	for_each_online_cpu(cpu) {
3300 		struct work_struct *work = per_cpu_ptr(works, cpu);
3301 
3302 		INIT_WORK(work, func);
3303 		schedule_work_on(cpu, work);
3304 	}
3305 
3306 	for_each_online_cpu(cpu)
3307 		flush_work(per_cpu_ptr(works, cpu));
3308 
3309 	put_online_cpus();
3310 	free_percpu(works);
3311 	return 0;
3312 }
3313 
3314 /**
3315  * execute_in_process_context - reliably execute the routine with user context
3316  * @fn:		the function to execute
3317  * @ew:		guaranteed storage for the execute work structure (must
3318  *		be available when the work executes)
3319  *
3320  * Executes the function immediately if process context is available,
3321  * otherwise schedules the function for delayed execution.
3322  *
3323  * Return:	0 - function was executed
3324  *		1 - function was scheduled for execution
3325  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3326 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3327 {
3328 	if (!in_interrupt()) {
3329 		fn(&ew->work);
3330 		return 0;
3331 	}
3332 
3333 	INIT_WORK(&ew->work, fn);
3334 	schedule_work(&ew->work);
3335 
3336 	return 1;
3337 }
3338 EXPORT_SYMBOL_GPL(execute_in_process_context);
3339 
3340 /**
3341  * free_workqueue_attrs - free a workqueue_attrs
3342  * @attrs: workqueue_attrs to free
3343  *
3344  * Undo alloc_workqueue_attrs().
3345  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3346 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3347 {
3348 	if (attrs) {
3349 		free_cpumask_var(attrs->cpumask);
3350 		kfree(attrs);
3351 	}
3352 }
3353 
3354 /**
3355  * alloc_workqueue_attrs - allocate a workqueue_attrs
3356  *
3357  * Allocate a new workqueue_attrs, initialize with default settings and
3358  * return it.
3359  *
3360  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3361  */
alloc_workqueue_attrs(void)3362 struct workqueue_attrs *alloc_workqueue_attrs(void)
3363 {
3364 	struct workqueue_attrs *attrs;
3365 
3366 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3367 	if (!attrs)
3368 		goto fail;
3369 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3370 		goto fail;
3371 
3372 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3373 	return attrs;
3374 fail:
3375 	free_workqueue_attrs(attrs);
3376 	return NULL;
3377 }
3378 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3379 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3380 				 const struct workqueue_attrs *from)
3381 {
3382 	to->nice = from->nice;
3383 	cpumask_copy(to->cpumask, from->cpumask);
3384 	/*
3385 	 * Unlike hash and equality test, this function doesn't ignore
3386 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3387 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3388 	 */
3389 	to->no_numa = from->no_numa;
3390 }
3391 
3392 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3393 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3394 {
3395 	u32 hash = 0;
3396 
3397 	hash = jhash_1word(attrs->nice, hash);
3398 	hash = jhash(cpumask_bits(attrs->cpumask),
3399 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3400 	return hash;
3401 }
3402 
3403 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3404 static bool wqattrs_equal(const struct workqueue_attrs *a,
3405 			  const struct workqueue_attrs *b)
3406 {
3407 	if (a->nice != b->nice)
3408 		return false;
3409 	if (!cpumask_equal(a->cpumask, b->cpumask))
3410 		return false;
3411 	return true;
3412 }
3413 
3414 /**
3415  * init_worker_pool - initialize a newly zalloc'd worker_pool
3416  * @pool: worker_pool to initialize
3417  *
3418  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3419  *
3420  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3421  * inside @pool proper are initialized and put_unbound_pool() can be called
3422  * on @pool safely to release it.
3423  */
init_worker_pool(struct worker_pool * pool)3424 static int init_worker_pool(struct worker_pool *pool)
3425 {
3426 	raw_spin_lock_init(&pool->lock);
3427 	pool->id = -1;
3428 	pool->cpu = -1;
3429 	pool->node = NUMA_NO_NODE;
3430 	pool->flags |= POOL_DISASSOCIATED;
3431 	pool->watchdog_ts = jiffies;
3432 	INIT_LIST_HEAD(&pool->worklist);
3433 	INIT_LIST_HEAD(&pool->idle_list);
3434 	hash_init(pool->busy_hash);
3435 
3436 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3437 
3438 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3439 
3440 	INIT_LIST_HEAD(&pool->workers);
3441 
3442 	ida_init(&pool->worker_ida);
3443 	INIT_HLIST_NODE(&pool->hash_node);
3444 	pool->refcnt = 1;
3445 
3446 	/* shouldn't fail above this point */
3447 	pool->attrs = alloc_workqueue_attrs();
3448 	if (!pool->attrs)
3449 		return -ENOMEM;
3450 	return 0;
3451 }
3452 
3453 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3454 static void wq_init_lockdep(struct workqueue_struct *wq)
3455 {
3456 	char *lock_name;
3457 
3458 	lockdep_register_key(&wq->key);
3459 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3460 	if (!lock_name)
3461 		lock_name = wq->name;
3462 
3463 	wq->lock_name = lock_name;
3464 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3465 }
3466 
wq_unregister_lockdep(struct workqueue_struct * wq)3467 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3468 {
3469 	lockdep_unregister_key(&wq->key);
3470 }
3471 
wq_free_lockdep(struct workqueue_struct * wq)3472 static void wq_free_lockdep(struct workqueue_struct *wq)
3473 {
3474 	if (wq->lock_name != wq->name)
3475 		kfree(wq->lock_name);
3476 }
3477 #else
wq_init_lockdep(struct workqueue_struct * wq)3478 static void wq_init_lockdep(struct workqueue_struct *wq)
3479 {
3480 }
3481 
wq_unregister_lockdep(struct workqueue_struct * wq)3482 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3483 {
3484 }
3485 
wq_free_lockdep(struct workqueue_struct * wq)3486 static void wq_free_lockdep(struct workqueue_struct *wq)
3487 {
3488 }
3489 #endif
3490 
rcu_free_wq(struct rcu_head * rcu)3491 static void rcu_free_wq(struct rcu_head *rcu)
3492 {
3493 	struct workqueue_struct *wq =
3494 		container_of(rcu, struct workqueue_struct, rcu);
3495 
3496 	wq_free_lockdep(wq);
3497 
3498 	if (!(wq->flags & WQ_UNBOUND))
3499 		free_percpu(wq->cpu_pwqs);
3500 	else
3501 		free_workqueue_attrs(wq->unbound_attrs);
3502 
3503 	kfree(wq);
3504 }
3505 
rcu_free_pool(struct rcu_head * rcu)3506 static void rcu_free_pool(struct rcu_head *rcu)
3507 {
3508 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3509 
3510 	ida_destroy(&pool->worker_ida);
3511 	free_workqueue_attrs(pool->attrs);
3512 	kfree(pool);
3513 }
3514 
3515 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3516 static bool wq_manager_inactive(struct worker_pool *pool)
3517 {
3518 	raw_spin_lock_irq(&pool->lock);
3519 
3520 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3521 		raw_spin_unlock_irq(&pool->lock);
3522 		return false;
3523 	}
3524 	return true;
3525 }
3526 
3527 /**
3528  * put_unbound_pool - put a worker_pool
3529  * @pool: worker_pool to put
3530  *
3531  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3532  * safe manner.  get_unbound_pool() calls this function on its failure path
3533  * and this function should be able to release pools which went through,
3534  * successfully or not, init_worker_pool().
3535  *
3536  * Should be called with wq_pool_mutex held.
3537  */
put_unbound_pool(struct worker_pool * pool)3538 static void put_unbound_pool(struct worker_pool *pool)
3539 {
3540 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3541 	struct worker *worker;
3542 
3543 	lockdep_assert_held(&wq_pool_mutex);
3544 
3545 	if (--pool->refcnt)
3546 		return;
3547 
3548 	/* sanity checks */
3549 	if (WARN_ON(!(pool->cpu < 0)) ||
3550 	    WARN_ON(!list_empty(&pool->worklist)))
3551 		return;
3552 
3553 	/* release id and unhash */
3554 	if (pool->id >= 0)
3555 		idr_remove(&worker_pool_idr, pool->id);
3556 	hash_del(&pool->hash_node);
3557 
3558 	/*
3559 	 * Become the manager and destroy all workers.  This prevents
3560 	 * @pool's workers from blocking on attach_mutex.  We're the last
3561 	 * manager and @pool gets freed with the flag set.
3562 	 * Because of how wq_manager_inactive() works, we will hold the
3563 	 * spinlock after a successful wait.
3564 	 */
3565 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3566 			   TASK_UNINTERRUPTIBLE);
3567 	pool->flags |= POOL_MANAGER_ACTIVE;
3568 
3569 	while ((worker = first_idle_worker(pool)))
3570 		destroy_worker(worker);
3571 	WARN_ON(pool->nr_workers || pool->nr_idle);
3572 	raw_spin_unlock_irq(&pool->lock);
3573 
3574 	mutex_lock(&wq_pool_attach_mutex);
3575 	if (!list_empty(&pool->workers))
3576 		pool->detach_completion = &detach_completion;
3577 	mutex_unlock(&wq_pool_attach_mutex);
3578 
3579 	if (pool->detach_completion)
3580 		wait_for_completion(pool->detach_completion);
3581 
3582 	/* shut down the timers */
3583 	del_timer_sync(&pool->idle_timer);
3584 	del_timer_sync(&pool->mayday_timer);
3585 
3586 	/* RCU protected to allow dereferences from get_work_pool() */
3587 	call_rcu(&pool->rcu, rcu_free_pool);
3588 }
3589 
3590 /**
3591  * get_unbound_pool - get a worker_pool with the specified attributes
3592  * @attrs: the attributes of the worker_pool to get
3593  *
3594  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3595  * reference count and return it.  If there already is a matching
3596  * worker_pool, it will be used; otherwise, this function attempts to
3597  * create a new one.
3598  *
3599  * Should be called with wq_pool_mutex held.
3600  *
3601  * Return: On success, a worker_pool with the same attributes as @attrs.
3602  * On failure, %NULL.
3603  */
get_unbound_pool(const struct workqueue_attrs * attrs)3604 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3605 {
3606 	u32 hash = wqattrs_hash(attrs);
3607 	struct worker_pool *pool;
3608 	int node;
3609 	int target_node = NUMA_NO_NODE;
3610 
3611 	lockdep_assert_held(&wq_pool_mutex);
3612 
3613 	/* do we already have a matching pool? */
3614 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3615 		if (wqattrs_equal(pool->attrs, attrs)) {
3616 			pool->refcnt++;
3617 			return pool;
3618 		}
3619 	}
3620 
3621 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3622 	if (wq_numa_enabled) {
3623 		for_each_node(node) {
3624 			if (cpumask_subset(attrs->cpumask,
3625 					   wq_numa_possible_cpumask[node])) {
3626 				target_node = node;
3627 				break;
3628 			}
3629 		}
3630 	}
3631 
3632 	/* nope, create a new one */
3633 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3634 	if (!pool || init_worker_pool(pool) < 0)
3635 		goto fail;
3636 
3637 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3638 	copy_workqueue_attrs(pool->attrs, attrs);
3639 	pool->node = target_node;
3640 
3641 	/*
3642 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3643 	 * 'struct workqueue_attrs' comments for detail.
3644 	 */
3645 	pool->attrs->no_numa = false;
3646 
3647 	if (worker_pool_assign_id(pool) < 0)
3648 		goto fail;
3649 
3650 	/* create and start the initial worker */
3651 	if (wq_online && !create_worker(pool))
3652 		goto fail;
3653 
3654 	/* install */
3655 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3656 
3657 	return pool;
3658 fail:
3659 	if (pool)
3660 		put_unbound_pool(pool);
3661 	return NULL;
3662 }
3663 
rcu_free_pwq(struct rcu_head * rcu)3664 static void rcu_free_pwq(struct rcu_head *rcu)
3665 {
3666 	kmem_cache_free(pwq_cache,
3667 			container_of(rcu, struct pool_workqueue, rcu));
3668 }
3669 
3670 /*
3671  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3672  * and needs to be destroyed.
3673  */
pwq_unbound_release_workfn(struct work_struct * work)3674 static void pwq_unbound_release_workfn(struct work_struct *work)
3675 {
3676 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3677 						  unbound_release_work);
3678 	struct workqueue_struct *wq = pwq->wq;
3679 	struct worker_pool *pool = pwq->pool;
3680 	bool is_last = false;
3681 
3682 	/*
3683 	 * when @pwq is not linked, it doesn't hold any reference to the
3684 	 * @wq, and @wq is invalid to access.
3685 	 */
3686 	if (!list_empty(&pwq->pwqs_node)) {
3687 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3688 			return;
3689 
3690 		mutex_lock(&wq->mutex);
3691 		list_del_rcu(&pwq->pwqs_node);
3692 		is_last = list_empty(&wq->pwqs);
3693 		mutex_unlock(&wq->mutex);
3694 	}
3695 
3696 	mutex_lock(&wq_pool_mutex);
3697 	put_unbound_pool(pool);
3698 	mutex_unlock(&wq_pool_mutex);
3699 
3700 	call_rcu(&pwq->rcu, rcu_free_pwq);
3701 
3702 	/*
3703 	 * If we're the last pwq going away, @wq is already dead and no one
3704 	 * is gonna access it anymore.  Schedule RCU free.
3705 	 */
3706 	if (is_last) {
3707 		wq_unregister_lockdep(wq);
3708 		call_rcu(&wq->rcu, rcu_free_wq);
3709 	}
3710 }
3711 
3712 /**
3713  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3714  * @pwq: target pool_workqueue
3715  *
3716  * If @pwq isn't freezing, set @pwq->max_active to the associated
3717  * workqueue's saved_max_active and activate delayed work items
3718  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3719  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3720 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3721 {
3722 	struct workqueue_struct *wq = pwq->wq;
3723 	bool freezable = wq->flags & WQ_FREEZABLE;
3724 	unsigned long flags;
3725 
3726 	/* for @wq->saved_max_active */
3727 	lockdep_assert_held(&wq->mutex);
3728 
3729 	/* fast exit for non-freezable wqs */
3730 	if (!freezable && pwq->max_active == wq->saved_max_active)
3731 		return;
3732 
3733 	/* this function can be called during early boot w/ irq disabled */
3734 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3735 
3736 	/*
3737 	 * During [un]freezing, the caller is responsible for ensuring that
3738 	 * this function is called at least once after @workqueue_freezing
3739 	 * is updated and visible.
3740 	 */
3741 	if (!freezable || !workqueue_freezing) {
3742 		bool kick = false;
3743 
3744 		pwq->max_active = wq->saved_max_active;
3745 
3746 		while (!list_empty(&pwq->delayed_works) &&
3747 		       pwq->nr_active < pwq->max_active) {
3748 			pwq_activate_first_delayed(pwq);
3749 			kick = true;
3750 		}
3751 
3752 		/*
3753 		 * Need to kick a worker after thawed or an unbound wq's
3754 		 * max_active is bumped. In realtime scenarios, always kicking a
3755 		 * worker will cause interference on the isolated cpu cores, so
3756 		 * let's kick iff work items were activated.
3757 		 */
3758 		if (kick)
3759 			wake_up_worker(pwq->pool);
3760 	} else {
3761 		pwq->max_active = 0;
3762 	}
3763 
3764 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3765 }
3766 
3767 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3768 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3769 		     struct worker_pool *pool)
3770 {
3771 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3772 
3773 	memset(pwq, 0, sizeof(*pwq));
3774 
3775 	pwq->pool = pool;
3776 	pwq->wq = wq;
3777 	pwq->flush_color = -1;
3778 	pwq->refcnt = 1;
3779 	INIT_LIST_HEAD(&pwq->delayed_works);
3780 	INIT_LIST_HEAD(&pwq->pwqs_node);
3781 	INIT_LIST_HEAD(&pwq->mayday_node);
3782 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3783 }
3784 
3785 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3786 static void link_pwq(struct pool_workqueue *pwq)
3787 {
3788 	struct workqueue_struct *wq = pwq->wq;
3789 
3790 	lockdep_assert_held(&wq->mutex);
3791 
3792 	/* may be called multiple times, ignore if already linked */
3793 	if (!list_empty(&pwq->pwqs_node))
3794 		return;
3795 
3796 	/* set the matching work_color */
3797 	pwq->work_color = wq->work_color;
3798 
3799 	/* sync max_active to the current setting */
3800 	pwq_adjust_max_active(pwq);
3801 
3802 	/* link in @pwq */
3803 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3804 }
3805 
3806 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3807 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3808 					const struct workqueue_attrs *attrs)
3809 {
3810 	struct worker_pool *pool;
3811 	struct pool_workqueue *pwq;
3812 
3813 	lockdep_assert_held(&wq_pool_mutex);
3814 
3815 	pool = get_unbound_pool(attrs);
3816 	if (!pool)
3817 		return NULL;
3818 
3819 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3820 	if (!pwq) {
3821 		put_unbound_pool(pool);
3822 		return NULL;
3823 	}
3824 
3825 	init_pwq(pwq, wq, pool);
3826 	return pwq;
3827 }
3828 
3829 /**
3830  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3831  * @attrs: the wq_attrs of the default pwq of the target workqueue
3832  * @node: the target NUMA node
3833  * @cpu_going_down: if >= 0, the CPU to consider as offline
3834  * @cpumask: outarg, the resulting cpumask
3835  *
3836  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3837  * @cpu_going_down is >= 0, that cpu is considered offline during
3838  * calculation.  The result is stored in @cpumask.
3839  *
3840  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3841  * enabled and @node has online CPUs requested by @attrs, the returned
3842  * cpumask is the intersection of the possible CPUs of @node and
3843  * @attrs->cpumask.
3844  *
3845  * The caller is responsible for ensuring that the cpumask of @node stays
3846  * stable.
3847  *
3848  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3849  * %false if equal.
3850  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3851 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3852 				 int cpu_going_down, cpumask_t *cpumask)
3853 {
3854 	if (!wq_numa_enabled || attrs->no_numa)
3855 		goto use_dfl;
3856 
3857 	/* does @node have any online CPUs @attrs wants? */
3858 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3859 	if (cpu_going_down >= 0)
3860 		cpumask_clear_cpu(cpu_going_down, cpumask);
3861 
3862 	if (cpumask_empty(cpumask))
3863 		goto use_dfl;
3864 
3865 	/* yeap, return possible CPUs in @node that @attrs wants */
3866 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3867 
3868 	if (cpumask_empty(cpumask)) {
3869 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3870 				"possible intersect\n");
3871 		return false;
3872 	}
3873 
3874 	return !cpumask_equal(cpumask, attrs->cpumask);
3875 
3876 use_dfl:
3877 	cpumask_copy(cpumask, attrs->cpumask);
3878 	return false;
3879 }
3880 
3881 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3882 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3883 						   int node,
3884 						   struct pool_workqueue *pwq)
3885 {
3886 	struct pool_workqueue *old_pwq;
3887 
3888 	lockdep_assert_held(&wq_pool_mutex);
3889 	lockdep_assert_held(&wq->mutex);
3890 
3891 	/* link_pwq() can handle duplicate calls */
3892 	link_pwq(pwq);
3893 
3894 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3895 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3896 	return old_pwq;
3897 }
3898 
3899 /* context to store the prepared attrs & pwqs before applying */
3900 struct apply_wqattrs_ctx {
3901 	struct workqueue_struct	*wq;		/* target workqueue */
3902 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3903 	struct list_head	list;		/* queued for batching commit */
3904 	struct pool_workqueue	*dfl_pwq;
3905 	struct pool_workqueue	*pwq_tbl[];
3906 };
3907 
3908 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3909 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3910 {
3911 	if (ctx) {
3912 		int node;
3913 
3914 		for_each_node(node)
3915 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3916 		put_pwq_unlocked(ctx->dfl_pwq);
3917 
3918 		free_workqueue_attrs(ctx->attrs);
3919 
3920 		kfree(ctx);
3921 	}
3922 }
3923 
3924 /* allocate the attrs and pwqs for later installation */
3925 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3926 apply_wqattrs_prepare(struct workqueue_struct *wq,
3927 		      const struct workqueue_attrs *attrs)
3928 {
3929 	struct apply_wqattrs_ctx *ctx;
3930 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3931 	int node;
3932 
3933 	lockdep_assert_held(&wq_pool_mutex);
3934 
3935 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3936 
3937 	new_attrs = alloc_workqueue_attrs();
3938 	tmp_attrs = alloc_workqueue_attrs();
3939 	if (!ctx || !new_attrs || !tmp_attrs)
3940 		goto out_free;
3941 
3942 	/*
3943 	 * Calculate the attrs of the default pwq.
3944 	 * If the user configured cpumask doesn't overlap with the
3945 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3946 	 */
3947 	copy_workqueue_attrs(new_attrs, attrs);
3948 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3949 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3950 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3951 
3952 	/*
3953 	 * We may create multiple pwqs with differing cpumasks.  Make a
3954 	 * copy of @new_attrs which will be modified and used to obtain
3955 	 * pools.
3956 	 */
3957 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3958 
3959 	/*
3960 	 * If something goes wrong during CPU up/down, we'll fall back to
3961 	 * the default pwq covering whole @attrs->cpumask.  Always create
3962 	 * it even if we don't use it immediately.
3963 	 */
3964 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3965 	if (!ctx->dfl_pwq)
3966 		goto out_free;
3967 
3968 	for_each_node(node) {
3969 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3970 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3971 			if (!ctx->pwq_tbl[node])
3972 				goto out_free;
3973 		} else {
3974 			ctx->dfl_pwq->refcnt++;
3975 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3976 		}
3977 	}
3978 
3979 	/* save the user configured attrs and sanitize it. */
3980 	copy_workqueue_attrs(new_attrs, attrs);
3981 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3982 	ctx->attrs = new_attrs;
3983 
3984 	ctx->wq = wq;
3985 	free_workqueue_attrs(tmp_attrs);
3986 	return ctx;
3987 
3988 out_free:
3989 	free_workqueue_attrs(tmp_attrs);
3990 	free_workqueue_attrs(new_attrs);
3991 	apply_wqattrs_cleanup(ctx);
3992 	return NULL;
3993 }
3994 
3995 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3996 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3997 {
3998 	int node;
3999 
4000 	/* all pwqs have been created successfully, let's install'em */
4001 	mutex_lock(&ctx->wq->mutex);
4002 
4003 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4004 
4005 	/* save the previous pwq and install the new one */
4006 	for_each_node(node)
4007 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4008 							  ctx->pwq_tbl[node]);
4009 
4010 	/* @dfl_pwq might not have been used, ensure it's linked */
4011 	link_pwq(ctx->dfl_pwq);
4012 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4013 
4014 	mutex_unlock(&ctx->wq->mutex);
4015 }
4016 
apply_wqattrs_lock(void)4017 static void apply_wqattrs_lock(void)
4018 {
4019 	/* CPUs should stay stable across pwq creations and installations */
4020 	get_online_cpus();
4021 	mutex_lock(&wq_pool_mutex);
4022 }
4023 
apply_wqattrs_unlock(void)4024 static void apply_wqattrs_unlock(void)
4025 {
4026 	mutex_unlock(&wq_pool_mutex);
4027 	put_online_cpus();
4028 }
4029 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4030 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4031 					const struct workqueue_attrs *attrs)
4032 {
4033 	struct apply_wqattrs_ctx *ctx;
4034 
4035 	/* only unbound workqueues can change attributes */
4036 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4037 		return -EINVAL;
4038 
4039 	/* creating multiple pwqs breaks ordering guarantee */
4040 	if (!list_empty(&wq->pwqs)) {
4041 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4042 			return -EINVAL;
4043 
4044 		wq->flags &= ~__WQ_ORDERED;
4045 	}
4046 
4047 	ctx = apply_wqattrs_prepare(wq, attrs);
4048 	if (!ctx)
4049 		return -ENOMEM;
4050 
4051 	/* the ctx has been prepared successfully, let's commit it */
4052 	apply_wqattrs_commit(ctx);
4053 	apply_wqattrs_cleanup(ctx);
4054 
4055 	return 0;
4056 }
4057 
4058 /**
4059  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4060  * @wq: the target workqueue
4061  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4062  *
4063  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4064  * machines, this function maps a separate pwq to each NUMA node with
4065  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4066  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4067  * items finish.  Note that a work item which repeatedly requeues itself
4068  * back-to-back will stay on its current pwq.
4069  *
4070  * Performs GFP_KERNEL allocations.
4071  *
4072  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4073  *
4074  * Return: 0 on success and -errno on failure.
4075  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4076 int apply_workqueue_attrs(struct workqueue_struct *wq,
4077 			  const struct workqueue_attrs *attrs)
4078 {
4079 	int ret;
4080 
4081 	lockdep_assert_cpus_held();
4082 
4083 	mutex_lock(&wq_pool_mutex);
4084 	ret = apply_workqueue_attrs_locked(wq, attrs);
4085 	mutex_unlock(&wq_pool_mutex);
4086 
4087 	return ret;
4088 }
4089 
4090 /**
4091  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4092  * @wq: the target workqueue
4093  * @cpu: the CPU coming up or going down
4094  * @online: whether @cpu is coming up or going down
4095  *
4096  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4097  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4098  * @wq accordingly.
4099  *
4100  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4101  * falls back to @wq->dfl_pwq which may not be optimal but is always
4102  * correct.
4103  *
4104  * Note that when the last allowed CPU of a NUMA node goes offline for a
4105  * workqueue with a cpumask spanning multiple nodes, the workers which were
4106  * already executing the work items for the workqueue will lose their CPU
4107  * affinity and may execute on any CPU.  This is similar to how per-cpu
4108  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4109  * affinity, it's the user's responsibility to flush the work item from
4110  * CPU_DOWN_PREPARE.
4111  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4112 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4113 				   bool online)
4114 {
4115 	int node = cpu_to_node(cpu);
4116 	int cpu_off = online ? -1 : cpu;
4117 	struct pool_workqueue *old_pwq = NULL, *pwq;
4118 	struct workqueue_attrs *target_attrs;
4119 	cpumask_t *cpumask;
4120 
4121 	lockdep_assert_held(&wq_pool_mutex);
4122 
4123 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4124 	    wq->unbound_attrs->no_numa)
4125 		return;
4126 
4127 	/*
4128 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4129 	 * Let's use a preallocated one.  The following buf is protected by
4130 	 * CPU hotplug exclusion.
4131 	 */
4132 	target_attrs = wq_update_unbound_numa_attrs_buf;
4133 	cpumask = target_attrs->cpumask;
4134 
4135 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4136 	pwq = unbound_pwq_by_node(wq, node);
4137 
4138 	/*
4139 	 * Let's determine what needs to be done.  If the target cpumask is
4140 	 * different from the default pwq's, we need to compare it to @pwq's
4141 	 * and create a new one if they don't match.  If the target cpumask
4142 	 * equals the default pwq's, the default pwq should be used.
4143 	 */
4144 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4145 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4146 			return;
4147 	} else {
4148 		goto use_dfl_pwq;
4149 	}
4150 
4151 	/* create a new pwq */
4152 	pwq = alloc_unbound_pwq(wq, target_attrs);
4153 	if (!pwq) {
4154 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4155 			wq->name);
4156 		goto use_dfl_pwq;
4157 	}
4158 
4159 	/* Install the new pwq. */
4160 	mutex_lock(&wq->mutex);
4161 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4162 	goto out_unlock;
4163 
4164 use_dfl_pwq:
4165 	mutex_lock(&wq->mutex);
4166 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4167 	get_pwq(wq->dfl_pwq);
4168 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4169 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4170 out_unlock:
4171 	mutex_unlock(&wq->mutex);
4172 	put_pwq_unlocked(old_pwq);
4173 }
4174 
alloc_and_link_pwqs(struct workqueue_struct * wq)4175 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4176 {
4177 	bool highpri = wq->flags & WQ_HIGHPRI;
4178 	int cpu, ret;
4179 
4180 	if (!(wq->flags & WQ_UNBOUND)) {
4181 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4182 		if (!wq->cpu_pwqs)
4183 			return -ENOMEM;
4184 
4185 		for_each_possible_cpu(cpu) {
4186 			struct pool_workqueue *pwq =
4187 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4188 			struct worker_pool *cpu_pools =
4189 				per_cpu(cpu_worker_pools, cpu);
4190 
4191 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4192 
4193 			mutex_lock(&wq->mutex);
4194 			link_pwq(pwq);
4195 			mutex_unlock(&wq->mutex);
4196 		}
4197 		return 0;
4198 	}
4199 
4200 	get_online_cpus();
4201 	if (wq->flags & __WQ_ORDERED) {
4202 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4203 		/* there should only be single pwq for ordering guarantee */
4204 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4205 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4206 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4207 	} else {
4208 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4209 	}
4210 	put_online_cpus();
4211 
4212 	return ret;
4213 }
4214 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4215 static int wq_clamp_max_active(int max_active, unsigned int flags,
4216 			       const char *name)
4217 {
4218 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4219 
4220 	if (max_active < 1 || max_active > lim)
4221 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4222 			max_active, name, 1, lim);
4223 
4224 	return clamp_val(max_active, 1, lim);
4225 }
4226 
4227 /*
4228  * Workqueues which may be used during memory reclaim should have a rescuer
4229  * to guarantee forward progress.
4230  */
init_rescuer(struct workqueue_struct * wq)4231 static int init_rescuer(struct workqueue_struct *wq)
4232 {
4233 	struct worker *rescuer;
4234 	int ret;
4235 
4236 	if (!(wq->flags & WQ_MEM_RECLAIM))
4237 		return 0;
4238 
4239 	rescuer = alloc_worker(NUMA_NO_NODE);
4240 	if (!rescuer)
4241 		return -ENOMEM;
4242 
4243 	rescuer->rescue_wq = wq;
4244 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4245 	if (IS_ERR(rescuer->task)) {
4246 		ret = PTR_ERR(rescuer->task);
4247 		kfree(rescuer);
4248 		return ret;
4249 	}
4250 
4251 	wq->rescuer = rescuer;
4252 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4253 	wake_up_process(rescuer->task);
4254 
4255 	return 0;
4256 }
4257 
4258 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4259 struct workqueue_struct *alloc_workqueue(const char *fmt,
4260 					 unsigned int flags,
4261 					 int max_active, ...)
4262 {
4263 	size_t tbl_size = 0;
4264 	va_list args;
4265 	struct workqueue_struct *wq;
4266 	struct pool_workqueue *pwq;
4267 
4268 	/*
4269 	 * Unbound && max_active == 1 used to imply ordered, which is no
4270 	 * longer the case on NUMA machines due to per-node pools.  While
4271 	 * alloc_ordered_workqueue() is the right way to create an ordered
4272 	 * workqueue, keep the previous behavior to avoid subtle breakages
4273 	 * on NUMA.
4274 	 */
4275 	if ((flags & WQ_UNBOUND) && max_active == 1)
4276 		flags |= __WQ_ORDERED;
4277 
4278 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4279 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4280 		flags |= WQ_UNBOUND;
4281 
4282 	/* allocate wq and format name */
4283 	if (flags & WQ_UNBOUND)
4284 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4285 
4286 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4287 	if (!wq)
4288 		return NULL;
4289 
4290 	if (flags & WQ_UNBOUND) {
4291 		wq->unbound_attrs = alloc_workqueue_attrs();
4292 		if (!wq->unbound_attrs)
4293 			goto err_free_wq;
4294 	}
4295 
4296 	va_start(args, max_active);
4297 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4298 	va_end(args);
4299 
4300 	max_active = max_active ?: WQ_DFL_ACTIVE;
4301 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4302 
4303 	/* init wq */
4304 	wq->flags = flags;
4305 	wq->saved_max_active = max_active;
4306 	mutex_init(&wq->mutex);
4307 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4308 	INIT_LIST_HEAD(&wq->pwqs);
4309 	INIT_LIST_HEAD(&wq->flusher_queue);
4310 	INIT_LIST_HEAD(&wq->flusher_overflow);
4311 	INIT_LIST_HEAD(&wq->maydays);
4312 
4313 	wq_init_lockdep(wq);
4314 	INIT_LIST_HEAD(&wq->list);
4315 
4316 	if (alloc_and_link_pwqs(wq) < 0)
4317 		goto err_unreg_lockdep;
4318 
4319 	if (wq_online && init_rescuer(wq) < 0)
4320 		goto err_destroy;
4321 
4322 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4323 		goto err_destroy;
4324 
4325 	/*
4326 	 * wq_pool_mutex protects global freeze state and workqueues list.
4327 	 * Grab it, adjust max_active and add the new @wq to workqueues
4328 	 * list.
4329 	 */
4330 	mutex_lock(&wq_pool_mutex);
4331 
4332 	mutex_lock(&wq->mutex);
4333 	for_each_pwq(pwq, wq)
4334 		pwq_adjust_max_active(pwq);
4335 	mutex_unlock(&wq->mutex);
4336 
4337 	list_add_tail_rcu(&wq->list, &workqueues);
4338 
4339 	mutex_unlock(&wq_pool_mutex);
4340 
4341 	return wq;
4342 
4343 err_unreg_lockdep:
4344 	wq_unregister_lockdep(wq);
4345 	wq_free_lockdep(wq);
4346 err_free_wq:
4347 	free_workqueue_attrs(wq->unbound_attrs);
4348 	kfree(wq);
4349 	return NULL;
4350 err_destroy:
4351 	destroy_workqueue(wq);
4352 	return NULL;
4353 }
4354 EXPORT_SYMBOL_GPL(alloc_workqueue);
4355 
pwq_busy(struct pool_workqueue * pwq)4356 static bool pwq_busy(struct pool_workqueue *pwq)
4357 {
4358 	int i;
4359 
4360 	for (i = 0; i < WORK_NR_COLORS; i++)
4361 		if (pwq->nr_in_flight[i])
4362 			return true;
4363 
4364 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4365 		return true;
4366 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4367 		return true;
4368 
4369 	return false;
4370 }
4371 
4372 /**
4373  * destroy_workqueue - safely terminate a workqueue
4374  * @wq: target workqueue
4375  *
4376  * Safely destroy a workqueue. All work currently pending will be done first.
4377  */
destroy_workqueue(struct workqueue_struct * wq)4378 void destroy_workqueue(struct workqueue_struct *wq)
4379 {
4380 	struct pool_workqueue *pwq;
4381 	int node;
4382 
4383 	/*
4384 	 * Remove it from sysfs first so that sanity check failure doesn't
4385 	 * lead to sysfs name conflicts.
4386 	 */
4387 	workqueue_sysfs_unregister(wq);
4388 
4389 	/* drain it before proceeding with destruction */
4390 	drain_workqueue(wq);
4391 
4392 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4393 	if (wq->rescuer) {
4394 		struct worker *rescuer = wq->rescuer;
4395 
4396 		/* this prevents new queueing */
4397 		raw_spin_lock_irq(&wq_mayday_lock);
4398 		wq->rescuer = NULL;
4399 		raw_spin_unlock_irq(&wq_mayday_lock);
4400 
4401 		/* rescuer will empty maydays list before exiting */
4402 		kthread_stop(rescuer->task);
4403 		kfree(rescuer);
4404 	}
4405 
4406 	/*
4407 	 * Sanity checks - grab all the locks so that we wait for all
4408 	 * in-flight operations which may do put_pwq().
4409 	 */
4410 	mutex_lock(&wq_pool_mutex);
4411 	mutex_lock(&wq->mutex);
4412 	for_each_pwq(pwq, wq) {
4413 		raw_spin_lock_irq(&pwq->pool->lock);
4414 		if (WARN_ON(pwq_busy(pwq))) {
4415 			pr_warn("%s: %s has the following busy pwq\n",
4416 				__func__, wq->name);
4417 			show_pwq(pwq);
4418 			raw_spin_unlock_irq(&pwq->pool->lock);
4419 			mutex_unlock(&wq->mutex);
4420 			mutex_unlock(&wq_pool_mutex);
4421 			show_workqueue_state();
4422 			return;
4423 		}
4424 		raw_spin_unlock_irq(&pwq->pool->lock);
4425 	}
4426 	mutex_unlock(&wq->mutex);
4427 
4428 	/*
4429 	 * wq list is used to freeze wq, remove from list after
4430 	 * flushing is complete in case freeze races us.
4431 	 */
4432 	list_del_rcu(&wq->list);
4433 	mutex_unlock(&wq_pool_mutex);
4434 
4435 	if (!(wq->flags & WQ_UNBOUND)) {
4436 		wq_unregister_lockdep(wq);
4437 		/*
4438 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4439 		 * schedule RCU free.
4440 		 */
4441 		call_rcu(&wq->rcu, rcu_free_wq);
4442 	} else {
4443 		/*
4444 		 * We're the sole accessor of @wq at this point.  Directly
4445 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4446 		 * @wq will be freed when the last pwq is released.
4447 		 */
4448 		for_each_node(node) {
4449 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4450 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4451 			put_pwq_unlocked(pwq);
4452 		}
4453 
4454 		/*
4455 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4456 		 * put.  Don't access it afterwards.
4457 		 */
4458 		pwq = wq->dfl_pwq;
4459 		wq->dfl_pwq = NULL;
4460 		put_pwq_unlocked(pwq);
4461 	}
4462 }
4463 EXPORT_SYMBOL_GPL(destroy_workqueue);
4464 
4465 /**
4466  * workqueue_set_max_active - adjust max_active of a workqueue
4467  * @wq: target workqueue
4468  * @max_active: new max_active value.
4469  *
4470  * Set max_active of @wq to @max_active.
4471  *
4472  * CONTEXT:
4473  * Don't call from IRQ context.
4474  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4475 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4476 {
4477 	struct pool_workqueue *pwq;
4478 
4479 	/* disallow meddling with max_active for ordered workqueues */
4480 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4481 		return;
4482 
4483 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4484 
4485 	mutex_lock(&wq->mutex);
4486 
4487 	wq->flags &= ~__WQ_ORDERED;
4488 	wq->saved_max_active = max_active;
4489 
4490 	for_each_pwq(pwq, wq)
4491 		pwq_adjust_max_active(pwq);
4492 
4493 	mutex_unlock(&wq->mutex);
4494 }
4495 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4496 
4497 /**
4498  * current_work - retrieve %current task's work struct
4499  *
4500  * Determine if %current task is a workqueue worker and what it's working on.
4501  * Useful to find out the context that the %current task is running in.
4502  *
4503  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4504  */
current_work(void)4505 struct work_struct *current_work(void)
4506 {
4507 	struct worker *worker = current_wq_worker();
4508 
4509 	return worker ? worker->current_work : NULL;
4510 }
4511 EXPORT_SYMBOL(current_work);
4512 
4513 /**
4514  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4515  *
4516  * Determine whether %current is a workqueue rescuer.  Can be used from
4517  * work functions to determine whether it's being run off the rescuer task.
4518  *
4519  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4520  */
current_is_workqueue_rescuer(void)4521 bool current_is_workqueue_rescuer(void)
4522 {
4523 	struct worker *worker = current_wq_worker();
4524 
4525 	return worker && worker->rescue_wq;
4526 }
4527 
4528 /**
4529  * workqueue_congested - test whether a workqueue is congested
4530  * @cpu: CPU in question
4531  * @wq: target workqueue
4532  *
4533  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4534  * no synchronization around this function and the test result is
4535  * unreliable and only useful as advisory hints or for debugging.
4536  *
4537  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4538  * Note that both per-cpu and unbound workqueues may be associated with
4539  * multiple pool_workqueues which have separate congested states.  A
4540  * workqueue being congested on one CPU doesn't mean the workqueue is also
4541  * contested on other CPUs / NUMA nodes.
4542  *
4543  * Return:
4544  * %true if congested, %false otherwise.
4545  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4546 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4547 {
4548 	struct pool_workqueue *pwq;
4549 	bool ret;
4550 
4551 	rcu_read_lock();
4552 	preempt_disable();
4553 
4554 	if (cpu == WORK_CPU_UNBOUND)
4555 		cpu = smp_processor_id();
4556 
4557 	if (!(wq->flags & WQ_UNBOUND))
4558 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4559 	else
4560 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4561 
4562 	ret = !list_empty(&pwq->delayed_works);
4563 	preempt_enable();
4564 	rcu_read_unlock();
4565 
4566 	return ret;
4567 }
4568 EXPORT_SYMBOL_GPL(workqueue_congested);
4569 
4570 /**
4571  * work_busy - test whether a work is currently pending or running
4572  * @work: the work to be tested
4573  *
4574  * Test whether @work is currently pending or running.  There is no
4575  * synchronization around this function and the test result is
4576  * unreliable and only useful as advisory hints or for debugging.
4577  *
4578  * Return:
4579  * OR'd bitmask of WORK_BUSY_* bits.
4580  */
work_busy(struct work_struct * work)4581 unsigned int work_busy(struct work_struct *work)
4582 {
4583 	struct worker_pool *pool;
4584 	unsigned long flags;
4585 	unsigned int ret = 0;
4586 
4587 	if (work_pending(work))
4588 		ret |= WORK_BUSY_PENDING;
4589 
4590 	rcu_read_lock();
4591 	pool = get_work_pool(work);
4592 	if (pool) {
4593 		raw_spin_lock_irqsave(&pool->lock, flags);
4594 		if (find_worker_executing_work(pool, work))
4595 			ret |= WORK_BUSY_RUNNING;
4596 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4597 	}
4598 	rcu_read_unlock();
4599 
4600 	return ret;
4601 }
4602 EXPORT_SYMBOL_GPL(work_busy);
4603 
4604 /**
4605  * set_worker_desc - set description for the current work item
4606  * @fmt: printf-style format string
4607  * @...: arguments for the format string
4608  *
4609  * This function can be called by a running work function to describe what
4610  * the work item is about.  If the worker task gets dumped, this
4611  * information will be printed out together to help debugging.  The
4612  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4613  */
set_worker_desc(const char * fmt,...)4614 void set_worker_desc(const char *fmt, ...)
4615 {
4616 	struct worker *worker = current_wq_worker();
4617 	va_list args;
4618 
4619 	if (worker) {
4620 		va_start(args, fmt);
4621 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4622 		va_end(args);
4623 	}
4624 }
4625 EXPORT_SYMBOL_GPL(set_worker_desc);
4626 
4627 /**
4628  * print_worker_info - print out worker information and description
4629  * @log_lvl: the log level to use when printing
4630  * @task: target task
4631  *
4632  * If @task is a worker and currently executing a work item, print out the
4633  * name of the workqueue being serviced and worker description set with
4634  * set_worker_desc() by the currently executing work item.
4635  *
4636  * This function can be safely called on any task as long as the
4637  * task_struct itself is accessible.  While safe, this function isn't
4638  * synchronized and may print out mixups or garbages of limited length.
4639  */
print_worker_info(const char * log_lvl,struct task_struct * task)4640 void print_worker_info(const char *log_lvl, struct task_struct *task)
4641 {
4642 	work_func_t *fn = NULL;
4643 	char name[WQ_NAME_LEN] = { };
4644 	char desc[WORKER_DESC_LEN] = { };
4645 	struct pool_workqueue *pwq = NULL;
4646 	struct workqueue_struct *wq = NULL;
4647 	struct worker *worker;
4648 
4649 	if (!(task->flags & PF_WQ_WORKER))
4650 		return;
4651 
4652 	/*
4653 	 * This function is called without any synchronization and @task
4654 	 * could be in any state.  Be careful with dereferences.
4655 	 */
4656 	worker = kthread_probe_data(task);
4657 
4658 	/*
4659 	 * Carefully copy the associated workqueue's workfn, name and desc.
4660 	 * Keep the original last '\0' in case the original is garbage.
4661 	 */
4662 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4663 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4664 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4665 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4666 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4667 
4668 	if (fn || name[0] || desc[0]) {
4669 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4670 		if (strcmp(name, desc))
4671 			pr_cont(" (%s)", desc);
4672 		pr_cont("\n");
4673 	}
4674 }
4675 
pr_cont_pool_info(struct worker_pool * pool)4676 static void pr_cont_pool_info(struct worker_pool *pool)
4677 {
4678 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4679 	if (pool->node != NUMA_NO_NODE)
4680 		pr_cont(" node=%d", pool->node);
4681 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4682 }
4683 
pr_cont_work(bool comma,struct work_struct * work)4684 static void pr_cont_work(bool comma, struct work_struct *work)
4685 {
4686 	if (work->func == wq_barrier_func) {
4687 		struct wq_barrier *barr;
4688 
4689 		barr = container_of(work, struct wq_barrier, work);
4690 
4691 		pr_cont("%s BAR(%d)", comma ? "," : "",
4692 			task_pid_nr(barr->task));
4693 	} else {
4694 		pr_cont("%s %ps", comma ? "," : "", work->func);
4695 	}
4696 }
4697 
show_pwq(struct pool_workqueue * pwq)4698 static void show_pwq(struct pool_workqueue *pwq)
4699 {
4700 	struct worker_pool *pool = pwq->pool;
4701 	struct work_struct *work;
4702 	struct worker *worker;
4703 	bool has_in_flight = false, has_pending = false;
4704 	int bkt;
4705 
4706 	pr_info("  pwq %d:", pool->id);
4707 	pr_cont_pool_info(pool);
4708 
4709 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4710 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4711 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4712 
4713 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4714 		if (worker->current_pwq == pwq) {
4715 			has_in_flight = true;
4716 			break;
4717 		}
4718 	}
4719 	if (has_in_flight) {
4720 		bool comma = false;
4721 
4722 		pr_info("    in-flight:");
4723 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4724 			if (worker->current_pwq != pwq)
4725 				continue;
4726 
4727 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4728 				task_pid_nr(worker->task),
4729 				worker->rescue_wq ? "(RESCUER)" : "",
4730 				worker->current_func);
4731 			list_for_each_entry(work, &worker->scheduled, entry)
4732 				pr_cont_work(false, work);
4733 			comma = true;
4734 		}
4735 		pr_cont("\n");
4736 	}
4737 
4738 	list_for_each_entry(work, &pool->worklist, entry) {
4739 		if (get_work_pwq(work) == pwq) {
4740 			has_pending = true;
4741 			break;
4742 		}
4743 	}
4744 	if (has_pending) {
4745 		bool comma = false;
4746 
4747 		pr_info("    pending:");
4748 		list_for_each_entry(work, &pool->worklist, entry) {
4749 			if (get_work_pwq(work) != pwq)
4750 				continue;
4751 
4752 			pr_cont_work(comma, work);
4753 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4754 		}
4755 		pr_cont("\n");
4756 	}
4757 
4758 	if (!list_empty(&pwq->delayed_works)) {
4759 		bool comma = false;
4760 
4761 		pr_info("    delayed:");
4762 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4763 			pr_cont_work(comma, work);
4764 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4765 		}
4766 		pr_cont("\n");
4767 	}
4768 }
4769 
4770 /**
4771  * show_workqueue_state - dump workqueue state
4772  *
4773  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4774  * all busy workqueues and pools.
4775  */
show_workqueue_state(void)4776 void show_workqueue_state(void)
4777 {
4778 	struct workqueue_struct *wq;
4779 	struct worker_pool *pool;
4780 	unsigned long flags;
4781 	int pi;
4782 
4783 	rcu_read_lock();
4784 
4785 	pr_info("Showing busy workqueues and worker pools:\n");
4786 
4787 	list_for_each_entry_rcu(wq, &workqueues, list) {
4788 		struct pool_workqueue *pwq;
4789 		bool idle = true;
4790 
4791 		for_each_pwq(pwq, wq) {
4792 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4793 				idle = false;
4794 				break;
4795 			}
4796 		}
4797 		if (idle)
4798 			continue;
4799 
4800 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4801 
4802 		for_each_pwq(pwq, wq) {
4803 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4804 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4805 				show_pwq(pwq);
4806 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4807 			/*
4808 			 * We could be printing a lot from atomic context, e.g.
4809 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4810 			 * hard lockup.
4811 			 */
4812 			touch_nmi_watchdog();
4813 		}
4814 	}
4815 
4816 	for_each_pool(pool, pi) {
4817 		struct worker *worker;
4818 		bool first = true;
4819 
4820 		raw_spin_lock_irqsave(&pool->lock, flags);
4821 		if (pool->nr_workers == pool->nr_idle)
4822 			goto next_pool;
4823 
4824 		pr_info("pool %d:", pool->id);
4825 		pr_cont_pool_info(pool);
4826 		pr_cont(" hung=%us workers=%d",
4827 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4828 			pool->nr_workers);
4829 		if (pool->manager)
4830 			pr_cont(" manager: %d",
4831 				task_pid_nr(pool->manager->task));
4832 		list_for_each_entry(worker, &pool->idle_list, entry) {
4833 			pr_cont(" %s%d", first ? "idle: " : "",
4834 				task_pid_nr(worker->task));
4835 			first = false;
4836 		}
4837 		pr_cont("\n");
4838 	next_pool:
4839 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4840 		/*
4841 		 * We could be printing a lot from atomic context, e.g.
4842 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4843 		 * hard lockup.
4844 		 */
4845 		touch_nmi_watchdog();
4846 	}
4847 
4848 	rcu_read_unlock();
4849 }
4850 
4851 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4852 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4853 {
4854 	int off;
4855 
4856 	/* always show the actual comm */
4857 	off = strscpy(buf, task->comm, size);
4858 	if (off < 0)
4859 		return;
4860 
4861 	/* stabilize PF_WQ_WORKER and worker pool association */
4862 	mutex_lock(&wq_pool_attach_mutex);
4863 
4864 	if (task->flags & PF_WQ_WORKER) {
4865 		struct worker *worker = kthread_data(task);
4866 		struct worker_pool *pool = worker->pool;
4867 
4868 		if (pool) {
4869 			raw_spin_lock_irq(&pool->lock);
4870 			/*
4871 			 * ->desc tracks information (wq name or
4872 			 * set_worker_desc()) for the latest execution.  If
4873 			 * current, prepend '+', otherwise '-'.
4874 			 */
4875 			if (worker->desc[0] != '\0') {
4876 				if (worker->current_work)
4877 					scnprintf(buf + off, size - off, "+%s",
4878 						  worker->desc);
4879 				else
4880 					scnprintf(buf + off, size - off, "-%s",
4881 						  worker->desc);
4882 			}
4883 			raw_spin_unlock_irq(&pool->lock);
4884 		}
4885 	}
4886 
4887 	mutex_unlock(&wq_pool_attach_mutex);
4888 }
4889 
4890 #ifdef CONFIG_SMP
4891 
4892 /*
4893  * CPU hotplug.
4894  *
4895  * There are two challenges in supporting CPU hotplug.  Firstly, there
4896  * are a lot of assumptions on strong associations among work, pwq and
4897  * pool which make migrating pending and scheduled works very
4898  * difficult to implement without impacting hot paths.  Secondly,
4899  * worker pools serve mix of short, long and very long running works making
4900  * blocked draining impractical.
4901  *
4902  * This is solved by allowing the pools to be disassociated from the CPU
4903  * running as an unbound one and allowing it to be reattached later if the
4904  * cpu comes back online.
4905  */
4906 
unbind_workers(int cpu)4907 static void unbind_workers(int cpu)
4908 {
4909 	struct worker_pool *pool;
4910 	struct worker *worker;
4911 
4912 	for_each_cpu_worker_pool(pool, cpu) {
4913 		mutex_lock(&wq_pool_attach_mutex);
4914 		raw_spin_lock_irq(&pool->lock);
4915 
4916 		/*
4917 		 * We've blocked all attach/detach operations. Make all workers
4918 		 * unbound and set DISASSOCIATED.  Before this, all workers
4919 		 * except for the ones which are still executing works from
4920 		 * before the last CPU down must be on the cpu.  After
4921 		 * this, they may become diasporas.
4922 		 */
4923 		for_each_pool_worker(worker, pool)
4924 			worker->flags |= WORKER_UNBOUND;
4925 
4926 		pool->flags |= POOL_DISASSOCIATED;
4927 
4928 		raw_spin_unlock_irq(&pool->lock);
4929 		mutex_unlock(&wq_pool_attach_mutex);
4930 
4931 		/*
4932 		 * Call schedule() so that we cross rq->lock and thus can
4933 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4934 		 * This is necessary as scheduler callbacks may be invoked
4935 		 * from other cpus.
4936 		 */
4937 		schedule();
4938 
4939 		/*
4940 		 * Sched callbacks are disabled now.  Zap nr_running.
4941 		 * After this, nr_running stays zero and need_more_worker()
4942 		 * and keep_working() are always true as long as the
4943 		 * worklist is not empty.  This pool now behaves as an
4944 		 * unbound (in terms of concurrency management) pool which
4945 		 * are served by workers tied to the pool.
4946 		 */
4947 		atomic_set(&pool->nr_running, 0);
4948 
4949 		/*
4950 		 * With concurrency management just turned off, a busy
4951 		 * worker blocking could lead to lengthy stalls.  Kick off
4952 		 * unbound chain execution of currently pending work items.
4953 		 */
4954 		raw_spin_lock_irq(&pool->lock);
4955 		wake_up_worker(pool);
4956 		raw_spin_unlock_irq(&pool->lock);
4957 	}
4958 }
4959 
4960 /**
4961  * rebind_workers - rebind all workers of a pool to the associated CPU
4962  * @pool: pool of interest
4963  *
4964  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4965  */
rebind_workers(struct worker_pool * pool)4966 static void rebind_workers(struct worker_pool *pool)
4967 {
4968 	struct worker *worker;
4969 
4970 	lockdep_assert_held(&wq_pool_attach_mutex);
4971 
4972 	/*
4973 	 * Restore CPU affinity of all workers.  As all idle workers should
4974 	 * be on the run-queue of the associated CPU before any local
4975 	 * wake-ups for concurrency management happen, restore CPU affinity
4976 	 * of all workers first and then clear UNBOUND.  As we're called
4977 	 * from CPU_ONLINE, the following shouldn't fail.
4978 	 */
4979 	for_each_pool_worker(worker, pool)
4980 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4981 						  pool->attrs->cpumask) < 0);
4982 
4983 	raw_spin_lock_irq(&pool->lock);
4984 
4985 	pool->flags &= ~POOL_DISASSOCIATED;
4986 
4987 	for_each_pool_worker(worker, pool) {
4988 		unsigned int worker_flags = worker->flags;
4989 
4990 		/*
4991 		 * A bound idle worker should actually be on the runqueue
4992 		 * of the associated CPU for local wake-ups targeting it to
4993 		 * work.  Kick all idle workers so that they migrate to the
4994 		 * associated CPU.  Doing this in the same loop as
4995 		 * replacing UNBOUND with REBOUND is safe as no worker will
4996 		 * be bound before @pool->lock is released.
4997 		 */
4998 		if (worker_flags & WORKER_IDLE)
4999 			wake_up_process(worker->task);
5000 
5001 		/*
5002 		 * We want to clear UNBOUND but can't directly call
5003 		 * worker_clr_flags() or adjust nr_running.  Atomically
5004 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5005 		 * @worker will clear REBOUND using worker_clr_flags() when
5006 		 * it initiates the next execution cycle thus restoring
5007 		 * concurrency management.  Note that when or whether
5008 		 * @worker clears REBOUND doesn't affect correctness.
5009 		 *
5010 		 * WRITE_ONCE() is necessary because @worker->flags may be
5011 		 * tested without holding any lock in
5012 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5013 		 * fail incorrectly leading to premature concurrency
5014 		 * management operations.
5015 		 */
5016 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5017 		worker_flags |= WORKER_REBOUND;
5018 		worker_flags &= ~WORKER_UNBOUND;
5019 		WRITE_ONCE(worker->flags, worker_flags);
5020 	}
5021 
5022 	raw_spin_unlock_irq(&pool->lock);
5023 }
5024 
5025 /**
5026  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5027  * @pool: unbound pool of interest
5028  * @cpu: the CPU which is coming up
5029  *
5030  * An unbound pool may end up with a cpumask which doesn't have any online
5031  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5032  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5033  * online CPU before, cpus_allowed of all its workers should be restored.
5034  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5035 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5036 {
5037 	static cpumask_t cpumask;
5038 	struct worker *worker;
5039 
5040 	lockdep_assert_held(&wq_pool_attach_mutex);
5041 
5042 	/* is @cpu allowed for @pool? */
5043 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5044 		return;
5045 
5046 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5047 
5048 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5049 	for_each_pool_worker(worker, pool)
5050 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5051 }
5052 
workqueue_prepare_cpu(unsigned int cpu)5053 int workqueue_prepare_cpu(unsigned int cpu)
5054 {
5055 	struct worker_pool *pool;
5056 
5057 	for_each_cpu_worker_pool(pool, cpu) {
5058 		if (pool->nr_workers)
5059 			continue;
5060 		if (!create_worker(pool))
5061 			return -ENOMEM;
5062 	}
5063 	return 0;
5064 }
5065 
workqueue_online_cpu(unsigned int cpu)5066 int workqueue_online_cpu(unsigned int cpu)
5067 {
5068 	struct worker_pool *pool;
5069 	struct workqueue_struct *wq;
5070 	int pi;
5071 
5072 	mutex_lock(&wq_pool_mutex);
5073 
5074 	for_each_pool(pool, pi) {
5075 		mutex_lock(&wq_pool_attach_mutex);
5076 
5077 		if (pool->cpu == cpu)
5078 			rebind_workers(pool);
5079 		else if (pool->cpu < 0)
5080 			restore_unbound_workers_cpumask(pool, cpu);
5081 
5082 		mutex_unlock(&wq_pool_attach_mutex);
5083 	}
5084 
5085 	/* update NUMA affinity of unbound workqueues */
5086 	list_for_each_entry(wq, &workqueues, list)
5087 		wq_update_unbound_numa(wq, cpu, true);
5088 
5089 	mutex_unlock(&wq_pool_mutex);
5090 	return 0;
5091 }
5092 
workqueue_offline_cpu(unsigned int cpu)5093 int workqueue_offline_cpu(unsigned int cpu)
5094 {
5095 	struct workqueue_struct *wq;
5096 
5097 	/* unbinding per-cpu workers should happen on the local CPU */
5098 	if (WARN_ON(cpu != smp_processor_id()))
5099 		return -1;
5100 
5101 	unbind_workers(cpu);
5102 
5103 	/* update NUMA affinity of unbound workqueues */
5104 	mutex_lock(&wq_pool_mutex);
5105 	list_for_each_entry(wq, &workqueues, list)
5106 		wq_update_unbound_numa(wq, cpu, false);
5107 	mutex_unlock(&wq_pool_mutex);
5108 
5109 	return 0;
5110 }
5111 
5112 struct work_for_cpu {
5113 	struct work_struct work;
5114 	long (*fn)(void *);
5115 	void *arg;
5116 	long ret;
5117 };
5118 
work_for_cpu_fn(struct work_struct * work)5119 static void work_for_cpu_fn(struct work_struct *work)
5120 {
5121 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5122 
5123 	wfc->ret = wfc->fn(wfc->arg);
5124 }
5125 
5126 /**
5127  * work_on_cpu - run a function in thread context on a particular cpu
5128  * @cpu: the cpu to run on
5129  * @fn: the function to run
5130  * @arg: the function arg
5131  *
5132  * It is up to the caller to ensure that the cpu doesn't go offline.
5133  * The caller must not hold any locks which would prevent @fn from completing.
5134  *
5135  * Return: The value @fn returns.
5136  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5137 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5138 {
5139 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5140 
5141 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5142 	schedule_work_on(cpu, &wfc.work);
5143 	flush_work(&wfc.work);
5144 	destroy_work_on_stack(&wfc.work);
5145 	return wfc.ret;
5146 }
5147 EXPORT_SYMBOL_GPL(work_on_cpu);
5148 
5149 /**
5150  * work_on_cpu_safe - run a function in thread context on a particular cpu
5151  * @cpu: the cpu to run on
5152  * @fn:  the function to run
5153  * @arg: the function argument
5154  *
5155  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5156  * any locks which would prevent @fn from completing.
5157  *
5158  * Return: The value @fn returns.
5159  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5160 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5161 {
5162 	long ret = -ENODEV;
5163 
5164 	get_online_cpus();
5165 	if (cpu_online(cpu))
5166 		ret = work_on_cpu(cpu, fn, arg);
5167 	put_online_cpus();
5168 	return ret;
5169 }
5170 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5171 #endif /* CONFIG_SMP */
5172 
5173 #ifdef CONFIG_FREEZER
5174 
5175 /**
5176  * freeze_workqueues_begin - begin freezing workqueues
5177  *
5178  * Start freezing workqueues.  After this function returns, all freezable
5179  * workqueues will queue new works to their delayed_works list instead of
5180  * pool->worklist.
5181  *
5182  * CONTEXT:
5183  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5184  */
freeze_workqueues_begin(void)5185 void freeze_workqueues_begin(void)
5186 {
5187 	struct workqueue_struct *wq;
5188 	struct pool_workqueue *pwq;
5189 
5190 	mutex_lock(&wq_pool_mutex);
5191 
5192 	WARN_ON_ONCE(workqueue_freezing);
5193 	workqueue_freezing = true;
5194 
5195 	list_for_each_entry(wq, &workqueues, list) {
5196 		mutex_lock(&wq->mutex);
5197 		for_each_pwq(pwq, wq)
5198 			pwq_adjust_max_active(pwq);
5199 		mutex_unlock(&wq->mutex);
5200 	}
5201 
5202 	mutex_unlock(&wq_pool_mutex);
5203 }
5204 
5205 /**
5206  * freeze_workqueues_busy - are freezable workqueues still busy?
5207  *
5208  * Check whether freezing is complete.  This function must be called
5209  * between freeze_workqueues_begin() and thaw_workqueues().
5210  *
5211  * CONTEXT:
5212  * Grabs and releases wq_pool_mutex.
5213  *
5214  * Return:
5215  * %true if some freezable workqueues are still busy.  %false if freezing
5216  * is complete.
5217  */
freeze_workqueues_busy(void)5218 bool freeze_workqueues_busy(void)
5219 {
5220 	bool busy = false;
5221 	struct workqueue_struct *wq;
5222 	struct pool_workqueue *pwq;
5223 
5224 	mutex_lock(&wq_pool_mutex);
5225 
5226 	WARN_ON_ONCE(!workqueue_freezing);
5227 
5228 	list_for_each_entry(wq, &workqueues, list) {
5229 		if (!(wq->flags & WQ_FREEZABLE))
5230 			continue;
5231 		/*
5232 		 * nr_active is monotonically decreasing.  It's safe
5233 		 * to peek without lock.
5234 		 */
5235 		rcu_read_lock();
5236 		for_each_pwq(pwq, wq) {
5237 			WARN_ON_ONCE(pwq->nr_active < 0);
5238 			if (pwq->nr_active) {
5239 				busy = true;
5240 				rcu_read_unlock();
5241 				goto out_unlock;
5242 			}
5243 		}
5244 		rcu_read_unlock();
5245 	}
5246 out_unlock:
5247 	mutex_unlock(&wq_pool_mutex);
5248 	return busy;
5249 }
5250 
5251 /**
5252  * thaw_workqueues - thaw workqueues
5253  *
5254  * Thaw workqueues.  Normal queueing is restored and all collected
5255  * frozen works are transferred to their respective pool worklists.
5256  *
5257  * CONTEXT:
5258  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5259  */
thaw_workqueues(void)5260 void thaw_workqueues(void)
5261 {
5262 	struct workqueue_struct *wq;
5263 	struct pool_workqueue *pwq;
5264 
5265 	mutex_lock(&wq_pool_mutex);
5266 
5267 	if (!workqueue_freezing)
5268 		goto out_unlock;
5269 
5270 	workqueue_freezing = false;
5271 
5272 	/* restore max_active and repopulate worklist */
5273 	list_for_each_entry(wq, &workqueues, list) {
5274 		mutex_lock(&wq->mutex);
5275 		for_each_pwq(pwq, wq)
5276 			pwq_adjust_max_active(pwq);
5277 		mutex_unlock(&wq->mutex);
5278 	}
5279 
5280 out_unlock:
5281 	mutex_unlock(&wq_pool_mutex);
5282 }
5283 #endif /* CONFIG_FREEZER */
5284 
workqueue_apply_unbound_cpumask(void)5285 static int workqueue_apply_unbound_cpumask(void)
5286 {
5287 	LIST_HEAD(ctxs);
5288 	int ret = 0;
5289 	struct workqueue_struct *wq;
5290 	struct apply_wqattrs_ctx *ctx, *n;
5291 
5292 	lockdep_assert_held(&wq_pool_mutex);
5293 
5294 	list_for_each_entry(wq, &workqueues, list) {
5295 		if (!(wq->flags & WQ_UNBOUND))
5296 			continue;
5297 		/* creating multiple pwqs breaks ordering guarantee */
5298 		if (wq->flags & __WQ_ORDERED)
5299 			continue;
5300 
5301 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5302 		if (!ctx) {
5303 			ret = -ENOMEM;
5304 			break;
5305 		}
5306 
5307 		list_add_tail(&ctx->list, &ctxs);
5308 	}
5309 
5310 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5311 		if (!ret)
5312 			apply_wqattrs_commit(ctx);
5313 		apply_wqattrs_cleanup(ctx);
5314 	}
5315 
5316 	return ret;
5317 }
5318 
5319 /**
5320  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5321  *  @cpumask: the cpumask to set
5322  *
5323  *  The low-level workqueues cpumask is a global cpumask that limits
5324  *  the affinity of all unbound workqueues.  This function check the @cpumask
5325  *  and apply it to all unbound workqueues and updates all pwqs of them.
5326  *
5327  *  Retun:	0	- Success
5328  *  		-EINVAL	- Invalid @cpumask
5329  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5330  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5331 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5332 {
5333 	int ret = -EINVAL;
5334 	cpumask_var_t saved_cpumask;
5335 
5336 	/*
5337 	 * Not excluding isolated cpus on purpose.
5338 	 * If the user wishes to include them, we allow that.
5339 	 */
5340 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5341 	if (!cpumask_empty(cpumask)) {
5342 		apply_wqattrs_lock();
5343 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5344 			ret = 0;
5345 			goto out_unlock;
5346 		}
5347 
5348 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5349 			ret = -ENOMEM;
5350 			goto out_unlock;
5351 		}
5352 
5353 		/* save the old wq_unbound_cpumask. */
5354 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5355 
5356 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5357 		cpumask_copy(wq_unbound_cpumask, cpumask);
5358 		ret = workqueue_apply_unbound_cpumask();
5359 
5360 		/* restore the wq_unbound_cpumask when failed. */
5361 		if (ret < 0)
5362 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5363 
5364 		free_cpumask_var(saved_cpumask);
5365 out_unlock:
5366 		apply_wqattrs_unlock();
5367 	}
5368 
5369 	return ret;
5370 }
5371 
5372 #ifdef CONFIG_SYSFS
5373 /*
5374  * Workqueues with WQ_SYSFS flag set is visible to userland via
5375  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5376  * following attributes.
5377  *
5378  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5379  *  max_active	RW int	: maximum number of in-flight work items
5380  *
5381  * Unbound workqueues have the following extra attributes.
5382  *
5383  *  pool_ids	RO int	: the associated pool IDs for each node
5384  *  nice	RW int	: nice value of the workers
5385  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5386  *  numa	RW bool	: whether enable NUMA affinity
5387  */
5388 struct wq_device {
5389 	struct workqueue_struct		*wq;
5390 	struct device			dev;
5391 };
5392 
dev_to_wq(struct device * dev)5393 static struct workqueue_struct *dev_to_wq(struct device *dev)
5394 {
5395 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5396 
5397 	return wq_dev->wq;
5398 }
5399 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5400 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5401 			    char *buf)
5402 {
5403 	struct workqueue_struct *wq = dev_to_wq(dev);
5404 
5405 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5406 }
5407 static DEVICE_ATTR_RO(per_cpu);
5408 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5409 static ssize_t max_active_show(struct device *dev,
5410 			       struct device_attribute *attr, char *buf)
5411 {
5412 	struct workqueue_struct *wq = dev_to_wq(dev);
5413 
5414 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5415 }
5416 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5417 static ssize_t max_active_store(struct device *dev,
5418 				struct device_attribute *attr, const char *buf,
5419 				size_t count)
5420 {
5421 	struct workqueue_struct *wq = dev_to_wq(dev);
5422 	int val;
5423 
5424 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5425 		return -EINVAL;
5426 
5427 	workqueue_set_max_active(wq, val);
5428 	return count;
5429 }
5430 static DEVICE_ATTR_RW(max_active);
5431 
5432 static struct attribute *wq_sysfs_attrs[] = {
5433 	&dev_attr_per_cpu.attr,
5434 	&dev_attr_max_active.attr,
5435 	NULL,
5436 };
5437 ATTRIBUTE_GROUPS(wq_sysfs);
5438 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5439 static ssize_t wq_pool_ids_show(struct device *dev,
5440 				struct device_attribute *attr, char *buf)
5441 {
5442 	struct workqueue_struct *wq = dev_to_wq(dev);
5443 	const char *delim = "";
5444 	int node, written = 0;
5445 
5446 	get_online_cpus();
5447 	rcu_read_lock();
5448 	for_each_node(node) {
5449 		written += scnprintf(buf + written, PAGE_SIZE - written,
5450 				     "%s%d:%d", delim, node,
5451 				     unbound_pwq_by_node(wq, node)->pool->id);
5452 		delim = " ";
5453 	}
5454 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5455 	rcu_read_unlock();
5456 	put_online_cpus();
5457 
5458 	return written;
5459 }
5460 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5461 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5462 			    char *buf)
5463 {
5464 	struct workqueue_struct *wq = dev_to_wq(dev);
5465 	int written;
5466 
5467 	mutex_lock(&wq->mutex);
5468 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5469 	mutex_unlock(&wq->mutex);
5470 
5471 	return written;
5472 }
5473 
5474 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5475 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5476 {
5477 	struct workqueue_attrs *attrs;
5478 
5479 	lockdep_assert_held(&wq_pool_mutex);
5480 
5481 	attrs = alloc_workqueue_attrs();
5482 	if (!attrs)
5483 		return NULL;
5484 
5485 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5486 	return attrs;
5487 }
5488 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5489 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5490 			     const char *buf, size_t count)
5491 {
5492 	struct workqueue_struct *wq = dev_to_wq(dev);
5493 	struct workqueue_attrs *attrs;
5494 	int ret = -ENOMEM;
5495 
5496 	apply_wqattrs_lock();
5497 
5498 	attrs = wq_sysfs_prep_attrs(wq);
5499 	if (!attrs)
5500 		goto out_unlock;
5501 
5502 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5503 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5504 		ret = apply_workqueue_attrs_locked(wq, attrs);
5505 	else
5506 		ret = -EINVAL;
5507 
5508 out_unlock:
5509 	apply_wqattrs_unlock();
5510 	free_workqueue_attrs(attrs);
5511 	return ret ?: count;
5512 }
5513 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5514 static ssize_t wq_cpumask_show(struct device *dev,
5515 			       struct device_attribute *attr, char *buf)
5516 {
5517 	struct workqueue_struct *wq = dev_to_wq(dev);
5518 	int written;
5519 
5520 	mutex_lock(&wq->mutex);
5521 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5522 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5523 	mutex_unlock(&wq->mutex);
5524 	return written;
5525 }
5526 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5527 static ssize_t wq_cpumask_store(struct device *dev,
5528 				struct device_attribute *attr,
5529 				const char *buf, size_t count)
5530 {
5531 	struct workqueue_struct *wq = dev_to_wq(dev);
5532 	struct workqueue_attrs *attrs;
5533 	int ret = -ENOMEM;
5534 
5535 	apply_wqattrs_lock();
5536 
5537 	attrs = wq_sysfs_prep_attrs(wq);
5538 	if (!attrs)
5539 		goto out_unlock;
5540 
5541 	ret = cpumask_parse(buf, attrs->cpumask);
5542 	if (!ret)
5543 		ret = apply_workqueue_attrs_locked(wq, attrs);
5544 
5545 out_unlock:
5546 	apply_wqattrs_unlock();
5547 	free_workqueue_attrs(attrs);
5548 	return ret ?: count;
5549 }
5550 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5551 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5552 			    char *buf)
5553 {
5554 	struct workqueue_struct *wq = dev_to_wq(dev);
5555 	int written;
5556 
5557 	mutex_lock(&wq->mutex);
5558 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5559 			    !wq->unbound_attrs->no_numa);
5560 	mutex_unlock(&wq->mutex);
5561 
5562 	return written;
5563 }
5564 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5565 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5566 			     const char *buf, size_t count)
5567 {
5568 	struct workqueue_struct *wq = dev_to_wq(dev);
5569 	struct workqueue_attrs *attrs;
5570 	int v, ret = -ENOMEM;
5571 
5572 	apply_wqattrs_lock();
5573 
5574 	attrs = wq_sysfs_prep_attrs(wq);
5575 	if (!attrs)
5576 		goto out_unlock;
5577 
5578 	ret = -EINVAL;
5579 	if (sscanf(buf, "%d", &v) == 1) {
5580 		attrs->no_numa = !v;
5581 		ret = apply_workqueue_attrs_locked(wq, attrs);
5582 	}
5583 
5584 out_unlock:
5585 	apply_wqattrs_unlock();
5586 	free_workqueue_attrs(attrs);
5587 	return ret ?: count;
5588 }
5589 
5590 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5591 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5592 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5593 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5594 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5595 	__ATTR_NULL,
5596 };
5597 
5598 static struct bus_type wq_subsys = {
5599 	.name				= "workqueue",
5600 	.dev_groups			= wq_sysfs_groups,
5601 };
5602 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5603 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5604 		struct device_attribute *attr, char *buf)
5605 {
5606 	int written;
5607 
5608 	mutex_lock(&wq_pool_mutex);
5609 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5610 			    cpumask_pr_args(wq_unbound_cpumask));
5611 	mutex_unlock(&wq_pool_mutex);
5612 
5613 	return written;
5614 }
5615 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5616 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5617 		struct device_attribute *attr, const char *buf, size_t count)
5618 {
5619 	cpumask_var_t cpumask;
5620 	int ret;
5621 
5622 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5623 		return -ENOMEM;
5624 
5625 	ret = cpumask_parse(buf, cpumask);
5626 	if (!ret)
5627 		ret = workqueue_set_unbound_cpumask(cpumask);
5628 
5629 	free_cpumask_var(cpumask);
5630 	return ret ? ret : count;
5631 }
5632 
5633 static struct device_attribute wq_sysfs_cpumask_attr =
5634 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5635 	       wq_unbound_cpumask_store);
5636 
wq_sysfs_init(void)5637 static int __init wq_sysfs_init(void)
5638 {
5639 	int err;
5640 
5641 	err = subsys_virtual_register(&wq_subsys, NULL);
5642 	if (err)
5643 		return err;
5644 
5645 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5646 }
5647 core_initcall(wq_sysfs_init);
5648 
wq_device_release(struct device * dev)5649 static void wq_device_release(struct device *dev)
5650 {
5651 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5652 
5653 	kfree(wq_dev);
5654 }
5655 
5656 /**
5657  * workqueue_sysfs_register - make a workqueue visible in sysfs
5658  * @wq: the workqueue to register
5659  *
5660  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5661  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5662  * which is the preferred method.
5663  *
5664  * Workqueue user should use this function directly iff it wants to apply
5665  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5666  * apply_workqueue_attrs() may race against userland updating the
5667  * attributes.
5668  *
5669  * Return: 0 on success, -errno on failure.
5670  */
workqueue_sysfs_register(struct workqueue_struct * wq)5671 int workqueue_sysfs_register(struct workqueue_struct *wq)
5672 {
5673 	struct wq_device *wq_dev;
5674 	int ret;
5675 
5676 	/*
5677 	 * Adjusting max_active or creating new pwqs by applying
5678 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5679 	 * workqueues.
5680 	 */
5681 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5682 		return -EINVAL;
5683 
5684 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5685 	if (!wq_dev)
5686 		return -ENOMEM;
5687 
5688 	wq_dev->wq = wq;
5689 	wq_dev->dev.bus = &wq_subsys;
5690 	wq_dev->dev.release = wq_device_release;
5691 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5692 
5693 	/*
5694 	 * unbound_attrs are created separately.  Suppress uevent until
5695 	 * everything is ready.
5696 	 */
5697 	dev_set_uevent_suppress(&wq_dev->dev, true);
5698 
5699 	ret = device_register(&wq_dev->dev);
5700 	if (ret) {
5701 		put_device(&wq_dev->dev);
5702 		wq->wq_dev = NULL;
5703 		return ret;
5704 	}
5705 
5706 	if (wq->flags & WQ_UNBOUND) {
5707 		struct device_attribute *attr;
5708 
5709 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5710 			ret = device_create_file(&wq_dev->dev, attr);
5711 			if (ret) {
5712 				device_unregister(&wq_dev->dev);
5713 				wq->wq_dev = NULL;
5714 				return ret;
5715 			}
5716 		}
5717 	}
5718 
5719 	dev_set_uevent_suppress(&wq_dev->dev, false);
5720 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5721 	return 0;
5722 }
5723 
5724 /**
5725  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5726  * @wq: the workqueue to unregister
5727  *
5728  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5729  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5730 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5731 {
5732 	struct wq_device *wq_dev = wq->wq_dev;
5733 
5734 	if (!wq->wq_dev)
5735 		return;
5736 
5737 	wq->wq_dev = NULL;
5738 	device_unregister(&wq_dev->dev);
5739 }
5740 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5741 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5742 #endif	/* CONFIG_SYSFS */
5743 
5744 /*
5745  * Workqueue watchdog.
5746  *
5747  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5748  * flush dependency, a concurrency managed work item which stays RUNNING
5749  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5750  * usual warning mechanisms don't trigger and internal workqueue state is
5751  * largely opaque.
5752  *
5753  * Workqueue watchdog monitors all worker pools periodically and dumps
5754  * state if some pools failed to make forward progress for a while where
5755  * forward progress is defined as the first item on ->worklist changing.
5756  *
5757  * This mechanism is controlled through the kernel parameter
5758  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5759  * corresponding sysfs parameter file.
5760  */
5761 #ifdef CONFIG_WQ_WATCHDOG
5762 
5763 static unsigned long wq_watchdog_thresh = 30;
5764 static struct timer_list wq_watchdog_timer;
5765 
5766 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5767 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5768 
wq_watchdog_reset_touched(void)5769 static void wq_watchdog_reset_touched(void)
5770 {
5771 	int cpu;
5772 
5773 	wq_watchdog_touched = jiffies;
5774 	for_each_possible_cpu(cpu)
5775 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5776 }
5777 
wq_watchdog_timer_fn(struct timer_list * unused)5778 static void wq_watchdog_timer_fn(struct timer_list *unused)
5779 {
5780 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5781 	bool lockup_detected = false;
5782 	unsigned long now = jiffies;
5783 	struct worker_pool *pool;
5784 	int pi;
5785 
5786 	if (!thresh)
5787 		return;
5788 
5789 	rcu_read_lock();
5790 
5791 	for_each_pool(pool, pi) {
5792 		unsigned long pool_ts, touched, ts;
5793 
5794 		if (list_empty(&pool->worklist))
5795 			continue;
5796 
5797 		/*
5798 		 * If a virtual machine is stopped by the host it can look to
5799 		 * the watchdog like a stall.
5800 		 */
5801 		kvm_check_and_clear_guest_paused();
5802 
5803 		/* get the latest of pool and touched timestamps */
5804 		pool_ts = READ_ONCE(pool->watchdog_ts);
5805 		touched = READ_ONCE(wq_watchdog_touched);
5806 
5807 		if (time_after(pool_ts, touched))
5808 			ts = pool_ts;
5809 		else
5810 			ts = touched;
5811 
5812 		if (pool->cpu >= 0) {
5813 			unsigned long cpu_touched =
5814 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5815 						  pool->cpu));
5816 			if (time_after(cpu_touched, ts))
5817 				ts = cpu_touched;
5818 		}
5819 
5820 		/* did we stall? */
5821 		if (time_after(now, ts + thresh)) {
5822 			lockup_detected = true;
5823 			pr_emerg("BUG: workqueue lockup - pool");
5824 			pr_cont_pool_info(pool);
5825 			pr_cont(" stuck for %us!\n",
5826 				jiffies_to_msecs(now - pool_ts) / 1000);
5827 		}
5828 	}
5829 
5830 	rcu_read_unlock();
5831 
5832 	if (lockup_detected)
5833 		show_workqueue_state();
5834 
5835 	wq_watchdog_reset_touched();
5836 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5837 }
5838 
wq_watchdog_touch(int cpu)5839 notrace void wq_watchdog_touch(int cpu)
5840 {
5841 	if (cpu >= 0)
5842 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5843 	else
5844 		wq_watchdog_touched = jiffies;
5845 }
5846 
wq_watchdog_set_thresh(unsigned long thresh)5847 static void wq_watchdog_set_thresh(unsigned long thresh)
5848 {
5849 	wq_watchdog_thresh = 0;
5850 	del_timer_sync(&wq_watchdog_timer);
5851 
5852 	if (thresh) {
5853 		wq_watchdog_thresh = thresh;
5854 		wq_watchdog_reset_touched();
5855 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5856 	}
5857 }
5858 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5859 static int wq_watchdog_param_set_thresh(const char *val,
5860 					const struct kernel_param *kp)
5861 {
5862 	unsigned long thresh;
5863 	int ret;
5864 
5865 	ret = kstrtoul(val, 0, &thresh);
5866 	if (ret)
5867 		return ret;
5868 
5869 	if (system_wq)
5870 		wq_watchdog_set_thresh(thresh);
5871 	else
5872 		wq_watchdog_thresh = thresh;
5873 
5874 	return 0;
5875 }
5876 
5877 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5878 	.set	= wq_watchdog_param_set_thresh,
5879 	.get	= param_get_ulong,
5880 };
5881 
5882 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5883 		0644);
5884 
wq_watchdog_init(void)5885 static void wq_watchdog_init(void)
5886 {
5887 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5888 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5889 }
5890 
5891 #else	/* CONFIG_WQ_WATCHDOG */
5892 
wq_watchdog_init(void)5893 static inline void wq_watchdog_init(void) { }
5894 
5895 #endif	/* CONFIG_WQ_WATCHDOG */
5896 
wq_numa_init(void)5897 static void __init wq_numa_init(void)
5898 {
5899 	cpumask_var_t *tbl;
5900 	int node, cpu;
5901 
5902 	if (num_possible_nodes() <= 1)
5903 		return;
5904 
5905 	if (wq_disable_numa) {
5906 		pr_info("workqueue: NUMA affinity support disabled\n");
5907 		return;
5908 	}
5909 
5910 	for_each_possible_cpu(cpu) {
5911 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5912 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5913 			return;
5914 		}
5915 	}
5916 
5917 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5918 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5919 
5920 	/*
5921 	 * We want masks of possible CPUs of each node which isn't readily
5922 	 * available.  Build one from cpu_to_node() which should have been
5923 	 * fully initialized by now.
5924 	 */
5925 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5926 	BUG_ON(!tbl);
5927 
5928 	for_each_node(node)
5929 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5930 				node_online(node) ? node : NUMA_NO_NODE));
5931 
5932 	for_each_possible_cpu(cpu) {
5933 		node = cpu_to_node(cpu);
5934 		cpumask_set_cpu(cpu, tbl[node]);
5935 	}
5936 
5937 	wq_numa_possible_cpumask = tbl;
5938 	wq_numa_enabled = true;
5939 }
5940 
5941 /**
5942  * workqueue_init_early - early init for workqueue subsystem
5943  *
5944  * This is the first half of two-staged workqueue subsystem initialization
5945  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5946  * idr are up.  It sets up all the data structures and system workqueues
5947  * and allows early boot code to create workqueues and queue/cancel work
5948  * items.  Actual work item execution starts only after kthreads can be
5949  * created and scheduled right before early initcalls.
5950  */
workqueue_init_early(void)5951 void __init workqueue_init_early(void)
5952 {
5953 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5954 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5955 	int i, cpu;
5956 
5957 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5958 
5959 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5960 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5961 
5962 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5963 
5964 	/* initialize CPU pools */
5965 	for_each_possible_cpu(cpu) {
5966 		struct worker_pool *pool;
5967 
5968 		i = 0;
5969 		for_each_cpu_worker_pool(pool, cpu) {
5970 			BUG_ON(init_worker_pool(pool));
5971 			pool->cpu = cpu;
5972 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5973 			pool->attrs->nice = std_nice[i++];
5974 			pool->node = cpu_to_node(cpu);
5975 
5976 			/* alloc pool ID */
5977 			mutex_lock(&wq_pool_mutex);
5978 			BUG_ON(worker_pool_assign_id(pool));
5979 			mutex_unlock(&wq_pool_mutex);
5980 		}
5981 	}
5982 
5983 	/* create default unbound and ordered wq attrs */
5984 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5985 		struct workqueue_attrs *attrs;
5986 
5987 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5988 		attrs->nice = std_nice[i];
5989 		unbound_std_wq_attrs[i] = attrs;
5990 
5991 		/*
5992 		 * An ordered wq should have only one pwq as ordering is
5993 		 * guaranteed by max_active which is enforced by pwqs.
5994 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5995 		 */
5996 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5997 		attrs->nice = std_nice[i];
5998 		attrs->no_numa = true;
5999 		ordered_wq_attrs[i] = attrs;
6000 	}
6001 
6002 	system_wq = alloc_workqueue("events", 0, 0);
6003 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6004 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6005 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6006 					    WQ_UNBOUND_MAX_ACTIVE);
6007 	system_freezable_wq = alloc_workqueue("events_freezable",
6008 					      WQ_FREEZABLE, 0);
6009 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6010 					      WQ_POWER_EFFICIENT, 0);
6011 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6012 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6013 					      0);
6014 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6015 	       !system_unbound_wq || !system_freezable_wq ||
6016 	       !system_power_efficient_wq ||
6017 	       !system_freezable_power_efficient_wq);
6018 }
6019 
6020 /**
6021  * workqueue_init - bring workqueue subsystem fully online
6022  *
6023  * This is the latter half of two-staged workqueue subsystem initialization
6024  * and invoked as soon as kthreads can be created and scheduled.
6025  * Workqueues have been created and work items queued on them, but there
6026  * are no kworkers executing the work items yet.  Populate the worker pools
6027  * with the initial workers and enable future kworker creations.
6028  */
workqueue_init(void)6029 void __init workqueue_init(void)
6030 {
6031 	struct workqueue_struct *wq;
6032 	struct worker_pool *pool;
6033 	int cpu, bkt;
6034 
6035 	/*
6036 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6037 	 * CPU to node mapping may not be available that early on some
6038 	 * archs such as power and arm64.  As per-cpu pools created
6039 	 * previously could be missing node hint and unbound pools NUMA
6040 	 * affinity, fix them up.
6041 	 *
6042 	 * Also, while iterating workqueues, create rescuers if requested.
6043 	 */
6044 	wq_numa_init();
6045 
6046 	mutex_lock(&wq_pool_mutex);
6047 
6048 	for_each_possible_cpu(cpu) {
6049 		for_each_cpu_worker_pool(pool, cpu) {
6050 			pool->node = cpu_to_node(cpu);
6051 		}
6052 	}
6053 
6054 	list_for_each_entry(wq, &workqueues, list) {
6055 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6056 		WARN(init_rescuer(wq),
6057 		     "workqueue: failed to create early rescuer for %s",
6058 		     wq->name);
6059 	}
6060 
6061 	mutex_unlock(&wq_pool_mutex);
6062 
6063 	/* create the initial workers */
6064 	for_each_online_cpu(cpu) {
6065 		for_each_cpu_worker_pool(pool, cpu) {
6066 			pool->flags &= ~POOL_DISASSOCIATED;
6067 			BUG_ON(!create_worker(pool));
6068 		}
6069 	}
6070 
6071 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6072 		BUG_ON(!create_worker(pool));
6073 
6074 	wq_online = true;
6075 	wq_watchdog_init();
6076 }
6077