1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81 /**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92 {
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114 /**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132 {
133 int ret;
134 unsigned int val;
135
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163 }
164
165 /**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177 {
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 int platform_max;
181
182 if (!mc->platform_max)
183 mc->platform_max = mc->max;
184 platform_max = mc->platform_max;
185
186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 else
189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190
191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 uinfo->value.integer.min = 0;
193 uinfo->value.integer.max = platform_max - mc->min;
194 return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197
198 /**
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
202 *
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
207 *
208 * Returns 0 for success.
209 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 struct snd_ctl_elem_info *uinfo)
212 {
213 struct soc_mixer_control *mc =
214 (struct soc_mixer_control *)kcontrol->private_value;
215
216 snd_soc_info_volsw(kcontrol, uinfo);
217 /* Max represents the number of levels in an SX control not the
218 * maximum value, so add the minimum value back on
219 */
220 uinfo->value.integer.max += mc->min;
221
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225
226 /**
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
230 *
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
233 *
234 * Returns 0 for success.
235 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
238 {
239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 struct soc_mixer_control *mc =
241 (struct soc_mixer_control *)kcontrol->private_value;
242 unsigned int reg = mc->reg;
243 unsigned int reg2 = mc->rreg;
244 unsigned int shift = mc->shift;
245 unsigned int rshift = mc->rshift;
246 int max = mc->max;
247 int min = mc->min;
248 int sign_bit = mc->sign_bit;
249 unsigned int mask = (1 << fls(max)) - 1;
250 unsigned int invert = mc->invert;
251 int val;
252 int ret;
253
254 if (sign_bit)
255 mask = BIT(sign_bit + 1) - 1;
256
257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 if (ret)
259 return ret;
260
261 ucontrol->value.integer.value[0] = val - min;
262 if (invert)
263 ucontrol->value.integer.value[0] =
264 max - ucontrol->value.integer.value[0];
265
266 if (snd_soc_volsw_is_stereo(mc)) {
267 if (reg == reg2)
268 ret = snd_soc_read_signed(component, reg, mask, rshift,
269 sign_bit, &val);
270 else
271 ret = snd_soc_read_signed(component, reg2, mask, shift,
272 sign_bit, &val);
273 if (ret)
274 return ret;
275
276 ucontrol->value.integer.value[1] = val - min;
277 if (invert)
278 ucontrol->value.integer.value[1] =
279 max - ucontrol->value.integer.value[1];
280 }
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285
286 /**
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
290 *
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
293 *
294 * Returns 0 for success.
295 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_value *ucontrol)
298 {
299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 struct soc_mixer_control *mc =
301 (struct soc_mixer_control *)kcontrol->private_value;
302 unsigned int reg = mc->reg;
303 unsigned int reg2 = mc->rreg;
304 unsigned int shift = mc->shift;
305 unsigned int rshift = mc->rshift;
306 int max = mc->max;
307 int min = mc->min;
308 unsigned int sign_bit = mc->sign_bit;
309 unsigned int mask = (1 << fls(max)) - 1;
310 unsigned int invert = mc->invert;
311 int err, ret;
312 bool type_2r = false;
313 unsigned int val2 = 0;
314 unsigned int val, val_mask;
315
316 if (sign_bit)
317 mask = BIT(sign_bit + 1) - 1;
318
319 val = ucontrol->value.integer.value[0];
320 if (mc->platform_max && ((int)val + min) > mc->platform_max)
321 return -EINVAL;
322 if (val > max - min)
323 return -EINVAL;
324 if (val < 0)
325 return -EINVAL;
326 val = (val + min) & mask;
327 if (invert)
328 val = max - val;
329 val_mask = mask << shift;
330 val = val << shift;
331 if (snd_soc_volsw_is_stereo(mc)) {
332 val2 = ucontrol->value.integer.value[1];
333 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
334 return -EINVAL;
335 if (val2 > max - min)
336 return -EINVAL;
337 if (val2 < 0)
338 return -EINVAL;
339 val2 = (val2 + min) & mask;
340 if (invert)
341 val2 = max - val2;
342 if (reg == reg2) {
343 val_mask |= mask << rshift;
344 val |= val2 << rshift;
345 } else {
346 val2 = val2 << shift;
347 type_2r = true;
348 }
349 }
350 err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 if (err < 0)
352 return err;
353 ret = err;
354
355 if (type_2r) {
356 err = snd_soc_component_update_bits(component, reg2, val_mask,
357 val2);
358 /* Don't discard any error code or drop change flag */
359 if (ret == 0 || err < 0) {
360 ret = err;
361 }
362 }
363
364 return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367
368 /**
369 * snd_soc_get_volsw_sx - single mixer get callback
370 * @kcontrol: mixer control
371 * @ucontrol: control element information
372 *
373 * Callback to get the value of a single mixer control, or a double mixer
374 * control that spans 2 registers.
375 *
376 * Returns 0 for success.
377 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 struct snd_ctl_elem_value *ucontrol)
380 {
381 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 struct soc_mixer_control *mc =
383 (struct soc_mixer_control *)kcontrol->private_value;
384 unsigned int reg = mc->reg;
385 unsigned int reg2 = mc->rreg;
386 unsigned int shift = mc->shift;
387 unsigned int rshift = mc->rshift;
388 int max = mc->max;
389 int min = mc->min;
390 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 unsigned int val;
392
393 val = snd_soc_component_read(component, reg);
394 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395
396 if (snd_soc_volsw_is_stereo(mc)) {
397 val = snd_soc_component_read(component, reg2);
398 val = ((val >> rshift) - min) & mask;
399 ucontrol->value.integer.value[1] = val;
400 }
401
402 return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405
406 /**
407 * snd_soc_put_volsw_sx - double mixer set callback
408 * @kcontrol: mixer control
409 * @ucontrol: control element information
410 *
411 * Callback to set the value of a double mixer control that spans 2 registers.
412 *
413 * Returns 0 for success.
414 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 struct snd_ctl_elem_value *ucontrol)
417 {
418 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 struct soc_mixer_control *mc =
420 (struct soc_mixer_control *)kcontrol->private_value;
421
422 unsigned int reg = mc->reg;
423 unsigned int reg2 = mc->rreg;
424 unsigned int shift = mc->shift;
425 unsigned int rshift = mc->rshift;
426 int max = mc->max;
427 int min = mc->min;
428 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 int err = 0;
430 unsigned int val, val_mask, val2 = 0;
431
432 val = ucontrol->value.integer.value[0];
433 if (mc->platform_max && val > mc->platform_max)
434 return -EINVAL;
435 if (val > max)
436 return -EINVAL;
437 if (val < 0)
438 return -EINVAL;
439 val_mask = mask << shift;
440 val = (val + min) & mask;
441 val = val << shift;
442
443 err = snd_soc_component_update_bits(component, reg, val_mask, val);
444 if (err < 0)
445 return err;
446
447 if (snd_soc_volsw_is_stereo(mc)) {
448 val2 = ucontrol->value.integer.value[1];
449
450 if (mc->platform_max && val2 > mc->platform_max)
451 return -EINVAL;
452 if (val2 > max)
453 return -EINVAL;
454
455 val_mask = mask << rshift;
456 val2 = (val2 + min) & mask;
457 val2 = val2 << rshift;
458
459 err = snd_soc_component_update_bits(component, reg2, val_mask,
460 val2);
461 }
462 return err;
463 }
464 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
465
466 /**
467 * snd_soc_info_volsw_range - single mixer info callback with range.
468 * @kcontrol: mixer control
469 * @uinfo: control element information
470 *
471 * Callback to provide information, within a range, about a single
472 * mixer control.
473 *
474 * returns 0 for success.
475 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)476 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
477 struct snd_ctl_elem_info *uinfo)
478 {
479 struct soc_mixer_control *mc =
480 (struct soc_mixer_control *)kcontrol->private_value;
481 int platform_max;
482 int min = mc->min;
483
484 if (!mc->platform_max)
485 mc->platform_max = mc->max;
486 platform_max = mc->platform_max;
487
488 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
489 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
490 uinfo->value.integer.min = 0;
491 uinfo->value.integer.max = platform_max - min;
492
493 return 0;
494 }
495 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
496
497 /**
498 * snd_soc_put_volsw_range - single mixer put value callback with range.
499 * @kcontrol: mixer control
500 * @ucontrol: control element information
501 *
502 * Callback to set the value, within a range, for a single mixer control.
503 *
504 * Returns 0 for success.
505 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)506 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
507 struct snd_ctl_elem_value *ucontrol)
508 {
509 struct soc_mixer_control *mc =
510 (struct soc_mixer_control *)kcontrol->private_value;
511 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
512 unsigned int reg = mc->reg;
513 unsigned int rreg = mc->rreg;
514 unsigned int shift = mc->shift;
515 int min = mc->min;
516 int max = mc->max;
517 unsigned int mask = (1 << fls(max)) - 1;
518 unsigned int invert = mc->invert;
519 unsigned int val, val_mask;
520 int err, ret, tmp;
521
522 tmp = ucontrol->value.integer.value[0];
523 if (tmp < 0)
524 return -EINVAL;
525 if (mc->platform_max && tmp > mc->platform_max)
526 return -EINVAL;
527 if (tmp > mc->max - mc->min)
528 return -EINVAL;
529
530 if (invert)
531 val = (max - ucontrol->value.integer.value[0]) & mask;
532 else
533 val = ((ucontrol->value.integer.value[0] + min) & mask);
534 val_mask = mask << shift;
535 val = val << shift;
536
537 err = snd_soc_component_update_bits(component, reg, val_mask, val);
538 if (err < 0)
539 return err;
540 ret = err;
541
542 if (snd_soc_volsw_is_stereo(mc)) {
543 tmp = ucontrol->value.integer.value[1];
544 if (tmp < 0)
545 return -EINVAL;
546 if (mc->platform_max && tmp > mc->platform_max)
547 return -EINVAL;
548 if (tmp > mc->max - mc->min)
549 return -EINVAL;
550
551 if (invert)
552 val = (max - ucontrol->value.integer.value[1]) & mask;
553 else
554 val = ((ucontrol->value.integer.value[1] + min) & mask);
555 val_mask = mask << shift;
556 val = val << shift;
557
558 err = snd_soc_component_update_bits(component, rreg, val_mask,
559 val);
560 /* Don't discard any error code or drop change flag */
561 if (ret == 0 || err < 0) {
562 ret = err;
563 }
564 }
565
566 return ret;
567 }
568 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
569
570 /**
571 * snd_soc_get_volsw_range - single mixer get callback with range
572 * @kcontrol: mixer control
573 * @ucontrol: control element information
574 *
575 * Callback to get the value, within a range, of a single mixer control.
576 *
577 * Returns 0 for success.
578 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)579 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
580 struct snd_ctl_elem_value *ucontrol)
581 {
582 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
583 struct soc_mixer_control *mc =
584 (struct soc_mixer_control *)kcontrol->private_value;
585 unsigned int reg = mc->reg;
586 unsigned int rreg = mc->rreg;
587 unsigned int shift = mc->shift;
588 int min = mc->min;
589 int max = mc->max;
590 unsigned int mask = (1 << fls(max)) - 1;
591 unsigned int invert = mc->invert;
592 unsigned int val;
593
594 val = snd_soc_component_read(component, reg);
595 ucontrol->value.integer.value[0] = (val >> shift) & mask;
596 if (invert)
597 ucontrol->value.integer.value[0] =
598 max - ucontrol->value.integer.value[0];
599 else
600 ucontrol->value.integer.value[0] =
601 ucontrol->value.integer.value[0] - min;
602
603 if (snd_soc_volsw_is_stereo(mc)) {
604 val = snd_soc_component_read(component, rreg);
605 ucontrol->value.integer.value[1] = (val >> shift) & mask;
606 if (invert)
607 ucontrol->value.integer.value[1] =
608 max - ucontrol->value.integer.value[1];
609 else
610 ucontrol->value.integer.value[1] =
611 ucontrol->value.integer.value[1] - min;
612 }
613
614 return 0;
615 }
616 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
617
618 /**
619 * snd_soc_limit_volume - Set new limit to an existing volume control.
620 *
621 * @card: where to look for the control
622 * @name: Name of the control
623 * @max: new maximum limit
624 *
625 * Return 0 for success, else error.
626 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)627 int snd_soc_limit_volume(struct snd_soc_card *card,
628 const char *name, int max)
629 {
630 struct snd_kcontrol *kctl;
631 struct soc_mixer_control *mc;
632 int ret = -EINVAL;
633
634 /* Sanity check for name and max */
635 if (unlikely(!name || max <= 0))
636 return -EINVAL;
637
638 kctl = snd_soc_card_get_kcontrol(card, name);
639 if (kctl) {
640 mc = (struct soc_mixer_control *)kctl->private_value;
641 if (max <= mc->max) {
642 mc->platform_max = max;
643 ret = 0;
644 }
645 }
646 return ret;
647 }
648 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
649
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)650 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
651 struct snd_ctl_elem_info *uinfo)
652 {
653 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
654 struct soc_bytes *params = (void *)kcontrol->private_value;
655
656 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
657 uinfo->count = params->num_regs * component->val_bytes;
658
659 return 0;
660 }
661 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
662
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)663 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
664 struct snd_ctl_elem_value *ucontrol)
665 {
666 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
667 struct soc_bytes *params = (void *)kcontrol->private_value;
668 int ret;
669
670 if (component->regmap)
671 ret = regmap_raw_read(component->regmap, params->base,
672 ucontrol->value.bytes.data,
673 params->num_regs * component->val_bytes);
674 else
675 ret = -EINVAL;
676
677 /* Hide any masked bytes to ensure consistent data reporting */
678 if (ret == 0 && params->mask) {
679 switch (component->val_bytes) {
680 case 1:
681 ucontrol->value.bytes.data[0] &= ~params->mask;
682 break;
683 case 2:
684 ((u16 *)(&ucontrol->value.bytes.data))[0]
685 &= cpu_to_be16(~params->mask);
686 break;
687 case 4:
688 ((u32 *)(&ucontrol->value.bytes.data))[0]
689 &= cpu_to_be32(~params->mask);
690 break;
691 default:
692 return -EINVAL;
693 }
694 }
695
696 return ret;
697 }
698 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
699
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)700 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
701 struct snd_ctl_elem_value *ucontrol)
702 {
703 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
704 struct soc_bytes *params = (void *)kcontrol->private_value;
705 int ret, len;
706 unsigned int val, mask;
707 void *data;
708
709 if (!component->regmap || !params->num_regs)
710 return -EINVAL;
711
712 len = params->num_regs * component->val_bytes;
713
714 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
715 if (!data)
716 return -ENOMEM;
717
718 /*
719 * If we've got a mask then we need to preserve the register
720 * bits. We shouldn't modify the incoming data so take a
721 * copy.
722 */
723 if (params->mask) {
724 ret = regmap_read(component->regmap, params->base, &val);
725 if (ret != 0)
726 goto out;
727
728 val &= params->mask;
729
730 switch (component->val_bytes) {
731 case 1:
732 ((u8 *)data)[0] &= ~params->mask;
733 ((u8 *)data)[0] |= val;
734 break;
735 case 2:
736 mask = ~params->mask;
737 ret = regmap_parse_val(component->regmap,
738 &mask, &mask);
739 if (ret != 0)
740 goto out;
741
742 ((u16 *)data)[0] &= mask;
743
744 ret = regmap_parse_val(component->regmap,
745 &val, &val);
746 if (ret != 0)
747 goto out;
748
749 ((u16 *)data)[0] |= val;
750 break;
751 case 4:
752 mask = ~params->mask;
753 ret = regmap_parse_val(component->regmap,
754 &mask, &mask);
755 if (ret != 0)
756 goto out;
757
758 ((u32 *)data)[0] &= mask;
759
760 ret = regmap_parse_val(component->regmap,
761 &val, &val);
762 if (ret != 0)
763 goto out;
764
765 ((u32 *)data)[0] |= val;
766 break;
767 default:
768 ret = -EINVAL;
769 goto out;
770 }
771 }
772
773 ret = regmap_raw_write(component->regmap, params->base,
774 data, len);
775
776 out:
777 kfree(data);
778
779 return ret;
780 }
781 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
782
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)783 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
784 struct snd_ctl_elem_info *ucontrol)
785 {
786 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
787
788 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
789 ucontrol->count = params->max;
790
791 return 0;
792 }
793 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
794
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)795 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
796 unsigned int size, unsigned int __user *tlv)
797 {
798 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
799 unsigned int count = size < params->max ? size : params->max;
800 int ret = -ENXIO;
801
802 switch (op_flag) {
803 case SNDRV_CTL_TLV_OP_READ:
804 if (params->get)
805 ret = params->get(kcontrol, tlv, count);
806 break;
807 case SNDRV_CTL_TLV_OP_WRITE:
808 if (params->put)
809 ret = params->put(kcontrol, tlv, count);
810 break;
811 }
812 return ret;
813 }
814 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
815
816 /**
817 * snd_soc_info_xr_sx - signed multi register info callback
818 * @kcontrol: mreg control
819 * @uinfo: control element information
820 *
821 * Callback to provide information of a control that can
822 * span multiple codec registers which together
823 * forms a single signed value in a MSB/LSB manner.
824 *
825 * Returns 0 for success.
826 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)827 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
828 struct snd_ctl_elem_info *uinfo)
829 {
830 struct soc_mreg_control *mc =
831 (struct soc_mreg_control *)kcontrol->private_value;
832 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
833 uinfo->count = 1;
834 uinfo->value.integer.min = mc->min;
835 uinfo->value.integer.max = mc->max;
836
837 return 0;
838 }
839 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
840
841 /**
842 * snd_soc_get_xr_sx - signed multi register get callback
843 * @kcontrol: mreg control
844 * @ucontrol: control element information
845 *
846 * Callback to get the value of a control that can span
847 * multiple codec registers which together forms a single
848 * signed value in a MSB/LSB manner. The control supports
849 * specifying total no of bits used to allow for bitfields
850 * across the multiple codec registers.
851 *
852 * Returns 0 for success.
853 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)854 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
855 struct snd_ctl_elem_value *ucontrol)
856 {
857 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
858 struct soc_mreg_control *mc =
859 (struct soc_mreg_control *)kcontrol->private_value;
860 unsigned int regbase = mc->regbase;
861 unsigned int regcount = mc->regcount;
862 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
863 unsigned int regwmask = (1UL<<regwshift)-1;
864 unsigned int invert = mc->invert;
865 unsigned long mask = (1UL<<mc->nbits)-1;
866 long min = mc->min;
867 long max = mc->max;
868 long val = 0;
869 unsigned int regval;
870 unsigned int i;
871
872 for (i = 0; i < regcount; i++) {
873 regval = snd_soc_component_read(component, regbase+i);
874 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
875 }
876 val &= mask;
877 if (min < 0 && val > max)
878 val |= ~mask;
879 if (invert)
880 val = max - val;
881 ucontrol->value.integer.value[0] = val;
882
883 return 0;
884 }
885 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
886
887 /**
888 * snd_soc_put_xr_sx - signed multi register get callback
889 * @kcontrol: mreg control
890 * @ucontrol: control element information
891 *
892 * Callback to set the value of a control that can span
893 * multiple codec registers which together forms a single
894 * signed value in a MSB/LSB manner. The control supports
895 * specifying total no of bits used to allow for bitfields
896 * across the multiple codec registers.
897 *
898 * Returns 0 for success.
899 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)900 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
901 struct snd_ctl_elem_value *ucontrol)
902 {
903 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
904 struct soc_mreg_control *mc =
905 (struct soc_mreg_control *)kcontrol->private_value;
906 unsigned int regbase = mc->regbase;
907 unsigned int regcount = mc->regcount;
908 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
909 unsigned int regwmask = (1UL<<regwshift)-1;
910 unsigned int invert = mc->invert;
911 unsigned long mask = (1UL<<mc->nbits)-1;
912 long max = mc->max;
913 long val = ucontrol->value.integer.value[0];
914 unsigned int i, regval, regmask;
915 int err;
916
917 if (val < mc->min || val > mc->max)
918 return -EINVAL;
919 if (invert)
920 val = max - val;
921 val &= mask;
922 for (i = 0; i < regcount; i++) {
923 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
924 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
925 err = snd_soc_component_update_bits(component, regbase+i,
926 regmask, regval);
927 if (err < 0)
928 return err;
929 }
930
931 return 0;
932 }
933 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
934
935 /**
936 * snd_soc_get_strobe - strobe get callback
937 * @kcontrol: mixer control
938 * @ucontrol: control element information
939 *
940 * Callback get the value of a strobe mixer control.
941 *
942 * Returns 0 for success.
943 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)944 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
945 struct snd_ctl_elem_value *ucontrol)
946 {
947 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
948 struct soc_mixer_control *mc =
949 (struct soc_mixer_control *)kcontrol->private_value;
950 unsigned int reg = mc->reg;
951 unsigned int shift = mc->shift;
952 unsigned int mask = 1 << shift;
953 unsigned int invert = mc->invert != 0;
954 unsigned int val;
955
956 val = snd_soc_component_read(component, reg);
957 val &= mask;
958
959 if (shift != 0 && val != 0)
960 val = val >> shift;
961 ucontrol->value.enumerated.item[0] = val ^ invert;
962
963 return 0;
964 }
965 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
966
967 /**
968 * snd_soc_put_strobe - strobe put callback
969 * @kcontrol: mixer control
970 * @ucontrol: control element information
971 *
972 * Callback strobe a register bit to high then low (or the inverse)
973 * in one pass of a single mixer enum control.
974 *
975 * Returns 1 for success.
976 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)977 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
978 struct snd_ctl_elem_value *ucontrol)
979 {
980 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
981 struct soc_mixer_control *mc =
982 (struct soc_mixer_control *)kcontrol->private_value;
983 unsigned int reg = mc->reg;
984 unsigned int shift = mc->shift;
985 unsigned int mask = 1 << shift;
986 unsigned int invert = mc->invert != 0;
987 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
988 unsigned int val1 = (strobe ^ invert) ? mask : 0;
989 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
990 int err;
991
992 err = snd_soc_component_update_bits(component, reg, mask, val1);
993 if (err < 0)
994 return err;
995
996 return snd_soc_component_update_bits(component, reg, mask, val2);
997 }
998 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
999