1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright 2003 PathScale, Inc.
7 */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/mmu_context.h>
29 #include <linux/uaccess.h>
30 #include <as-layout.h>
31 #include <kern_util.h>
32 #include <os.h>
33 #include <skas.h>
34 #include <linux/time-internal.h>
35
36 /*
37 * This is a per-cpu array. A processor only modifies its entry and it only
38 * cares about its entry, so it's OK if another processor is modifying its
39 * entry.
40 */
41 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
42
external_pid(void)43 static inline int external_pid(void)
44 {
45 /* FIXME: Need to look up userspace_pid by cpu */
46 return userspace_pid[0];
47 }
48
pid_to_processor_id(int pid)49 int pid_to_processor_id(int pid)
50 {
51 int i;
52
53 for (i = 0; i < ncpus; i++) {
54 if (cpu_tasks[i].pid == pid)
55 return i;
56 }
57 return -1;
58 }
59
free_stack(unsigned long stack,int order)60 void free_stack(unsigned long stack, int order)
61 {
62 free_pages(stack, order);
63 }
64
alloc_stack(int order,int atomic)65 unsigned long alloc_stack(int order, int atomic)
66 {
67 unsigned long page;
68 gfp_t flags = GFP_KERNEL;
69
70 if (atomic)
71 flags = GFP_ATOMIC;
72 page = __get_free_pages(flags, order);
73
74 return page;
75 }
76
set_current(struct task_struct * task)77 static inline void set_current(struct task_struct *task)
78 {
79 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
80 { external_pid(), task });
81 }
82
83 extern void arch_switch_to(struct task_struct *to);
84
__switch_to(struct task_struct * from,struct task_struct * to)85 void *__switch_to(struct task_struct *from, struct task_struct *to)
86 {
87 to->thread.prev_sched = from;
88 set_current(to);
89
90 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
91 arch_switch_to(current);
92
93 return current->thread.prev_sched;
94 }
95
interrupt_end(void)96 void interrupt_end(void)
97 {
98 struct pt_regs *regs = ¤t->thread.regs;
99
100 if (need_resched())
101 schedule();
102 if (test_thread_flag(TIF_SIGPENDING) ||
103 test_thread_flag(TIF_NOTIFY_SIGNAL))
104 do_signal(regs);
105 if (test_thread_flag(TIF_NOTIFY_RESUME))
106 tracehook_notify_resume(regs);
107 }
108
get_current_pid(void)109 int get_current_pid(void)
110 {
111 return task_pid_nr(current);
112 }
113
114 /*
115 * This is called magically, by its address being stuffed in a jmp_buf
116 * and being longjmp-d to.
117 */
new_thread_handler(void)118 void new_thread_handler(void)
119 {
120 int (*fn)(void *), n;
121 void *arg;
122
123 if (current->thread.prev_sched != NULL)
124 schedule_tail(current->thread.prev_sched);
125 current->thread.prev_sched = NULL;
126
127 fn = current->thread.request.u.thread.proc;
128 arg = current->thread.request.u.thread.arg;
129
130 /*
131 * callback returns only if the kernel thread execs a process
132 */
133 n = fn(arg);
134 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
135 }
136
137 /* Called magically, see new_thread_handler above */
fork_handler(void)138 void fork_handler(void)
139 {
140 force_flush_all();
141
142 schedule_tail(current->thread.prev_sched);
143
144 /*
145 * XXX: if interrupt_end() calls schedule, this call to
146 * arch_switch_to isn't needed. We could want to apply this to
147 * improve performance. -bb
148 */
149 arch_switch_to(current);
150
151 current->thread.prev_sched = NULL;
152
153 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
154 }
155
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)156 int copy_thread(unsigned long clone_flags, unsigned long sp,
157 unsigned long arg, struct task_struct * p, unsigned long tls)
158 {
159 void (*handler)(void);
160 int kthread = current->flags & (PF_KTHREAD | PF_IO_WORKER);
161 int ret = 0;
162
163 p->thread = (struct thread_struct) INIT_THREAD;
164
165 if (!kthread) {
166 memcpy(&p->thread.regs.regs, current_pt_regs(),
167 sizeof(p->thread.regs.regs));
168 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169 if (sp != 0)
170 REGS_SP(p->thread.regs.regs.gp) = sp;
171
172 handler = fork_handler;
173
174 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
175 } else {
176 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177 p->thread.request.u.thread.proc = (int (*)(void *))sp;
178 p->thread.request.u.thread.arg = (void *)arg;
179 handler = new_thread_handler;
180 }
181
182 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183
184 if (!kthread) {
185 clear_flushed_tls(p);
186
187 /*
188 * Set a new TLS for the child thread?
189 */
190 if (clone_flags & CLONE_SETTLS)
191 ret = arch_set_tls(p, tls);
192 }
193
194 return ret;
195 }
196
initial_thread_cb(void (* proc)(void *),void * arg)197 void initial_thread_cb(void (*proc)(void *), void *arg)
198 {
199 int save_kmalloc_ok = kmalloc_ok;
200
201 kmalloc_ok = 0;
202 initial_thread_cb_skas(proc, arg);
203 kmalloc_ok = save_kmalloc_ok;
204 }
205
um_idle_sleep(void)206 static void um_idle_sleep(void)
207 {
208 unsigned long long duration = UM_NSEC_PER_SEC;
209
210 if (time_travel_mode != TT_MODE_OFF) {
211 time_travel_sleep(duration);
212 } else {
213 os_idle_sleep(duration);
214 }
215 }
216
arch_cpu_idle(void)217 void arch_cpu_idle(void)
218 {
219 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
220 um_idle_sleep();
221 raw_local_irq_enable();
222 }
223
__cant_sleep(void)224 int __cant_sleep(void) {
225 return in_atomic() || irqs_disabled() || in_interrupt();
226 /* Is in_interrupt() really needed? */
227 }
228
user_context(unsigned long sp)229 int user_context(unsigned long sp)
230 {
231 unsigned long stack;
232
233 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
234 return stack != (unsigned long) current_thread_info();
235 }
236
237 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
238
do_uml_exitcalls(void)239 void do_uml_exitcalls(void)
240 {
241 exitcall_t *call;
242
243 call = &__uml_exitcall_end;
244 while (--call >= &__uml_exitcall_begin)
245 (*call)();
246 }
247
uml_strdup(const char * string)248 char *uml_strdup(const char *string)
249 {
250 return kstrdup(string, GFP_KERNEL);
251 }
252 EXPORT_SYMBOL(uml_strdup);
253
copy_to_user_proc(void __user * to,void * from,int size)254 int copy_to_user_proc(void __user *to, void *from, int size)
255 {
256 return copy_to_user(to, from, size);
257 }
258
copy_from_user_proc(void * to,void __user * from,int size)259 int copy_from_user_proc(void *to, void __user *from, int size)
260 {
261 return copy_from_user(to, from, size);
262 }
263
clear_user_proc(void __user * buf,int size)264 int clear_user_proc(void __user *buf, int size)
265 {
266 return clear_user(buf, size);
267 }
268
cpu(void)269 int cpu(void)
270 {
271 return current_thread_info()->cpu;
272 }
273
274 static atomic_t using_sysemu = ATOMIC_INIT(0);
275 int sysemu_supported;
276
set_using_sysemu(int value)277 void set_using_sysemu(int value)
278 {
279 if (value > sysemu_supported)
280 return;
281 atomic_set(&using_sysemu, value);
282 }
283
get_using_sysemu(void)284 int get_using_sysemu(void)
285 {
286 return atomic_read(&using_sysemu);
287 }
288
sysemu_proc_show(struct seq_file * m,void * v)289 static int sysemu_proc_show(struct seq_file *m, void *v)
290 {
291 seq_printf(m, "%d\n", get_using_sysemu());
292 return 0;
293 }
294
sysemu_proc_open(struct inode * inode,struct file * file)295 static int sysemu_proc_open(struct inode *inode, struct file *file)
296 {
297 return single_open(file, sysemu_proc_show, NULL);
298 }
299
sysemu_proc_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)300 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
301 size_t count, loff_t *pos)
302 {
303 char tmp[2];
304
305 if (copy_from_user(tmp, buf, 1))
306 return -EFAULT;
307
308 if (tmp[0] >= '0' && tmp[0] <= '2')
309 set_using_sysemu(tmp[0] - '0');
310 /* We use the first char, but pretend to write everything */
311 return count;
312 }
313
314 static const struct proc_ops sysemu_proc_ops = {
315 .proc_open = sysemu_proc_open,
316 .proc_read = seq_read,
317 .proc_lseek = seq_lseek,
318 .proc_release = single_release,
319 .proc_write = sysemu_proc_write,
320 };
321
make_proc_sysemu(void)322 int __init make_proc_sysemu(void)
323 {
324 struct proc_dir_entry *ent;
325 if (!sysemu_supported)
326 return 0;
327
328 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
329
330 if (ent == NULL)
331 {
332 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
333 return 0;
334 }
335
336 return 0;
337 }
338
339 late_initcall(make_proc_sysemu);
340
singlestepping(void * t)341 int singlestepping(void * t)
342 {
343 struct task_struct *task = t ? t : current;
344
345 if (!test_thread_flag(TIF_SINGLESTEP))
346 return 0;
347
348 if (task->thread.singlestep_syscall)
349 return 1;
350
351 return 2;
352 }
353
354 /*
355 * Only x86 and x86_64 have an arch_align_stack().
356 * All other arches have "#define arch_align_stack(x) (x)"
357 * in their asm/exec.h
358 * As this is included in UML from asm-um/system-generic.h,
359 * we can use it to behave as the subarch does.
360 */
361 #ifndef arch_align_stack
arch_align_stack(unsigned long sp)362 unsigned long arch_align_stack(unsigned long sp)
363 {
364 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
365 sp -= get_random_int() % 8192;
366 return sp & ~0xf;
367 }
368 #endif
369
get_wchan(struct task_struct * p)370 unsigned long get_wchan(struct task_struct *p)
371 {
372 unsigned long stack_page, sp, ip;
373 bool seen_sched = 0;
374
375 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
376 return 0;
377
378 stack_page = (unsigned long) task_stack_page(p);
379 /* Bail if the process has no kernel stack for some reason */
380 if (stack_page == 0)
381 return 0;
382
383 sp = p->thread.switch_buf->JB_SP;
384 /*
385 * Bail if the stack pointer is below the bottom of the kernel
386 * stack for some reason
387 */
388 if (sp < stack_page)
389 return 0;
390
391 while (sp < stack_page + THREAD_SIZE) {
392 ip = *((unsigned long *) sp);
393 if (in_sched_functions(ip))
394 /* Ignore everything until we're above the scheduler */
395 seen_sched = 1;
396 else if (kernel_text_address(ip) && seen_sched)
397 return ip;
398
399 sp += sizeof(unsigned long);
400 }
401
402 return 0;
403 }
404
elf_core_copy_fpregs(struct task_struct * t,elf_fpregset_t * fpu)405 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
406 {
407 int cpu = current_thread_info()->cpu;
408
409 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
410 }
411
412