1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117
118 #include <linux/uaccess.h>
119
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136
137 #include <trace/events/sock.h>
138
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 static void sock_inuse_add(struct net *net, int val);
146
147 /**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)157 bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159 {
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164
165 /**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
sk_capable(const struct sock * sk,int cap)174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179
180 /**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
sk_net_capable(const struct sock * sk,int cap)189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194
195 /*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211 #define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237 };
238
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256 };
257
258 /*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285 /**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
sk_set_memalloc(struct sock * sk)293 void sk_set_memalloc(struct sock *sk)
294 {
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
sk_clear_memalloc(struct sock * sk)301 void sk_clear_memalloc(struct sock *sk)
302 {
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333
sock_get_timeout(long timeo,void * optval,bool old_timeval)334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362 }
363
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366 {
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414 }
415
sock_needs_netstamp(const struct sock * sk)416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 switch (sk->sk_family) {
419 case AF_UNSPEC:
420 case AF_UNIX:
421 return false;
422 default:
423 return true;
424 }
425 }
426
sock_disable_timestamp(struct sock * sk,unsigned long flags)427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (sock_needs_netstamp(sk) &&
432 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 net_disable_timestamp();
434 }
435 }
436
437
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 unsigned long flags;
441 struct sk_buff_head *list = &sk->sk_receive_queue;
442
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
446 return -ENOMEM;
447 }
448
449 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 atomic_inc(&sk->sk_drops);
451 return -ENOBUFS;
452 }
453
454 skb->dev = NULL;
455 skb_set_owner_r(skb, sk);
456
457 /* we escape from rcu protected region, make sure we dont leak
458 * a norefcounted dst
459 */
460 skb_dst_force(skb);
461
462 spin_lock_irqsave(&list->lock, flags);
463 sock_skb_set_dropcount(sk, skb);
464 __skb_queue_tail(list, skb);
465 spin_unlock_irqrestore(&list->lock, flags);
466
467 if (!sock_flag(sk, SOCK_DEAD))
468 sk->sk_data_ready(sk);
469 return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 int err;
476
477 err = sk_filter(sk, skb);
478 if (err)
479 return err;
480
481 return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 int rc = NET_RX_SUCCESS;
489
490 if (sk_filter_trim_cap(sk, skb, trim_cap))
491 goto discard_and_relse;
492
493 skb->dev = NULL;
494
495 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 atomic_inc(&sk->sk_drops);
497 goto discard_and_relse;
498 }
499 if (nested)
500 bh_lock_sock_nested(sk);
501 else
502 bh_lock_sock(sk);
503 if (!sock_owned_by_user(sk)) {
504 /*
505 * trylock + unlock semantics:
506 */
507 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508
509 rc = sk_backlog_rcv(sk, skb);
510
511 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 bh_unlock_sock(sk);
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517
518 bh_unlock_sock(sk);
519 out:
520 if (refcounted)
521 sock_put(sk);
522 return rc;
523 discard_and_relse:
524 kfree_skb(skb);
525 goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528
__sk_dst_check(struct sock * sk,u32 cookie)529 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
530 {
531 struct dst_entry *dst = __sk_dst_get(sk);
532
533 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
534 sk_tx_queue_clear(sk);
535 sk->sk_dst_pending_confirm = 0;
536 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
537 dst_release(dst);
538 return NULL;
539 }
540
541 return dst;
542 }
543 EXPORT_SYMBOL(__sk_dst_check);
544
sk_dst_check(struct sock * sk,u32 cookie)545 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
546 {
547 struct dst_entry *dst = sk_dst_get(sk);
548
549 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
550 sk_dst_reset(sk);
551 dst_release(dst);
552 return NULL;
553 }
554
555 return dst;
556 }
557 EXPORT_SYMBOL(sk_dst_check);
558
sock_bindtoindex_locked(struct sock * sk,int ifindex)559 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
560 {
561 int ret = -ENOPROTOOPT;
562 #ifdef CONFIG_NETDEVICES
563 struct net *net = sock_net(sk);
564
565 /* Sorry... */
566 ret = -EPERM;
567 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
568 goto out;
569
570 ret = -EINVAL;
571 if (ifindex < 0)
572 goto out;
573
574 sk->sk_bound_dev_if = ifindex;
575 if (sk->sk_prot->rehash)
576 sk->sk_prot->rehash(sk);
577 sk_dst_reset(sk);
578
579 ret = 0;
580
581 out:
582 #endif
583
584 return ret;
585 }
586
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)587 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
588 {
589 int ret;
590
591 if (lock_sk)
592 lock_sock(sk);
593 ret = sock_bindtoindex_locked(sk, ifindex);
594 if (lock_sk)
595 release_sock(sk);
596
597 return ret;
598 }
599 EXPORT_SYMBOL(sock_bindtoindex);
600
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)601 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
602 {
603 int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 struct net *net = sock_net(sk);
606 char devname[IFNAMSIZ];
607 int index;
608
609 ret = -EINVAL;
610 if (optlen < 0)
611 goto out;
612
613 /* Bind this socket to a particular device like "eth0",
614 * as specified in the passed interface name. If the
615 * name is "" or the option length is zero the socket
616 * is not bound.
617 */
618 if (optlen > IFNAMSIZ - 1)
619 optlen = IFNAMSIZ - 1;
620 memset(devname, 0, sizeof(devname));
621
622 ret = -EFAULT;
623 if (copy_from_sockptr(devname, optval, optlen))
624 goto out;
625
626 index = 0;
627 if (devname[0] != '\0') {
628 struct net_device *dev;
629
630 rcu_read_lock();
631 dev = dev_get_by_name_rcu(net, devname);
632 if (dev)
633 index = dev->ifindex;
634 rcu_read_unlock();
635 ret = -ENODEV;
636 if (!dev)
637 goto out;
638 }
639
640 return sock_bindtoindex(sk, index, true);
641 out:
642 #endif
643
644 return ret;
645 }
646
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)647 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
648 int __user *optlen, int len)
649 {
650 int ret = -ENOPROTOOPT;
651 #ifdef CONFIG_NETDEVICES
652 struct net *net = sock_net(sk);
653 char devname[IFNAMSIZ];
654
655 if (sk->sk_bound_dev_if == 0) {
656 len = 0;
657 goto zero;
658 }
659
660 ret = -EINVAL;
661 if (len < IFNAMSIZ)
662 goto out;
663
664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
665 if (ret)
666 goto out;
667
668 len = strlen(devname) + 1;
669
670 ret = -EFAULT;
671 if (copy_to_user(optval, devname, len))
672 goto out;
673
674 zero:
675 ret = -EFAULT;
676 if (put_user(len, optlen))
677 goto out;
678
679 ret = 0;
680
681 out:
682 #endif
683
684 return ret;
685 }
686
sk_mc_loop(struct sock * sk)687 bool sk_mc_loop(struct sock *sk)
688 {
689 if (dev_recursion_level())
690 return false;
691 if (!sk)
692 return true;
693 switch (sk->sk_family) {
694 case AF_INET:
695 return inet_sk(sk)->mc_loop;
696 #if IS_ENABLED(CONFIG_IPV6)
697 case AF_INET6:
698 return inet6_sk(sk)->mc_loop;
699 #endif
700 }
701 WARN_ON_ONCE(1);
702 return true;
703 }
704 EXPORT_SYMBOL(sk_mc_loop);
705
sock_set_reuseaddr(struct sock * sk)706 void sock_set_reuseaddr(struct sock *sk)
707 {
708 lock_sock(sk);
709 sk->sk_reuse = SK_CAN_REUSE;
710 release_sock(sk);
711 }
712 EXPORT_SYMBOL(sock_set_reuseaddr);
713
sock_set_reuseport(struct sock * sk)714 void sock_set_reuseport(struct sock *sk)
715 {
716 lock_sock(sk);
717 sk->sk_reuseport = true;
718 release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseport);
721
sock_no_linger(struct sock * sk)722 void sock_no_linger(struct sock *sk)
723 {
724 lock_sock(sk);
725 sk->sk_lingertime = 0;
726 sock_set_flag(sk, SOCK_LINGER);
727 release_sock(sk);
728 }
729 EXPORT_SYMBOL(sock_no_linger);
730
sock_set_priority(struct sock * sk,u32 priority)731 void sock_set_priority(struct sock *sk, u32 priority)
732 {
733 lock_sock(sk);
734 sk->sk_priority = priority;
735 release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_set_priority);
738
sock_set_sndtimeo(struct sock * sk,s64 secs)739 void sock_set_sndtimeo(struct sock *sk, s64 secs)
740 {
741 lock_sock(sk);
742 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
743 sk->sk_sndtimeo = secs * HZ;
744 else
745 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
746 release_sock(sk);
747 }
748 EXPORT_SYMBOL(sock_set_sndtimeo);
749
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)750 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
751 {
752 if (val) {
753 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
754 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
755 sock_set_flag(sk, SOCK_RCVTSTAMP);
756 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757 } else {
758 sock_reset_flag(sk, SOCK_RCVTSTAMP);
759 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760 }
761 }
762
sock_enable_timestamps(struct sock * sk)763 void sock_enable_timestamps(struct sock *sk)
764 {
765 lock_sock(sk);
766 __sock_set_timestamps(sk, true, false, true);
767 release_sock(sk);
768 }
769 EXPORT_SYMBOL(sock_enable_timestamps);
770
sock_set_keepalive(struct sock * sk)771 void sock_set_keepalive(struct sock *sk)
772 {
773 lock_sock(sk);
774 if (sk->sk_prot->keepalive)
775 sk->sk_prot->keepalive(sk, true);
776 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
777 release_sock(sk);
778 }
779 EXPORT_SYMBOL(sock_set_keepalive);
780
__sock_set_rcvbuf(struct sock * sk,int val)781 static void __sock_set_rcvbuf(struct sock *sk, int val)
782 {
783 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
784 * as a negative value.
785 */
786 val = min_t(int, val, INT_MAX / 2);
787 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
788
789 /* We double it on the way in to account for "struct sk_buff" etc.
790 * overhead. Applications assume that the SO_RCVBUF setting they make
791 * will allow that much actual data to be received on that socket.
792 *
793 * Applications are unaware that "struct sk_buff" and other overheads
794 * allocate from the receive buffer during socket buffer allocation.
795 *
796 * And after considering the possible alternatives, returning the value
797 * we actually used in getsockopt is the most desirable behavior.
798 */
799 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
800 }
801
sock_set_rcvbuf(struct sock * sk,int val)802 void sock_set_rcvbuf(struct sock *sk, int val)
803 {
804 lock_sock(sk);
805 __sock_set_rcvbuf(sk, val);
806 release_sock(sk);
807 }
808 EXPORT_SYMBOL(sock_set_rcvbuf);
809
__sock_set_mark(struct sock * sk,u32 val)810 static void __sock_set_mark(struct sock *sk, u32 val)
811 {
812 if (val != sk->sk_mark) {
813 sk->sk_mark = val;
814 sk_dst_reset(sk);
815 }
816 }
817
sock_set_mark(struct sock * sk,u32 val)818 void sock_set_mark(struct sock *sk, u32 val)
819 {
820 lock_sock(sk);
821 __sock_set_mark(sk, val);
822 release_sock(sk);
823 }
824 EXPORT_SYMBOL(sock_set_mark);
825
826 /*
827 * This is meant for all protocols to use and covers goings on
828 * at the socket level. Everything here is generic.
829 */
830
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)831 int sock_setsockopt(struct socket *sock, int level, int optname,
832 sockptr_t optval, unsigned int optlen)
833 {
834 struct sock_txtime sk_txtime;
835 struct sock *sk = sock->sk;
836 int val;
837 int valbool;
838 struct linger ling;
839 int ret = 0;
840
841 /*
842 * Options without arguments
843 */
844
845 if (optname == SO_BINDTODEVICE)
846 return sock_setbindtodevice(sk, optval, optlen);
847
848 if (optlen < sizeof(int))
849 return -EINVAL;
850
851 if (copy_from_sockptr(&val, optval, sizeof(val)))
852 return -EFAULT;
853
854 valbool = val ? 1 : 0;
855
856 lock_sock(sk);
857
858 switch (optname) {
859 case SO_DEBUG:
860 if (val && !capable(CAP_NET_ADMIN))
861 ret = -EACCES;
862 else
863 sock_valbool_flag(sk, SOCK_DBG, valbool);
864 break;
865 case SO_REUSEADDR:
866 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
867 break;
868 case SO_REUSEPORT:
869 sk->sk_reuseport = valbool;
870 break;
871 case SO_TYPE:
872 case SO_PROTOCOL:
873 case SO_DOMAIN:
874 case SO_ERROR:
875 ret = -ENOPROTOOPT;
876 break;
877 case SO_DONTROUTE:
878 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
879 sk_dst_reset(sk);
880 break;
881 case SO_BROADCAST:
882 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
883 break;
884 case SO_SNDBUF:
885 /* Don't error on this BSD doesn't and if you think
886 * about it this is right. Otherwise apps have to
887 * play 'guess the biggest size' games. RCVBUF/SNDBUF
888 * are treated in BSD as hints
889 */
890 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
891 set_sndbuf:
892 /* Ensure val * 2 fits into an int, to prevent max_t()
893 * from treating it as a negative value.
894 */
895 val = min_t(int, val, INT_MAX / 2);
896 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
897 WRITE_ONCE(sk->sk_sndbuf,
898 max_t(int, val * 2, SOCK_MIN_SNDBUF));
899 /* Wake up sending tasks if we upped the value. */
900 sk->sk_write_space(sk);
901 break;
902
903 case SO_SNDBUFFORCE:
904 if (!capable(CAP_NET_ADMIN)) {
905 ret = -EPERM;
906 break;
907 }
908
909 /* No negative values (to prevent underflow, as val will be
910 * multiplied by 2).
911 */
912 if (val < 0)
913 val = 0;
914 goto set_sndbuf;
915
916 case SO_RCVBUF:
917 /* Don't error on this BSD doesn't and if you think
918 * about it this is right. Otherwise apps have to
919 * play 'guess the biggest size' games. RCVBUF/SNDBUF
920 * are treated in BSD as hints
921 */
922 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
923 break;
924
925 case SO_RCVBUFFORCE:
926 if (!capable(CAP_NET_ADMIN)) {
927 ret = -EPERM;
928 break;
929 }
930
931 /* No negative values (to prevent underflow, as val will be
932 * multiplied by 2).
933 */
934 __sock_set_rcvbuf(sk, max(val, 0));
935 break;
936
937 case SO_KEEPALIVE:
938 if (sk->sk_prot->keepalive)
939 sk->sk_prot->keepalive(sk, valbool);
940 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
941 break;
942
943 case SO_OOBINLINE:
944 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
945 break;
946
947 case SO_NO_CHECK:
948 sk->sk_no_check_tx = valbool;
949 break;
950
951 case SO_PRIORITY:
952 if ((val >= 0 && val <= 6) ||
953 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
954 sk->sk_priority = val;
955 else
956 ret = -EPERM;
957 break;
958
959 case SO_LINGER:
960 if (optlen < sizeof(ling)) {
961 ret = -EINVAL; /* 1003.1g */
962 break;
963 }
964 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
965 ret = -EFAULT;
966 break;
967 }
968 if (!ling.l_onoff)
969 sock_reset_flag(sk, SOCK_LINGER);
970 else {
971 #if (BITS_PER_LONG == 32)
972 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
973 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
974 else
975 #endif
976 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
977 sock_set_flag(sk, SOCK_LINGER);
978 }
979 break;
980
981 case SO_BSDCOMPAT:
982 break;
983
984 case SO_PASSCRED:
985 if (valbool)
986 set_bit(SOCK_PASSCRED, &sock->flags);
987 else
988 clear_bit(SOCK_PASSCRED, &sock->flags);
989 break;
990
991 case SO_TIMESTAMP_OLD:
992 __sock_set_timestamps(sk, valbool, false, false);
993 break;
994 case SO_TIMESTAMP_NEW:
995 __sock_set_timestamps(sk, valbool, true, false);
996 break;
997 case SO_TIMESTAMPNS_OLD:
998 __sock_set_timestamps(sk, valbool, false, true);
999 break;
1000 case SO_TIMESTAMPNS_NEW:
1001 __sock_set_timestamps(sk, valbool, true, true);
1002 break;
1003 case SO_TIMESTAMPING_NEW:
1004 case SO_TIMESTAMPING_OLD:
1005 if (val & ~SOF_TIMESTAMPING_MASK) {
1006 ret = -EINVAL;
1007 break;
1008 }
1009
1010 if (val & SOF_TIMESTAMPING_OPT_ID &&
1011 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1012 if (sk->sk_protocol == IPPROTO_TCP &&
1013 sk->sk_type == SOCK_STREAM) {
1014 if ((1 << sk->sk_state) &
1015 (TCPF_CLOSE | TCPF_LISTEN)) {
1016 ret = -EINVAL;
1017 break;
1018 }
1019 sk->sk_tskey = tcp_sk(sk)->snd_una;
1020 } else {
1021 sk->sk_tskey = 0;
1022 }
1023 }
1024
1025 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1026 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1027 ret = -EINVAL;
1028 break;
1029 }
1030
1031 sk->sk_tsflags = val;
1032 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1033
1034 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1035 sock_enable_timestamp(sk,
1036 SOCK_TIMESTAMPING_RX_SOFTWARE);
1037 else
1038 sock_disable_timestamp(sk,
1039 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1040 break;
1041
1042 case SO_RCVLOWAT:
1043 if (val < 0)
1044 val = INT_MAX;
1045 if (sock->ops->set_rcvlowat)
1046 ret = sock->ops->set_rcvlowat(sk, val);
1047 else
1048 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1049 break;
1050
1051 case SO_RCVTIMEO_OLD:
1052 case SO_RCVTIMEO_NEW:
1053 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1054 optlen, optname == SO_RCVTIMEO_OLD);
1055 break;
1056
1057 case SO_SNDTIMEO_OLD:
1058 case SO_SNDTIMEO_NEW:
1059 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1060 optlen, optname == SO_SNDTIMEO_OLD);
1061 break;
1062
1063 case SO_ATTACH_FILTER: {
1064 struct sock_fprog fprog;
1065
1066 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1067 if (!ret)
1068 ret = sk_attach_filter(&fprog, sk);
1069 break;
1070 }
1071 case SO_ATTACH_BPF:
1072 ret = -EINVAL;
1073 if (optlen == sizeof(u32)) {
1074 u32 ufd;
1075
1076 ret = -EFAULT;
1077 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1078 break;
1079
1080 ret = sk_attach_bpf(ufd, sk);
1081 }
1082 break;
1083
1084 case SO_ATTACH_REUSEPORT_CBPF: {
1085 struct sock_fprog fprog;
1086
1087 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 if (!ret)
1089 ret = sk_reuseport_attach_filter(&fprog, sk);
1090 break;
1091 }
1092 case SO_ATTACH_REUSEPORT_EBPF:
1093 ret = -EINVAL;
1094 if (optlen == sizeof(u32)) {
1095 u32 ufd;
1096
1097 ret = -EFAULT;
1098 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 break;
1100
1101 ret = sk_reuseport_attach_bpf(ufd, sk);
1102 }
1103 break;
1104
1105 case SO_DETACH_REUSEPORT_BPF:
1106 ret = reuseport_detach_prog(sk);
1107 break;
1108
1109 case SO_DETACH_FILTER:
1110 ret = sk_detach_filter(sk);
1111 break;
1112
1113 case SO_LOCK_FILTER:
1114 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1115 ret = -EPERM;
1116 else
1117 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1118 break;
1119
1120 case SO_PASSSEC:
1121 if (valbool)
1122 set_bit(SOCK_PASSSEC, &sock->flags);
1123 else
1124 clear_bit(SOCK_PASSSEC, &sock->flags);
1125 break;
1126 case SO_MARK:
1127 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1128 ret = -EPERM;
1129 break;
1130 }
1131
1132 __sock_set_mark(sk, val);
1133 break;
1134
1135 case SO_RXQ_OVFL:
1136 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1137 break;
1138
1139 case SO_WIFI_STATUS:
1140 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1141 break;
1142
1143 case SO_PEEK_OFF:
1144 if (sock->ops->set_peek_off)
1145 ret = sock->ops->set_peek_off(sk, val);
1146 else
1147 ret = -EOPNOTSUPP;
1148 break;
1149
1150 case SO_NOFCS:
1151 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1152 break;
1153
1154 case SO_SELECT_ERR_QUEUE:
1155 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1156 break;
1157
1158 #ifdef CONFIG_NET_RX_BUSY_POLL
1159 case SO_BUSY_POLL:
1160 /* allow unprivileged users to decrease the value */
1161 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1162 ret = -EPERM;
1163 else {
1164 if (val < 0)
1165 ret = -EINVAL;
1166 else
1167 WRITE_ONCE(sk->sk_ll_usec, val);
1168 }
1169 break;
1170 #endif
1171
1172 case SO_MAX_PACING_RATE:
1173 {
1174 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1175
1176 if (sizeof(ulval) != sizeof(val) &&
1177 optlen >= sizeof(ulval) &&
1178 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1179 ret = -EFAULT;
1180 break;
1181 }
1182 if (ulval != ~0UL)
1183 cmpxchg(&sk->sk_pacing_status,
1184 SK_PACING_NONE,
1185 SK_PACING_NEEDED);
1186 sk->sk_max_pacing_rate = ulval;
1187 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1188 break;
1189 }
1190 case SO_INCOMING_CPU:
1191 WRITE_ONCE(sk->sk_incoming_cpu, val);
1192 break;
1193
1194 case SO_CNX_ADVICE:
1195 if (val == 1)
1196 dst_negative_advice(sk);
1197 break;
1198
1199 case SO_ZEROCOPY:
1200 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1201 if (!((sk->sk_type == SOCK_STREAM &&
1202 sk->sk_protocol == IPPROTO_TCP) ||
1203 (sk->sk_type == SOCK_DGRAM &&
1204 sk->sk_protocol == IPPROTO_UDP)))
1205 ret = -ENOTSUPP;
1206 } else if (sk->sk_family != PF_RDS) {
1207 ret = -ENOTSUPP;
1208 }
1209 if (!ret) {
1210 if (val < 0 || val > 1)
1211 ret = -EINVAL;
1212 else
1213 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1214 }
1215 break;
1216
1217 case SO_TXTIME:
1218 if (optlen != sizeof(struct sock_txtime)) {
1219 ret = -EINVAL;
1220 break;
1221 } else if (copy_from_sockptr(&sk_txtime, optval,
1222 sizeof(struct sock_txtime))) {
1223 ret = -EFAULT;
1224 break;
1225 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1226 ret = -EINVAL;
1227 break;
1228 }
1229 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1230 * scheduler has enough safe guards.
1231 */
1232 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1233 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1234 ret = -EPERM;
1235 break;
1236 }
1237 sock_valbool_flag(sk, SOCK_TXTIME, true);
1238 sk->sk_clockid = sk_txtime.clockid;
1239 sk->sk_txtime_deadline_mode =
1240 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1241 sk->sk_txtime_report_errors =
1242 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1243 break;
1244
1245 case SO_BINDTOIFINDEX:
1246 ret = sock_bindtoindex_locked(sk, val);
1247 break;
1248
1249 default:
1250 ret = -ENOPROTOOPT;
1251 break;
1252 }
1253 release_sock(sk);
1254 return ret;
1255 }
1256 EXPORT_SYMBOL(sock_setsockopt);
1257
sk_get_peer_cred(struct sock * sk)1258 static const struct cred *sk_get_peer_cred(struct sock *sk)
1259 {
1260 const struct cred *cred;
1261
1262 spin_lock(&sk->sk_peer_lock);
1263 cred = get_cred(sk->sk_peer_cred);
1264 spin_unlock(&sk->sk_peer_lock);
1265
1266 return cred;
1267 }
1268
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1269 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270 struct ucred *ucred)
1271 {
1272 ucred->pid = pid_vnr(pid);
1273 ucred->uid = ucred->gid = -1;
1274 if (cred) {
1275 struct user_namespace *current_ns = current_user_ns();
1276
1277 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279 }
1280 }
1281
groups_to_user(gid_t __user * dst,const struct group_info * src)1282 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283 {
1284 struct user_namespace *user_ns = current_user_ns();
1285 int i;
1286
1287 for (i = 0; i < src->ngroups; i++)
1288 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1289 return -EFAULT;
1290
1291 return 0;
1292 }
1293
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1294 int sock_getsockopt(struct socket *sock, int level, int optname,
1295 char __user *optval, int __user *optlen)
1296 {
1297 struct sock *sk = sock->sk;
1298
1299 union {
1300 int val;
1301 u64 val64;
1302 unsigned long ulval;
1303 struct linger ling;
1304 struct old_timeval32 tm32;
1305 struct __kernel_old_timeval tm;
1306 struct __kernel_sock_timeval stm;
1307 struct sock_txtime txtime;
1308 } v;
1309
1310 int lv = sizeof(int);
1311 int len;
1312
1313 if (get_user(len, optlen))
1314 return -EFAULT;
1315 if (len < 0)
1316 return -EINVAL;
1317
1318 memset(&v, 0, sizeof(v));
1319
1320 switch (optname) {
1321 case SO_DEBUG:
1322 v.val = sock_flag(sk, SOCK_DBG);
1323 break;
1324
1325 case SO_DONTROUTE:
1326 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327 break;
1328
1329 case SO_BROADCAST:
1330 v.val = sock_flag(sk, SOCK_BROADCAST);
1331 break;
1332
1333 case SO_SNDBUF:
1334 v.val = sk->sk_sndbuf;
1335 break;
1336
1337 case SO_RCVBUF:
1338 v.val = sk->sk_rcvbuf;
1339 break;
1340
1341 case SO_REUSEADDR:
1342 v.val = sk->sk_reuse;
1343 break;
1344
1345 case SO_REUSEPORT:
1346 v.val = sk->sk_reuseport;
1347 break;
1348
1349 case SO_KEEPALIVE:
1350 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351 break;
1352
1353 case SO_TYPE:
1354 v.val = sk->sk_type;
1355 break;
1356
1357 case SO_PROTOCOL:
1358 v.val = sk->sk_protocol;
1359 break;
1360
1361 case SO_DOMAIN:
1362 v.val = sk->sk_family;
1363 break;
1364
1365 case SO_ERROR:
1366 v.val = -sock_error(sk);
1367 if (v.val == 0)
1368 v.val = xchg(&sk->sk_err_soft, 0);
1369 break;
1370
1371 case SO_OOBINLINE:
1372 v.val = sock_flag(sk, SOCK_URGINLINE);
1373 break;
1374
1375 case SO_NO_CHECK:
1376 v.val = sk->sk_no_check_tx;
1377 break;
1378
1379 case SO_PRIORITY:
1380 v.val = sk->sk_priority;
1381 break;
1382
1383 case SO_LINGER:
1384 lv = sizeof(v.ling);
1385 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1386 v.ling.l_linger = sk->sk_lingertime / HZ;
1387 break;
1388
1389 case SO_BSDCOMPAT:
1390 break;
1391
1392 case SO_TIMESTAMP_OLD:
1393 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1394 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1395 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1396 break;
1397
1398 case SO_TIMESTAMPNS_OLD:
1399 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1400 break;
1401
1402 case SO_TIMESTAMP_NEW:
1403 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1404 break;
1405
1406 case SO_TIMESTAMPNS_NEW:
1407 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1408 break;
1409
1410 case SO_TIMESTAMPING_OLD:
1411 v.val = sk->sk_tsflags;
1412 break;
1413
1414 case SO_RCVTIMEO_OLD:
1415 case SO_RCVTIMEO_NEW:
1416 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1417 break;
1418
1419 case SO_SNDTIMEO_OLD:
1420 case SO_SNDTIMEO_NEW:
1421 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1422 break;
1423
1424 case SO_RCVLOWAT:
1425 v.val = sk->sk_rcvlowat;
1426 break;
1427
1428 case SO_SNDLOWAT:
1429 v.val = 1;
1430 break;
1431
1432 case SO_PASSCRED:
1433 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1434 break;
1435
1436 case SO_PEERCRED:
1437 {
1438 struct ucred peercred;
1439 if (len > sizeof(peercred))
1440 len = sizeof(peercred);
1441
1442 spin_lock(&sk->sk_peer_lock);
1443 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1444 spin_unlock(&sk->sk_peer_lock);
1445
1446 if (copy_to_user(optval, &peercred, len))
1447 return -EFAULT;
1448 goto lenout;
1449 }
1450
1451 case SO_PEERGROUPS:
1452 {
1453 const struct cred *cred;
1454 int ret, n;
1455
1456 cred = sk_get_peer_cred(sk);
1457 if (!cred)
1458 return -ENODATA;
1459
1460 n = cred->group_info->ngroups;
1461 if (len < n * sizeof(gid_t)) {
1462 len = n * sizeof(gid_t);
1463 put_cred(cred);
1464 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1465 }
1466 len = n * sizeof(gid_t);
1467
1468 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1469 put_cred(cred);
1470 if (ret)
1471 return ret;
1472 goto lenout;
1473 }
1474
1475 case SO_PEERNAME:
1476 {
1477 char address[128];
1478
1479 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1480 if (lv < 0)
1481 return -ENOTCONN;
1482 if (lv < len)
1483 return -EINVAL;
1484 if (copy_to_user(optval, address, len))
1485 return -EFAULT;
1486 goto lenout;
1487 }
1488
1489 /* Dubious BSD thing... Probably nobody even uses it, but
1490 * the UNIX standard wants it for whatever reason... -DaveM
1491 */
1492 case SO_ACCEPTCONN:
1493 v.val = sk->sk_state == TCP_LISTEN;
1494 break;
1495
1496 case SO_PASSSEC:
1497 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1498 break;
1499
1500 case SO_PEERSEC:
1501 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1502
1503 case SO_MARK:
1504 v.val = sk->sk_mark;
1505 break;
1506
1507 case SO_RXQ_OVFL:
1508 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1509 break;
1510
1511 case SO_WIFI_STATUS:
1512 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1513 break;
1514
1515 case SO_PEEK_OFF:
1516 if (!sock->ops->set_peek_off)
1517 return -EOPNOTSUPP;
1518
1519 v.val = sk->sk_peek_off;
1520 break;
1521 case SO_NOFCS:
1522 v.val = sock_flag(sk, SOCK_NOFCS);
1523 break;
1524
1525 case SO_BINDTODEVICE:
1526 return sock_getbindtodevice(sk, optval, optlen, len);
1527
1528 case SO_GET_FILTER:
1529 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1530 if (len < 0)
1531 return len;
1532
1533 goto lenout;
1534
1535 case SO_LOCK_FILTER:
1536 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1537 break;
1538
1539 case SO_BPF_EXTENSIONS:
1540 v.val = bpf_tell_extensions();
1541 break;
1542
1543 case SO_SELECT_ERR_QUEUE:
1544 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1545 break;
1546
1547 #ifdef CONFIG_NET_RX_BUSY_POLL
1548 case SO_BUSY_POLL:
1549 v.val = sk->sk_ll_usec;
1550 break;
1551 #endif
1552
1553 case SO_MAX_PACING_RATE:
1554 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1555 lv = sizeof(v.ulval);
1556 v.ulval = sk->sk_max_pacing_rate;
1557 } else {
1558 /* 32bit version */
1559 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1560 }
1561 break;
1562
1563 case SO_INCOMING_CPU:
1564 v.val = READ_ONCE(sk->sk_incoming_cpu);
1565 break;
1566
1567 case SO_MEMINFO:
1568 {
1569 u32 meminfo[SK_MEMINFO_VARS];
1570
1571 sk_get_meminfo(sk, meminfo);
1572
1573 len = min_t(unsigned int, len, sizeof(meminfo));
1574 if (copy_to_user(optval, &meminfo, len))
1575 return -EFAULT;
1576
1577 goto lenout;
1578 }
1579
1580 #ifdef CONFIG_NET_RX_BUSY_POLL
1581 case SO_INCOMING_NAPI_ID:
1582 v.val = READ_ONCE(sk->sk_napi_id);
1583
1584 /* aggregate non-NAPI IDs down to 0 */
1585 if (v.val < MIN_NAPI_ID)
1586 v.val = 0;
1587
1588 break;
1589 #endif
1590
1591 case SO_COOKIE:
1592 lv = sizeof(u64);
1593 if (len < lv)
1594 return -EINVAL;
1595 v.val64 = sock_gen_cookie(sk);
1596 break;
1597
1598 case SO_ZEROCOPY:
1599 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1600 break;
1601
1602 case SO_TXTIME:
1603 lv = sizeof(v.txtime);
1604 v.txtime.clockid = sk->sk_clockid;
1605 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1606 SOF_TXTIME_DEADLINE_MODE : 0;
1607 v.txtime.flags |= sk->sk_txtime_report_errors ?
1608 SOF_TXTIME_REPORT_ERRORS : 0;
1609 break;
1610
1611 case SO_BINDTOIFINDEX:
1612 v.val = sk->sk_bound_dev_if;
1613 break;
1614
1615 default:
1616 /* We implement the SO_SNDLOWAT etc to not be settable
1617 * (1003.1g 7).
1618 */
1619 return -ENOPROTOOPT;
1620 }
1621
1622 if (len > lv)
1623 len = lv;
1624 if (copy_to_user(optval, &v, len))
1625 return -EFAULT;
1626 lenout:
1627 if (put_user(len, optlen))
1628 return -EFAULT;
1629 return 0;
1630 }
1631
1632 /*
1633 * Initialize an sk_lock.
1634 *
1635 * (We also register the sk_lock with the lock validator.)
1636 */
sock_lock_init(struct sock * sk)1637 static inline void sock_lock_init(struct sock *sk)
1638 {
1639 if (sk->sk_kern_sock)
1640 sock_lock_init_class_and_name(
1641 sk,
1642 af_family_kern_slock_key_strings[sk->sk_family],
1643 af_family_kern_slock_keys + sk->sk_family,
1644 af_family_kern_key_strings[sk->sk_family],
1645 af_family_kern_keys + sk->sk_family);
1646 else
1647 sock_lock_init_class_and_name(
1648 sk,
1649 af_family_slock_key_strings[sk->sk_family],
1650 af_family_slock_keys + sk->sk_family,
1651 af_family_key_strings[sk->sk_family],
1652 af_family_keys + sk->sk_family);
1653 }
1654
1655 /*
1656 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1657 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1658 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1659 */
sock_copy(struct sock * nsk,const struct sock * osk)1660 static void sock_copy(struct sock *nsk, const struct sock *osk)
1661 {
1662 const struct proto *prot = READ_ONCE(osk->sk_prot);
1663 #ifdef CONFIG_SECURITY_NETWORK
1664 void *sptr = nsk->sk_security;
1665 #endif
1666 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1667
1668 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1669 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1670
1671 #ifdef CONFIG_SECURITY_NETWORK
1672 nsk->sk_security = sptr;
1673 security_sk_clone(osk, nsk);
1674 #endif
1675 }
1676
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1677 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1678 int family)
1679 {
1680 struct sock *sk;
1681 struct kmem_cache *slab;
1682
1683 slab = prot->slab;
1684 if (slab != NULL) {
1685 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1686 if (!sk)
1687 return sk;
1688 if (want_init_on_alloc(priority))
1689 sk_prot_clear_nulls(sk, prot->obj_size);
1690 } else
1691 sk = kmalloc(prot->obj_size, priority);
1692
1693 if (sk != NULL) {
1694 if (security_sk_alloc(sk, family, priority))
1695 goto out_free;
1696
1697 if (!try_module_get(prot->owner))
1698 goto out_free_sec;
1699 sk_tx_queue_clear(sk);
1700 }
1701
1702 return sk;
1703
1704 out_free_sec:
1705 security_sk_free(sk);
1706 out_free:
1707 if (slab != NULL)
1708 kmem_cache_free(slab, sk);
1709 else
1710 kfree(sk);
1711 return NULL;
1712 }
1713
sk_prot_free(struct proto * prot,struct sock * sk)1714 static void sk_prot_free(struct proto *prot, struct sock *sk)
1715 {
1716 struct kmem_cache *slab;
1717 struct module *owner;
1718
1719 owner = prot->owner;
1720 slab = prot->slab;
1721
1722 cgroup_sk_free(&sk->sk_cgrp_data);
1723 mem_cgroup_sk_free(sk);
1724 security_sk_free(sk);
1725 if (slab != NULL)
1726 kmem_cache_free(slab, sk);
1727 else
1728 kfree(sk);
1729 module_put(owner);
1730 }
1731
1732 /**
1733 * sk_alloc - All socket objects are allocated here
1734 * @net: the applicable net namespace
1735 * @family: protocol family
1736 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1737 * @prot: struct proto associated with this new sock instance
1738 * @kern: is this to be a kernel socket?
1739 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1740 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1741 struct proto *prot, int kern)
1742 {
1743 struct sock *sk;
1744
1745 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1746 if (sk) {
1747 sk->sk_family = family;
1748 /*
1749 * See comment in struct sock definition to understand
1750 * why we need sk_prot_creator -acme
1751 */
1752 sk->sk_prot = sk->sk_prot_creator = prot;
1753 sk->sk_kern_sock = kern;
1754 sock_lock_init(sk);
1755 sk->sk_net_refcnt = kern ? 0 : 1;
1756 if (likely(sk->sk_net_refcnt)) {
1757 get_net(net);
1758 sock_inuse_add(net, 1);
1759 }
1760
1761 sock_net_set(sk, net);
1762 refcount_set(&sk->sk_wmem_alloc, 1);
1763
1764 mem_cgroup_sk_alloc(sk);
1765 cgroup_sk_alloc(&sk->sk_cgrp_data);
1766 sock_update_classid(&sk->sk_cgrp_data);
1767 sock_update_netprioidx(&sk->sk_cgrp_data);
1768 sk_tx_queue_clear(sk);
1769 }
1770
1771 return sk;
1772 }
1773 EXPORT_SYMBOL(sk_alloc);
1774
1775 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1776 * grace period. This is the case for UDP sockets and TCP listeners.
1777 */
__sk_destruct(struct rcu_head * head)1778 static void __sk_destruct(struct rcu_head *head)
1779 {
1780 struct sock *sk = container_of(head, struct sock, sk_rcu);
1781 struct sk_filter *filter;
1782
1783 if (sk->sk_destruct)
1784 sk->sk_destruct(sk);
1785
1786 filter = rcu_dereference_check(sk->sk_filter,
1787 refcount_read(&sk->sk_wmem_alloc) == 0);
1788 if (filter) {
1789 sk_filter_uncharge(sk, filter);
1790 RCU_INIT_POINTER(sk->sk_filter, NULL);
1791 }
1792
1793 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1794
1795 #ifdef CONFIG_BPF_SYSCALL
1796 bpf_sk_storage_free(sk);
1797 #endif
1798
1799 if (atomic_read(&sk->sk_omem_alloc))
1800 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1801 __func__, atomic_read(&sk->sk_omem_alloc));
1802
1803 if (sk->sk_frag.page) {
1804 put_page(sk->sk_frag.page);
1805 sk->sk_frag.page = NULL;
1806 }
1807
1808 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1809 put_cred(sk->sk_peer_cred);
1810 put_pid(sk->sk_peer_pid);
1811
1812 if (likely(sk->sk_net_refcnt))
1813 put_net(sock_net(sk));
1814 sk_prot_free(sk->sk_prot_creator, sk);
1815 }
1816
sk_destruct(struct sock * sk)1817 void sk_destruct(struct sock *sk)
1818 {
1819 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1820
1821 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1822 reuseport_detach_sock(sk);
1823 use_call_rcu = true;
1824 }
1825
1826 if (use_call_rcu)
1827 call_rcu(&sk->sk_rcu, __sk_destruct);
1828 else
1829 __sk_destruct(&sk->sk_rcu);
1830 }
1831
__sk_free(struct sock * sk)1832 static void __sk_free(struct sock *sk)
1833 {
1834 if (likely(sk->sk_net_refcnt))
1835 sock_inuse_add(sock_net(sk), -1);
1836
1837 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1838 sock_diag_broadcast_destroy(sk);
1839 else
1840 sk_destruct(sk);
1841 }
1842
sk_free(struct sock * sk)1843 void sk_free(struct sock *sk)
1844 {
1845 /*
1846 * We subtract one from sk_wmem_alloc and can know if
1847 * some packets are still in some tx queue.
1848 * If not null, sock_wfree() will call __sk_free(sk) later
1849 */
1850 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1851 __sk_free(sk);
1852 }
1853 EXPORT_SYMBOL(sk_free);
1854
sk_init_common(struct sock * sk)1855 static void sk_init_common(struct sock *sk)
1856 {
1857 skb_queue_head_init(&sk->sk_receive_queue);
1858 skb_queue_head_init(&sk->sk_write_queue);
1859 skb_queue_head_init(&sk->sk_error_queue);
1860
1861 rwlock_init(&sk->sk_callback_lock);
1862 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1863 af_rlock_keys + sk->sk_family,
1864 af_family_rlock_key_strings[sk->sk_family]);
1865 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1866 af_wlock_keys + sk->sk_family,
1867 af_family_wlock_key_strings[sk->sk_family]);
1868 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1869 af_elock_keys + sk->sk_family,
1870 af_family_elock_key_strings[sk->sk_family]);
1871 lockdep_set_class_and_name(&sk->sk_callback_lock,
1872 af_callback_keys + sk->sk_family,
1873 af_family_clock_key_strings[sk->sk_family]);
1874 }
1875
1876 /**
1877 * sk_clone_lock - clone a socket, and lock its clone
1878 * @sk: the socket to clone
1879 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1880 *
1881 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1882 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1883 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1884 {
1885 struct proto *prot = READ_ONCE(sk->sk_prot);
1886 struct sk_filter *filter;
1887 bool is_charged = true;
1888 struct sock *newsk;
1889
1890 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1891 if (!newsk)
1892 goto out;
1893
1894 sock_copy(newsk, sk);
1895
1896 newsk->sk_prot_creator = prot;
1897
1898 /* SANITY */
1899 if (likely(newsk->sk_net_refcnt)) {
1900 get_net(sock_net(newsk));
1901 sock_inuse_add(sock_net(newsk), 1);
1902 }
1903 sk_node_init(&newsk->sk_node);
1904 sock_lock_init(newsk);
1905 bh_lock_sock(newsk);
1906 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1907 newsk->sk_backlog.len = 0;
1908
1909 atomic_set(&newsk->sk_rmem_alloc, 0);
1910
1911 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1912 refcount_set(&newsk->sk_wmem_alloc, 1);
1913
1914 atomic_set(&newsk->sk_omem_alloc, 0);
1915 sk_init_common(newsk);
1916
1917 newsk->sk_dst_cache = NULL;
1918 newsk->sk_dst_pending_confirm = 0;
1919 newsk->sk_wmem_queued = 0;
1920 newsk->sk_forward_alloc = 0;
1921 atomic_set(&newsk->sk_drops, 0);
1922 newsk->sk_send_head = NULL;
1923 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1924 atomic_set(&newsk->sk_zckey, 0);
1925
1926 sock_reset_flag(newsk, SOCK_DONE);
1927
1928 /* sk->sk_memcg will be populated at accept() time */
1929 newsk->sk_memcg = NULL;
1930
1931 cgroup_sk_clone(&newsk->sk_cgrp_data);
1932
1933 rcu_read_lock();
1934 filter = rcu_dereference(sk->sk_filter);
1935 if (filter != NULL)
1936 /* though it's an empty new sock, the charging may fail
1937 * if sysctl_optmem_max was changed between creation of
1938 * original socket and cloning
1939 */
1940 is_charged = sk_filter_charge(newsk, filter);
1941 RCU_INIT_POINTER(newsk->sk_filter, filter);
1942 rcu_read_unlock();
1943
1944 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1945 /* We need to make sure that we don't uncharge the new
1946 * socket if we couldn't charge it in the first place
1947 * as otherwise we uncharge the parent's filter.
1948 */
1949 if (!is_charged)
1950 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1951 sk_free_unlock_clone(newsk);
1952 newsk = NULL;
1953 goto out;
1954 }
1955 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1956
1957 if (bpf_sk_storage_clone(sk, newsk)) {
1958 sk_free_unlock_clone(newsk);
1959 newsk = NULL;
1960 goto out;
1961 }
1962
1963 /* Clear sk_user_data if parent had the pointer tagged
1964 * as not suitable for copying when cloning.
1965 */
1966 if (sk_user_data_is_nocopy(newsk))
1967 newsk->sk_user_data = NULL;
1968
1969 newsk->sk_err = 0;
1970 newsk->sk_err_soft = 0;
1971 newsk->sk_priority = 0;
1972 newsk->sk_incoming_cpu = raw_smp_processor_id();
1973
1974 /* Before updating sk_refcnt, we must commit prior changes to memory
1975 * (Documentation/RCU/rculist_nulls.rst for details)
1976 */
1977 smp_wmb();
1978 refcount_set(&newsk->sk_refcnt, 2);
1979
1980 /* Increment the counter in the same struct proto as the master
1981 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1982 * is the same as sk->sk_prot->socks, as this field was copied
1983 * with memcpy).
1984 *
1985 * This _changes_ the previous behaviour, where
1986 * tcp_create_openreq_child always was incrementing the
1987 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1988 * to be taken into account in all callers. -acme
1989 */
1990 sk_refcnt_debug_inc(newsk);
1991 sk_set_socket(newsk, NULL);
1992 sk_tx_queue_clear(newsk);
1993 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1994
1995 if (newsk->sk_prot->sockets_allocated)
1996 sk_sockets_allocated_inc(newsk);
1997
1998 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1999 net_enable_timestamp();
2000 out:
2001 return newsk;
2002 }
2003 EXPORT_SYMBOL_GPL(sk_clone_lock);
2004
sk_free_unlock_clone(struct sock * sk)2005 void sk_free_unlock_clone(struct sock *sk)
2006 {
2007 /* It is still raw copy of parent, so invalidate
2008 * destructor and make plain sk_free() */
2009 sk->sk_destruct = NULL;
2010 bh_unlock_sock(sk);
2011 sk_free(sk);
2012 }
2013 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2014
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2015 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2016 {
2017 u32 max_segs = 1;
2018
2019 sk_dst_set(sk, dst);
2020 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2021 if (sk->sk_route_caps & NETIF_F_GSO)
2022 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2023 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2024 if (sk_can_gso(sk)) {
2025 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2026 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2027 } else {
2028 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2029 sk->sk_gso_max_size = dst->dev->gso_max_size;
2030 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2031 }
2032 }
2033 sk->sk_gso_max_segs = max_segs;
2034 }
2035 EXPORT_SYMBOL_GPL(sk_setup_caps);
2036
2037 /*
2038 * Simple resource managers for sockets.
2039 */
2040
2041
2042 /*
2043 * Write buffer destructor automatically called from kfree_skb.
2044 */
sock_wfree(struct sk_buff * skb)2045 void sock_wfree(struct sk_buff *skb)
2046 {
2047 struct sock *sk = skb->sk;
2048 unsigned int len = skb->truesize;
2049
2050 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2051 /*
2052 * Keep a reference on sk_wmem_alloc, this will be released
2053 * after sk_write_space() call
2054 */
2055 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2056 sk->sk_write_space(sk);
2057 len = 1;
2058 }
2059 /*
2060 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2061 * could not do because of in-flight packets
2062 */
2063 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2064 __sk_free(sk);
2065 }
2066 EXPORT_SYMBOL(sock_wfree);
2067
2068 /* This variant of sock_wfree() is used by TCP,
2069 * since it sets SOCK_USE_WRITE_QUEUE.
2070 */
__sock_wfree(struct sk_buff * skb)2071 void __sock_wfree(struct sk_buff *skb)
2072 {
2073 struct sock *sk = skb->sk;
2074
2075 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2076 __sk_free(sk);
2077 }
2078
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2079 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2080 {
2081 skb_orphan(skb);
2082 skb->sk = sk;
2083 #ifdef CONFIG_INET
2084 if (unlikely(!sk_fullsock(sk))) {
2085 skb->destructor = sock_edemux;
2086 sock_hold(sk);
2087 return;
2088 }
2089 #endif
2090 skb->destructor = sock_wfree;
2091 skb_set_hash_from_sk(skb, sk);
2092 /*
2093 * We used to take a refcount on sk, but following operation
2094 * is enough to guarantee sk_free() wont free this sock until
2095 * all in-flight packets are completed
2096 */
2097 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2098 }
2099 EXPORT_SYMBOL(skb_set_owner_w);
2100
can_skb_orphan_partial(const struct sk_buff * skb)2101 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2102 {
2103 #ifdef CONFIG_TLS_DEVICE
2104 /* Drivers depend on in-order delivery for crypto offload,
2105 * partial orphan breaks out-of-order-OK logic.
2106 */
2107 if (skb->decrypted)
2108 return false;
2109 #endif
2110 return (skb->destructor == sock_wfree ||
2111 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2112 }
2113
2114 /* This helper is used by netem, as it can hold packets in its
2115 * delay queue. We want to allow the owner socket to send more
2116 * packets, as if they were already TX completed by a typical driver.
2117 * But we also want to keep skb->sk set because some packet schedulers
2118 * rely on it (sch_fq for example).
2119 */
skb_orphan_partial(struct sk_buff * skb)2120 void skb_orphan_partial(struct sk_buff *skb)
2121 {
2122 if (skb_is_tcp_pure_ack(skb))
2123 return;
2124
2125 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2126 return;
2127
2128 skb_orphan(skb);
2129 }
2130 EXPORT_SYMBOL(skb_orphan_partial);
2131
2132 /*
2133 * Read buffer destructor automatically called from kfree_skb.
2134 */
sock_rfree(struct sk_buff * skb)2135 void sock_rfree(struct sk_buff *skb)
2136 {
2137 struct sock *sk = skb->sk;
2138 unsigned int len = skb->truesize;
2139
2140 atomic_sub(len, &sk->sk_rmem_alloc);
2141 sk_mem_uncharge(sk, len);
2142 }
2143 EXPORT_SYMBOL(sock_rfree);
2144
2145 /*
2146 * Buffer destructor for skbs that are not used directly in read or write
2147 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2148 */
sock_efree(struct sk_buff * skb)2149 void sock_efree(struct sk_buff *skb)
2150 {
2151 sock_put(skb->sk);
2152 }
2153 EXPORT_SYMBOL(sock_efree);
2154
2155 /* Buffer destructor for prefetch/receive path where reference count may
2156 * not be held, e.g. for listen sockets.
2157 */
2158 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2159 void sock_pfree(struct sk_buff *skb)
2160 {
2161 if (sk_is_refcounted(skb->sk))
2162 sock_gen_put(skb->sk);
2163 }
2164 EXPORT_SYMBOL(sock_pfree);
2165 #endif /* CONFIG_INET */
2166
sock_i_uid(struct sock * sk)2167 kuid_t sock_i_uid(struct sock *sk)
2168 {
2169 kuid_t uid;
2170
2171 read_lock_bh(&sk->sk_callback_lock);
2172 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2173 read_unlock_bh(&sk->sk_callback_lock);
2174 return uid;
2175 }
2176 EXPORT_SYMBOL(sock_i_uid);
2177
sock_i_ino(struct sock * sk)2178 unsigned long sock_i_ino(struct sock *sk)
2179 {
2180 unsigned long ino;
2181
2182 read_lock_bh(&sk->sk_callback_lock);
2183 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2184 read_unlock_bh(&sk->sk_callback_lock);
2185 return ino;
2186 }
2187 EXPORT_SYMBOL(sock_i_ino);
2188
2189 /*
2190 * Allocate a skb from the socket's send buffer.
2191 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2192 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2193 gfp_t priority)
2194 {
2195 if (force ||
2196 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2197 struct sk_buff *skb = alloc_skb(size, priority);
2198
2199 if (skb) {
2200 skb_set_owner_w(skb, sk);
2201 return skb;
2202 }
2203 }
2204 return NULL;
2205 }
2206 EXPORT_SYMBOL(sock_wmalloc);
2207
sock_ofree(struct sk_buff * skb)2208 static void sock_ofree(struct sk_buff *skb)
2209 {
2210 struct sock *sk = skb->sk;
2211
2212 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2213 }
2214
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2215 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2216 gfp_t priority)
2217 {
2218 struct sk_buff *skb;
2219
2220 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2221 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2222 READ_ONCE(sysctl_optmem_max))
2223 return NULL;
2224
2225 skb = alloc_skb(size, priority);
2226 if (!skb)
2227 return NULL;
2228
2229 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2230 skb->sk = sk;
2231 skb->destructor = sock_ofree;
2232 return skb;
2233 }
2234
2235 /*
2236 * Allocate a memory block from the socket's option memory buffer.
2237 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2238 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2239 {
2240 int optmem_max = READ_ONCE(sysctl_optmem_max);
2241
2242 if ((unsigned int)size <= optmem_max &&
2243 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2244 void *mem;
2245 /* First do the add, to avoid the race if kmalloc
2246 * might sleep.
2247 */
2248 atomic_add(size, &sk->sk_omem_alloc);
2249 mem = kmalloc(size, priority);
2250 if (mem)
2251 return mem;
2252 atomic_sub(size, &sk->sk_omem_alloc);
2253 }
2254 return NULL;
2255 }
2256 EXPORT_SYMBOL(sock_kmalloc);
2257
2258 /* Free an option memory block. Note, we actually want the inline
2259 * here as this allows gcc to detect the nullify and fold away the
2260 * condition entirely.
2261 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2262 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2263 const bool nullify)
2264 {
2265 if (WARN_ON_ONCE(!mem))
2266 return;
2267 if (nullify)
2268 kfree_sensitive(mem);
2269 else
2270 kfree(mem);
2271 atomic_sub(size, &sk->sk_omem_alloc);
2272 }
2273
sock_kfree_s(struct sock * sk,void * mem,int size)2274 void sock_kfree_s(struct sock *sk, void *mem, int size)
2275 {
2276 __sock_kfree_s(sk, mem, size, false);
2277 }
2278 EXPORT_SYMBOL(sock_kfree_s);
2279
sock_kzfree_s(struct sock * sk,void * mem,int size)2280 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2281 {
2282 __sock_kfree_s(sk, mem, size, true);
2283 }
2284 EXPORT_SYMBOL(sock_kzfree_s);
2285
2286 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2287 I think, these locks should be removed for datagram sockets.
2288 */
sock_wait_for_wmem(struct sock * sk,long timeo)2289 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2290 {
2291 DEFINE_WAIT(wait);
2292
2293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2294 for (;;) {
2295 if (!timeo)
2296 break;
2297 if (signal_pending(current))
2298 break;
2299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2300 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2301 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2302 break;
2303 if (sk->sk_shutdown & SEND_SHUTDOWN)
2304 break;
2305 if (sk->sk_err)
2306 break;
2307 timeo = schedule_timeout(timeo);
2308 }
2309 finish_wait(sk_sleep(sk), &wait);
2310 return timeo;
2311 }
2312
2313
2314 /*
2315 * Generic send/receive buffer handlers
2316 */
2317
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2318 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2319 unsigned long data_len, int noblock,
2320 int *errcode, int max_page_order)
2321 {
2322 struct sk_buff *skb;
2323 long timeo;
2324 int err;
2325
2326 timeo = sock_sndtimeo(sk, noblock);
2327 for (;;) {
2328 err = sock_error(sk);
2329 if (err != 0)
2330 goto failure;
2331
2332 err = -EPIPE;
2333 if (sk->sk_shutdown & SEND_SHUTDOWN)
2334 goto failure;
2335
2336 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2337 break;
2338
2339 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2340 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2341 err = -EAGAIN;
2342 if (!timeo)
2343 goto failure;
2344 if (signal_pending(current))
2345 goto interrupted;
2346 timeo = sock_wait_for_wmem(sk, timeo);
2347 }
2348 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2349 errcode, sk->sk_allocation);
2350 if (skb)
2351 skb_set_owner_w(skb, sk);
2352 return skb;
2353
2354 interrupted:
2355 err = sock_intr_errno(timeo);
2356 failure:
2357 *errcode = err;
2358 return NULL;
2359 }
2360 EXPORT_SYMBOL(sock_alloc_send_pskb);
2361
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2362 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2363 int noblock, int *errcode)
2364 {
2365 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2366 }
2367 EXPORT_SYMBOL(sock_alloc_send_skb);
2368
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2369 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2370 struct sockcm_cookie *sockc)
2371 {
2372 u32 tsflags;
2373
2374 switch (cmsg->cmsg_type) {
2375 case SO_MARK:
2376 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2377 return -EPERM;
2378 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2379 return -EINVAL;
2380 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2381 break;
2382 case SO_TIMESTAMPING_OLD:
2383 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2384 return -EINVAL;
2385
2386 tsflags = *(u32 *)CMSG_DATA(cmsg);
2387 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2388 return -EINVAL;
2389
2390 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2391 sockc->tsflags |= tsflags;
2392 break;
2393 case SCM_TXTIME:
2394 if (!sock_flag(sk, SOCK_TXTIME))
2395 return -EINVAL;
2396 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2397 return -EINVAL;
2398 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2399 break;
2400 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2401 case SCM_RIGHTS:
2402 case SCM_CREDENTIALS:
2403 break;
2404 default:
2405 return -EINVAL;
2406 }
2407 return 0;
2408 }
2409 EXPORT_SYMBOL(__sock_cmsg_send);
2410
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2411 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2412 struct sockcm_cookie *sockc)
2413 {
2414 struct cmsghdr *cmsg;
2415 int ret;
2416
2417 for_each_cmsghdr(cmsg, msg) {
2418 if (!CMSG_OK(msg, cmsg))
2419 return -EINVAL;
2420 if (cmsg->cmsg_level != SOL_SOCKET)
2421 continue;
2422 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2423 if (ret)
2424 return ret;
2425 }
2426 return 0;
2427 }
2428 EXPORT_SYMBOL(sock_cmsg_send);
2429
sk_enter_memory_pressure(struct sock * sk)2430 static void sk_enter_memory_pressure(struct sock *sk)
2431 {
2432 if (!sk->sk_prot->enter_memory_pressure)
2433 return;
2434
2435 sk->sk_prot->enter_memory_pressure(sk);
2436 }
2437
sk_leave_memory_pressure(struct sock * sk)2438 static void sk_leave_memory_pressure(struct sock *sk)
2439 {
2440 if (sk->sk_prot->leave_memory_pressure) {
2441 sk->sk_prot->leave_memory_pressure(sk);
2442 } else {
2443 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2444
2445 if (memory_pressure && READ_ONCE(*memory_pressure))
2446 WRITE_ONCE(*memory_pressure, 0);
2447 }
2448 }
2449
2450 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2451
2452 /**
2453 * skb_page_frag_refill - check that a page_frag contains enough room
2454 * @sz: minimum size of the fragment we want to get
2455 * @pfrag: pointer to page_frag
2456 * @gfp: priority for memory allocation
2457 *
2458 * Note: While this allocator tries to use high order pages, there is
2459 * no guarantee that allocations succeed. Therefore, @sz MUST be
2460 * less or equal than PAGE_SIZE.
2461 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2462 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2463 {
2464 if (pfrag->page) {
2465 if (page_ref_count(pfrag->page) == 1) {
2466 pfrag->offset = 0;
2467 return true;
2468 }
2469 if (pfrag->offset + sz <= pfrag->size)
2470 return true;
2471 put_page(pfrag->page);
2472 }
2473
2474 pfrag->offset = 0;
2475 if (SKB_FRAG_PAGE_ORDER &&
2476 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2477 /* Avoid direct reclaim but allow kswapd to wake */
2478 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2479 __GFP_COMP | __GFP_NOWARN |
2480 __GFP_NORETRY,
2481 SKB_FRAG_PAGE_ORDER);
2482 if (likely(pfrag->page)) {
2483 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2484 return true;
2485 }
2486 }
2487 pfrag->page = alloc_page(gfp);
2488 if (likely(pfrag->page)) {
2489 pfrag->size = PAGE_SIZE;
2490 return true;
2491 }
2492 return false;
2493 }
2494 EXPORT_SYMBOL(skb_page_frag_refill);
2495
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2496 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2497 {
2498 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2499 return true;
2500
2501 sk_enter_memory_pressure(sk);
2502 sk_stream_moderate_sndbuf(sk);
2503 return false;
2504 }
2505 EXPORT_SYMBOL(sk_page_frag_refill);
2506
__lock_sock(struct sock * sk)2507 static void __lock_sock(struct sock *sk)
2508 __releases(&sk->sk_lock.slock)
2509 __acquires(&sk->sk_lock.slock)
2510 {
2511 DEFINE_WAIT(wait);
2512
2513 for (;;) {
2514 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2515 TASK_UNINTERRUPTIBLE);
2516 spin_unlock_bh(&sk->sk_lock.slock);
2517 schedule();
2518 spin_lock_bh(&sk->sk_lock.slock);
2519 if (!sock_owned_by_user(sk))
2520 break;
2521 }
2522 finish_wait(&sk->sk_lock.wq, &wait);
2523 }
2524
__release_sock(struct sock * sk)2525 void __release_sock(struct sock *sk)
2526 __releases(&sk->sk_lock.slock)
2527 __acquires(&sk->sk_lock.slock)
2528 {
2529 struct sk_buff *skb, *next;
2530
2531 while ((skb = sk->sk_backlog.head) != NULL) {
2532 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2533
2534 spin_unlock_bh(&sk->sk_lock.slock);
2535
2536 do {
2537 next = skb->next;
2538 prefetch(next);
2539 WARN_ON_ONCE(skb_dst_is_noref(skb));
2540 skb_mark_not_on_list(skb);
2541 sk_backlog_rcv(sk, skb);
2542
2543 cond_resched();
2544
2545 skb = next;
2546 } while (skb != NULL);
2547
2548 spin_lock_bh(&sk->sk_lock.slock);
2549 }
2550
2551 /*
2552 * Doing the zeroing here guarantee we can not loop forever
2553 * while a wild producer attempts to flood us.
2554 */
2555 sk->sk_backlog.len = 0;
2556 }
2557
__sk_flush_backlog(struct sock * sk)2558 void __sk_flush_backlog(struct sock *sk)
2559 {
2560 spin_lock_bh(&sk->sk_lock.slock);
2561 __release_sock(sk);
2562 spin_unlock_bh(&sk->sk_lock.slock);
2563 }
2564
2565 /**
2566 * sk_wait_data - wait for data to arrive at sk_receive_queue
2567 * @sk: sock to wait on
2568 * @timeo: for how long
2569 * @skb: last skb seen on sk_receive_queue
2570 *
2571 * Now socket state including sk->sk_err is changed only under lock,
2572 * hence we may omit checks after joining wait queue.
2573 * We check receive queue before schedule() only as optimization;
2574 * it is very likely that release_sock() added new data.
2575 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2576 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2577 {
2578 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2579 int rc;
2580
2581 add_wait_queue(sk_sleep(sk), &wait);
2582 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2583 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2584 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2585 remove_wait_queue(sk_sleep(sk), &wait);
2586 return rc;
2587 }
2588 EXPORT_SYMBOL(sk_wait_data);
2589
2590 /**
2591 * __sk_mem_raise_allocated - increase memory_allocated
2592 * @sk: socket
2593 * @size: memory size to allocate
2594 * @amt: pages to allocate
2595 * @kind: allocation type
2596 *
2597 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2598 */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2599 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2600 {
2601 struct proto *prot = sk->sk_prot;
2602 long allocated = sk_memory_allocated_add(sk, amt);
2603 bool charged = true;
2604
2605 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2606 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2607 goto suppress_allocation;
2608
2609 /* Under limit. */
2610 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2611 sk_leave_memory_pressure(sk);
2612 return 1;
2613 }
2614
2615 /* Under pressure. */
2616 if (allocated > sk_prot_mem_limits(sk, 1))
2617 sk_enter_memory_pressure(sk);
2618
2619 /* Over hard limit. */
2620 if (allocated > sk_prot_mem_limits(sk, 2))
2621 goto suppress_allocation;
2622
2623 /* guarantee minimum buffer size under pressure */
2624 if (kind == SK_MEM_RECV) {
2625 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2626 return 1;
2627
2628 } else { /* SK_MEM_SEND */
2629 int wmem0 = sk_get_wmem0(sk, prot);
2630
2631 if (sk->sk_type == SOCK_STREAM) {
2632 if (sk->sk_wmem_queued < wmem0)
2633 return 1;
2634 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2635 return 1;
2636 }
2637 }
2638
2639 if (sk_has_memory_pressure(sk)) {
2640 u64 alloc;
2641
2642 if (!sk_under_memory_pressure(sk))
2643 return 1;
2644 alloc = sk_sockets_allocated_read_positive(sk);
2645 if (sk_prot_mem_limits(sk, 2) > alloc *
2646 sk_mem_pages(sk->sk_wmem_queued +
2647 atomic_read(&sk->sk_rmem_alloc) +
2648 sk->sk_forward_alloc))
2649 return 1;
2650 }
2651
2652 suppress_allocation:
2653
2654 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2655 sk_stream_moderate_sndbuf(sk);
2656
2657 /* Fail only if socket is _under_ its sndbuf.
2658 * In this case we cannot block, so that we have to fail.
2659 */
2660 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2661 return 1;
2662 }
2663
2664 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2665 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2666
2667 sk_memory_allocated_sub(sk, amt);
2668
2669 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2670 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2671
2672 return 0;
2673 }
2674 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2675
2676 /**
2677 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2678 * @sk: socket
2679 * @size: memory size to allocate
2680 * @kind: allocation type
2681 *
2682 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2683 * rmem allocation. This function assumes that protocols which have
2684 * memory_pressure use sk_wmem_queued as write buffer accounting.
2685 */
__sk_mem_schedule(struct sock * sk,int size,int kind)2686 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2687 {
2688 int ret, amt = sk_mem_pages(size);
2689
2690 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2691 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2692 if (!ret)
2693 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2694 return ret;
2695 }
2696 EXPORT_SYMBOL(__sk_mem_schedule);
2697
2698 /**
2699 * __sk_mem_reduce_allocated - reclaim memory_allocated
2700 * @sk: socket
2701 * @amount: number of quanta
2702 *
2703 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2704 */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2705 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2706 {
2707 sk_memory_allocated_sub(sk, amount);
2708
2709 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2710 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2711
2712 if (sk_under_memory_pressure(sk) &&
2713 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2714 sk_leave_memory_pressure(sk);
2715 }
2716 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2717
2718 /**
2719 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2720 * @sk: socket
2721 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2722 */
__sk_mem_reclaim(struct sock * sk,int amount)2723 void __sk_mem_reclaim(struct sock *sk, int amount)
2724 {
2725 amount >>= SK_MEM_QUANTUM_SHIFT;
2726 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2727 __sk_mem_reduce_allocated(sk, amount);
2728 }
2729 EXPORT_SYMBOL(__sk_mem_reclaim);
2730
sk_set_peek_off(struct sock * sk,int val)2731 int sk_set_peek_off(struct sock *sk, int val)
2732 {
2733 sk->sk_peek_off = val;
2734 return 0;
2735 }
2736 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2737
2738 /*
2739 * Set of default routines for initialising struct proto_ops when
2740 * the protocol does not support a particular function. In certain
2741 * cases where it makes no sense for a protocol to have a "do nothing"
2742 * function, some default processing is provided.
2743 */
2744
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2745 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2746 {
2747 return -EOPNOTSUPP;
2748 }
2749 EXPORT_SYMBOL(sock_no_bind);
2750
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2751 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2752 int len, int flags)
2753 {
2754 return -EOPNOTSUPP;
2755 }
2756 EXPORT_SYMBOL(sock_no_connect);
2757
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2758 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2759 {
2760 return -EOPNOTSUPP;
2761 }
2762 EXPORT_SYMBOL(sock_no_socketpair);
2763
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2764 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2765 bool kern)
2766 {
2767 return -EOPNOTSUPP;
2768 }
2769 EXPORT_SYMBOL(sock_no_accept);
2770
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2771 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2772 int peer)
2773 {
2774 return -EOPNOTSUPP;
2775 }
2776 EXPORT_SYMBOL(sock_no_getname);
2777
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2778 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2779 {
2780 return -EOPNOTSUPP;
2781 }
2782 EXPORT_SYMBOL(sock_no_ioctl);
2783
sock_no_listen(struct socket * sock,int backlog)2784 int sock_no_listen(struct socket *sock, int backlog)
2785 {
2786 return -EOPNOTSUPP;
2787 }
2788 EXPORT_SYMBOL(sock_no_listen);
2789
sock_no_shutdown(struct socket * sock,int how)2790 int sock_no_shutdown(struct socket *sock, int how)
2791 {
2792 return -EOPNOTSUPP;
2793 }
2794 EXPORT_SYMBOL(sock_no_shutdown);
2795
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2796 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2797 {
2798 return -EOPNOTSUPP;
2799 }
2800 EXPORT_SYMBOL(sock_no_sendmsg);
2801
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2802 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2803 {
2804 return -EOPNOTSUPP;
2805 }
2806 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2807
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2808 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2809 int flags)
2810 {
2811 return -EOPNOTSUPP;
2812 }
2813 EXPORT_SYMBOL(sock_no_recvmsg);
2814
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2815 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2816 {
2817 /* Mirror missing mmap method error code */
2818 return -ENODEV;
2819 }
2820 EXPORT_SYMBOL(sock_no_mmap);
2821
2822 /*
2823 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2824 * various sock-based usage counts.
2825 */
__receive_sock(struct file * file)2826 void __receive_sock(struct file *file)
2827 {
2828 struct socket *sock;
2829 int error;
2830
2831 /*
2832 * The resulting value of "error" is ignored here since we only
2833 * need to take action when the file is a socket and testing
2834 * "sock" for NULL is sufficient.
2835 */
2836 sock = sock_from_file(file, &error);
2837 if (sock) {
2838 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2839 sock_update_classid(&sock->sk->sk_cgrp_data);
2840 }
2841 }
2842
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2843 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2844 {
2845 ssize_t res;
2846 struct msghdr msg = {.msg_flags = flags};
2847 struct kvec iov;
2848 char *kaddr = kmap(page);
2849 iov.iov_base = kaddr + offset;
2850 iov.iov_len = size;
2851 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2852 kunmap(page);
2853 return res;
2854 }
2855 EXPORT_SYMBOL(sock_no_sendpage);
2856
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2857 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2858 int offset, size_t size, int flags)
2859 {
2860 ssize_t res;
2861 struct msghdr msg = {.msg_flags = flags};
2862 struct kvec iov;
2863 char *kaddr = kmap(page);
2864
2865 iov.iov_base = kaddr + offset;
2866 iov.iov_len = size;
2867 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2868 kunmap(page);
2869 return res;
2870 }
2871 EXPORT_SYMBOL(sock_no_sendpage_locked);
2872
2873 /*
2874 * Default Socket Callbacks
2875 */
2876
sock_def_wakeup(struct sock * sk)2877 static void sock_def_wakeup(struct sock *sk)
2878 {
2879 struct socket_wq *wq;
2880
2881 rcu_read_lock();
2882 wq = rcu_dereference(sk->sk_wq);
2883 if (skwq_has_sleeper(wq))
2884 wake_up_interruptible_all(&wq->wait);
2885 rcu_read_unlock();
2886 }
2887
sock_def_error_report(struct sock * sk)2888 static void sock_def_error_report(struct sock *sk)
2889 {
2890 struct socket_wq *wq;
2891
2892 rcu_read_lock();
2893 wq = rcu_dereference(sk->sk_wq);
2894 if (skwq_has_sleeper(wq))
2895 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2896 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2897 rcu_read_unlock();
2898 }
2899
sock_def_readable(struct sock * sk)2900 void sock_def_readable(struct sock *sk)
2901 {
2902 struct socket_wq *wq;
2903
2904 rcu_read_lock();
2905 wq = rcu_dereference(sk->sk_wq);
2906 if (skwq_has_sleeper(wq))
2907 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2908 EPOLLRDNORM | EPOLLRDBAND);
2909 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2910 rcu_read_unlock();
2911 }
2912
sock_def_write_space(struct sock * sk)2913 static void sock_def_write_space(struct sock *sk)
2914 {
2915 struct socket_wq *wq;
2916
2917 rcu_read_lock();
2918
2919 /* Do not wake up a writer until he can make "significant"
2920 * progress. --DaveM
2921 */
2922 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2923 wq = rcu_dereference(sk->sk_wq);
2924 if (skwq_has_sleeper(wq))
2925 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2926 EPOLLWRNORM | EPOLLWRBAND);
2927
2928 /* Should agree with poll, otherwise some programs break */
2929 if (sock_writeable(sk))
2930 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2931 }
2932
2933 rcu_read_unlock();
2934 }
2935
sock_def_destruct(struct sock * sk)2936 static void sock_def_destruct(struct sock *sk)
2937 {
2938 }
2939
sk_send_sigurg(struct sock * sk)2940 void sk_send_sigurg(struct sock *sk)
2941 {
2942 if (sk->sk_socket && sk->sk_socket->file)
2943 if (send_sigurg(&sk->sk_socket->file->f_owner))
2944 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2945 }
2946 EXPORT_SYMBOL(sk_send_sigurg);
2947
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2948 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2949 unsigned long expires)
2950 {
2951 if (!mod_timer(timer, expires))
2952 sock_hold(sk);
2953 }
2954 EXPORT_SYMBOL(sk_reset_timer);
2955
sk_stop_timer(struct sock * sk,struct timer_list * timer)2956 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2957 {
2958 if (del_timer(timer))
2959 __sock_put(sk);
2960 }
2961 EXPORT_SYMBOL(sk_stop_timer);
2962
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)2963 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2964 {
2965 if (del_timer_sync(timer))
2966 __sock_put(sk);
2967 }
2968 EXPORT_SYMBOL(sk_stop_timer_sync);
2969
sock_init_data_uid(struct socket * sock,struct sock * sk,kuid_t uid)2970 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
2971 {
2972 sk_init_common(sk);
2973 sk->sk_send_head = NULL;
2974
2975 timer_setup(&sk->sk_timer, NULL, 0);
2976
2977 sk->sk_allocation = GFP_KERNEL;
2978 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
2979 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
2980 sk->sk_state = TCP_CLOSE;
2981 sk_set_socket(sk, sock);
2982
2983 sock_set_flag(sk, SOCK_ZAPPED);
2984
2985 if (sock) {
2986 sk->sk_type = sock->type;
2987 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2988 sock->sk = sk;
2989 } else {
2990 RCU_INIT_POINTER(sk->sk_wq, NULL);
2991 }
2992 sk->sk_uid = uid;
2993
2994 rwlock_init(&sk->sk_callback_lock);
2995 if (sk->sk_kern_sock)
2996 lockdep_set_class_and_name(
2997 &sk->sk_callback_lock,
2998 af_kern_callback_keys + sk->sk_family,
2999 af_family_kern_clock_key_strings[sk->sk_family]);
3000 else
3001 lockdep_set_class_and_name(
3002 &sk->sk_callback_lock,
3003 af_callback_keys + sk->sk_family,
3004 af_family_clock_key_strings[sk->sk_family]);
3005
3006 sk->sk_state_change = sock_def_wakeup;
3007 sk->sk_data_ready = sock_def_readable;
3008 sk->sk_write_space = sock_def_write_space;
3009 sk->sk_error_report = sock_def_error_report;
3010 sk->sk_destruct = sock_def_destruct;
3011
3012 sk->sk_frag.page = NULL;
3013 sk->sk_frag.offset = 0;
3014 sk->sk_peek_off = -1;
3015
3016 sk->sk_peer_pid = NULL;
3017 sk->sk_peer_cred = NULL;
3018 spin_lock_init(&sk->sk_peer_lock);
3019
3020 sk->sk_write_pending = 0;
3021 sk->sk_rcvlowat = 1;
3022 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3023 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3024
3025 sk->sk_stamp = SK_DEFAULT_STAMP;
3026 #if BITS_PER_LONG==32
3027 seqlock_init(&sk->sk_stamp_seq);
3028 #endif
3029 atomic_set(&sk->sk_zckey, 0);
3030
3031 #ifdef CONFIG_NET_RX_BUSY_POLL
3032 sk->sk_napi_id = 0;
3033 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3034 #endif
3035
3036 sk->sk_max_pacing_rate = ~0UL;
3037 sk->sk_pacing_rate = ~0UL;
3038 WRITE_ONCE(sk->sk_pacing_shift, 10);
3039 sk->sk_incoming_cpu = -1;
3040
3041 sk_rx_queue_clear(sk);
3042 /*
3043 * Before updating sk_refcnt, we must commit prior changes to memory
3044 * (Documentation/RCU/rculist_nulls.rst for details)
3045 */
3046 smp_wmb();
3047 refcount_set(&sk->sk_refcnt, 1);
3048 atomic_set(&sk->sk_drops, 0);
3049 }
3050 EXPORT_SYMBOL(sock_init_data_uid);
3051
sock_init_data(struct socket * sock,struct sock * sk)3052 void sock_init_data(struct socket *sock, struct sock *sk)
3053 {
3054 kuid_t uid = sock ?
3055 SOCK_INODE(sock)->i_uid :
3056 make_kuid(sock_net(sk)->user_ns, 0);
3057
3058 sock_init_data_uid(sock, sk, uid);
3059 }
3060 EXPORT_SYMBOL(sock_init_data);
3061
lock_sock_nested(struct sock * sk,int subclass)3062 void lock_sock_nested(struct sock *sk, int subclass)
3063 {
3064 might_sleep();
3065 spin_lock_bh(&sk->sk_lock.slock);
3066 if (sk->sk_lock.owned)
3067 __lock_sock(sk);
3068 sk->sk_lock.owned = 1;
3069 spin_unlock(&sk->sk_lock.slock);
3070 /*
3071 * The sk_lock has mutex_lock() semantics here:
3072 */
3073 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3074 local_bh_enable();
3075 }
3076 EXPORT_SYMBOL(lock_sock_nested);
3077
release_sock(struct sock * sk)3078 void release_sock(struct sock *sk)
3079 {
3080 spin_lock_bh(&sk->sk_lock.slock);
3081 if (sk->sk_backlog.tail)
3082 __release_sock(sk);
3083
3084 /* Warning : release_cb() might need to release sk ownership,
3085 * ie call sock_release_ownership(sk) before us.
3086 */
3087 if (sk->sk_prot->release_cb)
3088 sk->sk_prot->release_cb(sk);
3089
3090 sock_release_ownership(sk);
3091 if (waitqueue_active(&sk->sk_lock.wq))
3092 wake_up(&sk->sk_lock.wq);
3093 spin_unlock_bh(&sk->sk_lock.slock);
3094 }
3095 EXPORT_SYMBOL(release_sock);
3096
3097 /**
3098 * lock_sock_fast - fast version of lock_sock
3099 * @sk: socket
3100 *
3101 * This version should be used for very small section, where process wont block
3102 * return false if fast path is taken:
3103 *
3104 * sk_lock.slock locked, owned = 0, BH disabled
3105 *
3106 * return true if slow path is taken:
3107 *
3108 * sk_lock.slock unlocked, owned = 1, BH enabled
3109 */
lock_sock_fast(struct sock * sk)3110 bool lock_sock_fast(struct sock *sk)
3111 {
3112 might_sleep();
3113 spin_lock_bh(&sk->sk_lock.slock);
3114
3115 if (!sk->sk_lock.owned)
3116 /*
3117 * Note : We must disable BH
3118 */
3119 return false;
3120
3121 __lock_sock(sk);
3122 sk->sk_lock.owned = 1;
3123 spin_unlock(&sk->sk_lock.slock);
3124 /*
3125 * The sk_lock has mutex_lock() semantics here:
3126 */
3127 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3128 local_bh_enable();
3129 return true;
3130 }
3131 EXPORT_SYMBOL(lock_sock_fast);
3132
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3133 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3134 bool timeval, bool time32)
3135 {
3136 struct sock *sk = sock->sk;
3137 struct timespec64 ts;
3138
3139 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3140 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3141 if (ts.tv_sec == -1)
3142 return -ENOENT;
3143 if (ts.tv_sec == 0) {
3144 ktime_t kt = ktime_get_real();
3145 sock_write_timestamp(sk, kt);
3146 ts = ktime_to_timespec64(kt);
3147 }
3148
3149 if (timeval)
3150 ts.tv_nsec /= 1000;
3151
3152 #ifdef CONFIG_COMPAT_32BIT_TIME
3153 if (time32)
3154 return put_old_timespec32(&ts, userstamp);
3155 #endif
3156 #ifdef CONFIG_SPARC64
3157 /* beware of padding in sparc64 timeval */
3158 if (timeval && !in_compat_syscall()) {
3159 struct __kernel_old_timeval __user tv = {
3160 .tv_sec = ts.tv_sec,
3161 .tv_usec = ts.tv_nsec,
3162 };
3163 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3164 return -EFAULT;
3165 return 0;
3166 }
3167 #endif
3168 return put_timespec64(&ts, userstamp);
3169 }
3170 EXPORT_SYMBOL(sock_gettstamp);
3171
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3172 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3173 {
3174 if (!sock_flag(sk, flag)) {
3175 unsigned long previous_flags = sk->sk_flags;
3176
3177 sock_set_flag(sk, flag);
3178 /*
3179 * we just set one of the two flags which require net
3180 * time stamping, but time stamping might have been on
3181 * already because of the other one
3182 */
3183 if (sock_needs_netstamp(sk) &&
3184 !(previous_flags & SK_FLAGS_TIMESTAMP))
3185 net_enable_timestamp();
3186 }
3187 }
3188
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3189 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3190 int level, int type)
3191 {
3192 struct sock_exterr_skb *serr;
3193 struct sk_buff *skb;
3194 int copied, err;
3195
3196 err = -EAGAIN;
3197 skb = sock_dequeue_err_skb(sk);
3198 if (skb == NULL)
3199 goto out;
3200
3201 copied = skb->len;
3202 if (copied > len) {
3203 msg->msg_flags |= MSG_TRUNC;
3204 copied = len;
3205 }
3206 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3207 if (err)
3208 goto out_free_skb;
3209
3210 sock_recv_timestamp(msg, sk, skb);
3211
3212 serr = SKB_EXT_ERR(skb);
3213 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3214
3215 msg->msg_flags |= MSG_ERRQUEUE;
3216 err = copied;
3217
3218 out_free_skb:
3219 kfree_skb(skb);
3220 out:
3221 return err;
3222 }
3223 EXPORT_SYMBOL(sock_recv_errqueue);
3224
3225 /*
3226 * Get a socket option on an socket.
3227 *
3228 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3229 * asynchronous errors should be reported by getsockopt. We assume
3230 * this means if you specify SO_ERROR (otherwise whats the point of it).
3231 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3232 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3233 char __user *optval, int __user *optlen)
3234 {
3235 struct sock *sk = sock->sk;
3236
3237 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3238 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3239 }
3240 EXPORT_SYMBOL(sock_common_getsockopt);
3241
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3242 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3243 int flags)
3244 {
3245 struct sock *sk = sock->sk;
3246 int addr_len = 0;
3247 int err;
3248
3249 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3250 flags & ~MSG_DONTWAIT, &addr_len);
3251 if (err >= 0)
3252 msg->msg_namelen = addr_len;
3253 return err;
3254 }
3255 EXPORT_SYMBOL(sock_common_recvmsg);
3256
3257 /*
3258 * Set socket options on an inet socket.
3259 */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3260 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3261 sockptr_t optval, unsigned int optlen)
3262 {
3263 struct sock *sk = sock->sk;
3264
3265 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3266 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3267 }
3268 EXPORT_SYMBOL(sock_common_setsockopt);
3269
sk_common_release(struct sock * sk)3270 void sk_common_release(struct sock *sk)
3271 {
3272 if (sk->sk_prot->destroy)
3273 sk->sk_prot->destroy(sk);
3274
3275 /*
3276 * Observation: when sk_common_release is called, processes have
3277 * no access to socket. But net still has.
3278 * Step one, detach it from networking:
3279 *
3280 * A. Remove from hash tables.
3281 */
3282
3283 sk->sk_prot->unhash(sk);
3284
3285 /*
3286 * In this point socket cannot receive new packets, but it is possible
3287 * that some packets are in flight because some CPU runs receiver and
3288 * did hash table lookup before we unhashed socket. They will achieve
3289 * receive queue and will be purged by socket destructor.
3290 *
3291 * Also we still have packets pending on receive queue and probably,
3292 * our own packets waiting in device queues. sock_destroy will drain
3293 * receive queue, but transmitted packets will delay socket destruction
3294 * until the last reference will be released.
3295 */
3296
3297 sock_orphan(sk);
3298
3299 xfrm_sk_free_policy(sk);
3300
3301 sk_refcnt_debug_release(sk);
3302
3303 sock_put(sk);
3304 }
3305 EXPORT_SYMBOL(sk_common_release);
3306
sk_get_meminfo(const struct sock * sk,u32 * mem)3307 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3308 {
3309 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3310
3311 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3312 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3313 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3314 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3315 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3316 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3317 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3318 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3319 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3320 }
3321
3322 #ifdef CONFIG_PROC_FS
3323 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3324 struct prot_inuse {
3325 int val[PROTO_INUSE_NR];
3326 };
3327
3328 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3329
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3330 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3331 {
3332 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3333 }
3334 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3335
sock_prot_inuse_get(struct net * net,struct proto * prot)3336 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3337 {
3338 int cpu, idx = prot->inuse_idx;
3339 int res = 0;
3340
3341 for_each_possible_cpu(cpu)
3342 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3343
3344 return res >= 0 ? res : 0;
3345 }
3346 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3347
sock_inuse_add(struct net * net,int val)3348 static void sock_inuse_add(struct net *net, int val)
3349 {
3350 this_cpu_add(*net->core.sock_inuse, val);
3351 }
3352
sock_inuse_get(struct net * net)3353 int sock_inuse_get(struct net *net)
3354 {
3355 int cpu, res = 0;
3356
3357 for_each_possible_cpu(cpu)
3358 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3359
3360 return res;
3361 }
3362
3363 EXPORT_SYMBOL_GPL(sock_inuse_get);
3364
sock_inuse_init_net(struct net * net)3365 static int __net_init sock_inuse_init_net(struct net *net)
3366 {
3367 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3368 if (net->core.prot_inuse == NULL)
3369 return -ENOMEM;
3370
3371 net->core.sock_inuse = alloc_percpu(int);
3372 if (net->core.sock_inuse == NULL)
3373 goto out;
3374
3375 return 0;
3376
3377 out:
3378 free_percpu(net->core.prot_inuse);
3379 return -ENOMEM;
3380 }
3381
sock_inuse_exit_net(struct net * net)3382 static void __net_exit sock_inuse_exit_net(struct net *net)
3383 {
3384 free_percpu(net->core.prot_inuse);
3385 free_percpu(net->core.sock_inuse);
3386 }
3387
3388 static struct pernet_operations net_inuse_ops = {
3389 .init = sock_inuse_init_net,
3390 .exit = sock_inuse_exit_net,
3391 };
3392
net_inuse_init(void)3393 static __init int net_inuse_init(void)
3394 {
3395 if (register_pernet_subsys(&net_inuse_ops))
3396 panic("Cannot initialize net inuse counters");
3397
3398 return 0;
3399 }
3400
3401 core_initcall(net_inuse_init);
3402
assign_proto_idx(struct proto * prot)3403 static int assign_proto_idx(struct proto *prot)
3404 {
3405 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3406
3407 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3408 pr_err("PROTO_INUSE_NR exhausted\n");
3409 return -ENOSPC;
3410 }
3411
3412 set_bit(prot->inuse_idx, proto_inuse_idx);
3413 return 0;
3414 }
3415
release_proto_idx(struct proto * prot)3416 static void release_proto_idx(struct proto *prot)
3417 {
3418 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3419 clear_bit(prot->inuse_idx, proto_inuse_idx);
3420 }
3421 #else
assign_proto_idx(struct proto * prot)3422 static inline int assign_proto_idx(struct proto *prot)
3423 {
3424 return 0;
3425 }
3426
release_proto_idx(struct proto * prot)3427 static inline void release_proto_idx(struct proto *prot)
3428 {
3429 }
3430
sock_inuse_add(struct net * net,int val)3431 static void sock_inuse_add(struct net *net, int val)
3432 {
3433 }
3434 #endif
3435
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3436 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3437 {
3438 if (!twsk_prot)
3439 return;
3440 kfree(twsk_prot->twsk_slab_name);
3441 twsk_prot->twsk_slab_name = NULL;
3442 kmem_cache_destroy(twsk_prot->twsk_slab);
3443 twsk_prot->twsk_slab = NULL;
3444 }
3445
req_prot_cleanup(struct request_sock_ops * rsk_prot)3446 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3447 {
3448 if (!rsk_prot)
3449 return;
3450 kfree(rsk_prot->slab_name);
3451 rsk_prot->slab_name = NULL;
3452 kmem_cache_destroy(rsk_prot->slab);
3453 rsk_prot->slab = NULL;
3454 }
3455
req_prot_init(const struct proto * prot)3456 static int req_prot_init(const struct proto *prot)
3457 {
3458 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3459
3460 if (!rsk_prot)
3461 return 0;
3462
3463 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3464 prot->name);
3465 if (!rsk_prot->slab_name)
3466 return -ENOMEM;
3467
3468 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3469 rsk_prot->obj_size, 0,
3470 SLAB_ACCOUNT | prot->slab_flags,
3471 NULL);
3472
3473 if (!rsk_prot->slab) {
3474 pr_crit("%s: Can't create request sock SLAB cache!\n",
3475 prot->name);
3476 return -ENOMEM;
3477 }
3478 return 0;
3479 }
3480
proto_register(struct proto * prot,int alloc_slab)3481 int proto_register(struct proto *prot, int alloc_slab)
3482 {
3483 int ret = -ENOBUFS;
3484
3485 if (alloc_slab) {
3486 prot->slab = kmem_cache_create_usercopy(prot->name,
3487 prot->obj_size, 0,
3488 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3489 prot->slab_flags,
3490 prot->useroffset, prot->usersize,
3491 NULL);
3492
3493 if (prot->slab == NULL) {
3494 pr_crit("%s: Can't create sock SLAB cache!\n",
3495 prot->name);
3496 goto out;
3497 }
3498
3499 if (req_prot_init(prot))
3500 goto out_free_request_sock_slab;
3501
3502 if (prot->twsk_prot != NULL) {
3503 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3504
3505 if (prot->twsk_prot->twsk_slab_name == NULL)
3506 goto out_free_request_sock_slab;
3507
3508 prot->twsk_prot->twsk_slab =
3509 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3510 prot->twsk_prot->twsk_obj_size,
3511 0,
3512 SLAB_ACCOUNT |
3513 prot->slab_flags,
3514 NULL);
3515 if (prot->twsk_prot->twsk_slab == NULL)
3516 goto out_free_timewait_sock_slab;
3517 }
3518 }
3519
3520 mutex_lock(&proto_list_mutex);
3521 ret = assign_proto_idx(prot);
3522 if (ret) {
3523 mutex_unlock(&proto_list_mutex);
3524 goto out_free_timewait_sock_slab;
3525 }
3526 list_add(&prot->node, &proto_list);
3527 mutex_unlock(&proto_list_mutex);
3528 return ret;
3529
3530 out_free_timewait_sock_slab:
3531 if (alloc_slab && prot->twsk_prot)
3532 tw_prot_cleanup(prot->twsk_prot);
3533 out_free_request_sock_slab:
3534 if (alloc_slab) {
3535 req_prot_cleanup(prot->rsk_prot);
3536
3537 kmem_cache_destroy(prot->slab);
3538 prot->slab = NULL;
3539 }
3540 out:
3541 return ret;
3542 }
3543 EXPORT_SYMBOL(proto_register);
3544
proto_unregister(struct proto * prot)3545 void proto_unregister(struct proto *prot)
3546 {
3547 mutex_lock(&proto_list_mutex);
3548 release_proto_idx(prot);
3549 list_del(&prot->node);
3550 mutex_unlock(&proto_list_mutex);
3551
3552 kmem_cache_destroy(prot->slab);
3553 prot->slab = NULL;
3554
3555 req_prot_cleanup(prot->rsk_prot);
3556 tw_prot_cleanup(prot->twsk_prot);
3557 }
3558 EXPORT_SYMBOL(proto_unregister);
3559
sock_load_diag_module(int family,int protocol)3560 int sock_load_diag_module(int family, int protocol)
3561 {
3562 if (!protocol) {
3563 if (!sock_is_registered(family))
3564 return -ENOENT;
3565
3566 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3567 NETLINK_SOCK_DIAG, family);
3568 }
3569
3570 #ifdef CONFIG_INET
3571 if (family == AF_INET &&
3572 protocol != IPPROTO_RAW &&
3573 protocol < MAX_INET_PROTOS &&
3574 !rcu_access_pointer(inet_protos[protocol]))
3575 return -ENOENT;
3576 #endif
3577
3578 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3579 NETLINK_SOCK_DIAG, family, protocol);
3580 }
3581 EXPORT_SYMBOL(sock_load_diag_module);
3582
3583 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3584 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3585 __acquires(proto_list_mutex)
3586 {
3587 mutex_lock(&proto_list_mutex);
3588 return seq_list_start_head(&proto_list, *pos);
3589 }
3590
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3591 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3592 {
3593 return seq_list_next(v, &proto_list, pos);
3594 }
3595
proto_seq_stop(struct seq_file * seq,void * v)3596 static void proto_seq_stop(struct seq_file *seq, void *v)
3597 __releases(proto_list_mutex)
3598 {
3599 mutex_unlock(&proto_list_mutex);
3600 }
3601
proto_method_implemented(const void * method)3602 static char proto_method_implemented(const void *method)
3603 {
3604 return method == NULL ? 'n' : 'y';
3605 }
sock_prot_memory_allocated(struct proto * proto)3606 static long sock_prot_memory_allocated(struct proto *proto)
3607 {
3608 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3609 }
3610
sock_prot_memory_pressure(struct proto * proto)3611 static const char *sock_prot_memory_pressure(struct proto *proto)
3612 {
3613 return proto->memory_pressure != NULL ?
3614 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3615 }
3616
proto_seq_printf(struct seq_file * seq,struct proto * proto)3617 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3618 {
3619
3620 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3621 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3622 proto->name,
3623 proto->obj_size,
3624 sock_prot_inuse_get(seq_file_net(seq), proto),
3625 sock_prot_memory_allocated(proto),
3626 sock_prot_memory_pressure(proto),
3627 proto->max_header,
3628 proto->slab == NULL ? "no" : "yes",
3629 module_name(proto->owner),
3630 proto_method_implemented(proto->close),
3631 proto_method_implemented(proto->connect),
3632 proto_method_implemented(proto->disconnect),
3633 proto_method_implemented(proto->accept),
3634 proto_method_implemented(proto->ioctl),
3635 proto_method_implemented(proto->init),
3636 proto_method_implemented(proto->destroy),
3637 proto_method_implemented(proto->shutdown),
3638 proto_method_implemented(proto->setsockopt),
3639 proto_method_implemented(proto->getsockopt),
3640 proto_method_implemented(proto->sendmsg),
3641 proto_method_implemented(proto->recvmsg),
3642 proto_method_implemented(proto->sendpage),
3643 proto_method_implemented(proto->bind),
3644 proto_method_implemented(proto->backlog_rcv),
3645 proto_method_implemented(proto->hash),
3646 proto_method_implemented(proto->unhash),
3647 proto_method_implemented(proto->get_port),
3648 proto_method_implemented(proto->enter_memory_pressure));
3649 }
3650
proto_seq_show(struct seq_file * seq,void * v)3651 static int proto_seq_show(struct seq_file *seq, void *v)
3652 {
3653 if (v == &proto_list)
3654 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3655 "protocol",
3656 "size",
3657 "sockets",
3658 "memory",
3659 "press",
3660 "maxhdr",
3661 "slab",
3662 "module",
3663 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3664 else
3665 proto_seq_printf(seq, list_entry(v, struct proto, node));
3666 return 0;
3667 }
3668
3669 static const struct seq_operations proto_seq_ops = {
3670 .start = proto_seq_start,
3671 .next = proto_seq_next,
3672 .stop = proto_seq_stop,
3673 .show = proto_seq_show,
3674 };
3675
proto_init_net(struct net * net)3676 static __net_init int proto_init_net(struct net *net)
3677 {
3678 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3679 sizeof(struct seq_net_private)))
3680 return -ENOMEM;
3681
3682 return 0;
3683 }
3684
proto_exit_net(struct net * net)3685 static __net_exit void proto_exit_net(struct net *net)
3686 {
3687 remove_proc_entry("protocols", net->proc_net);
3688 }
3689
3690
3691 static __net_initdata struct pernet_operations proto_net_ops = {
3692 .init = proto_init_net,
3693 .exit = proto_exit_net,
3694 };
3695
proto_init(void)3696 static int __init proto_init(void)
3697 {
3698 return register_pernet_subsys(&proto_net_ops);
3699 }
3700
3701 subsys_initcall(proto_init);
3702
3703 #endif /* PROC_FS */
3704
3705 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3706 bool sk_busy_loop_end(void *p, unsigned long start_time)
3707 {
3708 struct sock *sk = p;
3709
3710 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3711 sk_busy_loop_timeout(sk, start_time);
3712 }
3713 EXPORT_SYMBOL(sk_busy_loop_end);
3714 #endif /* CONFIG_NET_RX_BUSY_POLL */
3715
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)3716 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3717 {
3718 if (!sk->sk_prot->bind_add)
3719 return -EOPNOTSUPP;
3720 return sk->sk_prot->bind_add(sk, addr, addr_len);
3721 }
3722 EXPORT_SYMBOL(sock_bind_add);
3723