1 /*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24
25 /* NB: make sure indices in these tables match values above */
26
27 typedef struct {
28 uint32_t mask;
29 int nid;
30 } ssl_cipher_table;
31
32 /* Table of NIDs for each cipher */
33 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
34 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
35 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
36 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
37 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
38 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
39 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
40 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
41 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
42 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
43 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
44 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
45 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
46 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
47 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
48 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
49 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
50 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
51 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
52 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
53 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
54 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
55 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
56 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
57 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
58 };
59
60 #define SSL_COMP_NULL_IDX 0
61 #define SSL_COMP_ZLIB_IDX 1
62 #define SSL_COMP_NUM_IDX 2
63
64 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
65
66 #ifndef OPENSSL_NO_COMP
67 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
68 #endif
69
70 /* NB: make sure indices in this table matches values above */
71 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
72 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
73 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
74 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
75 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
76 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
77 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
78 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
79 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
80 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
81 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
82 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
83 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
84 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
85 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
86 };
87
88 /* *INDENT-OFF* */
89 static const ssl_cipher_table ssl_cipher_table_kx[] = {
90 {SSL_kRSA, NID_kx_rsa},
91 {SSL_kECDHE, NID_kx_ecdhe},
92 {SSL_kDHE, NID_kx_dhe},
93 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
94 {SSL_kDHEPSK, NID_kx_dhe_psk},
95 {SSL_kRSAPSK, NID_kx_rsa_psk},
96 {SSL_kPSK, NID_kx_psk},
97 {SSL_kSRP, NID_kx_srp},
98 {SSL_kGOST, NID_kx_gost},
99 {SSL_kGOST18, NID_kx_gost18},
100 {SSL_kANY, NID_kx_any}
101 };
102
103 static const ssl_cipher_table ssl_cipher_table_auth[] = {
104 {SSL_aRSA, NID_auth_rsa},
105 {SSL_aECDSA, NID_auth_ecdsa},
106 {SSL_aPSK, NID_auth_psk},
107 {SSL_aDSS, NID_auth_dss},
108 {SSL_aGOST01, NID_auth_gost01},
109 {SSL_aGOST12, NID_auth_gost12},
110 {SSL_aSRP, NID_auth_srp},
111 {SSL_aNULL, NID_auth_null},
112 {SSL_aANY, NID_auth_any}
113 };
114 /* *INDENT-ON* */
115
116 /* Utility function for table lookup */
ssl_cipher_info_find(const ssl_cipher_table * table,size_t table_cnt,uint32_t mask)117 static int ssl_cipher_info_find(const ssl_cipher_table * table,
118 size_t table_cnt, uint32_t mask)
119 {
120 size_t i;
121 for (i = 0; i < table_cnt; i++, table++) {
122 if (table->mask == mask)
123 return (int)i;
124 }
125 return -1;
126 }
127
128 #define ssl_cipher_info_lookup(table, x) \
129 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
130
131 /*
132 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
133 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
134 * found
135 */
136 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
137 /* MD5, SHA, GOST94, MAC89 */
138 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
139 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
140 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
141 /* GOST2012_512 */
142 EVP_PKEY_HMAC,
143 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
144 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
145 };
146
147 #define CIPHER_ADD 1
148 #define CIPHER_KILL 2
149 #define CIPHER_DEL 3
150 #define CIPHER_ORD 4
151 #define CIPHER_SPECIAL 5
152 /*
153 * Bump the ciphers to the top of the list.
154 * This rule isn't currently supported by the public cipherstring API.
155 */
156 #define CIPHER_BUMP 6
157
158 typedef struct cipher_order_st {
159 const SSL_CIPHER *cipher;
160 int active;
161 int dead;
162 struct cipher_order_st *next, *prev;
163 } CIPHER_ORDER;
164
165 static const SSL_CIPHER cipher_aliases[] = {
166 /* "ALL" doesn't include eNULL (must be specifically enabled) */
167 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
168 /* "COMPLEMENTOFALL" */
169 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
170
171 /*
172 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
173 * ALL!)
174 */
175 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
176
177 /*
178 * key exchange aliases (some of those using only a single bit here
179 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
180 * combines DHE_DSS and DHE_RSA)
181 */
182 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
183
184 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
185 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
186 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
187
188 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
189 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
190 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
191
192 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
193 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
194 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
195 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
196 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
197 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
198 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
199
200 /* server authentication aliases */
201 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
202 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
203 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
204 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
205 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
206 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
207 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
208 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
209 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
210 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
211 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
212
213 /* aliases combining key exchange and server authentication */
214 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
215 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
216 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
217 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
218 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
219 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
220 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
221 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
222 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
223 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
224
225 /* symmetric encryption aliases */
226 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
227 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
228 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
229 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
230 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
231 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
232 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
233 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
234 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
235 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
236 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
237 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
238 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
239 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
240 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
241 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
242 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
243 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
244 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
245 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
246 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
247 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
248
249 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
250 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
251 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
252 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
253 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
254
255 /* MAC aliases */
256 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
257 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
258 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
259 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
260 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
261 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
262 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
263 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
264
265 /* protocol version aliases */
266 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
267 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
268 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
269 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
270
271 /* strength classes */
272 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
273 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
274 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
275 /* FIPS 140-2 approved ciphersuite */
276 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
277
278 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
279 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
280 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
281 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
282 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
283
284 };
285
286 /*
287 * Search for public key algorithm with given name and return its pkey_id if
288 * it is available. Otherwise return 0
289 */
290 #ifdef OPENSSL_NO_ENGINE
291
get_optional_pkey_id(const char * pkey_name)292 static int get_optional_pkey_id(const char *pkey_name)
293 {
294 const EVP_PKEY_ASN1_METHOD *ameth;
295 int pkey_id = 0;
296 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
297 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
298 ameth) > 0)
299 return pkey_id;
300 return 0;
301 }
302
303 #else
304
get_optional_pkey_id(const char * pkey_name)305 static int get_optional_pkey_id(const char *pkey_name)
306 {
307 const EVP_PKEY_ASN1_METHOD *ameth;
308 ENGINE *tmpeng = NULL;
309 int pkey_id = 0;
310 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
311 if (ameth) {
312 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
313 ameth) <= 0)
314 pkey_id = 0;
315 }
316 tls_engine_finish(tmpeng);
317 return pkey_id;
318 }
319
320 #endif
321
ssl_load_ciphers(SSL_CTX * ctx)322 int ssl_load_ciphers(SSL_CTX *ctx)
323 {
324 size_t i;
325 const ssl_cipher_table *t;
326 EVP_KEYEXCH *kex = NULL;
327 EVP_SIGNATURE *sig = NULL;
328
329 ctx->disabled_enc_mask = 0;
330 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
331 if (t->nid != NID_undef) {
332 const EVP_CIPHER *cipher
333 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
334
335 ctx->ssl_cipher_methods[i] = cipher;
336 if (cipher == NULL)
337 ctx->disabled_enc_mask |= t->mask;
338 }
339 }
340 ctx->disabled_mac_mask = 0;
341 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
342 const EVP_MD *md
343 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
344
345 ctx->ssl_digest_methods[i] = md;
346 if (md == NULL) {
347 ctx->disabled_mac_mask |= t->mask;
348 } else {
349 int tmpsize = EVP_MD_get_size(md);
350 if (!ossl_assert(tmpsize >= 0))
351 return 0;
352 ctx->ssl_mac_secret_size[i] = tmpsize;
353 }
354 }
355
356 ctx->disabled_mkey_mask = 0;
357 ctx->disabled_auth_mask = 0;
358
359 /*
360 * We ignore any errors from the fetches below. They are expected to fail
361 * if theose algorithms are not available.
362 */
363 ERR_set_mark();
364 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
365 if (sig == NULL)
366 ctx->disabled_auth_mask |= SSL_aDSS;
367 else
368 EVP_SIGNATURE_free(sig);
369 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
370 if (kex == NULL)
371 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
372 else
373 EVP_KEYEXCH_free(kex);
374 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
375 if (kex == NULL)
376 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
377 else
378 EVP_KEYEXCH_free(kex);
379 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
380 if (sig == NULL)
381 ctx->disabled_auth_mask |= SSL_aECDSA;
382 else
383 EVP_SIGNATURE_free(sig);
384 ERR_pop_to_mark();
385
386 #ifdef OPENSSL_NO_PSK
387 ctx->disabled_mkey_mask |= SSL_PSK;
388 ctx->disabled_auth_mask |= SSL_aPSK;
389 #endif
390 #ifdef OPENSSL_NO_SRP
391 ctx->disabled_mkey_mask |= SSL_kSRP;
392 #endif
393
394 /*
395 * Check for presence of GOST 34.10 algorithms, and if they are not
396 * present, disable appropriate auth and key exchange
397 */
398 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
399 sizeof(ctx->ssl_mac_pkey_id));
400
401 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
402 get_optional_pkey_id(SN_id_Gost28147_89_MAC);
403 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
404 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
405 else
406 ctx->disabled_mac_mask |= SSL_GOST89MAC;
407
408 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
409 get_optional_pkey_id(SN_gost_mac_12);
410 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
411 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
412 else
413 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
414
415 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
416 get_optional_pkey_id(SN_magma_mac);
417 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
418 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
419 else
420 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
421
422 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
423 get_optional_pkey_id(SN_kuznyechik_mac);
424 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
425 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
426 else
427 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
428
429 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
430 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
431 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
432 ctx->disabled_auth_mask |= SSL_aGOST12;
433 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
434 ctx->disabled_auth_mask |= SSL_aGOST12;
435 /*
436 * Disable GOST key exchange if no GOST signature algs are available *
437 */
438 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
439 (SSL_aGOST01 | SSL_aGOST12))
440 ctx->disabled_mkey_mask |= SSL_kGOST;
441
442 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
443 ctx->disabled_mkey_mask |= SSL_kGOST18;
444
445 return 1;
446 }
447
448 #ifndef OPENSSL_NO_COMP
449
sk_comp_cmp(const SSL_COMP * const * a,const SSL_COMP * const * b)450 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
451 {
452 return ((*a)->id - (*b)->id);
453 }
454
DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)455 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
456 {
457 SSL_COMP *comp = NULL;
458 COMP_METHOD *method = COMP_zlib();
459
460 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
461
462 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
463 comp = OPENSSL_malloc(sizeof(*comp));
464 if (comp != NULL) {
465 comp->method = method;
466 comp->id = SSL_COMP_ZLIB_IDX;
467 comp->name = COMP_get_name(method);
468 sk_SSL_COMP_push(ssl_comp_methods, comp);
469 sk_SSL_COMP_sort(ssl_comp_methods);
470 }
471 }
472 return 1;
473 }
474
load_builtin_compressions(void)475 static int load_builtin_compressions(void)
476 {
477 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
478 }
479 #endif
480
ssl_cipher_get_evp_cipher(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_CIPHER ** enc)481 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
482 const EVP_CIPHER **enc)
483 {
484 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
485
486 if (i == -1) {
487 *enc = NULL;
488 } else {
489 if (i == SSL_ENC_NULL_IDX) {
490 /*
491 * We assume we don't care about this coming from an ENGINE so
492 * just do a normal EVP_CIPHER_fetch instead of
493 * ssl_evp_cipher_fetch()
494 */
495 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
496 if (*enc == NULL)
497 return 0;
498 } else {
499 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
500
501 if (cipher == NULL
502 || !ssl_evp_cipher_up_ref(cipher))
503 return 0;
504 *enc = ctx->ssl_cipher_methods[i];
505 }
506 }
507 return 1;
508 }
509
ssl_cipher_get_evp(SSL_CTX * ctx,const SSL_SESSION * s,const EVP_CIPHER ** enc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size,SSL_COMP ** comp,int use_etm)510 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
511 const EVP_CIPHER **enc, const EVP_MD **md,
512 int *mac_pkey_type, size_t *mac_secret_size,
513 SSL_COMP **comp, int use_etm)
514 {
515 int i;
516 const SSL_CIPHER *c;
517
518 c = s->cipher;
519 if (c == NULL)
520 return 0;
521 if (comp != NULL) {
522 SSL_COMP ctmp;
523 #ifndef OPENSSL_NO_COMP
524 if (!load_builtin_compressions()) {
525 /*
526 * Currently don't care, since a failure only means that
527 * ssl_comp_methods is NULL, which is perfectly OK
528 */
529 }
530 #endif
531 *comp = NULL;
532 ctmp.id = s->compress_meth;
533 if (ssl_comp_methods != NULL) {
534 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
535 if (i >= 0)
536 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
537 }
538 /* If were only interested in comp then return success */
539 if ((enc == NULL) && (md == NULL))
540 return 1;
541 }
542
543 if ((enc == NULL) || (md == NULL))
544 return 0;
545
546 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
547 return 0;
548
549 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
550 if (i == -1) {
551 *md = NULL;
552 if (mac_pkey_type != NULL)
553 *mac_pkey_type = NID_undef;
554 if (mac_secret_size != NULL)
555 *mac_secret_size = 0;
556 if (c->algorithm_mac == SSL_AEAD)
557 mac_pkey_type = NULL;
558 } else {
559 const EVP_MD *digest = ctx->ssl_digest_methods[i];
560
561 if (digest == NULL
562 || !ssl_evp_md_up_ref(digest)) {
563 ssl_evp_cipher_free(*enc);
564 return 0;
565 }
566 *md = digest;
567 if (mac_pkey_type != NULL)
568 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
569 if (mac_secret_size != NULL)
570 *mac_secret_size = ctx->ssl_mac_secret_size[i];
571 }
572
573 if ((*enc != NULL)
574 && (*md != NULL
575 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
576 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
577 const EVP_CIPHER *evp = NULL;
578
579 if (use_etm
580 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
581 || s->ssl_version < TLS1_VERSION)
582 return 1;
583
584 if (c->algorithm_enc == SSL_RC4
585 && c->algorithm_mac == SSL_MD5)
586 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
587 ctx->propq);
588 else if (c->algorithm_enc == SSL_AES128
589 && c->algorithm_mac == SSL_SHA1)
590 evp = ssl_evp_cipher_fetch(ctx->libctx,
591 NID_aes_128_cbc_hmac_sha1,
592 ctx->propq);
593 else if (c->algorithm_enc == SSL_AES256
594 && c->algorithm_mac == SSL_SHA1)
595 evp = ssl_evp_cipher_fetch(ctx->libctx,
596 NID_aes_256_cbc_hmac_sha1,
597 ctx->propq);
598 else if (c->algorithm_enc == SSL_AES128
599 && c->algorithm_mac == SSL_SHA256)
600 evp = ssl_evp_cipher_fetch(ctx->libctx,
601 NID_aes_128_cbc_hmac_sha256,
602 ctx->propq);
603 else if (c->algorithm_enc == SSL_AES256
604 && c->algorithm_mac == SSL_SHA256)
605 evp = ssl_evp_cipher_fetch(ctx->libctx,
606 NID_aes_256_cbc_hmac_sha256,
607 ctx->propq);
608
609 if (evp != NULL) {
610 ssl_evp_cipher_free(*enc);
611 ssl_evp_md_free(*md);
612 *enc = evp;
613 *md = NULL;
614 }
615 return 1;
616 }
617
618 return 0;
619 }
620
ssl_md(SSL_CTX * ctx,int idx)621 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
622 {
623 idx &= SSL_HANDSHAKE_MAC_MASK;
624 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
625 return NULL;
626 return ctx->ssl_digest_methods[idx];
627 }
628
ssl_handshake_md(SSL * s)629 const EVP_MD *ssl_handshake_md(SSL *s)
630 {
631 return ssl_md(s->ctx, ssl_get_algorithm2(s));
632 }
633
ssl_prf_md(SSL * s)634 const EVP_MD *ssl_prf_md(SSL *s)
635 {
636 return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
637 }
638
639 #define ITEM_SEP(a) \
640 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
641
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)642 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
643 CIPHER_ORDER **tail)
644 {
645 if (curr == *tail)
646 return;
647 if (curr == *head)
648 *head = curr->next;
649 if (curr->prev != NULL)
650 curr->prev->next = curr->next;
651 if (curr->next != NULL)
652 curr->next->prev = curr->prev;
653 (*tail)->next = curr;
654 curr->prev = *tail;
655 curr->next = NULL;
656 *tail = curr;
657 }
658
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)659 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
660 CIPHER_ORDER **tail)
661 {
662 if (curr == *head)
663 return;
664 if (curr == *tail)
665 *tail = curr->prev;
666 if (curr->next != NULL)
667 curr->next->prev = curr->prev;
668 if (curr->prev != NULL)
669 curr->prev->next = curr->next;
670 (*head)->prev = curr;
671 curr->next = *head;
672 curr->prev = NULL;
673 *head = curr;
674 }
675
ssl_cipher_collect_ciphers(const SSL_METHOD * ssl_method,int num_of_ciphers,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)676 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
677 int num_of_ciphers,
678 uint32_t disabled_mkey,
679 uint32_t disabled_auth,
680 uint32_t disabled_enc,
681 uint32_t disabled_mac,
682 CIPHER_ORDER *co_list,
683 CIPHER_ORDER **head_p,
684 CIPHER_ORDER **tail_p)
685 {
686 int i, co_list_num;
687 const SSL_CIPHER *c;
688
689 /*
690 * We have num_of_ciphers descriptions compiled in, depending on the
691 * method selected (SSLv3, TLSv1 etc).
692 * These will later be sorted in a linked list with at most num
693 * entries.
694 */
695
696 /* Get the initial list of ciphers */
697 co_list_num = 0; /* actual count of ciphers */
698 for (i = 0; i < num_of_ciphers; i++) {
699 c = ssl_method->get_cipher(i);
700 /* drop those that use any of that is not available */
701 if (c == NULL || !c->valid)
702 continue;
703 if ((c->algorithm_mkey & disabled_mkey) ||
704 (c->algorithm_auth & disabled_auth) ||
705 (c->algorithm_enc & disabled_enc) ||
706 (c->algorithm_mac & disabled_mac))
707 continue;
708 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
709 c->min_tls == 0)
710 continue;
711 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
712 c->min_dtls == 0)
713 continue;
714
715 co_list[co_list_num].cipher = c;
716 co_list[co_list_num].next = NULL;
717 co_list[co_list_num].prev = NULL;
718 co_list[co_list_num].active = 0;
719 co_list_num++;
720 }
721
722 /*
723 * Prepare linked list from list entries
724 */
725 if (co_list_num > 0) {
726 co_list[0].prev = NULL;
727
728 if (co_list_num > 1) {
729 co_list[0].next = &co_list[1];
730
731 for (i = 1; i < co_list_num - 1; i++) {
732 co_list[i].prev = &co_list[i - 1];
733 co_list[i].next = &co_list[i + 1];
734 }
735
736 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
737 }
738
739 co_list[co_list_num - 1].next = NULL;
740
741 *head_p = &co_list[0];
742 *tail_p = &co_list[co_list_num - 1];
743 }
744 }
745
ssl_cipher_collect_aliases(const SSL_CIPHER ** ca_list,int num_of_group_aliases,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * head)746 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
747 int num_of_group_aliases,
748 uint32_t disabled_mkey,
749 uint32_t disabled_auth,
750 uint32_t disabled_enc,
751 uint32_t disabled_mac,
752 CIPHER_ORDER *head)
753 {
754 CIPHER_ORDER *ciph_curr;
755 const SSL_CIPHER **ca_curr;
756 int i;
757 uint32_t mask_mkey = ~disabled_mkey;
758 uint32_t mask_auth = ~disabled_auth;
759 uint32_t mask_enc = ~disabled_enc;
760 uint32_t mask_mac = ~disabled_mac;
761
762 /*
763 * First, add the real ciphers as already collected
764 */
765 ciph_curr = head;
766 ca_curr = ca_list;
767 while (ciph_curr != NULL) {
768 *ca_curr = ciph_curr->cipher;
769 ca_curr++;
770 ciph_curr = ciph_curr->next;
771 }
772
773 /*
774 * Now we add the available ones from the cipher_aliases[] table.
775 * They represent either one or more algorithms, some of which
776 * in any affected category must be supported (set in enabled_mask),
777 * or represent a cipher strength value (will be added in any case because algorithms=0).
778 */
779 for (i = 0; i < num_of_group_aliases; i++) {
780 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
781 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
782 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
783 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
784
785 if (algorithm_mkey)
786 if ((algorithm_mkey & mask_mkey) == 0)
787 continue;
788
789 if (algorithm_auth)
790 if ((algorithm_auth & mask_auth) == 0)
791 continue;
792
793 if (algorithm_enc)
794 if ((algorithm_enc & mask_enc) == 0)
795 continue;
796
797 if (algorithm_mac)
798 if ((algorithm_mac & mask_mac) == 0)
799 continue;
800
801 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
802 ca_curr++;
803 }
804
805 *ca_curr = NULL; /* end of list */
806 }
807
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,int min_tls,uint32_t algo_strength,int rule,int32_t strength_bits,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)808 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
809 uint32_t alg_auth, uint32_t alg_enc,
810 uint32_t alg_mac, int min_tls,
811 uint32_t algo_strength, int rule,
812 int32_t strength_bits, CIPHER_ORDER **head_p,
813 CIPHER_ORDER **tail_p)
814 {
815 CIPHER_ORDER *head, *tail, *curr, *next, *last;
816 const SSL_CIPHER *cp;
817 int reverse = 0;
818
819 OSSL_TRACE_BEGIN(TLS_CIPHER){
820 BIO_printf(trc_out,
821 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
822 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
823 algo_strength, strength_bits);
824 }
825
826 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
827 reverse = 1; /* needed to maintain sorting between currently
828 * deleted ciphers */
829
830 head = *head_p;
831 tail = *tail_p;
832
833 if (reverse) {
834 next = tail;
835 last = head;
836 } else {
837 next = head;
838 last = tail;
839 }
840
841 curr = NULL;
842 for (;;) {
843 if (curr == last)
844 break;
845
846 curr = next;
847
848 if (curr == NULL)
849 break;
850
851 next = reverse ? curr->prev : curr->next;
852
853 cp = curr->cipher;
854
855 /*
856 * Selection criteria is either the value of strength_bits
857 * or the algorithms used.
858 */
859 if (strength_bits >= 0) {
860 if (strength_bits != cp->strength_bits)
861 continue;
862 } else {
863 if (trc_out != NULL) {
864 BIO_printf(trc_out,
865 "\nName: %s:"
866 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
867 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
868 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
869 cp->algo_strength);
870 }
871 if (cipher_id != 0 && (cipher_id != cp->id))
872 continue;
873 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
874 continue;
875 if (alg_auth && !(alg_auth & cp->algorithm_auth))
876 continue;
877 if (alg_enc && !(alg_enc & cp->algorithm_enc))
878 continue;
879 if (alg_mac && !(alg_mac & cp->algorithm_mac))
880 continue;
881 if (min_tls && (min_tls != cp->min_tls))
882 continue;
883 if ((algo_strength & SSL_STRONG_MASK)
884 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
885 continue;
886 if ((algo_strength & SSL_DEFAULT_MASK)
887 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
888 continue;
889 }
890
891 if (trc_out != NULL)
892 BIO_printf(trc_out, "Action = %d\n", rule);
893
894 /* add the cipher if it has not been added yet. */
895 if (rule == CIPHER_ADD) {
896 /* reverse == 0 */
897 if (!curr->active) {
898 ll_append_tail(&head, curr, &tail);
899 curr->active = 1;
900 }
901 }
902 /* Move the added cipher to this location */
903 else if (rule == CIPHER_ORD) {
904 /* reverse == 0 */
905 if (curr->active) {
906 ll_append_tail(&head, curr, &tail);
907 }
908 } else if (rule == CIPHER_DEL) {
909 /* reverse == 1 */
910 if (curr->active) {
911 /*
912 * most recently deleted ciphersuites get best positions for
913 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
914 * in reverse to maintain the order)
915 */
916 ll_append_head(&head, curr, &tail);
917 curr->active = 0;
918 }
919 } else if (rule == CIPHER_BUMP) {
920 if (curr->active)
921 ll_append_head(&head, curr, &tail);
922 } else if (rule == CIPHER_KILL) {
923 /* reverse == 0 */
924 if (head == curr)
925 head = curr->next;
926 else
927 curr->prev->next = curr->next;
928 if (tail == curr)
929 tail = curr->prev;
930 curr->active = 0;
931 if (curr->next != NULL)
932 curr->next->prev = curr->prev;
933 if (curr->prev != NULL)
934 curr->prev->next = curr->next;
935 curr->next = NULL;
936 curr->prev = NULL;
937 }
938 }
939
940 *head_p = head;
941 *tail_p = tail;
942
943 OSSL_TRACE_END(TLS_CIPHER);
944 }
945
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)946 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
947 CIPHER_ORDER **tail_p)
948 {
949 int32_t max_strength_bits;
950 int i, *number_uses;
951 CIPHER_ORDER *curr;
952
953 /*
954 * This routine sorts the ciphers with descending strength. The sorting
955 * must keep the pre-sorted sequence, so we apply the normal sorting
956 * routine as '+' movement to the end of the list.
957 */
958 max_strength_bits = 0;
959 curr = *head_p;
960 while (curr != NULL) {
961 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
962 max_strength_bits = curr->cipher->strength_bits;
963 curr = curr->next;
964 }
965
966 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
967 if (number_uses == NULL) {
968 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
969 return 0;
970 }
971
972 /*
973 * Now find the strength_bits values actually used
974 */
975 curr = *head_p;
976 while (curr != NULL) {
977 if (curr->active)
978 number_uses[curr->cipher->strength_bits]++;
979 curr = curr->next;
980 }
981 /*
982 * Go through the list of used strength_bits values in descending
983 * order.
984 */
985 for (i = max_strength_bits; i >= 0; i--)
986 if (number_uses[i] > 0)
987 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
988 tail_p);
989
990 OPENSSL_free(number_uses);
991 return 1;
992 }
993
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,const SSL_CIPHER ** ca_list,CERT * c)994 static int ssl_cipher_process_rulestr(const char *rule_str,
995 CIPHER_ORDER **head_p,
996 CIPHER_ORDER **tail_p,
997 const SSL_CIPHER **ca_list, CERT *c)
998 {
999 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
1000 int min_tls;
1001 const char *l, *buf;
1002 int j, multi, found, rule, retval, ok, buflen;
1003 uint32_t cipher_id = 0;
1004 char ch;
1005
1006 retval = 1;
1007 l = rule_str;
1008 for ( ; ; ) {
1009 ch = *l;
1010
1011 if (ch == '\0')
1012 break; /* done */
1013 if (ch == '-') {
1014 rule = CIPHER_DEL;
1015 l++;
1016 } else if (ch == '+') {
1017 rule = CIPHER_ORD;
1018 l++;
1019 } else if (ch == '!') {
1020 rule = CIPHER_KILL;
1021 l++;
1022 } else if (ch == '@') {
1023 rule = CIPHER_SPECIAL;
1024 l++;
1025 } else {
1026 rule = CIPHER_ADD;
1027 }
1028
1029 if (ITEM_SEP(ch)) {
1030 l++;
1031 continue;
1032 }
1033
1034 alg_mkey = 0;
1035 alg_auth = 0;
1036 alg_enc = 0;
1037 alg_mac = 0;
1038 min_tls = 0;
1039 algo_strength = 0;
1040
1041 for (;;) {
1042 ch = *l;
1043 buf = l;
1044 buflen = 0;
1045 #ifndef CHARSET_EBCDIC
1046 while (((ch >= 'A') && (ch <= 'Z')) ||
1047 ((ch >= '0') && (ch <= '9')) ||
1048 ((ch >= 'a') && (ch <= 'z')) ||
1049 (ch == '-') || (ch == '.') || (ch == '='))
1050 #else
1051 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1052 || (ch == '='))
1053 #endif
1054 {
1055 ch = *(++l);
1056 buflen++;
1057 }
1058
1059 if (buflen == 0) {
1060 /*
1061 * We hit something we cannot deal with,
1062 * it is no command or separator nor
1063 * alphanumeric, so we call this an error.
1064 */
1065 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1066 return 0;
1067 }
1068
1069 if (rule == CIPHER_SPECIAL) {
1070 found = 0; /* unused -- avoid compiler warning */
1071 break; /* special treatment */
1072 }
1073
1074 /* check for multi-part specification */
1075 if (ch == '+') {
1076 multi = 1;
1077 l++;
1078 } else {
1079 multi = 0;
1080 }
1081
1082 /*
1083 * Now search for the cipher alias in the ca_list. Be careful
1084 * with the strncmp, because the "buflen" limitation
1085 * will make the rule "ADH:SOME" and the cipher
1086 * "ADH-MY-CIPHER" look like a match for buflen=3.
1087 * So additionally check whether the cipher name found
1088 * has the correct length. We can save a strlen() call:
1089 * just checking for the '\0' at the right place is
1090 * sufficient, we have to strncmp() anyway. (We cannot
1091 * use strcmp(), because buf is not '\0' terminated.)
1092 */
1093 j = found = 0;
1094 cipher_id = 0;
1095 while (ca_list[j]) {
1096 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1097 && (ca_list[j]->name[buflen] == '\0')) {
1098 found = 1;
1099 break;
1100 } else
1101 j++;
1102 }
1103
1104 if (!found)
1105 break; /* ignore this entry */
1106
1107 if (ca_list[j]->algorithm_mkey) {
1108 if (alg_mkey) {
1109 alg_mkey &= ca_list[j]->algorithm_mkey;
1110 if (!alg_mkey) {
1111 found = 0;
1112 break;
1113 }
1114 } else {
1115 alg_mkey = ca_list[j]->algorithm_mkey;
1116 }
1117 }
1118
1119 if (ca_list[j]->algorithm_auth) {
1120 if (alg_auth) {
1121 alg_auth &= ca_list[j]->algorithm_auth;
1122 if (!alg_auth) {
1123 found = 0;
1124 break;
1125 }
1126 } else {
1127 alg_auth = ca_list[j]->algorithm_auth;
1128 }
1129 }
1130
1131 if (ca_list[j]->algorithm_enc) {
1132 if (alg_enc) {
1133 alg_enc &= ca_list[j]->algorithm_enc;
1134 if (!alg_enc) {
1135 found = 0;
1136 break;
1137 }
1138 } else {
1139 alg_enc = ca_list[j]->algorithm_enc;
1140 }
1141 }
1142
1143 if (ca_list[j]->algorithm_mac) {
1144 if (alg_mac) {
1145 alg_mac &= ca_list[j]->algorithm_mac;
1146 if (!alg_mac) {
1147 found = 0;
1148 break;
1149 }
1150 } else {
1151 alg_mac = ca_list[j]->algorithm_mac;
1152 }
1153 }
1154
1155 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1156 if (algo_strength & SSL_STRONG_MASK) {
1157 algo_strength &=
1158 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1159 ~SSL_STRONG_MASK;
1160 if (!(algo_strength & SSL_STRONG_MASK)) {
1161 found = 0;
1162 break;
1163 }
1164 } else {
1165 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1166 }
1167 }
1168
1169 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1170 if (algo_strength & SSL_DEFAULT_MASK) {
1171 algo_strength &=
1172 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1173 ~SSL_DEFAULT_MASK;
1174 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1175 found = 0;
1176 break;
1177 }
1178 } else {
1179 algo_strength |=
1180 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1181 }
1182 }
1183
1184 if (ca_list[j]->valid) {
1185 /*
1186 * explicit ciphersuite found; its protocol version does not
1187 * become part of the search pattern!
1188 */
1189
1190 cipher_id = ca_list[j]->id;
1191 } else {
1192 /*
1193 * not an explicit ciphersuite; only in this case, the
1194 * protocol version is considered part of the search pattern
1195 */
1196
1197 if (ca_list[j]->min_tls) {
1198 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1199 found = 0;
1200 break;
1201 } else {
1202 min_tls = ca_list[j]->min_tls;
1203 }
1204 }
1205 }
1206
1207 if (!multi)
1208 break;
1209 }
1210
1211 /*
1212 * Ok, we have the rule, now apply it
1213 */
1214 if (rule == CIPHER_SPECIAL) { /* special command */
1215 ok = 0;
1216 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1217 ok = ssl_cipher_strength_sort(head_p, tail_p);
1218 } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1219 int level = buf[9] - '0';
1220 if (level < 0 || level > 5) {
1221 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1222 } else {
1223 c->sec_level = level;
1224 ok = 1;
1225 }
1226 } else {
1227 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1228 }
1229 if (ok == 0)
1230 retval = 0;
1231 /*
1232 * We do not support any "multi" options
1233 * together with "@", so throw away the
1234 * rest of the command, if any left, until
1235 * end or ':' is found.
1236 */
1237 while ((*l != '\0') && !ITEM_SEP(*l))
1238 l++;
1239 } else if (found) {
1240 ssl_cipher_apply_rule(cipher_id,
1241 alg_mkey, alg_auth, alg_enc, alg_mac,
1242 min_tls, algo_strength, rule, -1, head_p,
1243 tail_p);
1244 } else {
1245 while ((*l != '\0') && !ITEM_SEP(*l))
1246 l++;
1247 }
1248 if (*l == '\0')
1249 break; /* done */
1250 }
1251
1252 return retval;
1253 }
1254
check_suiteb_cipher_list(const SSL_METHOD * meth,CERT * c,const char ** prule_str)1255 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1256 const char **prule_str)
1257 {
1258 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1259 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1260 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1261 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1262 suiteb_comb2 = 1;
1263 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1264 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1265 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1266 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1267 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1268 }
1269
1270 if (suiteb_flags) {
1271 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1272 c->cert_flags |= suiteb_flags;
1273 } else {
1274 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1275 }
1276
1277 if (!suiteb_flags)
1278 return 1;
1279 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1280
1281 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1282 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1283 return 0;
1284 }
1285
1286 switch (suiteb_flags) {
1287 case SSL_CERT_FLAG_SUITEB_128_LOS:
1288 if (suiteb_comb2)
1289 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1290 else
1291 *prule_str =
1292 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1293 break;
1294 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1295 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1296 break;
1297 case SSL_CERT_FLAG_SUITEB_192_LOS:
1298 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1299 break;
1300 }
1301 return 1;
1302 }
1303
ciphersuite_cb(const char * elem,int len,void * arg)1304 static int ciphersuite_cb(const char *elem, int len, void *arg)
1305 {
1306 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1307 const SSL_CIPHER *cipher;
1308 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1309 char name[80];
1310
1311 if (len > (int)(sizeof(name) - 1))
1312 /* Anyway return 1 so we can parse rest of the list */
1313 return 1;
1314
1315 memcpy(name, elem, len);
1316 name[len] = '\0';
1317
1318 cipher = ssl3_get_cipher_by_std_name(name);
1319 if (cipher == NULL)
1320 /* Ciphersuite not found but return 1 to parse rest of the list */
1321 return 1;
1322
1323 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1324 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1325 return 0;
1326 }
1327
1328 return 1;
1329 }
1330
set_ciphersuites(STACK_OF (SSL_CIPHER)** currciphers,const char * str)1331 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1332 {
1333 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1334
1335 if (newciphers == NULL)
1336 return 0;
1337
1338 /* Parse the list. We explicitly allow an empty list */
1339 if (*str != '\0'
1340 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1341 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1342 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1343 sk_SSL_CIPHER_free(newciphers);
1344 return 0;
1345 }
1346 sk_SSL_CIPHER_free(*currciphers);
1347 *currciphers = newciphers;
1348
1349 return 1;
1350 }
1351
update_cipher_list_by_id(STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* cipherstack)1352 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1353 STACK_OF(SSL_CIPHER) *cipherstack)
1354 {
1355 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1356
1357 if (tmp_cipher_list == NULL) {
1358 return 0;
1359 }
1360
1361 sk_SSL_CIPHER_free(*cipher_list_by_id);
1362 *cipher_list_by_id = tmp_cipher_list;
1363
1364 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1365 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1366
1367 return 1;
1368 }
1369
update_cipher_list(SSL_CTX * ctx,STACK_OF (SSL_CIPHER)** cipher_list,STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* tls13_ciphersuites)1370 static int update_cipher_list(SSL_CTX *ctx,
1371 STACK_OF(SSL_CIPHER) **cipher_list,
1372 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1373 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1374 {
1375 int i;
1376 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1377
1378 if (tmp_cipher_list == NULL)
1379 return 0;
1380
1381 /*
1382 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1383 * list.
1384 */
1385 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1386 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1387 == TLS1_3_VERSION)
1388 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1389
1390 /* Insert the new TLSv1.3 ciphersuites */
1391 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1392 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1393
1394 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1395 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1396 && (ssl_cipher_table_mac[sslc->algorithm2
1397 & SSL_HANDSHAKE_MAC_MASK].mask
1398 & ctx->disabled_mac_mask) == 0) {
1399 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1400 }
1401 }
1402
1403 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1404 sk_SSL_CIPHER_free(tmp_cipher_list);
1405 return 0;
1406 }
1407
1408 sk_SSL_CIPHER_free(*cipher_list);
1409 *cipher_list = tmp_cipher_list;
1410
1411 return 1;
1412 }
1413
SSL_CTX_set_ciphersuites(SSL_CTX * ctx,const char * str)1414 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1415 {
1416 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1417
1418 if (ret && ctx->cipher_list != NULL)
1419 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1420 ctx->tls13_ciphersuites);
1421
1422 return ret;
1423 }
1424
SSL_set_ciphersuites(SSL * s,const char * str)1425 int SSL_set_ciphersuites(SSL *s, const char *str)
1426 {
1427 STACK_OF(SSL_CIPHER) *cipher_list;
1428 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1429
1430 if (s->cipher_list == NULL) {
1431 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1432 s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1433 }
1434 if (ret && s->cipher_list != NULL)
1435 return update_cipher_list(s->ctx, &s->cipher_list, &s->cipher_list_by_id,
1436 s->tls13_ciphersuites);
1437
1438 return ret;
1439 }
1440
STACK_OF(SSL_CIPHER)1441 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1442 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1443 STACK_OF(SSL_CIPHER) **cipher_list,
1444 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1445 const char *rule_str,
1446 CERT *c)
1447 {
1448 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1449 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1450 STACK_OF(SSL_CIPHER) *cipherstack;
1451 const char *rule_p;
1452 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1453 const SSL_CIPHER **ca_list = NULL;
1454 const SSL_METHOD *ssl_method = ctx->method;
1455
1456 /*
1457 * Return with error if nothing to do.
1458 */
1459 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1460 return NULL;
1461
1462 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1463 return NULL;
1464
1465 /*
1466 * To reduce the work to do we only want to process the compiled
1467 * in algorithms, so we first get the mask of disabled ciphers.
1468 */
1469
1470 disabled_mkey = ctx->disabled_mkey_mask;
1471 disabled_auth = ctx->disabled_auth_mask;
1472 disabled_enc = ctx->disabled_enc_mask;
1473 disabled_mac = ctx->disabled_mac_mask;
1474
1475 /*
1476 * Now we have to collect the available ciphers from the compiled
1477 * in ciphers. We cannot get more than the number compiled in, so
1478 * it is used for allocation.
1479 */
1480 num_of_ciphers = ssl_method->num_ciphers();
1481
1482 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1483 if (co_list == NULL) {
1484 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1485 return NULL; /* Failure */
1486 }
1487
1488 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1489 disabled_mkey, disabled_auth, disabled_enc,
1490 disabled_mac, co_list, &head, &tail);
1491
1492 /* Now arrange all ciphers by preference. */
1493
1494 /*
1495 * Everything else being equal, prefer ephemeral ECDH over other key
1496 * exchange mechanisms.
1497 * For consistency, prefer ECDSA over RSA (though this only matters if the
1498 * server has both certificates, and is using the DEFAULT, or a client
1499 * preference).
1500 */
1501 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1502 -1, &head, &tail);
1503 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1504 &tail);
1505 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1506 &tail);
1507
1508 /* Within each strength group, we prefer GCM over CHACHA... */
1509 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1510 &head, &tail);
1511 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1512 &head, &tail);
1513
1514 /*
1515 * ...and generally, our preferred cipher is AES.
1516 * Note that AEADs will be bumped to take preference after sorting by
1517 * strength.
1518 */
1519 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1520 -1, &head, &tail);
1521
1522 /* Temporarily enable everything else for sorting */
1523 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1524
1525 /* Low priority for MD5 */
1526 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1527 &tail);
1528
1529 /*
1530 * Move anonymous ciphers to the end. Usually, these will remain
1531 * disabled. (For applications that allow them, they aren't too bad, but
1532 * we prefer authenticated ciphers.)
1533 */
1534 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1535 &tail);
1536
1537 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1538 &tail);
1539 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1540 &tail);
1541
1542 /* RC4 is sort-of broken -- move to the end */
1543 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1544 &tail);
1545
1546 /*
1547 * Now sort by symmetric encryption strength. The above ordering remains
1548 * in force within each class
1549 */
1550 if (!ssl_cipher_strength_sort(&head, &tail)) {
1551 OPENSSL_free(co_list);
1552 return NULL;
1553 }
1554
1555 /*
1556 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1557 */
1558 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1559 &head, &tail);
1560
1561 /*
1562 * Irrespective of strength, enforce the following order:
1563 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1564 * Within each group, ciphers remain sorted by strength and previous
1565 * preference, i.e.,
1566 * 1) ECDHE > DHE
1567 * 2) GCM > CHACHA
1568 * 3) AES > rest
1569 * 4) TLS 1.2 > legacy
1570 *
1571 * Because we now bump ciphers to the top of the list, we proceed in
1572 * reverse order of preference.
1573 */
1574 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1575 &head, &tail);
1576 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1577 CIPHER_BUMP, -1, &head, &tail);
1578 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1579 CIPHER_BUMP, -1, &head, &tail);
1580
1581 /* Now disable everything (maintaining the ordering!) */
1582 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1583
1584 /*
1585 * We also need cipher aliases for selecting based on the rule_str.
1586 * There might be two types of entries in the rule_str: 1) names
1587 * of ciphers themselves 2) aliases for groups of ciphers.
1588 * For 1) we need the available ciphers and for 2) the cipher
1589 * groups of cipher_aliases added together in one list (otherwise
1590 * we would be happy with just the cipher_aliases table).
1591 */
1592 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1593 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1594 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1595 if (ca_list == NULL) {
1596 OPENSSL_free(co_list);
1597 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1598 return NULL; /* Failure */
1599 }
1600 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1601 disabled_mkey, disabled_auth, disabled_enc,
1602 disabled_mac, head);
1603
1604 /*
1605 * If the rule_string begins with DEFAULT, apply the default rule
1606 * before using the (possibly available) additional rules.
1607 */
1608 ok = 1;
1609 rule_p = rule_str;
1610 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1611 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1612 &head, &tail, ca_list, c);
1613 rule_p += 7;
1614 if (*rule_p == ':')
1615 rule_p++;
1616 }
1617
1618 if (ok && (rule_p[0] != '\0'))
1619 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1620
1621 OPENSSL_free(ca_list); /* Not needed anymore */
1622
1623 if (!ok) { /* Rule processing failure */
1624 OPENSSL_free(co_list);
1625 return NULL;
1626 }
1627
1628 /*
1629 * Allocate new "cipherstack" for the result, return with error
1630 * if we cannot get one.
1631 */
1632 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1633 OPENSSL_free(co_list);
1634 return NULL;
1635 }
1636
1637 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1638 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1639 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1640
1641 /* Don't include any TLSv1.3 ciphers that are disabled */
1642 if ((sslc->algorithm_enc & disabled_enc) != 0
1643 || (ssl_cipher_table_mac[sslc->algorithm2
1644 & SSL_HANDSHAKE_MAC_MASK].mask
1645 & ctx->disabled_mac_mask) != 0) {
1646 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1647 i--;
1648 continue;
1649 }
1650
1651 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1652 OPENSSL_free(co_list);
1653 sk_SSL_CIPHER_free(cipherstack);
1654 return NULL;
1655 }
1656 }
1657
1658 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1659 BIO_printf(trc_out, "cipher selection:\n");
1660 }
1661 /*
1662 * The cipher selection for the list is done. The ciphers are added
1663 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1664 */
1665 for (curr = head; curr != NULL; curr = curr->next) {
1666 if (curr->active) {
1667 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1668 OPENSSL_free(co_list);
1669 sk_SSL_CIPHER_free(cipherstack);
1670 OSSL_TRACE_CANCEL(TLS_CIPHER);
1671 return NULL;
1672 }
1673 if (trc_out != NULL)
1674 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1675 }
1676 }
1677 OPENSSL_free(co_list); /* Not needed any longer */
1678 OSSL_TRACE_END(TLS_CIPHER);
1679
1680 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1681 sk_SSL_CIPHER_free(cipherstack);
1682 return NULL;
1683 }
1684 sk_SSL_CIPHER_free(*cipher_list);
1685 *cipher_list = cipherstack;
1686
1687 return cipherstack;
1688 }
1689
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1690 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1691 {
1692 const char *ver;
1693 const char *kx, *au, *enc, *mac;
1694 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1695 static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1696
1697 if (buf == NULL) {
1698 len = 128;
1699 if ((buf = OPENSSL_malloc(len)) == NULL) {
1700 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1701 return NULL;
1702 }
1703 } else if (len < 128) {
1704 return NULL;
1705 }
1706
1707 alg_mkey = cipher->algorithm_mkey;
1708 alg_auth = cipher->algorithm_auth;
1709 alg_enc = cipher->algorithm_enc;
1710 alg_mac = cipher->algorithm_mac;
1711
1712 ver = ssl_protocol_to_string(cipher->min_tls);
1713
1714 switch (alg_mkey) {
1715 case SSL_kRSA:
1716 kx = "RSA";
1717 break;
1718 case SSL_kDHE:
1719 kx = "DH";
1720 break;
1721 case SSL_kECDHE:
1722 kx = "ECDH";
1723 break;
1724 case SSL_kPSK:
1725 kx = "PSK";
1726 break;
1727 case SSL_kRSAPSK:
1728 kx = "RSAPSK";
1729 break;
1730 case SSL_kECDHEPSK:
1731 kx = "ECDHEPSK";
1732 break;
1733 case SSL_kDHEPSK:
1734 kx = "DHEPSK";
1735 break;
1736 case SSL_kSRP:
1737 kx = "SRP";
1738 break;
1739 case SSL_kGOST:
1740 kx = "GOST";
1741 break;
1742 case SSL_kGOST18:
1743 kx = "GOST18";
1744 break;
1745 case SSL_kANY:
1746 kx = "any";
1747 break;
1748 default:
1749 kx = "unknown";
1750 }
1751
1752 switch (alg_auth) {
1753 case SSL_aRSA:
1754 au = "RSA";
1755 break;
1756 case SSL_aDSS:
1757 au = "DSS";
1758 break;
1759 case SSL_aNULL:
1760 au = "None";
1761 break;
1762 case SSL_aECDSA:
1763 au = "ECDSA";
1764 break;
1765 case SSL_aPSK:
1766 au = "PSK";
1767 break;
1768 case SSL_aSRP:
1769 au = "SRP";
1770 break;
1771 case SSL_aGOST01:
1772 au = "GOST01";
1773 break;
1774 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1775 case (SSL_aGOST12 | SSL_aGOST01):
1776 au = "GOST12";
1777 break;
1778 case SSL_aANY:
1779 au = "any";
1780 break;
1781 default:
1782 au = "unknown";
1783 break;
1784 }
1785
1786 switch (alg_enc) {
1787 case SSL_DES:
1788 enc = "DES(56)";
1789 break;
1790 case SSL_3DES:
1791 enc = "3DES(168)";
1792 break;
1793 case SSL_RC4:
1794 enc = "RC4(128)";
1795 break;
1796 case SSL_RC2:
1797 enc = "RC2(128)";
1798 break;
1799 case SSL_IDEA:
1800 enc = "IDEA(128)";
1801 break;
1802 case SSL_eNULL:
1803 enc = "None";
1804 break;
1805 case SSL_AES128:
1806 enc = "AES(128)";
1807 break;
1808 case SSL_AES256:
1809 enc = "AES(256)";
1810 break;
1811 case SSL_AES128GCM:
1812 enc = "AESGCM(128)";
1813 break;
1814 case SSL_AES256GCM:
1815 enc = "AESGCM(256)";
1816 break;
1817 case SSL_AES128CCM:
1818 enc = "AESCCM(128)";
1819 break;
1820 case SSL_AES256CCM:
1821 enc = "AESCCM(256)";
1822 break;
1823 case SSL_AES128CCM8:
1824 enc = "AESCCM8(128)";
1825 break;
1826 case SSL_AES256CCM8:
1827 enc = "AESCCM8(256)";
1828 break;
1829 case SSL_CAMELLIA128:
1830 enc = "Camellia(128)";
1831 break;
1832 case SSL_CAMELLIA256:
1833 enc = "Camellia(256)";
1834 break;
1835 case SSL_ARIA128GCM:
1836 enc = "ARIAGCM(128)";
1837 break;
1838 case SSL_ARIA256GCM:
1839 enc = "ARIAGCM(256)";
1840 break;
1841 case SSL_SEED:
1842 enc = "SEED(128)";
1843 break;
1844 case SSL_eGOST2814789CNT:
1845 case SSL_eGOST2814789CNT12:
1846 enc = "GOST89(256)";
1847 break;
1848 case SSL_MAGMA:
1849 enc = "MAGMA";
1850 break;
1851 case SSL_KUZNYECHIK:
1852 enc = "KUZNYECHIK";
1853 break;
1854 case SSL_CHACHA20POLY1305:
1855 enc = "CHACHA20/POLY1305(256)";
1856 break;
1857 default:
1858 enc = "unknown";
1859 break;
1860 }
1861
1862 switch (alg_mac) {
1863 case SSL_MD5:
1864 mac = "MD5";
1865 break;
1866 case SSL_SHA1:
1867 mac = "SHA1";
1868 break;
1869 case SSL_SHA256:
1870 mac = "SHA256";
1871 break;
1872 case SSL_SHA384:
1873 mac = "SHA384";
1874 break;
1875 case SSL_AEAD:
1876 mac = "AEAD";
1877 break;
1878 case SSL_GOST89MAC:
1879 case SSL_GOST89MAC12:
1880 mac = "GOST89";
1881 break;
1882 case SSL_GOST94:
1883 mac = "GOST94";
1884 break;
1885 case SSL_GOST12_256:
1886 case SSL_GOST12_512:
1887 mac = "GOST2012";
1888 break;
1889 default:
1890 mac = "unknown";
1891 break;
1892 }
1893
1894 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1895
1896 return buf;
1897 }
1898
SSL_CIPHER_get_version(const SSL_CIPHER * c)1899 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1900 {
1901 if (c == NULL)
1902 return "(NONE)";
1903
1904 /*
1905 * Backwards-compatibility crutch. In almost all contexts we report TLS
1906 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1907 */
1908 if (c->min_tls == TLS1_VERSION)
1909 return "TLSv1.0";
1910 return ssl_protocol_to_string(c->min_tls);
1911 }
1912
1913 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * c)1914 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1915 {
1916 if (c != NULL)
1917 return c->name;
1918 return "(NONE)";
1919 }
1920
1921 /* return the actual cipher being used in RFC standard name */
SSL_CIPHER_standard_name(const SSL_CIPHER * c)1922 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1923 {
1924 if (c != NULL)
1925 return c->stdname;
1926 return "(NONE)";
1927 }
1928
1929 /* return the OpenSSL name based on given RFC standard name */
OPENSSL_cipher_name(const char * stdname)1930 const char *OPENSSL_cipher_name(const char *stdname)
1931 {
1932 const SSL_CIPHER *c;
1933
1934 if (stdname == NULL)
1935 return "(NONE)";
1936 c = ssl3_get_cipher_by_std_name(stdname);
1937 return SSL_CIPHER_get_name(c);
1938 }
1939
1940 /* number of bits for symmetric cipher */
SSL_CIPHER_get_bits(const SSL_CIPHER * c,int * alg_bits)1941 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1942 {
1943 int ret = 0;
1944
1945 if (c != NULL) {
1946 if (alg_bits != NULL)
1947 *alg_bits = (int)c->alg_bits;
1948 ret = (int)c->strength_bits;
1949 }
1950 return ret;
1951 }
1952
SSL_CIPHER_get_id(const SSL_CIPHER * c)1953 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1954 {
1955 return c->id;
1956 }
1957
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * c)1958 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1959 {
1960 return c->id & 0xFFFF;
1961 }
1962
ssl3_comp_find(STACK_OF (SSL_COMP)* sk,int n)1963 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1964 {
1965 SSL_COMP *ctmp;
1966 int i, nn;
1967
1968 if ((n == 0) || (sk == NULL))
1969 return NULL;
1970 nn = sk_SSL_COMP_num(sk);
1971 for (i = 0; i < nn; i++) {
1972 ctmp = sk_SSL_COMP_value(sk, i);
1973 if (ctmp->id == n)
1974 return ctmp;
1975 }
1976 return NULL;
1977 }
1978
1979 #ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP)1980 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1981 {
1982 return NULL;
1983 }
1984
STACK_OF(SSL_COMP)1985 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1986 *meths)
1987 {
1988 return meths;
1989 }
1990
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1991 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1992 {
1993 return 1;
1994 }
1995
1996 #else
STACK_OF(SSL_COMP)1997 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1998 {
1999 load_builtin_compressions();
2000 return ssl_comp_methods;
2001 }
2002
STACK_OF(SSL_COMP)2003 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2004 *meths)
2005 {
2006 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2007 ssl_comp_methods = meths;
2008 return old_meths;
2009 }
2010
cmeth_free(SSL_COMP * cm)2011 static void cmeth_free(SSL_COMP *cm)
2012 {
2013 OPENSSL_free(cm);
2014 }
2015
ssl_comp_free_compression_methods_int(void)2016 void ssl_comp_free_compression_methods_int(void)
2017 {
2018 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2019 ssl_comp_methods = NULL;
2020 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2021 }
2022
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)2023 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2024 {
2025 SSL_COMP *comp;
2026
2027 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2028 return 1;
2029
2030 /*-
2031 * According to draft-ietf-tls-compression-04.txt, the
2032 * compression number ranges should be the following:
2033 *
2034 * 0 to 63: methods defined by the IETF
2035 * 64 to 192: external party methods assigned by IANA
2036 * 193 to 255: reserved for private use
2037 */
2038 if (id < 193 || id > 255) {
2039 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2040 return 1;
2041 }
2042
2043 comp = OPENSSL_malloc(sizeof(*comp));
2044 if (comp == NULL) {
2045 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2046 return 1;
2047 }
2048
2049 comp->id = id;
2050 comp->method = cm;
2051 load_builtin_compressions();
2052 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2053 OPENSSL_free(comp);
2054 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2055 return 1;
2056 }
2057 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2058 OPENSSL_free(comp);
2059 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2060 return 1;
2061 }
2062 return 0;
2063 }
2064 #endif
2065
SSL_COMP_get_name(const COMP_METHOD * comp)2066 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2067 {
2068 #ifndef OPENSSL_NO_COMP
2069 return comp ? COMP_get_name(comp) : NULL;
2070 #else
2071 return NULL;
2072 #endif
2073 }
2074
SSL_COMP_get0_name(const SSL_COMP * comp)2075 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2076 {
2077 #ifndef OPENSSL_NO_COMP
2078 return comp->name;
2079 #else
2080 return NULL;
2081 #endif
2082 }
2083
SSL_COMP_get_id(const SSL_COMP * comp)2084 int SSL_COMP_get_id(const SSL_COMP *comp)
2085 {
2086 #ifndef OPENSSL_NO_COMP
2087 return comp->id;
2088 #else
2089 return -1;
2090 #endif
2091 }
2092
ssl_get_cipher_by_char(SSL * ssl,const unsigned char * ptr,int all)2093 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2094 int all)
2095 {
2096 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2097
2098 if (c == NULL || (!all && c->valid == 0))
2099 return NULL;
2100 return c;
2101 }
2102
SSL_CIPHER_find(SSL * ssl,const unsigned char * ptr)2103 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2104 {
2105 return ssl->method->get_cipher_by_char(ptr);
2106 }
2107
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * c)2108 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2109 {
2110 int i;
2111 if (c == NULL)
2112 return NID_undef;
2113 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2114 if (i == -1)
2115 return NID_undef;
2116 return ssl_cipher_table_cipher[i].nid;
2117 }
2118
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * c)2119 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2120 {
2121 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2122
2123 if (i == -1)
2124 return NID_undef;
2125 return ssl_cipher_table_mac[i].nid;
2126 }
2127
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * c)2128 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2129 {
2130 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2131
2132 if (i == -1)
2133 return NID_undef;
2134 return ssl_cipher_table_kx[i].nid;
2135 }
2136
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * c)2137 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2138 {
2139 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2140
2141 if (i == -1)
2142 return NID_undef;
2143 return ssl_cipher_table_auth[i].nid;
2144 }
2145
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * c)2146 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2147 {
2148 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2149
2150 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2151 return NULL;
2152 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2153 }
2154
SSL_CIPHER_is_aead(const SSL_CIPHER * c)2155 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2156 {
2157 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2158 }
2159
ssl_cipher_get_overhead(const SSL_CIPHER * c,size_t * mac_overhead,size_t * int_overhead,size_t * blocksize,size_t * ext_overhead)2160 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2161 size_t *int_overhead, size_t *blocksize,
2162 size_t *ext_overhead)
2163 {
2164 size_t mac = 0, in = 0, blk = 0, out = 0;
2165
2166 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2167 * because there are no handy #defines for those. */
2168 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2169 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2170 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2171 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2172 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2173 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2174 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2175 out = 16;
2176 } else if (c->algorithm_mac & SSL_AEAD) {
2177 /* We're supposed to have handled all the AEAD modes above */
2178 return 0;
2179 } else {
2180 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2181 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2182 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2183
2184 if (e_md == NULL)
2185 return 0;
2186
2187 mac = EVP_MD_get_size(e_md);
2188 if (c->algorithm_enc != SSL_eNULL) {
2189 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2190 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2191
2192 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2193 known CBC cipher. */
2194 if (e_ciph == NULL ||
2195 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2196 return 0;
2197
2198 in = 1; /* padding length byte */
2199 out = EVP_CIPHER_get_iv_length(e_ciph);
2200 blk = EVP_CIPHER_get_block_size(e_ciph);
2201 }
2202 }
2203
2204 *mac_overhead = mac;
2205 *int_overhead = in;
2206 *blocksize = blk;
2207 *ext_overhead = out;
2208
2209 return 1;
2210 }
2211
ssl_cert_is_disabled(SSL_CTX * ctx,size_t idx)2212 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2213 {
2214 const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2215
2216 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2217 return 1;
2218 return 0;
2219 }
2220
2221 /*
2222 * Default list of TLSv1.2 (and earlier) ciphers
2223 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2224 * Update both macro and function simultaneously
2225 */
OSSL_default_cipher_list(void)2226 const char *OSSL_default_cipher_list(void)
2227 {
2228 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2229 }
2230
2231 /*
2232 * Default list of TLSv1.3 (and later) ciphers
2233 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2234 * Update both macro and function simultaneously
2235 */
OSSL_default_ciphersuites(void)2236 const char *OSSL_default_ciphersuites(void)
2237 {
2238 return "TLS_AES_256_GCM_SHA384:"
2239 "TLS_CHACHA20_POLY1305_SHA256:"
2240 "TLS_AES_128_GCM_SHA256";
2241 }
2242