• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv6|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 };
289 #endif
290 
291 struct sk_buff_head {
292 	/* These two members must be first. */
293 	struct sk_buff	*next;
294 	struct sk_buff	*prev;
295 
296 	__u32		qlen;
297 	spinlock_t	lock;
298 };
299 
300 struct sk_buff;
301 
302 /* To allow 64K frame to be packed as single skb without frag_list we
303  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304  * buffers which do not start on a page boundary.
305  *
306  * Since GRO uses frags we allocate at least 16 regardless of page
307  * size.
308  */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315 
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317  * segment using its current segmentation instead.
318  */
319 #define GSO_BY_FRAGS	0xFFFF
320 
321 typedef struct bio_vec skb_frag_t;
322 
323 /**
324  * skb_frag_size() - Returns the size of a skb fragment
325  * @frag: skb fragment
326  */
skb_frag_size(const skb_frag_t * frag)327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 	return frag->bv_len;
330 }
331 
332 /**
333  * skb_frag_size_set() - Sets the size of a skb fragment
334  * @frag: skb fragment
335  * @size: size of fragment
336  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 	frag->bv_len = size;
340 }
341 
342 /**
343  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344  * @frag: skb fragment
345  * @delta: value to add
346  */
skb_frag_size_add(skb_frag_t * frag,int delta)347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 	frag->bv_len += delta;
350 }
351 
352 /**
353  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354  * @frag: skb fragment
355  * @delta: value to subtract
356  */
skb_frag_size_sub(skb_frag_t * frag,int delta)357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 	frag->bv_len -= delta;
360 }
361 
362 /**
363  * skb_frag_must_loop - Test if %p is a high memory page
364  * @p: fragment's page
365  */
skb_frag_must_loop(struct page * p)366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 	if (PageHighMem(p))
370 		return true;
371 #endif
372 	return false;
373 }
374 
375 /**
376  *	skb_frag_foreach_page - loop over pages in a fragment
377  *
378  *	@f:		skb frag to operate on
379  *	@f_off:		offset from start of f->bv_page
380  *	@f_len:		length from f_off to loop over
381  *	@p:		(temp var) current page
382  *	@p_off:		(temp var) offset from start of current page,
383  *	                           non-zero only on first page.
384  *	@p_len:		(temp var) length in current page,
385  *				   < PAGE_SIZE only on first and last page.
386  *	@copied:	(temp var) length so far, excluding current p_len.
387  *
388  *	A fragment can hold a compound page, in which case per-page
389  *	operations, notably kmap_atomic, must be called for each
390  *	regular page.
391  */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395 	     p_len = skb_frag_must_loop(p) ?				\
396 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397 	     copied = 0;						\
398 	     copied < f_len;						\
399 	     copied += p_len, p++, p_off = 0,				\
400 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401 
402 #define HAVE_HW_TIME_STAMP
403 
404 /**
405  * struct skb_shared_hwtstamps - hardware time stamps
406  * @hwtstamp:	hardware time stamp transformed into duration
407  *		since arbitrary point in time
408  *
409  * Software time stamps generated by ktime_get_real() are stored in
410  * skb->tstamp.
411  *
412  * hwtstamps can only be compared against other hwtstamps from
413  * the same device.
414  *
415  * This structure is attached to packets as part of the
416  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417  */
418 struct skb_shared_hwtstamps {
419 	ktime_t	hwtstamp;
420 };
421 
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 	/* generate hardware time stamp */
425 	SKBTX_HW_TSTAMP = 1 << 0,
426 
427 	/* generate software time stamp when queueing packet to NIC */
428 	SKBTX_SW_TSTAMP = 1 << 1,
429 
430 	/* device driver is going to provide hardware time stamp */
431 	SKBTX_IN_PROGRESS = 1 << 2,
432 
433 	/* device driver supports TX zero-copy buffers */
434 	SKBTX_DEV_ZEROCOPY = 1 << 3,
435 
436 	/* generate wifi status information (where possible) */
437 	SKBTX_WIFI_STATUS = 1 << 4,
438 
439 	/* This indicates at least one fragment might be overwritten
440 	 * (as in vmsplice(), sendfile() ...)
441 	 * If we need to compute a TX checksum, we'll need to copy
442 	 * all frags to avoid possible bad checksum
443 	 */
444 	SKBTX_SHARED_FRAG = 1 << 5,
445 
446 	/* generate software time stamp when entering packet scheduling */
447 	SKBTX_SCHED_TSTAMP = 1 << 6,
448 };
449 
450 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
452 				 SKBTX_SCHED_TSTAMP)
453 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454 
455 /*
456  * The callback notifies userspace to release buffers when skb DMA is done in
457  * lower device, the skb last reference should be 0 when calling this.
458  * The zerocopy_success argument is true if zero copy transmit occurred,
459  * false on data copy or out of memory error caused by data copy attempt.
460  * The ctx field is used to track device context.
461  * The desc field is used to track userspace buffer index.
462  */
463 struct ubuf_info {
464 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 	union {
466 		struct {
467 			unsigned long desc;
468 			void *ctx;
469 		};
470 		struct {
471 			u32 id;
472 			u16 len;
473 			u16 zerocopy:1;
474 			u32 bytelen;
475 		};
476 	};
477 	refcount_t refcnt;
478 
479 	struct mmpin {
480 		struct user_struct *user;
481 		unsigned int num_pg;
482 	} mmp;
483 };
484 
485 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486 
487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488 void mm_unaccount_pinned_pages(struct mmpin *mmp);
489 
490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 					struct ubuf_info *uarg);
493 
sock_zerocopy_get(struct ubuf_info * uarg)494 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495 {
496 	refcount_inc(&uarg->refcnt);
497 }
498 
499 void sock_zerocopy_put(struct ubuf_info *uarg);
500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501 
502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503 
504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 			     struct msghdr *msg, int len,
507 			     struct ubuf_info *uarg);
508 
509 /* This data is invariant across clones and lives at
510  * the end of the header data, ie. at skb->end.
511  */
512 struct skb_shared_info {
513 	__u8		__unused;
514 	__u8		meta_len;
515 	__u8		nr_frags;
516 	__u8		tx_flags;
517 	unsigned short	gso_size;
518 	/* Warning: this field is not always filled in (UFO)! */
519 	unsigned short	gso_segs;
520 	struct sk_buff	*frag_list;
521 	struct skb_shared_hwtstamps hwtstamps;
522 	unsigned int	gso_type;
523 	u32		tskey;
524 
525 	/*
526 	 * Warning : all fields before dataref are cleared in __alloc_skb()
527 	 */
528 	atomic_t	dataref;
529 
530 	/* Intermediate layers must ensure that destructor_arg
531 	 * remains valid until skb destructor */
532 	void *		destructor_arg;
533 
534 	/* must be last field, see pskb_expand_head() */
535 	skb_frag_t	frags[MAX_SKB_FRAGS];
536 };
537 
538 /* We divide dataref into two halves.  The higher 16 bits hold references
539  * to the payload part of skb->data.  The lower 16 bits hold references to
540  * the entire skb->data.  A clone of a headerless skb holds the length of
541  * the header in skb->hdr_len.
542  *
543  * All users must obey the rule that the skb->data reference count must be
544  * greater than or equal to the payload reference count.
545  *
546  * Holding a reference to the payload part means that the user does not
547  * care about modifications to the header part of skb->data.
548  */
549 #define SKB_DATAREF_SHIFT 16
550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551 
552 
553 enum {
554 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
555 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
556 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
557 };
558 
559 enum {
560 	SKB_GSO_TCPV4 = 1 << 0,
561 
562 	/* This indicates the skb is from an untrusted source. */
563 	SKB_GSO_DODGY = 1 << 1,
564 
565 	/* This indicates the tcp segment has CWR set. */
566 	SKB_GSO_TCP_ECN = 1 << 2,
567 
568 	SKB_GSO_TCP_FIXEDID = 1 << 3,
569 
570 	SKB_GSO_TCPV6 = 1 << 4,
571 
572 	SKB_GSO_FCOE = 1 << 5,
573 
574 	SKB_GSO_GRE = 1 << 6,
575 
576 	SKB_GSO_GRE_CSUM = 1 << 7,
577 
578 	SKB_GSO_IPXIP4 = 1 << 8,
579 
580 	SKB_GSO_IPXIP6 = 1 << 9,
581 
582 	SKB_GSO_UDP_TUNNEL = 1 << 10,
583 
584 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585 
586 	SKB_GSO_PARTIAL = 1 << 12,
587 
588 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589 
590 	SKB_GSO_SCTP = 1 << 14,
591 
592 	SKB_GSO_ESP = 1 << 15,
593 
594 	SKB_GSO_UDP = 1 << 16,
595 
596 	SKB_GSO_UDP_L4 = 1 << 17,
597 
598 	SKB_GSO_FRAGLIST = 1 << 18,
599 };
600 
601 #if BITS_PER_LONG > 32
602 #define NET_SKBUFF_DATA_USES_OFFSET 1
603 #endif
604 
605 #ifdef NET_SKBUFF_DATA_USES_OFFSET
606 typedef unsigned int sk_buff_data_t;
607 #else
608 typedef unsigned char *sk_buff_data_t;
609 #endif
610 
611 /**
612  *	struct sk_buff - socket buffer
613  *	@next: Next buffer in list
614  *	@prev: Previous buffer in list
615  *	@tstamp: Time we arrived/left
616  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617  *		for retransmit timer
618  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
619  *	@list: queue head
620  *	@sk: Socket we are owned by
621  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622  *		fragmentation management
623  *	@dev: Device we arrived on/are leaving by
624  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625  *	@cb: Control buffer. Free for use by every layer. Put private vars here
626  *	@_skb_refdst: destination entry (with norefcount bit)
627  *	@sp: the security path, used for xfrm
628  *	@len: Length of actual data
629  *	@data_len: Data length
630  *	@mac_len: Length of link layer header
631  *	@hdr_len: writable header length of cloned skb
632  *	@csum: Checksum (must include start/offset pair)
633  *	@csum_start: Offset from skb->head where checksumming should start
634  *	@csum_offset: Offset from csum_start where checksum should be stored
635  *	@priority: Packet queueing priority
636  *	@ignore_df: allow local fragmentation
637  *	@cloned: Head may be cloned (check refcnt to be sure)
638  *	@ip_summed: Driver fed us an IP checksum
639  *	@nohdr: Payload reference only, must not modify header
640  *	@pkt_type: Packet class
641  *	@fclone: skbuff clone status
642  *	@ipvs_property: skbuff is owned by ipvs
643  *	@inner_protocol_type: whether the inner protocol is
644  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645  *	@remcsum_offload: remote checksum offload is enabled
646  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
647  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648  *	@tc_skip_classify: do not classify packet. set by IFB device
649  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
650  *	@redirected: packet was redirected by packet classifier
651  *	@from_ingress: packet was redirected from the ingress path
652  *	@peeked: this packet has been seen already, so stats have been
653  *		done for it, don't do them again
654  *	@nf_trace: netfilter packet trace flag
655  *	@protocol: Packet protocol from driver
656  *	@destructor: Destruct function
657  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658  *	@_nfct: Associated connection, if any (with nfctinfo bits)
659  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660  *	@skb_iif: ifindex of device we arrived on
661  *	@tc_index: Traffic control index
662  *	@hash: the packet hash
663  *	@queue_mapping: Queue mapping for multiqueue devices
664  *	@head_frag: skb was allocated from page fragments,
665  *		not allocated by kmalloc() or vmalloc().
666  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667  *	@active_extensions: active extensions (skb_ext_id types)
668  *	@ndisc_nodetype: router type (from link layer)
669  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
670  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
671  *		ports.
672  *	@sw_hash: indicates hash was computed in software stack
673  *	@wifi_acked_valid: wifi_acked was set
674  *	@wifi_acked: whether frame was acked on wifi or not
675  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
676  *	@encapsulation: indicates the inner headers in the skbuff are valid
677  *	@encap_hdr_csum: software checksum is needed
678  *	@csum_valid: checksum is already valid
679  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680  *	@csum_complete_sw: checksum was completed by software
681  *	@csum_level: indicates the number of consecutive checksums found in
682  *		the packet minus one that have been verified as
683  *		CHECKSUM_UNNECESSARY (max 3)
684  *	@scm_io_uring: SKB holds io_uring registered files
685  *	@dst_pending_confirm: need to confirm neighbour
686  *	@decrypted: Decrypted SKB
687  *	@napi_id: id of the NAPI struct this skb came from
688  *	@sender_cpu: (aka @napi_id) source CPU in XPS
689  *	@secmark: security marking
690  *	@mark: Generic packet mark
691  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
692  *		at the tail of an sk_buff
693  *	@vlan_present: VLAN tag is present
694  *	@vlan_proto: vlan encapsulation protocol
695  *	@vlan_tci: vlan tag control information
696  *	@inner_protocol: Protocol (encapsulation)
697  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
698  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
699  *	@inner_transport_header: Inner transport layer header (encapsulation)
700  *	@inner_network_header: Network layer header (encapsulation)
701  *	@inner_mac_header: Link layer header (encapsulation)
702  *	@transport_header: Transport layer header
703  *	@network_header: Network layer header
704  *	@mac_header: Link layer header
705  *	@kcov_handle: KCOV remote handle for remote coverage collection
706  *	@tail: Tail pointer
707  *	@end: End pointer
708  *	@head: Head of buffer
709  *	@data: Data head pointer
710  *	@truesize: Buffer size
711  *	@users: User count - see {datagram,tcp}.c
712  *	@extensions: allocated extensions, valid if active_extensions is nonzero
713  */
714 
715 struct sk_buff {
716 	union {
717 		struct {
718 			/* These two members must be first. */
719 			struct sk_buff		*next;
720 			struct sk_buff		*prev;
721 
722 			union {
723 				struct net_device	*dev;
724 				/* Some protocols might use this space to store information,
725 				 * while device pointer would be NULL.
726 				 * UDP receive path is one user.
727 				 */
728 				unsigned long		dev_scratch;
729 			};
730 		};
731 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
732 		struct list_head	list;
733 	};
734 
735 	union {
736 		struct sock		*sk;
737 		int			ip_defrag_offset;
738 	};
739 
740 	union {
741 		ktime_t		tstamp;
742 		u64		skb_mstamp_ns; /* earliest departure time */
743 	};
744 	/*
745 	 * This is the control buffer. It is free to use for every
746 	 * layer. Please put your private variables there. If you
747 	 * want to keep them across layers you have to do a skb_clone()
748 	 * first. This is owned by whoever has the skb queued ATM.
749 	 */
750 	char			cb[48] __aligned(8);
751 
752 	union {
753 		struct {
754 			unsigned long	_skb_refdst;
755 			void		(*destructor)(struct sk_buff *skb);
756 		};
757 		struct list_head	tcp_tsorted_anchor;
758 	};
759 
760 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
761 	unsigned long		 _nfct;
762 #endif
763 	unsigned int		len,
764 				data_len;
765 	__u16			mac_len,
766 				hdr_len;
767 
768 	/* Following fields are _not_ copied in __copy_skb_header()
769 	 * Note that queue_mapping is here mostly to fill a hole.
770 	 */
771 	__u16			queue_mapping;
772 
773 /* if you move cloned around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define CLONED_MASK	(1 << 7)
776 #else
777 #define CLONED_MASK	1
778 #endif
779 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
780 
781 	/* private: */
782 	__u8			__cloned_offset[0];
783 	/* public: */
784 	__u8			cloned:1,
785 				nohdr:1,
786 				fclone:2,
787 				peeked:1,
788 				head_frag:1,
789 				pfmemalloc:1;
790 #ifdef CONFIG_SKB_EXTENSIONS
791 	__u8			active_extensions;
792 #endif
793 	/* fields enclosed in headers_start/headers_end are copied
794 	 * using a single memcpy() in __copy_skb_header()
795 	 */
796 	/* private: */
797 	__u32			headers_start[0];
798 	/* public: */
799 
800 /* if you move pkt_type around you also must adapt those constants */
801 #ifdef __BIG_ENDIAN_BITFIELD
802 #define PKT_TYPE_MAX	(7 << 5)
803 #else
804 #define PKT_TYPE_MAX	7
805 #endif
806 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
807 
808 	/* private: */
809 	__u8			__pkt_type_offset[0];
810 	/* public: */
811 	__u8			pkt_type:3;
812 	__u8			ignore_df:1;
813 	__u8			nf_trace:1;
814 	__u8			ip_summed:2;
815 	__u8			ooo_okay:1;
816 
817 	__u8			l4_hash:1;
818 	__u8			sw_hash:1;
819 	__u8			wifi_acked_valid:1;
820 	__u8			wifi_acked:1;
821 	__u8			no_fcs:1;
822 	/* Indicates the inner headers are valid in the skbuff. */
823 	__u8			encapsulation:1;
824 	__u8			encap_hdr_csum:1;
825 	__u8			csum_valid:1;
826 
827 #ifdef __BIG_ENDIAN_BITFIELD
828 #define PKT_VLAN_PRESENT_BIT	7
829 #else
830 #define PKT_VLAN_PRESENT_BIT	0
831 #endif
832 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
833 	/* private: */
834 	__u8			__pkt_vlan_present_offset[0];
835 	/* public: */
836 	__u8			vlan_present:1;
837 	__u8			csum_complete_sw:1;
838 	__u8			csum_level:2;
839 	__u8			csum_not_inet:1;
840 	__u8			dst_pending_confirm:1;
841 #ifdef CONFIG_IPV6_NDISC_NODETYPE
842 	__u8			ndisc_nodetype:2;
843 #endif
844 
845 	__u8			ipvs_property:1;
846 	__u8			inner_protocol_type:1;
847 	__u8			remcsum_offload:1;
848 #ifdef CONFIG_NET_SWITCHDEV
849 	__u8			offload_fwd_mark:1;
850 	__u8			offload_l3_fwd_mark:1;
851 #endif
852 #ifdef CONFIG_NET_CLS_ACT
853 	__u8			tc_skip_classify:1;
854 	__u8			tc_at_ingress:1;
855 #endif
856 #ifdef CONFIG_NET_REDIRECT
857 	__u8			redirected:1;
858 	__u8			from_ingress:1;
859 #endif
860 #ifdef CONFIG_TLS_DEVICE
861 	__u8			decrypted:1;
862 #endif
863 	__u8			scm_io_uring:1;
864 
865 #ifdef CONFIG_NET_SCHED
866 	__u16			tc_index;	/* traffic control index */
867 #endif
868 
869 	union {
870 		__wsum		csum;
871 		struct {
872 			__u16	csum_start;
873 			__u16	csum_offset;
874 		};
875 	};
876 	__u32			priority;
877 	int			skb_iif;
878 	__u32			hash;
879 	__be16			vlan_proto;
880 	__u16			vlan_tci;
881 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
882 	union {
883 		unsigned int	napi_id;
884 		unsigned int	sender_cpu;
885 	};
886 #endif
887 #ifdef CONFIG_NETWORK_SECMARK
888 	__u32		secmark;
889 #endif
890 
891 	union {
892 		__u32		mark;
893 		__u32		reserved_tailroom;
894 	};
895 
896 	union {
897 		__be16		inner_protocol;
898 		__u8		inner_ipproto;
899 	};
900 
901 	__u16			inner_transport_header;
902 	__u16			inner_network_header;
903 	__u16			inner_mac_header;
904 
905 	__be16			protocol;
906 	__u16			transport_header;
907 	__u16			network_header;
908 	__u16			mac_header;
909 
910 #ifdef CONFIG_KCOV
911 	u64			kcov_handle;
912 #endif
913 
914 	/* private: */
915 	__u32			headers_end[0];
916 	/* public: */
917 
918 	/* These elements must be at the end, see alloc_skb() for details.  */
919 	sk_buff_data_t		tail;
920 	sk_buff_data_t		end;
921 	unsigned char		*head,
922 				*data;
923 	unsigned int		truesize;
924 	refcount_t		users;
925 
926 #ifdef CONFIG_SKB_EXTENSIONS
927 	/* only useable after checking ->active_extensions != 0 */
928 	struct skb_ext		*extensions;
929 #endif
930 };
931 
932 #ifdef __KERNEL__
933 /*
934  *	Handling routines are only of interest to the kernel
935  */
936 
937 #define SKB_ALLOC_FCLONE	0x01
938 #define SKB_ALLOC_RX		0x02
939 #define SKB_ALLOC_NAPI		0x04
940 
941 /**
942  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
943  * @skb: buffer
944  */
skb_pfmemalloc(const struct sk_buff * skb)945 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
946 {
947 	return unlikely(skb->pfmemalloc);
948 }
949 
950 /*
951  * skb might have a dst pointer attached, refcounted or not.
952  * _skb_refdst low order bit is set if refcount was _not_ taken
953  */
954 #define SKB_DST_NOREF	1UL
955 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
956 
957 /**
958  * skb_dst - returns skb dst_entry
959  * @skb: buffer
960  *
961  * Returns skb dst_entry, regardless of reference taken or not.
962  */
skb_dst(const struct sk_buff * skb)963 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
964 {
965 	/* If refdst was not refcounted, check we still are in a
966 	 * rcu_read_lock section
967 	 */
968 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
969 		!rcu_read_lock_held() &&
970 		!rcu_read_lock_bh_held());
971 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
972 }
973 
974 /**
975  * skb_dst_set - sets skb dst
976  * @skb: buffer
977  * @dst: dst entry
978  *
979  * Sets skb dst, assuming a reference was taken on dst and should
980  * be released by skb_dst_drop()
981  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)982 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
983 {
984 	skb->_skb_refdst = (unsigned long)dst;
985 }
986 
987 /**
988  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
989  * @skb: buffer
990  * @dst: dst entry
991  *
992  * Sets skb dst, assuming a reference was not taken on dst.
993  * If dst entry is cached, we do not take reference and dst_release
994  * will be avoided by refdst_drop. If dst entry is not cached, we take
995  * reference, so that last dst_release can destroy the dst immediately.
996  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)997 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
998 {
999 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1000 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1001 }
1002 
1003 /**
1004  * skb_dst_is_noref - Test if skb dst isn't refcounted
1005  * @skb: buffer
1006  */
skb_dst_is_noref(const struct sk_buff * skb)1007 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1008 {
1009 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1010 }
1011 
1012 /**
1013  * skb_rtable - Returns the skb &rtable
1014  * @skb: buffer
1015  */
skb_rtable(const struct sk_buff * skb)1016 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1017 {
1018 	return (struct rtable *)skb_dst(skb);
1019 }
1020 
1021 /* For mangling skb->pkt_type from user space side from applications
1022  * such as nft, tc, etc, we only allow a conservative subset of
1023  * possible pkt_types to be set.
1024 */
skb_pkt_type_ok(u32 ptype)1025 static inline bool skb_pkt_type_ok(u32 ptype)
1026 {
1027 	return ptype <= PACKET_OTHERHOST;
1028 }
1029 
1030 /**
1031  * skb_napi_id - Returns the skb's NAPI id
1032  * @skb: buffer
1033  */
skb_napi_id(const struct sk_buff * skb)1034 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1035 {
1036 #ifdef CONFIG_NET_RX_BUSY_POLL
1037 	return skb->napi_id;
1038 #else
1039 	return 0;
1040 #endif
1041 }
1042 
1043 /**
1044  * skb_unref - decrement the skb's reference count
1045  * @skb: buffer
1046  *
1047  * Returns true if we can free the skb.
1048  */
skb_unref(struct sk_buff * skb)1049 static inline bool skb_unref(struct sk_buff *skb)
1050 {
1051 	if (unlikely(!skb))
1052 		return false;
1053 	if (likely(refcount_read(&skb->users) == 1))
1054 		smp_rmb();
1055 	else if (likely(!refcount_dec_and_test(&skb->users)))
1056 		return false;
1057 
1058 	return true;
1059 }
1060 
1061 void skb_release_head_state(struct sk_buff *skb);
1062 void kfree_skb(struct sk_buff *skb);
1063 void kfree_skb_list(struct sk_buff *segs);
1064 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1065 void skb_tx_error(struct sk_buff *skb);
1066 
1067 #ifdef CONFIG_TRACEPOINTS
1068 void consume_skb(struct sk_buff *skb);
1069 #else
consume_skb(struct sk_buff * skb)1070 static inline void consume_skb(struct sk_buff *skb)
1071 {
1072 	return kfree_skb(skb);
1073 }
1074 #endif
1075 
1076 void __consume_stateless_skb(struct sk_buff *skb);
1077 void  __kfree_skb(struct sk_buff *skb);
1078 extern struct kmem_cache *skbuff_head_cache;
1079 
1080 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1081 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1082 		      bool *fragstolen, int *delta_truesize);
1083 
1084 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1085 			    int node);
1086 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1087 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1088 struct sk_buff *build_skb_around(struct sk_buff *skb,
1089 				 void *data, unsigned int frag_size);
1090 
1091 /**
1092  * alloc_skb - allocate a network buffer
1093  * @size: size to allocate
1094  * @priority: allocation mask
1095  *
1096  * This function is a convenient wrapper around __alloc_skb().
1097  */
alloc_skb(unsigned int size,gfp_t priority)1098 static inline struct sk_buff *alloc_skb(unsigned int size,
1099 					gfp_t priority)
1100 {
1101 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1102 }
1103 
1104 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1105 				     unsigned long data_len,
1106 				     int max_page_order,
1107 				     int *errcode,
1108 				     gfp_t gfp_mask);
1109 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1110 
1111 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1112 struct sk_buff_fclones {
1113 	struct sk_buff	skb1;
1114 
1115 	struct sk_buff	skb2;
1116 
1117 	refcount_t	fclone_ref;
1118 };
1119 
1120 /**
1121  *	skb_fclone_busy - check if fclone is busy
1122  *	@sk: socket
1123  *	@skb: buffer
1124  *
1125  * Returns true if skb is a fast clone, and its clone is not freed.
1126  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1127  * so we also check that this didnt happen.
1128  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1129 static inline bool skb_fclone_busy(const struct sock *sk,
1130 				   const struct sk_buff *skb)
1131 {
1132 	const struct sk_buff_fclones *fclones;
1133 
1134 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1135 
1136 	return skb->fclone == SKB_FCLONE_ORIG &&
1137 	       refcount_read(&fclones->fclone_ref) > 1 &&
1138 	       fclones->skb2.sk == sk;
1139 }
1140 
1141 /**
1142  * alloc_skb_fclone - allocate a network buffer from fclone cache
1143  * @size: size to allocate
1144  * @priority: allocation mask
1145  *
1146  * This function is a convenient wrapper around __alloc_skb().
1147  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1148 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1149 					       gfp_t priority)
1150 {
1151 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1152 }
1153 
1154 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1155 void skb_headers_offset_update(struct sk_buff *skb, int off);
1156 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1157 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1158 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1159 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1160 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1161 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1162 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1163 					  gfp_t gfp_mask)
1164 {
1165 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1166 }
1167 
1168 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1169 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1170 				     unsigned int headroom);
1171 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1172 				int newtailroom, gfp_t priority);
1173 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1174 				     int offset, int len);
1175 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1176 			      int offset, int len);
1177 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1178 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1179 
1180 /**
1181  *	skb_pad			-	zero pad the tail of an skb
1182  *	@skb: buffer to pad
1183  *	@pad: space to pad
1184  *
1185  *	Ensure that a buffer is followed by a padding area that is zero
1186  *	filled. Used by network drivers which may DMA or transfer data
1187  *	beyond the buffer end onto the wire.
1188  *
1189  *	May return error in out of memory cases. The skb is freed on error.
1190  */
skb_pad(struct sk_buff * skb,int pad)1191 static inline int skb_pad(struct sk_buff *skb, int pad)
1192 {
1193 	return __skb_pad(skb, pad, true);
1194 }
1195 #define dev_kfree_skb(a)	consume_skb(a)
1196 
1197 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1198 			 int offset, size_t size);
1199 
1200 struct skb_seq_state {
1201 	__u32		lower_offset;
1202 	__u32		upper_offset;
1203 	__u32		frag_idx;
1204 	__u32		stepped_offset;
1205 	struct sk_buff	*root_skb;
1206 	struct sk_buff	*cur_skb;
1207 	__u8		*frag_data;
1208 };
1209 
1210 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1211 			  unsigned int to, struct skb_seq_state *st);
1212 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1213 			  struct skb_seq_state *st);
1214 void skb_abort_seq_read(struct skb_seq_state *st);
1215 
1216 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1217 			   unsigned int to, struct ts_config *config);
1218 
1219 /*
1220  * Packet hash types specify the type of hash in skb_set_hash.
1221  *
1222  * Hash types refer to the protocol layer addresses which are used to
1223  * construct a packet's hash. The hashes are used to differentiate or identify
1224  * flows of the protocol layer for the hash type. Hash types are either
1225  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1226  *
1227  * Properties of hashes:
1228  *
1229  * 1) Two packets in different flows have different hash values
1230  * 2) Two packets in the same flow should have the same hash value
1231  *
1232  * A hash at a higher layer is considered to be more specific. A driver should
1233  * set the most specific hash possible.
1234  *
1235  * A driver cannot indicate a more specific hash than the layer at which a hash
1236  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1237  *
1238  * A driver may indicate a hash level which is less specific than the
1239  * actual layer the hash was computed on. For instance, a hash computed
1240  * at L4 may be considered an L3 hash. This should only be done if the
1241  * driver can't unambiguously determine that the HW computed the hash at
1242  * the higher layer. Note that the "should" in the second property above
1243  * permits this.
1244  */
1245 enum pkt_hash_types {
1246 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1247 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1248 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1249 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1250 };
1251 
skb_clear_hash(struct sk_buff * skb)1252 static inline void skb_clear_hash(struct sk_buff *skb)
1253 {
1254 	skb->hash = 0;
1255 	skb->sw_hash = 0;
1256 	skb->l4_hash = 0;
1257 }
1258 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1259 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1260 {
1261 	if (!skb->l4_hash)
1262 		skb_clear_hash(skb);
1263 }
1264 
1265 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1266 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1267 {
1268 	skb->l4_hash = is_l4;
1269 	skb->sw_hash = is_sw;
1270 	skb->hash = hash;
1271 }
1272 
1273 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1274 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1275 {
1276 	/* Used by drivers to set hash from HW */
1277 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1278 }
1279 
1280 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1281 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1282 {
1283 	__skb_set_hash(skb, hash, true, is_l4);
1284 }
1285 
1286 void __skb_get_hash(struct sk_buff *skb);
1287 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1288 u32 skb_get_poff(const struct sk_buff *skb);
1289 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1290 		   const struct flow_keys_basic *keys, int hlen);
1291 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1292 			    void *data, int hlen_proto);
1293 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1294 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1295 					int thoff, u8 ip_proto)
1296 {
1297 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1298 }
1299 
1300 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1301 			     const struct flow_dissector_key *key,
1302 			     unsigned int key_count);
1303 
1304 struct bpf_flow_dissector;
1305 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1306 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1307 
1308 bool __skb_flow_dissect(const struct net *net,
1309 			const struct sk_buff *skb,
1310 			struct flow_dissector *flow_dissector,
1311 			void *target_container,
1312 			void *data, __be16 proto, int nhoff, int hlen,
1313 			unsigned int flags);
1314 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1315 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1316 				    struct flow_dissector *flow_dissector,
1317 				    void *target_container, unsigned int flags)
1318 {
1319 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1320 				  target_container, NULL, 0, 0, 0, flags);
1321 }
1322 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1323 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1324 					      struct flow_keys *flow,
1325 					      unsigned int flags)
1326 {
1327 	memset(flow, 0, sizeof(*flow));
1328 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1329 				  flow, NULL, 0, 0, 0, flags);
1330 }
1331 
1332 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1333 skb_flow_dissect_flow_keys_basic(const struct net *net,
1334 				 const struct sk_buff *skb,
1335 				 struct flow_keys_basic *flow, void *data,
1336 				 __be16 proto, int nhoff, int hlen,
1337 				 unsigned int flags)
1338 {
1339 	memset(flow, 0, sizeof(*flow));
1340 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1341 				  data, proto, nhoff, hlen, flags);
1342 }
1343 
1344 void skb_flow_dissect_meta(const struct sk_buff *skb,
1345 			   struct flow_dissector *flow_dissector,
1346 			   void *target_container);
1347 
1348 /* Gets a skb connection tracking info, ctinfo map should be a
1349  * map of mapsize to translate enum ip_conntrack_info states
1350  * to user states.
1351  */
1352 void
1353 skb_flow_dissect_ct(const struct sk_buff *skb,
1354 		    struct flow_dissector *flow_dissector,
1355 		    void *target_container,
1356 		    u16 *ctinfo_map,
1357 		    size_t mapsize);
1358 void
1359 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1360 			     struct flow_dissector *flow_dissector,
1361 			     void *target_container);
1362 
1363 void skb_flow_dissect_hash(const struct sk_buff *skb,
1364 			   struct flow_dissector *flow_dissector,
1365 			   void *target_container);
1366 
skb_get_hash(struct sk_buff * skb)1367 static inline __u32 skb_get_hash(struct sk_buff *skb)
1368 {
1369 	if (!skb->l4_hash && !skb->sw_hash)
1370 		__skb_get_hash(skb);
1371 
1372 	return skb->hash;
1373 }
1374 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1375 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1376 {
1377 	if (!skb->l4_hash && !skb->sw_hash) {
1378 		struct flow_keys keys;
1379 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1380 
1381 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1382 	}
1383 
1384 	return skb->hash;
1385 }
1386 
1387 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1388 			   const siphash_key_t *perturb);
1389 
skb_get_hash_raw(const struct sk_buff * skb)1390 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1391 {
1392 	return skb->hash;
1393 }
1394 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1395 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1396 {
1397 	to->hash = from->hash;
1398 	to->sw_hash = from->sw_hash;
1399 	to->l4_hash = from->l4_hash;
1400 };
1401 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1402 static inline void skb_copy_decrypted(struct sk_buff *to,
1403 				      const struct sk_buff *from)
1404 {
1405 #ifdef CONFIG_TLS_DEVICE
1406 	to->decrypted = from->decrypted;
1407 #endif
1408 }
1409 
1410 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1411 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1412 {
1413 	return skb->head + skb->end;
1414 }
1415 
skb_end_offset(const struct sk_buff * skb)1416 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1417 {
1418 	return skb->end;
1419 }
1420 #else
skb_end_pointer(const struct sk_buff * skb)1421 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1422 {
1423 	return skb->end;
1424 }
1425 
skb_end_offset(const struct sk_buff * skb)1426 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1427 {
1428 	return skb->end - skb->head;
1429 }
1430 #endif
1431 
1432 /* Internal */
1433 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1434 
skb_hwtstamps(struct sk_buff * skb)1435 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1436 {
1437 	return &skb_shinfo(skb)->hwtstamps;
1438 }
1439 
skb_zcopy(struct sk_buff * skb)1440 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1441 {
1442 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1443 
1444 	return is_zcopy ? skb_uarg(skb) : NULL;
1445 }
1446 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1447 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1448 				 bool *have_ref)
1449 {
1450 	if (skb && uarg && !skb_zcopy(skb)) {
1451 		if (unlikely(have_ref && *have_ref))
1452 			*have_ref = false;
1453 		else
1454 			sock_zerocopy_get(uarg);
1455 		skb_shinfo(skb)->destructor_arg = uarg;
1456 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1457 	}
1458 }
1459 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1460 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1461 {
1462 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1463 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1464 }
1465 
skb_zcopy_is_nouarg(struct sk_buff * skb)1466 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1467 {
1468 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1469 }
1470 
skb_zcopy_get_nouarg(struct sk_buff * skb)1471 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1472 {
1473 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1474 }
1475 
1476 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1477 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1478 {
1479 	struct ubuf_info *uarg = skb_zcopy(skb);
1480 
1481 	if (uarg) {
1482 		if (skb_zcopy_is_nouarg(skb)) {
1483 			/* no notification callback */
1484 		} else if (uarg->callback == sock_zerocopy_callback) {
1485 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1486 			sock_zerocopy_put(uarg);
1487 		} else {
1488 			uarg->callback(uarg, zerocopy);
1489 		}
1490 
1491 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1492 	}
1493 }
1494 
1495 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1496 static inline void skb_zcopy_abort(struct sk_buff *skb)
1497 {
1498 	struct ubuf_info *uarg = skb_zcopy(skb);
1499 
1500 	if (uarg) {
1501 		sock_zerocopy_put_abort(uarg, false);
1502 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1503 	}
1504 }
1505 
skb_mark_not_on_list(struct sk_buff * skb)1506 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1507 {
1508 	skb->next = NULL;
1509 }
1510 
1511 /* Iterate through singly-linked GSO fragments of an skb. */
1512 #define skb_list_walk_safe(first, skb, next_skb)                               \
1513 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1514 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1515 
skb_list_del_init(struct sk_buff * skb)1516 static inline void skb_list_del_init(struct sk_buff *skb)
1517 {
1518 	__list_del_entry(&skb->list);
1519 	skb_mark_not_on_list(skb);
1520 }
1521 
1522 /**
1523  *	skb_queue_empty - check if a queue is empty
1524  *	@list: queue head
1525  *
1526  *	Returns true if the queue is empty, false otherwise.
1527  */
skb_queue_empty(const struct sk_buff_head * list)1528 static inline int skb_queue_empty(const struct sk_buff_head *list)
1529 {
1530 	return list->next == (const struct sk_buff *) list;
1531 }
1532 
1533 /**
1534  *	skb_queue_empty_lockless - check if a queue is empty
1535  *	@list: queue head
1536  *
1537  *	Returns true if the queue is empty, false otherwise.
1538  *	This variant can be used in lockless contexts.
1539  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1540 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1541 {
1542 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1543 }
1544 
1545 
1546 /**
1547  *	skb_queue_is_last - check if skb is the last entry in the queue
1548  *	@list: queue head
1549  *	@skb: buffer
1550  *
1551  *	Returns true if @skb is the last buffer on the list.
1552  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1553 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1554 				     const struct sk_buff *skb)
1555 {
1556 	return skb->next == (const struct sk_buff *) list;
1557 }
1558 
1559 /**
1560  *	skb_queue_is_first - check if skb is the first entry in the queue
1561  *	@list: queue head
1562  *	@skb: buffer
1563  *
1564  *	Returns true if @skb is the first buffer on the list.
1565  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1566 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1567 				      const struct sk_buff *skb)
1568 {
1569 	return skb->prev == (const struct sk_buff *) list;
1570 }
1571 
1572 /**
1573  *	skb_queue_next - return the next packet in the queue
1574  *	@list: queue head
1575  *	@skb: current buffer
1576  *
1577  *	Return the next packet in @list after @skb.  It is only valid to
1578  *	call this if skb_queue_is_last() evaluates to false.
1579  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1580 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1581 					     const struct sk_buff *skb)
1582 {
1583 	/* This BUG_ON may seem severe, but if we just return then we
1584 	 * are going to dereference garbage.
1585 	 */
1586 	BUG_ON(skb_queue_is_last(list, skb));
1587 	return skb->next;
1588 }
1589 
1590 /**
1591  *	skb_queue_prev - return the prev packet in the queue
1592  *	@list: queue head
1593  *	@skb: current buffer
1594  *
1595  *	Return the prev packet in @list before @skb.  It is only valid to
1596  *	call this if skb_queue_is_first() evaluates to false.
1597  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1598 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1599 					     const struct sk_buff *skb)
1600 {
1601 	/* This BUG_ON may seem severe, but if we just return then we
1602 	 * are going to dereference garbage.
1603 	 */
1604 	BUG_ON(skb_queue_is_first(list, skb));
1605 	return skb->prev;
1606 }
1607 
1608 /**
1609  *	skb_get - reference buffer
1610  *	@skb: buffer to reference
1611  *
1612  *	Makes another reference to a socket buffer and returns a pointer
1613  *	to the buffer.
1614  */
skb_get(struct sk_buff * skb)1615 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1616 {
1617 	refcount_inc(&skb->users);
1618 	return skb;
1619 }
1620 
1621 /*
1622  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1623  */
1624 
1625 /**
1626  *	skb_cloned - is the buffer a clone
1627  *	@skb: buffer to check
1628  *
1629  *	Returns true if the buffer was generated with skb_clone() and is
1630  *	one of multiple shared copies of the buffer. Cloned buffers are
1631  *	shared data so must not be written to under normal circumstances.
1632  */
skb_cloned(const struct sk_buff * skb)1633 static inline int skb_cloned(const struct sk_buff *skb)
1634 {
1635 	return skb->cloned &&
1636 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1637 }
1638 
skb_unclone(struct sk_buff * skb,gfp_t pri)1639 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1640 {
1641 	might_sleep_if(gfpflags_allow_blocking(pri));
1642 
1643 	if (skb_cloned(skb))
1644 		return pskb_expand_head(skb, 0, 0, pri);
1645 
1646 	return 0;
1647 }
1648 
1649 /**
1650  *	skb_header_cloned - is the header a clone
1651  *	@skb: buffer to check
1652  *
1653  *	Returns true if modifying the header part of the buffer requires
1654  *	the data to be copied.
1655  */
skb_header_cloned(const struct sk_buff * skb)1656 static inline int skb_header_cloned(const struct sk_buff *skb)
1657 {
1658 	int dataref;
1659 
1660 	if (!skb->cloned)
1661 		return 0;
1662 
1663 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1664 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1665 	return dataref != 1;
1666 }
1667 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1668 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1669 {
1670 	might_sleep_if(gfpflags_allow_blocking(pri));
1671 
1672 	if (skb_header_cloned(skb))
1673 		return pskb_expand_head(skb, 0, 0, pri);
1674 
1675 	return 0;
1676 }
1677 
1678 /**
1679  *	__skb_header_release - release reference to header
1680  *	@skb: buffer to operate on
1681  */
__skb_header_release(struct sk_buff * skb)1682 static inline void __skb_header_release(struct sk_buff *skb)
1683 {
1684 	skb->nohdr = 1;
1685 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1686 }
1687 
1688 
1689 /**
1690  *	skb_shared - is the buffer shared
1691  *	@skb: buffer to check
1692  *
1693  *	Returns true if more than one person has a reference to this
1694  *	buffer.
1695  */
skb_shared(const struct sk_buff * skb)1696 static inline int skb_shared(const struct sk_buff *skb)
1697 {
1698 	return refcount_read(&skb->users) != 1;
1699 }
1700 
1701 /**
1702  *	skb_share_check - check if buffer is shared and if so clone it
1703  *	@skb: buffer to check
1704  *	@pri: priority for memory allocation
1705  *
1706  *	If the buffer is shared the buffer is cloned and the old copy
1707  *	drops a reference. A new clone with a single reference is returned.
1708  *	If the buffer is not shared the original buffer is returned. When
1709  *	being called from interrupt status or with spinlocks held pri must
1710  *	be GFP_ATOMIC.
1711  *
1712  *	NULL is returned on a memory allocation failure.
1713  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1714 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1715 {
1716 	might_sleep_if(gfpflags_allow_blocking(pri));
1717 	if (skb_shared(skb)) {
1718 		struct sk_buff *nskb = skb_clone(skb, pri);
1719 
1720 		if (likely(nskb))
1721 			consume_skb(skb);
1722 		else
1723 			kfree_skb(skb);
1724 		skb = nskb;
1725 	}
1726 	return skb;
1727 }
1728 
1729 /*
1730  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1731  *	packets to handle cases where we have a local reader and forward
1732  *	and a couple of other messy ones. The normal one is tcpdumping
1733  *	a packet thats being forwarded.
1734  */
1735 
1736 /**
1737  *	skb_unshare - make a copy of a shared buffer
1738  *	@skb: buffer to check
1739  *	@pri: priority for memory allocation
1740  *
1741  *	If the socket buffer is a clone then this function creates a new
1742  *	copy of the data, drops a reference count on the old copy and returns
1743  *	the new copy with the reference count at 1. If the buffer is not a clone
1744  *	the original buffer is returned. When called with a spinlock held or
1745  *	from interrupt state @pri must be %GFP_ATOMIC
1746  *
1747  *	%NULL is returned on a memory allocation failure.
1748  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1749 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1750 					  gfp_t pri)
1751 {
1752 	might_sleep_if(gfpflags_allow_blocking(pri));
1753 	if (skb_cloned(skb)) {
1754 		struct sk_buff *nskb = skb_copy(skb, pri);
1755 
1756 		/* Free our shared copy */
1757 		if (likely(nskb))
1758 			consume_skb(skb);
1759 		else
1760 			kfree_skb(skb);
1761 		skb = nskb;
1762 	}
1763 	return skb;
1764 }
1765 
1766 /**
1767  *	skb_peek - peek at the head of an &sk_buff_head
1768  *	@list_: list to peek at
1769  *
1770  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1771  *	be careful with this one. A peek leaves the buffer on the
1772  *	list and someone else may run off with it. You must hold
1773  *	the appropriate locks or have a private queue to do this.
1774  *
1775  *	Returns %NULL for an empty list or a pointer to the head element.
1776  *	The reference count is not incremented and the reference is therefore
1777  *	volatile. Use with caution.
1778  */
skb_peek(const struct sk_buff_head * list_)1779 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1780 {
1781 	struct sk_buff *skb = list_->next;
1782 
1783 	if (skb == (struct sk_buff *)list_)
1784 		skb = NULL;
1785 	return skb;
1786 }
1787 
1788 /**
1789  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1790  *	@list_: list to peek at
1791  *
1792  *	Like skb_peek(), but the caller knows that the list is not empty.
1793  */
__skb_peek(const struct sk_buff_head * list_)1794 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1795 {
1796 	return list_->next;
1797 }
1798 
1799 /**
1800  *	skb_peek_next - peek skb following the given one from a queue
1801  *	@skb: skb to start from
1802  *	@list_: list to peek at
1803  *
1804  *	Returns %NULL when the end of the list is met or a pointer to the
1805  *	next element. The reference count is not incremented and the
1806  *	reference is therefore volatile. Use with caution.
1807  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1808 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1809 		const struct sk_buff_head *list_)
1810 {
1811 	struct sk_buff *next = skb->next;
1812 
1813 	if (next == (struct sk_buff *)list_)
1814 		next = NULL;
1815 	return next;
1816 }
1817 
1818 /**
1819  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1820  *	@list_: list to peek at
1821  *
1822  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1823  *	be careful with this one. A peek leaves the buffer on the
1824  *	list and someone else may run off with it. You must hold
1825  *	the appropriate locks or have a private queue to do this.
1826  *
1827  *	Returns %NULL for an empty list or a pointer to the tail element.
1828  *	The reference count is not incremented and the reference is therefore
1829  *	volatile. Use with caution.
1830  */
skb_peek_tail(const struct sk_buff_head * list_)1831 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1832 {
1833 	struct sk_buff *skb = READ_ONCE(list_->prev);
1834 
1835 	if (skb == (struct sk_buff *)list_)
1836 		skb = NULL;
1837 	return skb;
1838 
1839 }
1840 
1841 /**
1842  *	skb_queue_len	- get queue length
1843  *	@list_: list to measure
1844  *
1845  *	Return the length of an &sk_buff queue.
1846  */
skb_queue_len(const struct sk_buff_head * list_)1847 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1848 {
1849 	return list_->qlen;
1850 }
1851 
1852 /**
1853  *	skb_queue_len_lockless	- get queue length
1854  *	@list_: list to measure
1855  *
1856  *	Return the length of an &sk_buff queue.
1857  *	This variant can be used in lockless contexts.
1858  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1859 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1860 {
1861 	return READ_ONCE(list_->qlen);
1862 }
1863 
1864 /**
1865  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1866  *	@list: queue to initialize
1867  *
1868  *	This initializes only the list and queue length aspects of
1869  *	an sk_buff_head object.  This allows to initialize the list
1870  *	aspects of an sk_buff_head without reinitializing things like
1871  *	the spinlock.  It can also be used for on-stack sk_buff_head
1872  *	objects where the spinlock is known to not be used.
1873  */
__skb_queue_head_init(struct sk_buff_head * list)1874 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1875 {
1876 	list->prev = list->next = (struct sk_buff *)list;
1877 	list->qlen = 0;
1878 }
1879 
1880 /*
1881  * This function creates a split out lock class for each invocation;
1882  * this is needed for now since a whole lot of users of the skb-queue
1883  * infrastructure in drivers have different locking usage (in hardirq)
1884  * than the networking core (in softirq only). In the long run either the
1885  * network layer or drivers should need annotation to consolidate the
1886  * main types of usage into 3 classes.
1887  */
skb_queue_head_init(struct sk_buff_head * list)1888 static inline void skb_queue_head_init(struct sk_buff_head *list)
1889 {
1890 	spin_lock_init(&list->lock);
1891 	__skb_queue_head_init(list);
1892 }
1893 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1894 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1895 		struct lock_class_key *class)
1896 {
1897 	skb_queue_head_init(list);
1898 	lockdep_set_class(&list->lock, class);
1899 }
1900 
1901 /*
1902  *	Insert an sk_buff on a list.
1903  *
1904  *	The "__skb_xxxx()" functions are the non-atomic ones that
1905  *	can only be called with interrupts disabled.
1906  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1907 static inline void __skb_insert(struct sk_buff *newsk,
1908 				struct sk_buff *prev, struct sk_buff *next,
1909 				struct sk_buff_head *list)
1910 {
1911 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1912 	 * for the opposite READ_ONCE()
1913 	 */
1914 	WRITE_ONCE(newsk->next, next);
1915 	WRITE_ONCE(newsk->prev, prev);
1916 	WRITE_ONCE(next->prev, newsk);
1917 	WRITE_ONCE(prev->next, newsk);
1918 	WRITE_ONCE(list->qlen, list->qlen + 1);
1919 }
1920 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1921 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1922 				      struct sk_buff *prev,
1923 				      struct sk_buff *next)
1924 {
1925 	struct sk_buff *first = list->next;
1926 	struct sk_buff *last = list->prev;
1927 
1928 	WRITE_ONCE(first->prev, prev);
1929 	WRITE_ONCE(prev->next, first);
1930 
1931 	WRITE_ONCE(last->next, next);
1932 	WRITE_ONCE(next->prev, last);
1933 }
1934 
1935 /**
1936  *	skb_queue_splice - join two skb lists, this is designed for stacks
1937  *	@list: the new list to add
1938  *	@head: the place to add it in the first list
1939  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1940 static inline void skb_queue_splice(const struct sk_buff_head *list,
1941 				    struct sk_buff_head *head)
1942 {
1943 	if (!skb_queue_empty(list)) {
1944 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1945 		head->qlen += list->qlen;
1946 	}
1947 }
1948 
1949 /**
1950  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1951  *	@list: the new list to add
1952  *	@head: the place to add it in the first list
1953  *
1954  *	The list at @list is reinitialised
1955  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1956 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1957 					 struct sk_buff_head *head)
1958 {
1959 	if (!skb_queue_empty(list)) {
1960 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1961 		head->qlen += list->qlen;
1962 		__skb_queue_head_init(list);
1963 	}
1964 }
1965 
1966 /**
1967  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1968  *	@list: the new list to add
1969  *	@head: the place to add it in the first list
1970  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1971 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1972 					 struct sk_buff_head *head)
1973 {
1974 	if (!skb_queue_empty(list)) {
1975 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1976 		head->qlen += list->qlen;
1977 	}
1978 }
1979 
1980 /**
1981  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1982  *	@list: the new list to add
1983  *	@head: the place to add it in the first list
1984  *
1985  *	Each of the lists is a queue.
1986  *	The list at @list is reinitialised
1987  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1988 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1989 					      struct sk_buff_head *head)
1990 {
1991 	if (!skb_queue_empty(list)) {
1992 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1993 		head->qlen += list->qlen;
1994 		__skb_queue_head_init(list);
1995 	}
1996 }
1997 
1998 /**
1999  *	__skb_queue_after - queue a buffer at the list head
2000  *	@list: list to use
2001  *	@prev: place after this buffer
2002  *	@newsk: buffer to queue
2003  *
2004  *	Queue a buffer int the middle of a list. This function takes no locks
2005  *	and you must therefore hold required locks before calling it.
2006  *
2007  *	A buffer cannot be placed on two lists at the same time.
2008  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2009 static inline void __skb_queue_after(struct sk_buff_head *list,
2010 				     struct sk_buff *prev,
2011 				     struct sk_buff *newsk)
2012 {
2013 	__skb_insert(newsk, prev, prev->next, list);
2014 }
2015 
2016 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2017 		struct sk_buff_head *list);
2018 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2019 static inline void __skb_queue_before(struct sk_buff_head *list,
2020 				      struct sk_buff *next,
2021 				      struct sk_buff *newsk)
2022 {
2023 	__skb_insert(newsk, next->prev, next, list);
2024 }
2025 
2026 /**
2027  *	__skb_queue_head - queue a buffer at the list head
2028  *	@list: list to use
2029  *	@newsk: buffer to queue
2030  *
2031  *	Queue a buffer at the start of a list. This function takes no locks
2032  *	and you must therefore hold required locks before calling it.
2033  *
2034  *	A buffer cannot be placed on two lists at the same time.
2035  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2036 static inline void __skb_queue_head(struct sk_buff_head *list,
2037 				    struct sk_buff *newsk)
2038 {
2039 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2040 }
2041 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2042 
2043 /**
2044  *	__skb_queue_tail - queue a buffer at the list tail
2045  *	@list: list to use
2046  *	@newsk: buffer to queue
2047  *
2048  *	Queue a buffer at the end of a list. This function takes no locks
2049  *	and you must therefore hold required locks before calling it.
2050  *
2051  *	A buffer cannot be placed on two lists at the same time.
2052  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2053 static inline void __skb_queue_tail(struct sk_buff_head *list,
2054 				   struct sk_buff *newsk)
2055 {
2056 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2057 }
2058 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2059 
2060 /*
2061  * remove sk_buff from list. _Must_ be called atomically, and with
2062  * the list known..
2063  */
2064 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2065 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2066 {
2067 	struct sk_buff *next, *prev;
2068 
2069 	WRITE_ONCE(list->qlen, list->qlen - 1);
2070 	next	   = skb->next;
2071 	prev	   = skb->prev;
2072 	skb->next  = skb->prev = NULL;
2073 	WRITE_ONCE(next->prev, prev);
2074 	WRITE_ONCE(prev->next, next);
2075 }
2076 
2077 /**
2078  *	__skb_dequeue - remove from the head of the queue
2079  *	@list: list to dequeue from
2080  *
2081  *	Remove the head of the list. This function does not take any locks
2082  *	so must be used with appropriate locks held only. The head item is
2083  *	returned or %NULL if the list is empty.
2084  */
__skb_dequeue(struct sk_buff_head * list)2085 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2086 {
2087 	struct sk_buff *skb = skb_peek(list);
2088 	if (skb)
2089 		__skb_unlink(skb, list);
2090 	return skb;
2091 }
2092 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2093 
2094 /**
2095  *	__skb_dequeue_tail - remove from the tail of the queue
2096  *	@list: list to dequeue from
2097  *
2098  *	Remove the tail of the list. This function does not take any locks
2099  *	so must be used with appropriate locks held only. The tail item is
2100  *	returned or %NULL if the list is empty.
2101  */
__skb_dequeue_tail(struct sk_buff_head * list)2102 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2103 {
2104 	struct sk_buff *skb = skb_peek_tail(list);
2105 	if (skb)
2106 		__skb_unlink(skb, list);
2107 	return skb;
2108 }
2109 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2110 
2111 
skb_is_nonlinear(const struct sk_buff * skb)2112 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2113 {
2114 	return skb->data_len;
2115 }
2116 
skb_headlen(const struct sk_buff * skb)2117 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2118 {
2119 	return skb->len - skb->data_len;
2120 }
2121 
__skb_pagelen(const struct sk_buff * skb)2122 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2123 {
2124 	unsigned int i, len = 0;
2125 
2126 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2127 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2128 	return len;
2129 }
2130 
skb_pagelen(const struct sk_buff * skb)2131 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2132 {
2133 	return skb_headlen(skb) + __skb_pagelen(skb);
2134 }
2135 
2136 /**
2137  * __skb_fill_page_desc - initialise a paged fragment in an skb
2138  * @skb: buffer containing fragment to be initialised
2139  * @i: paged fragment index to initialise
2140  * @page: the page to use for this fragment
2141  * @off: the offset to the data with @page
2142  * @size: the length of the data
2143  *
2144  * Initialises the @i'th fragment of @skb to point to &size bytes at
2145  * offset @off within @page.
2146  *
2147  * Does not take any additional reference on the fragment.
2148  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2149 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2150 					struct page *page, int off, int size)
2151 {
2152 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2153 
2154 	/*
2155 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2156 	 * that not all callers have unique ownership of the page but rely
2157 	 * on page_is_pfmemalloc doing the right thing(tm).
2158 	 */
2159 	frag->bv_page		  = page;
2160 	frag->bv_offset		  = off;
2161 	skb_frag_size_set(frag, size);
2162 
2163 	page = compound_head(page);
2164 	if (page_is_pfmemalloc(page))
2165 		skb->pfmemalloc	= true;
2166 }
2167 
2168 /**
2169  * skb_fill_page_desc - initialise a paged fragment in an skb
2170  * @skb: buffer containing fragment to be initialised
2171  * @i: paged fragment index to initialise
2172  * @page: the page to use for this fragment
2173  * @off: the offset to the data with @page
2174  * @size: the length of the data
2175  *
2176  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2177  * @skb to point to @size bytes at offset @off within @page. In
2178  * addition updates @skb such that @i is the last fragment.
2179  *
2180  * Does not take any additional reference on the fragment.
2181  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2182 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2183 				      struct page *page, int off, int size)
2184 {
2185 	__skb_fill_page_desc(skb, i, page, off, size);
2186 	skb_shinfo(skb)->nr_frags = i + 1;
2187 }
2188 
2189 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2190 		     int size, unsigned int truesize);
2191 
2192 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2193 			  unsigned int truesize);
2194 
2195 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2196 
2197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2198 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2199 {
2200 	return skb->head + skb->tail;
2201 }
2202 
skb_reset_tail_pointer(struct sk_buff * skb)2203 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2204 {
2205 	skb->tail = skb->data - skb->head;
2206 }
2207 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2208 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2209 {
2210 	skb_reset_tail_pointer(skb);
2211 	skb->tail += offset;
2212 }
2213 
2214 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2215 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2216 {
2217 	return skb->tail;
2218 }
2219 
skb_reset_tail_pointer(struct sk_buff * skb)2220 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2221 {
2222 	skb->tail = skb->data;
2223 }
2224 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2225 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2226 {
2227 	skb->tail = skb->data + offset;
2228 }
2229 
2230 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2231 
skb_assert_len(struct sk_buff * skb)2232 static inline void skb_assert_len(struct sk_buff *skb)
2233 {
2234 #ifdef CONFIG_DEBUG_NET
2235 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2236 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2237 #endif /* CONFIG_DEBUG_NET */
2238 }
2239 
2240 /*
2241  *	Add data to an sk_buff
2242  */
2243 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2244 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2245 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2246 {
2247 	void *tmp = skb_tail_pointer(skb);
2248 	SKB_LINEAR_ASSERT(skb);
2249 	skb->tail += len;
2250 	skb->len  += len;
2251 	return tmp;
2252 }
2253 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2254 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2255 {
2256 	void *tmp = __skb_put(skb, len);
2257 
2258 	memset(tmp, 0, len);
2259 	return tmp;
2260 }
2261 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2262 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2263 				   unsigned int len)
2264 {
2265 	void *tmp = __skb_put(skb, len);
2266 
2267 	memcpy(tmp, data, len);
2268 	return tmp;
2269 }
2270 
__skb_put_u8(struct sk_buff * skb,u8 val)2271 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2272 {
2273 	*(u8 *)__skb_put(skb, 1) = val;
2274 }
2275 
skb_put_zero(struct sk_buff * skb,unsigned int len)2276 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2277 {
2278 	void *tmp = skb_put(skb, len);
2279 
2280 	memset(tmp, 0, len);
2281 
2282 	return tmp;
2283 }
2284 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2285 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2286 				 unsigned int len)
2287 {
2288 	void *tmp = skb_put(skb, len);
2289 
2290 	memcpy(tmp, data, len);
2291 
2292 	return tmp;
2293 }
2294 
skb_put_u8(struct sk_buff * skb,u8 val)2295 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2296 {
2297 	*(u8 *)skb_put(skb, 1) = val;
2298 }
2299 
2300 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2301 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2302 {
2303 	skb->data -= len;
2304 	skb->len  += len;
2305 	return skb->data;
2306 }
2307 
2308 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2309 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2310 {
2311 	skb->len -= len;
2312 	BUG_ON(skb->len < skb->data_len);
2313 	return skb->data += len;
2314 }
2315 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2316 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2317 {
2318 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2319 }
2320 
2321 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2322 
__pskb_pull(struct sk_buff * skb,unsigned int len)2323 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2324 {
2325 	if (len > skb_headlen(skb) &&
2326 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2327 		return NULL;
2328 	skb->len -= len;
2329 	return skb->data += len;
2330 }
2331 
pskb_pull(struct sk_buff * skb,unsigned int len)2332 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2333 {
2334 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2335 }
2336 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2337 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2338 {
2339 	if (likely(len <= skb_headlen(skb)))
2340 		return true;
2341 	if (unlikely(len > skb->len))
2342 		return false;
2343 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2344 }
2345 
2346 void skb_condense(struct sk_buff *skb);
2347 
2348 /**
2349  *	skb_headroom - bytes at buffer head
2350  *	@skb: buffer to check
2351  *
2352  *	Return the number of bytes of free space at the head of an &sk_buff.
2353  */
skb_headroom(const struct sk_buff * skb)2354 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2355 {
2356 	return skb->data - skb->head;
2357 }
2358 
2359 /**
2360  *	skb_tailroom - bytes at buffer end
2361  *	@skb: buffer to check
2362  *
2363  *	Return the number of bytes of free space at the tail of an sk_buff
2364  */
skb_tailroom(const struct sk_buff * skb)2365 static inline int skb_tailroom(const struct sk_buff *skb)
2366 {
2367 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2368 }
2369 
2370 /**
2371  *	skb_availroom - bytes at buffer end
2372  *	@skb: buffer to check
2373  *
2374  *	Return the number of bytes of free space at the tail of an sk_buff
2375  *	allocated by sk_stream_alloc()
2376  */
skb_availroom(const struct sk_buff * skb)2377 static inline int skb_availroom(const struct sk_buff *skb)
2378 {
2379 	if (skb_is_nonlinear(skb))
2380 		return 0;
2381 
2382 	return skb->end - skb->tail - skb->reserved_tailroom;
2383 }
2384 
2385 /**
2386  *	skb_reserve - adjust headroom
2387  *	@skb: buffer to alter
2388  *	@len: bytes to move
2389  *
2390  *	Increase the headroom of an empty &sk_buff by reducing the tail
2391  *	room. This is only allowed for an empty buffer.
2392  */
skb_reserve(struct sk_buff * skb,int len)2393 static inline void skb_reserve(struct sk_buff *skb, int len)
2394 {
2395 	skb->data += len;
2396 	skb->tail += len;
2397 }
2398 
2399 /**
2400  *	skb_tailroom_reserve - adjust reserved_tailroom
2401  *	@skb: buffer to alter
2402  *	@mtu: maximum amount of headlen permitted
2403  *	@needed_tailroom: minimum amount of reserved_tailroom
2404  *
2405  *	Set reserved_tailroom so that headlen can be as large as possible but
2406  *	not larger than mtu and tailroom cannot be smaller than
2407  *	needed_tailroom.
2408  *	The required headroom should already have been reserved before using
2409  *	this function.
2410  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2411 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2412 					unsigned int needed_tailroom)
2413 {
2414 	SKB_LINEAR_ASSERT(skb);
2415 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2416 		/* use at most mtu */
2417 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2418 	else
2419 		/* use up to all available space */
2420 		skb->reserved_tailroom = needed_tailroom;
2421 }
2422 
2423 #define ENCAP_TYPE_ETHER	0
2424 #define ENCAP_TYPE_IPPROTO	1
2425 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2426 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2427 					  __be16 protocol)
2428 {
2429 	skb->inner_protocol = protocol;
2430 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2431 }
2432 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2433 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2434 					 __u8 ipproto)
2435 {
2436 	skb->inner_ipproto = ipproto;
2437 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2438 }
2439 
skb_reset_inner_headers(struct sk_buff * skb)2440 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2441 {
2442 	skb->inner_mac_header = skb->mac_header;
2443 	skb->inner_network_header = skb->network_header;
2444 	skb->inner_transport_header = skb->transport_header;
2445 }
2446 
skb_reset_mac_len(struct sk_buff * skb)2447 static inline void skb_reset_mac_len(struct sk_buff *skb)
2448 {
2449 	skb->mac_len = skb->network_header - skb->mac_header;
2450 }
2451 
skb_inner_transport_header(const struct sk_buff * skb)2452 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2453 							*skb)
2454 {
2455 	return skb->head + skb->inner_transport_header;
2456 }
2457 
skb_inner_transport_offset(const struct sk_buff * skb)2458 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2459 {
2460 	return skb_inner_transport_header(skb) - skb->data;
2461 }
2462 
skb_reset_inner_transport_header(struct sk_buff * skb)2463 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2464 {
2465 	skb->inner_transport_header = skb->data - skb->head;
2466 }
2467 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2468 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2469 						   const int offset)
2470 {
2471 	skb_reset_inner_transport_header(skb);
2472 	skb->inner_transport_header += offset;
2473 }
2474 
skb_inner_network_header(const struct sk_buff * skb)2475 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2476 {
2477 	return skb->head + skb->inner_network_header;
2478 }
2479 
skb_reset_inner_network_header(struct sk_buff * skb)2480 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2481 {
2482 	skb->inner_network_header = skb->data - skb->head;
2483 }
2484 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2485 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2486 						const int offset)
2487 {
2488 	skb_reset_inner_network_header(skb);
2489 	skb->inner_network_header += offset;
2490 }
2491 
skb_inner_mac_header(const struct sk_buff * skb)2492 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2493 {
2494 	return skb->head + skb->inner_mac_header;
2495 }
2496 
skb_reset_inner_mac_header(struct sk_buff * skb)2497 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2498 {
2499 	skb->inner_mac_header = skb->data - skb->head;
2500 }
2501 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2502 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2503 					    const int offset)
2504 {
2505 	skb_reset_inner_mac_header(skb);
2506 	skb->inner_mac_header += offset;
2507 }
skb_transport_header_was_set(const struct sk_buff * skb)2508 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2509 {
2510 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2511 }
2512 
skb_transport_header(const struct sk_buff * skb)2513 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2514 {
2515 	return skb->head + skb->transport_header;
2516 }
2517 
skb_reset_transport_header(struct sk_buff * skb)2518 static inline void skb_reset_transport_header(struct sk_buff *skb)
2519 {
2520 	skb->transport_header = skb->data - skb->head;
2521 }
2522 
skb_set_transport_header(struct sk_buff * skb,const int offset)2523 static inline void skb_set_transport_header(struct sk_buff *skb,
2524 					    const int offset)
2525 {
2526 	skb_reset_transport_header(skb);
2527 	skb->transport_header += offset;
2528 }
2529 
skb_network_header(const struct sk_buff * skb)2530 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2531 {
2532 	return skb->head + skb->network_header;
2533 }
2534 
skb_reset_network_header(struct sk_buff * skb)2535 static inline void skb_reset_network_header(struct sk_buff *skb)
2536 {
2537 	skb->network_header = skb->data - skb->head;
2538 }
2539 
skb_set_network_header(struct sk_buff * skb,const int offset)2540 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2541 {
2542 	skb_reset_network_header(skb);
2543 	skb->network_header += offset;
2544 }
2545 
skb_mac_header(const struct sk_buff * skb)2546 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2547 {
2548 	return skb->head + skb->mac_header;
2549 }
2550 
skb_mac_offset(const struct sk_buff * skb)2551 static inline int skb_mac_offset(const struct sk_buff *skb)
2552 {
2553 	return skb_mac_header(skb) - skb->data;
2554 }
2555 
skb_mac_header_len(const struct sk_buff * skb)2556 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2557 {
2558 	return skb->network_header - skb->mac_header;
2559 }
2560 
skb_mac_header_was_set(const struct sk_buff * skb)2561 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2562 {
2563 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2564 }
2565 
skb_unset_mac_header(struct sk_buff * skb)2566 static inline void skb_unset_mac_header(struct sk_buff *skb)
2567 {
2568 	skb->mac_header = (typeof(skb->mac_header))~0U;
2569 }
2570 
skb_reset_mac_header(struct sk_buff * skb)2571 static inline void skb_reset_mac_header(struct sk_buff *skb)
2572 {
2573 	skb->mac_header = skb->data - skb->head;
2574 }
2575 
skb_set_mac_header(struct sk_buff * skb,const int offset)2576 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2577 {
2578 	skb_reset_mac_header(skb);
2579 	skb->mac_header += offset;
2580 }
2581 
skb_pop_mac_header(struct sk_buff * skb)2582 static inline void skb_pop_mac_header(struct sk_buff *skb)
2583 {
2584 	skb->mac_header = skb->network_header;
2585 }
2586 
skb_probe_transport_header(struct sk_buff * skb)2587 static inline void skb_probe_transport_header(struct sk_buff *skb)
2588 {
2589 	struct flow_keys_basic keys;
2590 
2591 	if (skb_transport_header_was_set(skb))
2592 		return;
2593 
2594 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2595 					     NULL, 0, 0, 0, 0))
2596 		skb_set_transport_header(skb, keys.control.thoff);
2597 }
2598 
skb_mac_header_rebuild(struct sk_buff * skb)2599 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2600 {
2601 	if (skb_mac_header_was_set(skb)) {
2602 		const unsigned char *old_mac = skb_mac_header(skb);
2603 
2604 		skb_set_mac_header(skb, -skb->mac_len);
2605 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2606 	}
2607 }
2608 
skb_checksum_start_offset(const struct sk_buff * skb)2609 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2610 {
2611 	return skb->csum_start - skb_headroom(skb);
2612 }
2613 
skb_checksum_start(const struct sk_buff * skb)2614 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2615 {
2616 	return skb->head + skb->csum_start;
2617 }
2618 
skb_transport_offset(const struct sk_buff * skb)2619 static inline int skb_transport_offset(const struct sk_buff *skb)
2620 {
2621 	return skb_transport_header(skb) - skb->data;
2622 }
2623 
skb_network_header_len(const struct sk_buff * skb)2624 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2625 {
2626 	return skb->transport_header - skb->network_header;
2627 }
2628 
skb_inner_network_header_len(const struct sk_buff * skb)2629 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2630 {
2631 	return skb->inner_transport_header - skb->inner_network_header;
2632 }
2633 
skb_network_offset(const struct sk_buff * skb)2634 static inline int skb_network_offset(const struct sk_buff *skb)
2635 {
2636 	return skb_network_header(skb) - skb->data;
2637 }
2638 
skb_inner_network_offset(const struct sk_buff * skb)2639 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2640 {
2641 	return skb_inner_network_header(skb) - skb->data;
2642 }
2643 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2644 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2645 {
2646 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2647 }
2648 
2649 /*
2650  * CPUs often take a performance hit when accessing unaligned memory
2651  * locations. The actual performance hit varies, it can be small if the
2652  * hardware handles it or large if we have to take an exception and fix it
2653  * in software.
2654  *
2655  * Since an ethernet header is 14 bytes network drivers often end up with
2656  * the IP header at an unaligned offset. The IP header can be aligned by
2657  * shifting the start of the packet by 2 bytes. Drivers should do this
2658  * with:
2659  *
2660  * skb_reserve(skb, NET_IP_ALIGN);
2661  *
2662  * The downside to this alignment of the IP header is that the DMA is now
2663  * unaligned. On some architectures the cost of an unaligned DMA is high
2664  * and this cost outweighs the gains made by aligning the IP header.
2665  *
2666  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2667  * to be overridden.
2668  */
2669 #ifndef NET_IP_ALIGN
2670 #define NET_IP_ALIGN	2
2671 #endif
2672 
2673 /*
2674  * The networking layer reserves some headroom in skb data (via
2675  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2676  * the header has to grow. In the default case, if the header has to grow
2677  * 32 bytes or less we avoid the reallocation.
2678  *
2679  * Unfortunately this headroom changes the DMA alignment of the resulting
2680  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2681  * on some architectures. An architecture can override this value,
2682  * perhaps setting it to a cacheline in size (since that will maintain
2683  * cacheline alignment of the DMA). It must be a power of 2.
2684  *
2685  * Various parts of the networking layer expect at least 32 bytes of
2686  * headroom, you should not reduce this.
2687  *
2688  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2689  * to reduce average number of cache lines per packet.
2690  * get_rps_cpu() for example only access one 64 bytes aligned block :
2691  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2692  */
2693 #ifndef NET_SKB_PAD
2694 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2695 #endif
2696 
2697 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2698 
__skb_set_length(struct sk_buff * skb,unsigned int len)2699 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2700 {
2701 	if (WARN_ON(skb_is_nonlinear(skb)))
2702 		return;
2703 	skb->len = len;
2704 	skb_set_tail_pointer(skb, len);
2705 }
2706 
__skb_trim(struct sk_buff * skb,unsigned int len)2707 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2708 {
2709 	__skb_set_length(skb, len);
2710 }
2711 
2712 void skb_trim(struct sk_buff *skb, unsigned int len);
2713 
__pskb_trim(struct sk_buff * skb,unsigned int len)2714 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2715 {
2716 	if (skb->data_len)
2717 		return ___pskb_trim(skb, len);
2718 	__skb_trim(skb, len);
2719 	return 0;
2720 }
2721 
pskb_trim(struct sk_buff * skb,unsigned int len)2722 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2723 {
2724 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2725 }
2726 
2727 /**
2728  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2729  *	@skb: buffer to alter
2730  *	@len: new length
2731  *
2732  *	This is identical to pskb_trim except that the caller knows that
2733  *	the skb is not cloned so we should never get an error due to out-
2734  *	of-memory.
2735  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2736 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2737 {
2738 	int err = pskb_trim(skb, len);
2739 	BUG_ON(err);
2740 }
2741 
__skb_grow(struct sk_buff * skb,unsigned int len)2742 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2743 {
2744 	unsigned int diff = len - skb->len;
2745 
2746 	if (skb_tailroom(skb) < diff) {
2747 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2748 					   GFP_ATOMIC);
2749 		if (ret)
2750 			return ret;
2751 	}
2752 	__skb_set_length(skb, len);
2753 	return 0;
2754 }
2755 
2756 /**
2757  *	skb_orphan - orphan a buffer
2758  *	@skb: buffer to orphan
2759  *
2760  *	If a buffer currently has an owner then we call the owner's
2761  *	destructor function and make the @skb unowned. The buffer continues
2762  *	to exist but is no longer charged to its former owner.
2763  */
skb_orphan(struct sk_buff * skb)2764 static inline void skb_orphan(struct sk_buff *skb)
2765 {
2766 	if (skb->destructor) {
2767 		skb->destructor(skb);
2768 		skb->destructor = NULL;
2769 		skb->sk		= NULL;
2770 	} else {
2771 		BUG_ON(skb->sk);
2772 	}
2773 }
2774 
2775 /**
2776  *	skb_orphan_frags - orphan the frags contained in a buffer
2777  *	@skb: buffer to orphan frags from
2778  *	@gfp_mask: allocation mask for replacement pages
2779  *
2780  *	For each frag in the SKB which needs a destructor (i.e. has an
2781  *	owner) create a copy of that frag and release the original
2782  *	page by calling the destructor.
2783  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2784 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2785 {
2786 	if (likely(!skb_zcopy(skb)))
2787 		return 0;
2788 	if (!skb_zcopy_is_nouarg(skb) &&
2789 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2790 		return 0;
2791 	return skb_copy_ubufs(skb, gfp_mask);
2792 }
2793 
2794 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2795 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2796 {
2797 	if (likely(!skb_zcopy(skb)))
2798 		return 0;
2799 	return skb_copy_ubufs(skb, gfp_mask);
2800 }
2801 
2802 /**
2803  *	__skb_queue_purge - empty a list
2804  *	@list: list to empty
2805  *
2806  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2807  *	the list and one reference dropped. This function does not take the
2808  *	list lock and the caller must hold the relevant locks to use it.
2809  */
__skb_queue_purge(struct sk_buff_head * list)2810 static inline void __skb_queue_purge(struct sk_buff_head *list)
2811 {
2812 	struct sk_buff *skb;
2813 	while ((skb = __skb_dequeue(list)) != NULL)
2814 		kfree_skb(skb);
2815 }
2816 void skb_queue_purge(struct sk_buff_head *list);
2817 
2818 unsigned int skb_rbtree_purge(struct rb_root *root);
2819 
2820 void *netdev_alloc_frag(unsigned int fragsz);
2821 
2822 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2823 				   gfp_t gfp_mask);
2824 
2825 /**
2826  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2827  *	@dev: network device to receive on
2828  *	@length: length to allocate
2829  *
2830  *	Allocate a new &sk_buff and assign it a usage count of one. The
2831  *	buffer has unspecified headroom built in. Users should allocate
2832  *	the headroom they think they need without accounting for the
2833  *	built in space. The built in space is used for optimisations.
2834  *
2835  *	%NULL is returned if there is no free memory. Although this function
2836  *	allocates memory it can be called from an interrupt.
2837  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2838 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2839 					       unsigned int length)
2840 {
2841 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2842 }
2843 
2844 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2845 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2846 					      gfp_t gfp_mask)
2847 {
2848 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2849 }
2850 
2851 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2852 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2853 {
2854 	return netdev_alloc_skb(NULL, length);
2855 }
2856 
2857 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2858 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2859 		unsigned int length, gfp_t gfp)
2860 {
2861 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2862 
2863 	if (NET_IP_ALIGN && skb)
2864 		skb_reserve(skb, NET_IP_ALIGN);
2865 	return skb;
2866 }
2867 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2868 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2869 		unsigned int length)
2870 {
2871 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2872 }
2873 
skb_free_frag(void * addr)2874 static inline void skb_free_frag(void *addr)
2875 {
2876 	page_frag_free(addr);
2877 }
2878 
2879 void *napi_alloc_frag(unsigned int fragsz);
2880 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2881 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2882 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2883 					     unsigned int length)
2884 {
2885 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2886 }
2887 void napi_consume_skb(struct sk_buff *skb, int budget);
2888 
2889 void __kfree_skb_flush(void);
2890 void __kfree_skb_defer(struct sk_buff *skb);
2891 
2892 /**
2893  * __dev_alloc_pages - allocate page for network Rx
2894  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2895  * @order: size of the allocation
2896  *
2897  * Allocate a new page.
2898  *
2899  * %NULL is returned if there is no free memory.
2900 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2901 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2902 					     unsigned int order)
2903 {
2904 	/* This piece of code contains several assumptions.
2905 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2906 	 * 2.  The expectation is the user wants a compound page.
2907 	 * 3.  If requesting a order 0 page it will not be compound
2908 	 *     due to the check to see if order has a value in prep_new_page
2909 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2910 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2911 	 */
2912 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2913 
2914 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2915 }
2916 
dev_alloc_pages(unsigned int order)2917 static inline struct page *dev_alloc_pages(unsigned int order)
2918 {
2919 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2920 }
2921 
2922 /**
2923  * __dev_alloc_page - allocate a page for network Rx
2924  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2925  *
2926  * Allocate a new page.
2927  *
2928  * %NULL is returned if there is no free memory.
2929  */
__dev_alloc_page(gfp_t gfp_mask)2930 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2931 {
2932 	return __dev_alloc_pages(gfp_mask, 0);
2933 }
2934 
dev_alloc_page(void)2935 static inline struct page *dev_alloc_page(void)
2936 {
2937 	return dev_alloc_pages(0);
2938 }
2939 
2940 /**
2941  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2942  *	@page: The page that was allocated from skb_alloc_page
2943  *	@skb: The skb that may need pfmemalloc set
2944  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2945 static inline void skb_propagate_pfmemalloc(struct page *page,
2946 					     struct sk_buff *skb)
2947 {
2948 	if (page_is_pfmemalloc(page))
2949 		skb->pfmemalloc = true;
2950 }
2951 
2952 /**
2953  * skb_frag_off() - Returns the offset of a skb fragment
2954  * @frag: the paged fragment
2955  */
skb_frag_off(const skb_frag_t * frag)2956 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2957 {
2958 	return frag->bv_offset;
2959 }
2960 
2961 /**
2962  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2963  * @frag: skb fragment
2964  * @delta: value to add
2965  */
skb_frag_off_add(skb_frag_t * frag,int delta)2966 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2967 {
2968 	frag->bv_offset += delta;
2969 }
2970 
2971 /**
2972  * skb_frag_off_set() - Sets the offset of a skb fragment
2973  * @frag: skb fragment
2974  * @offset: offset of fragment
2975  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)2976 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2977 {
2978 	frag->bv_offset = offset;
2979 }
2980 
2981 /**
2982  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2983  * @fragto: skb fragment where offset is set
2984  * @fragfrom: skb fragment offset is copied from
2985  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)2986 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2987 				     const skb_frag_t *fragfrom)
2988 {
2989 	fragto->bv_offset = fragfrom->bv_offset;
2990 }
2991 
2992 /**
2993  * skb_frag_page - retrieve the page referred to by a paged fragment
2994  * @frag: the paged fragment
2995  *
2996  * Returns the &struct page associated with @frag.
2997  */
skb_frag_page(const skb_frag_t * frag)2998 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2999 {
3000 	return frag->bv_page;
3001 }
3002 
3003 /**
3004  * __skb_frag_ref - take an addition reference on a paged fragment.
3005  * @frag: the paged fragment
3006  *
3007  * Takes an additional reference on the paged fragment @frag.
3008  */
__skb_frag_ref(skb_frag_t * frag)3009 static inline void __skb_frag_ref(skb_frag_t *frag)
3010 {
3011 	get_page(skb_frag_page(frag));
3012 }
3013 
3014 /**
3015  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3016  * @skb: the buffer
3017  * @f: the fragment offset.
3018  *
3019  * Takes an additional reference on the @f'th paged fragment of @skb.
3020  */
skb_frag_ref(struct sk_buff * skb,int f)3021 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3022 {
3023 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3024 }
3025 
3026 /**
3027  * __skb_frag_unref - release a reference on a paged fragment.
3028  * @frag: the paged fragment
3029  *
3030  * Releases a reference on the paged fragment @frag.
3031  */
__skb_frag_unref(skb_frag_t * frag)3032 static inline void __skb_frag_unref(skb_frag_t *frag)
3033 {
3034 	put_page(skb_frag_page(frag));
3035 }
3036 
3037 /**
3038  * skb_frag_unref - release a reference on a paged fragment of an skb.
3039  * @skb: the buffer
3040  * @f: the fragment offset
3041  *
3042  * Releases a reference on the @f'th paged fragment of @skb.
3043  */
skb_frag_unref(struct sk_buff * skb,int f)3044 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3045 {
3046 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3047 }
3048 
3049 /**
3050  * skb_frag_address - gets the address of the data contained in a paged fragment
3051  * @frag: the paged fragment buffer
3052  *
3053  * Returns the address of the data within @frag. The page must already
3054  * be mapped.
3055  */
skb_frag_address(const skb_frag_t * frag)3056 static inline void *skb_frag_address(const skb_frag_t *frag)
3057 {
3058 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3059 }
3060 
3061 /**
3062  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3063  * @frag: the paged fragment buffer
3064  *
3065  * Returns the address of the data within @frag. Checks that the page
3066  * is mapped and returns %NULL otherwise.
3067  */
skb_frag_address_safe(const skb_frag_t * frag)3068 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3069 {
3070 	void *ptr = page_address(skb_frag_page(frag));
3071 	if (unlikely(!ptr))
3072 		return NULL;
3073 
3074 	return ptr + skb_frag_off(frag);
3075 }
3076 
3077 /**
3078  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3079  * @fragto: skb fragment where page is set
3080  * @fragfrom: skb fragment page is copied from
3081  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3082 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3083 				      const skb_frag_t *fragfrom)
3084 {
3085 	fragto->bv_page = fragfrom->bv_page;
3086 }
3087 
3088 /**
3089  * __skb_frag_set_page - sets the page contained in a paged fragment
3090  * @frag: the paged fragment
3091  * @page: the page to set
3092  *
3093  * Sets the fragment @frag to contain @page.
3094  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3095 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3096 {
3097 	frag->bv_page = page;
3098 }
3099 
3100 /**
3101  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3102  * @skb: the buffer
3103  * @f: the fragment offset
3104  * @page: the page to set
3105  *
3106  * Sets the @f'th fragment of @skb to contain @page.
3107  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3108 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3109 				     struct page *page)
3110 {
3111 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3112 }
3113 
3114 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3115 
3116 /**
3117  * skb_frag_dma_map - maps a paged fragment via the DMA API
3118  * @dev: the device to map the fragment to
3119  * @frag: the paged fragment to map
3120  * @offset: the offset within the fragment (starting at the
3121  *          fragment's own offset)
3122  * @size: the number of bytes to map
3123  * @dir: the direction of the mapping (``PCI_DMA_*``)
3124  *
3125  * Maps the page associated with @frag to @device.
3126  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3127 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3128 					  const skb_frag_t *frag,
3129 					  size_t offset, size_t size,
3130 					  enum dma_data_direction dir)
3131 {
3132 	return dma_map_page(dev, skb_frag_page(frag),
3133 			    skb_frag_off(frag) + offset, size, dir);
3134 }
3135 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3136 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3137 					gfp_t gfp_mask)
3138 {
3139 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3140 }
3141 
3142 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3143 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3144 						  gfp_t gfp_mask)
3145 {
3146 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3147 }
3148 
3149 
3150 /**
3151  *	skb_clone_writable - is the header of a clone writable
3152  *	@skb: buffer to check
3153  *	@len: length up to which to write
3154  *
3155  *	Returns true if modifying the header part of the cloned buffer
3156  *	does not requires the data to be copied.
3157  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3158 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3159 {
3160 	return !skb_header_cloned(skb) &&
3161 	       skb_headroom(skb) + len <= skb->hdr_len;
3162 }
3163 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3164 static inline int skb_try_make_writable(struct sk_buff *skb,
3165 					unsigned int write_len)
3166 {
3167 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3168 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3169 }
3170 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3171 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3172 			    int cloned)
3173 {
3174 	int delta = 0;
3175 
3176 	if (headroom > skb_headroom(skb))
3177 		delta = headroom - skb_headroom(skb);
3178 
3179 	if (delta || cloned)
3180 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3181 					GFP_ATOMIC);
3182 	return 0;
3183 }
3184 
3185 /**
3186  *	skb_cow - copy header of skb when it is required
3187  *	@skb: buffer to cow
3188  *	@headroom: needed headroom
3189  *
3190  *	If the skb passed lacks sufficient headroom or its data part
3191  *	is shared, data is reallocated. If reallocation fails, an error
3192  *	is returned and original skb is not changed.
3193  *
3194  *	The result is skb with writable area skb->head...skb->tail
3195  *	and at least @headroom of space at head.
3196  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3197 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3198 {
3199 	return __skb_cow(skb, headroom, skb_cloned(skb));
3200 }
3201 
3202 /**
3203  *	skb_cow_head - skb_cow but only making the head writable
3204  *	@skb: buffer to cow
3205  *	@headroom: needed headroom
3206  *
3207  *	This function is identical to skb_cow except that we replace the
3208  *	skb_cloned check by skb_header_cloned.  It should be used when
3209  *	you only need to push on some header and do not need to modify
3210  *	the data.
3211  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3212 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3213 {
3214 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3215 }
3216 
3217 /**
3218  *	skb_padto	- pad an skbuff up to a minimal size
3219  *	@skb: buffer to pad
3220  *	@len: minimal length
3221  *
3222  *	Pads up a buffer to ensure the trailing bytes exist and are
3223  *	blanked. If the buffer already contains sufficient data it
3224  *	is untouched. Otherwise it is extended. Returns zero on
3225  *	success. The skb is freed on error.
3226  */
skb_padto(struct sk_buff * skb,unsigned int len)3227 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3228 {
3229 	unsigned int size = skb->len;
3230 	if (likely(size >= len))
3231 		return 0;
3232 	return skb_pad(skb, len - size);
3233 }
3234 
3235 /**
3236  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3237  *	@skb: buffer to pad
3238  *	@len: minimal length
3239  *	@free_on_error: free buffer on error
3240  *
3241  *	Pads up a buffer to ensure the trailing bytes exist and are
3242  *	blanked. If the buffer already contains sufficient data it
3243  *	is untouched. Otherwise it is extended. Returns zero on
3244  *	success. The skb is freed on error if @free_on_error is true.
3245  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3246 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3247 					       unsigned int len,
3248 					       bool free_on_error)
3249 {
3250 	unsigned int size = skb->len;
3251 
3252 	if (unlikely(size < len)) {
3253 		len -= size;
3254 		if (__skb_pad(skb, len, free_on_error))
3255 			return -ENOMEM;
3256 		__skb_put(skb, len);
3257 	}
3258 	return 0;
3259 }
3260 
3261 /**
3262  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3263  *	@skb: buffer to pad
3264  *	@len: minimal length
3265  *
3266  *	Pads up a buffer to ensure the trailing bytes exist and are
3267  *	blanked. If the buffer already contains sufficient data it
3268  *	is untouched. Otherwise it is extended. Returns zero on
3269  *	success. The skb is freed on error.
3270  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3271 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3272 {
3273 	return __skb_put_padto(skb, len, true);
3274 }
3275 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3276 static inline int skb_add_data(struct sk_buff *skb,
3277 			       struct iov_iter *from, int copy)
3278 {
3279 	const int off = skb->len;
3280 
3281 	if (skb->ip_summed == CHECKSUM_NONE) {
3282 		__wsum csum = 0;
3283 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3284 					         &csum, from)) {
3285 			skb->csum = csum_block_add(skb->csum, csum, off);
3286 			return 0;
3287 		}
3288 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3289 		return 0;
3290 
3291 	__skb_trim(skb, off);
3292 	return -EFAULT;
3293 }
3294 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3295 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3296 				    const struct page *page, int off)
3297 {
3298 	if (skb_zcopy(skb))
3299 		return false;
3300 	if (i) {
3301 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3302 
3303 		return page == skb_frag_page(frag) &&
3304 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3305 	}
3306 	return false;
3307 }
3308 
__skb_linearize(struct sk_buff * skb)3309 static inline int __skb_linearize(struct sk_buff *skb)
3310 {
3311 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3312 }
3313 
3314 /**
3315  *	skb_linearize - convert paged skb to linear one
3316  *	@skb: buffer to linarize
3317  *
3318  *	If there is no free memory -ENOMEM is returned, otherwise zero
3319  *	is returned and the old skb data released.
3320  */
skb_linearize(struct sk_buff * skb)3321 static inline int skb_linearize(struct sk_buff *skb)
3322 {
3323 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3324 }
3325 
3326 /**
3327  * skb_has_shared_frag - can any frag be overwritten
3328  * @skb: buffer to test
3329  *
3330  * Return true if the skb has at least one frag that might be modified
3331  * by an external entity (as in vmsplice()/sendfile())
3332  */
skb_has_shared_frag(const struct sk_buff * skb)3333 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3334 {
3335 	return skb_is_nonlinear(skb) &&
3336 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3337 }
3338 
3339 /**
3340  *	skb_linearize_cow - make sure skb is linear and writable
3341  *	@skb: buffer to process
3342  *
3343  *	If there is no free memory -ENOMEM is returned, otherwise zero
3344  *	is returned and the old skb data released.
3345  */
skb_linearize_cow(struct sk_buff * skb)3346 static inline int skb_linearize_cow(struct sk_buff *skb)
3347 {
3348 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3349 	       __skb_linearize(skb) : 0;
3350 }
3351 
3352 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3353 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3354 		     unsigned int off)
3355 {
3356 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3357 		skb->csum = csum_block_sub(skb->csum,
3358 					   csum_partial(start, len, 0), off);
3359 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3360 		 skb_checksum_start_offset(skb) < 0)
3361 		skb->ip_summed = CHECKSUM_NONE;
3362 }
3363 
3364 /**
3365  *	skb_postpull_rcsum - update checksum for received skb after pull
3366  *	@skb: buffer to update
3367  *	@start: start of data before pull
3368  *	@len: length of data pulled
3369  *
3370  *	After doing a pull on a received packet, you need to call this to
3371  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3372  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3373  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3374 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3375 				      const void *start, unsigned int len)
3376 {
3377 	__skb_postpull_rcsum(skb, start, len, 0);
3378 }
3379 
3380 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3381 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3382 		     unsigned int off)
3383 {
3384 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3385 		skb->csum = csum_block_add(skb->csum,
3386 					   csum_partial(start, len, 0), off);
3387 }
3388 
3389 /**
3390  *	skb_postpush_rcsum - update checksum for received skb after push
3391  *	@skb: buffer to update
3392  *	@start: start of data after push
3393  *	@len: length of data pushed
3394  *
3395  *	After doing a push on a received packet, you need to call this to
3396  *	update the CHECKSUM_COMPLETE checksum.
3397  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3398 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3399 				      const void *start, unsigned int len)
3400 {
3401 	__skb_postpush_rcsum(skb, start, len, 0);
3402 }
3403 
3404 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3405 
3406 /**
3407  *	skb_push_rcsum - push skb and update receive checksum
3408  *	@skb: buffer to update
3409  *	@len: length of data pulled
3410  *
3411  *	This function performs an skb_push on the packet and updates
3412  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3413  *	receive path processing instead of skb_push unless you know
3414  *	that the checksum difference is zero (e.g., a valid IP header)
3415  *	or you are setting ip_summed to CHECKSUM_NONE.
3416  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3417 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3418 {
3419 	skb_push(skb, len);
3420 	skb_postpush_rcsum(skb, skb->data, len);
3421 	return skb->data;
3422 }
3423 
3424 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3425 /**
3426  *	pskb_trim_rcsum - trim received skb and update checksum
3427  *	@skb: buffer to trim
3428  *	@len: new length
3429  *
3430  *	This is exactly the same as pskb_trim except that it ensures the
3431  *	checksum of received packets are still valid after the operation.
3432  *	It can change skb pointers.
3433  */
3434 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3435 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3436 {
3437 	if (likely(len >= skb->len))
3438 		return 0;
3439 	return pskb_trim_rcsum_slow(skb, len);
3440 }
3441 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3442 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3443 {
3444 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3445 		skb->ip_summed = CHECKSUM_NONE;
3446 	__skb_trim(skb, len);
3447 	return 0;
3448 }
3449 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3450 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3451 {
3452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3453 		skb->ip_summed = CHECKSUM_NONE;
3454 	return __skb_grow(skb, len);
3455 }
3456 
3457 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3458 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3459 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3460 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3461 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3462 
3463 #define skb_queue_walk(queue, skb) \
3464 		for (skb = (queue)->next;					\
3465 		     skb != (struct sk_buff *)(queue);				\
3466 		     skb = skb->next)
3467 
3468 #define skb_queue_walk_safe(queue, skb, tmp)					\
3469 		for (skb = (queue)->next, tmp = skb->next;			\
3470 		     skb != (struct sk_buff *)(queue);				\
3471 		     skb = tmp, tmp = skb->next)
3472 
3473 #define skb_queue_walk_from(queue, skb)						\
3474 		for (; skb != (struct sk_buff *)(queue);			\
3475 		     skb = skb->next)
3476 
3477 #define skb_rbtree_walk(skb, root)						\
3478 		for (skb = skb_rb_first(root); skb != NULL;			\
3479 		     skb = skb_rb_next(skb))
3480 
3481 #define skb_rbtree_walk_from(skb)						\
3482 		for (; skb != NULL;						\
3483 		     skb = skb_rb_next(skb))
3484 
3485 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3486 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3487 		     skb = tmp)
3488 
3489 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3490 		for (tmp = skb->next;						\
3491 		     skb != (struct sk_buff *)(queue);				\
3492 		     skb = tmp, tmp = skb->next)
3493 
3494 #define skb_queue_reverse_walk(queue, skb) \
3495 		for (skb = (queue)->prev;					\
3496 		     skb != (struct sk_buff *)(queue);				\
3497 		     skb = skb->prev)
3498 
3499 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3500 		for (skb = (queue)->prev, tmp = skb->prev;			\
3501 		     skb != (struct sk_buff *)(queue);				\
3502 		     skb = tmp, tmp = skb->prev)
3503 
3504 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3505 		for (tmp = skb->prev;						\
3506 		     skb != (struct sk_buff *)(queue);				\
3507 		     skb = tmp, tmp = skb->prev)
3508 
skb_has_frag_list(const struct sk_buff * skb)3509 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3510 {
3511 	return skb_shinfo(skb)->frag_list != NULL;
3512 }
3513 
skb_frag_list_init(struct sk_buff * skb)3514 static inline void skb_frag_list_init(struct sk_buff *skb)
3515 {
3516 	skb_shinfo(skb)->frag_list = NULL;
3517 }
3518 
3519 #define skb_walk_frags(skb, iter)	\
3520 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3521 
3522 
3523 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3524 				int *err, long *timeo_p,
3525 				const struct sk_buff *skb);
3526 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3527 					  struct sk_buff_head *queue,
3528 					  unsigned int flags,
3529 					  int *off, int *err,
3530 					  struct sk_buff **last);
3531 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3532 					struct sk_buff_head *queue,
3533 					unsigned int flags, int *off, int *err,
3534 					struct sk_buff **last);
3535 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3536 				    struct sk_buff_head *sk_queue,
3537 				    unsigned int flags, int *off, int *err);
3538 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3539 				  int *err);
3540 __poll_t datagram_poll(struct file *file, struct socket *sock,
3541 			   struct poll_table_struct *wait);
3542 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3543 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3544 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3545 					struct msghdr *msg, int size)
3546 {
3547 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3548 }
3549 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3550 				   struct msghdr *msg);
3551 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3552 			   struct iov_iter *to, int len,
3553 			   struct ahash_request *hash);
3554 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3555 				 struct iov_iter *from, int len);
3556 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3557 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3558 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3559 static inline void skb_free_datagram_locked(struct sock *sk,
3560 					    struct sk_buff *skb)
3561 {
3562 	__skb_free_datagram_locked(sk, skb, 0);
3563 }
3564 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3565 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3566 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3567 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3568 			      int len);
3569 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3570 		    struct pipe_inode_info *pipe, unsigned int len,
3571 		    unsigned int flags);
3572 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3573 			 int len);
3574 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3575 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3576 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3577 		 int len, int hlen);
3578 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3579 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3580 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3581 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3582 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3583 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3584 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3585 				 unsigned int offset);
3586 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3587 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3588 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3589 int skb_vlan_pop(struct sk_buff *skb);
3590 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3591 int skb_eth_pop(struct sk_buff *skb);
3592 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3593 		 const unsigned char *src);
3594 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3595 		  int mac_len, bool ethernet);
3596 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3597 		 bool ethernet);
3598 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3599 int skb_mpls_dec_ttl(struct sk_buff *skb);
3600 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3601 			     gfp_t gfp);
3602 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3603 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3604 {
3605 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3606 }
3607 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3608 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3609 {
3610 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3611 }
3612 
3613 struct skb_checksum_ops {
3614 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3615 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3616 };
3617 
3618 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3619 
3620 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3621 		      __wsum csum, const struct skb_checksum_ops *ops);
3622 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3623 		    __wsum csum);
3624 
3625 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3626 __skb_header_pointer(const struct sk_buff *skb, int offset,
3627 		     int len, void *data, int hlen, void *buffer)
3628 {
3629 	if (hlen - offset >= len)
3630 		return data + offset;
3631 
3632 	if (!skb ||
3633 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3634 		return NULL;
3635 
3636 	return buffer;
3637 }
3638 
3639 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3640 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3641 {
3642 	return __skb_header_pointer(skb, offset, len, skb->data,
3643 				    skb_headlen(skb), buffer);
3644 }
3645 
3646 /**
3647  *	skb_needs_linearize - check if we need to linearize a given skb
3648  *			      depending on the given device features.
3649  *	@skb: socket buffer to check
3650  *	@features: net device features
3651  *
3652  *	Returns true if either:
3653  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3654  *	2. skb is fragmented and the device does not support SG.
3655  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3656 static inline bool skb_needs_linearize(struct sk_buff *skb,
3657 				       netdev_features_t features)
3658 {
3659 	return skb_is_nonlinear(skb) &&
3660 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3661 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3662 }
3663 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3664 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3665 					     void *to,
3666 					     const unsigned int len)
3667 {
3668 	memcpy(to, skb->data, len);
3669 }
3670 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3671 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3672 						    const int offset, void *to,
3673 						    const unsigned int len)
3674 {
3675 	memcpy(to, skb->data + offset, len);
3676 }
3677 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3678 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3679 					   const void *from,
3680 					   const unsigned int len)
3681 {
3682 	memcpy(skb->data, from, len);
3683 }
3684 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3685 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3686 						  const int offset,
3687 						  const void *from,
3688 						  const unsigned int len)
3689 {
3690 	memcpy(skb->data + offset, from, len);
3691 }
3692 
3693 void skb_init(void);
3694 
skb_get_ktime(const struct sk_buff * skb)3695 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3696 {
3697 	return skb->tstamp;
3698 }
3699 
3700 /**
3701  *	skb_get_timestamp - get timestamp from a skb
3702  *	@skb: skb to get stamp from
3703  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3704  *
3705  *	Timestamps are stored in the skb as offsets to a base timestamp.
3706  *	This function converts the offset back to a struct timeval and stores
3707  *	it in stamp.
3708  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3709 static inline void skb_get_timestamp(const struct sk_buff *skb,
3710 				     struct __kernel_old_timeval *stamp)
3711 {
3712 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3713 }
3714 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3715 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3716 					 struct __kernel_sock_timeval *stamp)
3717 {
3718 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3719 
3720 	stamp->tv_sec = ts.tv_sec;
3721 	stamp->tv_usec = ts.tv_nsec / 1000;
3722 }
3723 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3724 static inline void skb_get_timestampns(const struct sk_buff *skb,
3725 				       struct __kernel_old_timespec *stamp)
3726 {
3727 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3728 
3729 	stamp->tv_sec = ts.tv_sec;
3730 	stamp->tv_nsec = ts.tv_nsec;
3731 }
3732 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3733 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3734 					   struct __kernel_timespec *stamp)
3735 {
3736 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3737 
3738 	stamp->tv_sec = ts.tv_sec;
3739 	stamp->tv_nsec = ts.tv_nsec;
3740 }
3741 
__net_timestamp(struct sk_buff * skb)3742 static inline void __net_timestamp(struct sk_buff *skb)
3743 {
3744 	skb->tstamp = ktime_get_real();
3745 }
3746 
net_timedelta(ktime_t t)3747 static inline ktime_t net_timedelta(ktime_t t)
3748 {
3749 	return ktime_sub(ktime_get_real(), t);
3750 }
3751 
net_invalid_timestamp(void)3752 static inline ktime_t net_invalid_timestamp(void)
3753 {
3754 	return 0;
3755 }
3756 
skb_metadata_len(const struct sk_buff * skb)3757 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3758 {
3759 	return skb_shinfo(skb)->meta_len;
3760 }
3761 
skb_metadata_end(const struct sk_buff * skb)3762 static inline void *skb_metadata_end(const struct sk_buff *skb)
3763 {
3764 	return skb_mac_header(skb);
3765 }
3766 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3767 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3768 					  const struct sk_buff *skb_b,
3769 					  u8 meta_len)
3770 {
3771 	const void *a = skb_metadata_end(skb_a);
3772 	const void *b = skb_metadata_end(skb_b);
3773 	/* Using more efficient varaiant than plain call to memcmp(). */
3774 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3775 	u64 diffs = 0;
3776 
3777 	switch (meta_len) {
3778 #define __it(x, op) (x -= sizeof(u##op))
3779 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3780 	case 32: diffs |= __it_diff(a, b, 64);
3781 		fallthrough;
3782 	case 24: diffs |= __it_diff(a, b, 64);
3783 		fallthrough;
3784 	case 16: diffs |= __it_diff(a, b, 64);
3785 		fallthrough;
3786 	case  8: diffs |= __it_diff(a, b, 64);
3787 		break;
3788 	case 28: diffs |= __it_diff(a, b, 64);
3789 		fallthrough;
3790 	case 20: diffs |= __it_diff(a, b, 64);
3791 		fallthrough;
3792 	case 12: diffs |= __it_diff(a, b, 64);
3793 		fallthrough;
3794 	case  4: diffs |= __it_diff(a, b, 32);
3795 		break;
3796 	}
3797 	return diffs;
3798 #else
3799 	return memcmp(a - meta_len, b - meta_len, meta_len);
3800 #endif
3801 }
3802 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3803 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3804 					const struct sk_buff *skb_b)
3805 {
3806 	u8 len_a = skb_metadata_len(skb_a);
3807 	u8 len_b = skb_metadata_len(skb_b);
3808 
3809 	if (!(len_a | len_b))
3810 		return false;
3811 
3812 	return len_a != len_b ?
3813 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3814 }
3815 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3816 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3817 {
3818 	skb_shinfo(skb)->meta_len = meta_len;
3819 }
3820 
skb_metadata_clear(struct sk_buff * skb)3821 static inline void skb_metadata_clear(struct sk_buff *skb)
3822 {
3823 	skb_metadata_set(skb, 0);
3824 }
3825 
3826 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3827 
3828 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3829 
3830 void skb_clone_tx_timestamp(struct sk_buff *skb);
3831 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3832 
3833 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3834 
skb_clone_tx_timestamp(struct sk_buff * skb)3835 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3836 {
3837 }
3838 
skb_defer_rx_timestamp(struct sk_buff * skb)3839 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3840 {
3841 	return false;
3842 }
3843 
3844 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3845 
3846 /**
3847  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3848  *
3849  * PHY drivers may accept clones of transmitted packets for
3850  * timestamping via their phy_driver.txtstamp method. These drivers
3851  * must call this function to return the skb back to the stack with a
3852  * timestamp.
3853  *
3854  * @skb: clone of the original outgoing packet
3855  * @hwtstamps: hardware time stamps
3856  *
3857  */
3858 void skb_complete_tx_timestamp(struct sk_buff *skb,
3859 			       struct skb_shared_hwtstamps *hwtstamps);
3860 
3861 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3862 		     struct skb_shared_hwtstamps *hwtstamps,
3863 		     struct sock *sk, int tstype);
3864 
3865 /**
3866  * skb_tstamp_tx - queue clone of skb with send time stamps
3867  * @orig_skb:	the original outgoing packet
3868  * @hwtstamps:	hardware time stamps, may be NULL if not available
3869  *
3870  * If the skb has a socket associated, then this function clones the
3871  * skb (thus sharing the actual data and optional structures), stores
3872  * the optional hardware time stamping information (if non NULL) or
3873  * generates a software time stamp (otherwise), then queues the clone
3874  * to the error queue of the socket.  Errors are silently ignored.
3875  */
3876 void skb_tstamp_tx(struct sk_buff *orig_skb,
3877 		   struct skb_shared_hwtstamps *hwtstamps);
3878 
3879 /**
3880  * skb_tx_timestamp() - Driver hook for transmit timestamping
3881  *
3882  * Ethernet MAC Drivers should call this function in their hard_xmit()
3883  * function immediately before giving the sk_buff to the MAC hardware.
3884  *
3885  * Specifically, one should make absolutely sure that this function is
3886  * called before TX completion of this packet can trigger.  Otherwise
3887  * the packet could potentially already be freed.
3888  *
3889  * @skb: A socket buffer.
3890  */
skb_tx_timestamp(struct sk_buff * skb)3891 static inline void skb_tx_timestamp(struct sk_buff *skb)
3892 {
3893 	skb_clone_tx_timestamp(skb);
3894 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3895 		skb_tstamp_tx(skb, NULL);
3896 }
3897 
3898 /**
3899  * skb_complete_wifi_ack - deliver skb with wifi status
3900  *
3901  * @skb: the original outgoing packet
3902  * @acked: ack status
3903  *
3904  */
3905 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3906 
3907 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3908 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3909 
skb_csum_unnecessary(const struct sk_buff * skb)3910 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3911 {
3912 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3913 		skb->csum_valid ||
3914 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3915 		 skb_checksum_start_offset(skb) >= 0));
3916 }
3917 
3918 /**
3919  *	skb_checksum_complete - Calculate checksum of an entire packet
3920  *	@skb: packet to process
3921  *
3922  *	This function calculates the checksum over the entire packet plus
3923  *	the value of skb->csum.  The latter can be used to supply the
3924  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3925  *	checksum.
3926  *
3927  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3928  *	this function can be used to verify that checksum on received
3929  *	packets.  In that case the function should return zero if the
3930  *	checksum is correct.  In particular, this function will return zero
3931  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3932  *	hardware has already verified the correctness of the checksum.
3933  */
skb_checksum_complete(struct sk_buff * skb)3934 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3935 {
3936 	return skb_csum_unnecessary(skb) ?
3937 	       0 : __skb_checksum_complete(skb);
3938 }
3939 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3940 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3941 {
3942 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3943 		if (skb->csum_level == 0)
3944 			skb->ip_summed = CHECKSUM_NONE;
3945 		else
3946 			skb->csum_level--;
3947 	}
3948 }
3949 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3950 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3951 {
3952 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3953 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3954 			skb->csum_level++;
3955 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3956 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3957 		skb->csum_level = 0;
3958 	}
3959 }
3960 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)3961 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3962 {
3963 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3964 		skb->ip_summed = CHECKSUM_NONE;
3965 		skb->csum_level = 0;
3966 	}
3967 }
3968 
3969 /* Check if we need to perform checksum complete validation.
3970  *
3971  * Returns true if checksum complete is needed, false otherwise
3972  * (either checksum is unnecessary or zero checksum is allowed).
3973  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3974 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3975 						  bool zero_okay,
3976 						  __sum16 check)
3977 {
3978 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3979 		skb->csum_valid = 1;
3980 		__skb_decr_checksum_unnecessary(skb);
3981 		return false;
3982 	}
3983 
3984 	return true;
3985 }
3986 
3987 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3988  * in checksum_init.
3989  */
3990 #define CHECKSUM_BREAK 76
3991 
3992 /* Unset checksum-complete
3993  *
3994  * Unset checksum complete can be done when packet is being modified
3995  * (uncompressed for instance) and checksum-complete value is
3996  * invalidated.
3997  */
skb_checksum_complete_unset(struct sk_buff * skb)3998 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3999 {
4000 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4001 		skb->ip_summed = CHECKSUM_NONE;
4002 }
4003 
4004 /* Validate (init) checksum based on checksum complete.
4005  *
4006  * Return values:
4007  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4008  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4009  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4010  *   non-zero: value of invalid checksum
4011  *
4012  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4013 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4014 						       bool complete,
4015 						       __wsum psum)
4016 {
4017 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4018 		if (!csum_fold(csum_add(psum, skb->csum))) {
4019 			skb->csum_valid = 1;
4020 			return 0;
4021 		}
4022 	}
4023 
4024 	skb->csum = psum;
4025 
4026 	if (complete || skb->len <= CHECKSUM_BREAK) {
4027 		__sum16 csum;
4028 
4029 		csum = __skb_checksum_complete(skb);
4030 		skb->csum_valid = !csum;
4031 		return csum;
4032 	}
4033 
4034 	return 0;
4035 }
4036 
null_compute_pseudo(struct sk_buff * skb,int proto)4037 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4038 {
4039 	return 0;
4040 }
4041 
4042 /* Perform checksum validate (init). Note that this is a macro since we only
4043  * want to calculate the pseudo header which is an input function if necessary.
4044  * First we try to validate without any computation (checksum unnecessary) and
4045  * then calculate based on checksum complete calling the function to compute
4046  * pseudo header.
4047  *
4048  * Return values:
4049  *   0: checksum is validated or try to in skb_checksum_complete
4050  *   non-zero: value of invalid checksum
4051  */
4052 #define __skb_checksum_validate(skb, proto, complete,			\
4053 				zero_okay, check, compute_pseudo)	\
4054 ({									\
4055 	__sum16 __ret = 0;						\
4056 	skb->csum_valid = 0;						\
4057 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4058 		__ret = __skb_checksum_validate_complete(skb,		\
4059 				complete, compute_pseudo(skb, proto));	\
4060 	__ret;								\
4061 })
4062 
4063 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4064 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4065 
4066 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4067 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4068 
4069 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4070 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4071 
4072 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4073 					 compute_pseudo)		\
4074 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4075 
4076 #define skb_checksum_simple_validate(skb)				\
4077 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4078 
__skb_checksum_convert_check(struct sk_buff * skb)4079 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4080 {
4081 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4082 }
4083 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4084 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4085 {
4086 	skb->csum = ~pseudo;
4087 	skb->ip_summed = CHECKSUM_COMPLETE;
4088 }
4089 
4090 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4091 do {									\
4092 	if (__skb_checksum_convert_check(skb))				\
4093 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4094 } while (0)
4095 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4096 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4097 					      u16 start, u16 offset)
4098 {
4099 	skb->ip_summed = CHECKSUM_PARTIAL;
4100 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4101 	skb->csum_offset = offset - start;
4102 }
4103 
4104 /* Update skbuf and packet to reflect the remote checksum offload operation.
4105  * When called, ptr indicates the starting point for skb->csum when
4106  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4107  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4108  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4109 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4110 				       int start, int offset, bool nopartial)
4111 {
4112 	__wsum delta;
4113 
4114 	if (!nopartial) {
4115 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4116 		return;
4117 	}
4118 
4119 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4120 		__skb_checksum_complete(skb);
4121 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4122 	}
4123 
4124 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4125 
4126 	/* Adjust skb->csum since we changed the packet */
4127 	skb->csum = csum_add(skb->csum, delta);
4128 }
4129 
skb_nfct(const struct sk_buff * skb)4130 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4131 {
4132 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4133 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4134 #else
4135 	return NULL;
4136 #endif
4137 }
4138 
skb_get_nfct(const struct sk_buff * skb)4139 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4140 {
4141 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4142 	return skb->_nfct;
4143 #else
4144 	return 0UL;
4145 #endif
4146 }
4147 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4148 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4149 {
4150 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4151 	skb->_nfct = nfct;
4152 #endif
4153 }
4154 
4155 #ifdef CONFIG_SKB_EXTENSIONS
4156 enum skb_ext_id {
4157 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4158 	SKB_EXT_BRIDGE_NF,
4159 #endif
4160 #ifdef CONFIG_XFRM
4161 	SKB_EXT_SEC_PATH,
4162 #endif
4163 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4164 	TC_SKB_EXT,
4165 #endif
4166 #if IS_ENABLED(CONFIG_MPTCP)
4167 	SKB_EXT_MPTCP,
4168 #endif
4169 	SKB_EXT_NUM, /* must be last */
4170 };
4171 
4172 /**
4173  *	struct skb_ext - sk_buff extensions
4174  *	@refcnt: 1 on allocation, deallocated on 0
4175  *	@offset: offset to add to @data to obtain extension address
4176  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4177  *	@data: start of extension data, variable sized
4178  *
4179  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4180  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4181  */
4182 struct skb_ext {
4183 	refcount_t refcnt;
4184 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4185 	u8 chunks;		/* same */
4186 	char data[] __aligned(8);
4187 };
4188 
4189 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4190 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4191 		    struct skb_ext *ext);
4192 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4193 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4194 void __skb_ext_put(struct skb_ext *ext);
4195 
skb_ext_put(struct sk_buff * skb)4196 static inline void skb_ext_put(struct sk_buff *skb)
4197 {
4198 	if (skb->active_extensions)
4199 		__skb_ext_put(skb->extensions);
4200 }
4201 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4202 static inline void __skb_ext_copy(struct sk_buff *dst,
4203 				  const struct sk_buff *src)
4204 {
4205 	dst->active_extensions = src->active_extensions;
4206 
4207 	if (src->active_extensions) {
4208 		struct skb_ext *ext = src->extensions;
4209 
4210 		refcount_inc(&ext->refcnt);
4211 		dst->extensions = ext;
4212 	}
4213 }
4214 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4215 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4216 {
4217 	skb_ext_put(dst);
4218 	__skb_ext_copy(dst, src);
4219 }
4220 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4221 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4222 {
4223 	return !!ext->offset[i];
4224 }
4225 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4226 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4227 {
4228 	return skb->active_extensions & (1 << id);
4229 }
4230 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4231 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4232 {
4233 	if (skb_ext_exist(skb, id))
4234 		__skb_ext_del(skb, id);
4235 }
4236 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4237 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4238 {
4239 	if (skb_ext_exist(skb, id)) {
4240 		struct skb_ext *ext = skb->extensions;
4241 
4242 		return (void *)ext + (ext->offset[id] << 3);
4243 	}
4244 
4245 	return NULL;
4246 }
4247 
skb_ext_reset(struct sk_buff * skb)4248 static inline void skb_ext_reset(struct sk_buff *skb)
4249 {
4250 	if (unlikely(skb->active_extensions)) {
4251 		__skb_ext_put(skb->extensions);
4252 		skb->active_extensions = 0;
4253 	}
4254 }
4255 
skb_has_extensions(struct sk_buff * skb)4256 static inline bool skb_has_extensions(struct sk_buff *skb)
4257 {
4258 	return unlikely(skb->active_extensions);
4259 }
4260 #else
skb_ext_put(struct sk_buff * skb)4261 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4262 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4263 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4264 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4265 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4266 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4267 #endif /* CONFIG_SKB_EXTENSIONS */
4268 
nf_reset_ct(struct sk_buff * skb)4269 static inline void nf_reset_ct(struct sk_buff *skb)
4270 {
4271 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4272 	nf_conntrack_put(skb_nfct(skb));
4273 	skb->_nfct = 0;
4274 #endif
4275 }
4276 
nf_reset_trace(struct sk_buff * skb)4277 static inline void nf_reset_trace(struct sk_buff *skb)
4278 {
4279 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4280 	skb->nf_trace = 0;
4281 #endif
4282 }
4283 
ipvs_reset(struct sk_buff * skb)4284 static inline void ipvs_reset(struct sk_buff *skb)
4285 {
4286 #if IS_ENABLED(CONFIG_IP_VS)
4287 	skb->ipvs_property = 0;
4288 #endif
4289 }
4290 
4291 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4292 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4293 			     bool copy)
4294 {
4295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4296 	dst->_nfct = src->_nfct;
4297 	nf_conntrack_get(skb_nfct(src));
4298 #endif
4299 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4300 	if (copy)
4301 		dst->nf_trace = src->nf_trace;
4302 #endif
4303 }
4304 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4305 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4306 {
4307 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4308 	nf_conntrack_put(skb_nfct(dst));
4309 #endif
4310 	__nf_copy(dst, src, true);
4311 }
4312 
4313 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4314 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4315 {
4316 	to->secmark = from->secmark;
4317 }
4318 
skb_init_secmark(struct sk_buff * skb)4319 static inline void skb_init_secmark(struct sk_buff *skb)
4320 {
4321 	skb->secmark = 0;
4322 }
4323 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4324 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4325 { }
4326 
skb_init_secmark(struct sk_buff * skb)4327 static inline void skb_init_secmark(struct sk_buff *skb)
4328 { }
4329 #endif
4330 
secpath_exists(const struct sk_buff * skb)4331 static inline int secpath_exists(const struct sk_buff *skb)
4332 {
4333 #ifdef CONFIG_XFRM
4334 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4335 #else
4336 	return 0;
4337 #endif
4338 }
4339 
skb_irq_freeable(const struct sk_buff * skb)4340 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4341 {
4342 	return !skb->destructor &&
4343 		!secpath_exists(skb) &&
4344 		!skb_nfct(skb) &&
4345 		!skb->_skb_refdst &&
4346 		!skb_has_frag_list(skb);
4347 }
4348 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4349 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4350 {
4351 	skb->queue_mapping = queue_mapping;
4352 }
4353 
skb_get_queue_mapping(const struct sk_buff * skb)4354 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4355 {
4356 	return skb->queue_mapping;
4357 }
4358 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4359 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4360 {
4361 	to->queue_mapping = from->queue_mapping;
4362 }
4363 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4364 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4365 {
4366 	skb->queue_mapping = rx_queue + 1;
4367 }
4368 
skb_get_rx_queue(const struct sk_buff * skb)4369 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4370 {
4371 	return skb->queue_mapping - 1;
4372 }
4373 
skb_rx_queue_recorded(const struct sk_buff * skb)4374 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4375 {
4376 	return skb->queue_mapping != 0;
4377 }
4378 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4379 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4380 {
4381 	skb->dst_pending_confirm = val;
4382 }
4383 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4384 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4385 {
4386 	return skb->dst_pending_confirm != 0;
4387 }
4388 
skb_sec_path(const struct sk_buff * skb)4389 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4390 {
4391 #ifdef CONFIG_XFRM
4392 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4393 #else
4394 	return NULL;
4395 #endif
4396 }
4397 
4398 /* Keeps track of mac header offset relative to skb->head.
4399  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4400  * For non-tunnel skb it points to skb_mac_header() and for
4401  * tunnel skb it points to outer mac header.
4402  * Keeps track of level of encapsulation of network headers.
4403  */
4404 struct skb_gso_cb {
4405 	union {
4406 		int	mac_offset;
4407 		int	data_offset;
4408 	};
4409 	int	encap_level;
4410 	__wsum	csum;
4411 	__u16	csum_start;
4412 };
4413 #define SKB_GSO_CB_OFFSET	32
4414 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4415 
skb_tnl_header_len(const struct sk_buff * inner_skb)4416 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4417 {
4418 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4419 		SKB_GSO_CB(inner_skb)->mac_offset;
4420 }
4421 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4422 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4423 {
4424 	int new_headroom, headroom;
4425 	int ret;
4426 
4427 	headroom = skb_headroom(skb);
4428 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4429 	if (ret)
4430 		return ret;
4431 
4432 	new_headroom = skb_headroom(skb);
4433 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4434 	return 0;
4435 }
4436 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4437 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4438 {
4439 	/* Do not update partial checksums if remote checksum is enabled. */
4440 	if (skb->remcsum_offload)
4441 		return;
4442 
4443 	SKB_GSO_CB(skb)->csum = res;
4444 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4445 }
4446 
4447 /* Compute the checksum for a gso segment. First compute the checksum value
4448  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4449  * then add in skb->csum (checksum from csum_start to end of packet).
4450  * skb->csum and csum_start are then updated to reflect the checksum of the
4451  * resultant packet starting from the transport header-- the resultant checksum
4452  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4453  * header.
4454  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4455 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4456 {
4457 	unsigned char *csum_start = skb_transport_header(skb);
4458 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4459 	__wsum partial = SKB_GSO_CB(skb)->csum;
4460 
4461 	SKB_GSO_CB(skb)->csum = res;
4462 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4463 
4464 	return csum_fold(csum_partial(csum_start, plen, partial));
4465 }
4466 
skb_is_gso(const struct sk_buff * skb)4467 static inline bool skb_is_gso(const struct sk_buff *skb)
4468 {
4469 	return skb_shinfo(skb)->gso_size;
4470 }
4471 
4472 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4473 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4474 {
4475 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4476 }
4477 
4478 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4479 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4480 {
4481 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4482 }
4483 
4484 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4485 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4486 {
4487 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4488 }
4489 
skb_gso_reset(struct sk_buff * skb)4490 static inline void skb_gso_reset(struct sk_buff *skb)
4491 {
4492 	skb_shinfo(skb)->gso_size = 0;
4493 	skb_shinfo(skb)->gso_segs = 0;
4494 	skb_shinfo(skb)->gso_type = 0;
4495 }
4496 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4497 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4498 					 u16 increment)
4499 {
4500 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4501 		return;
4502 	shinfo->gso_size += increment;
4503 }
4504 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4505 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4506 					 u16 decrement)
4507 {
4508 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4509 		return;
4510 	shinfo->gso_size -= decrement;
4511 }
4512 
4513 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4514 
skb_warn_if_lro(const struct sk_buff * skb)4515 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4516 {
4517 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4518 	 * wanted then gso_type will be set. */
4519 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4520 
4521 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4522 	    unlikely(shinfo->gso_type == 0)) {
4523 		__skb_warn_lro_forwarding(skb);
4524 		return true;
4525 	}
4526 	return false;
4527 }
4528 
skb_forward_csum(struct sk_buff * skb)4529 static inline void skb_forward_csum(struct sk_buff *skb)
4530 {
4531 	/* Unfortunately we don't support this one.  Any brave souls? */
4532 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4533 		skb->ip_summed = CHECKSUM_NONE;
4534 }
4535 
4536 /**
4537  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4538  * @skb: skb to check
4539  *
4540  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4541  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4542  * use this helper, to document places where we make this assertion.
4543  */
skb_checksum_none_assert(const struct sk_buff * skb)4544 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4545 {
4546 #ifdef DEBUG
4547 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4548 #endif
4549 }
4550 
4551 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4552 
4553 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4554 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4555 				     unsigned int transport_len,
4556 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4557 
4558 /**
4559  * skb_head_is_locked - Determine if the skb->head is locked down
4560  * @skb: skb to check
4561  *
4562  * The head on skbs build around a head frag can be removed if they are
4563  * not cloned.  This function returns true if the skb head is locked down
4564  * due to either being allocated via kmalloc, or by being a clone with
4565  * multiple references to the head.
4566  */
skb_head_is_locked(const struct sk_buff * skb)4567 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4568 {
4569 	return !skb->head_frag || skb_cloned(skb);
4570 }
4571 
4572 /* Local Checksum Offload.
4573  * Compute outer checksum based on the assumption that the
4574  * inner checksum will be offloaded later.
4575  * See Documentation/networking/checksum-offloads.rst for
4576  * explanation of how this works.
4577  * Fill in outer checksum adjustment (e.g. with sum of outer
4578  * pseudo-header) before calling.
4579  * Also ensure that inner checksum is in linear data area.
4580  */
lco_csum(struct sk_buff * skb)4581 static inline __wsum lco_csum(struct sk_buff *skb)
4582 {
4583 	unsigned char *csum_start = skb_checksum_start(skb);
4584 	unsigned char *l4_hdr = skb_transport_header(skb);
4585 	__wsum partial;
4586 
4587 	/* Start with complement of inner checksum adjustment */
4588 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4589 						    skb->csum_offset));
4590 
4591 	/* Add in checksum of our headers (incl. outer checksum
4592 	 * adjustment filled in by caller) and return result.
4593 	 */
4594 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4595 }
4596 
skb_is_redirected(const struct sk_buff * skb)4597 static inline bool skb_is_redirected(const struct sk_buff *skb)
4598 {
4599 #ifdef CONFIG_NET_REDIRECT
4600 	return skb->redirected;
4601 #else
4602 	return false;
4603 #endif
4604 }
4605 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4606 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4607 {
4608 #ifdef CONFIG_NET_REDIRECT
4609 	skb->redirected = 1;
4610 	skb->from_ingress = from_ingress;
4611 	if (skb->from_ingress)
4612 		skb->tstamp = 0;
4613 #endif
4614 }
4615 
skb_reset_redirect(struct sk_buff * skb)4616 static inline void skb_reset_redirect(struct sk_buff *skb)
4617 {
4618 #ifdef CONFIG_NET_REDIRECT
4619 	skb->redirected = 0;
4620 #endif
4621 }
4622 
skb_csum_is_sctp(struct sk_buff * skb)4623 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4624 {
4625 	return skb->csum_not_inet;
4626 }
4627 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4628 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4629 				       const u64 kcov_handle)
4630 {
4631 #ifdef CONFIG_KCOV
4632 	skb->kcov_handle = kcov_handle;
4633 #endif
4634 }
4635 
skb_get_kcov_handle(struct sk_buff * skb)4636 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4637 {
4638 #ifdef CONFIG_KCOV
4639 	return skb->kcov_handle;
4640 #else
4641 	return 0;
4642 #endif
4643 }
4644 
4645 #endif	/* __KERNEL__ */
4646 #endif	/* _LINUX_SKBUFF_H */
4647