• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkMatrix44_DEFINED
9 #define SkMatrix44_DEFINED
10 
11 #include "include/core/SkMatrix.h"
12 #include "include/core/SkScalar.h"
13 
14 #include <atomic>
15 #include <cstring>
16 
17 #ifdef SK_MSCALAR_IS_DOUBLE
18 #ifdef SK_MSCALAR_IS_FLOAT
19     #error "can't define MSCALAR both as DOUBLE and FLOAT"
20 #endif
21     typedef double SkMScalar;
22 
SkFloatToMScalar(float x)23     static inline double SkFloatToMScalar(float x) {
24         return static_cast<double>(x);
25     }
SkMScalarToFloat(double x)26     static inline float SkMScalarToFloat(double x) {
27         return static_cast<float>(x);
28     }
SkDoubleToMScalar(double x)29     static inline double SkDoubleToMScalar(double x) {
30         return x;
31     }
SkMScalarToDouble(double x)32     static inline double SkMScalarToDouble(double x) {
33         return x;
34     }
SkMScalarAbs(double x)35     static inline double SkMScalarAbs(double x) {
36         return fabs(x);
37     }
38     static const SkMScalar SK_MScalarPI = 3.141592653589793;
39     static const SkMScalar SK_MScalarNaN = SK_DoubleNaN;
40 
41     #define SkMScalarFloor(x)           sk_double_floor(x)
42     #define SkMScalarCeil(x)            sk_double_ceil(x)
43     #define SkMScalarRound(x)           sk_double_round(x)
44 
45     #define SkMScalarFloorToInt(x)      sk_double_floor2int(x)
46     #define SkMScalarCeilToInt(x)       sk_double_ceil2int(x)
47     #define SkMScalarRoundToInt(x)      sk_double_round2int(x)
48 
49 
50 #elif defined SK_MSCALAR_IS_FLOAT
51 #ifdef SK_MSCALAR_IS_DOUBLE
52     #error "can't define MSCALAR both as DOUBLE and FLOAT"
53 #endif
54     typedef float SkMScalar;
55 
SkFloatToMScalar(float x)56     static inline float SkFloatToMScalar(float x) {
57         return x;
58     }
SkMScalarToFloat(float x)59     static inline float SkMScalarToFloat(float x) {
60         return x;
61     }
SkDoubleToMScalar(double x)62     static inline float SkDoubleToMScalar(double x) {
63         return sk_double_to_float(x);
64     }
SkMScalarToDouble(float x)65     static inline double SkMScalarToDouble(float x) {
66         return static_cast<double>(x);
67     }
SkMScalarAbs(float x)68     static inline float SkMScalarAbs(float x) {
69         return sk_float_abs(x);
70     }
71     static const SkMScalar SK_MScalarPI = 3.14159265f;
72     static const SkMScalar SK_MScalarNaN = SK_FloatNaN;
73 
74     #define SkMScalarFloor(x)           sk_float_floor(x)
75     #define SkMScalarCeil(x)            sk_float_ceil(x)
76     #define SkMScalarRound(x)           sk_float_round(x)
77 
78     #define SkMScalarFloorToInt(x)      sk_float_floor2int(x)
79     #define SkMScalarCeilToInt(x)       sk_float_ceil2int(x)
80     #define SkMScalarRoundToInt(x)      sk_float_round2int(x)
81 
82 #endif
83 
84 #define SkIntToMScalar(n)       static_cast<SkMScalar>(n)
85 
86 #define SkMScalarToScalar(x)    SkMScalarToFloat(x)
87 #define SkScalarToMScalar(x)    SkFloatToMScalar(x)
88 
89 static const SkMScalar SK_MScalar1 = 1;
90 
91 ///////////////////////////////////////////////////////////////////////////////
92 
93 struct SkVector4 {
94     SkScalar fData[4];
95 
SkVector4SkVector496     SkVector4() {
97         this->set(0, 0, 0, 1);
98     }
SkVector4SkVector499     SkVector4(const SkVector4& src) {
100         memcpy(fData, src.fData, sizeof(fData));
101     }
102     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
103         fData[0] = x;
104         fData[1] = y;
105         fData[2] = z;
106         fData[3] = w;
107     }
108 
109     SkVector4& operator=(const SkVector4& src) {
110         memcpy(fData, src.fData, sizeof(fData));
111         return *this;
112     }
113 
114     bool operator==(const SkVector4& v) const {
115         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
116                fData[2] == v.fData[2] && fData[3] == v.fData[3];
117     }
118     bool operator!=(const SkVector4& v) const { return !(*this == v); }
119     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
120         return fData[0] == x && fData[1] == y &&
121                fData[2] == z && fData[3] == w;
122     }
123 
124     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
125         fData[0] = x;
126         fData[1] = y;
127         fData[2] = z;
128         fData[3] = w;
129     }
130 };
131 
132 /** \class SkMatrix44
133 
134     The SkMatrix44 class holds a 4x4 matrix.
135 
136 */
137 class SK_API SkMatrix44 {
138 public:
139 
140     enum Uninitialized_Constructor {
141         kUninitialized_Constructor
142     };
143     enum Identity_Constructor {
144         kIdentity_Constructor
145     };
146     enum NaN_Constructor {
147         kNaN_Constructor
148     };
149 
SkMatrix44(Uninitialized_Constructor)150     SkMatrix44(Uninitialized_Constructor) {}  // ironically, cannot be constexpr
151 
SkMatrix44(Identity_Constructor)152     constexpr SkMatrix44(Identity_Constructor)
153         : fMat{{ 1, 0, 0, 0, },
154                { 0, 1, 0, 0, },
155                { 0, 0, 1, 0, },
156                { 0, 0, 0, 1, }}
157         , fTypeMask(kIdentity_Mask) {}
158 
SkMatrix44(NaN_Constructor)159     SkMatrix44(NaN_Constructor)
160         : fMat{{ SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN },
161                { SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN },
162                { SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN },
163                { SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN }}
164         , fTypeMask(kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask) {}
165 
SkMatrix44()166     constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {}
167 
168     SkMatrix44(const SkMatrix44& src) = default;
169 
170     SkMatrix44& operator=(const SkMatrix44& src) = default;
171 
SkMatrix44(const SkMatrix44 & a,const SkMatrix44 & b)172     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
173         this->setConcat(a, b);
174     }
175 
176     bool operator==(const SkMatrix44& other) const;
177     bool operator!=(const SkMatrix44& other) const {
178         return !(other == *this);
179     }
180 
181     /* When converting from SkMatrix44 to SkMatrix, the third row and
182      * column is dropped.  When converting from SkMatrix to SkMatrix44
183      * the third row and column remain as identity:
184      * [ a b c ]      [ a b 0 c ]
185      * [ d e f ]  ->  [ d e 0 f ]
186      * [ g h i ]      [ 0 0 1 0 ]
187      *                [ g h 0 i ]
188      */
189     SkMatrix44(const SkMatrix&);
190     SkMatrix44& operator=(const SkMatrix& src);
191     operator SkMatrix() const;
192 
193     /**
194      *  Return a reference to a const identity matrix
195      */
196     static const SkMatrix44& I();
197 
198     using TypeMask = uint8_t;
199     enum : TypeMask {
200         kIdentity_Mask = 0,
201         kTranslate_Mask = 1 << 0,    //!< set if the matrix has translation
202         kScale_Mask = 1 << 1,        //!< set if the matrix has any scale != 1
203         kAffine_Mask = 1 << 2,       //!< set if the matrix skews or rotates
204         kPerspective_Mask = 1 << 3,  //!< set if the matrix is in perspective
205     };
206 
207     /**
208      *  Returns a bitfield describing the transformations the matrix may
209      *  perform. The bitfield is computed conservatively, so it may include
210      *  false positives. For example, when kPerspective_Mask is true, all
211      *  other bits may be set to true even in the case of a pure perspective
212      *  transform.
213      */
getType()214     inline TypeMask getType() const { return fTypeMask; }
215 
216     /**
217      *  Return true if the matrix is identity.
218      */
isIdentity()219     inline bool isIdentity() const {
220         return kIdentity_Mask == this->getType();
221     }
222 
223     /**
224      *  Return true if the matrix contains translate or is identity.
225      */
isTranslate()226     inline bool isTranslate() const {
227         return !(this->getType() & ~kTranslate_Mask);
228     }
229 
230     /**
231      *  Return true if the matrix only contains scale or translate or is identity.
232      */
isScaleTranslate()233     inline bool isScaleTranslate() const {
234         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
235     }
236 
237     /**
238      *  Returns true if the matrix only contains scale or is identity.
239      */
isScale()240     inline bool isScale() const {
241             return !(this->getType() & ~kScale_Mask);
242     }
243 
hasPerspective()244     inline bool hasPerspective() const {
245         return SkToBool(this->getType() & kPerspective_Mask);
246     }
247 
248     void setIdentity();
reset()249     inline void reset() { this->setIdentity();}
250 
251     /**
252      *  get a value from the matrix. The row,col parameters work as follows:
253      *  (0, 0)  scale-x
254      *  (0, 3)  translate-x
255      *  (3, 0)  perspective-x
256      */
get(int row,int col)257     inline SkMScalar get(int row, int col) const {
258         SkASSERT((unsigned)row <= 3);
259         SkASSERT((unsigned)col <= 3);
260         return fMat[col][row];
261     }
262 
263     /**
264      *  set a value in the matrix. The row,col parameters work as follows:
265      *  (0, 0)  scale-x
266      *  (0, 3)  translate-x
267      *  (3, 0)  perspective-x
268      */
set(int row,int col,SkMScalar value)269     inline void set(int row, int col, SkMScalar value) {
270         SkASSERT((unsigned)row <= 3);
271         SkASSERT((unsigned)col <= 3);
272         fMat[col][row] = value;
273         this->recomputeTypeMask();
274     }
275 
getDouble(int row,int col)276     inline double getDouble(int row, int col) const {
277         return SkMScalarToDouble(this->get(row, col));
278     }
setDouble(int row,int col,double value)279     inline void setDouble(int row, int col, double value) {
280         this->set(row, col, SkDoubleToMScalar(value));
281     }
getFloat(int row,int col)282     inline float getFloat(int row, int col) const {
283         return SkMScalarToFloat(this->get(row, col));
284     }
setFloat(int row,int col,float value)285     inline void setFloat(int row, int col, float value) {
286         this->set(row, col, SkFloatToMScalar(value));
287     }
288 
289     /** These methods allow one to efficiently read matrix entries into an
290      *  array. The given array must have room for exactly 16 entries. Whenever
291      *  possible, they will try to use memcpy rather than an entry-by-entry
292      *  copy.
293      *
294      *  Col major indicates that consecutive elements of columns will be stored
295      *  contiguously in memory.  Row major indicates that consecutive elements
296      *  of rows will be stored contiguously in memory.
297      */
298     void asColMajorf(float[]) const;
299     void asColMajord(double[]) const;
300     void asRowMajorf(float[]) const;
301     void asRowMajord(double[]) const;
302 
303     /** These methods allow one to efficiently set all matrix entries from an
304      *  array. The given array must have room for exactly 16 entries. Whenever
305      *  possible, they will try to use memcpy rather than an entry-by-entry
306      *  copy.
307      *
308      *  Col major indicates that input memory will be treated as if consecutive
309      *  elements of columns are stored contiguously in memory.  Row major
310      *  indicates that input memory will be treated as if consecutive elements
311      *  of rows are stored contiguously in memory.
312      */
313     void setColMajorf(const float[]);
314     void setColMajord(const double[]);
315     void setRowMajorf(const float[]);
316     void setRowMajord(const double[]);
317 
318 #ifdef SK_MSCALAR_IS_FLOAT
setColMajor(const SkMScalar data[])319     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
setRowMajor(const SkMScalar data[])320     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
321 #else
setColMajor(const SkMScalar data[])322     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
setRowMajor(const SkMScalar data[])323     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
324 #endif
325 
326     /* This sets the top-left of the matrix and clears the translation and
327      * perspective components (with [3][3] set to 1).  m_ij is interpreted
328      * as the matrix entry at row = i, col = j. */
329     void set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20,
330                 SkMScalar m_01, SkMScalar m_11, SkMScalar m_21,
331                 SkMScalar m_02, SkMScalar m_12, SkMScalar m_22);
332     void set3x3RowMajorf(const float[]);
333 
334     void set4x4(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20, SkMScalar m_30,
335                 SkMScalar m_01, SkMScalar m_11, SkMScalar m_21, SkMScalar m_31,
336                 SkMScalar m_02, SkMScalar m_12, SkMScalar m_22, SkMScalar m_32,
337                 SkMScalar m_03, SkMScalar m_13, SkMScalar m_23, SkMScalar m_33);
338 
339     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
340     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
341     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
342 
343     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
344     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
345     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
346 
setScale(SkMScalar scale)347     inline void setScale(SkMScalar scale) {
348         this->setScale(scale, scale, scale);
349     }
preScale(SkMScalar scale)350     inline void preScale(SkMScalar scale) {
351         this->preScale(scale, scale, scale);
352     }
postScale(SkMScalar scale)353     inline void postScale(SkMScalar scale) {
354         this->postScale(scale, scale, scale);
355     }
356 
setRotateDegreesAbout(SkMScalar x,SkMScalar y,SkMScalar z,SkMScalar degrees)357     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
358                                SkMScalar degrees) {
359         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
360     }
361 
362     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
363         it will be automatically resized.
364      */
365     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
366                         SkMScalar radians);
367     /** Rotate about the vector [x,y,z]. Does not check the length of the
368         vector, assuming it is unit-length.
369      */
370     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
371                             SkMScalar radians);
372 
373     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
preConcat(const SkMatrix44 & m)374     inline void preConcat(const SkMatrix44& m) {
375         this->setConcat(*this, m);
376     }
postConcat(const SkMatrix44 & m)377     inline void postConcat(const SkMatrix44& m) {
378         this->setConcat(m, *this);
379     }
380 
381     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
382         return SkMatrix44(a, b);
383     }
384 
385     /** If this is invertible, return that in inverse and return true. If it is
386         not invertible, return false and leave the inverse parameter in an
387         unspecified state.
388      */
389     bool invert(SkMatrix44* inverse) const;
390 
391     /** Transpose this matrix in place. */
392     void transpose();
393 
394     /** Apply the matrix to the src vector, returning the new vector in dst.
395         It is legal for src and dst to point to the same memory.
396      */
397     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
mapScalars(SkScalar vec[4])398     inline void mapScalars(SkScalar vec[4]) const {
399         this->mapScalars(vec, vec);
400     }
401 
402 #ifdef SK_MSCALAR_IS_DOUBLE
403     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
404 #elif defined SK_MSCALAR_IS_FLOAT
mapMScalars(const SkMScalar src[4],SkMScalar dst[4])405     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
406         this->mapScalars(src, dst);
407     }
408 #endif
mapMScalars(SkMScalar vec[4])409     inline void mapMScalars(SkMScalar vec[4]) const {
410         this->mapMScalars(vec, vec);
411     }
412 
413     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
414         SkVector4 dst;
415         m.mapScalars(src.fData, dst.fData);
416         return dst;
417     }
418 
419     /**
420      *  map an array of [x, y, 0, 1] through the matrix, returning an array
421      *  of [x', y', z', w'].
422      *
423      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
424      *  @param count    number of [x, y] pairs in src2
425      *  @param dst4     array of [x', y', z', w'] quads as the output.
426      */
427     void map2(const float src2[], int count, float dst4[]) const;
428     void map2(const double src2[], int count, double dst4[]) const;
429 
430     /** Returns true if transformating an axis-aligned square in 2d by this matrix
431         will produce another 2d axis-aligned square; typically means the matrix
432         is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
433         degrees into a perpendicular plane collapses a square to a line, but
434         is still considered to be axis-aligned.
435 
436         By default, tolerates very slight error due to float imprecisions;
437         a 90-degree rotation can still end up with 10^-17 of
438         "non-axis-aligned" result.
439      */
440     bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
441 
442     void dump() const;
443 
444     double determinant() const;
445 
446 private:
447     /* This is indexed by [col][row]. */
448     SkMScalar fMat[4][4];
449     TypeMask fTypeMask;
450 
451     static constexpr int kAllPublic_Masks = 0xF;
452 
453     void as3x4RowMajorf(float[]) const;
454     void set3x4RowMajorf(const float[]);
455 
transX()456     SkMScalar transX() const { return fMat[3][0]; }
transY()457     SkMScalar transY() const { return fMat[3][1]; }
transZ()458     SkMScalar transZ() const { return fMat[3][2]; }
459 
scaleX()460     SkMScalar scaleX() const { return fMat[0][0]; }
scaleY()461     SkMScalar scaleY() const { return fMat[1][1]; }
scaleZ()462     SkMScalar scaleZ() const { return fMat[2][2]; }
463 
perspX()464     SkMScalar perspX() const { return fMat[0][3]; }
perspY()465     SkMScalar perspY() const { return fMat[1][3]; }
perspZ()466     SkMScalar perspZ() const { return fMat[2][3]; }
467 
468     void recomputeTypeMask();
469 
setTypeMask(TypeMask mask)470     inline void setTypeMask(TypeMask mask) {
471         SkASSERT(0 == (~kAllPublic_Masks & mask));
472         fTypeMask = mask;
473     }
474 
values()475     inline const SkMScalar* values() const { return &fMat[0][0]; }
476 
477     friend class SkColorSpace;
478 };
479 
480 #endif
481