• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! A small number of math routines for floats and doubles.
2 //!
3 //! These are adapted from libm, a port of musl libc's libm to Rust.
4 //! libm can be found online [here](https://github.com/rust-lang/libm),
5 //! and is similarly licensed under an Apache2.0/MIT license
6 
7 #![cfg(all(not(feature = "std"), feature = "compact"))]
8 #![doc(hidden)]
9 
10 /* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
11 /*
12  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
13  */
14 /*
15  * ====================================================
16  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
17  *
18  * Developed at SunPro, a Sun Microsystems, Inc. business.
19  * Permission to use, copy, modify, and distribute this
20  * software is freely granted, provided that this notice
21  * is preserved.
22  * ====================================================
23  */
24 
25 /// # Safety
26 ///
27 /// Safe if `index < array.len()`.
28 macro_rules! i {
29     ($array:ident, $index:expr) => {
30         // SAFETY: safe if `index < array.len()`.
31         unsafe { *$array.get_unchecked($index) }
32     };
33 }
34 
powf(x: f32, y: f32) -> f3235 pub fn powf(x: f32, y: f32) -> f32 {
36     const BP: [f32; 2] = [1.0, 1.5];
37     const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */
38     const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */
39     const TWO24: f32 = 16777216.0; /* 0x4b800000 */
40     const HUGE: f32 = 1.0e30;
41     const TINY: f32 = 1.0e-30;
42     const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */
43     const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */
44     const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */
45     const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */
46     const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */
47     const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */
48     const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */
49     const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
50     const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */
51     const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */
52     const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */
53     const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */
54     const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */
55     const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */
56     const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */
57     const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */
58     const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */
59     const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */
60     const IVLN2: f32 = 1.4426950216e+00;
61     const IVLN2_H: f32 = 1.4426879883e+00;
62     const IVLN2_L: f32 = 7.0526075433e-06;
63 
64     let mut z: f32;
65     let mut ax: f32;
66     let z_h: f32;
67     let z_l: f32;
68     let mut p_h: f32;
69     let mut p_l: f32;
70     let y1: f32;
71     let mut t1: f32;
72     let t2: f32;
73     let mut r: f32;
74     let s: f32;
75     let mut sn: f32;
76     let mut t: f32;
77     let mut u: f32;
78     let mut v: f32;
79     let mut w: f32;
80     let i: i32;
81     let mut j: i32;
82     let mut k: i32;
83     let mut yisint: i32;
84     let mut n: i32;
85     let hx: i32;
86     let hy: i32;
87     let mut ix: i32;
88     let iy: i32;
89     let mut is: i32;
90 
91     hx = x.to_bits() as i32;
92     hy = y.to_bits() as i32;
93 
94     ix = hx & 0x7fffffff;
95     iy = hy & 0x7fffffff;
96 
97     /* x**0 = 1, even if x is NaN */
98     if iy == 0 {
99         return 1.0;
100     }
101 
102     /* 1**y = 1, even if y is NaN */
103     if hx == 0x3f800000 {
104         return 1.0;
105     }
106 
107     /* NaN if either arg is NaN */
108     if ix > 0x7f800000 || iy > 0x7f800000 {
109         return x + y;
110     }
111 
112     /* determine if y is an odd int when x < 0
113      * yisint = 0       ... y is not an integer
114      * yisint = 1       ... y is an odd int
115      * yisint = 2       ... y is an even int
116      */
117     yisint = 0;
118     if hx < 0 {
119         if iy >= 0x4b800000 {
120             yisint = 2; /* even integer y */
121         } else if iy >= 0x3f800000 {
122             k = (iy >> 23) - 0x7f; /* exponent */
123             j = iy >> (23 - k);
124             if (j << (23 - k)) == iy {
125                 yisint = 2 - (j & 1);
126             }
127         }
128     }
129 
130     /* special value of y */
131     if iy == 0x7f800000 {
132         /* y is +-inf */
133         if ix == 0x3f800000 {
134             /* (-1)**+-inf is 1 */
135             return 1.0;
136         } else if ix > 0x3f800000 {
137             /* (|x|>1)**+-inf = inf,0 */
138             return if hy >= 0 {
139                 y
140             } else {
141                 0.0
142             };
143         } else {
144             /* (|x|<1)**+-inf = 0,inf */
145             return if hy >= 0 {
146                 0.0
147             } else {
148                 -y
149             };
150         }
151     }
152     if iy == 0x3f800000 {
153         /* y is +-1 */
154         return if hy >= 0 {
155             x
156         } else {
157             1.0 / x
158         };
159     }
160 
161     if hy == 0x40000000 {
162         /* y is 2 */
163         return x * x;
164     }
165 
166     if hy == 0x3f000000
167        /* y is  0.5 */
168        && hx >= 0
169     {
170         /* x >= +0 */
171         return sqrtf(x);
172     }
173 
174     ax = fabsf(x);
175     /* special value of x */
176     if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 {
177         /* x is +-0,+-inf,+-1 */
178         z = ax;
179         if hy < 0 {
180             /* z = (1/|x|) */
181             z = 1.0 / z;
182         }
183 
184         if hx < 0 {
185             if ((ix - 0x3f800000) | yisint) == 0 {
186                 z = (z - z) / (z - z); /* (-1)**non-int is NaN */
187             } else if yisint == 1 {
188                 z = -z; /* (x<0)**odd = -(|x|**odd) */
189             }
190         }
191         return z;
192     }
193 
194     sn = 1.0; /* sign of result */
195     if hx < 0 {
196         if yisint == 0 {
197             /* (x<0)**(non-int) is NaN */
198             return (x - x) / (x - x);
199         }
200 
201         if yisint == 1 {
202             /* (x<0)**(odd int) */
203             sn = -1.0;
204         }
205     }
206 
207     /* |y| is HUGE */
208     if iy > 0x4d000000 {
209         /* if |y| > 2**27 */
210         /* over/underflow if x is not close to one */
211         if ix < 0x3f7ffff8 {
212             return if hy < 0 {
213                 sn * HUGE * HUGE
214             } else {
215                 sn * TINY * TINY
216             };
217         }
218 
219         if ix > 0x3f800007 {
220             return if hy > 0 {
221                 sn * HUGE * HUGE
222             } else {
223                 sn * TINY * TINY
224             };
225         }
226 
227         /* now |1-x| is TINY <= 2**-20, suffice to compute
228         log(x) by x-x^2/2+x^3/3-x^4/4 */
229         t = ax - 1.; /* t has 20 trailing zeros */
230         w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25));
231         u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */
232         v = t * IVLN2_L - w * IVLN2;
233         t1 = u + v;
234         is = t1.to_bits() as i32;
235         t1 = f32::from_bits(is as u32 & 0xfffff000);
236         t2 = v - (t1 - u);
237     } else {
238         let mut s2: f32;
239         let mut s_h: f32;
240         let s_l: f32;
241         let mut t_h: f32;
242         let mut t_l: f32;
243 
244         n = 0;
245         /* take care subnormal number */
246         if ix < 0x00800000 {
247             ax *= TWO24;
248             n -= 24;
249             ix = ax.to_bits() as i32;
250         }
251         n += ((ix) >> 23) - 0x7f;
252         j = ix & 0x007fffff;
253         /* determine interval */
254         ix = j | 0x3f800000; /* normalize ix */
255         if j <= 0x1cc471 {
256             /* |x|<sqrt(3/2) */
257             k = 0;
258         } else if j < 0x5db3d7 {
259             /* |x|<sqrt(3)   */
260             k = 1;
261         } else {
262             k = 0;
263             n += 1;
264             ix -= 0x00800000;
265         }
266         ax = f32::from_bits(ix as u32);
267 
268         /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
269         u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
270         v = 1.0 / (ax + i!(BP, k as usize));
271         s = u * v;
272         s_h = s;
273         is = s_h.to_bits() as i32;
274         s_h = f32::from_bits(is as u32 & 0xfffff000);
275         /* t_h=ax+bp[k] High */
276         is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32;
277         t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21));
278         t_l = ax - (t_h - i!(BP, k as usize));
279         s_l = v * ((u - s_h * t_h) - s_h * t_l);
280         /* compute log(ax) */
281         s2 = s * s;
282         r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
283         r += s_l * (s_h + s);
284         s2 = s_h * s_h;
285         t_h = 3.0 + s2 + r;
286         is = t_h.to_bits() as i32;
287         t_h = f32::from_bits(is as u32 & 0xfffff000);
288         t_l = r - ((t_h - 3.0) - s2);
289         /* u+v = s*(1+...) */
290         u = s_h * t_h;
291         v = s_l * t_h + t_l * s;
292         /* 2/(3log2)*(s+...) */
293         p_h = u + v;
294         is = p_h.to_bits() as i32;
295         p_h = f32::from_bits(is as u32 & 0xfffff000);
296         p_l = v - (p_h - u);
297         z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
298         z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
299         /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
300         t = n as f32;
301         t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t;
302         is = t1.to_bits() as i32;
303         t1 = f32::from_bits(is as u32 & 0xfffff000);
304         t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
305     };
306 
307     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
308     is = y.to_bits() as i32;
309     y1 = f32::from_bits(is as u32 & 0xfffff000);
310     p_l = (y - y1) * t1 + y * t2;
311     p_h = y1 * t1;
312     z = p_l + p_h;
313     j = z.to_bits() as i32;
314     if j > 0x43000000 {
315         /* if z > 128 */
316         return sn * HUGE * HUGE; /* overflow */
317     } else if j == 0x43000000 {
318         /* if z == 128 */
319         if p_l + OVT > z - p_h {
320             return sn * HUGE * HUGE; /* overflow */
321         }
322     } else if (j & 0x7fffffff) > 0x43160000 {
323         /* z < -150 */
324         // FIXME: check should be  (uint32_t)j > 0xc3160000
325         return sn * TINY * TINY; /* underflow */
326     } else if j as u32 == 0xc3160000
327               /* z == -150 */
328               && p_l <= z - p_h
329     {
330         return sn * TINY * TINY; /* underflow */
331     }
332 
333     /*
334      * compute 2**(p_h+p_l)
335      */
336     i = j & 0x7fffffff;
337     k = (i >> 23) - 0x7f;
338     n = 0;
339     if i > 0x3f000000 {
340         /* if |z| > 0.5, set n = [z+0.5] */
341         n = j + (0x00800000 >> (k + 1));
342         k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */
343         t = f32::from_bits(n as u32 & !(0x007fffff >> k));
344         n = ((n & 0x007fffff) | 0x00800000) >> (23 - k);
345         if j < 0 {
346             n = -n;
347         }
348         p_h -= t;
349     }
350     t = p_l + p_h;
351     is = t.to_bits() as i32;
352     t = f32::from_bits(is as u32 & 0xffff8000);
353     u = t * LG2_H;
354     v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
355     z = u + v;
356     w = v - (z - u);
357     t = z * z;
358     t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
359     r = (z * t1) / (t1 - 2.0) - (w + z * w);
360     z = 1.0 - (r - z);
361     j = z.to_bits() as i32;
362     j += n << 23;
363     if (j >> 23) <= 0 {
364         /* subnormal output */
365         z = scalbnf(z, n);
366     } else {
367         z = f32::from_bits(j as u32);
368     }
369     sn * z
370 }
371 
372 /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
373 /*
374  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
375  */
376 /*
377  * ====================================================
378  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
379  *
380  * Developed at SunPro, a Sun Microsystems, Inc. business.
381  * Permission to use, copy, modify, and distribute this
382  * software is freely granted, provided that this notice
383  * is preserved.
384  * ====================================================
385  */
386 
sqrtf(x: f32) -> f32387 pub fn sqrtf(x: f32) -> f32 {
388     #[cfg(target_feature = "sse")]
389     {
390         // Note: This path is unlikely since LLVM will usually have already
391         // optimized sqrt calls into hardware instructions if sse is available,
392         // but if someone does end up here they'll apprected the speed increase.
393         #[cfg(target_arch = "x86")]
394         use core::arch::x86::*;
395         #[cfg(target_arch = "x86_64")]
396         use core::arch::x86_64::*;
397         // SAFETY: safe, since `_mm_set_ss` takes a 32-bit float, and returns
398         // a 128-bit type with the lowest 32-bits as `x`, `_mm_sqrt_ss` calculates
399         // the sqrt of this 128-bit vector, and `_mm_cvtss_f32` extracts the lower
400         // 32-bits as a 32-bit float.
401         unsafe {
402             let m = _mm_set_ss(x);
403             let m_sqrt = _mm_sqrt_ss(m);
404             _mm_cvtss_f32(m_sqrt)
405         }
406     }
407     #[cfg(not(target_feature = "sse"))]
408     {
409         const TINY: f32 = 1.0e-30;
410 
411         let mut z: f32;
412         let sign: i32 = 0x80000000u32 as i32;
413         let mut ix: i32;
414         let mut s: i32;
415         let mut q: i32;
416         let mut m: i32;
417         let mut t: i32;
418         let mut i: i32;
419         let mut r: u32;
420 
421         ix = x.to_bits() as i32;
422 
423         /* take care of Inf and NaN */
424         if (ix as u32 & 0x7f800000) == 0x7f800000 {
425             return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
426         }
427 
428         /* take care of zero */
429         if ix <= 0 {
430             if (ix & !sign) == 0 {
431                 return x; /* sqrt(+-0) = +-0 */
432             }
433             if ix < 0 {
434                 return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
435             }
436         }
437 
438         /* normalize x */
439         m = ix >> 23;
440         if m == 0 {
441             /* subnormal x */
442             i = 0;
443             while ix & 0x00800000 == 0 {
444                 ix <<= 1;
445                 i = i + 1;
446             }
447             m -= i - 1;
448         }
449         m -= 127; /* unbias exponent */
450         ix = (ix & 0x007fffff) | 0x00800000;
451         if m & 1 == 1 {
452             /* odd m, double x to make it even */
453             ix += ix;
454         }
455         m >>= 1; /* m = [m/2] */
456 
457         /* generate sqrt(x) bit by bit */
458         ix += ix;
459         q = 0;
460         s = 0;
461         r = 0x01000000; /* r = moving bit from right to left */
462 
463         while r != 0 {
464             t = s + r as i32;
465             if t <= ix {
466                 s = t + r as i32;
467                 ix -= t;
468                 q += r as i32;
469             }
470             ix += ix;
471             r >>= 1;
472         }
473 
474         /* use floating add to find out rounding direction */
475         if ix != 0 {
476             z = 1.0 - TINY; /* raise inexact flag */
477             if z >= 1.0 {
478                 z = 1.0 + TINY;
479                 if z > 1.0 {
480                     q += 2;
481                 } else {
482                     q += q & 1;
483                 }
484             }
485         }
486 
487         ix = (q >> 1) + 0x3f000000;
488         ix += m << 23;
489         f32::from_bits(ix as u32)
490     }
491 }
492 
493 /// Absolute value (magnitude) (f32)
494 /// Calculates the absolute value (magnitude) of the argument `x`,
495 /// by direct manipulation of the bit representation of `x`.
fabsf(x: f32) -> f32496 pub fn fabsf(x: f32) -> f32 {
497     f32::from_bits(x.to_bits() & 0x7fffffff)
498 }
499 
scalbnf(mut x: f32, mut n: i32) -> f32500 pub fn scalbnf(mut x: f32, mut n: i32) -> f32 {
501     let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
502     let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126
503     let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
504 
505     if n > 127 {
506         x *= x1p127;
507         n -= 127;
508         if n > 127 {
509             x *= x1p127;
510             n -= 127;
511             if n > 127 {
512                 n = 127;
513             }
514         }
515     } else if n < -126 {
516         x *= x1p_126 * x1p24;
517         n += 126 - 24;
518         if n < -126 {
519             x *= x1p_126 * x1p24;
520             n += 126 - 24;
521             if n < -126 {
522                 n = -126;
523             }
524         }
525     }
526     x * f32::from_bits(((0x7f + n) as u32) << 23)
527 }
528 
529 /* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
530 /*
531  * ====================================================
532  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
533  *
534  * Permission to use, copy, modify, and distribute this
535  * software is freely granted, provided that this notice
536  * is preserved.
537  * ====================================================
538  */
539 
540 // pow(x,y) return x**y
541 //
542 //                    n
543 // Method:  Let x =  2   * (1+f)
544 //      1. Compute and return log2(x) in two pieces:
545 //              log2(x) = w1 + w2,
546 //         where w1 has 53-24 = 29 bit trailing zeros.
547 //      2. Perform y*log2(x) = n+y' by simulating muti-precision
548 //         arithmetic, where |y'|<=0.5.
549 //      3. Return x**y = 2**n*exp(y'*log2)
550 //
551 // Special cases:
552 //      1.  (anything) ** 0  is 1
553 //      2.  1 ** (anything)  is 1
554 //      3.  (anything except 1) ** NAN is NAN
555 //      4.  NAN ** (anything except 0) is NAN
556 //      5.  +-(|x| > 1) **  +INF is +INF
557 //      6.  +-(|x| > 1) **  -INF is +0
558 //      7.  +-(|x| < 1) **  +INF is +0
559 //      8.  +-(|x| < 1) **  -INF is +INF
560 //      9.  -1          ** +-INF is 1
561 //      10. +0 ** (+anything except 0, NAN)               is +0
562 //      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
563 //      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
564 //      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
565 //      14. -0 ** (+odd integer) is -0
566 //      15. -0 ** (-odd integer) is -INF, raise divbyzero
567 //      16. +INF ** (+anything except 0,NAN) is +INF
568 //      17. +INF ** (-anything except 0,NAN) is +0
569 //      18. -INF ** (+odd integer) is -INF
570 //      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
571 //      20. (anything) ** 1 is (anything)
572 //      21. (anything) ** -1 is 1/(anything)
573 //      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
574 //      23. (-anything except 0 and inf) ** (non-integer) is NAN
575 //
576 // Accuracy:
577 //      pow(x,y) returns x**y nearly rounded. In particular
578 //                      pow(integer,integer)
579 //      always returns the correct integer provided it is
580 //      representable.
581 //
582 // Constants :
583 // The hexadecimal values are the intended ones for the following
584 // constants. The decimal values may be used, provided that the
585 // compiler will convert from decimal to binary accurately enough
586 // to produce the hexadecimal values shown.
587 
powd(x: f64, y: f64) -> f64588 pub fn powd(x: f64, y: f64) -> f64 {
589     const BP: [f64; 2] = [1.0, 1.5];
590     const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
591     const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
592     const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
593     const HUGE: f64 = 1.0e300;
594     const TINY: f64 = 1.0e-300;
595 
596     // poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
597     const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
598     const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
599     const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
600     const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
601     const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
602     const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
603     const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
604     const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
605     const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
606     const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
607     const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
608     const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
609     const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
610     const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
611     const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
612     const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
613     const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
614     const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
615     const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
616     const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
617     const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
618 
619     let t1: f64;
620     let t2: f64;
621 
622     let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
623     let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
624 
625     let mut ix: i32 = (hx & 0x7fffffff) as i32;
626     let iy: i32 = (hy & 0x7fffffff) as i32;
627 
628     /* x**0 = 1, even if x is NaN */
629     if ((iy as u32) | ly) == 0 {
630         return 1.0;
631     }
632 
633     /* 1**y = 1, even if y is NaN */
634     if hx == 0x3ff00000 && lx == 0 {
635         return 1.0;
636     }
637 
638     /* NaN if either arg is NaN */
639     if ix > 0x7ff00000
640         || (ix == 0x7ff00000 && lx != 0)
641         || iy > 0x7ff00000
642         || (iy == 0x7ff00000 && ly != 0)
643     {
644         return x + y;
645     }
646 
647     /* determine if y is an odd int when x < 0
648      * yisint = 0       ... y is not an integer
649      * yisint = 1       ... y is an odd int
650      * yisint = 2       ... y is an even int
651      */
652     let mut yisint: i32 = 0;
653     let mut k: i32;
654     let mut j: i32;
655     if hx < 0 {
656         if iy >= 0x43400000 {
657             yisint = 2; /* even integer y */
658         } else if iy >= 0x3ff00000 {
659             k = (iy >> 20) - 0x3ff; /* exponent */
660 
661             if k > 20 {
662                 j = (ly >> (52 - k)) as i32;
663 
664                 if (j << (52 - k)) == (ly as i32) {
665                     yisint = 2 - (j & 1);
666                 }
667             } else if ly == 0 {
668                 j = iy >> (20 - k);
669 
670                 if (j << (20 - k)) == iy {
671                     yisint = 2 - (j & 1);
672                 }
673             }
674         }
675     }
676 
677     if ly == 0 {
678         /* special value of y */
679         if iy == 0x7ff00000 {
680             /* y is +-inf */
681 
682             return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
683                 /* (-1)**+-inf is 1 */
684                 1.0
685             } else if ix >= 0x3ff00000 {
686                 /* (|x|>1)**+-inf = inf,0 */
687                 if hy >= 0 {
688                     y
689                 } else {
690                     0.0
691                 }
692             } else {
693                 /* (|x|<1)**+-inf = 0,inf */
694                 if hy >= 0 {
695                     0.0
696                 } else {
697                     -y
698                 }
699             };
700         }
701 
702         if iy == 0x3ff00000 {
703             /* y is +-1 */
704             return if hy >= 0 {
705                 x
706             } else {
707                 1.0 / x
708             };
709         }
710 
711         if hy == 0x40000000 {
712             /* y is 2 */
713             return x * x;
714         }
715 
716         if hy == 0x3fe00000 {
717             /* y is 0.5 */
718             if hx >= 0 {
719                 /* x >= +0 */
720                 return sqrtd(x);
721             }
722         }
723     }
724 
725     let mut ax: f64 = fabsd(x);
726     if lx == 0 {
727         /* special value of x */
728         if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
729             /* x is +-0,+-inf,+-1 */
730             let mut z: f64 = ax;
731 
732             if hy < 0 {
733                 /* z = (1/|x|) */
734                 z = 1.0 / z;
735             }
736 
737             if hx < 0 {
738                 if ((ix - 0x3ff00000) | yisint) == 0 {
739                     z = (z - z) / (z - z); /* (-1)**non-int is NaN */
740                 } else if yisint == 1 {
741                     z = -z; /* (x<0)**odd = -(|x|**odd) */
742                 }
743             }
744 
745             return z;
746         }
747     }
748 
749     let mut s: f64 = 1.0; /* sign of result */
750     if hx < 0 {
751         if yisint == 0 {
752             /* (x<0)**(non-int) is NaN */
753             return (x - x) / (x - x);
754         }
755 
756         if yisint == 1 {
757             /* (x<0)**(odd int) */
758             s = -1.0;
759         }
760     }
761 
762     /* |y| is HUGE */
763     if iy > 0x41e00000 {
764         /* if |y| > 2**31 */
765         if iy > 0x43f00000 {
766             /* if |y| > 2**64, must o/uflow */
767             if ix <= 0x3fefffff {
768                 return if hy < 0 {
769                     HUGE * HUGE
770                 } else {
771                     TINY * TINY
772                 };
773             }
774 
775             if ix >= 0x3ff00000 {
776                 return if hy > 0 {
777                     HUGE * HUGE
778                 } else {
779                     TINY * TINY
780                 };
781             }
782         }
783 
784         /* over/underflow if x is not close to one */
785         if ix < 0x3fefffff {
786             return if hy < 0 {
787                 s * HUGE * HUGE
788             } else {
789                 s * TINY * TINY
790             };
791         }
792         if ix > 0x3ff00000 {
793             return if hy > 0 {
794                 s * HUGE * HUGE
795             } else {
796                 s * TINY * TINY
797             };
798         }
799 
800         /* now |1-x| is TINY <= 2**-20, suffice to compute
801         log(x) by x-x^2/2+x^3/3-x^4/4 */
802         let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
803         let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
804         let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
805         let v: f64 = t * IVLN2_L - w * IVLN2;
806         t1 = with_set_low_word(u + v, 0);
807         t2 = v - (t1 - u);
808     } else {
809         // double ss,s2,s_h,s_l,t_h,t_l;
810         let mut n: i32 = 0;
811 
812         if ix < 0x00100000 {
813             /* take care subnormal number */
814             ax *= TWO53;
815             n -= 53;
816             ix = get_high_word(ax) as i32;
817         }
818 
819         n += (ix >> 20) - 0x3ff;
820         j = ix & 0x000fffff;
821 
822         /* determine interval */
823         let k: i32;
824         ix = j | 0x3ff00000; /* normalize ix */
825         if j <= 0x3988E {
826             /* |x|<sqrt(3/2) */
827             k = 0;
828         } else if j < 0xBB67A {
829             /* |x|<sqrt(3)   */
830             k = 1;
831         } else {
832             k = 0;
833             n += 1;
834             ix -= 0x00100000;
835         }
836         ax = with_set_high_word(ax, ix as u32);
837 
838         /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
839         let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
840         let v: f64 = 1.0 / (ax + i!(BP, k as usize));
841         let ss: f64 = u * v;
842         let s_h = with_set_low_word(ss, 0);
843 
844         /* t_h=ax+bp[k] High */
845         let t_h: f64 = with_set_high_word(
846             0.0,
847             ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
848         );
849         let t_l: f64 = ax - (t_h - i!(BP, k as usize));
850         let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
851 
852         /* compute log(ax) */
853         let s2: f64 = ss * ss;
854         let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
855         r += s_l * (s_h + ss);
856         let s2: f64 = s_h * s_h;
857         let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
858         let t_l: f64 = r - ((t_h - 3.0) - s2);
859 
860         /* u+v = ss*(1+...) */
861         let u: f64 = s_h * t_h;
862         let v: f64 = s_l * t_h + t_l * ss;
863 
864         /* 2/(3log2)*(ss+...) */
865         let p_h: f64 = with_set_low_word(u + v, 0);
866         let p_l = v - (p_h - u);
867         let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
868         let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
869 
870         /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
871         let t: f64 = n as f64;
872         t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
873         t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
874     }
875 
876     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
877     let y1: f64 = with_set_low_word(y, 0);
878     let p_l: f64 = (y - y1) * t1 + y * t2;
879     let mut p_h: f64 = y1 * t1;
880     let z: f64 = p_l + p_h;
881     let mut j: i32 = (z.to_bits() >> 32) as i32;
882     let i: i32 = z.to_bits() as i32;
883     // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
884 
885     if j >= 0x40900000 {
886         /* z >= 1024 */
887         if (j - 0x40900000) | i != 0 {
888             /* if z > 1024 */
889             return s * HUGE * HUGE; /* overflow */
890         }
891 
892         if p_l + OVT > z - p_h {
893             return s * HUGE * HUGE; /* overflow */
894         }
895     } else if (j & 0x7fffffff) >= 0x4090cc00 {
896         /* z <= -1075 */
897         // FIXME: instead of abs(j) use unsigned j
898 
899         if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
900             /* z < -1075 */
901             return s * TINY * TINY; /* underflow */
902         }
903 
904         if p_l <= z - p_h {
905             return s * TINY * TINY; /* underflow */
906         }
907     }
908 
909     /* compute 2**(p_h+p_l) */
910     let i: i32 = j & (0x7fffffff as i32);
911     k = (i >> 20) - 0x3ff;
912     let mut n: i32 = 0;
913 
914     if i > 0x3fe00000 {
915         /* if |z| > 0.5, set n = [z+0.5] */
916         n = j + (0x00100000 >> (k + 1));
917         k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
918         let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
919         n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
920         if j < 0 {
921             n = -n;
922         }
923         p_h -= t;
924     }
925 
926     let t: f64 = with_set_low_word(p_l + p_h, 0);
927     let u: f64 = t * LG2_H;
928     let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
929     let mut z: f64 = u + v;
930     let w: f64 = v - (z - u);
931     let t: f64 = z * z;
932     let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
933     let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
934     z = 1.0 - (r - z);
935     j = get_high_word(z) as i32;
936     j += n << 20;
937 
938     if (j >> 20) <= 0 {
939         /* subnormal output */
940         z = scalbnd(z, n);
941     } else {
942         z = with_set_high_word(z, j as u32);
943     }
944 
945     s * z
946 }
947 
948 /// Absolute value (magnitude) (f64)
949 /// Calculates the absolute value (magnitude) of the argument `x`,
950 /// by direct manipulation of the bit representation of `x`.
fabsd(x: f64) -> f64951 pub fn fabsd(x: f64) -> f64 {
952     f64::from_bits(x.to_bits() & (u64::MAX / 2))
953 }
954 
scalbnd(x: f64, mut n: i32) -> f64955 pub fn scalbnd(x: f64, mut n: i32) -> f64 {
956     let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
957     let x1p53 = f64::from_bits(0x4340000000000000); // 0x1p53 === 2 ^ 53
958     let x1p_1022 = f64::from_bits(0x0010000000000000); // 0x1p-1022 === 2 ^ (-1022)
959 
960     let mut y = x;
961 
962     if n > 1023 {
963         y *= x1p1023;
964         n -= 1023;
965         if n > 1023 {
966             y *= x1p1023;
967             n -= 1023;
968             if n > 1023 {
969                 n = 1023;
970             }
971         }
972     } else if n < -1022 {
973         /* make sure final n < -53 to avoid double
974         rounding in the subnormal range */
975         y *= x1p_1022 * x1p53;
976         n += 1022 - 53;
977         if n < -1022 {
978             y *= x1p_1022 * x1p53;
979             n += 1022 - 53;
980             if n < -1022 {
981                 n = -1022;
982             }
983         }
984     }
985     y * f64::from_bits(((0x3ff + n) as u64) << 52)
986 }
987 
988 /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
989 /*
990  * ====================================================
991  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
992  *
993  * Developed at SunSoft, a Sun Microsystems, Inc. business.
994  * Permission to use, copy, modify, and distribute this
995  * software is freely granted, provided that this notice
996  * is preserved.
997  * ====================================================
998  */
999 /* sqrt(x)
1000  * Return correctly rounded sqrt.
1001  *           ------------------------------------------
1002  *           |  Use the hardware sqrt if you have one |
1003  *           ------------------------------------------
1004  * Method:
1005  *   Bit by bit method using integer arithmetic. (Slow, but portable)
1006  *   1. Normalization
1007  *      Scale x to y in [1,4) with even powers of 2:
1008  *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
1009  *              sqrt(x) = 2^k * sqrt(y)
1010  *   2. Bit by bit computation
1011  *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
1012  *           i                                                   0
1013  *                                     i+1         2
1014  *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
1015  *           i      i            i                 i
1016  *
1017  *      To compute q    from q , one checks whether
1018  *                  i+1       i
1019  *
1020  *                            -(i+1) 2
1021  *                      (q + 2      ) <= y.                     (2)
1022  *                        i
1023  *                                                            -(i+1)
1024  *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
1025  *                             i+1   i             i+1   i
1026  *
1027  *      With some algebraic manipulation, it is not difficult to see
1028  *      that (2) is equivalent to
1029  *                             -(i+1)
1030  *                      s  +  2       <= y                      (3)
1031  *                       i                i
1032  *
1033  *      The advantage of (3) is that s  and y  can be computed by
1034  *                                    i      i
1035  *      the following recurrence formula:
1036  *          if (3) is false
1037  *
1038  *          s     =  s  ,       y    = y   ;                    (4)
1039  *           i+1      i          i+1    i
1040  *
1041  *          otherwise,
1042  *                         -i                     -(i+1)
1043  *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
1044  *           i+1      i          i+1    i     i
1045  *
1046  *      One may easily use induction to prove (4) and (5).
1047  *      Note. Since the left hand side of (3) contain only i+2 bits,
1048  *            it does not necessary to do a full (53-bit) comparison
1049  *            in (3).
1050  *   3. Final rounding
1051  *      After generating the 53 bits result, we compute one more bit.
1052  *      Together with the remainder, we can decide whether the
1053  *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
1054  *      (it will never equal to 1/2ulp).
1055  *      The rounding mode can be detected by checking whether
1056  *      huge + tiny is equal to huge, and whether huge - tiny is
1057  *      equal to huge for some floating point number "huge" and "tiny".
1058  *
1059  * Special cases:
1060  *      sqrt(+-0) = +-0         ... exact
1061  *      sqrt(inf) = inf
1062  *      sqrt(-ve) = NaN         ... with invalid signal
1063  *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
1064  */
1065 
sqrtd(x: f64) -> f641066 pub fn sqrtd(x: f64) -> f64 {
1067     #[cfg(target_feature = "sse2")]
1068     {
1069         // Note: This path is unlikely since LLVM will usually have already
1070         // optimized sqrt calls into hardware instructions if sse2 is available,
1071         // but if someone does end up here they'll apprected the speed increase.
1072         #[cfg(target_arch = "x86")]
1073         use core::arch::x86::*;
1074         #[cfg(target_arch = "x86_64")]
1075         use core::arch::x86_64::*;
1076         // SAFETY: safe, since `_mm_set_sd` takes a 64-bit float, and returns
1077         // a 128-bit type with the lowest 64-bits as `x`, `_mm_sqrt_ss` calculates
1078         // the sqrt of this 128-bit vector, and `_mm_cvtss_f64` extracts the lower
1079         // 64-bits as a 64-bit float.
1080         unsafe {
1081             let m = _mm_set_sd(x);
1082             let m_sqrt = _mm_sqrt_pd(m);
1083             _mm_cvtsd_f64(m_sqrt)
1084         }
1085     }
1086     #[cfg(not(target_feature = "sse2"))]
1087     {
1088         use core::num::Wrapping;
1089 
1090         const TINY: f64 = 1.0e-300;
1091 
1092         let mut z: f64;
1093         let sign: Wrapping<u32> = Wrapping(0x80000000);
1094         let mut ix0: i32;
1095         let mut s0: i32;
1096         let mut q: i32;
1097         let mut m: i32;
1098         let mut t: i32;
1099         let mut i: i32;
1100         let mut r: Wrapping<u32>;
1101         let mut t1: Wrapping<u32>;
1102         let mut s1: Wrapping<u32>;
1103         let mut ix1: Wrapping<u32>;
1104         let mut q1: Wrapping<u32>;
1105 
1106         ix0 = (x.to_bits() >> 32) as i32;
1107         ix1 = Wrapping(x.to_bits() as u32);
1108 
1109         /* take care of Inf and NaN */
1110         if (ix0 & 0x7ff00000) == 0x7ff00000 {
1111             return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
1112         }
1113         /* take care of zero */
1114         if ix0 <= 0 {
1115             if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
1116                 return x; /* sqrt(+-0) = +-0 */
1117             }
1118             if ix0 < 0 {
1119                 return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
1120             }
1121         }
1122         /* normalize x */
1123         m = ix0 >> 20;
1124         if m == 0 {
1125             /* subnormal x */
1126             while ix0 == 0 {
1127                 m -= 21;
1128                 ix0 |= (ix1 >> 11).0 as i32;
1129                 ix1 <<= 21;
1130             }
1131             i = 0;
1132             while (ix0 & 0x00100000) == 0 {
1133                 i += 1;
1134                 ix0 <<= 1;
1135             }
1136             m -= i - 1;
1137             ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
1138             ix1 = ix1 << i as usize;
1139         }
1140         m -= 1023; /* unbias exponent */
1141         ix0 = (ix0 & 0x000fffff) | 0x00100000;
1142         if (m & 1) == 1 {
1143             /* odd m, double x to make it even */
1144             ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1145             ix1 += ix1;
1146         }
1147         m >>= 1; /* m = [m/2] */
1148 
1149         /* generate sqrt(x) bit by bit */
1150         ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1151         ix1 += ix1;
1152         q = 0; /* [q,q1] = sqrt(x) */
1153         q1 = Wrapping(0);
1154         s0 = 0;
1155         s1 = Wrapping(0);
1156         r = Wrapping(0x00200000); /* r = moving bit from right to left */
1157 
1158         while r != Wrapping(0) {
1159             t = s0 + r.0 as i32;
1160             if t <= ix0 {
1161                 s0 = t + r.0 as i32;
1162                 ix0 -= t;
1163                 q += r.0 as i32;
1164             }
1165             ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1166             ix1 += ix1;
1167             r >>= 1;
1168         }
1169 
1170         r = sign;
1171         while r != Wrapping(0) {
1172             t1 = s1 + r;
1173             t = s0;
1174             if t < ix0 || (t == ix0 && t1 <= ix1) {
1175                 s1 = t1 + r;
1176                 if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
1177                     s0 += 1;
1178                 }
1179                 ix0 -= t;
1180                 if ix1 < t1 {
1181                     ix0 -= 1;
1182                 }
1183                 ix1 -= t1;
1184                 q1 += r;
1185             }
1186             ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1187             ix1 += ix1;
1188             r >>= 1;
1189         }
1190 
1191         /* use floating add to find out rounding direction */
1192         if (ix0 as u32 | ix1.0) != 0 {
1193             z = 1.0 - TINY; /* raise inexact flag */
1194             if z >= 1.0 {
1195                 z = 1.0 + TINY;
1196                 if q1.0 == 0xffffffff {
1197                     q1 = Wrapping(0);
1198                     q += 1;
1199                 } else if z > 1.0 {
1200                     if q1.0 == 0xfffffffe {
1201                         q += 1;
1202                     }
1203                     q1 += Wrapping(2);
1204                 } else {
1205                     q1 += q1 & Wrapping(1);
1206                 }
1207             }
1208         }
1209         ix0 = (q >> 1) + 0x3fe00000;
1210         ix1 = q1 >> 1;
1211         if (q & 1) == 1 {
1212             ix1 |= sign;
1213         }
1214         ix0 += m << 20;
1215         f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
1216     }
1217 }
1218 
1219 #[inline]
get_high_word(x: f64) -> u321220 fn get_high_word(x: f64) -> u32 {
1221     (x.to_bits() >> 32) as u32
1222 }
1223 
1224 #[inline]
with_set_high_word(f: f64, hi: u32) -> f641225 fn with_set_high_word(f: f64, hi: u32) -> f64 {
1226     let mut tmp = f.to_bits();
1227     tmp &= 0x00000000_ffffffff;
1228     tmp |= (hi as u64) << 32;
1229     f64::from_bits(tmp)
1230 }
1231 
1232 #[inline]
with_set_low_word(f: f64, lo: u32) -> f641233 fn with_set_low_word(f: f64, lo: u32) -> f64 {
1234     let mut tmp = f.to_bits();
1235     tmp &= 0xffffffff_00000000;
1236     tmp |= lo as u64;
1237     f64::from_bits(tmp)
1238 }
1239