• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err, ret;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	val = ucontrol->value.integer.value[0];
320 	if (mc->platform_max && ((int)val + min) > mc->platform_max)
321 		return -EINVAL;
322 	if (val > max - min)
323 		return -EINVAL;
324 	if (val < 0)
325 		return -EINVAL;
326 	val = (val + min) & mask;
327 	if (invert)
328 		val = max - val;
329 	val_mask = mask << shift;
330 	val = val << shift;
331 	if (snd_soc_volsw_is_stereo(mc)) {
332 		val2 = ucontrol->value.integer.value[1];
333 		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
334 			return -EINVAL;
335 		if (val2 > max - min)
336 			return -EINVAL;
337 		if (val2 < 0)
338 			return -EINVAL;
339 		val2 = (val2 + min) & mask;
340 		if (invert)
341 			val2 = max - val2;
342 		if (reg == reg2) {
343 			val_mask |= mask << rshift;
344 			val |= val2 << rshift;
345 		} else {
346 			val2 = val2 << shift;
347 			type_2r = true;
348 		}
349 	}
350 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 	if (err < 0)
352 		return err;
353 	ret = err;
354 
355 	if (type_2r) {
356 		err = snd_soc_component_update_bits(component, reg2, val_mask,
357 						    val2);
358 		/* Don't discard any error code or drop change flag */
359 		if (ret == 0 || err < 0) {
360 			ret = err;
361 		}
362 	}
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367 
368 /**
369  * snd_soc_get_volsw_sx - single mixer get callback
370  * @kcontrol: mixer control
371  * @ucontrol: control element information
372  *
373  * Callback to get the value of a single mixer control, or a double mixer
374  * control that spans 2 registers.
375  *
376  * Returns 0 for success.
377  */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 		      struct snd_ctl_elem_value *ucontrol)
380 {
381 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 	struct soc_mixer_control *mc =
383 	    (struct soc_mixer_control *)kcontrol->private_value;
384 	unsigned int reg = mc->reg;
385 	unsigned int reg2 = mc->rreg;
386 	unsigned int shift = mc->shift;
387 	unsigned int rshift = mc->rshift;
388 	int max = mc->max;
389 	int min = mc->min;
390 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 	unsigned int val;
392 
393 	val = snd_soc_component_read(component, reg);
394 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395 
396 	if (snd_soc_volsw_is_stereo(mc)) {
397 		val = snd_soc_component_read(component, reg2);
398 		val = ((val >> rshift) - min) & mask;
399 		ucontrol->value.integer.value[1] = val;
400 	}
401 
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405 
406 /**
407  * snd_soc_put_volsw_sx - double mixer set callback
408  * @kcontrol: mixer control
409  * @ucontrol: control element information
410  *
411  * Callback to set the value of a double mixer control that spans 2 registers.
412  *
413  * Returns 0 for success.
414  */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 			 struct snd_ctl_elem_value *ucontrol)
417 {
418 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 	struct soc_mixer_control *mc =
420 	    (struct soc_mixer_control *)kcontrol->private_value;
421 
422 	unsigned int reg = mc->reg;
423 	unsigned int reg2 = mc->rreg;
424 	unsigned int shift = mc->shift;
425 	unsigned int rshift = mc->rshift;
426 	int max = mc->max;
427 	int min = mc->min;
428 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 	int err = 0;
430 	unsigned int val, val_mask, val2 = 0;
431 
432 	val = ucontrol->value.integer.value[0];
433 	if (mc->platform_max && val > mc->platform_max)
434 		return -EINVAL;
435 	if (val > max)
436 		return -EINVAL;
437 	if (val < 0)
438 		return -EINVAL;
439 	val_mask = mask << shift;
440 	val = (val + min) & mask;
441 	val = val << shift;
442 
443 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
444 	if (err < 0)
445 		return err;
446 
447 	if (snd_soc_volsw_is_stereo(mc)) {
448 		val2 = ucontrol->value.integer.value[1];
449 
450 		if (mc->platform_max && val2 > mc->platform_max)
451 			return -EINVAL;
452 		if (val2 > max)
453 			return -EINVAL;
454 
455 		val_mask = mask << rshift;
456 		val2 = (val2 + min) & mask;
457 		val2 = val2 << rshift;
458 
459 		err = snd_soc_component_update_bits(component, reg2, val_mask,
460 			val2);
461 	}
462 	return err;
463 }
464 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
465 
466 /**
467  * snd_soc_info_volsw_range - single mixer info callback with range.
468  * @kcontrol: mixer control
469  * @uinfo: control element information
470  *
471  * Callback to provide information, within a range, about a single
472  * mixer control.
473  *
474  * returns 0 for success.
475  */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)476 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
477 	struct snd_ctl_elem_info *uinfo)
478 {
479 	struct soc_mixer_control *mc =
480 		(struct soc_mixer_control *)kcontrol->private_value;
481 	int platform_max;
482 	int min = mc->min;
483 
484 	if (!mc->platform_max)
485 		mc->platform_max = mc->max;
486 	platform_max = mc->platform_max;
487 
488 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
489 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
490 	uinfo->value.integer.min = 0;
491 	uinfo->value.integer.max = platform_max - min;
492 
493 	return 0;
494 }
495 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
496 
497 /**
498  * snd_soc_put_volsw_range - single mixer put value callback with range.
499  * @kcontrol: mixer control
500  * @ucontrol: control element information
501  *
502  * Callback to set the value, within a range, for a single mixer control.
503  *
504  * Returns 0 for success.
505  */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)506 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
507 	struct snd_ctl_elem_value *ucontrol)
508 {
509 	struct soc_mixer_control *mc =
510 		(struct soc_mixer_control *)kcontrol->private_value;
511 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
512 	unsigned int reg = mc->reg;
513 	unsigned int rreg = mc->rreg;
514 	unsigned int shift = mc->shift;
515 	int min = mc->min;
516 	int max = mc->max;
517 	unsigned int mask = (1 << fls(max)) - 1;
518 	unsigned int invert = mc->invert;
519 	unsigned int val, val_mask;
520 	int err, ret, tmp;
521 
522 	tmp = ucontrol->value.integer.value[0];
523 	if (tmp < 0)
524 		return -EINVAL;
525 	if (mc->platform_max && tmp > mc->platform_max)
526 		return -EINVAL;
527 	if (tmp > mc->max - mc->min)
528 		return -EINVAL;
529 
530 	if (invert)
531 		val = (max - ucontrol->value.integer.value[0]) & mask;
532 	else
533 		val = ((ucontrol->value.integer.value[0] + min) & mask);
534 	val_mask = mask << shift;
535 	val = val << shift;
536 
537 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
538 	if (err < 0)
539 		return err;
540 	ret = err;
541 
542 	if (snd_soc_volsw_is_stereo(mc)) {
543 		tmp = ucontrol->value.integer.value[1];
544 		if (tmp < 0)
545 			return -EINVAL;
546 		if (mc->platform_max && tmp > mc->platform_max)
547 			return -EINVAL;
548 		if (tmp > mc->max - mc->min)
549 			return -EINVAL;
550 
551 		if (invert)
552 			val = (max - ucontrol->value.integer.value[1]) & mask;
553 		else
554 			val = ((ucontrol->value.integer.value[1] + min) & mask);
555 		val_mask = mask << shift;
556 		val = val << shift;
557 
558 		err = snd_soc_component_update_bits(component, rreg, val_mask,
559 			val);
560 		/* Don't discard any error code or drop change flag */
561 		if (ret == 0 || err < 0) {
562 			ret = err;
563 		}
564 	}
565 
566 	return ret;
567 }
568 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
569 
570 /**
571  * snd_soc_get_volsw_range - single mixer get callback with range
572  * @kcontrol: mixer control
573  * @ucontrol: control element information
574  *
575  * Callback to get the value, within a range, of a single mixer control.
576  *
577  * Returns 0 for success.
578  */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)579 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
580 	struct snd_ctl_elem_value *ucontrol)
581 {
582 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
583 	struct soc_mixer_control *mc =
584 		(struct soc_mixer_control *)kcontrol->private_value;
585 	unsigned int reg = mc->reg;
586 	unsigned int rreg = mc->rreg;
587 	unsigned int shift = mc->shift;
588 	int min = mc->min;
589 	int max = mc->max;
590 	unsigned int mask = (1 << fls(max)) - 1;
591 	unsigned int invert = mc->invert;
592 	unsigned int val;
593 
594 	val = snd_soc_component_read(component, reg);
595 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
596 	if (invert)
597 		ucontrol->value.integer.value[0] =
598 			max - ucontrol->value.integer.value[0];
599 	else
600 		ucontrol->value.integer.value[0] =
601 			ucontrol->value.integer.value[0] - min;
602 
603 	if (snd_soc_volsw_is_stereo(mc)) {
604 		val = snd_soc_component_read(component, rreg);
605 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
606 		if (invert)
607 			ucontrol->value.integer.value[1] =
608 				max - ucontrol->value.integer.value[1];
609 		else
610 			ucontrol->value.integer.value[1] =
611 				ucontrol->value.integer.value[1] - min;
612 	}
613 
614 	return 0;
615 }
616 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
617 
618 /**
619  * snd_soc_limit_volume - Set new limit to an existing volume control.
620  *
621  * @card: where to look for the control
622  * @name: Name of the control
623  * @max: new maximum limit
624  *
625  * Return 0 for success, else error.
626  */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)627 int snd_soc_limit_volume(struct snd_soc_card *card,
628 	const char *name, int max)
629 {
630 	struct snd_kcontrol *kctl;
631 	struct soc_mixer_control *mc;
632 	int ret = -EINVAL;
633 
634 	/* Sanity check for name and max */
635 	if (unlikely(!name || max <= 0))
636 		return -EINVAL;
637 
638 	kctl = snd_soc_card_get_kcontrol(card, name);
639 	if (kctl) {
640 		mc = (struct soc_mixer_control *)kctl->private_value;
641 		if (max <= mc->max) {
642 			mc->platform_max = max;
643 			ret = 0;
644 		}
645 	}
646 	return ret;
647 }
648 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
649 
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)650 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
651 		       struct snd_ctl_elem_info *uinfo)
652 {
653 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
654 	struct soc_bytes *params = (void *)kcontrol->private_value;
655 
656 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
657 	uinfo->count = params->num_regs * component->val_bytes;
658 
659 	return 0;
660 }
661 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
662 
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)663 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
664 		      struct snd_ctl_elem_value *ucontrol)
665 {
666 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
667 	struct soc_bytes *params = (void *)kcontrol->private_value;
668 	int ret;
669 
670 	if (component->regmap)
671 		ret = regmap_raw_read(component->regmap, params->base,
672 				      ucontrol->value.bytes.data,
673 				      params->num_regs * component->val_bytes);
674 	else
675 		ret = -EINVAL;
676 
677 	/* Hide any masked bytes to ensure consistent data reporting */
678 	if (ret == 0 && params->mask) {
679 		switch (component->val_bytes) {
680 		case 1:
681 			ucontrol->value.bytes.data[0] &= ~params->mask;
682 			break;
683 		case 2:
684 			((u16 *)(&ucontrol->value.bytes.data))[0]
685 				&= cpu_to_be16(~params->mask);
686 			break;
687 		case 4:
688 			((u32 *)(&ucontrol->value.bytes.data))[0]
689 				&= cpu_to_be32(~params->mask);
690 			break;
691 		default:
692 			return -EINVAL;
693 		}
694 	}
695 
696 	return ret;
697 }
698 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
699 
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)700 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
701 		      struct snd_ctl_elem_value *ucontrol)
702 {
703 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
704 	struct soc_bytes *params = (void *)kcontrol->private_value;
705 	int ret, len;
706 	unsigned int val, mask;
707 	void *data;
708 
709 	if (!component->regmap || !params->num_regs)
710 		return -EINVAL;
711 
712 	len = params->num_regs * component->val_bytes;
713 
714 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
715 	if (!data)
716 		return -ENOMEM;
717 
718 	/*
719 	 * If we've got a mask then we need to preserve the register
720 	 * bits.  We shouldn't modify the incoming data so take a
721 	 * copy.
722 	 */
723 	if (params->mask) {
724 		ret = regmap_read(component->regmap, params->base, &val);
725 		if (ret != 0)
726 			goto out;
727 
728 		val &= params->mask;
729 
730 		switch (component->val_bytes) {
731 		case 1:
732 			((u8 *)data)[0] &= ~params->mask;
733 			((u8 *)data)[0] |= val;
734 			break;
735 		case 2:
736 			mask = ~params->mask;
737 			ret = regmap_parse_val(component->regmap,
738 							&mask, &mask);
739 			if (ret != 0)
740 				goto out;
741 
742 			((u16 *)data)[0] &= mask;
743 
744 			ret = regmap_parse_val(component->regmap,
745 							&val, &val);
746 			if (ret != 0)
747 				goto out;
748 
749 			((u16 *)data)[0] |= val;
750 			break;
751 		case 4:
752 			mask = ~params->mask;
753 			ret = regmap_parse_val(component->regmap,
754 							&mask, &mask);
755 			if (ret != 0)
756 				goto out;
757 
758 			((u32 *)data)[0] &= mask;
759 
760 			ret = regmap_parse_val(component->regmap,
761 							&val, &val);
762 			if (ret != 0)
763 				goto out;
764 
765 			((u32 *)data)[0] |= val;
766 			break;
767 		default:
768 			ret = -EINVAL;
769 			goto out;
770 		}
771 	}
772 
773 	ret = regmap_raw_write(component->regmap, params->base,
774 			       data, len);
775 
776 out:
777 	kfree(data);
778 
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
782 
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)783 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
784 			struct snd_ctl_elem_info *ucontrol)
785 {
786 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
787 
788 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
789 	ucontrol->count = params->max;
790 
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
794 
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)795 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
796 				unsigned int size, unsigned int __user *tlv)
797 {
798 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
799 	unsigned int count = size < params->max ? size : params->max;
800 	int ret = -ENXIO;
801 
802 	switch (op_flag) {
803 	case SNDRV_CTL_TLV_OP_READ:
804 		if (params->get)
805 			ret = params->get(kcontrol, tlv, count);
806 		break;
807 	case SNDRV_CTL_TLV_OP_WRITE:
808 		if (params->put)
809 			ret = params->put(kcontrol, tlv, count);
810 		break;
811 	}
812 	return ret;
813 }
814 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
815 
816 /**
817  * snd_soc_info_xr_sx - signed multi register info callback
818  * @kcontrol: mreg control
819  * @uinfo: control element information
820  *
821  * Callback to provide information of a control that can
822  * span multiple codec registers which together
823  * forms a single signed value in a MSB/LSB manner.
824  *
825  * Returns 0 for success.
826  */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)827 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
828 	struct snd_ctl_elem_info *uinfo)
829 {
830 	struct soc_mreg_control *mc =
831 		(struct soc_mreg_control *)kcontrol->private_value;
832 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
833 	uinfo->count = 1;
834 	uinfo->value.integer.min = mc->min;
835 	uinfo->value.integer.max = mc->max;
836 
837 	return 0;
838 }
839 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
840 
841 /**
842  * snd_soc_get_xr_sx - signed multi register get callback
843  * @kcontrol: mreg control
844  * @ucontrol: control element information
845  *
846  * Callback to get the value of a control that can span
847  * multiple codec registers which together forms a single
848  * signed value in a MSB/LSB manner. The control supports
849  * specifying total no of bits used to allow for bitfields
850  * across the multiple codec registers.
851  *
852  * Returns 0 for success.
853  */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)854 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
855 	struct snd_ctl_elem_value *ucontrol)
856 {
857 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
858 	struct soc_mreg_control *mc =
859 		(struct soc_mreg_control *)kcontrol->private_value;
860 	unsigned int regbase = mc->regbase;
861 	unsigned int regcount = mc->regcount;
862 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
863 	unsigned int regwmask = (1UL<<regwshift)-1;
864 	unsigned int invert = mc->invert;
865 	unsigned long mask = (1UL<<mc->nbits)-1;
866 	long min = mc->min;
867 	long max = mc->max;
868 	long val = 0;
869 	unsigned int regval;
870 	unsigned int i;
871 
872 	for (i = 0; i < regcount; i++) {
873 		regval = snd_soc_component_read(component, regbase+i);
874 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
875 	}
876 	val &= mask;
877 	if (min < 0 && val > max)
878 		val |= ~mask;
879 	if (invert)
880 		val = max - val;
881 	ucontrol->value.integer.value[0] = val;
882 
883 	return 0;
884 }
885 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
886 
887 /**
888  * snd_soc_put_xr_sx - signed multi register get callback
889  * @kcontrol: mreg control
890  * @ucontrol: control element information
891  *
892  * Callback to set the value of a control that can span
893  * multiple codec registers which together forms a single
894  * signed value in a MSB/LSB manner. The control supports
895  * specifying total no of bits used to allow for bitfields
896  * across the multiple codec registers.
897  *
898  * Returns 0 for success.
899  */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)900 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
901 	struct snd_ctl_elem_value *ucontrol)
902 {
903 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
904 	struct soc_mreg_control *mc =
905 		(struct soc_mreg_control *)kcontrol->private_value;
906 	unsigned int regbase = mc->regbase;
907 	unsigned int regcount = mc->regcount;
908 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
909 	unsigned int regwmask = (1UL<<regwshift)-1;
910 	unsigned int invert = mc->invert;
911 	unsigned long mask = (1UL<<mc->nbits)-1;
912 	long max = mc->max;
913 	long val = ucontrol->value.integer.value[0];
914 	unsigned int i, regval, regmask;
915 	int err;
916 
917 	if (val < mc->min || val > mc->max)
918 		return -EINVAL;
919 	if (invert)
920 		val = max - val;
921 	val &= mask;
922 	for (i = 0; i < regcount; i++) {
923 		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
924 		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
925 		err = snd_soc_component_update_bits(component, regbase+i,
926 				regmask, regval);
927 		if (err < 0)
928 			return err;
929 	}
930 
931 	return 0;
932 }
933 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
934 
935 /**
936  * snd_soc_get_strobe - strobe get callback
937  * @kcontrol: mixer control
938  * @ucontrol: control element information
939  *
940  * Callback get the value of a strobe mixer control.
941  *
942  * Returns 0 for success.
943  */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)944 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
945 	struct snd_ctl_elem_value *ucontrol)
946 {
947 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
948 	struct soc_mixer_control *mc =
949 		(struct soc_mixer_control *)kcontrol->private_value;
950 	unsigned int reg = mc->reg;
951 	unsigned int shift = mc->shift;
952 	unsigned int mask = 1 << shift;
953 	unsigned int invert = mc->invert != 0;
954 	unsigned int val;
955 
956 	val = snd_soc_component_read(component, reg);
957 	val &= mask;
958 
959 	if (shift != 0 && val != 0)
960 		val = val >> shift;
961 	ucontrol->value.enumerated.item[0] = val ^ invert;
962 
963 	return 0;
964 }
965 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
966 
967 /**
968  * snd_soc_put_strobe - strobe put callback
969  * @kcontrol: mixer control
970  * @ucontrol: control element information
971  *
972  * Callback strobe a register bit to high then low (or the inverse)
973  * in one pass of a single mixer enum control.
974  *
975  * Returns 1 for success.
976  */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)977 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
978 	struct snd_ctl_elem_value *ucontrol)
979 {
980 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
981 	struct soc_mixer_control *mc =
982 		(struct soc_mixer_control *)kcontrol->private_value;
983 	unsigned int reg = mc->reg;
984 	unsigned int shift = mc->shift;
985 	unsigned int mask = 1 << shift;
986 	unsigned int invert = mc->invert != 0;
987 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
988 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
989 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
990 	int err;
991 
992 	err = snd_soc_component_update_bits(component, reg, mask, val1);
993 	if (err < 0)
994 		return err;
995 
996 	return snd_soc_component_update_bits(component, reg, mask, val2);
997 }
998 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
999