• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
scsi_select_sense_cache(bool unchecked_isa_dma)62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
scsi_free_sense_buffer(bool unchecked_isa_dma,unsigned char * sense_buffer)67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
scsi_alloc_sense_buffer(bool unchecked_isa_dma,gfp_t gfp_mask,int numa_node)74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
scsi_init_sense_cache(struct Scsi_Host * shost)81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254 	if (IS_ERR(req))
255 		return ret;
256 	rq = scsi_req(req);
257 
258 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
259 					buffer, bufflen, GFP_NOIO))
260 		goto out;
261 
262 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 	memcpy(rq->cmd, cmd, rq->cmd_len);
264 	rq->retries = retries;
265 	req->timeout = timeout;
266 	req->cmd_flags |= flags;
267 	req->rq_flags |= rq_flags | RQF_QUIET;
268 
269 	/*
270 	 * head injection *required* here otherwise quiesce won't work
271 	 */
272 	blk_execute_rq(req->q, NULL, req, 1);
273 
274 	/*
275 	 * Some devices (USB mass-storage in particular) may transfer
276 	 * garbage data together with a residue indicating that the data
277 	 * is invalid.  Prevent the garbage from being misinterpreted
278 	 * and prevent security leaks by zeroing out the excess data.
279 	 */
280 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282 
283 	if (resid)
284 		*resid = rq->resid_len;
285 	if (sense && rq->sense_len)
286 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 	if (sshdr)
288 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 	ret = rq->result;
290  out:
291 	blk_put_request(req);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296 
297 /*
298  * Wake up the error handler if necessary. Avoid as follows that the error
299  * handler is not woken up if host in-flight requests number ==
300  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301  * with an RCU read lock in this function to ensure that this function in
302  * its entirety either finishes before scsi_eh_scmd_add() increases the
303  * host_failed counter or that it notices the shost state change made by
304  * scsi_eh_scmd_add().
305  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308 	unsigned long flags;
309 
310 	rcu_read_lock();
311 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312 	if (unlikely(scsi_host_in_recovery(shost))) {
313 		spin_lock_irqsave(shost->host_lock, flags);
314 		if (shost->host_failed || shost->host_eh_scheduled)
315 			scsi_eh_wakeup(shost, scsi_host_busy(shost));
316 		spin_unlock_irqrestore(shost->host_lock, flags);
317 	}
318 	rcu_read_unlock();
319 }
320 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323 	struct Scsi_Host *shost = sdev->host;
324 	struct scsi_target *starget = scsi_target(sdev);
325 
326 	scsi_dec_host_busy(shost, cmd);
327 
328 	if (starget->can_queue > 0)
329 		atomic_dec(&starget->target_busy);
330 
331 	atomic_dec(&sdev->device_busy);
332 }
333 
scsi_kick_queue(struct request_queue * q)334 static void scsi_kick_queue(struct request_queue *q)
335 {
336 	blk_mq_run_hw_queues(q, false);
337 }
338 
339 /*
340  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341  * and call blk_run_queue for all the scsi_devices on the target -
342  * including current_sdev first.
343  *
344  * Called with *no* scsi locks held.
345  */
scsi_single_lun_run(struct scsi_device * current_sdev)346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348 	struct Scsi_Host *shost = current_sdev->host;
349 	struct scsi_device *sdev, *tmp;
350 	struct scsi_target *starget = scsi_target(current_sdev);
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(shost->host_lock, flags);
354 	starget->starget_sdev_user = NULL;
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 
357 	/*
358 	 * Call blk_run_queue for all LUNs on the target, starting with
359 	 * current_sdev. We race with others (to set starget_sdev_user),
360 	 * but in most cases, we will be first. Ideally, each LU on the
361 	 * target would get some limited time or requests on the target.
362 	 */
363 	scsi_kick_queue(current_sdev->request_queue);
364 
365 	spin_lock_irqsave(shost->host_lock, flags);
366 	if (starget->starget_sdev_user)
367 		goto out;
368 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
369 			same_target_siblings) {
370 		if (sdev == current_sdev)
371 			continue;
372 		if (scsi_device_get(sdev))
373 			continue;
374 
375 		spin_unlock_irqrestore(shost->host_lock, flags);
376 		scsi_kick_queue(sdev->request_queue);
377 		spin_lock_irqsave(shost->host_lock, flags);
378 
379 		scsi_device_put(sdev);
380 	}
381  out:
382 	spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384 
scsi_device_is_busy(struct scsi_device * sdev)385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388 		return true;
389 	if (atomic_read(&sdev->device_blocked) > 0)
390 		return true;
391 	return false;
392 }
393 
scsi_target_is_busy(struct scsi_target * starget)394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396 	if (starget->can_queue > 0) {
397 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
398 			return true;
399 		if (atomic_read(&starget->target_blocked) > 0)
400 			return true;
401 	}
402 	return false;
403 }
404 
scsi_host_is_busy(struct Scsi_Host * shost)405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407 	if (atomic_read(&shost->host_blocked) > 0)
408 		return true;
409 	if (shost->host_self_blocked)
410 		return true;
411 	return false;
412 }
413 
scsi_starved_list_run(struct Scsi_Host * shost)414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 	LIST_HEAD(starved_list);
417 	struct scsi_device *sdev;
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(shost->host_lock, flags);
421 	list_splice_init(&shost->starved_list, &starved_list);
422 
423 	while (!list_empty(&starved_list)) {
424 		struct request_queue *slq;
425 
426 		/*
427 		 * As long as shost is accepting commands and we have
428 		 * starved queues, call blk_run_queue. scsi_request_fn
429 		 * drops the queue_lock and can add us back to the
430 		 * starved_list.
431 		 *
432 		 * host_lock protects the starved_list and starved_entry.
433 		 * scsi_request_fn must get the host_lock before checking
434 		 * or modifying starved_list or starved_entry.
435 		 */
436 		if (scsi_host_is_busy(shost))
437 			break;
438 
439 		sdev = list_entry(starved_list.next,
440 				  struct scsi_device, starved_entry);
441 		list_del_init(&sdev->starved_entry);
442 		if (scsi_target_is_busy(scsi_target(sdev))) {
443 			list_move_tail(&sdev->starved_entry,
444 				       &shost->starved_list);
445 			continue;
446 		}
447 
448 		/*
449 		 * Once we drop the host lock, a racing scsi_remove_device()
450 		 * call may remove the sdev from the starved list and destroy
451 		 * it and the queue.  Mitigate by taking a reference to the
452 		 * queue and never touching the sdev again after we drop the
453 		 * host lock.  Note: if __scsi_remove_device() invokes
454 		 * blk_cleanup_queue() before the queue is run from this
455 		 * function then blk_run_queue() will return immediately since
456 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 		 */
458 		slq = sdev->request_queue;
459 		if (!blk_get_queue(slq))
460 			continue;
461 		spin_unlock_irqrestore(shost->host_lock, flags);
462 
463 		scsi_kick_queue(slq);
464 		blk_put_queue(slq);
465 
466 		spin_lock_irqsave(shost->host_lock, flags);
467 	}
468 	/* put any unprocessed entries back */
469 	list_splice(&starved_list, &shost->starved_list);
470 	spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472 
473 /**
474  * scsi_run_queue - Select a proper request queue to serve next.
475  * @q:  last request's queue
476  *
477  * The previous command was completely finished, start a new one if possible.
478  */
scsi_run_queue(struct request_queue * q)479 static void scsi_run_queue(struct request_queue *q)
480 {
481 	struct scsi_device *sdev = q->queuedata;
482 
483 	if (scsi_target(sdev)->single_lun)
484 		scsi_single_lun_run(sdev);
485 	if (!list_empty(&sdev->host->starved_list))
486 		scsi_starved_list_run(sdev->host);
487 
488 	blk_mq_run_hw_queues(q, false);
489 }
490 
scsi_requeue_run_queue(struct work_struct * work)491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493 	struct scsi_device *sdev;
494 	struct request_queue *q;
495 
496 	sdev = container_of(work, struct scsi_device, requeue_work);
497 	q = sdev->request_queue;
498 	scsi_run_queue(q);
499 }
500 
scsi_run_host_queues(struct Scsi_Host * shost)501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503 	struct scsi_device *sdev;
504 
505 	shost_for_each_device(sdev, shost)
506 		scsi_run_queue(sdev->request_queue);
507 }
508 
scsi_uninit_cmd(struct scsi_cmnd * cmd)509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511 	if (!blk_rq_is_passthrough(cmd->request)) {
512 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513 
514 		if (drv->uninit_command)
515 			drv->uninit_command(cmd);
516 	}
517 }
518 
scsi_free_sgtables(struct scsi_cmnd * cmd)519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521 	if (cmd->sdb.table.nents)
522 		sg_free_table_chained(&cmd->sdb.table,
523 				SCSI_INLINE_SG_CNT);
524 	if (scsi_prot_sg_count(cmd))
525 		sg_free_table_chained(&cmd->prot_sdb->table,
526 				SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532 	scsi_free_sgtables(cmd);
533 	scsi_uninit_cmd(cmd);
534 }
535 
scsi_run_queue_async(struct scsi_device * sdev)536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538 	if (scsi_target(sdev)->single_lun ||
539 	    !list_empty(&sdev->host->starved_list)) {
540 		kblockd_schedule_work(&sdev->requeue_work);
541 	} else {
542 		/*
543 		 * smp_mb() present in sbitmap_queue_clear() or implied in
544 		 * .end_io is for ordering writing .device_busy in
545 		 * scsi_device_unbusy() and reading sdev->restarts.
546 		 */
547 		int old = atomic_read(&sdev->restarts);
548 
549 		/*
550 		 * ->restarts has to be kept as non-zero if new budget
551 		 *  contention occurs.
552 		 *
553 		 *  No need to run queue when either another re-run
554 		 *  queue wins in updating ->restarts or a new budget
555 		 *  contention occurs.
556 		 */
557 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558 			blk_mq_run_hw_queues(sdev->request_queue, true);
559 	}
560 }
561 
562 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)563 static bool scsi_end_request(struct request *req, blk_status_t error,
564 		unsigned int bytes)
565 {
566 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567 	struct scsi_device *sdev = cmd->device;
568 	struct request_queue *q = sdev->request_queue;
569 
570 	if (blk_update_request(req, error, bytes))
571 		return true;
572 
573 	if (blk_queue_add_random(q))
574 		add_disk_randomness(req->rq_disk);
575 
576 	if (!blk_rq_is_scsi(req)) {
577 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578 		cmd->flags &= ~SCMD_INITIALIZED;
579 	}
580 
581 	/*
582 	 * Calling rcu_barrier() is not necessary here because the
583 	 * SCSI error handler guarantees that the function called by
584 	 * call_rcu() has been called before scsi_end_request() is
585 	 * called.
586 	 */
587 	destroy_rcu_head(&cmd->rcu);
588 
589 	/*
590 	 * In the MQ case the command gets freed by __blk_mq_end_request,
591 	 * so we have to do all cleanup that depends on it earlier.
592 	 *
593 	 * We also can't kick the queues from irq context, so we
594 	 * will have to defer it to a workqueue.
595 	 */
596 	scsi_mq_uninit_cmd(cmd);
597 
598 	/*
599 	 * queue is still alive, so grab the ref for preventing it
600 	 * from being cleaned up during running queue.
601 	 */
602 	percpu_ref_get(&q->q_usage_counter);
603 
604 	__blk_mq_end_request(req, error);
605 
606 	scsi_run_queue_async(sdev);
607 
608 	percpu_ref_put(&q->q_usage_counter);
609 	return false;
610 }
611 
612 /**
613  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614  * @cmd:	SCSI command
615  * @result:	scsi error code
616  *
617  * Translate a SCSI result code into a blk_status_t value. May reset the host
618  * byte of @cmd->result.
619  */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622 	switch (host_byte(result)) {
623 	case DID_OK:
624 		/*
625 		 * Also check the other bytes than the status byte in result
626 		 * to handle the case when a SCSI LLD sets result to
627 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628 		 */
629 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630 			return BLK_STS_OK;
631 		return BLK_STS_IOERR;
632 	case DID_TRANSPORT_FAILFAST:
633 		return BLK_STS_TRANSPORT;
634 	case DID_TARGET_FAILURE:
635 		set_host_byte(cmd, DID_OK);
636 		return BLK_STS_TARGET;
637 	case DID_NEXUS_FAILURE:
638 		set_host_byte(cmd, DID_OK);
639 		return BLK_STS_NEXUS;
640 	case DID_ALLOC_FAILURE:
641 		set_host_byte(cmd, DID_OK);
642 		return BLK_STS_NOSPC;
643 	case DID_MEDIUM_ERROR:
644 		set_host_byte(cmd, DID_OK);
645 		return BLK_STS_MEDIUM;
646 	default:
647 		return BLK_STS_IOERR;
648 	}
649 }
650 
651 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)652 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
653 				      struct request_queue *q)
654 {
655 	/* A new command will be prepared and issued. */
656 	scsi_mq_requeue_cmd(cmd);
657 }
658 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)659 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
660 {
661 	struct request *req = cmd->request;
662 	unsigned long wait_for;
663 
664 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
665 		return false;
666 
667 	wait_for = (cmd->allowed + 1) * req->timeout;
668 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
669 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
670 			    wait_for/HZ);
671 		return true;
672 	}
673 	return false;
674 }
675 
676 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)677 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
678 {
679 	struct request_queue *q = cmd->device->request_queue;
680 	struct request *req = cmd->request;
681 	int level = 0;
682 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
683 	      ACTION_DELAYED_RETRY} action;
684 	struct scsi_sense_hdr sshdr;
685 	bool sense_valid;
686 	bool sense_current = true;      /* false implies "deferred sense" */
687 	blk_status_t blk_stat;
688 
689 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
690 	if (sense_valid)
691 		sense_current = !scsi_sense_is_deferred(&sshdr);
692 
693 	blk_stat = scsi_result_to_blk_status(cmd, result);
694 
695 	if (host_byte(result) == DID_RESET) {
696 		/* Third party bus reset or reset for error recovery
697 		 * reasons.  Just retry the command and see what
698 		 * happens.
699 		 */
700 		action = ACTION_RETRY;
701 	} else if (sense_valid && sense_current) {
702 		switch (sshdr.sense_key) {
703 		case UNIT_ATTENTION:
704 			if (cmd->device->removable) {
705 				/* Detected disc change.  Set a bit
706 				 * and quietly refuse further access.
707 				 */
708 				cmd->device->changed = 1;
709 				action = ACTION_FAIL;
710 			} else {
711 				/* Must have been a power glitch, or a
712 				 * bus reset.  Could not have been a
713 				 * media change, so we just retry the
714 				 * command and see what happens.
715 				 */
716 				action = ACTION_RETRY;
717 			}
718 			break;
719 		case ILLEGAL_REQUEST:
720 			/* If we had an ILLEGAL REQUEST returned, then
721 			 * we may have performed an unsupported
722 			 * command.  The only thing this should be
723 			 * would be a ten byte read where only a six
724 			 * byte read was supported.  Also, on a system
725 			 * where READ CAPACITY failed, we may have
726 			 * read past the end of the disk.
727 			 */
728 			if ((cmd->device->use_10_for_rw &&
729 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
730 			    (cmd->cmnd[0] == READ_10 ||
731 			     cmd->cmnd[0] == WRITE_10)) {
732 				/* This will issue a new 6-byte command. */
733 				cmd->device->use_10_for_rw = 0;
734 				action = ACTION_REPREP;
735 			} else if (sshdr.asc == 0x10) /* DIX */ {
736 				action = ACTION_FAIL;
737 				blk_stat = BLK_STS_PROTECTION;
738 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
739 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
740 				action = ACTION_FAIL;
741 				blk_stat = BLK_STS_TARGET;
742 			} else
743 				action = ACTION_FAIL;
744 			break;
745 		case ABORTED_COMMAND:
746 			action = ACTION_FAIL;
747 			if (sshdr.asc == 0x10) /* DIF */
748 				blk_stat = BLK_STS_PROTECTION;
749 			break;
750 		case NOT_READY:
751 			/* If the device is in the process of becoming
752 			 * ready, or has a temporary blockage, retry.
753 			 */
754 			if (sshdr.asc == 0x04) {
755 				switch (sshdr.ascq) {
756 				case 0x01: /* becoming ready */
757 				case 0x04: /* format in progress */
758 				case 0x05: /* rebuild in progress */
759 				case 0x06: /* recalculation in progress */
760 				case 0x07: /* operation in progress */
761 				case 0x08: /* Long write in progress */
762 				case 0x09: /* self test in progress */
763 				case 0x11: /* notify (enable spinup) required */
764 				case 0x14: /* space allocation in progress */
765 				case 0x1a: /* start stop unit in progress */
766 				case 0x1b: /* sanitize in progress */
767 				case 0x1d: /* configuration in progress */
768 				case 0x24: /* depopulation in progress */
769 					action = ACTION_DELAYED_RETRY;
770 					break;
771 				default:
772 					action = ACTION_FAIL;
773 					break;
774 				}
775 			} else
776 				action = ACTION_FAIL;
777 			break;
778 		case VOLUME_OVERFLOW:
779 			/* See SSC3rXX or current. */
780 			action = ACTION_FAIL;
781 			break;
782 		case DATA_PROTECT:
783 			action = ACTION_FAIL;
784 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
785 			    (sshdr.asc == 0x55 &&
786 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
787 				/* Insufficient zone resources */
788 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
789 			}
790 			break;
791 		default:
792 			action = ACTION_FAIL;
793 			break;
794 		}
795 	} else
796 		action = ACTION_FAIL;
797 
798 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
799 		action = ACTION_FAIL;
800 
801 	switch (action) {
802 	case ACTION_FAIL:
803 		/* Give up and fail the remainder of the request */
804 		if (!(req->rq_flags & RQF_QUIET)) {
805 			static DEFINE_RATELIMIT_STATE(_rs,
806 					DEFAULT_RATELIMIT_INTERVAL,
807 					DEFAULT_RATELIMIT_BURST);
808 
809 			if (unlikely(scsi_logging_level))
810 				level =
811 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
812 						    SCSI_LOG_MLCOMPLETE_BITS);
813 
814 			/*
815 			 * if logging is enabled the failure will be printed
816 			 * in scsi_log_completion(), so avoid duplicate messages
817 			 */
818 			if (!level && __ratelimit(&_rs)) {
819 				scsi_print_result(cmd, NULL, FAILED);
820 				if (driver_byte(result) == DRIVER_SENSE)
821 					scsi_print_sense(cmd);
822 				scsi_print_command(cmd);
823 			}
824 		}
825 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
826 			return;
827 		fallthrough;
828 	case ACTION_REPREP:
829 		scsi_io_completion_reprep(cmd, q);
830 		break;
831 	case ACTION_RETRY:
832 		/* Retry the same command immediately */
833 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
834 		break;
835 	case ACTION_DELAYED_RETRY:
836 		/* Retry the same command after a delay */
837 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
838 		break;
839 	}
840 }
841 
842 /*
843  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
844  * new result that may suppress further error checking. Also modifies
845  * *blk_statp in some cases.
846  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)847 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
848 					blk_status_t *blk_statp)
849 {
850 	bool sense_valid;
851 	bool sense_current = true;	/* false implies "deferred sense" */
852 	struct request *req = cmd->request;
853 	struct scsi_sense_hdr sshdr;
854 
855 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
856 	if (sense_valid)
857 		sense_current = !scsi_sense_is_deferred(&sshdr);
858 
859 	if (blk_rq_is_passthrough(req)) {
860 		if (sense_valid) {
861 			/*
862 			 * SG_IO wants current and deferred errors
863 			 */
864 			scsi_req(req)->sense_len =
865 				min(8 + cmd->sense_buffer[7],
866 				    SCSI_SENSE_BUFFERSIZE);
867 		}
868 		if (sense_current)
869 			*blk_statp = scsi_result_to_blk_status(cmd, result);
870 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
871 		/*
872 		 * Flush commands do not transfers any data, and thus cannot use
873 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
874 		 * This sets *blk_statp explicitly for the problem case.
875 		 */
876 		*blk_statp = scsi_result_to_blk_status(cmd, result);
877 	}
878 	/*
879 	 * Recovered errors need reporting, but they're always treated as
880 	 * success, so fiddle the result code here.  For passthrough requests
881 	 * we already took a copy of the original into sreq->result which
882 	 * is what gets returned to the user
883 	 */
884 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
885 		bool do_print = true;
886 		/*
887 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
888 		 * skip print since caller wants ATA registers. Only occurs
889 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
890 		 */
891 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
892 			do_print = false;
893 		else if (req->rq_flags & RQF_QUIET)
894 			do_print = false;
895 		if (do_print)
896 			scsi_print_sense(cmd);
897 		result = 0;
898 		/* for passthrough, *blk_statp may be set */
899 		*blk_statp = BLK_STS_OK;
900 	}
901 	/*
902 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
903 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
904 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
905 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
906 	 * intermediate statuses (both obsolete in SAM-4) as good.
907 	 */
908 	if (status_byte(result) && scsi_status_is_good(result)) {
909 		result = 0;
910 		*blk_statp = BLK_STS_OK;
911 	}
912 	return result;
913 }
914 
915 /**
916  * scsi_io_completion - Completion processing for SCSI commands.
917  * @cmd:	command that is finished.
918  * @good_bytes:	number of processed bytes.
919  *
920  * We will finish off the specified number of sectors. If we are done, the
921  * command block will be released and the queue function will be goosed. If we
922  * are not done then we have to figure out what to do next:
923  *
924  *   a) We can call scsi_io_completion_reprep().  The request will be
925  *	unprepared and put back on the queue.  Then a new command will
926  *	be created for it.  This should be used if we made forward
927  *	progress, or if we want to switch from READ(10) to READ(6) for
928  *	example.
929  *
930  *   b) We can call scsi_io_completion_action().  The request will be
931  *	put back on the queue and retried using the same command as
932  *	before, possibly after a delay.
933  *
934  *   c) We can call scsi_end_request() with blk_stat other than
935  *	BLK_STS_OK, to fail the remainder of the request.
936  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)937 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
938 {
939 	int result = cmd->result;
940 	struct request_queue *q = cmd->device->request_queue;
941 	struct request *req = cmd->request;
942 	blk_status_t blk_stat = BLK_STS_OK;
943 
944 	if (unlikely(result))	/* a nz result may or may not be an error */
945 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
946 
947 	if (unlikely(blk_rq_is_passthrough(req))) {
948 		/*
949 		 * scsi_result_to_blk_status may have reset the host_byte
950 		 */
951 		scsi_req(req)->result = cmd->result;
952 	}
953 
954 	/*
955 	 * Next deal with any sectors which we were able to correctly
956 	 * handle.
957 	 */
958 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
959 		"%u sectors total, %d bytes done.\n",
960 		blk_rq_sectors(req), good_bytes));
961 
962 	/*
963 	 * Failed, zero length commands always need to drop down
964 	 * to retry code. Fast path should return in this block.
965 	 */
966 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
967 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
968 			return; /* no bytes remaining */
969 	}
970 
971 	/* Kill remainder if no retries. */
972 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
973 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
974 			WARN_ONCE(true,
975 			    "Bytes remaining after failed, no-retry command");
976 		return;
977 	}
978 
979 	/*
980 	 * If there had been no error, but we have leftover bytes in the
981 	 * requeues just queue the command up again.
982 	 */
983 	if (likely(result == 0))
984 		scsi_io_completion_reprep(cmd, q);
985 	else
986 		scsi_io_completion_action(cmd, result);
987 }
988 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)989 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
990 		struct request *rq)
991 {
992 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
993 	       !op_is_write(req_op(rq)) &&
994 	       sdev->host->hostt->dma_need_drain(rq);
995 }
996 
997 /**
998  * scsi_alloc_sgtables - allocate S/G tables for a command
999  * @cmd:  command descriptor we wish to initialize
1000  *
1001  * Returns:
1002  * * BLK_STS_OK       - on success
1003  * * BLK_STS_RESOURCE - if the failure is retryable
1004  * * BLK_STS_IOERR    - if the failure is fatal
1005  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1006 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1007 {
1008 	struct scsi_device *sdev = cmd->device;
1009 	struct request *rq = cmd->request;
1010 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1011 	struct scatterlist *last_sg = NULL;
1012 	blk_status_t ret;
1013 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1014 	int count;
1015 
1016 	if (WARN_ON_ONCE(!nr_segs))
1017 		return BLK_STS_IOERR;
1018 
1019 	/*
1020 	 * Make sure there is space for the drain.  The driver must adjust
1021 	 * max_hw_segments to be prepared for this.
1022 	 */
1023 	if (need_drain)
1024 		nr_segs++;
1025 
1026 	/*
1027 	 * If sg table allocation fails, requeue request later.
1028 	 */
1029 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1030 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1031 		return BLK_STS_RESOURCE;
1032 
1033 	/*
1034 	 * Next, walk the list, and fill in the addresses and sizes of
1035 	 * each segment.
1036 	 */
1037 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1038 
1039 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1040 		unsigned int pad_len =
1041 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1042 
1043 		last_sg->length += pad_len;
1044 		cmd->extra_len += pad_len;
1045 	}
1046 
1047 	if (need_drain) {
1048 		sg_unmark_end(last_sg);
1049 		last_sg = sg_next(last_sg);
1050 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1051 		sg_mark_end(last_sg);
1052 
1053 		cmd->extra_len += sdev->dma_drain_len;
1054 		count++;
1055 	}
1056 
1057 	BUG_ON(count > cmd->sdb.table.nents);
1058 	cmd->sdb.table.nents = count;
1059 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1060 
1061 	if (blk_integrity_rq(rq)) {
1062 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1063 		int ivecs;
1064 
1065 		if (WARN_ON_ONCE(!prot_sdb)) {
1066 			/*
1067 			 * This can happen if someone (e.g. multipath)
1068 			 * queues a command to a device on an adapter
1069 			 * that does not support DIX.
1070 			 */
1071 			ret = BLK_STS_IOERR;
1072 			goto out_free_sgtables;
1073 		}
1074 
1075 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1076 
1077 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1078 				prot_sdb->table.sgl,
1079 				SCSI_INLINE_PROT_SG_CNT)) {
1080 			ret = BLK_STS_RESOURCE;
1081 			goto out_free_sgtables;
1082 		}
1083 
1084 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1085 						prot_sdb->table.sgl);
1086 		BUG_ON(count > ivecs);
1087 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1088 
1089 		cmd->prot_sdb = prot_sdb;
1090 		cmd->prot_sdb->table.nents = count;
1091 	}
1092 
1093 	return BLK_STS_OK;
1094 out_free_sgtables:
1095 	scsi_free_sgtables(cmd);
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL(scsi_alloc_sgtables);
1099 
1100 /**
1101  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1102  * @rq: Request associated with the SCSI command to be initialized.
1103  *
1104  * This function initializes the members of struct scsi_cmnd that must be
1105  * initialized before request processing starts and that won't be
1106  * reinitialized if a SCSI command is requeued.
1107  *
1108  * Called from inside blk_get_request() for pass-through requests and from
1109  * inside scsi_init_command() for filesystem requests.
1110  */
scsi_initialize_rq(struct request * rq)1111 static void scsi_initialize_rq(struct request *rq)
1112 {
1113 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1114 
1115 	scsi_req_init(&cmd->req);
1116 	init_rcu_head(&cmd->rcu);
1117 	cmd->jiffies_at_alloc = jiffies;
1118 	cmd->retries = 0;
1119 }
1120 
1121 /*
1122  * Only called when the request isn't completed by SCSI, and not freed by
1123  * SCSI
1124  */
scsi_cleanup_rq(struct request * rq)1125 static void scsi_cleanup_rq(struct request *rq)
1126 {
1127 	if (rq->rq_flags & RQF_DONTPREP) {
1128 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1129 		rq->rq_flags &= ~RQF_DONTPREP;
1130 	}
1131 }
1132 
1133 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1134 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135 {
1136 	void *buf = cmd->sense_buffer;
1137 	void *prot = cmd->prot_sdb;
1138 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1139 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140 	unsigned long jiffies_at_alloc;
1141 	int retries, to_clear;
1142 	bool in_flight;
1143 
1144 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1145 		flags |= SCMD_INITIALIZED;
1146 		scsi_initialize_rq(rq);
1147 	}
1148 
1149 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1150 	retries = cmd->retries;
1151 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1152 	/*
1153 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1154 	 * the driver-private command data if the LLD does not supply a
1155 	 * function to initialize that data.
1156 	 */
1157 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1158 	if (!dev->host->hostt->init_cmd_priv)
1159 		to_clear += dev->host->hostt->cmd_size;
1160 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1161 
1162 	cmd->device = dev;
1163 	cmd->sense_buffer = buf;
1164 	cmd->prot_sdb = prot;
1165 	cmd->flags = flags;
1166 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1168 	cmd->retries = retries;
1169 	if (in_flight)
1170 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1171 
1172 }
1173 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1174 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1175 		struct request *req)
1176 {
1177 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1178 
1179 	/*
1180 	 * Passthrough requests may transfer data, in which case they must
1181 	 * a bio attached to them.  Or they might contain a SCSI command
1182 	 * that does not transfer data, in which case they may optionally
1183 	 * submit a request without an attached bio.
1184 	 */
1185 	if (req->bio) {
1186 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1187 		if (unlikely(ret != BLK_STS_OK))
1188 			return ret;
1189 	} else {
1190 		BUG_ON(blk_rq_bytes(req));
1191 
1192 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1193 	}
1194 
1195 	cmd->cmd_len = scsi_req(req)->cmd_len;
1196 	cmd->cmnd = scsi_req(req)->cmd;
1197 	cmd->transfersize = blk_rq_bytes(req);
1198 	cmd->allowed = scsi_req(req)->retries;
1199 	return BLK_STS_OK;
1200 }
1201 
1202 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1203 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 	switch (sdev->sdev_state) {
1206 	case SDEV_CREATED:
1207 		return BLK_STS_OK;
1208 	case SDEV_OFFLINE:
1209 	case SDEV_TRANSPORT_OFFLINE:
1210 		/*
1211 		 * If the device is offline we refuse to process any
1212 		 * commands.  The device must be brought online
1213 		 * before trying any recovery commands.
1214 		 */
1215 		if (!sdev->offline_already) {
1216 			sdev->offline_already = true;
1217 			sdev_printk(KERN_ERR, sdev,
1218 				    "rejecting I/O to offline device\n");
1219 		}
1220 		return BLK_STS_IOERR;
1221 	case SDEV_DEL:
1222 		/*
1223 		 * If the device is fully deleted, we refuse to
1224 		 * process any commands as well.
1225 		 */
1226 		sdev_printk(KERN_ERR, sdev,
1227 			    "rejecting I/O to dead device\n");
1228 		return BLK_STS_IOERR;
1229 	case SDEV_BLOCK:
1230 	case SDEV_CREATED_BLOCK:
1231 		return BLK_STS_RESOURCE;
1232 	case SDEV_QUIESCE:
1233 		/*
1234 		 * If the device is blocked we only accept power management
1235 		 * commands.
1236 		 */
1237 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1238 			return BLK_STS_RESOURCE;
1239 		return BLK_STS_OK;
1240 	default:
1241 		/*
1242 		 * For any other not fully online state we only allow
1243 		 * power management commands.
1244 		 */
1245 		if (req && !(req->rq_flags & RQF_PM))
1246 			return BLK_STS_IOERR;
1247 		return BLK_STS_OK;
1248 	}
1249 }
1250 
1251 /*
1252  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1253  * return 0.
1254  *
1255  * Called with the queue_lock held.
1256  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1257 static inline int scsi_dev_queue_ready(struct request_queue *q,
1258 				  struct scsi_device *sdev)
1259 {
1260 	unsigned int busy;
1261 
1262 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1263 	if (atomic_read(&sdev->device_blocked)) {
1264 		if (busy)
1265 			goto out_dec;
1266 
1267 		/*
1268 		 * unblock after device_blocked iterates to zero
1269 		 */
1270 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1271 			goto out_dec;
1272 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1273 				   "unblocking device at zero depth\n"));
1274 	}
1275 
1276 	if (busy >= sdev->queue_depth)
1277 		goto out_dec;
1278 
1279 	return 1;
1280 out_dec:
1281 	atomic_dec(&sdev->device_busy);
1282 	return 0;
1283 }
1284 
1285 /*
1286  * scsi_target_queue_ready: checks if there we can send commands to target
1287  * @sdev: scsi device on starget to check.
1288  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1289 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1290 					   struct scsi_device *sdev)
1291 {
1292 	struct scsi_target *starget = scsi_target(sdev);
1293 	unsigned int busy;
1294 
1295 	if (starget->single_lun) {
1296 		spin_lock_irq(shost->host_lock);
1297 		if (starget->starget_sdev_user &&
1298 		    starget->starget_sdev_user != sdev) {
1299 			spin_unlock_irq(shost->host_lock);
1300 			return 0;
1301 		}
1302 		starget->starget_sdev_user = sdev;
1303 		spin_unlock_irq(shost->host_lock);
1304 	}
1305 
1306 	if (starget->can_queue <= 0)
1307 		return 1;
1308 
1309 	busy = atomic_inc_return(&starget->target_busy) - 1;
1310 	if (atomic_read(&starget->target_blocked) > 0) {
1311 		if (busy)
1312 			goto starved;
1313 
1314 		/*
1315 		 * unblock after target_blocked iterates to zero
1316 		 */
1317 		if (atomic_dec_return(&starget->target_blocked) > 0)
1318 			goto out_dec;
1319 
1320 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1321 				 "unblocking target at zero depth\n"));
1322 	}
1323 
1324 	if (busy >= starget->can_queue)
1325 		goto starved;
1326 
1327 	return 1;
1328 
1329 starved:
1330 	spin_lock_irq(shost->host_lock);
1331 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1332 	spin_unlock_irq(shost->host_lock);
1333 out_dec:
1334 	if (starget->can_queue > 0)
1335 		atomic_dec(&starget->target_busy);
1336 	return 0;
1337 }
1338 
1339 /*
1340  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1341  * return 0. We must end up running the queue again whenever 0 is
1342  * returned, else IO can hang.
1343  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1344 static inline int scsi_host_queue_ready(struct request_queue *q,
1345 				   struct Scsi_Host *shost,
1346 				   struct scsi_device *sdev,
1347 				   struct scsi_cmnd *cmd)
1348 {
1349 	if (scsi_host_in_recovery(shost))
1350 		return 0;
1351 
1352 	if (atomic_read(&shost->host_blocked) > 0) {
1353 		if (scsi_host_busy(shost) > 0)
1354 			goto starved;
1355 
1356 		/*
1357 		 * unblock after host_blocked iterates to zero
1358 		 */
1359 		if (atomic_dec_return(&shost->host_blocked) > 0)
1360 			goto out_dec;
1361 
1362 		SCSI_LOG_MLQUEUE(3,
1363 			shost_printk(KERN_INFO, shost,
1364 				     "unblocking host at zero depth\n"));
1365 	}
1366 
1367 	if (shost->host_self_blocked)
1368 		goto starved;
1369 
1370 	/* We're OK to process the command, so we can't be starved */
1371 	if (!list_empty(&sdev->starved_entry)) {
1372 		spin_lock_irq(shost->host_lock);
1373 		if (!list_empty(&sdev->starved_entry))
1374 			list_del_init(&sdev->starved_entry);
1375 		spin_unlock_irq(shost->host_lock);
1376 	}
1377 
1378 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1379 
1380 	return 1;
1381 
1382 starved:
1383 	spin_lock_irq(shost->host_lock);
1384 	if (list_empty(&sdev->starved_entry))
1385 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1386 	spin_unlock_irq(shost->host_lock);
1387 out_dec:
1388 	scsi_dec_host_busy(shost, cmd);
1389 	return 0;
1390 }
1391 
1392 /*
1393  * Busy state exporting function for request stacking drivers.
1394  *
1395  * For efficiency, no lock is taken to check the busy state of
1396  * shost/starget/sdev, since the returned value is not guaranteed and
1397  * may be changed after request stacking drivers call the function,
1398  * regardless of taking lock or not.
1399  *
1400  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1401  * needs to return 'not busy'. Otherwise, request stacking drivers
1402  * may hold requests forever.
1403  */
scsi_mq_lld_busy(struct request_queue * q)1404 static bool scsi_mq_lld_busy(struct request_queue *q)
1405 {
1406 	struct scsi_device *sdev = q->queuedata;
1407 	struct Scsi_Host *shost;
1408 
1409 	if (blk_queue_dying(q))
1410 		return false;
1411 
1412 	shost = sdev->host;
1413 
1414 	/*
1415 	 * Ignore host/starget busy state.
1416 	 * Since block layer does not have a concept of fairness across
1417 	 * multiple queues, congestion of host/starget needs to be handled
1418 	 * in SCSI layer.
1419 	 */
1420 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1421 		return true;
1422 
1423 	return false;
1424 }
1425 
scsi_softirq_done(struct request * rq)1426 static void scsi_softirq_done(struct request *rq)
1427 {
1428 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1429 	int disposition;
1430 
1431 	INIT_LIST_HEAD(&cmd->eh_entry);
1432 
1433 	atomic_inc(&cmd->device->iodone_cnt);
1434 	if (cmd->result)
1435 		atomic_inc(&cmd->device->ioerr_cnt);
1436 
1437 	disposition = scsi_decide_disposition(cmd);
1438 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1439 		disposition = SUCCESS;
1440 
1441 	scsi_log_completion(cmd, disposition);
1442 
1443 	switch (disposition) {
1444 	case SUCCESS:
1445 		scsi_finish_command(cmd);
1446 		break;
1447 	case NEEDS_RETRY:
1448 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1449 		break;
1450 	case ADD_TO_MLQUEUE:
1451 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1452 		break;
1453 	default:
1454 		scsi_eh_scmd_add(cmd);
1455 		break;
1456 	}
1457 }
1458 
1459 /**
1460  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1461  * @cmd: command block we are dispatching.
1462  *
1463  * Return: nonzero return request was rejected and device's queue needs to be
1464  * plugged.
1465  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1466 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1467 {
1468 	struct Scsi_Host *host = cmd->device->host;
1469 	int rtn = 0;
1470 
1471 	atomic_inc(&cmd->device->iorequest_cnt);
1472 
1473 	/* check if the device is still usable */
1474 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1475 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1476 		 * returns an immediate error upwards, and signals
1477 		 * that the device is no longer present */
1478 		cmd->result = DID_NO_CONNECT << 16;
1479 		goto done;
1480 	}
1481 
1482 	/* Check to see if the scsi lld made this device blocked. */
1483 	if (unlikely(scsi_device_blocked(cmd->device))) {
1484 		/*
1485 		 * in blocked state, the command is just put back on
1486 		 * the device queue.  The suspend state has already
1487 		 * blocked the queue so future requests should not
1488 		 * occur until the device transitions out of the
1489 		 * suspend state.
1490 		 */
1491 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1492 			"queuecommand : device blocked\n"));
1493 		return SCSI_MLQUEUE_DEVICE_BUSY;
1494 	}
1495 
1496 	/* Store the LUN value in cmnd, if needed. */
1497 	if (cmd->device->lun_in_cdb)
1498 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1499 			       (cmd->device->lun << 5 & 0xe0);
1500 
1501 	scsi_log_send(cmd);
1502 
1503 	/*
1504 	 * Before we queue this command, check if the command
1505 	 * length exceeds what the host adapter can handle.
1506 	 */
1507 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1508 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1509 			       "queuecommand : command too long. "
1510 			       "cdb_size=%d host->max_cmd_len=%d\n",
1511 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1512 		cmd->result = (DID_ABORT << 16);
1513 		goto done;
1514 	}
1515 
1516 	if (unlikely(host->shost_state == SHOST_DEL)) {
1517 		cmd->result = (DID_NO_CONNECT << 16);
1518 		goto done;
1519 
1520 	}
1521 
1522 	trace_scsi_dispatch_cmd_start(cmd);
1523 	rtn = host->hostt->queuecommand(host, cmd);
1524 	if (rtn) {
1525 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1526 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1527 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1528 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1529 
1530 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1531 			"queuecommand : request rejected\n"));
1532 	}
1533 
1534 	return rtn;
1535  done:
1536 	cmd->scsi_done(cmd);
1537 	return 0;
1538 }
1539 
1540 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1541 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1542 {
1543 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1544 		sizeof(struct scatterlist);
1545 }
1546 
scsi_prepare_cmd(struct request * req)1547 static blk_status_t scsi_prepare_cmd(struct request *req)
1548 {
1549 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1550 	struct scsi_device *sdev = req->q->queuedata;
1551 	struct Scsi_Host *shost = sdev->host;
1552 	struct scatterlist *sg;
1553 
1554 	scsi_init_command(sdev, cmd);
1555 
1556 	cmd->request = req;
1557 	cmd->tag = req->tag;
1558 	cmd->prot_op = SCSI_PROT_NORMAL;
1559 	if (blk_rq_bytes(req))
1560 		cmd->sc_data_direction = rq_dma_dir(req);
1561 	else
1562 		cmd->sc_data_direction = DMA_NONE;
1563 
1564 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1565 	cmd->sdb.table.sgl = sg;
1566 
1567 	if (scsi_host_get_prot(shost)) {
1568 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1569 
1570 		cmd->prot_sdb->table.sgl =
1571 			(struct scatterlist *)(cmd->prot_sdb + 1);
1572 	}
1573 
1574 	/*
1575 	 * Special handling for passthrough commands, which don't go to the ULP
1576 	 * at all:
1577 	 */
1578 	if (blk_rq_is_scsi(req))
1579 		return scsi_setup_scsi_cmnd(sdev, req);
1580 
1581 	if (sdev->handler && sdev->handler->prep_fn) {
1582 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1583 
1584 		if (ret != BLK_STS_OK)
1585 			return ret;
1586 	}
1587 
1588 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1589 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1590 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1591 }
1592 
scsi_mq_done(struct scsi_cmnd * cmd)1593 static void scsi_mq_done(struct scsi_cmnd *cmd)
1594 {
1595 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1596 		return;
1597 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1598 		return;
1599 	trace_scsi_dispatch_cmd_done(cmd);
1600 	blk_mq_complete_request(cmd->request);
1601 }
1602 
scsi_mq_put_budget(struct request_queue * q)1603 static void scsi_mq_put_budget(struct request_queue *q)
1604 {
1605 	struct scsi_device *sdev = q->queuedata;
1606 
1607 	atomic_dec(&sdev->device_busy);
1608 }
1609 
scsi_mq_get_budget(struct request_queue * q)1610 static bool scsi_mq_get_budget(struct request_queue *q)
1611 {
1612 	struct scsi_device *sdev = q->queuedata;
1613 
1614 	if (scsi_dev_queue_ready(q, sdev))
1615 		return true;
1616 
1617 	atomic_inc(&sdev->restarts);
1618 
1619 	/*
1620 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1621 	 * .restarts must be incremented before .device_busy is read because the
1622 	 * code in scsi_run_queue_async() depends on the order of these operations.
1623 	 */
1624 	smp_mb__after_atomic();
1625 
1626 	/*
1627 	 * If all in-flight requests originated from this LUN are completed
1628 	 * before reading .device_busy, sdev->device_busy will be observed as
1629 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1630 	 * soon. Otherwise, completion of one of these requests will observe
1631 	 * the .restarts flag, and the request queue will be run for handling
1632 	 * this request, see scsi_end_request().
1633 	 */
1634 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1635 				!scsi_device_blocked(sdev)))
1636 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1637 	return false;
1638 }
1639 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1640 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1641 			 const struct blk_mq_queue_data *bd)
1642 {
1643 	struct request *req = bd->rq;
1644 	struct request_queue *q = req->q;
1645 	struct scsi_device *sdev = q->queuedata;
1646 	struct Scsi_Host *shost = sdev->host;
1647 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1648 	blk_status_t ret;
1649 	int reason;
1650 
1651 	/*
1652 	 * If the device is not in running state we will reject some or all
1653 	 * commands.
1654 	 */
1655 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1656 		ret = scsi_device_state_check(sdev, req);
1657 		if (ret != BLK_STS_OK)
1658 			goto out_put_budget;
1659 	}
1660 
1661 	ret = BLK_STS_RESOURCE;
1662 	if (!scsi_target_queue_ready(shost, sdev))
1663 		goto out_put_budget;
1664 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1665 		goto out_dec_target_busy;
1666 
1667 	if (!(req->rq_flags & RQF_DONTPREP)) {
1668 		ret = scsi_prepare_cmd(req);
1669 		if (ret != BLK_STS_OK)
1670 			goto out_dec_host_busy;
1671 		req->rq_flags |= RQF_DONTPREP;
1672 	} else {
1673 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1674 	}
1675 
1676 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1677 	if (sdev->simple_tags)
1678 		cmd->flags |= SCMD_TAGGED;
1679 	if (bd->last)
1680 		cmd->flags |= SCMD_LAST;
1681 
1682 	scsi_set_resid(cmd, 0);
1683 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1684 	cmd->scsi_done = scsi_mq_done;
1685 
1686 	blk_mq_start_request(req);
1687 	reason = scsi_dispatch_cmd(cmd);
1688 	if (reason) {
1689 		scsi_set_blocked(cmd, reason);
1690 		ret = BLK_STS_RESOURCE;
1691 		goto out_dec_host_busy;
1692 	}
1693 
1694 	return BLK_STS_OK;
1695 
1696 out_dec_host_busy:
1697 	scsi_dec_host_busy(shost, cmd);
1698 out_dec_target_busy:
1699 	if (scsi_target(sdev)->can_queue > 0)
1700 		atomic_dec(&scsi_target(sdev)->target_busy);
1701 out_put_budget:
1702 	scsi_mq_put_budget(q);
1703 	switch (ret) {
1704 	case BLK_STS_OK:
1705 		break;
1706 	case BLK_STS_RESOURCE:
1707 	case BLK_STS_ZONE_RESOURCE:
1708 		if (scsi_device_blocked(sdev))
1709 			ret = BLK_STS_DEV_RESOURCE;
1710 		break;
1711 	default:
1712 		if (unlikely(!scsi_device_online(sdev)))
1713 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1714 		else
1715 			scsi_req(req)->result = DID_ERROR << 16;
1716 		/*
1717 		 * Make sure to release all allocated resources when
1718 		 * we hit an error, as we will never see this command
1719 		 * again.
1720 		 */
1721 		if (req->rq_flags & RQF_DONTPREP)
1722 			scsi_mq_uninit_cmd(cmd);
1723 		scsi_run_queue_async(sdev);
1724 		break;
1725 	}
1726 	return ret;
1727 }
1728 
scsi_timeout(struct request * req,bool reserved)1729 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1730 		bool reserved)
1731 {
1732 	if (reserved)
1733 		return BLK_EH_RESET_TIMER;
1734 	return scsi_times_out(req);
1735 }
1736 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1737 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1738 				unsigned int hctx_idx, unsigned int numa_node)
1739 {
1740 	struct Scsi_Host *shost = set->driver_data;
1741 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1742 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1743 	struct scatterlist *sg;
1744 	int ret = 0;
1745 
1746 	if (unchecked_isa_dma)
1747 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1748 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1749 						    GFP_KERNEL, numa_node);
1750 	if (!cmd->sense_buffer)
1751 		return -ENOMEM;
1752 	cmd->req.sense = cmd->sense_buffer;
1753 
1754 	if (scsi_host_get_prot(shost)) {
1755 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1756 			shost->hostt->cmd_size;
1757 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1758 	}
1759 
1760 	if (shost->hostt->init_cmd_priv) {
1761 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1762 		if (ret < 0)
1763 			scsi_free_sense_buffer(unchecked_isa_dma,
1764 					       cmd->sense_buffer);
1765 	}
1766 
1767 	return ret;
1768 }
1769 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1770 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1771 				 unsigned int hctx_idx)
1772 {
1773 	struct Scsi_Host *shost = set->driver_data;
1774 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1775 
1776 	if (shost->hostt->exit_cmd_priv)
1777 		shost->hostt->exit_cmd_priv(shost, cmd);
1778 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1779 			       cmd->sense_buffer);
1780 }
1781 
scsi_map_queues(struct blk_mq_tag_set * set)1782 static int scsi_map_queues(struct blk_mq_tag_set *set)
1783 {
1784 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1785 
1786 	if (shost->hostt->map_queues)
1787 		return shost->hostt->map_queues(shost);
1788 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1789 }
1790 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1791 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1792 {
1793 	struct device *dev = shost->dma_dev;
1794 
1795 	/*
1796 	 * this limit is imposed by hardware restrictions
1797 	 */
1798 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1799 					SG_MAX_SEGMENTS));
1800 
1801 	if (scsi_host_prot_dma(shost)) {
1802 		shost->sg_prot_tablesize =
1803 			min_not_zero(shost->sg_prot_tablesize,
1804 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1805 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1806 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1807 	}
1808 
1809 	if (dev->dma_mask) {
1810 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1811 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1812 	}
1813 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1814 	if (shost->unchecked_isa_dma)
1815 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1816 	blk_queue_segment_boundary(q, shost->dma_boundary);
1817 	dma_set_seg_boundary(dev, shost->dma_boundary);
1818 
1819 	blk_queue_max_segment_size(q, shost->max_segment_size);
1820 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1821 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1822 
1823 	/*
1824 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1825 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1826 	 * which is set by the platform.
1827 	 *
1828 	 * Devices that require a bigger alignment can increase it later.
1829 	 */
1830 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1831 }
1832 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1833 
1834 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1835 	.get_budget	= scsi_mq_get_budget,
1836 	.put_budget	= scsi_mq_put_budget,
1837 	.queue_rq	= scsi_queue_rq,
1838 	.complete	= scsi_softirq_done,
1839 	.timeout	= scsi_timeout,
1840 #ifdef CONFIG_BLK_DEBUG_FS
1841 	.show_rq	= scsi_show_rq,
1842 #endif
1843 	.init_request	= scsi_mq_init_request,
1844 	.exit_request	= scsi_mq_exit_request,
1845 	.initialize_rq_fn = scsi_initialize_rq,
1846 	.cleanup_rq	= scsi_cleanup_rq,
1847 	.busy		= scsi_mq_lld_busy,
1848 	.map_queues	= scsi_map_queues,
1849 };
1850 
1851 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1852 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1853 {
1854 	struct request_queue *q = hctx->queue;
1855 	struct scsi_device *sdev = q->queuedata;
1856 	struct Scsi_Host *shost = sdev->host;
1857 
1858 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1859 }
1860 
1861 static const struct blk_mq_ops scsi_mq_ops = {
1862 	.get_budget	= scsi_mq_get_budget,
1863 	.put_budget	= scsi_mq_put_budget,
1864 	.queue_rq	= scsi_queue_rq,
1865 	.commit_rqs	= scsi_commit_rqs,
1866 	.complete	= scsi_softirq_done,
1867 	.timeout	= scsi_timeout,
1868 #ifdef CONFIG_BLK_DEBUG_FS
1869 	.show_rq	= scsi_show_rq,
1870 #endif
1871 	.init_request	= scsi_mq_init_request,
1872 	.exit_request	= scsi_mq_exit_request,
1873 	.initialize_rq_fn = scsi_initialize_rq,
1874 	.cleanup_rq	= scsi_cleanup_rq,
1875 	.busy		= scsi_mq_lld_busy,
1876 	.map_queues	= scsi_map_queues,
1877 };
1878 
scsi_mq_alloc_queue(struct scsi_device * sdev)1879 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1880 {
1881 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1882 	if (IS_ERR(sdev->request_queue))
1883 		return NULL;
1884 
1885 	sdev->request_queue->queuedata = sdev;
1886 	__scsi_init_queue(sdev->host, sdev->request_queue);
1887 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1888 	return sdev->request_queue;
1889 }
1890 
scsi_mq_setup_tags(struct Scsi_Host * shost)1891 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1892 {
1893 	unsigned int cmd_size, sgl_size;
1894 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1895 
1896 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1897 				scsi_mq_inline_sgl_size(shost));
1898 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1899 	if (scsi_host_get_prot(shost))
1900 		cmd_size += sizeof(struct scsi_data_buffer) +
1901 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1902 
1903 	memset(tag_set, 0, sizeof(*tag_set));
1904 	if (shost->hostt->commit_rqs)
1905 		tag_set->ops = &scsi_mq_ops;
1906 	else
1907 		tag_set->ops = &scsi_mq_ops_no_commit;
1908 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1909 	tag_set->queue_depth = shost->can_queue;
1910 	tag_set->cmd_size = cmd_size;
1911 	tag_set->numa_node = NUMA_NO_NODE;
1912 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1913 	tag_set->flags |=
1914 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1915 	tag_set->driver_data = shost;
1916 	if (shost->host_tagset)
1917 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1918 
1919 	return blk_mq_alloc_tag_set(tag_set);
1920 }
1921 
scsi_mq_destroy_tags(struct Scsi_Host * shost)1922 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1923 {
1924 	blk_mq_free_tag_set(&shost->tag_set);
1925 }
1926 
1927 /**
1928  * scsi_device_from_queue - return sdev associated with a request_queue
1929  * @q: The request queue to return the sdev from
1930  *
1931  * Return the sdev associated with a request queue or NULL if the
1932  * request_queue does not reference a SCSI device.
1933  */
scsi_device_from_queue(struct request_queue * q)1934 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1935 {
1936 	struct scsi_device *sdev = NULL;
1937 
1938 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1939 	    q->mq_ops == &scsi_mq_ops)
1940 		sdev = q->queuedata;
1941 	if (!sdev || !get_device(&sdev->sdev_gendev))
1942 		sdev = NULL;
1943 
1944 	return sdev;
1945 }
1946 
1947 /**
1948  * scsi_block_requests - Utility function used by low-level drivers to prevent
1949  * further commands from being queued to the device.
1950  * @shost:  host in question
1951  *
1952  * There is no timer nor any other means by which the requests get unblocked
1953  * other than the low-level driver calling scsi_unblock_requests().
1954  */
scsi_block_requests(struct Scsi_Host * shost)1955 void scsi_block_requests(struct Scsi_Host *shost)
1956 {
1957 	shost->host_self_blocked = 1;
1958 }
1959 EXPORT_SYMBOL(scsi_block_requests);
1960 
1961 /**
1962  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1963  * further commands to be queued to the device.
1964  * @shost:  host in question
1965  *
1966  * There is no timer nor any other means by which the requests get unblocked
1967  * other than the low-level driver calling scsi_unblock_requests(). This is done
1968  * as an API function so that changes to the internals of the scsi mid-layer
1969  * won't require wholesale changes to drivers that use this feature.
1970  */
scsi_unblock_requests(struct Scsi_Host * shost)1971 void scsi_unblock_requests(struct Scsi_Host *shost)
1972 {
1973 	shost->host_self_blocked = 0;
1974 	scsi_run_host_queues(shost);
1975 }
1976 EXPORT_SYMBOL(scsi_unblock_requests);
1977 
scsi_exit_queue(void)1978 void scsi_exit_queue(void)
1979 {
1980 	kmem_cache_destroy(scsi_sense_cache);
1981 	kmem_cache_destroy(scsi_sense_isadma_cache);
1982 }
1983 
1984 /**
1985  *	scsi_mode_select - issue a mode select
1986  *	@sdev:	SCSI device to be queried
1987  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1988  *	@sp:	Save page bit (0 == don't save, 1 == save)
1989  *	@modepage: mode page being requested
1990  *	@buffer: request buffer (may not be smaller than eight bytes)
1991  *	@len:	length of request buffer.
1992  *	@timeout: command timeout
1993  *	@retries: number of retries before failing
1994  *	@data: returns a structure abstracting the mode header data
1995  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1996  *		must be SCSI_SENSE_BUFFERSIZE big.
1997  *
1998  *	Returns zero if successful; negative error number or scsi
1999  *	status on error
2000  *
2001  */
2002 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2003 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2004 		 unsigned char *buffer, int len, int timeout, int retries,
2005 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2006 {
2007 	unsigned char cmd[10];
2008 	unsigned char *real_buffer;
2009 	int ret;
2010 
2011 	memset(cmd, 0, sizeof(cmd));
2012 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2013 
2014 	if (sdev->use_10_for_ms) {
2015 		if (len > 65535)
2016 			return -EINVAL;
2017 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2018 		if (!real_buffer)
2019 			return -ENOMEM;
2020 		memcpy(real_buffer + 8, buffer, len);
2021 		len += 8;
2022 		real_buffer[0] = 0;
2023 		real_buffer[1] = 0;
2024 		real_buffer[2] = data->medium_type;
2025 		real_buffer[3] = data->device_specific;
2026 		real_buffer[4] = data->longlba ? 0x01 : 0;
2027 		real_buffer[5] = 0;
2028 		real_buffer[6] = data->block_descriptor_length >> 8;
2029 		real_buffer[7] = data->block_descriptor_length;
2030 
2031 		cmd[0] = MODE_SELECT_10;
2032 		cmd[7] = len >> 8;
2033 		cmd[8] = len;
2034 	} else {
2035 		if (len > 255 || data->block_descriptor_length > 255 ||
2036 		    data->longlba)
2037 			return -EINVAL;
2038 
2039 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2040 		if (!real_buffer)
2041 			return -ENOMEM;
2042 		memcpy(real_buffer + 4, buffer, len);
2043 		len += 4;
2044 		real_buffer[0] = 0;
2045 		real_buffer[1] = data->medium_type;
2046 		real_buffer[2] = data->device_specific;
2047 		real_buffer[3] = data->block_descriptor_length;
2048 
2049 		cmd[0] = MODE_SELECT;
2050 		cmd[4] = len;
2051 	}
2052 
2053 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2054 			       sshdr, timeout, retries, NULL);
2055 	kfree(real_buffer);
2056 	return ret;
2057 }
2058 EXPORT_SYMBOL_GPL(scsi_mode_select);
2059 
2060 /**
2061  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2062  *	@sdev:	SCSI device to be queried
2063  *	@dbd:	set if mode sense will allow block descriptors to be returned
2064  *	@modepage: mode page being requested
2065  *	@buffer: request buffer (may not be smaller than eight bytes)
2066  *	@len:	length of request buffer.
2067  *	@timeout: command timeout
2068  *	@retries: number of retries before failing
2069  *	@data: returns a structure abstracting the mode header data
2070  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2071  *		must be SCSI_SENSE_BUFFERSIZE big.
2072  *
2073  *	Returns zero if successful, or a negative error number on failure
2074  */
2075 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2076 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2077 		  unsigned char *buffer, int len, int timeout, int retries,
2078 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2079 {
2080 	unsigned char cmd[12];
2081 	int use_10_for_ms;
2082 	int header_length;
2083 	int result, retry_count = retries;
2084 	struct scsi_sense_hdr my_sshdr;
2085 
2086 	memset(data, 0, sizeof(*data));
2087 	memset(&cmd[0], 0, 12);
2088 
2089 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2090 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2091 	cmd[2] = modepage;
2092 
2093 	/* caller might not be interested in sense, but we need it */
2094 	if (!sshdr)
2095 		sshdr = &my_sshdr;
2096 
2097  retry:
2098 	use_10_for_ms = sdev->use_10_for_ms;
2099 
2100 	if (use_10_for_ms) {
2101 		if (len < 8)
2102 			len = 8;
2103 
2104 		cmd[0] = MODE_SENSE_10;
2105 		cmd[8] = len;
2106 		header_length = 8;
2107 	} else {
2108 		if (len < 4)
2109 			len = 4;
2110 
2111 		cmd[0] = MODE_SENSE;
2112 		cmd[4] = len;
2113 		header_length = 4;
2114 	}
2115 
2116 	memset(buffer, 0, len);
2117 
2118 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2119 				  sshdr, timeout, retries, NULL);
2120 	if (result < 0)
2121 		return result;
2122 
2123 	/* This code looks awful: what it's doing is making sure an
2124 	 * ILLEGAL REQUEST sense return identifies the actual command
2125 	 * byte as the problem.  MODE_SENSE commands can return
2126 	 * ILLEGAL REQUEST if the code page isn't supported */
2127 
2128 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2129 	    driver_byte(result) == DRIVER_SENSE) {
2130 		if (scsi_sense_valid(sshdr)) {
2131 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2132 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2133 				/*
2134 				 * Invalid command operation code
2135 				 */
2136 				sdev->use_10_for_ms = 0;
2137 				goto retry;
2138 			}
2139 		}
2140 	}
2141 
2142 	if (scsi_status_is_good(result)) {
2143 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2144 			     (modepage == 6 || modepage == 8))) {
2145 			/* Initio breakage? */
2146 			header_length = 0;
2147 			data->length = 13;
2148 			data->medium_type = 0;
2149 			data->device_specific = 0;
2150 			data->longlba = 0;
2151 			data->block_descriptor_length = 0;
2152 		} else if (use_10_for_ms) {
2153 			data->length = buffer[0]*256 + buffer[1] + 2;
2154 			data->medium_type = buffer[2];
2155 			data->device_specific = buffer[3];
2156 			data->longlba = buffer[4] & 0x01;
2157 			data->block_descriptor_length = buffer[6]*256
2158 				+ buffer[7];
2159 		} else {
2160 			data->length = buffer[0] + 1;
2161 			data->medium_type = buffer[1];
2162 			data->device_specific = buffer[2];
2163 			data->block_descriptor_length = buffer[3];
2164 		}
2165 		data->header_length = header_length;
2166 		result = 0;
2167 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2168 		   scsi_sense_valid(sshdr) &&
2169 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2170 		retry_count--;
2171 		goto retry;
2172 	}
2173 	if (result > 0)
2174 		result = -EIO;
2175 	return result;
2176 }
2177 EXPORT_SYMBOL(scsi_mode_sense);
2178 
2179 /**
2180  *	scsi_test_unit_ready - test if unit is ready
2181  *	@sdev:	scsi device to change the state of.
2182  *	@timeout: command timeout
2183  *	@retries: number of retries before failing
2184  *	@sshdr: outpout pointer for decoded sense information.
2185  *
2186  *	Returns zero if unsuccessful or an error if TUR failed.  For
2187  *	removable media, UNIT_ATTENTION sets ->changed flag.
2188  **/
2189 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2190 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2191 		     struct scsi_sense_hdr *sshdr)
2192 {
2193 	char cmd[] = {
2194 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2195 	};
2196 	int result;
2197 
2198 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2199 	do {
2200 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2201 					  timeout, 1, NULL);
2202 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2203 		    sshdr->sense_key == UNIT_ATTENTION)
2204 			sdev->changed = 1;
2205 	} while (scsi_sense_valid(sshdr) &&
2206 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2207 
2208 	return result;
2209 }
2210 EXPORT_SYMBOL(scsi_test_unit_ready);
2211 
2212 /**
2213  *	scsi_device_set_state - Take the given device through the device state model.
2214  *	@sdev:	scsi device to change the state of.
2215  *	@state:	state to change to.
2216  *
2217  *	Returns zero if successful or an error if the requested
2218  *	transition is illegal.
2219  */
2220 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2221 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2222 {
2223 	enum scsi_device_state oldstate = sdev->sdev_state;
2224 
2225 	if (state == oldstate)
2226 		return 0;
2227 
2228 	switch (state) {
2229 	case SDEV_CREATED:
2230 		switch (oldstate) {
2231 		case SDEV_CREATED_BLOCK:
2232 			break;
2233 		default:
2234 			goto illegal;
2235 		}
2236 		break;
2237 
2238 	case SDEV_RUNNING:
2239 		switch (oldstate) {
2240 		case SDEV_CREATED:
2241 		case SDEV_OFFLINE:
2242 		case SDEV_TRANSPORT_OFFLINE:
2243 		case SDEV_QUIESCE:
2244 		case SDEV_BLOCK:
2245 			break;
2246 		default:
2247 			goto illegal;
2248 		}
2249 		break;
2250 
2251 	case SDEV_QUIESCE:
2252 		switch (oldstate) {
2253 		case SDEV_RUNNING:
2254 		case SDEV_OFFLINE:
2255 		case SDEV_TRANSPORT_OFFLINE:
2256 			break;
2257 		default:
2258 			goto illegal;
2259 		}
2260 		break;
2261 
2262 	case SDEV_OFFLINE:
2263 	case SDEV_TRANSPORT_OFFLINE:
2264 		switch (oldstate) {
2265 		case SDEV_CREATED:
2266 		case SDEV_RUNNING:
2267 		case SDEV_QUIESCE:
2268 		case SDEV_BLOCK:
2269 			break;
2270 		default:
2271 			goto illegal;
2272 		}
2273 		break;
2274 
2275 	case SDEV_BLOCK:
2276 		switch (oldstate) {
2277 		case SDEV_RUNNING:
2278 		case SDEV_CREATED_BLOCK:
2279 		case SDEV_QUIESCE:
2280 		case SDEV_OFFLINE:
2281 			break;
2282 		default:
2283 			goto illegal;
2284 		}
2285 		break;
2286 
2287 	case SDEV_CREATED_BLOCK:
2288 		switch (oldstate) {
2289 		case SDEV_CREATED:
2290 			break;
2291 		default:
2292 			goto illegal;
2293 		}
2294 		break;
2295 
2296 	case SDEV_CANCEL:
2297 		switch (oldstate) {
2298 		case SDEV_CREATED:
2299 		case SDEV_RUNNING:
2300 		case SDEV_QUIESCE:
2301 		case SDEV_OFFLINE:
2302 		case SDEV_TRANSPORT_OFFLINE:
2303 			break;
2304 		default:
2305 			goto illegal;
2306 		}
2307 		break;
2308 
2309 	case SDEV_DEL:
2310 		switch (oldstate) {
2311 		case SDEV_CREATED:
2312 		case SDEV_RUNNING:
2313 		case SDEV_OFFLINE:
2314 		case SDEV_TRANSPORT_OFFLINE:
2315 		case SDEV_CANCEL:
2316 		case SDEV_BLOCK:
2317 		case SDEV_CREATED_BLOCK:
2318 			break;
2319 		default:
2320 			goto illegal;
2321 		}
2322 		break;
2323 
2324 	}
2325 	sdev->offline_already = false;
2326 	sdev->sdev_state = state;
2327 	return 0;
2328 
2329  illegal:
2330 	SCSI_LOG_ERROR_RECOVERY(1,
2331 				sdev_printk(KERN_ERR, sdev,
2332 					    "Illegal state transition %s->%s",
2333 					    scsi_device_state_name(oldstate),
2334 					    scsi_device_state_name(state))
2335 				);
2336 	return -EINVAL;
2337 }
2338 EXPORT_SYMBOL(scsi_device_set_state);
2339 
2340 /**
2341  * 	sdev_evt_emit - emit a single SCSI device uevent
2342  *	@sdev: associated SCSI device
2343  *	@evt: event to emit
2344  *
2345  *	Send a single uevent (scsi_event) to the associated scsi_device.
2346  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2347 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2348 {
2349 	int idx = 0;
2350 	char *envp[3];
2351 
2352 	switch (evt->evt_type) {
2353 	case SDEV_EVT_MEDIA_CHANGE:
2354 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2355 		break;
2356 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2357 		scsi_rescan_device(&sdev->sdev_gendev);
2358 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2359 		break;
2360 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2361 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2362 		break;
2363 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2364 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2365 		break;
2366 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2367 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2368 		break;
2369 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2370 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2371 		break;
2372 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2373 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2374 		break;
2375 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2376 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2377 		break;
2378 	default:
2379 		/* do nothing */
2380 		break;
2381 	}
2382 
2383 	envp[idx++] = NULL;
2384 
2385 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2386 }
2387 
2388 /**
2389  * 	sdev_evt_thread - send a uevent for each scsi event
2390  *	@work: work struct for scsi_device
2391  *
2392  *	Dispatch queued events to their associated scsi_device kobjects
2393  *	as uevents.
2394  */
scsi_evt_thread(struct work_struct * work)2395 void scsi_evt_thread(struct work_struct *work)
2396 {
2397 	struct scsi_device *sdev;
2398 	enum scsi_device_event evt_type;
2399 	LIST_HEAD(event_list);
2400 
2401 	sdev = container_of(work, struct scsi_device, event_work);
2402 
2403 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2404 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2405 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2406 
2407 	while (1) {
2408 		struct scsi_event *evt;
2409 		struct list_head *this, *tmp;
2410 		unsigned long flags;
2411 
2412 		spin_lock_irqsave(&sdev->list_lock, flags);
2413 		list_splice_init(&sdev->event_list, &event_list);
2414 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2415 
2416 		if (list_empty(&event_list))
2417 			break;
2418 
2419 		list_for_each_safe(this, tmp, &event_list) {
2420 			evt = list_entry(this, struct scsi_event, node);
2421 			list_del(&evt->node);
2422 			scsi_evt_emit(sdev, evt);
2423 			kfree(evt);
2424 		}
2425 	}
2426 }
2427 
2428 /**
2429  * 	sdev_evt_send - send asserted event to uevent thread
2430  *	@sdev: scsi_device event occurred on
2431  *	@evt: event to send
2432  *
2433  *	Assert scsi device event asynchronously.
2434  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2435 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2436 {
2437 	unsigned long flags;
2438 
2439 #if 0
2440 	/* FIXME: currently this check eliminates all media change events
2441 	 * for polled devices.  Need to update to discriminate between AN
2442 	 * and polled events */
2443 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2444 		kfree(evt);
2445 		return;
2446 	}
2447 #endif
2448 
2449 	spin_lock_irqsave(&sdev->list_lock, flags);
2450 	list_add_tail(&evt->node, &sdev->event_list);
2451 	schedule_work(&sdev->event_work);
2452 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2453 }
2454 EXPORT_SYMBOL_GPL(sdev_evt_send);
2455 
2456 /**
2457  * 	sdev_evt_alloc - allocate a new scsi event
2458  *	@evt_type: type of event to allocate
2459  *	@gfpflags: GFP flags for allocation
2460  *
2461  *	Allocates and returns a new scsi_event.
2462  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2463 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2464 				  gfp_t gfpflags)
2465 {
2466 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2467 	if (!evt)
2468 		return NULL;
2469 
2470 	evt->evt_type = evt_type;
2471 	INIT_LIST_HEAD(&evt->node);
2472 
2473 	/* evt_type-specific initialization, if any */
2474 	switch (evt_type) {
2475 	case SDEV_EVT_MEDIA_CHANGE:
2476 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2477 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2478 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2479 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2480 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2481 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2482 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2483 	default:
2484 		/* do nothing */
2485 		break;
2486 	}
2487 
2488 	return evt;
2489 }
2490 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2491 
2492 /**
2493  * 	sdev_evt_send_simple - send asserted event to uevent thread
2494  *	@sdev: scsi_device event occurred on
2495  *	@evt_type: type of event to send
2496  *	@gfpflags: GFP flags for allocation
2497  *
2498  *	Assert scsi device event asynchronously, given an event type.
2499  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2500 void sdev_evt_send_simple(struct scsi_device *sdev,
2501 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2502 {
2503 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2504 	if (!evt) {
2505 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2506 			    evt_type);
2507 		return;
2508 	}
2509 
2510 	sdev_evt_send(sdev, evt);
2511 }
2512 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2513 
2514 /**
2515  *	scsi_device_quiesce - Block all commands except power management.
2516  *	@sdev:	scsi device to quiesce.
2517  *
2518  *	This works by trying to transition to the SDEV_QUIESCE state
2519  *	(which must be a legal transition).  When the device is in this
2520  *	state, only power management requests will be accepted, all others will
2521  *	be deferred.
2522  *
2523  *	Must be called with user context, may sleep.
2524  *
2525  *	Returns zero if unsuccessful or an error if not.
2526  */
2527 int
scsi_device_quiesce(struct scsi_device * sdev)2528 scsi_device_quiesce(struct scsi_device *sdev)
2529 {
2530 	struct request_queue *q = sdev->request_queue;
2531 	int err;
2532 
2533 	/*
2534 	 * It is allowed to call scsi_device_quiesce() multiple times from
2535 	 * the same context but concurrent scsi_device_quiesce() calls are
2536 	 * not allowed.
2537 	 */
2538 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2539 
2540 	if (sdev->quiesced_by == current)
2541 		return 0;
2542 
2543 	blk_set_pm_only(q);
2544 
2545 	blk_mq_freeze_queue(q);
2546 	/*
2547 	 * Ensure that the effect of blk_set_pm_only() will be visible
2548 	 * for percpu_ref_tryget() callers that occur after the queue
2549 	 * unfreeze even if the queue was already frozen before this function
2550 	 * was called. See also https://lwn.net/Articles/573497/.
2551 	 */
2552 	synchronize_rcu();
2553 	blk_mq_unfreeze_queue(q);
2554 
2555 	mutex_lock(&sdev->state_mutex);
2556 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2557 	if (err == 0)
2558 		sdev->quiesced_by = current;
2559 	else
2560 		blk_clear_pm_only(q);
2561 	mutex_unlock(&sdev->state_mutex);
2562 
2563 	return err;
2564 }
2565 EXPORT_SYMBOL(scsi_device_quiesce);
2566 
2567 /**
2568  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2569  *	@sdev:	scsi device to resume.
2570  *
2571  *	Moves the device from quiesced back to running and restarts the
2572  *	queues.
2573  *
2574  *	Must be called with user context, may sleep.
2575  */
scsi_device_resume(struct scsi_device * sdev)2576 void scsi_device_resume(struct scsi_device *sdev)
2577 {
2578 	/* check if the device state was mutated prior to resume, and if
2579 	 * so assume the state is being managed elsewhere (for example
2580 	 * device deleted during suspend)
2581 	 */
2582 	mutex_lock(&sdev->state_mutex);
2583 	if (sdev->sdev_state == SDEV_QUIESCE)
2584 		scsi_device_set_state(sdev, SDEV_RUNNING);
2585 	if (sdev->quiesced_by) {
2586 		sdev->quiesced_by = NULL;
2587 		blk_clear_pm_only(sdev->request_queue);
2588 	}
2589 	mutex_unlock(&sdev->state_mutex);
2590 }
2591 EXPORT_SYMBOL(scsi_device_resume);
2592 
2593 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2594 device_quiesce_fn(struct scsi_device *sdev, void *data)
2595 {
2596 	scsi_device_quiesce(sdev);
2597 }
2598 
2599 void
scsi_target_quiesce(struct scsi_target * starget)2600 scsi_target_quiesce(struct scsi_target *starget)
2601 {
2602 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2603 }
2604 EXPORT_SYMBOL(scsi_target_quiesce);
2605 
2606 static void
device_resume_fn(struct scsi_device * sdev,void * data)2607 device_resume_fn(struct scsi_device *sdev, void *data)
2608 {
2609 	scsi_device_resume(sdev);
2610 }
2611 
2612 void
scsi_target_resume(struct scsi_target * starget)2613 scsi_target_resume(struct scsi_target *starget)
2614 {
2615 	starget_for_each_device(starget, NULL, device_resume_fn);
2616 }
2617 EXPORT_SYMBOL(scsi_target_resume);
2618 
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2619 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2620 {
2621 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2622 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2623 
2624 	return 0;
2625 }
2626 
2627 static DEFINE_SPINLOCK(sdev_queue_stop_lock);
2628 
scsi_start_queue(struct scsi_device * sdev)2629 void scsi_start_queue(struct scsi_device *sdev)
2630 {
2631 	bool need_start;
2632 	unsigned long flags;
2633 
2634 	spin_lock_irqsave(&sdev_queue_stop_lock, flags);
2635 	need_start = sdev->queue_stopped;
2636 	sdev->queue_stopped = 0;
2637 	spin_unlock_irqrestore(&sdev_queue_stop_lock, flags);
2638 
2639 	if (need_start)
2640 		blk_mq_unquiesce_queue(sdev->request_queue);
2641 }
2642 
scsi_stop_queue(struct scsi_device * sdev,bool nowait)2643 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2644 {
2645 	bool need_stop;
2646 	unsigned long flags;
2647 
2648 	spin_lock_irqsave(&sdev_queue_stop_lock, flags);
2649 	need_stop = !sdev->queue_stopped;
2650 	sdev->queue_stopped = 1;
2651 	spin_unlock_irqrestore(&sdev_queue_stop_lock, flags);
2652 
2653 	if (need_stop) {
2654 		if (nowait)
2655 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2656 		else
2657 			blk_mq_quiesce_queue(sdev->request_queue);
2658 	}
2659 }
2660 
2661 /**
2662  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2663  * @sdev: device to block
2664  *
2665  * Pause SCSI command processing on the specified device. Does not sleep.
2666  *
2667  * Returns zero if successful or a negative error code upon failure.
2668  *
2669  * Notes:
2670  * This routine transitions the device to the SDEV_BLOCK state (which must be
2671  * a legal transition). When the device is in this state, command processing
2672  * is paused until the device leaves the SDEV_BLOCK state. See also
2673  * scsi_internal_device_unblock_nowait().
2674  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2675 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2676 {
2677 	int ret = __scsi_internal_device_block_nowait(sdev);
2678 
2679 	/*
2680 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2681 	 * block layer from calling the midlayer with this device's
2682 	 * request queue.
2683 	 */
2684 	if (!ret)
2685 		scsi_stop_queue(sdev, true);
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2689 
2690 /**
2691  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2692  * @sdev: device to block
2693  *
2694  * Pause SCSI command processing on the specified device and wait until all
2695  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2696  *
2697  * Returns zero if successful or a negative error code upon failure.
2698  *
2699  * Note:
2700  * This routine transitions the device to the SDEV_BLOCK state (which must be
2701  * a legal transition). When the device is in this state, command processing
2702  * is paused until the device leaves the SDEV_BLOCK state. See also
2703  * scsi_internal_device_unblock().
2704  */
scsi_internal_device_block(struct scsi_device * sdev)2705 static int scsi_internal_device_block(struct scsi_device *sdev)
2706 {
2707 	int err;
2708 
2709 	mutex_lock(&sdev->state_mutex);
2710 	err = __scsi_internal_device_block_nowait(sdev);
2711 	if (err == 0)
2712 		scsi_stop_queue(sdev, false);
2713 	mutex_unlock(&sdev->state_mutex);
2714 
2715 	return err;
2716 }
2717 
2718 /**
2719  * scsi_internal_device_unblock_nowait - resume a device after a block request
2720  * @sdev:	device to resume
2721  * @new_state:	state to set the device to after unblocking
2722  *
2723  * Restart the device queue for a previously suspended SCSI device. Does not
2724  * sleep.
2725  *
2726  * Returns zero if successful or a negative error code upon failure.
2727  *
2728  * Notes:
2729  * This routine transitions the device to the SDEV_RUNNING state or to one of
2730  * the offline states (which must be a legal transition) allowing the midlayer
2731  * to goose the queue for this device.
2732  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2733 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2734 					enum scsi_device_state new_state)
2735 {
2736 	switch (new_state) {
2737 	case SDEV_RUNNING:
2738 	case SDEV_TRANSPORT_OFFLINE:
2739 		break;
2740 	default:
2741 		return -EINVAL;
2742 	}
2743 
2744 	/*
2745 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2746 	 * offlined states and goose the device queue if successful.
2747 	 */
2748 	switch (sdev->sdev_state) {
2749 	case SDEV_BLOCK:
2750 	case SDEV_TRANSPORT_OFFLINE:
2751 		sdev->sdev_state = new_state;
2752 		break;
2753 	case SDEV_CREATED_BLOCK:
2754 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2755 		    new_state == SDEV_OFFLINE)
2756 			sdev->sdev_state = new_state;
2757 		else
2758 			sdev->sdev_state = SDEV_CREATED;
2759 		break;
2760 	case SDEV_CANCEL:
2761 	case SDEV_OFFLINE:
2762 		break;
2763 	default:
2764 		return -EINVAL;
2765 	}
2766 	scsi_start_queue(sdev);
2767 
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2771 
2772 /**
2773  * scsi_internal_device_unblock - resume a device after a block request
2774  * @sdev:	device to resume
2775  * @new_state:	state to set the device to after unblocking
2776  *
2777  * Restart the device queue for a previously suspended SCSI device. May sleep.
2778  *
2779  * Returns zero if successful or a negative error code upon failure.
2780  *
2781  * Notes:
2782  * This routine transitions the device to the SDEV_RUNNING state or to one of
2783  * the offline states (which must be a legal transition) allowing the midlayer
2784  * to goose the queue for this device.
2785  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2786 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2787 					enum scsi_device_state new_state)
2788 {
2789 	int ret;
2790 
2791 	mutex_lock(&sdev->state_mutex);
2792 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2793 	mutex_unlock(&sdev->state_mutex);
2794 
2795 	return ret;
2796 }
2797 
2798 static void
device_block(struct scsi_device * sdev,void * data)2799 device_block(struct scsi_device *sdev, void *data)
2800 {
2801 	int ret;
2802 
2803 	ret = scsi_internal_device_block(sdev);
2804 
2805 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2806 		  dev_name(&sdev->sdev_gendev), ret);
2807 }
2808 
2809 static int
target_block(struct device * dev,void * data)2810 target_block(struct device *dev, void *data)
2811 {
2812 	if (scsi_is_target_device(dev))
2813 		starget_for_each_device(to_scsi_target(dev), NULL,
2814 					device_block);
2815 	return 0;
2816 }
2817 
2818 void
scsi_target_block(struct device * dev)2819 scsi_target_block(struct device *dev)
2820 {
2821 	if (scsi_is_target_device(dev))
2822 		starget_for_each_device(to_scsi_target(dev), NULL,
2823 					device_block);
2824 	else
2825 		device_for_each_child(dev, NULL, target_block);
2826 }
2827 EXPORT_SYMBOL_GPL(scsi_target_block);
2828 
2829 static void
device_unblock(struct scsi_device * sdev,void * data)2830 device_unblock(struct scsi_device *sdev, void *data)
2831 {
2832 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2833 }
2834 
2835 static int
target_unblock(struct device * dev,void * data)2836 target_unblock(struct device *dev, void *data)
2837 {
2838 	if (scsi_is_target_device(dev))
2839 		starget_for_each_device(to_scsi_target(dev), data,
2840 					device_unblock);
2841 	return 0;
2842 }
2843 
2844 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2845 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2846 {
2847 	if (scsi_is_target_device(dev))
2848 		starget_for_each_device(to_scsi_target(dev), &new_state,
2849 					device_unblock);
2850 	else
2851 		device_for_each_child(dev, &new_state, target_unblock);
2852 }
2853 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2854 
2855 int
scsi_host_block(struct Scsi_Host * shost)2856 scsi_host_block(struct Scsi_Host *shost)
2857 {
2858 	struct scsi_device *sdev;
2859 	int ret = 0;
2860 
2861 	/*
2862 	 * Call scsi_internal_device_block_nowait so we can avoid
2863 	 * calling synchronize_rcu() for each LUN.
2864 	 */
2865 	shost_for_each_device(sdev, shost) {
2866 		mutex_lock(&sdev->state_mutex);
2867 		ret = scsi_internal_device_block_nowait(sdev);
2868 		mutex_unlock(&sdev->state_mutex);
2869 		if (ret) {
2870 			scsi_device_put(sdev);
2871 			break;
2872 		}
2873 	}
2874 
2875 	/*
2876 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2877 	 * calling synchronize_rcu() once is enough.
2878 	 */
2879 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2880 
2881 	if (!ret)
2882 		synchronize_rcu();
2883 
2884 	return ret;
2885 }
2886 EXPORT_SYMBOL_GPL(scsi_host_block);
2887 
2888 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2889 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2890 {
2891 	struct scsi_device *sdev;
2892 	int ret = 0;
2893 
2894 	shost_for_each_device(sdev, shost) {
2895 		ret = scsi_internal_device_unblock(sdev, new_state);
2896 		if (ret) {
2897 			scsi_device_put(sdev);
2898 			break;
2899 		}
2900 	}
2901 	return ret;
2902 }
2903 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2904 
2905 /**
2906  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2907  * @sgl:	scatter-gather list
2908  * @sg_count:	number of segments in sg
2909  * @offset:	offset in bytes into sg, on return offset into the mapped area
2910  * @len:	bytes to map, on return number of bytes mapped
2911  *
2912  * Returns virtual address of the start of the mapped page
2913  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2914 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2915 			  size_t *offset, size_t *len)
2916 {
2917 	int i;
2918 	size_t sg_len = 0, len_complete = 0;
2919 	struct scatterlist *sg;
2920 	struct page *page;
2921 
2922 	WARN_ON(!irqs_disabled());
2923 
2924 	for_each_sg(sgl, sg, sg_count, i) {
2925 		len_complete = sg_len; /* Complete sg-entries */
2926 		sg_len += sg->length;
2927 		if (sg_len > *offset)
2928 			break;
2929 	}
2930 
2931 	if (unlikely(i == sg_count)) {
2932 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2933 			"elements %d\n",
2934 		       __func__, sg_len, *offset, sg_count);
2935 		WARN_ON(1);
2936 		return NULL;
2937 	}
2938 
2939 	/* Offset starting from the beginning of first page in this sg-entry */
2940 	*offset = *offset - len_complete + sg->offset;
2941 
2942 	/* Assumption: contiguous pages can be accessed as "page + i" */
2943 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2944 	*offset &= ~PAGE_MASK;
2945 
2946 	/* Bytes in this sg-entry from *offset to the end of the page */
2947 	sg_len = PAGE_SIZE - *offset;
2948 	if (*len > sg_len)
2949 		*len = sg_len;
2950 
2951 	return kmap_atomic(page);
2952 }
2953 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2954 
2955 /**
2956  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2957  * @virt:	virtual address to be unmapped
2958  */
scsi_kunmap_atomic_sg(void * virt)2959 void scsi_kunmap_atomic_sg(void *virt)
2960 {
2961 	kunmap_atomic(virt);
2962 }
2963 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2964 
sdev_disable_disk_events(struct scsi_device * sdev)2965 void sdev_disable_disk_events(struct scsi_device *sdev)
2966 {
2967 	atomic_inc(&sdev->disk_events_disable_depth);
2968 }
2969 EXPORT_SYMBOL(sdev_disable_disk_events);
2970 
sdev_enable_disk_events(struct scsi_device * sdev)2971 void sdev_enable_disk_events(struct scsi_device *sdev)
2972 {
2973 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2974 		return;
2975 	atomic_dec(&sdev->disk_events_disable_depth);
2976 }
2977 EXPORT_SYMBOL(sdev_enable_disk_events);
2978 
designator_prio(const unsigned char * d)2979 static unsigned char designator_prio(const unsigned char *d)
2980 {
2981 	if (d[1] & 0x30)
2982 		/* not associated with LUN */
2983 		return 0;
2984 
2985 	if (d[3] == 0)
2986 		/* invalid length */
2987 		return 0;
2988 
2989 	/*
2990 	 * Order of preference for lun descriptor:
2991 	 * - SCSI name string
2992 	 * - NAA IEEE Registered Extended
2993 	 * - EUI-64 based 16-byte
2994 	 * - EUI-64 based 12-byte
2995 	 * - NAA IEEE Registered
2996 	 * - NAA IEEE Extended
2997 	 * - EUI-64 based 8-byte
2998 	 * - SCSI name string (truncated)
2999 	 * - T10 Vendor ID
3000 	 * as longer descriptors reduce the likelyhood
3001 	 * of identification clashes.
3002 	 */
3003 
3004 	switch (d[1] & 0xf) {
3005 	case 8:
3006 		/* SCSI name string, variable-length UTF-8 */
3007 		return 9;
3008 	case 3:
3009 		switch (d[4] >> 4) {
3010 		case 6:
3011 			/* NAA registered extended */
3012 			return 8;
3013 		case 5:
3014 			/* NAA registered */
3015 			return 5;
3016 		case 4:
3017 			/* NAA extended */
3018 			return 4;
3019 		case 3:
3020 			/* NAA locally assigned */
3021 			return 1;
3022 		default:
3023 			break;
3024 		}
3025 		break;
3026 	case 2:
3027 		switch (d[3]) {
3028 		case 16:
3029 			/* EUI64-based, 16 byte */
3030 			return 7;
3031 		case 12:
3032 			/* EUI64-based, 12 byte */
3033 			return 6;
3034 		case 8:
3035 			/* EUI64-based, 8 byte */
3036 			return 3;
3037 		default:
3038 			break;
3039 		}
3040 		break;
3041 	case 1:
3042 		/* T10 vendor ID */
3043 		return 1;
3044 	default:
3045 		break;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 /**
3052  * scsi_vpd_lun_id - return a unique device identification
3053  * @sdev: SCSI device
3054  * @id:   buffer for the identification
3055  * @id_len:  length of the buffer
3056  *
3057  * Copies a unique device identification into @id based
3058  * on the information in the VPD page 0x83 of the device.
3059  * The string will be formatted as a SCSI name string.
3060  *
3061  * Returns the length of the identification or error on failure.
3062  * If the identifier is longer than the supplied buffer the actual
3063  * identifier length is returned and the buffer is not zero-padded.
3064  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3065 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3066 {
3067 	u8 cur_id_prio = 0;
3068 	u8 cur_id_size = 0;
3069 	const unsigned char *d, *cur_id_str;
3070 	const struct scsi_vpd *vpd_pg83;
3071 	int id_size = -EINVAL;
3072 
3073 	rcu_read_lock();
3074 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3075 	if (!vpd_pg83) {
3076 		rcu_read_unlock();
3077 		return -ENXIO;
3078 	}
3079 
3080 	/* The id string must be at least 20 bytes + terminating NULL byte */
3081 	if (id_len < 21) {
3082 		rcu_read_unlock();
3083 		return -EINVAL;
3084 	}
3085 
3086 	memset(id, 0, id_len);
3087 	d = vpd_pg83->data + 4;
3088 	while (d < vpd_pg83->data + vpd_pg83->len) {
3089 		u8 prio = designator_prio(d);
3090 
3091 		if (prio == 0 || cur_id_prio > prio)
3092 			goto next_desig;
3093 
3094 		switch (d[1] & 0xf) {
3095 		case 0x1:
3096 			/* T10 Vendor ID */
3097 			if (cur_id_size > d[3])
3098 				break;
3099 			cur_id_prio = prio;
3100 			cur_id_size = d[3];
3101 			if (cur_id_size + 4 > id_len)
3102 				cur_id_size = id_len - 4;
3103 			cur_id_str = d + 4;
3104 			id_size = snprintf(id, id_len, "t10.%*pE",
3105 					   cur_id_size, cur_id_str);
3106 			break;
3107 		case 0x2:
3108 			/* EUI-64 */
3109 			cur_id_prio = prio;
3110 			cur_id_size = d[3];
3111 			cur_id_str = d + 4;
3112 			switch (cur_id_size) {
3113 			case 8:
3114 				id_size = snprintf(id, id_len,
3115 						   "eui.%8phN",
3116 						   cur_id_str);
3117 				break;
3118 			case 12:
3119 				id_size = snprintf(id, id_len,
3120 						   "eui.%12phN",
3121 						   cur_id_str);
3122 				break;
3123 			case 16:
3124 				id_size = snprintf(id, id_len,
3125 						   "eui.%16phN",
3126 						   cur_id_str);
3127 				break;
3128 			default:
3129 				break;
3130 			}
3131 			break;
3132 		case 0x3:
3133 			/* NAA */
3134 			cur_id_prio = prio;
3135 			cur_id_size = d[3];
3136 			cur_id_str = d + 4;
3137 			switch (cur_id_size) {
3138 			case 8:
3139 				id_size = snprintf(id, id_len,
3140 						   "naa.%8phN",
3141 						   cur_id_str);
3142 				break;
3143 			case 16:
3144 				id_size = snprintf(id, id_len,
3145 						   "naa.%16phN",
3146 						   cur_id_str);
3147 				break;
3148 			default:
3149 				break;
3150 			}
3151 			break;
3152 		case 0x8:
3153 			/* SCSI name string */
3154 			if (cur_id_size > d[3])
3155 				break;
3156 			/* Prefer others for truncated descriptor */
3157 			if (d[3] > id_len) {
3158 				prio = 2;
3159 				if (cur_id_prio > prio)
3160 					break;
3161 			}
3162 			cur_id_prio = prio;
3163 			cur_id_size = id_size = d[3];
3164 			cur_id_str = d + 4;
3165 			if (cur_id_size >= id_len)
3166 				cur_id_size = id_len - 1;
3167 			memcpy(id, cur_id_str, cur_id_size);
3168 			break;
3169 		default:
3170 			break;
3171 		}
3172 next_desig:
3173 		d += d[3] + 4;
3174 	}
3175 	rcu_read_unlock();
3176 
3177 	return id_size;
3178 }
3179 EXPORT_SYMBOL(scsi_vpd_lun_id);
3180 
3181 /*
3182  * scsi_vpd_tpg_id - return a target port group identifier
3183  * @sdev: SCSI device
3184  *
3185  * Returns the Target Port Group identifier from the information
3186  * froom VPD page 0x83 of the device.
3187  *
3188  * Returns the identifier or error on failure.
3189  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3190 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3191 {
3192 	const unsigned char *d;
3193 	const struct scsi_vpd *vpd_pg83;
3194 	int group_id = -EAGAIN, rel_port = -1;
3195 
3196 	rcu_read_lock();
3197 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3198 	if (!vpd_pg83) {
3199 		rcu_read_unlock();
3200 		return -ENXIO;
3201 	}
3202 
3203 	d = vpd_pg83->data + 4;
3204 	while (d < vpd_pg83->data + vpd_pg83->len) {
3205 		switch (d[1] & 0xf) {
3206 		case 0x4:
3207 			/* Relative target port */
3208 			rel_port = get_unaligned_be16(&d[6]);
3209 			break;
3210 		case 0x5:
3211 			/* Target port group */
3212 			group_id = get_unaligned_be16(&d[6]);
3213 			break;
3214 		default:
3215 			break;
3216 		}
3217 		d += d[3] + 4;
3218 	}
3219 	rcu_read_unlock();
3220 
3221 	if (group_id >= 0 && rel_id && rel_port != -1)
3222 		*rel_id = rel_port;
3223 
3224 	return group_id;
3225 }
3226 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3227