1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * polling/bitbanging SPI master controller driver utilities
4 */
5
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi_bitbang.h>
17
18 #define SPI_BITBANG_CS_DELAY 100
19
20
21 /*----------------------------------------------------------------------*/
22
23 /*
24 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
25 * Use this for GPIO or shift-register level hardware APIs.
26 *
27 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
28 * to glue code. These bitbang setup() and cleanup() routines are always
29 * used, though maybe they're called from controller-aware code.
30 *
31 * chipselect() and friends may use spi_device->controller_data and
32 * controller registers as appropriate.
33 *
34 *
35 * NOTE: SPI controller pins can often be used as GPIO pins instead,
36 * which means you could use a bitbang driver either to get hardware
37 * working quickly, or testing for differences that aren't speed related.
38 */
39
40 struct spi_bitbang_cs {
41 unsigned nsecs; /* (clock cycle time)/2 */
42 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
43 u32 word, u8 bits, unsigned flags);
44 unsigned (*txrx_bufs)(struct spi_device *,
45 u32 (*txrx_word)(
46 struct spi_device *spi,
47 unsigned nsecs,
48 u32 word, u8 bits,
49 unsigned flags),
50 unsigned, struct spi_transfer *,
51 unsigned);
52 };
53
bitbang_txrx_8(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits,unsigned flags),unsigned ns,struct spi_transfer * t,unsigned flags)54 static unsigned bitbang_txrx_8(
55 struct spi_device *spi,
56 u32 (*txrx_word)(struct spi_device *spi,
57 unsigned nsecs,
58 u32 word, u8 bits,
59 unsigned flags),
60 unsigned ns,
61 struct spi_transfer *t,
62 unsigned flags
63 ) {
64 unsigned bits = t->bits_per_word;
65 unsigned count = t->len;
66 const u8 *tx = t->tx_buf;
67 u8 *rx = t->rx_buf;
68
69 while (likely(count > 0)) {
70 u8 word = 0;
71
72 if (tx)
73 word = *tx++;
74 word = txrx_word(spi, ns, word, bits, flags);
75 if (rx)
76 *rx++ = word;
77 count -= 1;
78 }
79 return t->len - count;
80 }
81
bitbang_txrx_16(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits,unsigned flags),unsigned ns,struct spi_transfer * t,unsigned flags)82 static unsigned bitbang_txrx_16(
83 struct spi_device *spi,
84 u32 (*txrx_word)(struct spi_device *spi,
85 unsigned nsecs,
86 u32 word, u8 bits,
87 unsigned flags),
88 unsigned ns,
89 struct spi_transfer *t,
90 unsigned flags
91 ) {
92 unsigned bits = t->bits_per_word;
93 unsigned count = t->len;
94 const u16 *tx = t->tx_buf;
95 u16 *rx = t->rx_buf;
96
97 while (likely(count > 1)) {
98 u16 word = 0;
99
100 if (tx)
101 word = *tx++;
102 word = txrx_word(spi, ns, word, bits, flags);
103 if (rx)
104 *rx++ = word;
105 count -= 2;
106 }
107 return t->len - count;
108 }
109
bitbang_txrx_32(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits,unsigned flags),unsigned ns,struct spi_transfer * t,unsigned flags)110 static unsigned bitbang_txrx_32(
111 struct spi_device *spi,
112 u32 (*txrx_word)(struct spi_device *spi,
113 unsigned nsecs,
114 u32 word, u8 bits,
115 unsigned flags),
116 unsigned ns,
117 struct spi_transfer *t,
118 unsigned flags
119 ) {
120 unsigned bits = t->bits_per_word;
121 unsigned count = t->len;
122 const u32 *tx = t->tx_buf;
123 u32 *rx = t->rx_buf;
124
125 while (likely(count > 3)) {
126 u32 word = 0;
127
128 if (tx)
129 word = *tx++;
130 word = txrx_word(spi, ns, word, bits, flags);
131 if (rx)
132 *rx++ = word;
133 count -= 4;
134 }
135 return t->len - count;
136 }
137
spi_bitbang_setup_transfer(struct spi_device * spi,struct spi_transfer * t)138 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
139 {
140 struct spi_bitbang_cs *cs = spi->controller_state;
141 u8 bits_per_word;
142 u32 hz;
143
144 if (t) {
145 bits_per_word = t->bits_per_word;
146 hz = t->speed_hz;
147 } else {
148 bits_per_word = 0;
149 hz = 0;
150 }
151
152 /* spi_transfer level calls that work per-word */
153 if (!bits_per_word)
154 bits_per_word = spi->bits_per_word;
155 if (bits_per_word <= 8)
156 cs->txrx_bufs = bitbang_txrx_8;
157 else if (bits_per_word <= 16)
158 cs->txrx_bufs = bitbang_txrx_16;
159 else if (bits_per_word <= 32)
160 cs->txrx_bufs = bitbang_txrx_32;
161 else
162 return -EINVAL;
163
164 /* nsecs = (clock period)/2 */
165 if (!hz)
166 hz = spi->max_speed_hz;
167 if (hz) {
168 cs->nsecs = (1000000000/2) / hz;
169 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
170 return -EINVAL;
171 }
172
173 return 0;
174 }
175 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
176
177 /*
178 * spi_bitbang_setup - default setup for per-word I/O loops
179 */
spi_bitbang_setup(struct spi_device * spi)180 int spi_bitbang_setup(struct spi_device *spi)
181 {
182 struct spi_bitbang_cs *cs = spi->controller_state;
183 struct spi_bitbang *bitbang;
184 bool initial_setup = false;
185 int retval;
186
187 bitbang = spi_master_get_devdata(spi->master);
188
189 if (!cs) {
190 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
191 if (!cs)
192 return -ENOMEM;
193 spi->controller_state = cs;
194 initial_setup = true;
195 }
196
197 /* per-word shift register access, in hardware or bitbanging */
198 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
199 if (!cs->txrx_word) {
200 retval = -EINVAL;
201 goto err_free;
202 }
203
204 if (bitbang->setup_transfer) {
205 retval = bitbang->setup_transfer(spi, NULL);
206 if (retval < 0)
207 goto err_free;
208 }
209
210 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
211
212 return 0;
213
214 err_free:
215 if (initial_setup)
216 kfree(cs);
217 return retval;
218 }
219 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
220
221 /*
222 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
223 */
spi_bitbang_cleanup(struct spi_device * spi)224 void spi_bitbang_cleanup(struct spi_device *spi)
225 {
226 kfree(spi->controller_state);
227 }
228 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
229
spi_bitbang_bufs(struct spi_device * spi,struct spi_transfer * t)230 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
231 {
232 struct spi_bitbang_cs *cs = spi->controller_state;
233 unsigned nsecs = cs->nsecs;
234 struct spi_bitbang *bitbang;
235
236 bitbang = spi_master_get_devdata(spi->master);
237 if (bitbang->set_line_direction) {
238 int err;
239
240 err = bitbang->set_line_direction(spi, !!(t->tx_buf));
241 if (err < 0)
242 return err;
243 }
244
245 if (spi->mode & SPI_3WIRE) {
246 unsigned flags;
247
248 flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
249 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
250 }
251 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
252 }
253
254 /*----------------------------------------------------------------------*/
255
256 /*
257 * SECOND PART ... simple transfer queue runner.
258 *
259 * This costs a task context per controller, running the queue by
260 * performing each transfer in sequence. Smarter hardware can queue
261 * several DMA transfers at once, and process several controller queues
262 * in parallel; this driver doesn't match such hardware very well.
263 *
264 * Drivers can provide word-at-a-time i/o primitives, or provide
265 * transfer-at-a-time ones to leverage dma or fifo hardware.
266 */
267
spi_bitbang_prepare_hardware(struct spi_master * spi)268 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
269 {
270 struct spi_bitbang *bitbang;
271
272 bitbang = spi_master_get_devdata(spi);
273
274 mutex_lock(&bitbang->lock);
275 bitbang->busy = 1;
276 mutex_unlock(&bitbang->lock);
277
278 return 0;
279 }
280
spi_bitbang_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * transfer)281 static int spi_bitbang_transfer_one(struct spi_master *master,
282 struct spi_device *spi,
283 struct spi_transfer *transfer)
284 {
285 struct spi_bitbang *bitbang = spi_master_get_devdata(master);
286 int status = 0;
287
288 if (bitbang->setup_transfer) {
289 status = bitbang->setup_transfer(spi, transfer);
290 if (status < 0)
291 goto out;
292 }
293
294 if (transfer->len)
295 status = bitbang->txrx_bufs(spi, transfer);
296
297 if (status == transfer->len)
298 status = 0;
299 else if (status >= 0)
300 status = -EREMOTEIO;
301
302 out:
303 spi_finalize_current_transfer(master);
304
305 return status;
306 }
307
spi_bitbang_unprepare_hardware(struct spi_master * spi)308 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
309 {
310 struct spi_bitbang *bitbang;
311
312 bitbang = spi_master_get_devdata(spi);
313
314 mutex_lock(&bitbang->lock);
315 bitbang->busy = 0;
316 mutex_unlock(&bitbang->lock);
317
318 return 0;
319 }
320
spi_bitbang_set_cs(struct spi_device * spi,bool enable)321 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
322 {
323 struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
324
325 /* SPI core provides CS high / low, but bitbang driver
326 * expects CS active
327 * spi device driver takes care of handling SPI_CS_HIGH
328 */
329 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
330
331 ndelay(SPI_BITBANG_CS_DELAY);
332 bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
333 BITBANG_CS_INACTIVE);
334 ndelay(SPI_BITBANG_CS_DELAY);
335 }
336
337 /*----------------------------------------------------------------------*/
338
spi_bitbang_init(struct spi_bitbang * bitbang)339 int spi_bitbang_init(struct spi_bitbang *bitbang)
340 {
341 struct spi_master *master = bitbang->master;
342 bool custom_cs;
343
344 if (!master)
345 return -EINVAL;
346 /*
347 * We only need the chipselect callback if we are actually using it.
348 * If we just use GPIO descriptors, it is surplus. If the
349 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
350 * driver-specific chipselect routine.
351 */
352 custom_cs = (!master->use_gpio_descriptors ||
353 (master->flags & SPI_MASTER_GPIO_SS));
354
355 if (custom_cs && !bitbang->chipselect)
356 return -EINVAL;
357
358 mutex_init(&bitbang->lock);
359
360 if (!master->mode_bits)
361 master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
362
363 if (master->transfer || master->transfer_one_message)
364 return -EINVAL;
365
366 master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
367 master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
368 master->transfer_one = spi_bitbang_transfer_one;
369 /*
370 * When using GPIO descriptors, the ->set_cs() callback doesn't even
371 * get called unless SPI_MASTER_GPIO_SS is set.
372 */
373 if (custom_cs)
374 master->set_cs = spi_bitbang_set_cs;
375
376 if (!bitbang->txrx_bufs) {
377 bitbang->use_dma = 0;
378 bitbang->txrx_bufs = spi_bitbang_bufs;
379 if (!master->setup) {
380 if (!bitbang->setup_transfer)
381 bitbang->setup_transfer =
382 spi_bitbang_setup_transfer;
383 master->setup = spi_bitbang_setup;
384 master->cleanup = spi_bitbang_cleanup;
385 }
386 }
387
388 return 0;
389 }
390 EXPORT_SYMBOL_GPL(spi_bitbang_init);
391
392 /**
393 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
394 * @bitbang: driver handle
395 *
396 * Caller should have zero-initialized all parts of the structure, and then
397 * provided callbacks for chip selection and I/O loops. If the master has
398 * a transfer method, its final step should call spi_bitbang_transfer; or,
399 * that's the default if the transfer routine is not initialized. It should
400 * also set up the bus number and number of chipselects.
401 *
402 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
403 * hardware that basically exposes a shift register) or per-spi_transfer
404 * (which takes better advantage of hardware like fifos or DMA engines).
405 *
406 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
407 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
408 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
409 * routine isn't initialized.
410 *
411 * This routine registers the spi_master, which will process requests in a
412 * dedicated task, keeping IRQs unblocked most of the time. To stop
413 * processing those requests, call spi_bitbang_stop().
414 *
415 * On success, this routine will take a reference to master. The caller is
416 * responsible for calling spi_bitbang_stop() to decrement the reference and
417 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
418 * leak.
419 */
spi_bitbang_start(struct spi_bitbang * bitbang)420 int spi_bitbang_start(struct spi_bitbang *bitbang)
421 {
422 struct spi_master *master = bitbang->master;
423 int ret;
424
425 ret = spi_bitbang_init(bitbang);
426 if (ret)
427 return ret;
428
429 /* driver may get busy before register() returns, especially
430 * if someone registered boardinfo for devices
431 */
432 ret = spi_register_master(spi_master_get(master));
433 if (ret)
434 spi_master_put(master);
435
436 return ret;
437 }
438 EXPORT_SYMBOL_GPL(spi_bitbang_start);
439
440 /*
441 * spi_bitbang_stop - stops the task providing spi communication
442 */
spi_bitbang_stop(struct spi_bitbang * bitbang)443 void spi_bitbang_stop(struct spi_bitbang *bitbang)
444 {
445 spi_unregister_master(bitbang->master);
446 }
447 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
448
449 MODULE_LICENSE("GPL");
450
451