• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24 
25 #include "core.h"
26 
27 /* Define max times to check status register before we give up. */
28 
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
34 
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40 
41 #define SPI_NOR_MAX_ADDR_WIDTH	4
42 
43 /**
44  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
45  *                           transfer
46  * @nor:        pointer to 'struct spi_nor'
47  * @op:         pointer to 'struct spi_mem_op' template for transfer
48  *
49  * If we have to use the bounce buffer, the data field in @op will be updated.
50  *
51  * Return: true if the bounce buffer is needed, false if not
52  */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)53 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
54 {
55 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
56 	if (object_is_on_stack(op->data.buf.in) ||
57 	    !virt_addr_valid(op->data.buf.in)) {
58 		if (op->data.nbytes > nor->bouncebuf_size)
59 			op->data.nbytes = nor->bouncebuf_size;
60 		op->data.buf.in = nor->bouncebuf;
61 		return true;
62 	}
63 
64 	return false;
65 }
66 
67 /**
68  * spi_nor_spimem_exec_op() - execute a memory operation
69  * @nor:        pointer to 'struct spi_nor'
70  * @op:         pointer to 'struct spi_mem_op' template for transfer
71  *
72  * Return: 0 on success, -error otherwise.
73  */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)74 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
75 {
76 	int error;
77 
78 	error = spi_mem_adjust_op_size(nor->spimem, op);
79 	if (error)
80 		return error;
81 
82 	return spi_mem_exec_op(nor->spimem, op);
83 }
84 
85 /**
86  * spi_nor_spimem_read_data() - read data from flash's memory region via
87  *                              spi-mem
88  * @nor:        pointer to 'struct spi_nor'
89  * @from:       offset to read from
90  * @len:        number of bytes to read
91  * @buf:        pointer to dst buffer
92  *
93  * Return: number of bytes read successfully, -errno otherwise
94  */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)95 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
96 					size_t len, u8 *buf)
97 {
98 	struct spi_mem_op op =
99 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
100 			   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
101 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
102 			   SPI_MEM_OP_DATA_IN(len, buf, 1));
103 	bool usebouncebuf;
104 	ssize_t nbytes;
105 	int error;
106 
107 	/* get transfer protocols. */
108 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
109 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
110 	op.dummy.buswidth = op.addr.buswidth;
111 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
112 
113 	/* convert the dummy cycles to the number of bytes */
114 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
115 
116 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
117 
118 	if (nor->dirmap.rdesc) {
119 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
120 					     op.data.nbytes, op.data.buf.in);
121 	} else {
122 		error = spi_nor_spimem_exec_op(nor, &op);
123 		if (error)
124 			return error;
125 		nbytes = op.data.nbytes;
126 	}
127 
128 	if (usebouncebuf && nbytes > 0)
129 		memcpy(buf, op.data.buf.in, nbytes);
130 
131 	return nbytes;
132 }
133 
134 /**
135  * spi_nor_read_data() - read data from flash memory
136  * @nor:        pointer to 'struct spi_nor'
137  * @from:       offset to read from
138  * @len:        number of bytes to read
139  * @buf:        pointer to dst buffer
140  *
141  * Return: number of bytes read successfully, -errno otherwise
142  */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)143 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
144 {
145 	if (nor->spimem)
146 		return spi_nor_spimem_read_data(nor, from, len, buf);
147 
148 	return nor->controller_ops->read(nor, from, len, buf);
149 }
150 
151 /**
152  * spi_nor_spimem_write_data() - write data to flash memory via
153  *                               spi-mem
154  * @nor:        pointer to 'struct spi_nor'
155  * @to:         offset to write to
156  * @len:        number of bytes to write
157  * @buf:        pointer to src buffer
158  *
159  * Return: number of bytes written successfully, -errno otherwise
160  */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)161 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
162 					 size_t len, const u8 *buf)
163 {
164 	struct spi_mem_op op =
165 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
166 			   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
167 			   SPI_MEM_OP_NO_DUMMY,
168 			   SPI_MEM_OP_DATA_OUT(len, buf, 1));
169 	ssize_t nbytes;
170 	int error;
171 
172 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
173 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
174 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
175 
176 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
177 		op.addr.nbytes = 0;
178 
179 	if (spi_nor_spimem_bounce(nor, &op))
180 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
181 
182 	if (nor->dirmap.wdesc) {
183 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
184 					      op.data.nbytes, op.data.buf.out);
185 	} else {
186 		error = spi_nor_spimem_exec_op(nor, &op);
187 		if (error)
188 			return error;
189 		nbytes = op.data.nbytes;
190 	}
191 
192 	return nbytes;
193 }
194 
195 /**
196  * spi_nor_write_data() - write data to flash memory
197  * @nor:        pointer to 'struct spi_nor'
198  * @to:         offset to write to
199  * @len:        number of bytes to write
200  * @buf:        pointer to src buffer
201  *
202  * Return: number of bytes written successfully, -errno otherwise
203  */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)204 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
205 			   const u8 *buf)
206 {
207 	if (nor->spimem)
208 		return spi_nor_spimem_write_data(nor, to, len, buf);
209 
210 	return nor->controller_ops->write(nor, to, len, buf);
211 }
212 
213 /**
214  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
215  * @nor:	pointer to 'struct spi_nor'.
216  *
217  * Return: 0 on success, -errno otherwise.
218  */
spi_nor_write_enable(struct spi_nor * nor)219 int spi_nor_write_enable(struct spi_nor *nor)
220 {
221 	int ret;
222 
223 	if (nor->spimem) {
224 		struct spi_mem_op op =
225 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
226 				   SPI_MEM_OP_NO_ADDR,
227 				   SPI_MEM_OP_NO_DUMMY,
228 				   SPI_MEM_OP_NO_DATA);
229 
230 		ret = spi_mem_exec_op(nor->spimem, &op);
231 	} else {
232 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
233 						     NULL, 0);
234 	}
235 
236 	if (ret)
237 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
238 
239 	return ret;
240 }
241 
242 /**
243  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
244  * @nor:	pointer to 'struct spi_nor'.
245  *
246  * Return: 0 on success, -errno otherwise.
247  */
spi_nor_write_disable(struct spi_nor * nor)248 int spi_nor_write_disable(struct spi_nor *nor)
249 {
250 	int ret;
251 
252 	if (nor->spimem) {
253 		struct spi_mem_op op =
254 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
255 				   SPI_MEM_OP_NO_ADDR,
256 				   SPI_MEM_OP_NO_DUMMY,
257 				   SPI_MEM_OP_NO_DATA);
258 
259 		ret = spi_mem_exec_op(nor->spimem, &op);
260 	} else {
261 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
262 						     NULL, 0);
263 	}
264 
265 	if (ret)
266 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
267 
268 	return ret;
269 }
270 
271 /**
272  * spi_nor_read_sr() - Read the Status Register.
273  * @nor:	pointer to 'struct spi_nor'.
274  * @sr:		pointer to a DMA-able buffer where the value of the
275  *              Status Register will be written.
276  *
277  * Return: 0 on success, -errno otherwise.
278  */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)279 static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
280 {
281 	int ret;
282 
283 	if (nor->spimem) {
284 		struct spi_mem_op op =
285 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
286 				   SPI_MEM_OP_NO_ADDR,
287 				   SPI_MEM_OP_NO_DUMMY,
288 				   SPI_MEM_OP_DATA_IN(1, sr, 1));
289 
290 		ret = spi_mem_exec_op(nor->spimem, &op);
291 	} else {
292 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
293 						    sr, 1);
294 	}
295 
296 	if (ret)
297 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
298 
299 	return ret;
300 }
301 
302 /**
303  * spi_nor_read_fsr() - Read the Flag Status Register.
304  * @nor:	pointer to 'struct spi_nor'
305  * @fsr:	pointer to a DMA-able buffer where the value of the
306  *              Flag Status Register will be written.
307  *
308  * Return: 0 on success, -errno otherwise.
309  */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)310 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
311 {
312 	int ret;
313 
314 	if (nor->spimem) {
315 		struct spi_mem_op op =
316 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
317 				   SPI_MEM_OP_NO_ADDR,
318 				   SPI_MEM_OP_NO_DUMMY,
319 				   SPI_MEM_OP_DATA_IN(1, fsr, 1));
320 
321 		ret = spi_mem_exec_op(nor->spimem, &op);
322 	} else {
323 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
324 						    fsr, 1);
325 	}
326 
327 	if (ret)
328 		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
329 
330 	return ret;
331 }
332 
333 /**
334  * spi_nor_read_cr() - Read the Configuration Register using the
335  * SPINOR_OP_RDCR (35h) command.
336  * @nor:	pointer to 'struct spi_nor'
337  * @cr:		pointer to a DMA-able buffer where the value of the
338  *              Configuration Register will be written.
339  *
340  * Return: 0 on success, -errno otherwise.
341  */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)342 static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
343 {
344 	int ret;
345 
346 	if (nor->spimem) {
347 		struct spi_mem_op op =
348 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
349 				   SPI_MEM_OP_NO_ADDR,
350 				   SPI_MEM_OP_NO_DUMMY,
351 				   SPI_MEM_OP_DATA_IN(1, cr, 1));
352 
353 		ret = spi_mem_exec_op(nor->spimem, &op);
354 	} else {
355 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
356 	}
357 
358 	if (ret)
359 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
360 
361 	return ret;
362 }
363 
364 /**
365  * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
366  * @nor:	pointer to 'struct spi_nor'.
367  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
368  *		address mode.
369  *
370  * Return: 0 on success, -errno otherwise.
371  */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)372 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
373 {
374 	int ret;
375 
376 	if (nor->spimem) {
377 		struct spi_mem_op op =
378 			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
379 						  SPINOR_OP_EN4B :
380 						  SPINOR_OP_EX4B,
381 						  1),
382 				  SPI_MEM_OP_NO_ADDR,
383 				  SPI_MEM_OP_NO_DUMMY,
384 				  SPI_MEM_OP_NO_DATA);
385 
386 		ret = spi_mem_exec_op(nor->spimem, &op);
387 	} else {
388 		ret = nor->controller_ops->write_reg(nor,
389 						     enable ? SPINOR_OP_EN4B :
390 							      SPINOR_OP_EX4B,
391 						     NULL, 0);
392 	}
393 
394 	if (ret)
395 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
396 
397 	return ret;
398 }
399 
400 /**
401  * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
402  * flashes.
403  * @nor:	pointer to 'struct spi_nor'.
404  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
405  *		address mode.
406  *
407  * Return: 0 on success, -errno otherwise.
408  */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)409 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
410 {
411 	int ret;
412 
413 	nor->bouncebuf[0] = enable << 7;
414 
415 	if (nor->spimem) {
416 		struct spi_mem_op op =
417 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
418 				   SPI_MEM_OP_NO_ADDR,
419 				   SPI_MEM_OP_NO_DUMMY,
420 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
421 
422 		ret = spi_mem_exec_op(nor->spimem, &op);
423 	} else {
424 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
425 						     nor->bouncebuf, 1);
426 	}
427 
428 	if (ret)
429 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
430 
431 	return ret;
432 }
433 
434 /**
435  * spi_nor_write_ear() - Write Extended Address Register.
436  * @nor:	pointer to 'struct spi_nor'.
437  * @ear:	value to write to the Extended Address Register.
438  *
439  * Return: 0 on success, -errno otherwise.
440  */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)441 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
442 {
443 	int ret;
444 
445 	nor->bouncebuf[0] = ear;
446 
447 	if (nor->spimem) {
448 		struct spi_mem_op op =
449 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
450 				   SPI_MEM_OP_NO_ADDR,
451 				   SPI_MEM_OP_NO_DUMMY,
452 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
453 
454 		ret = spi_mem_exec_op(nor->spimem, &op);
455 	} else {
456 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
457 						     nor->bouncebuf, 1);
458 	}
459 
460 	if (ret)
461 		dev_dbg(nor->dev, "error %d writing EAR\n", ret);
462 
463 	return ret;
464 }
465 
466 /**
467  * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
468  * @nor:	pointer to 'struct spi_nor'.
469  * @sr:		pointer to a DMA-able buffer where the value of the
470  *              Status Register will be written.
471  *
472  * Return: 0 on success, -errno otherwise.
473  */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)474 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
475 {
476 	int ret;
477 
478 	if (nor->spimem) {
479 		struct spi_mem_op op =
480 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
481 				   SPI_MEM_OP_NO_ADDR,
482 				   SPI_MEM_OP_NO_DUMMY,
483 				   SPI_MEM_OP_DATA_IN(1, sr, 1));
484 
485 		ret = spi_mem_exec_op(nor->spimem, &op);
486 	} else {
487 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
488 						    sr, 1);
489 	}
490 
491 	if (ret)
492 		dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
493 
494 	return ret;
495 }
496 
497 /**
498  * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
499  * the flash is ready for new commands.
500  * @nor:	pointer to 'struct spi_nor'.
501  *
502  * Return: 1 if ready, 0 if not ready, -errno on errors.
503  */
spi_nor_xsr_ready(struct spi_nor * nor)504 static int spi_nor_xsr_ready(struct spi_nor *nor)
505 {
506 	int ret;
507 
508 	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
509 	if (ret)
510 		return ret;
511 
512 	return !!(nor->bouncebuf[0] & XSR_RDY);
513 }
514 
515 /**
516  * spi_nor_clear_sr() - Clear the Status Register.
517  * @nor:	pointer to 'struct spi_nor'.
518  */
spi_nor_clear_sr(struct spi_nor * nor)519 static void spi_nor_clear_sr(struct spi_nor *nor)
520 {
521 	int ret;
522 
523 	if (nor->spimem) {
524 		struct spi_mem_op op =
525 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
526 				   SPI_MEM_OP_NO_ADDR,
527 				   SPI_MEM_OP_NO_DUMMY,
528 				   SPI_MEM_OP_NO_DATA);
529 
530 		ret = spi_mem_exec_op(nor->spimem, &op);
531 	} else {
532 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
533 						     NULL, 0);
534 	}
535 
536 	if (ret)
537 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
538 }
539 
540 /**
541  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
542  * for new commands.
543  * @nor:	pointer to 'struct spi_nor'.
544  *
545  * Return: 1 if ready, 0 if not ready, -errno on errors.
546  */
spi_nor_sr_ready(struct spi_nor * nor)547 static int spi_nor_sr_ready(struct spi_nor *nor)
548 {
549 	int ret = spi_nor_read_sr(nor, nor->bouncebuf);
550 
551 	if (ret)
552 		return ret;
553 
554 	if (nor->flags & SNOR_F_USE_CLSR &&
555 	    nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
556 		if (nor->bouncebuf[0] & SR_E_ERR)
557 			dev_err(nor->dev, "Erase Error occurred\n");
558 		else
559 			dev_err(nor->dev, "Programming Error occurred\n");
560 
561 		spi_nor_clear_sr(nor);
562 
563 		/*
564 		 * WEL bit remains set to one when an erase or page program
565 		 * error occurs. Issue a Write Disable command to protect
566 		 * against inadvertent writes that can possibly corrupt the
567 		 * contents of the memory.
568 		 */
569 		ret = spi_nor_write_disable(nor);
570 		if (ret)
571 			return ret;
572 
573 		return -EIO;
574 	}
575 
576 	return !(nor->bouncebuf[0] & SR_WIP);
577 }
578 
579 /**
580  * spi_nor_clear_fsr() - Clear the Flag Status Register.
581  * @nor:	pointer to 'struct spi_nor'.
582  */
spi_nor_clear_fsr(struct spi_nor * nor)583 static void spi_nor_clear_fsr(struct spi_nor *nor)
584 {
585 	int ret;
586 
587 	if (nor->spimem) {
588 		struct spi_mem_op op =
589 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
590 				   SPI_MEM_OP_NO_ADDR,
591 				   SPI_MEM_OP_NO_DUMMY,
592 				   SPI_MEM_OP_NO_DATA);
593 
594 		ret = spi_mem_exec_op(nor->spimem, &op);
595 	} else {
596 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
597 						     NULL, 0);
598 	}
599 
600 	if (ret)
601 		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
602 }
603 
604 /**
605  * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
606  * ready for new commands.
607  * @nor:	pointer to 'struct spi_nor'.
608  *
609  * Return: 1 if ready, 0 if not ready, -errno on errors.
610  */
spi_nor_fsr_ready(struct spi_nor * nor)611 static int spi_nor_fsr_ready(struct spi_nor *nor)
612 {
613 	int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
614 
615 	if (ret)
616 		return ret;
617 
618 	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
619 		if (nor->bouncebuf[0] & FSR_E_ERR)
620 			dev_err(nor->dev, "Erase operation failed.\n");
621 		else
622 			dev_err(nor->dev, "Program operation failed.\n");
623 
624 		if (nor->bouncebuf[0] & FSR_PT_ERR)
625 			dev_err(nor->dev,
626 			"Attempted to modify a protected sector.\n");
627 
628 		spi_nor_clear_fsr(nor);
629 
630 		/*
631 		 * WEL bit remains set to one when an erase or page program
632 		 * error occurs. Issue a Write Disable command to protect
633 		 * against inadvertent writes that can possibly corrupt the
634 		 * contents of the memory.
635 		 */
636 		ret = spi_nor_write_disable(nor);
637 		if (ret)
638 			return ret;
639 
640 		return -EIO;
641 	}
642 
643 	return !!(nor->bouncebuf[0] & FSR_READY);
644 }
645 
646 /**
647  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
648  * @nor:	pointer to 'struct spi_nor'.
649  *
650  * Return: 1 if ready, 0 if not ready, -errno on errors.
651  */
spi_nor_ready(struct spi_nor * nor)652 static int spi_nor_ready(struct spi_nor *nor)
653 {
654 	int sr, fsr;
655 
656 	if (nor->flags & SNOR_F_READY_XSR_RDY)
657 		sr = spi_nor_xsr_ready(nor);
658 	else
659 		sr = spi_nor_sr_ready(nor);
660 	if (sr < 0)
661 		return sr;
662 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
663 	if (fsr < 0)
664 		return fsr;
665 	return sr && fsr;
666 }
667 
668 /**
669  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
670  * Status Register until ready, or timeout occurs.
671  * @nor:		pointer to "struct spi_nor".
672  * @timeout_jiffies:	jiffies to wait until timeout.
673  *
674  * Return: 0 on success, -errno otherwise.
675  */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)676 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
677 						unsigned long timeout_jiffies)
678 {
679 	unsigned long deadline;
680 	int timeout = 0, ret;
681 
682 	deadline = jiffies + timeout_jiffies;
683 
684 	while (!timeout) {
685 		if (time_after_eq(jiffies, deadline))
686 			timeout = 1;
687 
688 		ret = spi_nor_ready(nor);
689 		if (ret < 0)
690 			return ret;
691 		if (ret)
692 			return 0;
693 
694 		cond_resched();
695 	}
696 
697 	dev_dbg(nor->dev, "flash operation timed out\n");
698 
699 	return -ETIMEDOUT;
700 }
701 
702 /**
703  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
704  * flash to be ready, or timeout occurs.
705  * @nor:	pointer to "struct spi_nor".
706  *
707  * Return: 0 on success, -errno otherwise.
708  */
spi_nor_wait_till_ready(struct spi_nor * nor)709 int spi_nor_wait_till_ready(struct spi_nor *nor)
710 {
711 	return spi_nor_wait_till_ready_with_timeout(nor,
712 						    DEFAULT_READY_WAIT_JIFFIES);
713 }
714 
715 /**
716  * spi_nor_write_sr() - Write the Status Register.
717  * @nor:	pointer to 'struct spi_nor'.
718  * @sr:		pointer to DMA-able buffer to write to the Status Register.
719  * @len:	number of bytes to write to the Status Register.
720  *
721  * Return: 0 on success, -errno otherwise.
722  */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)723 static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
724 {
725 	int ret;
726 
727 	ret = spi_nor_write_enable(nor);
728 	if (ret)
729 		return ret;
730 
731 	if (nor->spimem) {
732 		struct spi_mem_op op =
733 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
734 				   SPI_MEM_OP_NO_ADDR,
735 				   SPI_MEM_OP_NO_DUMMY,
736 				   SPI_MEM_OP_DATA_OUT(len, sr, 1));
737 
738 		ret = spi_mem_exec_op(nor->spimem, &op);
739 	} else {
740 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
741 						     sr, len);
742 	}
743 
744 	if (ret) {
745 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
746 		return ret;
747 	}
748 
749 	return spi_nor_wait_till_ready(nor);
750 }
751 
752 /**
753  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
754  * ensure that the byte written match the received value.
755  * @nor:	pointer to a 'struct spi_nor'.
756  * @sr1:	byte value to be written to the Status Register.
757  *
758  * Return: 0 on success, -errno otherwise.
759  */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)760 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
761 {
762 	int ret;
763 
764 	nor->bouncebuf[0] = sr1;
765 
766 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
767 	if (ret)
768 		return ret;
769 
770 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
771 	if (ret)
772 		return ret;
773 
774 	if (nor->bouncebuf[0] != sr1) {
775 		dev_dbg(nor->dev, "SR1: read back test failed\n");
776 		return -EIO;
777 	}
778 
779 	return 0;
780 }
781 
782 /**
783  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
784  * Status Register 2 in one shot. Ensure that the byte written in the Status
785  * Register 1 match the received value, and that the 16-bit Write did not
786  * affect what was already in the Status Register 2.
787  * @nor:	pointer to a 'struct spi_nor'.
788  * @sr1:	byte value to be written to the Status Register 1.
789  *
790  * Return: 0 on success, -errno otherwise.
791  */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)792 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
793 {
794 	int ret;
795 	u8 *sr_cr = nor->bouncebuf;
796 	u8 cr_written;
797 
798 	/* Make sure we don't overwrite the contents of Status Register 2. */
799 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
800 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
801 		if (ret)
802 			return ret;
803 	} else if (nor->params->quad_enable) {
804 		/*
805 		 * If the Status Register 2 Read command (35h) is not
806 		 * supported, we should at least be sure we don't
807 		 * change the value of the SR2 Quad Enable bit.
808 		 *
809 		 * We can safely assume that when the Quad Enable method is
810 		 * set, the value of the QE bit is one, as a consequence of the
811 		 * nor->params->quad_enable() call.
812 		 *
813 		 * We can safely assume that the Quad Enable bit is present in
814 		 * the Status Register 2 at BIT(1). According to the JESD216
815 		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
816 		 * Write Status (01h) command is available just for the cases
817 		 * in which the QE bit is described in SR2 at BIT(1).
818 		 */
819 		sr_cr[1] = SR2_QUAD_EN_BIT1;
820 	} else {
821 		sr_cr[1] = 0;
822 	}
823 
824 	sr_cr[0] = sr1;
825 
826 	ret = spi_nor_write_sr(nor, sr_cr, 2);
827 	if (ret)
828 		return ret;
829 
830 	ret = spi_nor_read_sr(nor, sr_cr);
831 	if (ret)
832 		return ret;
833 
834 	if (sr1 != sr_cr[0]) {
835 		dev_dbg(nor->dev, "SR: Read back test failed\n");
836 		return -EIO;
837 	}
838 
839 	if (nor->flags & SNOR_F_NO_READ_CR)
840 		return 0;
841 
842 	cr_written = sr_cr[1];
843 
844 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
845 	if (ret)
846 		return ret;
847 
848 	if (cr_written != sr_cr[1]) {
849 		dev_dbg(nor->dev, "CR: read back test failed\n");
850 		return -EIO;
851 	}
852 
853 	return 0;
854 }
855 
856 /**
857  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
858  * Configuration Register in one shot. Ensure that the byte written in the
859  * Configuration Register match the received value, and that the 16-bit Write
860  * did not affect what was already in the Status Register 1.
861  * @nor:	pointer to a 'struct spi_nor'.
862  * @cr:		byte value to be written to the Configuration Register.
863  *
864  * Return: 0 on success, -errno otherwise.
865  */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)866 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
867 {
868 	int ret;
869 	u8 *sr_cr = nor->bouncebuf;
870 	u8 sr_written;
871 
872 	/* Keep the current value of the Status Register 1. */
873 	ret = spi_nor_read_sr(nor, sr_cr);
874 	if (ret)
875 		return ret;
876 
877 	sr_cr[1] = cr;
878 
879 	ret = spi_nor_write_sr(nor, sr_cr, 2);
880 	if (ret)
881 		return ret;
882 
883 	sr_written = sr_cr[0];
884 
885 	ret = spi_nor_read_sr(nor, sr_cr);
886 	if (ret)
887 		return ret;
888 
889 	if (sr_written != sr_cr[0]) {
890 		dev_dbg(nor->dev, "SR: Read back test failed\n");
891 		return -EIO;
892 	}
893 
894 	if (nor->flags & SNOR_F_NO_READ_CR)
895 		return 0;
896 
897 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
898 	if (ret)
899 		return ret;
900 
901 	if (cr != sr_cr[1]) {
902 		dev_dbg(nor->dev, "CR: read back test failed\n");
903 		return -EIO;
904 	}
905 
906 	return 0;
907 }
908 
909 /**
910  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
911  * the byte written match the received value without affecting other bits in the
912  * Status Register 1 and 2.
913  * @nor:	pointer to a 'struct spi_nor'.
914  * @sr1:	byte value to be written to the Status Register.
915  *
916  * Return: 0 on success, -errno otherwise.
917  */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)918 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
919 {
920 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
921 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
922 
923 	return spi_nor_write_sr1_and_check(nor, sr1);
924 }
925 
926 /**
927  * spi_nor_write_sr2() - Write the Status Register 2 using the
928  * SPINOR_OP_WRSR2 (3eh) command.
929  * @nor:	pointer to 'struct spi_nor'.
930  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
931  *
932  * Return: 0 on success, -errno otherwise.
933  */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)934 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
935 {
936 	int ret;
937 
938 	ret = spi_nor_write_enable(nor);
939 	if (ret)
940 		return ret;
941 
942 	if (nor->spimem) {
943 		struct spi_mem_op op =
944 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
945 				   SPI_MEM_OP_NO_ADDR,
946 				   SPI_MEM_OP_NO_DUMMY,
947 				   SPI_MEM_OP_DATA_OUT(1, sr2, 1));
948 
949 		ret = spi_mem_exec_op(nor->spimem, &op);
950 	} else {
951 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
952 						     sr2, 1);
953 	}
954 
955 	if (ret) {
956 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
957 		return ret;
958 	}
959 
960 	return spi_nor_wait_till_ready(nor);
961 }
962 
963 /**
964  * spi_nor_read_sr2() - Read the Status Register 2 using the
965  * SPINOR_OP_RDSR2 (3fh) command.
966  * @nor:	pointer to 'struct spi_nor'.
967  * @sr2:	pointer to DMA-able buffer where the value of the
968  *		Status Register 2 will be written.
969  *
970  * Return: 0 on success, -errno otherwise.
971  */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)972 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
973 {
974 	int ret;
975 
976 	if (nor->spimem) {
977 		struct spi_mem_op op =
978 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
979 				   SPI_MEM_OP_NO_ADDR,
980 				   SPI_MEM_OP_NO_DUMMY,
981 				   SPI_MEM_OP_DATA_IN(1, sr2, 1));
982 
983 		ret = spi_mem_exec_op(nor->spimem, &op);
984 	} else {
985 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
986 						    sr2, 1);
987 	}
988 
989 	if (ret)
990 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
991 
992 	return ret;
993 }
994 
995 /**
996  * spi_nor_erase_chip() - Erase the entire flash memory.
997  * @nor:	pointer to 'struct spi_nor'.
998  *
999  * Return: 0 on success, -errno otherwise.
1000  */
spi_nor_erase_chip(struct spi_nor * nor)1001 static int spi_nor_erase_chip(struct spi_nor *nor)
1002 {
1003 	int ret;
1004 
1005 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1006 
1007 	if (nor->spimem) {
1008 		struct spi_mem_op op =
1009 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
1010 				   SPI_MEM_OP_NO_ADDR,
1011 				   SPI_MEM_OP_NO_DUMMY,
1012 				   SPI_MEM_OP_NO_DATA);
1013 
1014 		ret = spi_mem_exec_op(nor->spimem, &op);
1015 	} else {
1016 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
1017 						     NULL, 0);
1018 	}
1019 
1020 	if (ret)
1021 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1022 
1023 	return ret;
1024 }
1025 
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1026 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1027 {
1028 	size_t i;
1029 
1030 	for (i = 0; i < size; i++)
1031 		if (table[i][0] == opcode)
1032 			return table[i][1];
1033 
1034 	/* No conversion found, keep input op code. */
1035 	return opcode;
1036 }
1037 
spi_nor_convert_3to4_read(u8 opcode)1038 u8 spi_nor_convert_3to4_read(u8 opcode)
1039 {
1040 	static const u8 spi_nor_3to4_read[][2] = {
1041 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1042 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1043 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1044 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1045 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1046 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1047 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1048 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1049 
1050 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1051 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1052 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1053 	};
1054 
1055 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1056 				      ARRAY_SIZE(spi_nor_3to4_read));
1057 }
1058 
spi_nor_convert_3to4_program(u8 opcode)1059 static u8 spi_nor_convert_3to4_program(u8 opcode)
1060 {
1061 	static const u8 spi_nor_3to4_program[][2] = {
1062 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1063 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1064 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1065 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1066 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1067 	};
1068 
1069 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1070 				      ARRAY_SIZE(spi_nor_3to4_program));
1071 }
1072 
spi_nor_convert_3to4_erase(u8 opcode)1073 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1074 {
1075 	static const u8 spi_nor_3to4_erase[][2] = {
1076 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1077 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1078 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1079 	};
1080 
1081 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1082 				      ARRAY_SIZE(spi_nor_3to4_erase));
1083 }
1084 
spi_nor_has_uniform_erase(const struct spi_nor * nor)1085 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1086 {
1087 	return !!nor->params->erase_map.uniform_erase_type;
1088 }
1089 
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1090 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1091 {
1092 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1093 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1094 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1095 
1096 	if (!spi_nor_has_uniform_erase(nor)) {
1097 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1098 		struct spi_nor_erase_type *erase;
1099 		int i;
1100 
1101 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1102 			erase = &map->erase_type[i];
1103 			erase->opcode =
1104 				spi_nor_convert_3to4_erase(erase->opcode);
1105 		}
1106 	}
1107 }
1108 
spi_nor_lock_and_prep(struct spi_nor * nor)1109 int spi_nor_lock_and_prep(struct spi_nor *nor)
1110 {
1111 	int ret = 0;
1112 
1113 	mutex_lock(&nor->lock);
1114 
1115 	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1116 		ret = nor->controller_ops->prepare(nor);
1117 		if (ret) {
1118 			mutex_unlock(&nor->lock);
1119 			return ret;
1120 		}
1121 	}
1122 	return ret;
1123 }
1124 
spi_nor_unlock_and_unprep(struct spi_nor * nor)1125 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1126 {
1127 	if (nor->controller_ops && nor->controller_ops->unprepare)
1128 		nor->controller_ops->unprepare(nor);
1129 	mutex_unlock(&nor->lock);
1130 }
1131 
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1132 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1133 {
1134 	if (!nor->params->convert_addr)
1135 		return addr;
1136 
1137 	return nor->params->convert_addr(nor, addr);
1138 }
1139 
1140 /*
1141  * Initiate the erasure of a single sector
1142  */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1143 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1144 {
1145 	int i;
1146 
1147 	addr = spi_nor_convert_addr(nor, addr);
1148 
1149 	if (nor->spimem) {
1150 		struct spi_mem_op op =
1151 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
1152 				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
1153 				   SPI_MEM_OP_NO_DUMMY,
1154 				   SPI_MEM_OP_NO_DATA);
1155 
1156 		return spi_mem_exec_op(nor->spimem, &op);
1157 	} else if (nor->controller_ops->erase) {
1158 		return nor->controller_ops->erase(nor, addr);
1159 	}
1160 
1161 	/*
1162 	 * Default implementation, if driver doesn't have a specialized HW
1163 	 * control
1164 	 */
1165 	for (i = nor->addr_width - 1; i >= 0; i--) {
1166 		nor->bouncebuf[i] = addr & 0xff;
1167 		addr >>= 8;
1168 	}
1169 
1170 	return nor->controller_ops->write_reg(nor, nor->erase_opcode,
1171 					      nor->bouncebuf, nor->addr_width);
1172 }
1173 
1174 /**
1175  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1176  * @erase:	pointer to a structure that describes a SPI NOR erase type
1177  * @dividend:	dividend value
1178  * @remainder:	pointer to u32 remainder (will be updated)
1179  *
1180  * Return: the result of the division
1181  */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1182 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1183 				     u64 dividend, u32 *remainder)
1184 {
1185 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1186 	*remainder = (u32)dividend & erase->size_mask;
1187 	return dividend >> erase->size_shift;
1188 }
1189 
1190 /**
1191  * spi_nor_find_best_erase_type() - find the best erase type for the given
1192  *				    offset in the serial flash memory and the
1193  *				    number of bytes to erase. The region in
1194  *				    which the address fits is expected to be
1195  *				    provided.
1196  * @map:	the erase map of the SPI NOR
1197  * @region:	pointer to a structure that describes a SPI NOR erase region
1198  * @addr:	offset in the serial flash memory
1199  * @len:	number of bytes to erase
1200  *
1201  * Return: a pointer to the best fitted erase type, NULL otherwise.
1202  */
1203 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1204 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1205 			     const struct spi_nor_erase_region *region,
1206 			     u64 addr, u32 len)
1207 {
1208 	const struct spi_nor_erase_type *erase;
1209 	u32 rem;
1210 	int i;
1211 	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1212 
1213 	/*
1214 	 * Erase types are ordered by size, with the smallest erase type at
1215 	 * index 0.
1216 	 */
1217 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1218 		/* Does the erase region support the tested erase type? */
1219 		if (!(erase_mask & BIT(i)))
1220 			continue;
1221 
1222 		erase = &map->erase_type[i];
1223 		if (!erase->size)
1224 			continue;
1225 
1226 		/* Alignment is not mandatory for overlaid regions */
1227 		if (region->offset & SNOR_OVERLAID_REGION &&
1228 		    region->size <= len)
1229 			return erase;
1230 
1231 		/* Don't erase more than what the user has asked for. */
1232 		if (erase->size > len)
1233 			continue;
1234 
1235 		spi_nor_div_by_erase_size(erase, addr, &rem);
1236 		if (rem)
1237 			continue;
1238 		else
1239 			return erase;
1240 	}
1241 
1242 	return NULL;
1243 }
1244 
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1245 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1246 {
1247 	return region->offset & SNOR_LAST_REGION;
1248 }
1249 
spi_nor_region_end(const struct spi_nor_erase_region * region)1250 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1251 {
1252 	return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1253 }
1254 
1255 /**
1256  * spi_nor_region_next() - get the next spi nor region
1257  * @region:	pointer to a structure that describes a SPI NOR erase region
1258  *
1259  * Return: the next spi nor region or NULL if last region.
1260  */
1261 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1262 spi_nor_region_next(struct spi_nor_erase_region *region)
1263 {
1264 	if (spi_nor_region_is_last(region))
1265 		return NULL;
1266 	region++;
1267 	return region;
1268 }
1269 
1270 /**
1271  * spi_nor_find_erase_region() - find the region of the serial flash memory in
1272  *				 which the offset fits
1273  * @map:	the erase map of the SPI NOR
1274  * @addr:	offset in the serial flash memory
1275  *
1276  * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1277  *	   otherwise.
1278  */
1279 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1280 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1281 {
1282 	struct spi_nor_erase_region *region = map->regions;
1283 	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1284 	u64 region_end = region_start + region->size;
1285 
1286 	while (addr < region_start || addr >= region_end) {
1287 		region = spi_nor_region_next(region);
1288 		if (!region)
1289 			return ERR_PTR(-EINVAL);
1290 
1291 		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1292 		region_end = region_start + region->size;
1293 	}
1294 
1295 	return region;
1296 }
1297 
1298 /**
1299  * spi_nor_init_erase_cmd() - initialize an erase command
1300  * @region:	pointer to a structure that describes a SPI NOR erase region
1301  * @erase:	pointer to a structure that describes a SPI NOR erase type
1302  *
1303  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1304  *	   otherwise.
1305  */
1306 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1307 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1308 		       const struct spi_nor_erase_type *erase)
1309 {
1310 	struct spi_nor_erase_command *cmd;
1311 
1312 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1313 	if (!cmd)
1314 		return ERR_PTR(-ENOMEM);
1315 
1316 	INIT_LIST_HEAD(&cmd->list);
1317 	cmd->opcode = erase->opcode;
1318 	cmd->count = 1;
1319 
1320 	if (region->offset & SNOR_OVERLAID_REGION)
1321 		cmd->size = region->size;
1322 	else
1323 		cmd->size = erase->size;
1324 
1325 	return cmd;
1326 }
1327 
1328 /**
1329  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1330  * @erase_list:	list of erase commands
1331  */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1332 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1333 {
1334 	struct spi_nor_erase_command *cmd, *next;
1335 
1336 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1337 		list_del(&cmd->list);
1338 		kfree(cmd);
1339 	}
1340 }
1341 
1342 /**
1343  * spi_nor_init_erase_cmd_list() - initialize erase command list
1344  * @nor:	pointer to a 'struct spi_nor'
1345  * @erase_list:	list of erase commands to be executed once we validate that the
1346  *		erase can be performed
1347  * @addr:	offset in the serial flash memory
1348  * @len:	number of bytes to erase
1349  *
1350  * Builds the list of best fitted erase commands and verifies if the erase can
1351  * be performed.
1352  *
1353  * Return: 0 on success, -errno otherwise.
1354  */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1355 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1356 				       struct list_head *erase_list,
1357 				       u64 addr, u32 len)
1358 {
1359 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1360 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1361 	struct spi_nor_erase_region *region;
1362 	struct spi_nor_erase_command *cmd = NULL;
1363 	u64 region_end;
1364 	int ret = -EINVAL;
1365 
1366 	region = spi_nor_find_erase_region(map, addr);
1367 	if (IS_ERR(region))
1368 		return PTR_ERR(region);
1369 
1370 	region_end = spi_nor_region_end(region);
1371 
1372 	while (len) {
1373 		erase = spi_nor_find_best_erase_type(map, region, addr, len);
1374 		if (!erase)
1375 			goto destroy_erase_cmd_list;
1376 
1377 		if (prev_erase != erase ||
1378 		    erase->size != cmd->size ||
1379 		    region->offset & SNOR_OVERLAID_REGION) {
1380 			cmd = spi_nor_init_erase_cmd(region, erase);
1381 			if (IS_ERR(cmd)) {
1382 				ret = PTR_ERR(cmd);
1383 				goto destroy_erase_cmd_list;
1384 			}
1385 
1386 			list_add_tail(&cmd->list, erase_list);
1387 		} else {
1388 			cmd->count++;
1389 		}
1390 
1391 		addr += cmd->size;
1392 		len -= cmd->size;
1393 
1394 		if (len && addr >= region_end) {
1395 			region = spi_nor_region_next(region);
1396 			if (!region)
1397 				goto destroy_erase_cmd_list;
1398 			region_end = spi_nor_region_end(region);
1399 		}
1400 
1401 		prev_erase = erase;
1402 	}
1403 
1404 	return 0;
1405 
1406 destroy_erase_cmd_list:
1407 	spi_nor_destroy_erase_cmd_list(erase_list);
1408 	return ret;
1409 }
1410 
1411 /**
1412  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1413  * @nor:	pointer to a 'struct spi_nor'
1414  * @addr:	offset in the serial flash memory
1415  * @len:	number of bytes to erase
1416  *
1417  * Build a list of best fitted erase commands and execute it once we validate
1418  * that the erase can be performed.
1419  *
1420  * Return: 0 on success, -errno otherwise.
1421  */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1422 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1423 {
1424 	LIST_HEAD(erase_list);
1425 	struct spi_nor_erase_command *cmd, *next;
1426 	int ret;
1427 
1428 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1429 	if (ret)
1430 		return ret;
1431 
1432 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1433 		nor->erase_opcode = cmd->opcode;
1434 		while (cmd->count) {
1435 			ret = spi_nor_write_enable(nor);
1436 			if (ret)
1437 				goto destroy_erase_cmd_list;
1438 
1439 			ret = spi_nor_erase_sector(nor, addr);
1440 			if (ret)
1441 				goto destroy_erase_cmd_list;
1442 
1443 			addr += cmd->size;
1444 			cmd->count--;
1445 
1446 			ret = spi_nor_wait_till_ready(nor);
1447 			if (ret)
1448 				goto destroy_erase_cmd_list;
1449 		}
1450 		list_del(&cmd->list);
1451 		kfree(cmd);
1452 	}
1453 
1454 	return 0;
1455 
1456 destroy_erase_cmd_list:
1457 	spi_nor_destroy_erase_cmd_list(&erase_list);
1458 	return ret;
1459 }
1460 
1461 /*
1462  * Erase an address range on the nor chip.  The address range may extend
1463  * one or more erase sectors.  Return an error is there is a problem erasing.
1464  */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1465 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1466 {
1467 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1468 	u32 addr, len;
1469 	uint32_t rem;
1470 	int ret;
1471 
1472 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1473 			(long long)instr->len);
1474 
1475 	if (spi_nor_has_uniform_erase(nor)) {
1476 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1477 		if (rem)
1478 			return -EINVAL;
1479 	}
1480 
1481 	addr = instr->addr;
1482 	len = instr->len;
1483 
1484 	ret = spi_nor_lock_and_prep(nor);
1485 	if (ret)
1486 		return ret;
1487 
1488 	/* whole-chip erase? */
1489 	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1490 		unsigned long timeout;
1491 
1492 		ret = spi_nor_write_enable(nor);
1493 		if (ret)
1494 			goto erase_err;
1495 
1496 		ret = spi_nor_erase_chip(nor);
1497 		if (ret)
1498 			goto erase_err;
1499 
1500 		/*
1501 		 * Scale the timeout linearly with the size of the flash, with
1502 		 * a minimum calibrated to an old 2MB flash. We could try to
1503 		 * pull these from CFI/SFDP, but these values should be good
1504 		 * enough for now.
1505 		 */
1506 		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1507 			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1508 			      (unsigned long)(mtd->size / SZ_2M));
1509 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1510 		if (ret)
1511 			goto erase_err;
1512 
1513 	/* REVISIT in some cases we could speed up erasing large regions
1514 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1515 	 * to use "small sector erase", but that's not always optimal.
1516 	 */
1517 
1518 	/* "sector"-at-a-time erase */
1519 	} else if (spi_nor_has_uniform_erase(nor)) {
1520 		while (len) {
1521 			ret = spi_nor_write_enable(nor);
1522 			if (ret)
1523 				goto erase_err;
1524 
1525 			ret = spi_nor_erase_sector(nor, addr);
1526 			if (ret)
1527 				goto erase_err;
1528 
1529 			addr += mtd->erasesize;
1530 			len -= mtd->erasesize;
1531 
1532 			ret = spi_nor_wait_till_ready(nor);
1533 			if (ret)
1534 				goto erase_err;
1535 		}
1536 
1537 	/* erase multiple sectors */
1538 	} else {
1539 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1540 		if (ret)
1541 			goto erase_err;
1542 	}
1543 
1544 	ret = spi_nor_write_disable(nor);
1545 
1546 erase_err:
1547 	spi_nor_unlock_and_unprep(nor);
1548 
1549 	return ret;
1550 }
1551 
spi_nor_get_sr_bp_mask(struct spi_nor * nor)1552 static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
1553 {
1554 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1555 
1556 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
1557 		return mask | SR_BP3_BIT6;
1558 
1559 	if (nor->flags & SNOR_F_HAS_4BIT_BP)
1560 		return mask | SR_BP3;
1561 
1562 	return mask;
1563 }
1564 
spi_nor_get_sr_tb_mask(struct spi_nor * nor)1565 static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
1566 {
1567 	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1568 		return SR_TB_BIT6;
1569 	else
1570 		return SR_TB_BIT5;
1571 }
1572 
spi_nor_get_min_prot_length_sr(struct spi_nor * nor)1573 static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
1574 {
1575 	unsigned int bp_slots, bp_slots_needed;
1576 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1577 
1578 	/* Reserved one for "protect none" and one for "protect all". */
1579 	bp_slots = (1 << hweight8(mask)) - 2;
1580 	bp_slots_needed = ilog2(nor->info->n_sectors);
1581 
1582 	if (bp_slots_needed > bp_slots)
1583 		return nor->info->sector_size <<
1584 			(bp_slots_needed - bp_slots);
1585 	else
1586 		return nor->info->sector_size;
1587 }
1588 
spi_nor_get_locked_range_sr(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)1589 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1590 					uint64_t *len)
1591 {
1592 	struct mtd_info *mtd = &nor->mtd;
1593 	u64 min_prot_len;
1594 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1595 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1596 	u8 bp, val = sr & mask;
1597 
1598 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
1599 		val = (val & ~SR_BP3_BIT6) | SR_BP3;
1600 
1601 	bp = val >> SR_BP_SHIFT;
1602 
1603 	if (!bp) {
1604 		/* No protection */
1605 		*ofs = 0;
1606 		*len = 0;
1607 		return;
1608 	}
1609 
1610 	min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1611 	*len = min_prot_len << (bp - 1);
1612 
1613 	if (*len > mtd->size)
1614 		*len = mtd->size;
1615 
1616 	if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1617 		*ofs = 0;
1618 	else
1619 		*ofs = mtd->size - *len;
1620 }
1621 
1622 /*
1623  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1624  * @locked is false); 0 otherwise
1625  */
spi_nor_check_lock_status_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr,bool locked)1626 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1627 					uint64_t len, u8 sr, bool locked)
1628 {
1629 	loff_t lock_offs;
1630 	uint64_t lock_len;
1631 
1632 	if (!len)
1633 		return 1;
1634 
1635 	spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1636 
1637 	if (locked)
1638 		/* Requested range is a sub-range of locked range */
1639 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1640 	else
1641 		/* Requested range does not overlap with locked range */
1642 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1643 }
1644 
spi_nor_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1645 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1646 				u8 sr)
1647 {
1648 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1649 }
1650 
spi_nor_is_unlocked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1651 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1652 				  u8 sr)
1653 {
1654 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1655 }
1656 
1657 /*
1658  * Lock a region of the flash. Compatible with ST Micro and similar flash.
1659  * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
1660  * register
1661  * (SR). Does not support these features found in newer SR bitfields:
1662  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
1663  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
1664  *
1665  * Support for the following is provided conditionally for some flash:
1666  *   - TB: top/bottom protect
1667  *
1668  * Sample table portion for 8MB flash (Winbond w25q64fw):
1669  *
1670  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
1671  *  --------------------------------------------------------------------------
1672  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
1673  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
1674  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
1675  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
1676  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
1677  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
1678  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
1679  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1680  *  ------|-------|-------|-------|-------|---------------|-------------------
1681  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
1682  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
1683  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
1684  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
1685  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
1686  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1687  *
1688  * Returns negative on errors, 0 on success.
1689  */
spi_nor_sr_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)1690 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1691 {
1692 	struct mtd_info *mtd = &nor->mtd;
1693 	u64 min_prot_len;
1694 	int ret, status_old, status_new;
1695 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1696 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1697 	u8 pow, val;
1698 	loff_t lock_len;
1699 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1700 	bool use_top;
1701 
1702 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1703 	if (ret)
1704 		return ret;
1705 
1706 	status_old = nor->bouncebuf[0];
1707 
1708 	/* If nothing in our range is unlocked, we don't need to do anything */
1709 	if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1710 		return 0;
1711 
1712 	/* If anything below us is unlocked, we can't use 'bottom' protection */
1713 	if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1714 		can_be_bottom = false;
1715 
1716 	/* If anything above us is unlocked, we can't use 'top' protection */
1717 	if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1718 				  status_old))
1719 		can_be_top = false;
1720 
1721 	if (!can_be_bottom && !can_be_top)
1722 		return -EINVAL;
1723 
1724 	/* Prefer top, if both are valid */
1725 	use_top = can_be_top;
1726 
1727 	/* lock_len: length of region that should end up locked */
1728 	if (use_top)
1729 		lock_len = mtd->size - ofs;
1730 	else
1731 		lock_len = ofs + len;
1732 
1733 	if (lock_len == mtd->size) {
1734 		val = mask;
1735 	} else {
1736 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1737 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1738 		val = pow << SR_BP_SHIFT;
1739 
1740 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1741 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
1742 
1743 		if (val & ~mask)
1744 			return -EINVAL;
1745 
1746 		/* Don't "lock" with no region! */
1747 		if (!(val & mask))
1748 			return -EINVAL;
1749 	}
1750 
1751 	status_new = (status_old & ~mask & ~tb_mask) | val;
1752 
1753 	/* Disallow further writes if WP pin is asserted */
1754 	status_new |= SR_SRWD;
1755 
1756 	if (!use_top)
1757 		status_new |= tb_mask;
1758 
1759 	/* Don't bother if they're the same */
1760 	if (status_new == status_old)
1761 		return 0;
1762 
1763 	/* Only modify protection if it will not unlock other areas */
1764 	if ((status_new & mask) < (status_old & mask))
1765 		return -EINVAL;
1766 
1767 	return spi_nor_write_sr_and_check(nor, status_new);
1768 }
1769 
1770 /*
1771  * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1772  *
1773  * Returns negative on errors, 0 on success.
1774  */
spi_nor_sr_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)1775 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1776 {
1777 	struct mtd_info *mtd = &nor->mtd;
1778 	u64 min_prot_len;
1779 	int ret, status_old, status_new;
1780 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1781 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1782 	u8 pow, val;
1783 	loff_t lock_len;
1784 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1785 	bool use_top;
1786 
1787 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1788 	if (ret)
1789 		return ret;
1790 
1791 	status_old = nor->bouncebuf[0];
1792 
1793 	/* If nothing in our range is locked, we don't need to do anything */
1794 	if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1795 		return 0;
1796 
1797 	/* If anything below us is locked, we can't use 'top' protection */
1798 	if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1799 		can_be_top = false;
1800 
1801 	/* If anything above us is locked, we can't use 'bottom' protection */
1802 	if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1803 				    status_old))
1804 		can_be_bottom = false;
1805 
1806 	if (!can_be_bottom && !can_be_top)
1807 		return -EINVAL;
1808 
1809 	/* Prefer top, if both are valid */
1810 	use_top = can_be_top;
1811 
1812 	/* lock_len: length of region that should remain locked */
1813 	if (use_top)
1814 		lock_len = mtd->size - (ofs + len);
1815 	else
1816 		lock_len = ofs;
1817 
1818 	if (lock_len == 0) {
1819 		val = 0; /* fully unlocked */
1820 	} else {
1821 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1822 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1823 		val = pow << SR_BP_SHIFT;
1824 
1825 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1826 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
1827 
1828 		/* Some power-of-two sizes are not supported */
1829 		if (val & ~mask)
1830 			return -EINVAL;
1831 	}
1832 
1833 	status_new = (status_old & ~mask & ~tb_mask) | val;
1834 
1835 	/* Don't protect status register if we're fully unlocked */
1836 	if (lock_len == 0)
1837 		status_new &= ~SR_SRWD;
1838 
1839 	if (!use_top)
1840 		status_new |= tb_mask;
1841 
1842 	/* Don't bother if they're the same */
1843 	if (status_new == status_old)
1844 		return 0;
1845 
1846 	/* Only modify protection if it will not lock other areas */
1847 	if ((status_new & mask) > (status_old & mask))
1848 		return -EINVAL;
1849 
1850 	return spi_nor_write_sr_and_check(nor, status_new);
1851 }
1852 
1853 /*
1854  * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
1855  * for more info.
1856  *
1857  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1858  * negative on errors.
1859  */
spi_nor_sr_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)1860 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1861 {
1862 	int ret;
1863 
1864 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1865 	if (ret)
1866 		return ret;
1867 
1868 	return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1869 }
1870 
1871 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
1872 	.lock = spi_nor_sr_lock,
1873 	.unlock = spi_nor_sr_unlock,
1874 	.is_locked = spi_nor_sr_is_locked,
1875 };
1876 
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1877 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1878 {
1879 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1880 	int ret;
1881 
1882 	ret = spi_nor_lock_and_prep(nor);
1883 	if (ret)
1884 		return ret;
1885 
1886 	ret = nor->params->locking_ops->lock(nor, ofs, len);
1887 
1888 	spi_nor_unlock_and_unprep(nor);
1889 	return ret;
1890 }
1891 
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1892 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1893 {
1894 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1895 	int ret;
1896 
1897 	ret = spi_nor_lock_and_prep(nor);
1898 	if (ret)
1899 		return ret;
1900 
1901 	ret = nor->params->locking_ops->unlock(nor, ofs, len);
1902 
1903 	spi_nor_unlock_and_unprep(nor);
1904 	return ret;
1905 }
1906 
spi_nor_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1907 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1908 {
1909 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1910 	int ret;
1911 
1912 	ret = spi_nor_lock_and_prep(nor);
1913 	if (ret)
1914 		return ret;
1915 
1916 	ret = nor->params->locking_ops->is_locked(nor, ofs, len);
1917 
1918 	spi_nor_unlock_and_unprep(nor);
1919 	return ret;
1920 }
1921 
1922 /**
1923  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1924  * Register 1.
1925  * @nor:	pointer to a 'struct spi_nor'
1926  *
1927  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1928  *
1929  * Return: 0 on success, -errno otherwise.
1930  */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1931 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1932 {
1933 	int ret;
1934 
1935 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1936 	if (ret)
1937 		return ret;
1938 
1939 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1940 		return 0;
1941 
1942 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1943 
1944 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1945 }
1946 
1947 /**
1948  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1949  * Register 2.
1950  * @nor:       pointer to a 'struct spi_nor'.
1951  *
1952  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1953  *
1954  * Return: 0 on success, -errno otherwise.
1955  */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1956 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1957 {
1958 	int ret;
1959 
1960 	if (nor->flags & SNOR_F_NO_READ_CR)
1961 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1962 
1963 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1964 	if (ret)
1965 		return ret;
1966 
1967 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1968 		return 0;
1969 
1970 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1971 
1972 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1973 }
1974 
1975 /**
1976  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1977  * @nor:	pointer to a 'struct spi_nor'
1978  *
1979  * Set the Quad Enable (QE) bit in the Status Register 2.
1980  *
1981  * This is one of the procedures to set the QE bit described in the SFDP
1982  * (JESD216 rev B) specification but no manufacturer using this procedure has
1983  * been identified yet, hence the name of the function.
1984  *
1985  * Return: 0 on success, -errno otherwise.
1986  */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1987 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1988 {
1989 	u8 *sr2 = nor->bouncebuf;
1990 	int ret;
1991 	u8 sr2_written;
1992 
1993 	/* Check current Quad Enable bit value. */
1994 	ret = spi_nor_read_sr2(nor, sr2);
1995 	if (ret)
1996 		return ret;
1997 	if (*sr2 & SR2_QUAD_EN_BIT7)
1998 		return 0;
1999 
2000 	/* Update the Quad Enable bit. */
2001 	*sr2 |= SR2_QUAD_EN_BIT7;
2002 
2003 	ret = spi_nor_write_sr2(nor, sr2);
2004 	if (ret)
2005 		return ret;
2006 
2007 	sr2_written = *sr2;
2008 
2009 	/* Read back and check it. */
2010 	ret = spi_nor_read_sr2(nor, sr2);
2011 	if (ret)
2012 		return ret;
2013 
2014 	if (*sr2 != sr2_written) {
2015 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
2016 		return -EIO;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 static const struct spi_nor_manufacturer *manufacturers[] = {
2023 	&spi_nor_atmel,
2024 	&spi_nor_catalyst,
2025 	&spi_nor_eon,
2026 	&spi_nor_esmt,
2027 	&spi_nor_everspin,
2028 	&spi_nor_fujitsu,
2029 	&spi_nor_gigadevice,
2030 	&spi_nor_intel,
2031 	&spi_nor_issi,
2032 	&spi_nor_macronix,
2033 	&spi_nor_micron,
2034 	&spi_nor_st,
2035 	&spi_nor_spansion,
2036 	&spi_nor_sst,
2037 	&spi_nor_winbond,
2038 	&spi_nor_xilinx,
2039 	&spi_nor_xmc,
2040 };
2041 
2042 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)2043 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2044 			  const u8 *id)
2045 {
2046 	unsigned int i;
2047 
2048 	for (i = 0; i < nparts; i++) {
2049 		if (parts[i].id_len &&
2050 		    !memcmp(parts[i].id, id, parts[i].id_len))
2051 			return &parts[i];
2052 	}
2053 
2054 	return NULL;
2055 }
2056 
spi_nor_read_id(struct spi_nor * nor)2057 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2058 {
2059 	const struct flash_info *info;
2060 	u8 *id = nor->bouncebuf;
2061 	unsigned int i;
2062 	int ret;
2063 
2064 	if (nor->spimem) {
2065 		struct spi_mem_op op =
2066 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2067 				   SPI_MEM_OP_NO_ADDR,
2068 				   SPI_MEM_OP_NO_DUMMY,
2069 				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2070 
2071 		ret = spi_mem_exec_op(nor->spimem, &op);
2072 	} else {
2073 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2074 						    SPI_NOR_MAX_ID_LEN);
2075 	}
2076 	if (ret) {
2077 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2078 		return ERR_PTR(ret);
2079 	}
2080 
2081 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2082 		info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2083 						 manufacturers[i]->nparts,
2084 						 id);
2085 		if (info) {
2086 			nor->manufacturer = manufacturers[i];
2087 			return info;
2088 		}
2089 	}
2090 
2091 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2092 		SPI_NOR_MAX_ID_LEN, id);
2093 	return ERR_PTR(-ENODEV);
2094 }
2095 
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2096 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2097 			size_t *retlen, u_char *buf)
2098 {
2099 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2100 	ssize_t ret;
2101 
2102 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2103 
2104 	ret = spi_nor_lock_and_prep(nor);
2105 	if (ret)
2106 		return ret;
2107 
2108 	while (len) {
2109 		loff_t addr = from;
2110 
2111 		addr = spi_nor_convert_addr(nor, addr);
2112 
2113 		ret = spi_nor_read_data(nor, addr, len, buf);
2114 		if (ret == 0) {
2115 			/* We shouldn't see 0-length reads */
2116 			ret = -EIO;
2117 			goto read_err;
2118 		}
2119 		if (ret < 0)
2120 			goto read_err;
2121 
2122 		WARN_ON(ret > len);
2123 		*retlen += ret;
2124 		buf += ret;
2125 		from += ret;
2126 		len -= ret;
2127 	}
2128 	ret = 0;
2129 
2130 read_err:
2131 	spi_nor_unlock_and_unprep(nor);
2132 	return ret;
2133 }
2134 
2135 /*
2136  * Write an address range to the nor chip.  Data must be written in
2137  * FLASH_PAGESIZE chunks.  The address range may be any size provided
2138  * it is within the physical boundaries.
2139  */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2140 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2141 	size_t *retlen, const u_char *buf)
2142 {
2143 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2144 	size_t page_offset, page_remain, i;
2145 	ssize_t ret;
2146 
2147 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2148 
2149 	ret = spi_nor_lock_and_prep(nor);
2150 	if (ret)
2151 		return ret;
2152 
2153 	for (i = 0; i < len; ) {
2154 		ssize_t written;
2155 		loff_t addr = to + i;
2156 
2157 		/*
2158 		 * If page_size is a power of two, the offset can be quickly
2159 		 * calculated with an AND operation. On the other cases we
2160 		 * need to do a modulus operation (more expensive).
2161 		 * Power of two numbers have only one bit set and we can use
2162 		 * the instruction hweight32 to detect if we need to do a
2163 		 * modulus (do_div()) or not.
2164 		 */
2165 		if (hweight32(nor->page_size) == 1) {
2166 			page_offset = addr & (nor->page_size - 1);
2167 		} else {
2168 			uint64_t aux = addr;
2169 
2170 			page_offset = do_div(aux, nor->page_size);
2171 		}
2172 		/* the size of data remaining on the first page */
2173 		page_remain = min_t(size_t,
2174 				    nor->page_size - page_offset, len - i);
2175 
2176 		addr = spi_nor_convert_addr(nor, addr);
2177 
2178 		ret = spi_nor_write_enable(nor);
2179 		if (ret)
2180 			goto write_err;
2181 
2182 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2183 		if (ret < 0)
2184 			goto write_err;
2185 		written = ret;
2186 
2187 		ret = spi_nor_wait_till_ready(nor);
2188 		if (ret)
2189 			goto write_err;
2190 		*retlen += written;
2191 		i += written;
2192 	}
2193 
2194 write_err:
2195 	spi_nor_unlock_and_unprep(nor);
2196 	return ret;
2197 }
2198 
spi_nor_check(struct spi_nor * nor)2199 static int spi_nor_check(struct spi_nor *nor)
2200 {
2201 	if (!nor->dev ||
2202 	    (!nor->spimem && !nor->controller_ops) ||
2203 	    (!nor->spimem && nor->controller_ops &&
2204 	    (!nor->controller_ops->read ||
2205 	     !nor->controller_ops->write ||
2206 	     !nor->controller_ops->read_reg ||
2207 	     !nor->controller_ops->write_reg))) {
2208 		pr_err("spi-nor: please fill all the necessary fields!\n");
2209 		return -EINVAL;
2210 	}
2211 
2212 	if (nor->spimem && nor->controller_ops) {
2213 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2214 		return -EINVAL;
2215 	}
2216 
2217 	return 0;
2218 }
2219 
2220 static void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2221 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2222 			  u8 num_mode_clocks,
2223 			  u8 num_wait_states,
2224 			  u8 opcode,
2225 			  enum spi_nor_protocol proto)
2226 {
2227 	read->num_mode_clocks = num_mode_clocks;
2228 	read->num_wait_states = num_wait_states;
2229 	read->opcode = opcode;
2230 	read->proto = proto;
2231 }
2232 
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2233 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2234 			     enum spi_nor_protocol proto)
2235 {
2236 	pp->opcode = opcode;
2237 	pp->proto = proto;
2238 }
2239 
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2240 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2241 {
2242 	size_t i;
2243 
2244 	for (i = 0; i < size; i++)
2245 		if (table[i][0] == (int)hwcaps)
2246 			return table[i][1];
2247 
2248 	return -EINVAL;
2249 }
2250 
spi_nor_hwcaps_read2cmd(u32 hwcaps)2251 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2252 {
2253 	static const int hwcaps_read2cmd[][2] = {
2254 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2255 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2256 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2257 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2258 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2259 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2260 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2261 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2262 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2263 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2264 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2265 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2266 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2267 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2268 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2269 	};
2270 
2271 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2272 				  ARRAY_SIZE(hwcaps_read2cmd));
2273 }
2274 
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2275 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2276 {
2277 	static const int hwcaps_pp2cmd[][2] = {
2278 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2279 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2280 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2281 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2282 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2283 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2284 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2285 	};
2286 
2287 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2288 				  ARRAY_SIZE(hwcaps_pp2cmd));
2289 }
2290 
2291 /**
2292  * spi_nor_spimem_check_op - check if the operation is supported
2293  *                           by controller
2294  *@nor:        pointer to a 'struct spi_nor'
2295  *@op:         pointer to op template to be checked
2296  *
2297  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2298  */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2299 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2300 				   struct spi_mem_op *op)
2301 {
2302 	/*
2303 	 * First test with 4 address bytes. The opcode itself might
2304 	 * be a 3B addressing opcode but we don't care, because
2305 	 * SPI controller implementation should not check the opcode,
2306 	 * but just the sequence.
2307 	 */
2308 	op->addr.nbytes = 4;
2309 	if (!spi_mem_supports_op(nor->spimem, op)) {
2310 		if (nor->mtd.size > SZ_16M)
2311 			return -ENOTSUPP;
2312 
2313 		/* If flash size <= 16MB, 3 address bytes are sufficient */
2314 		op->addr.nbytes = 3;
2315 		if (!spi_mem_supports_op(nor->spimem, op))
2316 			return -ENOTSUPP;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 /**
2323  * spi_nor_spimem_check_readop - check if the read op is supported
2324  *                               by controller
2325  *@nor:         pointer to a 'struct spi_nor'
2326  *@read:        pointer to op template to be checked
2327  *
2328  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2329  */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2330 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2331 				       const struct spi_nor_read_command *read)
2332 {
2333 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2334 					  SPI_MEM_OP_ADDR(3, 0, 1),
2335 					  SPI_MEM_OP_DUMMY(0, 1),
2336 					  SPI_MEM_OP_DATA_IN(0, NULL, 1));
2337 
2338 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2339 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2340 	op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2341 	op.dummy.buswidth = op.addr.buswidth;
2342 	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2343 			  op.dummy.buswidth / 8;
2344 
2345 	return spi_nor_spimem_check_op(nor, &op);
2346 }
2347 
2348 /**
2349  * spi_nor_spimem_check_pp - check if the page program op is supported
2350  *                           by controller
2351  *@nor:         pointer to a 'struct spi_nor'
2352  *@pp:          pointer to op template to be checked
2353  *
2354  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2355  */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2356 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2357 				   const struct spi_nor_pp_command *pp)
2358 {
2359 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2360 					  SPI_MEM_OP_ADDR(3, 0, 1),
2361 					  SPI_MEM_OP_NO_DUMMY,
2362 					  SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2363 
2364 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2365 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2366 	op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2367 
2368 	return spi_nor_spimem_check_op(nor, &op);
2369 }
2370 
2371 /**
2372  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2373  *                                based on SPI controller capabilities
2374  * @nor:        pointer to a 'struct spi_nor'
2375  * @hwcaps:     pointer to resulting capabilities after adjusting
2376  *              according to controller and flash's capability
2377  */
2378 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2379 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2380 {
2381 	struct spi_nor_flash_parameter *params = nor->params;
2382 	unsigned int cap;
2383 
2384 	/* DTR modes are not supported yet, mask them all. */
2385 	*hwcaps &= ~SNOR_HWCAPS_DTR;
2386 
2387 	/* X-X-X modes are not supported yet, mask them all. */
2388 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2389 
2390 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2391 		int rdidx, ppidx;
2392 
2393 		if (!(*hwcaps & BIT(cap)))
2394 			continue;
2395 
2396 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2397 		if (rdidx >= 0 &&
2398 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2399 			*hwcaps &= ~BIT(cap);
2400 
2401 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2402 		if (ppidx < 0)
2403 			continue;
2404 
2405 		if (spi_nor_spimem_check_pp(nor,
2406 					    &params->page_programs[ppidx]))
2407 			*hwcaps &= ~BIT(cap);
2408 	}
2409 }
2410 
2411 /**
2412  * spi_nor_set_erase_type() - set a SPI NOR erase type
2413  * @erase:	pointer to a structure that describes a SPI NOR erase type
2414  * @size:	the size of the sector/block erased by the erase type
2415  * @opcode:	the SPI command op code to erase the sector/block
2416  */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2417 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2418 			    u8 opcode)
2419 {
2420 	erase->size = size;
2421 	erase->opcode = opcode;
2422 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2423 	erase->size_shift = ffs(erase->size) - 1;
2424 	erase->size_mask = (1 << erase->size_shift) - 1;
2425 }
2426 
2427 /**
2428  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2429  * @map:		the erase map of the SPI NOR
2430  * @erase_mask:		bitmask encoding erase types that can erase the entire
2431  *			flash memory
2432  * @flash_size:		the spi nor flash memory size
2433  */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2434 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2435 				    u8 erase_mask, u64 flash_size)
2436 {
2437 	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2438 	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2439 				     SNOR_LAST_REGION;
2440 	map->uniform_region.size = flash_size;
2441 	map->regions = &map->uniform_region;
2442 	map->uniform_erase_type = erase_mask;
2443 }
2444 
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt,struct spi_nor_flash_parameter * params)2445 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2446 			     const struct sfdp_parameter_header *bfpt_header,
2447 			     const struct sfdp_bfpt *bfpt,
2448 			     struct spi_nor_flash_parameter *params)
2449 {
2450 	int ret;
2451 
2452 	if (nor->manufacturer && nor->manufacturer->fixups &&
2453 	    nor->manufacturer->fixups->post_bfpt) {
2454 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2455 							   bfpt, params);
2456 		if (ret)
2457 			return ret;
2458 	}
2459 
2460 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2461 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2462 						    params);
2463 
2464 	return 0;
2465 }
2466 
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2467 static int spi_nor_select_read(struct spi_nor *nor,
2468 			       u32 shared_hwcaps)
2469 {
2470 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2471 	const struct spi_nor_read_command *read;
2472 
2473 	if (best_match < 0)
2474 		return -EINVAL;
2475 
2476 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2477 	if (cmd < 0)
2478 		return -EINVAL;
2479 
2480 	read = &nor->params->reads[cmd];
2481 	nor->read_opcode = read->opcode;
2482 	nor->read_proto = read->proto;
2483 
2484 	/*
2485 	 * In the SPI NOR framework, we don't need to make the difference
2486 	 * between mode clock cycles and wait state clock cycles.
2487 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2488 	 * flash memory to know whether it should enter or leave its 0-4-4
2489 	 * (Continuous Read / XIP) mode.
2490 	 * eXecution In Place is out of the scope of the mtd sub-system.
2491 	 * Hence we choose to merge both mode and wait state clock cycles
2492 	 * into the so called dummy clock cycles.
2493 	 */
2494 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2495 	return 0;
2496 }
2497 
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2498 static int spi_nor_select_pp(struct spi_nor *nor,
2499 			     u32 shared_hwcaps)
2500 {
2501 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2502 	const struct spi_nor_pp_command *pp;
2503 
2504 	if (best_match < 0)
2505 		return -EINVAL;
2506 
2507 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2508 	if (cmd < 0)
2509 		return -EINVAL;
2510 
2511 	pp = &nor->params->page_programs[cmd];
2512 	nor->program_opcode = pp->opcode;
2513 	nor->write_proto = pp->proto;
2514 	return 0;
2515 }
2516 
2517 /**
2518  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2519  * @map:		the erase map of the SPI NOR
2520  * @wanted_size:	the erase type size to search for. Contains the value of
2521  *			info->sector_size or of the "small sector" size in case
2522  *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2523  *
2524  * Once the optimum uniform sector erase command is found, disable all the
2525  * other.
2526  *
2527  * Return: pointer to erase type on success, NULL otherwise.
2528  */
2529 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2530 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2531 			     const u32 wanted_size)
2532 {
2533 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2534 	int i;
2535 	u8 uniform_erase_type = map->uniform_erase_type;
2536 
2537 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2538 		if (!(uniform_erase_type & BIT(i)))
2539 			continue;
2540 
2541 		tested_erase = &map->erase_type[i];
2542 
2543 		/*
2544 		 * If the current erase size is the one, stop here:
2545 		 * we have found the right uniform Sector Erase command.
2546 		 */
2547 		if (tested_erase->size == wanted_size) {
2548 			erase = tested_erase;
2549 			break;
2550 		}
2551 
2552 		/*
2553 		 * Otherwise, the current erase size is still a valid canditate.
2554 		 * Select the biggest valid candidate.
2555 		 */
2556 		if (!erase && tested_erase->size)
2557 			erase = tested_erase;
2558 			/* keep iterating to find the wanted_size */
2559 	}
2560 
2561 	if (!erase)
2562 		return NULL;
2563 
2564 	/* Disable all other Sector Erase commands. */
2565 	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2566 	map->uniform_erase_type |= BIT(erase - map->erase_type);
2567 	return erase;
2568 }
2569 
spi_nor_select_erase(struct spi_nor * nor)2570 static int spi_nor_select_erase(struct spi_nor *nor)
2571 {
2572 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2573 	const struct spi_nor_erase_type *erase = NULL;
2574 	struct mtd_info *mtd = &nor->mtd;
2575 	u32 wanted_size = nor->info->sector_size;
2576 	int i;
2577 
2578 	/*
2579 	 * The previous implementation handling Sector Erase commands assumed
2580 	 * that the SPI flash memory has an uniform layout then used only one
2581 	 * of the supported erase sizes for all Sector Erase commands.
2582 	 * So to be backward compatible, the new implementation also tries to
2583 	 * manage the SPI flash memory as uniform with a single erase sector
2584 	 * size, when possible.
2585 	 */
2586 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2587 	/* prefer "small sector" erase if possible */
2588 	wanted_size = 4096u;
2589 #endif
2590 
2591 	if (spi_nor_has_uniform_erase(nor)) {
2592 		erase = spi_nor_select_uniform_erase(map, wanted_size);
2593 		if (!erase)
2594 			return -EINVAL;
2595 		nor->erase_opcode = erase->opcode;
2596 		mtd->erasesize = erase->size;
2597 		return 0;
2598 	}
2599 
2600 	/*
2601 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2602 	 * maximum erase sector size. No need to set nor->erase_opcode.
2603 	 */
2604 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2605 		if (map->erase_type[i].size) {
2606 			erase = &map->erase_type[i];
2607 			break;
2608 		}
2609 	}
2610 
2611 	if (!erase)
2612 		return -EINVAL;
2613 
2614 	mtd->erasesize = erase->size;
2615 	return 0;
2616 }
2617 
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2618 static int spi_nor_default_setup(struct spi_nor *nor,
2619 				 const struct spi_nor_hwcaps *hwcaps)
2620 {
2621 	struct spi_nor_flash_parameter *params = nor->params;
2622 	u32 ignored_mask, shared_mask;
2623 	int err;
2624 
2625 	/*
2626 	 * Keep only the hardware capabilities supported by both the SPI
2627 	 * controller and the SPI flash memory.
2628 	 */
2629 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2630 
2631 	if (nor->spimem) {
2632 		/*
2633 		 * When called from spi_nor_probe(), all caps are set and we
2634 		 * need to discard some of them based on what the SPI
2635 		 * controller actually supports (using spi_mem_supports_op()).
2636 		 */
2637 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2638 	} else {
2639 		/*
2640 		 * SPI n-n-n protocols are not supported when the SPI
2641 		 * controller directly implements the spi_nor interface.
2642 		 * Yet another reason to switch to spi-mem.
2643 		 */
2644 		ignored_mask = SNOR_HWCAPS_X_X_X;
2645 		if (shared_mask & ignored_mask) {
2646 			dev_dbg(nor->dev,
2647 				"SPI n-n-n protocols are not supported.\n");
2648 			shared_mask &= ~ignored_mask;
2649 		}
2650 	}
2651 
2652 	/* Select the (Fast) Read command. */
2653 	err = spi_nor_select_read(nor, shared_mask);
2654 	if (err) {
2655 		dev_dbg(nor->dev,
2656 			"can't select read settings supported by both the SPI controller and memory.\n");
2657 		return err;
2658 	}
2659 
2660 	/* Select the Page Program command. */
2661 	err = spi_nor_select_pp(nor, shared_mask);
2662 	if (err) {
2663 		dev_dbg(nor->dev,
2664 			"can't select write settings supported by both the SPI controller and memory.\n");
2665 		return err;
2666 	}
2667 
2668 	/* Select the Sector Erase command. */
2669 	err = spi_nor_select_erase(nor);
2670 	if (err) {
2671 		dev_dbg(nor->dev,
2672 			"can't select erase settings supported by both the SPI controller and memory.\n");
2673 		return err;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2679 static int spi_nor_setup(struct spi_nor *nor,
2680 			 const struct spi_nor_hwcaps *hwcaps)
2681 {
2682 	if (!nor->params->setup)
2683 		return 0;
2684 
2685 	return nor->params->setup(nor, hwcaps);
2686 }
2687 
2688 /**
2689  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2690  * settings based on MFR register and ->default_init() hook.
2691  * @nor:	pointer to a 'struct spi_nor'.
2692  */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2693 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2694 {
2695 	if (nor->manufacturer && nor->manufacturer->fixups &&
2696 	    nor->manufacturer->fixups->default_init)
2697 		nor->manufacturer->fixups->default_init(nor);
2698 
2699 	if (nor->info->fixups && nor->info->fixups->default_init)
2700 		nor->info->fixups->default_init(nor);
2701 }
2702 
2703 /**
2704  * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2705  * based on JESD216 SFDP standard.
2706  * @nor:	pointer to a 'struct spi_nor'.
2707  *
2708  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2709  * legacy flash parameters and settings will be restored.
2710  */
spi_nor_sfdp_init_params(struct spi_nor * nor)2711 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2712 {
2713 	struct spi_nor_flash_parameter sfdp_params;
2714 
2715 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2716 
2717 	if (spi_nor_parse_sfdp(nor, nor->params)) {
2718 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2719 		nor->addr_width = 0;
2720 		nor->flags &= ~SNOR_F_4B_OPCODES;
2721 	}
2722 }
2723 
2724 /**
2725  * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2726  * based on nor->info data.
2727  * @nor:	pointer to a 'struct spi_nor'.
2728  */
spi_nor_info_init_params(struct spi_nor * nor)2729 static void spi_nor_info_init_params(struct spi_nor *nor)
2730 {
2731 	struct spi_nor_flash_parameter *params = nor->params;
2732 	struct spi_nor_erase_map *map = &params->erase_map;
2733 	const struct flash_info *info = nor->info;
2734 	struct device_node *np = spi_nor_get_flash_node(nor);
2735 	u8 i, erase_mask;
2736 
2737 	/* Initialize legacy flash parameters and settings. */
2738 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2739 	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2740 	params->setup = spi_nor_default_setup;
2741 	/* Default to 16-bit Write Status (01h) Command */
2742 	nor->flags |= SNOR_F_HAS_16BIT_SR;
2743 
2744 	/* Set SPI NOR sizes. */
2745 	params->size = (u64)info->sector_size * info->n_sectors;
2746 	params->page_size = info->page_size;
2747 
2748 	if (!(info->flags & SPI_NOR_NO_FR)) {
2749 		/* Default to Fast Read for DT and non-DT platform devices. */
2750 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2751 
2752 		/* Mask out Fast Read if not requested at DT instantiation. */
2753 		if (np && !of_property_read_bool(np, "m25p,fast-read"))
2754 			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2755 	}
2756 
2757 	/* (Fast) Read settings. */
2758 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2759 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2760 				  0, 0, SPINOR_OP_READ,
2761 				  SNOR_PROTO_1_1_1);
2762 
2763 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2764 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2765 					  0, 8, SPINOR_OP_READ_FAST,
2766 					  SNOR_PROTO_1_1_1);
2767 
2768 	if (info->flags & SPI_NOR_DUAL_READ) {
2769 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2770 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2771 					  0, 8, SPINOR_OP_READ_1_1_2,
2772 					  SNOR_PROTO_1_1_2);
2773 	}
2774 
2775 	if (info->flags & SPI_NOR_QUAD_READ) {
2776 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2777 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2778 					  0, 8, SPINOR_OP_READ_1_1_4,
2779 					  SNOR_PROTO_1_1_4);
2780 	}
2781 
2782 	if (info->flags & SPI_NOR_OCTAL_READ) {
2783 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2784 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2785 					  0, 8, SPINOR_OP_READ_1_1_8,
2786 					  SNOR_PROTO_1_1_8);
2787 	}
2788 
2789 	/* Page Program settings. */
2790 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2791 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2792 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2793 
2794 	/*
2795 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2796 	 * smallest erase size starting at BIT(0).
2797 	 */
2798 	erase_mask = 0;
2799 	i = 0;
2800 	if (info->flags & SECT_4K_PMC) {
2801 		erase_mask |= BIT(i);
2802 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2803 				       SPINOR_OP_BE_4K_PMC);
2804 		i++;
2805 	} else if (info->flags & SECT_4K) {
2806 		erase_mask |= BIT(i);
2807 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2808 				       SPINOR_OP_BE_4K);
2809 		i++;
2810 	}
2811 	erase_mask |= BIT(i);
2812 	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2813 			       SPINOR_OP_SE);
2814 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2815 }
2816 
2817 /**
2818  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2819  * after SFDP has been parsed (is also called for SPI NORs that do not
2820  * support RDSFDP).
2821  * @nor:	pointer to a 'struct spi_nor'
2822  *
2823  * Typically used to tweak various parameters that could not be extracted by
2824  * other means (i.e. when information provided by the SFDP/flash_info tables
2825  * are incomplete or wrong).
2826  */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2827 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2828 {
2829 	if (nor->manufacturer && nor->manufacturer->fixups &&
2830 	    nor->manufacturer->fixups->post_sfdp)
2831 		nor->manufacturer->fixups->post_sfdp(nor);
2832 
2833 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
2834 		nor->info->fixups->post_sfdp(nor);
2835 }
2836 
2837 /**
2838  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2839  * @nor:	pointer to a 'struct spi_nor'
2840  *
2841  * Used to set default flash parameters and settings when the ->default_init()
2842  * hook or the SFDP parser let voids.
2843  */
spi_nor_late_init_params(struct spi_nor * nor)2844 static void spi_nor_late_init_params(struct spi_nor *nor)
2845 {
2846 	/*
2847 	 * NOR protection support. When locking_ops are not provided, we pick
2848 	 * the default ones.
2849 	 */
2850 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2851 		nor->params->locking_ops = &spi_nor_sr_locking_ops;
2852 }
2853 
2854 /**
2855  * spi_nor_init_params() - Initialize the flash's parameters and settings.
2856  * @nor:	pointer to a 'struct spi_nor'.
2857  *
2858  * The flash parameters and settings are initialized based on a sequence of
2859  * calls that are ordered by priority:
2860  *
2861  * 1/ Default flash parameters initialization. The initializations are done
2862  *    based on nor->info data:
2863  *		spi_nor_info_init_params()
2864  *
2865  * which can be overwritten by:
2866  * 2/ Manufacturer flash parameters initialization. The initializations are
2867  *    done based on MFR register, or when the decisions can not be done solely
2868  *    based on MFR, by using specific flash_info tweeks, ->default_init():
2869  *		spi_nor_manufacturer_init_params()
2870  *
2871  * which can be overwritten by:
2872  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2873  *    should be more accurate that the above.
2874  *		spi_nor_sfdp_init_params()
2875  *
2876  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
2877  *    the flash parameters and settings immediately after parsing the Basic
2878  *    Flash Parameter Table.
2879  *
2880  * which can be overwritten by:
2881  * 4/ Post SFDP flash parameters initialization. Used to tweak various
2882  *    parameters that could not be extracted by other means (i.e. when
2883  *    information provided by the SFDP/flash_info tables are incomplete or
2884  *    wrong).
2885  *		spi_nor_post_sfdp_fixups()
2886  *
2887  * 5/ Late default flash parameters initialization, used when the
2888  * ->default_init() hook or the SFDP parser do not set specific params.
2889  *		spi_nor_late_init_params()
2890  */
spi_nor_init_params(struct spi_nor * nor)2891 static int spi_nor_init_params(struct spi_nor *nor)
2892 {
2893 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2894 	if (!nor->params)
2895 		return -ENOMEM;
2896 
2897 	spi_nor_info_init_params(nor);
2898 
2899 	spi_nor_manufacturer_init_params(nor);
2900 
2901 	if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2902 	    !(nor->info->flags & SPI_NOR_SKIP_SFDP))
2903 		spi_nor_sfdp_init_params(nor);
2904 
2905 	spi_nor_post_sfdp_fixups(nor);
2906 
2907 	spi_nor_late_init_params(nor);
2908 
2909 	return 0;
2910 }
2911 
2912 /**
2913  * spi_nor_quad_enable() - enable Quad I/O if needed.
2914  * @nor:                pointer to a 'struct spi_nor'
2915  *
2916  * Return: 0 on success, -errno otherwise.
2917  */
spi_nor_quad_enable(struct spi_nor * nor)2918 static int spi_nor_quad_enable(struct spi_nor *nor)
2919 {
2920 	if (!nor->params->quad_enable)
2921 		return 0;
2922 
2923 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2924 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
2925 		return 0;
2926 
2927 	return nor->params->quad_enable(nor);
2928 }
2929 
2930 /**
2931  * spi_nor_try_unlock_all() - Tries to unlock the entire flash memory array.
2932  * @nor:	pointer to a 'struct spi_nor'.
2933  *
2934  * Some SPI NOR flashes are write protected by default after a power-on reset
2935  * cycle, in order to avoid inadvertent writes during power-up. Backward
2936  * compatibility imposes to unlock the entire flash memory array at power-up
2937  * by default.
2938  *
2939  * Unprotecting the entire flash array will fail for boards which are hardware
2940  * write-protected. Thus any errors are ignored.
2941  */
spi_nor_try_unlock_all(struct spi_nor * nor)2942 static void spi_nor_try_unlock_all(struct spi_nor *nor)
2943 {
2944 	int ret;
2945 
2946 	if (!(nor->flags & SNOR_F_HAS_LOCK))
2947 		return;
2948 
2949 	ret = spi_nor_unlock(&nor->mtd, 0, nor->params->size);
2950 	if (ret)
2951 		dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
2952 }
2953 
spi_nor_init(struct spi_nor * nor)2954 static int spi_nor_init(struct spi_nor *nor)
2955 {
2956 	int err;
2957 
2958 	err = spi_nor_quad_enable(nor);
2959 	if (err) {
2960 		dev_dbg(nor->dev, "quad mode not supported\n");
2961 		return err;
2962 	}
2963 
2964 	spi_nor_try_unlock_all(nor);
2965 
2966 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
2967 		/*
2968 		 * If the RESET# pin isn't hooked up properly, or the system
2969 		 * otherwise doesn't perform a reset command in the boot
2970 		 * sequence, it's impossible to 100% protect against unexpected
2971 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2972 		 * designer) that this is bad.
2973 		 */
2974 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2975 			  "enabling reset hack; may not recover from unexpected reboots\n");
2976 		nor->params->set_4byte_addr_mode(nor, true);
2977 	}
2978 
2979 	return 0;
2980 }
2981 
2982 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2983 static void spi_nor_resume(struct mtd_info *mtd)
2984 {
2985 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2986 	struct device *dev = nor->dev;
2987 	int ret;
2988 
2989 	/* re-initialize the nor chip */
2990 	ret = spi_nor_init(nor);
2991 	if (ret)
2992 		dev_err(dev, "resume() failed\n");
2993 }
2994 
spi_nor_get_device(struct mtd_info * mtd)2995 static int spi_nor_get_device(struct mtd_info *mtd)
2996 {
2997 	struct mtd_info *master = mtd_get_master(mtd);
2998 	struct spi_nor *nor = mtd_to_spi_nor(master);
2999 	struct device *dev;
3000 
3001 	if (nor->spimem)
3002 		dev = nor->spimem->spi->controller->dev.parent;
3003 	else
3004 		dev = nor->dev;
3005 
3006 	if (!try_module_get(dev->driver->owner))
3007 		return -ENODEV;
3008 
3009 	return 0;
3010 }
3011 
spi_nor_put_device(struct mtd_info * mtd)3012 static void spi_nor_put_device(struct mtd_info *mtd)
3013 {
3014 	struct mtd_info *master = mtd_get_master(mtd);
3015 	struct spi_nor *nor = mtd_to_spi_nor(master);
3016 	struct device *dev;
3017 
3018 	if (nor->spimem)
3019 		dev = nor->spimem->spi->controller->dev.parent;
3020 	else
3021 		dev = nor->dev;
3022 
3023 	module_put(dev->driver->owner);
3024 }
3025 
spi_nor_restore(struct spi_nor * nor)3026 void spi_nor_restore(struct spi_nor *nor)
3027 {
3028 	/* restore the addressing mode */
3029 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3030 	    nor->flags & SNOR_F_BROKEN_RESET)
3031 		nor->params->set_4byte_addr_mode(nor, false);
3032 }
3033 EXPORT_SYMBOL_GPL(spi_nor_restore);
3034 
spi_nor_match_id(struct spi_nor * nor,const char * name)3035 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3036 						 const char *name)
3037 {
3038 	unsigned int i, j;
3039 
3040 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3041 		for (j = 0; j < manufacturers[i]->nparts; j++) {
3042 			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3043 				nor->manufacturer = manufacturers[i];
3044 				return &manufacturers[i]->parts[j];
3045 			}
3046 		}
3047 	}
3048 
3049 	return NULL;
3050 }
3051 
spi_nor_set_addr_width(struct spi_nor * nor)3052 static int spi_nor_set_addr_width(struct spi_nor *nor)
3053 {
3054 	if (nor->addr_width) {
3055 		/* already configured from SFDP */
3056 	} else if (nor->info->addr_width) {
3057 		nor->addr_width = nor->info->addr_width;
3058 	} else {
3059 		nor->addr_width = 3;
3060 	}
3061 
3062 	if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3063 		/* enable 4-byte addressing if the device exceeds 16MiB */
3064 		nor->addr_width = 4;
3065 	}
3066 
3067 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3068 		dev_dbg(nor->dev, "address width is too large: %u\n",
3069 			nor->addr_width);
3070 		return -EINVAL;
3071 	}
3072 
3073 	/* Set 4byte opcodes when possible. */
3074 	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3075 	    !(nor->flags & SNOR_F_HAS_4BAIT))
3076 		spi_nor_set_4byte_opcodes(nor);
3077 
3078 	return 0;
3079 }
3080 
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3081 static void spi_nor_debugfs_init(struct spi_nor *nor,
3082 				 const struct flash_info *info)
3083 {
3084 	struct mtd_info *mtd = &nor->mtd;
3085 
3086 	mtd->dbg.partname = info->name;
3087 	mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3088 					 info->id_len, info->id);
3089 }
3090 
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3091 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3092 						       const char *name)
3093 {
3094 	const struct flash_info *info = NULL;
3095 
3096 	if (name)
3097 		info = spi_nor_match_id(nor, name);
3098 	/* Try to auto-detect if chip name wasn't specified or not found */
3099 	if (!info)
3100 		info = spi_nor_read_id(nor);
3101 	if (IS_ERR_OR_NULL(info))
3102 		return ERR_PTR(-ENOENT);
3103 
3104 	/*
3105 	 * If caller has specified name of flash model that can normally be
3106 	 * detected using JEDEC, let's verify it.
3107 	 */
3108 	if (name && info->id_len) {
3109 		const struct flash_info *jinfo;
3110 
3111 		jinfo = spi_nor_read_id(nor);
3112 		if (IS_ERR(jinfo)) {
3113 			return jinfo;
3114 		} else if (jinfo != info) {
3115 			/*
3116 			 * JEDEC knows better, so overwrite platform ID. We
3117 			 * can't trust partitions any longer, but we'll let
3118 			 * mtd apply them anyway, since some partitions may be
3119 			 * marked read-only, and we don't want to lose that
3120 			 * information, even if it's not 100% accurate.
3121 			 */
3122 			dev_warn(nor->dev, "found %s, expected %s\n",
3123 				 jinfo->name, info->name);
3124 			info = jinfo;
3125 		}
3126 	}
3127 
3128 	return info;
3129 }
3130 
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3131 int spi_nor_scan(struct spi_nor *nor, const char *name,
3132 		 const struct spi_nor_hwcaps *hwcaps)
3133 {
3134 	const struct flash_info *info;
3135 	struct device *dev = nor->dev;
3136 	struct mtd_info *mtd = &nor->mtd;
3137 	struct device_node *np = spi_nor_get_flash_node(nor);
3138 	int ret;
3139 	int i;
3140 
3141 	ret = spi_nor_check(nor);
3142 	if (ret)
3143 		return ret;
3144 
3145 	/* Reset SPI protocol for all commands. */
3146 	nor->reg_proto = SNOR_PROTO_1_1_1;
3147 	nor->read_proto = SNOR_PROTO_1_1_1;
3148 	nor->write_proto = SNOR_PROTO_1_1_1;
3149 
3150 	/*
3151 	 * We need the bounce buffer early to read/write registers when going
3152 	 * through the spi-mem layer (buffers have to be DMA-able).
3153 	 * For spi-mem drivers, we'll reallocate a new buffer if
3154 	 * nor->page_size turns out to be greater than PAGE_SIZE (which
3155 	 * shouldn't happen before long since NOR pages are usually less
3156 	 * than 1KB) after spi_nor_scan() returns.
3157 	 */
3158 	nor->bouncebuf_size = PAGE_SIZE;
3159 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3160 				      GFP_KERNEL);
3161 	if (!nor->bouncebuf)
3162 		return -ENOMEM;
3163 
3164 	info = spi_nor_get_flash_info(nor, name);
3165 	if (IS_ERR(info))
3166 		return PTR_ERR(info);
3167 
3168 	nor->info = info;
3169 
3170 	spi_nor_debugfs_init(nor, info);
3171 
3172 	mutex_init(&nor->lock);
3173 
3174 	/*
3175 	 * Make sure the XSR_RDY flag is set before calling
3176 	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3177 	 * with Atmel SPI NOR.
3178 	 */
3179 	if (info->flags & SPI_NOR_XSR_RDY)
3180 		nor->flags |=  SNOR_F_READY_XSR_RDY;
3181 
3182 	if (info->flags & SPI_NOR_HAS_LOCK)
3183 		nor->flags |= SNOR_F_HAS_LOCK;
3184 
3185 	mtd->_write = spi_nor_write;
3186 
3187 	/* Init flash parameters based on flash_info struct and SFDP */
3188 	ret = spi_nor_init_params(nor);
3189 	if (ret)
3190 		return ret;
3191 
3192 	if (!mtd->name)
3193 		mtd->name = dev_name(dev);
3194 	mtd->priv = nor;
3195 	mtd->type = MTD_NORFLASH;
3196 	mtd->writesize = 1;
3197 	mtd->flags = MTD_CAP_NORFLASH;
3198 	mtd->size = nor->params->size;
3199 	mtd->_erase = spi_nor_erase;
3200 	mtd->_read = spi_nor_read;
3201 	mtd->_resume = spi_nor_resume;
3202 	mtd->_get_device = spi_nor_get_device;
3203 	mtd->_put_device = spi_nor_put_device;
3204 
3205 	if (nor->params->locking_ops) {
3206 		mtd->_lock = spi_nor_lock;
3207 		mtd->_unlock = spi_nor_unlock;
3208 		mtd->_is_locked = spi_nor_is_locked;
3209 	}
3210 
3211 	if (info->flags & USE_FSR)
3212 		nor->flags |= SNOR_F_USE_FSR;
3213 	if (info->flags & SPI_NOR_HAS_TB) {
3214 		nor->flags |= SNOR_F_HAS_SR_TB;
3215 		if (info->flags & SPI_NOR_TB_SR_BIT6)
3216 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3217 	}
3218 
3219 	if (info->flags & NO_CHIP_ERASE)
3220 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3221 	if (info->flags & USE_CLSR)
3222 		nor->flags |= SNOR_F_USE_CLSR;
3223 
3224 	if (info->flags & SPI_NOR_4BIT_BP) {
3225 		nor->flags |= SNOR_F_HAS_4BIT_BP;
3226 		if (info->flags & SPI_NOR_BP3_SR_BIT6)
3227 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3228 	}
3229 
3230 	if (info->flags & SPI_NOR_NO_ERASE)
3231 		mtd->flags |= MTD_NO_ERASE;
3232 
3233 	mtd->dev.parent = dev;
3234 	nor->page_size = nor->params->page_size;
3235 	mtd->writebufsize = nor->page_size;
3236 
3237 	if (of_property_read_bool(np, "broken-flash-reset"))
3238 		nor->flags |= SNOR_F_BROKEN_RESET;
3239 
3240 	/*
3241 	 * Configure the SPI memory:
3242 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3243 	 * - set the number of dummy cycles (mode cycles + wait states).
3244 	 * - set the SPI protocols for register and memory accesses.
3245 	 */
3246 	ret = spi_nor_setup(nor, hwcaps);
3247 	if (ret)
3248 		return ret;
3249 
3250 	if (info->flags & SPI_NOR_4B_OPCODES)
3251 		nor->flags |= SNOR_F_4B_OPCODES;
3252 
3253 	ret = spi_nor_set_addr_width(nor);
3254 	if (ret)
3255 		return ret;
3256 
3257 	/* Send all the required SPI flash commands to initialize device */
3258 	ret = spi_nor_init(nor);
3259 	if (ret)
3260 		return ret;
3261 
3262 	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3263 			(long long)mtd->size >> 10);
3264 
3265 	dev_dbg(dev,
3266 		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
3267 		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3268 		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3269 		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3270 
3271 	if (mtd->numeraseregions)
3272 		for (i = 0; i < mtd->numeraseregions; i++)
3273 			dev_dbg(dev,
3274 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
3275 				".erasesize = 0x%.8x (%uKiB), "
3276 				".numblocks = %d }\n",
3277 				i, (long long)mtd->eraseregions[i].offset,
3278 				mtd->eraseregions[i].erasesize,
3279 				mtd->eraseregions[i].erasesize / 1024,
3280 				mtd->eraseregions[i].numblocks);
3281 	return 0;
3282 }
3283 EXPORT_SYMBOL_GPL(spi_nor_scan);
3284 
spi_nor_create_read_dirmap(struct spi_nor * nor)3285 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3286 {
3287 	struct spi_mem_dirmap_info info = {
3288 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
3289 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3290 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
3291 				      SPI_MEM_OP_DATA_IN(0, NULL, 1)),
3292 		.offset = 0,
3293 		.length = nor->mtd.size,
3294 	};
3295 	struct spi_mem_op *op = &info.op_tmpl;
3296 
3297 	/* get transfer protocols. */
3298 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
3299 	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
3300 	op->dummy.buswidth = op->addr.buswidth;
3301 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3302 
3303 	/* convert the dummy cycles to the number of bytes */
3304 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3305 
3306 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3307 						       &info);
3308 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3309 }
3310 
spi_nor_create_write_dirmap(struct spi_nor * nor)3311 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3312 {
3313 	struct spi_mem_dirmap_info info = {
3314 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
3315 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3316 				      SPI_MEM_OP_NO_DUMMY,
3317 				      SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
3318 		.offset = 0,
3319 		.length = nor->mtd.size,
3320 	};
3321 	struct spi_mem_op *op = &info.op_tmpl;
3322 
3323 	/* get transfer protocols. */
3324 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
3325 	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
3326 	op->dummy.buswidth = op->addr.buswidth;
3327 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3328 
3329 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3330 		op->addr.nbytes = 0;
3331 
3332 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3333 						       &info);
3334 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3335 }
3336 
spi_nor_probe(struct spi_mem * spimem)3337 static int spi_nor_probe(struct spi_mem *spimem)
3338 {
3339 	struct spi_device *spi = spimem->spi;
3340 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3341 	struct spi_nor *nor;
3342 	/*
3343 	 * Enable all caps by default. The core will mask them after
3344 	 * checking what's really supported using spi_mem_supports_op().
3345 	 */
3346 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3347 	char *flash_name;
3348 	int ret;
3349 
3350 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3351 	if (!nor)
3352 		return -ENOMEM;
3353 
3354 	nor->spimem = spimem;
3355 	nor->dev = &spi->dev;
3356 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3357 
3358 	spi_mem_set_drvdata(spimem, nor);
3359 
3360 	if (data && data->name)
3361 		nor->mtd.name = data->name;
3362 
3363 	if (!nor->mtd.name)
3364 		nor->mtd.name = spi_mem_get_name(spimem);
3365 
3366 	/*
3367 	 * For some (historical?) reason many platforms provide two different
3368 	 * names in flash_platform_data: "name" and "type". Quite often name is
3369 	 * set to "m25p80" and then "type" provides a real chip name.
3370 	 * If that's the case, respect "type" and ignore a "name".
3371 	 */
3372 	if (data && data->type)
3373 		flash_name = data->type;
3374 	else if (!strcmp(spi->modalias, "spi-nor"))
3375 		flash_name = NULL; /* auto-detect */
3376 	else
3377 		flash_name = spi->modalias;
3378 
3379 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3380 	if (ret)
3381 		return ret;
3382 
3383 	/*
3384 	 * None of the existing parts have > 512B pages, but let's play safe
3385 	 * and add this logic so that if anyone ever adds support for such
3386 	 * a NOR we don't end up with buffer overflows.
3387 	 */
3388 	if (nor->page_size > PAGE_SIZE) {
3389 		nor->bouncebuf_size = nor->page_size;
3390 		devm_kfree(nor->dev, nor->bouncebuf);
3391 		nor->bouncebuf = devm_kmalloc(nor->dev,
3392 					      nor->bouncebuf_size,
3393 					      GFP_KERNEL);
3394 		if (!nor->bouncebuf)
3395 			return -ENOMEM;
3396 	}
3397 
3398 	ret = spi_nor_create_read_dirmap(nor);
3399 	if (ret)
3400 		return ret;
3401 
3402 	ret = spi_nor_create_write_dirmap(nor);
3403 	if (ret)
3404 		return ret;
3405 
3406 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3407 				   data ? data->nr_parts : 0);
3408 }
3409 
spi_nor_remove(struct spi_mem * spimem)3410 static int spi_nor_remove(struct spi_mem *spimem)
3411 {
3412 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3413 
3414 	spi_nor_restore(nor);
3415 
3416 	/* Clean up MTD stuff. */
3417 	return mtd_device_unregister(&nor->mtd);
3418 }
3419 
spi_nor_shutdown(struct spi_mem * spimem)3420 static void spi_nor_shutdown(struct spi_mem *spimem)
3421 {
3422 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3423 
3424 	spi_nor_restore(nor);
3425 }
3426 
3427 /*
3428  * Do NOT add to this array without reading the following:
3429  *
3430  * Historically, many flash devices are bound to this driver by their name. But
3431  * since most of these flash are compatible to some extent, and their
3432  * differences can often be differentiated by the JEDEC read-ID command, we
3433  * encourage new users to add support to the spi-nor library, and simply bind
3434  * against a generic string here (e.g., "jedec,spi-nor").
3435  *
3436  * Many flash names are kept here in this list (as well as in spi-nor.c) to
3437  * keep them available as module aliases for existing platforms.
3438  */
3439 static const struct spi_device_id spi_nor_dev_ids[] = {
3440 	/*
3441 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3442 	 * hack around the fact that the SPI core does not provide uevent
3443 	 * matching for .of_match_table
3444 	 */
3445 	{"spi-nor"},
3446 
3447 	/*
3448 	 * Entries not used in DTs that should be safe to drop after replacing
3449 	 * them with "spi-nor" in platform data.
3450 	 */
3451 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3452 
3453 	/*
3454 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3455 	 * should be kept for backward compatibility.
3456 	 */
3457 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3458 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3459 	{"mx25l25635e"},{"mx66l51235l"},
3460 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3461 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3462 	{"s25fl064k"},
3463 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3464 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3465 	{"m25p64"},	{"m25p128"},
3466 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3467 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3468 
3469 	/* Flashes that can't be detected using JEDEC */
3470 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3471 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3472 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3473 
3474 	/* Everspin MRAMs (non-JEDEC) */
3475 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3476 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3477 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3478 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3479 
3480 	{ },
3481 };
3482 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3483 
3484 static const struct of_device_id spi_nor_of_table[] = {
3485 	/*
3486 	 * Generic compatibility for SPI NOR that can be identified by the
3487 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3488 	 */
3489 	{ .compatible = "jedec,spi-nor" },
3490 	{ /* sentinel */ },
3491 };
3492 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3493 
3494 /*
3495  * REVISIT: many of these chips have deep power-down modes, which
3496  * should clearly be entered on suspend() to minimize power use.
3497  * And also when they're otherwise idle...
3498  */
3499 static struct spi_mem_driver spi_nor_driver = {
3500 	.spidrv = {
3501 		.driver = {
3502 			.name = "spi-nor",
3503 			.of_match_table = spi_nor_of_table,
3504 		},
3505 		.id_table = spi_nor_dev_ids,
3506 	},
3507 	.probe = spi_nor_probe,
3508 	.remove = spi_nor_remove,
3509 	.shutdown = spi_nor_shutdown,
3510 };
3511 module_spi_mem_driver(spi_nor_driver);
3512 
3513 MODULE_LICENSE("GPL v2");
3514 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3515 MODULE_AUTHOR("Mike Lavender");
3516 MODULE_DESCRIPTION("framework for SPI NOR");
3517