• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <net/pkt_cls.h>
42 #include "stmmac_ptp.h"
43 #include "stmmac.h"
44 #include <linux/reset.h>
45 #include <linux/of_mdio.h>
46 #include "dwmac1000.h"
47 #include "dwxgmac2.h"
48 #include "hwif.h"
49 
50 /* As long as the interface is active, we keep the timestamping counter enabled
51  * with fine resolution and binary rollover. This avoid non-monotonic behavior
52  * (clock jumps) when changing timestamping settings at runtime.
53  */
54 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
55 				 PTP_TCR_TSCTRLSSR)
56 
57 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
75 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
76 
77 static int flow_ctrl = FLOW_AUTO;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static const struct net_device_ops stmmac_netdev_ops;
118 static void stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121 
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123 
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)124 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
125 {
126 	int ret = 0;
127 
128 	if (enabled) {
129 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
130 		if (ret)
131 			return ret;
132 		ret = clk_prepare_enable(priv->plat->pclk);
133 		if (ret) {
134 			clk_disable_unprepare(priv->plat->stmmac_clk);
135 			return ret;
136 		}
137 	} else {
138 		clk_disable_unprepare(priv->plat->stmmac_clk);
139 		clk_disable_unprepare(priv->plat->pclk);
140 	}
141 
142 	return ret;
143 }
144 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
145 
146 /**
147  * stmmac_verify_args - verify the driver parameters.
148  * Description: it checks the driver parameters and set a default in case of
149  * errors.
150  */
stmmac_verify_args(void)151 static void stmmac_verify_args(void)
152 {
153 	if (unlikely(watchdog < 0))
154 		watchdog = TX_TIMEO;
155 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
156 		buf_sz = DEFAULT_BUFSIZE;
157 	if (unlikely(flow_ctrl > 1))
158 		flow_ctrl = FLOW_AUTO;
159 	else if (likely(flow_ctrl < 0))
160 		flow_ctrl = FLOW_OFF;
161 	if (unlikely((pause < 0) || (pause > 0xffff)))
162 		pause = PAUSE_TIME;
163 	if (eee_timer < 0)
164 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 }
166 
167 /**
168  * stmmac_disable_all_queues - Disable all queues
169  * @priv: driver private structure
170  */
stmmac_disable_all_queues(struct stmmac_priv * priv)171 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
172 {
173 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
174 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
175 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
176 	u32 queue;
177 
178 	for (queue = 0; queue < maxq; queue++) {
179 		struct stmmac_channel *ch = &priv->channel[queue];
180 
181 		if (queue < rx_queues_cnt)
182 			napi_disable(&ch->rx_napi);
183 		if (queue < tx_queues_cnt)
184 			napi_disable(&ch->tx_napi);
185 	}
186 }
187 
188 /**
189  * stmmac_enable_all_queues - Enable all queues
190  * @priv: driver private structure
191  */
stmmac_enable_all_queues(struct stmmac_priv * priv)192 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
193 {
194 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
195 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
197 	u32 queue;
198 
199 	for (queue = 0; queue < maxq; queue++) {
200 		struct stmmac_channel *ch = &priv->channel[queue];
201 
202 		if (queue < rx_queues_cnt)
203 			napi_enable(&ch->rx_napi);
204 		if (queue < tx_queues_cnt)
205 			napi_enable(&ch->tx_napi);
206 	}
207 }
208 
stmmac_service_event_schedule(struct stmmac_priv * priv)209 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
210 {
211 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
212 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
213 		queue_work(priv->wq, &priv->service_task);
214 }
215 
stmmac_global_err(struct stmmac_priv * priv)216 static void stmmac_global_err(struct stmmac_priv *priv)
217 {
218 	netif_carrier_off(priv->dev);
219 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
220 	stmmac_service_event_schedule(priv);
221 }
222 
223 /**
224  * stmmac_clk_csr_set - dynamically set the MDC clock
225  * @priv: driver private structure
226  * Description: this is to dynamically set the MDC clock according to the csr
227  * clock input.
228  * Note:
229  *	If a specific clk_csr value is passed from the platform
230  *	this means that the CSR Clock Range selection cannot be
231  *	changed at run-time and it is fixed (as reported in the driver
232  *	documentation). Viceversa the driver will try to set the MDC
233  *	clock dynamically according to the actual clock input.
234  */
stmmac_clk_csr_set(struct stmmac_priv * priv)235 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
236 {
237 	u32 clk_rate;
238 
239 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
240 
241 	/* Platform provided default clk_csr would be assumed valid
242 	 * for all other cases except for the below mentioned ones.
243 	 * For values higher than the IEEE 802.3 specified frequency
244 	 * we can not estimate the proper divider as it is not known
245 	 * the frequency of clk_csr_i. So we do not change the default
246 	 * divider.
247 	 */
248 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
249 		if (clk_rate < CSR_F_35M)
250 			priv->clk_csr = STMMAC_CSR_20_35M;
251 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
252 			priv->clk_csr = STMMAC_CSR_35_60M;
253 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
254 			priv->clk_csr = STMMAC_CSR_60_100M;
255 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
256 			priv->clk_csr = STMMAC_CSR_100_150M;
257 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
258 			priv->clk_csr = STMMAC_CSR_150_250M;
259 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
260 			priv->clk_csr = STMMAC_CSR_250_300M;
261 	}
262 
263 	if (priv->plat->has_sun8i) {
264 		if (clk_rate > 160000000)
265 			priv->clk_csr = 0x03;
266 		else if (clk_rate > 80000000)
267 			priv->clk_csr = 0x02;
268 		else if (clk_rate > 40000000)
269 			priv->clk_csr = 0x01;
270 		else
271 			priv->clk_csr = 0;
272 	}
273 
274 	if (priv->plat->has_xgmac) {
275 		if (clk_rate > 400000000)
276 			priv->clk_csr = 0x5;
277 		else if (clk_rate > 350000000)
278 			priv->clk_csr = 0x4;
279 		else if (clk_rate > 300000000)
280 			priv->clk_csr = 0x3;
281 		else if (clk_rate > 250000000)
282 			priv->clk_csr = 0x2;
283 		else if (clk_rate > 150000000)
284 			priv->clk_csr = 0x1;
285 		else
286 			priv->clk_csr = 0x0;
287 	}
288 }
289 
print_pkt(unsigned char * buf,int len)290 static void print_pkt(unsigned char *buf, int len)
291 {
292 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
293 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
294 }
295 
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)296 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
297 {
298 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
299 	u32 avail;
300 
301 	if (tx_q->dirty_tx > tx_q->cur_tx)
302 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
303 	else
304 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
305 
306 	return avail;
307 }
308 
309 /**
310  * stmmac_rx_dirty - Get RX queue dirty
311  * @priv: driver private structure
312  * @queue: RX queue index
313  */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)314 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
315 {
316 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
317 	u32 dirty;
318 
319 	if (rx_q->dirty_rx <= rx_q->cur_rx)
320 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
321 	else
322 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
323 
324 	return dirty;
325 }
326 
327 /**
328  * stmmac_enable_eee_mode - check and enter in LPI mode
329  * @priv: driver private structure
330  * Description: this function is to verify and enter in LPI mode in case of
331  * EEE.
332  */
stmmac_enable_eee_mode(struct stmmac_priv * priv)333 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
334 {
335 	u32 tx_cnt = priv->plat->tx_queues_to_use;
336 	u32 queue;
337 
338 	/* check if all TX queues have the work finished */
339 	for (queue = 0; queue < tx_cnt; queue++) {
340 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
341 
342 		if (tx_q->dirty_tx != tx_q->cur_tx)
343 			return; /* still unfinished work */
344 	}
345 
346 	/* Check and enter in LPI mode */
347 	if (!priv->tx_path_in_lpi_mode)
348 		stmmac_set_eee_mode(priv, priv->hw,
349 				priv->plat->en_tx_lpi_clockgating);
350 }
351 
352 /**
353  * stmmac_disable_eee_mode - disable and exit from LPI mode
354  * @priv: driver private structure
355  * Description: this function is to exit and disable EEE in case of
356  * LPI state is true. This is called by the xmit.
357  */
stmmac_disable_eee_mode(struct stmmac_priv * priv)358 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
359 {
360 	stmmac_reset_eee_mode(priv, priv->hw);
361 	del_timer_sync(&priv->eee_ctrl_timer);
362 	priv->tx_path_in_lpi_mode = false;
363 }
364 
365 /**
366  * stmmac_eee_ctrl_timer - EEE TX SW timer.
367  * @t:  timer_list struct containing private info
368  * Description:
369  *  if there is no data transfer and if we are not in LPI state,
370  *  then MAC Transmitter can be moved to LPI state.
371  */
stmmac_eee_ctrl_timer(struct timer_list * t)372 static void stmmac_eee_ctrl_timer(struct timer_list *t)
373 {
374 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
375 
376 	stmmac_enable_eee_mode(priv);
377 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
378 }
379 
380 /**
381  * stmmac_eee_init - init EEE
382  * @priv: driver private structure
383  * Description:
384  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
385  *  can also manage EEE, this function enable the LPI state and start related
386  *  timer.
387  */
stmmac_eee_init(struct stmmac_priv * priv)388 bool stmmac_eee_init(struct stmmac_priv *priv)
389 {
390 	int eee_tw_timer = priv->eee_tw_timer;
391 
392 	/* Using PCS we cannot dial with the phy registers at this stage
393 	 * so we do not support extra feature like EEE.
394 	 */
395 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
396 	    priv->hw->pcs == STMMAC_PCS_RTBI)
397 		return false;
398 
399 	/* Check if MAC core supports the EEE feature. */
400 	if (!priv->dma_cap.eee)
401 		return false;
402 
403 	mutex_lock(&priv->lock);
404 
405 	/* Check if it needs to be deactivated */
406 	if (!priv->eee_active) {
407 		if (priv->eee_enabled) {
408 			netdev_dbg(priv->dev, "disable EEE\n");
409 			del_timer_sync(&priv->eee_ctrl_timer);
410 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
411 		}
412 		mutex_unlock(&priv->lock);
413 		return false;
414 	}
415 
416 	if (priv->eee_active && !priv->eee_enabled) {
417 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
418 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
419 				     eee_tw_timer);
420 	}
421 
422 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
423 
424 	mutex_unlock(&priv->lock);
425 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
426 	return true;
427 }
428 
429 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
430  * @priv: driver private structure
431  * @p : descriptor pointer
432  * @skb : the socket buffer
433  * Description :
434  * This function will read timestamp from the descriptor & pass it to stack.
435  * and also perform some sanity checks.
436  */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)437 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
438 				   struct dma_desc *p, struct sk_buff *skb)
439 {
440 	struct skb_shared_hwtstamps shhwtstamp;
441 	bool found = false;
442 	u64 ns = 0;
443 
444 	if (!priv->hwts_tx_en)
445 		return;
446 
447 	/* exit if skb doesn't support hw tstamp */
448 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
449 		return;
450 
451 	/* check tx tstamp status */
452 	if (stmmac_get_tx_timestamp_status(priv, p)) {
453 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
454 		found = true;
455 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
456 		found = true;
457 	}
458 
459 	if (found) {
460 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
461 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
462 
463 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
464 		/* pass tstamp to stack */
465 		skb_tstamp_tx(skb, &shhwtstamp);
466 	}
467 }
468 
469 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
470  * @priv: driver private structure
471  * @p : descriptor pointer
472  * @np : next descriptor pointer
473  * @skb : the socket buffer
474  * Description :
475  * This function will read received packet's timestamp from the descriptor
476  * and pass it to stack. It also perform some sanity checks.
477  */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)478 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
479 				   struct dma_desc *np, struct sk_buff *skb)
480 {
481 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
482 	struct dma_desc *desc = p;
483 	u64 ns = 0;
484 
485 	if (!priv->hwts_rx_en)
486 		return;
487 	/* For GMAC4, the valid timestamp is from CTX next desc. */
488 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
489 		desc = np;
490 
491 	/* Check if timestamp is available */
492 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
493 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
494 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
495 		shhwtstamp = skb_hwtstamps(skb);
496 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
497 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
498 	} else  {
499 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
500 	}
501 }
502 
503 /**
504  *  stmmac_hwtstamp_set - control hardware timestamping.
505  *  @dev: device pointer.
506  *  @ifr: An IOCTL specific structure, that can contain a pointer to
507  *  a proprietary structure used to pass information to the driver.
508  *  Description:
509  *  This function configures the MAC to enable/disable both outgoing(TX)
510  *  and incoming(RX) packets time stamping based on user input.
511  *  Return Value:
512  *  0 on success and an appropriate -ve integer on failure.
513  */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)514 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
515 {
516 	struct stmmac_priv *priv = netdev_priv(dev);
517 	struct hwtstamp_config config;
518 	u32 ptp_v2 = 0;
519 	u32 tstamp_all = 0;
520 	u32 ptp_over_ipv4_udp = 0;
521 	u32 ptp_over_ipv6_udp = 0;
522 	u32 ptp_over_ethernet = 0;
523 	u32 snap_type_sel = 0;
524 	u32 ts_master_en = 0;
525 	u32 ts_event_en = 0;
526 
527 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
528 		netdev_alert(priv->dev, "No support for HW time stamping\n");
529 		priv->hwts_tx_en = 0;
530 		priv->hwts_rx_en = 0;
531 
532 		return -EOPNOTSUPP;
533 	}
534 
535 	if (copy_from_user(&config, ifr->ifr_data,
536 			   sizeof(config)))
537 		return -EFAULT;
538 
539 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
540 		   __func__, config.flags, config.tx_type, config.rx_filter);
541 
542 	/* reserved for future extensions */
543 	if (config.flags)
544 		return -EINVAL;
545 
546 	if (config.tx_type != HWTSTAMP_TX_OFF &&
547 	    config.tx_type != HWTSTAMP_TX_ON)
548 		return -ERANGE;
549 
550 	if (priv->adv_ts) {
551 		switch (config.rx_filter) {
552 		case HWTSTAMP_FILTER_NONE:
553 			/* time stamp no incoming packet at all */
554 			config.rx_filter = HWTSTAMP_FILTER_NONE;
555 			break;
556 
557 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
558 			/* PTP v1, UDP, any kind of event packet */
559 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
560 			/* 'xmac' hardware can support Sync, Pdelay_Req and
561 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
562 			 * This leaves Delay_Req timestamps out.
563 			 * Enable all events *and* general purpose message
564 			 * timestamping
565 			 */
566 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
567 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569 			break;
570 
571 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
572 			/* PTP v1, UDP, Sync packet */
573 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
574 			/* take time stamp for SYNC messages only */
575 			ts_event_en = PTP_TCR_TSEVNTENA;
576 
577 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
578 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
579 			break;
580 
581 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
582 			/* PTP v1, UDP, Delay_req packet */
583 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
584 			/* take time stamp for Delay_Req messages only */
585 			ts_master_en = PTP_TCR_TSMSTRENA;
586 			ts_event_en = PTP_TCR_TSEVNTENA;
587 
588 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
589 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
590 			break;
591 
592 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
593 			/* PTP v2, UDP, any kind of event packet */
594 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
595 			ptp_v2 = PTP_TCR_TSVER2ENA;
596 			/* take time stamp for all event messages */
597 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
598 
599 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601 			break;
602 
603 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
604 			/* PTP v2, UDP, Sync packet */
605 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
606 			ptp_v2 = PTP_TCR_TSVER2ENA;
607 			/* take time stamp for SYNC messages only */
608 			ts_event_en = PTP_TCR_TSEVNTENA;
609 
610 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612 			break;
613 
614 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
615 			/* PTP v2, UDP, Delay_req packet */
616 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
617 			ptp_v2 = PTP_TCR_TSVER2ENA;
618 			/* take time stamp for Delay_Req messages only */
619 			ts_master_en = PTP_TCR_TSMSTRENA;
620 			ts_event_en = PTP_TCR_TSEVNTENA;
621 
622 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 			break;
625 
626 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
627 			/* PTP v2/802.AS1 any layer, any kind of event packet */
628 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629 			ptp_v2 = PTP_TCR_TSVER2ENA;
630 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
631 			if (priv->synopsys_id < DWMAC_CORE_4_10)
632 				ts_event_en = PTP_TCR_TSEVNTENA;
633 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 			ptp_over_ethernet = PTP_TCR_TSIPENA;
636 			break;
637 
638 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
639 			/* PTP v2/802.AS1, any layer, Sync packet */
640 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641 			ptp_v2 = PTP_TCR_TSVER2ENA;
642 			/* take time stamp for SYNC messages only */
643 			ts_event_en = PTP_TCR_TSEVNTENA;
644 
645 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647 			ptp_over_ethernet = PTP_TCR_TSIPENA;
648 			break;
649 
650 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 			/* PTP v2/802.AS1, any layer, Delay_req packet */
652 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653 			ptp_v2 = PTP_TCR_TSVER2ENA;
654 			/* take time stamp for Delay_Req messages only */
655 			ts_master_en = PTP_TCR_TSMSTRENA;
656 			ts_event_en = PTP_TCR_TSEVNTENA;
657 
658 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 			ptp_over_ethernet = PTP_TCR_TSIPENA;
661 			break;
662 
663 		case HWTSTAMP_FILTER_NTP_ALL:
664 		case HWTSTAMP_FILTER_ALL:
665 			/* time stamp any incoming packet */
666 			config.rx_filter = HWTSTAMP_FILTER_ALL;
667 			tstamp_all = PTP_TCR_TSENALL;
668 			break;
669 
670 		default:
671 			return -ERANGE;
672 		}
673 	} else {
674 		switch (config.rx_filter) {
675 		case HWTSTAMP_FILTER_NONE:
676 			config.rx_filter = HWTSTAMP_FILTER_NONE;
677 			break;
678 		default:
679 			/* PTP v1, UDP, any kind of event packet */
680 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681 			break;
682 		}
683 	}
684 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686 
687 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
688 
689 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
690 		priv->systime_flags |= tstamp_all | ptp_v2 |
691 				       ptp_over_ethernet | ptp_over_ipv6_udp |
692 				       ptp_over_ipv4_udp | ts_event_en |
693 				       ts_master_en | snap_type_sel;
694 	}
695 
696 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
697 
698 	memcpy(&priv->tstamp_config, &config, sizeof(config));
699 
700 	return copy_to_user(ifr->ifr_data, &config,
701 			    sizeof(config)) ? -EFAULT : 0;
702 }
703 
704 /**
705  *  stmmac_hwtstamp_get - read hardware timestamping.
706  *  @dev: device pointer.
707  *  @ifr: An IOCTL specific structure, that can contain a pointer to
708  *  a proprietary structure used to pass information to the driver.
709  *  Description:
710  *  This function obtain the current hardware timestamping settings
711  *  as requested.
712  */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)713 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
714 {
715 	struct stmmac_priv *priv = netdev_priv(dev);
716 	struct hwtstamp_config *config = &priv->tstamp_config;
717 
718 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
719 		return -EOPNOTSUPP;
720 
721 	return copy_to_user(ifr->ifr_data, config,
722 			    sizeof(*config)) ? -EFAULT : 0;
723 }
724 
725 /**
726  * stmmac_init_tstamp_counter - init hardware timestamping counter
727  * @priv: driver private structure
728  * @systime_flags: timestamping flags
729  * Description:
730  * Initialize hardware counter for packet timestamping.
731  * This is valid as long as the interface is open and not suspended.
732  * Will be rerun after resuming from suspend, case in which the timestamping
733  * flags updated by stmmac_hwtstamp_set() also need to be restored.
734  */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)735 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
736 {
737 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
738 	struct timespec64 now;
739 	u32 sec_inc = 0;
740 	u64 temp = 0;
741 
742 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743 		return -EOPNOTSUPP;
744 
745 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
746 	priv->systime_flags = systime_flags;
747 
748 	/* program Sub Second Increment reg */
749 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
750 					   priv->plat->clk_ptp_rate,
751 					   xmac, &sec_inc);
752 	temp = div_u64(1000000000ULL, sec_inc);
753 
754 	/* Store sub second increment for later use */
755 	priv->sub_second_inc = sec_inc;
756 
757 	/* calculate default added value:
758 	 * formula is :
759 	 * addend = (2^32)/freq_div_ratio;
760 	 * where, freq_div_ratio = 1e9ns/sec_inc
761 	 */
762 	temp = (u64)(temp << 32);
763 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
764 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
765 
766 	/* initialize system time */
767 	ktime_get_real_ts64(&now);
768 
769 	/* lower 32 bits of tv_sec are safe until y2106 */
770 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
771 
772 	return 0;
773 }
774 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
775 
776 /**
777  * stmmac_init_ptp - init PTP
778  * @priv: driver private structure
779  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
780  * This is done by looking at the HW cap. register.
781  * This function also registers the ptp driver.
782  */
stmmac_init_ptp(struct stmmac_priv * priv)783 static int stmmac_init_ptp(struct stmmac_priv *priv)
784 {
785 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
786 	int ret;
787 
788 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
789 	if (ret)
790 		return ret;
791 
792 	priv->adv_ts = 0;
793 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
794 	if (xmac && priv->dma_cap.atime_stamp)
795 		priv->adv_ts = 1;
796 	/* Dwmac 3.x core with extend_desc can support adv_ts */
797 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
798 		priv->adv_ts = 1;
799 
800 	if (priv->dma_cap.time_stamp)
801 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
802 
803 	if (priv->adv_ts)
804 		netdev_info(priv->dev,
805 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
806 
807 	priv->hwts_tx_en = 0;
808 	priv->hwts_rx_en = 0;
809 
810 	return 0;
811 }
812 
stmmac_release_ptp(struct stmmac_priv * priv)813 static void stmmac_release_ptp(struct stmmac_priv *priv)
814 {
815 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
816 	stmmac_ptp_unregister(priv);
817 }
818 
819 /**
820  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
821  *  @priv: driver private structure
822  *  @duplex: duplex passed to the next function
823  *  Description: It is used for configuring the flow control in all queues
824  */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)825 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
826 {
827 	u32 tx_cnt = priv->plat->tx_queues_to_use;
828 
829 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
830 			priv->pause, tx_cnt);
831 }
832 
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)833 static void stmmac_validate(struct phylink_config *config,
834 			    unsigned long *supported,
835 			    struct phylink_link_state *state)
836 {
837 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
838 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
839 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
840 	int tx_cnt = priv->plat->tx_queues_to_use;
841 	int max_speed = priv->plat->max_speed;
842 
843 	phylink_set(mac_supported, 10baseT_Half);
844 	phylink_set(mac_supported, 10baseT_Full);
845 	phylink_set(mac_supported, 100baseT_Half);
846 	phylink_set(mac_supported, 100baseT_Full);
847 	phylink_set(mac_supported, 1000baseT_Half);
848 	phylink_set(mac_supported, 1000baseT_Full);
849 	phylink_set(mac_supported, 1000baseKX_Full);
850 
851 	phylink_set(mac_supported, Autoneg);
852 	phylink_set(mac_supported, Pause);
853 	phylink_set(mac_supported, Asym_Pause);
854 	phylink_set_port_modes(mac_supported);
855 
856 	/* Cut down 1G if asked to */
857 	if ((max_speed > 0) && (max_speed < 1000)) {
858 		phylink_set(mask, 1000baseT_Full);
859 		phylink_set(mask, 1000baseX_Full);
860 	} else if (priv->plat->has_xgmac) {
861 		if (!max_speed || (max_speed >= 2500)) {
862 			phylink_set(mac_supported, 2500baseT_Full);
863 			phylink_set(mac_supported, 2500baseX_Full);
864 		}
865 		if (!max_speed || (max_speed >= 5000)) {
866 			phylink_set(mac_supported, 5000baseT_Full);
867 		}
868 		if (!max_speed || (max_speed >= 10000)) {
869 			phylink_set(mac_supported, 10000baseSR_Full);
870 			phylink_set(mac_supported, 10000baseLR_Full);
871 			phylink_set(mac_supported, 10000baseER_Full);
872 			phylink_set(mac_supported, 10000baseLRM_Full);
873 			phylink_set(mac_supported, 10000baseT_Full);
874 			phylink_set(mac_supported, 10000baseKX4_Full);
875 			phylink_set(mac_supported, 10000baseKR_Full);
876 		}
877 		if (!max_speed || (max_speed >= 25000)) {
878 			phylink_set(mac_supported, 25000baseCR_Full);
879 			phylink_set(mac_supported, 25000baseKR_Full);
880 			phylink_set(mac_supported, 25000baseSR_Full);
881 		}
882 		if (!max_speed || (max_speed >= 40000)) {
883 			phylink_set(mac_supported, 40000baseKR4_Full);
884 			phylink_set(mac_supported, 40000baseCR4_Full);
885 			phylink_set(mac_supported, 40000baseSR4_Full);
886 			phylink_set(mac_supported, 40000baseLR4_Full);
887 		}
888 		if (!max_speed || (max_speed >= 50000)) {
889 			phylink_set(mac_supported, 50000baseCR2_Full);
890 			phylink_set(mac_supported, 50000baseKR2_Full);
891 			phylink_set(mac_supported, 50000baseSR2_Full);
892 			phylink_set(mac_supported, 50000baseKR_Full);
893 			phylink_set(mac_supported, 50000baseSR_Full);
894 			phylink_set(mac_supported, 50000baseCR_Full);
895 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
896 			phylink_set(mac_supported, 50000baseDR_Full);
897 		}
898 		if (!max_speed || (max_speed >= 100000)) {
899 			phylink_set(mac_supported, 100000baseKR4_Full);
900 			phylink_set(mac_supported, 100000baseSR4_Full);
901 			phylink_set(mac_supported, 100000baseCR4_Full);
902 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
903 			phylink_set(mac_supported, 100000baseKR2_Full);
904 			phylink_set(mac_supported, 100000baseSR2_Full);
905 			phylink_set(mac_supported, 100000baseCR2_Full);
906 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
907 			phylink_set(mac_supported, 100000baseDR2_Full);
908 		}
909 	}
910 
911 	/* Half-Duplex can only work with single queue */
912 	if (tx_cnt > 1) {
913 		phylink_set(mask, 10baseT_Half);
914 		phylink_set(mask, 100baseT_Half);
915 		phylink_set(mask, 1000baseT_Half);
916 	}
917 
918 	linkmode_and(supported, supported, mac_supported);
919 	linkmode_andnot(supported, supported, mask);
920 
921 	linkmode_and(state->advertising, state->advertising, mac_supported);
922 	linkmode_andnot(state->advertising, state->advertising, mask);
923 
924 	/* If PCS is supported, check which modes it supports. */
925 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
926 }
927 
stmmac_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)928 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
929 				     struct phylink_link_state *state)
930 {
931 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
932 
933 	state->link = 0;
934 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
935 }
936 
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)937 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
938 			      const struct phylink_link_state *state)
939 {
940 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
941 
942 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
943 }
944 
stmmac_mac_an_restart(struct phylink_config * config)945 static void stmmac_mac_an_restart(struct phylink_config *config)
946 {
947 	/* Not Supported */
948 }
949 
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)950 static void stmmac_mac_link_down(struct phylink_config *config,
951 				 unsigned int mode, phy_interface_t interface)
952 {
953 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
954 
955 	stmmac_mac_set(priv, priv->ioaddr, false);
956 	priv->eee_active = false;
957 	priv->tx_lpi_enabled = false;
958 	stmmac_eee_init(priv);
959 	stmmac_set_eee_pls(priv, priv->hw, false);
960 }
961 
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)962 static void stmmac_mac_link_up(struct phylink_config *config,
963 			       struct phy_device *phy,
964 			       unsigned int mode, phy_interface_t interface,
965 			       int speed, int duplex,
966 			       bool tx_pause, bool rx_pause)
967 {
968 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
969 	u32 ctrl;
970 
971 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
972 
973 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
974 	ctrl &= ~priv->hw->link.speed_mask;
975 
976 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
977 		switch (speed) {
978 		case SPEED_10000:
979 			ctrl |= priv->hw->link.xgmii.speed10000;
980 			break;
981 		case SPEED_5000:
982 			ctrl |= priv->hw->link.xgmii.speed5000;
983 			break;
984 		case SPEED_2500:
985 			ctrl |= priv->hw->link.xgmii.speed2500;
986 			break;
987 		default:
988 			return;
989 		}
990 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
991 		switch (speed) {
992 		case SPEED_100000:
993 			ctrl |= priv->hw->link.xlgmii.speed100000;
994 			break;
995 		case SPEED_50000:
996 			ctrl |= priv->hw->link.xlgmii.speed50000;
997 			break;
998 		case SPEED_40000:
999 			ctrl |= priv->hw->link.xlgmii.speed40000;
1000 			break;
1001 		case SPEED_25000:
1002 			ctrl |= priv->hw->link.xlgmii.speed25000;
1003 			break;
1004 		case SPEED_10000:
1005 			ctrl |= priv->hw->link.xgmii.speed10000;
1006 			break;
1007 		case SPEED_2500:
1008 			ctrl |= priv->hw->link.speed2500;
1009 			break;
1010 		case SPEED_1000:
1011 			ctrl |= priv->hw->link.speed1000;
1012 			break;
1013 		default:
1014 			return;
1015 		}
1016 	} else {
1017 		switch (speed) {
1018 		case SPEED_2500:
1019 			ctrl |= priv->hw->link.speed2500;
1020 			break;
1021 		case SPEED_1000:
1022 			ctrl |= priv->hw->link.speed1000;
1023 			break;
1024 		case SPEED_100:
1025 			ctrl |= priv->hw->link.speed100;
1026 			break;
1027 		case SPEED_10:
1028 			ctrl |= priv->hw->link.speed10;
1029 			break;
1030 		default:
1031 			return;
1032 		}
1033 	}
1034 
1035 	priv->speed = speed;
1036 
1037 	if (priv->plat->fix_mac_speed)
1038 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1039 
1040 	if (!duplex)
1041 		ctrl &= ~priv->hw->link.duplex;
1042 	else
1043 		ctrl |= priv->hw->link.duplex;
1044 
1045 	/* Flow Control operation */
1046 	if (rx_pause && tx_pause)
1047 		priv->flow_ctrl = FLOW_AUTO;
1048 	else if (rx_pause && !tx_pause)
1049 		priv->flow_ctrl = FLOW_RX;
1050 	else if (!rx_pause && tx_pause)
1051 		priv->flow_ctrl = FLOW_TX;
1052 	else
1053 		priv->flow_ctrl = FLOW_OFF;
1054 
1055 	stmmac_mac_flow_ctrl(priv, duplex);
1056 
1057 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1058 
1059 	stmmac_mac_set(priv, priv->ioaddr, true);
1060 	if (phy && priv->dma_cap.eee) {
1061 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1062 		priv->eee_enabled = stmmac_eee_init(priv);
1063 		priv->tx_lpi_enabled = priv->eee_enabled;
1064 		stmmac_set_eee_pls(priv, priv->hw, true);
1065 	}
1066 }
1067 
1068 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1069 	.validate = stmmac_validate,
1070 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1071 	.mac_config = stmmac_mac_config,
1072 	.mac_an_restart = stmmac_mac_an_restart,
1073 	.mac_link_down = stmmac_mac_link_down,
1074 	.mac_link_up = stmmac_mac_link_up,
1075 };
1076 
1077 /**
1078  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1079  * @priv: driver private structure
1080  * Description: this is to verify if the HW supports the PCS.
1081  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1082  * configured for the TBI, RTBI, or SGMII PHY interface.
1083  */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1084 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1085 {
1086 	int interface = priv->plat->interface;
1087 
1088 	if (priv->dma_cap.pcs) {
1089 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1090 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1091 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1092 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1093 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1094 			priv->hw->pcs = STMMAC_PCS_RGMII;
1095 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1096 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1097 			priv->hw->pcs = STMMAC_PCS_SGMII;
1098 		}
1099 	}
1100 }
1101 
1102 /**
1103  * stmmac_init_phy - PHY initialization
1104  * @dev: net device structure
1105  * Description: it initializes the driver's PHY state, and attaches the PHY
1106  * to the mac driver.
1107  *  Return value:
1108  *  0 on success
1109  */
stmmac_init_phy(struct net_device * dev)1110 static int stmmac_init_phy(struct net_device *dev)
1111 {
1112 	struct stmmac_priv *priv = netdev_priv(dev);
1113 	struct device_node *node;
1114 	int ret;
1115 
1116 	node = priv->plat->phylink_node;
1117 
1118 	if (node)
1119 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1120 
1121 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1122 	 * manually parse it
1123 	 */
1124 	if (!node || ret) {
1125 		int addr = priv->plat->phy_addr;
1126 		struct phy_device *phydev;
1127 
1128 		phydev = mdiobus_get_phy(priv->mii, addr);
1129 		if (!phydev) {
1130 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1131 			return -ENODEV;
1132 		}
1133 
1134 		ret = phylink_connect_phy(priv->phylink, phydev);
1135 	}
1136 
1137 	if (!priv->plat->pmt) {
1138 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1139 
1140 		phylink_ethtool_get_wol(priv->phylink, &wol);
1141 		device_set_wakeup_capable(priv->device, !!wol.supported);
1142 	}
1143 
1144 	return ret;
1145 }
1146 
stmmac_phy_setup(struct stmmac_priv * priv)1147 static int stmmac_phy_setup(struct stmmac_priv *priv)
1148 {
1149 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1150 	int mode = priv->plat->phy_interface;
1151 	struct phylink *phylink;
1152 
1153 	priv->phylink_config.dev = &priv->dev->dev;
1154 	priv->phylink_config.type = PHYLINK_NETDEV;
1155 	priv->phylink_config.pcs_poll = true;
1156 
1157 	if (!fwnode)
1158 		fwnode = dev_fwnode(priv->device);
1159 
1160 	phylink = phylink_create(&priv->phylink_config, fwnode,
1161 				 mode, &stmmac_phylink_mac_ops);
1162 	if (IS_ERR(phylink))
1163 		return PTR_ERR(phylink);
1164 
1165 	priv->phylink = phylink;
1166 	return 0;
1167 }
1168 
stmmac_display_rx_rings(struct stmmac_priv * priv)1169 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1170 {
1171 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1172 	unsigned int desc_size;
1173 	void *head_rx;
1174 	u32 queue;
1175 
1176 	/* Display RX rings */
1177 	for (queue = 0; queue < rx_cnt; queue++) {
1178 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1179 
1180 		pr_info("\tRX Queue %u rings\n", queue);
1181 
1182 		if (priv->extend_desc) {
1183 			head_rx = (void *)rx_q->dma_erx;
1184 			desc_size = sizeof(struct dma_extended_desc);
1185 		} else {
1186 			head_rx = (void *)rx_q->dma_rx;
1187 			desc_size = sizeof(struct dma_desc);
1188 		}
1189 
1190 		/* Display RX ring */
1191 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1192 				    rx_q->dma_rx_phy, desc_size);
1193 	}
1194 }
1195 
stmmac_display_tx_rings(struct stmmac_priv * priv)1196 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1197 {
1198 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1199 	unsigned int desc_size;
1200 	void *head_tx;
1201 	u32 queue;
1202 
1203 	/* Display TX rings */
1204 	for (queue = 0; queue < tx_cnt; queue++) {
1205 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1206 
1207 		pr_info("\tTX Queue %d rings\n", queue);
1208 
1209 		if (priv->extend_desc) {
1210 			head_tx = (void *)tx_q->dma_etx;
1211 			desc_size = sizeof(struct dma_extended_desc);
1212 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1213 			head_tx = (void *)tx_q->dma_entx;
1214 			desc_size = sizeof(struct dma_edesc);
1215 		} else {
1216 			head_tx = (void *)tx_q->dma_tx;
1217 			desc_size = sizeof(struct dma_desc);
1218 		}
1219 
1220 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1221 				    tx_q->dma_tx_phy, desc_size);
1222 	}
1223 }
1224 
stmmac_display_rings(struct stmmac_priv * priv)1225 static void stmmac_display_rings(struct stmmac_priv *priv)
1226 {
1227 	/* Display RX ring */
1228 	stmmac_display_rx_rings(priv);
1229 
1230 	/* Display TX ring */
1231 	stmmac_display_tx_rings(priv);
1232 }
1233 
stmmac_set_bfsize(int mtu,int bufsize)1234 static int stmmac_set_bfsize(int mtu, int bufsize)
1235 {
1236 	int ret = bufsize;
1237 
1238 	if (mtu >= BUF_SIZE_8KiB)
1239 		ret = BUF_SIZE_16KiB;
1240 	else if (mtu >= BUF_SIZE_4KiB)
1241 		ret = BUF_SIZE_8KiB;
1242 	else if (mtu >= BUF_SIZE_2KiB)
1243 		ret = BUF_SIZE_4KiB;
1244 	else if (mtu > DEFAULT_BUFSIZE)
1245 		ret = BUF_SIZE_2KiB;
1246 	else
1247 		ret = DEFAULT_BUFSIZE;
1248 
1249 	return ret;
1250 }
1251 
1252 /**
1253  * stmmac_clear_rx_descriptors - clear RX descriptors
1254  * @priv: driver private structure
1255  * @queue: RX queue index
1256  * Description: this function is called to clear the RX descriptors
1257  * in case of both basic and extended descriptors are used.
1258  */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1259 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1260 {
1261 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1262 	int i;
1263 
1264 	/* Clear the RX descriptors */
1265 	for (i = 0; i < priv->dma_rx_size; i++)
1266 		if (priv->extend_desc)
1267 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1268 					priv->use_riwt, priv->mode,
1269 					(i == priv->dma_rx_size - 1),
1270 					priv->dma_buf_sz);
1271 		else
1272 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1273 					priv->use_riwt, priv->mode,
1274 					(i == priv->dma_rx_size - 1),
1275 					priv->dma_buf_sz);
1276 }
1277 
1278 /**
1279  * stmmac_clear_tx_descriptors - clear tx descriptors
1280  * @priv: driver private structure
1281  * @queue: TX queue index.
1282  * Description: this function is called to clear the TX descriptors
1283  * in case of both basic and extended descriptors are used.
1284  */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1285 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1286 {
1287 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1288 	int i;
1289 
1290 	/* Clear the TX descriptors */
1291 	for (i = 0; i < priv->dma_tx_size; i++) {
1292 		int last = (i == (priv->dma_tx_size - 1));
1293 		struct dma_desc *p;
1294 
1295 		if (priv->extend_desc)
1296 			p = &tx_q->dma_etx[i].basic;
1297 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1298 			p = &tx_q->dma_entx[i].basic;
1299 		else
1300 			p = &tx_q->dma_tx[i];
1301 
1302 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1303 	}
1304 }
1305 
1306 /**
1307  * stmmac_clear_descriptors - clear descriptors
1308  * @priv: driver private structure
1309  * Description: this function is called to clear the TX and RX descriptors
1310  * in case of both basic and extended descriptors are used.
1311  */
stmmac_clear_descriptors(struct stmmac_priv * priv)1312 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1313 {
1314 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1315 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1316 	u32 queue;
1317 
1318 	/* Clear the RX descriptors */
1319 	for (queue = 0; queue < rx_queue_cnt; queue++)
1320 		stmmac_clear_rx_descriptors(priv, queue);
1321 
1322 	/* Clear the TX descriptors */
1323 	for (queue = 0; queue < tx_queue_cnt; queue++)
1324 		stmmac_clear_tx_descriptors(priv, queue);
1325 }
1326 
1327 /**
1328  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1329  * @priv: driver private structure
1330  * @p: descriptor pointer
1331  * @i: descriptor index
1332  * @flags: gfp flag
1333  * @queue: RX queue index
1334  * Description: this function is called to allocate a receive buffer, perform
1335  * the DMA mapping and init the descriptor.
1336  */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1337 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1338 				  int i, gfp_t flags, u32 queue)
1339 {
1340 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1341 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1342 
1343 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1344 	if (!buf->page)
1345 		return -ENOMEM;
1346 
1347 	if (priv->sph) {
1348 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1349 		if (!buf->sec_page)
1350 			return -ENOMEM;
1351 
1352 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1353 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1354 	} else {
1355 		buf->sec_page = NULL;
1356 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1357 	}
1358 
1359 	buf->addr = page_pool_get_dma_addr(buf->page);
1360 	stmmac_set_desc_addr(priv, p, buf->addr);
1361 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1362 		stmmac_init_desc3(priv, p);
1363 
1364 	return 0;
1365 }
1366 
1367 /**
1368  * stmmac_free_rx_buffer - free RX dma buffers
1369  * @priv: private structure
1370  * @queue: RX queue index
1371  * @i: buffer index.
1372  */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1373 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1374 {
1375 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1376 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1377 
1378 	if (buf->page)
1379 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1380 	buf->page = NULL;
1381 
1382 	if (buf->sec_page)
1383 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1384 	buf->sec_page = NULL;
1385 }
1386 
1387 /**
1388  * stmmac_free_tx_buffer - free RX dma buffers
1389  * @priv: private structure
1390  * @queue: RX queue index
1391  * @i: buffer index.
1392  */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1393 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1394 {
1395 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1396 
1397 	if (tx_q->tx_skbuff_dma[i].buf) {
1398 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1399 			dma_unmap_page(priv->device,
1400 				       tx_q->tx_skbuff_dma[i].buf,
1401 				       tx_q->tx_skbuff_dma[i].len,
1402 				       DMA_TO_DEVICE);
1403 		else
1404 			dma_unmap_single(priv->device,
1405 					 tx_q->tx_skbuff_dma[i].buf,
1406 					 tx_q->tx_skbuff_dma[i].len,
1407 					 DMA_TO_DEVICE);
1408 	}
1409 
1410 	if (tx_q->tx_skbuff[i]) {
1411 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1412 		tx_q->tx_skbuff[i] = NULL;
1413 		tx_q->tx_skbuff_dma[i].buf = 0;
1414 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1415 	}
1416 }
1417 
1418 /**
1419  * init_dma_rx_desc_rings - init the RX descriptor rings
1420  * @dev: net device structure
1421  * @flags: gfp flag.
1422  * Description: this function initializes the DMA RX descriptors
1423  * and allocates the socket buffers. It supports the chained and ring
1424  * modes.
1425  */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1426 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1427 {
1428 	struct stmmac_priv *priv = netdev_priv(dev);
1429 	u32 rx_count = priv->plat->rx_queues_to_use;
1430 	int ret = -ENOMEM;
1431 	int queue;
1432 	int i;
1433 
1434 	/* RX INITIALIZATION */
1435 	netif_dbg(priv, probe, priv->dev,
1436 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1437 
1438 	for (queue = 0; queue < rx_count; queue++) {
1439 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1440 
1441 		netif_dbg(priv, probe, priv->dev,
1442 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1443 			  (u32)rx_q->dma_rx_phy);
1444 
1445 		stmmac_clear_rx_descriptors(priv, queue);
1446 
1447 		for (i = 0; i < priv->dma_rx_size; i++) {
1448 			struct dma_desc *p;
1449 
1450 			if (priv->extend_desc)
1451 				p = &((rx_q->dma_erx + i)->basic);
1452 			else
1453 				p = rx_q->dma_rx + i;
1454 
1455 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1456 						     queue);
1457 			if (ret)
1458 				goto err_init_rx_buffers;
1459 		}
1460 
1461 		rx_q->cur_rx = 0;
1462 		rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1463 
1464 		/* Setup the chained descriptor addresses */
1465 		if (priv->mode == STMMAC_CHAIN_MODE) {
1466 			if (priv->extend_desc)
1467 				stmmac_mode_init(priv, rx_q->dma_erx,
1468 						 rx_q->dma_rx_phy,
1469 						 priv->dma_rx_size, 1);
1470 			else
1471 				stmmac_mode_init(priv, rx_q->dma_rx,
1472 						 rx_q->dma_rx_phy,
1473 						 priv->dma_rx_size, 0);
1474 		}
1475 	}
1476 
1477 	return 0;
1478 
1479 err_init_rx_buffers:
1480 	while (queue >= 0) {
1481 		while (--i >= 0)
1482 			stmmac_free_rx_buffer(priv, queue, i);
1483 
1484 		if (queue == 0)
1485 			break;
1486 
1487 		i = priv->dma_rx_size;
1488 		queue--;
1489 	}
1490 
1491 	return ret;
1492 }
1493 
1494 /**
1495  * init_dma_tx_desc_rings - init the TX descriptor rings
1496  * @dev: net device structure.
1497  * Description: this function initializes the DMA TX descriptors
1498  * and allocates the socket buffers. It supports the chained and ring
1499  * modes.
1500  */
init_dma_tx_desc_rings(struct net_device * dev)1501 static int init_dma_tx_desc_rings(struct net_device *dev)
1502 {
1503 	struct stmmac_priv *priv = netdev_priv(dev);
1504 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1505 	u32 queue;
1506 	int i;
1507 
1508 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1509 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1510 
1511 		netif_dbg(priv, probe, priv->dev,
1512 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1513 			 (u32)tx_q->dma_tx_phy);
1514 
1515 		/* Setup the chained descriptor addresses */
1516 		if (priv->mode == STMMAC_CHAIN_MODE) {
1517 			if (priv->extend_desc)
1518 				stmmac_mode_init(priv, tx_q->dma_etx,
1519 						 tx_q->dma_tx_phy,
1520 						 priv->dma_tx_size, 1);
1521 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1522 				stmmac_mode_init(priv, tx_q->dma_tx,
1523 						 tx_q->dma_tx_phy,
1524 						 priv->dma_tx_size, 0);
1525 		}
1526 
1527 		for (i = 0; i < priv->dma_tx_size; i++) {
1528 			struct dma_desc *p;
1529 			if (priv->extend_desc)
1530 				p = &((tx_q->dma_etx + i)->basic);
1531 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1532 				p = &((tx_q->dma_entx + i)->basic);
1533 			else
1534 				p = tx_q->dma_tx + i;
1535 
1536 			stmmac_clear_desc(priv, p);
1537 
1538 			tx_q->tx_skbuff_dma[i].buf = 0;
1539 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1540 			tx_q->tx_skbuff_dma[i].len = 0;
1541 			tx_q->tx_skbuff_dma[i].last_segment = false;
1542 			tx_q->tx_skbuff[i] = NULL;
1543 		}
1544 
1545 		tx_q->dirty_tx = 0;
1546 		tx_q->cur_tx = 0;
1547 		tx_q->mss = 0;
1548 
1549 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 /**
1556  * init_dma_desc_rings - init the RX/TX descriptor rings
1557  * @dev: net device structure
1558  * @flags: gfp flag.
1559  * Description: this function initializes the DMA RX/TX descriptors
1560  * and allocates the socket buffers. It supports the chained and ring
1561  * modes.
1562  */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1563 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1564 {
1565 	struct stmmac_priv *priv = netdev_priv(dev);
1566 	int ret;
1567 
1568 	ret = init_dma_rx_desc_rings(dev, flags);
1569 	if (ret)
1570 		return ret;
1571 
1572 	ret = init_dma_tx_desc_rings(dev);
1573 
1574 	stmmac_clear_descriptors(priv);
1575 
1576 	if (netif_msg_hw(priv))
1577 		stmmac_display_rings(priv);
1578 
1579 	return ret;
1580 }
1581 
1582 /**
1583  * dma_free_rx_skbufs - free RX dma buffers
1584  * @priv: private structure
1585  * @queue: RX queue index
1586  */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1587 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1588 {
1589 	int i;
1590 
1591 	for (i = 0; i < priv->dma_rx_size; i++)
1592 		stmmac_free_rx_buffer(priv, queue, i);
1593 }
1594 
1595 /**
1596  * dma_free_tx_skbufs - free TX dma buffers
1597  * @priv: private structure
1598  * @queue: TX queue index
1599  */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1600 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1601 {
1602 	int i;
1603 
1604 	for (i = 0; i < priv->dma_tx_size; i++)
1605 		stmmac_free_tx_buffer(priv, queue, i);
1606 }
1607 
1608 /**
1609  * stmmac_free_tx_skbufs - free TX skb buffers
1610  * @priv: private structure
1611  */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1612 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1613 {
1614 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1615 	u32 queue;
1616 
1617 	for (queue = 0; queue < tx_queue_cnt; queue++)
1618 		dma_free_tx_skbufs(priv, queue);
1619 }
1620 
1621 /**
1622  * free_dma_rx_desc_resources - free RX dma desc resources
1623  * @priv: private structure
1624  */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1625 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1626 {
1627 	u32 rx_count = priv->plat->rx_queues_to_use;
1628 	u32 queue;
1629 
1630 	/* Free RX queue resources */
1631 	for (queue = 0; queue < rx_count; queue++) {
1632 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1633 
1634 		/* Release the DMA RX socket buffers */
1635 		dma_free_rx_skbufs(priv, queue);
1636 
1637 		/* Free DMA regions of consistent memory previously allocated */
1638 		if (!priv->extend_desc)
1639 			dma_free_coherent(priv->device, priv->dma_rx_size *
1640 					  sizeof(struct dma_desc),
1641 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1642 		else
1643 			dma_free_coherent(priv->device, priv->dma_rx_size *
1644 					  sizeof(struct dma_extended_desc),
1645 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1646 
1647 		kfree(rx_q->buf_pool);
1648 		if (rx_q->page_pool)
1649 			page_pool_destroy(rx_q->page_pool);
1650 	}
1651 }
1652 
1653 /**
1654  * free_dma_tx_desc_resources - free TX dma desc resources
1655  * @priv: private structure
1656  */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1657 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1658 {
1659 	u32 tx_count = priv->plat->tx_queues_to_use;
1660 	u32 queue;
1661 
1662 	/* Free TX queue resources */
1663 	for (queue = 0; queue < tx_count; queue++) {
1664 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1665 		size_t size;
1666 		void *addr;
1667 
1668 		/* Release the DMA TX socket buffers */
1669 		dma_free_tx_skbufs(priv, queue);
1670 
1671 		if (priv->extend_desc) {
1672 			size = sizeof(struct dma_extended_desc);
1673 			addr = tx_q->dma_etx;
1674 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1675 			size = sizeof(struct dma_edesc);
1676 			addr = tx_q->dma_entx;
1677 		} else {
1678 			size = sizeof(struct dma_desc);
1679 			addr = tx_q->dma_tx;
1680 		}
1681 
1682 		size *= priv->dma_tx_size;
1683 
1684 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1685 
1686 		kfree(tx_q->tx_skbuff_dma);
1687 		kfree(tx_q->tx_skbuff);
1688 	}
1689 }
1690 
1691 /**
1692  * alloc_dma_rx_desc_resources - alloc RX resources.
1693  * @priv: private structure
1694  * Description: according to which descriptor can be used (extend or basic)
1695  * this function allocates the resources for TX and RX paths. In case of
1696  * reception, for example, it pre-allocated the RX socket buffer in order to
1697  * allow zero-copy mechanism.
1698  */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1699 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1700 {
1701 	u32 rx_count = priv->plat->rx_queues_to_use;
1702 	int ret = -ENOMEM;
1703 	u32 queue;
1704 
1705 	/* RX queues buffers and DMA */
1706 	for (queue = 0; queue < rx_count; queue++) {
1707 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1708 		struct page_pool_params pp_params = { 0 };
1709 		unsigned int num_pages;
1710 
1711 		rx_q->queue_index = queue;
1712 		rx_q->priv_data = priv;
1713 
1714 		pp_params.flags = PP_FLAG_DMA_MAP;
1715 		pp_params.pool_size = priv->dma_rx_size;
1716 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1717 		pp_params.order = ilog2(num_pages);
1718 		pp_params.nid = dev_to_node(priv->device);
1719 		pp_params.dev = priv->device;
1720 		pp_params.dma_dir = DMA_FROM_DEVICE;
1721 
1722 		rx_q->page_pool = page_pool_create(&pp_params);
1723 		if (IS_ERR(rx_q->page_pool)) {
1724 			ret = PTR_ERR(rx_q->page_pool);
1725 			rx_q->page_pool = NULL;
1726 			goto err_dma;
1727 		}
1728 
1729 		rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1730 					 sizeof(*rx_q->buf_pool),
1731 					 GFP_KERNEL);
1732 		if (!rx_q->buf_pool)
1733 			goto err_dma;
1734 
1735 		if (priv->extend_desc) {
1736 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1737 							   priv->dma_rx_size *
1738 							   sizeof(struct dma_extended_desc),
1739 							   &rx_q->dma_rx_phy,
1740 							   GFP_KERNEL);
1741 			if (!rx_q->dma_erx)
1742 				goto err_dma;
1743 
1744 		} else {
1745 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1746 							  priv->dma_rx_size *
1747 							  sizeof(struct dma_desc),
1748 							  &rx_q->dma_rx_phy,
1749 							  GFP_KERNEL);
1750 			if (!rx_q->dma_rx)
1751 				goto err_dma;
1752 		}
1753 	}
1754 
1755 	return 0;
1756 
1757 err_dma:
1758 	free_dma_rx_desc_resources(priv);
1759 
1760 	return ret;
1761 }
1762 
1763 /**
1764  * alloc_dma_tx_desc_resources - alloc TX resources.
1765  * @priv: private structure
1766  * Description: according to which descriptor can be used (extend or basic)
1767  * this function allocates the resources for TX and RX paths. In case of
1768  * reception, for example, it pre-allocated the RX socket buffer in order to
1769  * allow zero-copy mechanism.
1770  */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1771 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1772 {
1773 	u32 tx_count = priv->plat->tx_queues_to_use;
1774 	int ret = -ENOMEM;
1775 	u32 queue;
1776 
1777 	/* TX queues buffers and DMA */
1778 	for (queue = 0; queue < tx_count; queue++) {
1779 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1780 		size_t size;
1781 		void *addr;
1782 
1783 		tx_q->queue_index = queue;
1784 		tx_q->priv_data = priv;
1785 
1786 		tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1787 					      sizeof(*tx_q->tx_skbuff_dma),
1788 					      GFP_KERNEL);
1789 		if (!tx_q->tx_skbuff_dma)
1790 			goto err_dma;
1791 
1792 		tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1793 					  sizeof(struct sk_buff *),
1794 					  GFP_KERNEL);
1795 		if (!tx_q->tx_skbuff)
1796 			goto err_dma;
1797 
1798 		if (priv->extend_desc)
1799 			size = sizeof(struct dma_extended_desc);
1800 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1801 			size = sizeof(struct dma_edesc);
1802 		else
1803 			size = sizeof(struct dma_desc);
1804 
1805 		size *= priv->dma_tx_size;
1806 
1807 		addr = dma_alloc_coherent(priv->device, size,
1808 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1809 		if (!addr)
1810 			goto err_dma;
1811 
1812 		if (priv->extend_desc)
1813 			tx_q->dma_etx = addr;
1814 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1815 			tx_q->dma_entx = addr;
1816 		else
1817 			tx_q->dma_tx = addr;
1818 	}
1819 
1820 	return 0;
1821 
1822 err_dma:
1823 	free_dma_tx_desc_resources(priv);
1824 	return ret;
1825 }
1826 
1827 /**
1828  * alloc_dma_desc_resources - alloc TX/RX resources.
1829  * @priv: private structure
1830  * Description: according to which descriptor can be used (extend or basic)
1831  * this function allocates the resources for TX and RX paths. In case of
1832  * reception, for example, it pre-allocated the RX socket buffer in order to
1833  * allow zero-copy mechanism.
1834  */
alloc_dma_desc_resources(struct stmmac_priv * priv)1835 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1836 {
1837 	/* RX Allocation */
1838 	int ret = alloc_dma_rx_desc_resources(priv);
1839 
1840 	if (ret)
1841 		return ret;
1842 
1843 	ret = alloc_dma_tx_desc_resources(priv);
1844 
1845 	return ret;
1846 }
1847 
1848 /**
1849  * free_dma_desc_resources - free dma desc resources
1850  * @priv: private structure
1851  */
free_dma_desc_resources(struct stmmac_priv * priv)1852 static void free_dma_desc_resources(struct stmmac_priv *priv)
1853 {
1854 	/* Release the DMA RX socket buffers */
1855 	free_dma_rx_desc_resources(priv);
1856 
1857 	/* Release the DMA TX socket buffers */
1858 	free_dma_tx_desc_resources(priv);
1859 }
1860 
1861 /**
1862  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1863  *  @priv: driver private structure
1864  *  Description: It is used for enabling the rx queues in the MAC
1865  */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1866 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1867 {
1868 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1869 	int queue;
1870 	u8 mode;
1871 
1872 	for (queue = 0; queue < rx_queues_count; queue++) {
1873 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1874 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1875 	}
1876 }
1877 
1878 /**
1879  * stmmac_start_rx_dma - start RX DMA channel
1880  * @priv: driver private structure
1881  * @chan: RX channel index
1882  * Description:
1883  * This starts a RX DMA channel
1884  */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1885 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1886 {
1887 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1888 	stmmac_start_rx(priv, priv->ioaddr, chan);
1889 }
1890 
1891 /**
1892  * stmmac_start_tx_dma - start TX DMA channel
1893  * @priv: driver private structure
1894  * @chan: TX channel index
1895  * Description:
1896  * This starts a TX DMA channel
1897  */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1898 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1899 {
1900 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1901 	stmmac_start_tx(priv, priv->ioaddr, chan);
1902 }
1903 
1904 /**
1905  * stmmac_stop_rx_dma - stop RX DMA channel
1906  * @priv: driver private structure
1907  * @chan: RX channel index
1908  * Description:
1909  * This stops a RX DMA channel
1910  */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1911 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1912 {
1913 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1914 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1915 }
1916 
1917 /**
1918  * stmmac_stop_tx_dma - stop TX DMA channel
1919  * @priv: driver private structure
1920  * @chan: TX channel index
1921  * Description:
1922  * This stops a TX DMA channel
1923  */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1924 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1925 {
1926 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1927 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1928 }
1929 
1930 /**
1931  * stmmac_start_all_dma - start all RX and TX DMA channels
1932  * @priv: driver private structure
1933  * Description:
1934  * This starts all the RX and TX DMA channels
1935  */
stmmac_start_all_dma(struct stmmac_priv * priv)1936 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1937 {
1938 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1939 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1940 	u32 chan = 0;
1941 
1942 	for (chan = 0; chan < rx_channels_count; chan++)
1943 		stmmac_start_rx_dma(priv, chan);
1944 
1945 	for (chan = 0; chan < tx_channels_count; chan++)
1946 		stmmac_start_tx_dma(priv, chan);
1947 }
1948 
1949 /**
1950  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1951  * @priv: driver private structure
1952  * Description:
1953  * This stops the RX and TX DMA channels
1954  */
stmmac_stop_all_dma(struct stmmac_priv * priv)1955 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1956 {
1957 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1958 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1959 	u32 chan = 0;
1960 
1961 	for (chan = 0; chan < rx_channels_count; chan++)
1962 		stmmac_stop_rx_dma(priv, chan);
1963 
1964 	for (chan = 0; chan < tx_channels_count; chan++)
1965 		stmmac_stop_tx_dma(priv, chan);
1966 }
1967 
1968 /**
1969  *  stmmac_dma_operation_mode - HW DMA operation mode
1970  *  @priv: driver private structure
1971  *  Description: it is used for configuring the DMA operation mode register in
1972  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1973  */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1974 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1975 {
1976 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1977 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1978 	int rxfifosz = priv->plat->rx_fifo_size;
1979 	int txfifosz = priv->plat->tx_fifo_size;
1980 	u32 txmode = 0;
1981 	u32 rxmode = 0;
1982 	u32 chan = 0;
1983 	u8 qmode = 0;
1984 
1985 	if (rxfifosz == 0)
1986 		rxfifosz = priv->dma_cap.rx_fifo_size;
1987 	if (txfifosz == 0)
1988 		txfifosz = priv->dma_cap.tx_fifo_size;
1989 
1990 	/* Adjust for real per queue fifo size */
1991 	rxfifosz /= rx_channels_count;
1992 	txfifosz /= tx_channels_count;
1993 
1994 	if (priv->plat->force_thresh_dma_mode) {
1995 		txmode = tc;
1996 		rxmode = tc;
1997 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1998 		/*
1999 		 * In case of GMAC, SF mode can be enabled
2000 		 * to perform the TX COE in HW. This depends on:
2001 		 * 1) TX COE if actually supported
2002 		 * 2) There is no bugged Jumbo frame support
2003 		 *    that needs to not insert csum in the TDES.
2004 		 */
2005 		txmode = SF_DMA_MODE;
2006 		rxmode = SF_DMA_MODE;
2007 		priv->xstats.threshold = SF_DMA_MODE;
2008 	} else {
2009 		txmode = tc;
2010 		rxmode = SF_DMA_MODE;
2011 	}
2012 
2013 	/* configure all channels */
2014 	for (chan = 0; chan < rx_channels_count; chan++) {
2015 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2016 
2017 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2018 				rxfifosz, qmode);
2019 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
2020 				chan);
2021 	}
2022 
2023 	for (chan = 0; chan < tx_channels_count; chan++) {
2024 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2025 
2026 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2027 				txfifosz, qmode);
2028 	}
2029 }
2030 
2031 /**
2032  * stmmac_tx_clean - to manage the transmission completion
2033  * @priv: driver private structure
2034  * @budget: napi budget limiting this functions packet handling
2035  * @queue: TX queue index
2036  * Description: it reclaims the transmit resources after transmission completes.
2037  */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2038 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2039 {
2040 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2041 	unsigned int bytes_compl = 0, pkts_compl = 0;
2042 	unsigned int entry, count = 0;
2043 
2044 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2045 
2046 	priv->xstats.tx_clean++;
2047 
2048 	entry = tx_q->dirty_tx;
2049 	while ((entry != tx_q->cur_tx) && (count < budget)) {
2050 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
2051 		struct dma_desc *p;
2052 		int status;
2053 
2054 		if (priv->extend_desc)
2055 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2056 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2057 			p = &tx_q->dma_entx[entry].basic;
2058 		else
2059 			p = tx_q->dma_tx + entry;
2060 
2061 		status = stmmac_tx_status(priv, &priv->dev->stats,
2062 				&priv->xstats, p, priv->ioaddr);
2063 		/* Check if the descriptor is owned by the DMA */
2064 		if (unlikely(status & tx_dma_own))
2065 			break;
2066 
2067 		count++;
2068 
2069 		/* Make sure descriptor fields are read after reading
2070 		 * the own bit.
2071 		 */
2072 		dma_rmb();
2073 
2074 		/* Just consider the last segment and ...*/
2075 		if (likely(!(status & tx_not_ls))) {
2076 			/* ... verify the status error condition */
2077 			if (unlikely(status & tx_err)) {
2078 				priv->dev->stats.tx_errors++;
2079 			} else {
2080 				priv->dev->stats.tx_packets++;
2081 				priv->xstats.tx_pkt_n++;
2082 			}
2083 			stmmac_get_tx_hwtstamp(priv, p, skb);
2084 		}
2085 
2086 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2087 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2088 				dma_unmap_page(priv->device,
2089 					       tx_q->tx_skbuff_dma[entry].buf,
2090 					       tx_q->tx_skbuff_dma[entry].len,
2091 					       DMA_TO_DEVICE);
2092 			else
2093 				dma_unmap_single(priv->device,
2094 						 tx_q->tx_skbuff_dma[entry].buf,
2095 						 tx_q->tx_skbuff_dma[entry].len,
2096 						 DMA_TO_DEVICE);
2097 			tx_q->tx_skbuff_dma[entry].buf = 0;
2098 			tx_q->tx_skbuff_dma[entry].len = 0;
2099 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2100 		}
2101 
2102 		stmmac_clean_desc3(priv, tx_q, p);
2103 
2104 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2105 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2106 
2107 		if (likely(skb != NULL)) {
2108 			pkts_compl++;
2109 			bytes_compl += skb->len;
2110 			dev_consume_skb_any(skb);
2111 			tx_q->tx_skbuff[entry] = NULL;
2112 		}
2113 
2114 		stmmac_release_tx_desc(priv, p, priv->mode);
2115 
2116 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2117 	}
2118 	tx_q->dirty_tx = entry;
2119 
2120 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2121 				  pkts_compl, bytes_compl);
2122 
2123 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2124 								queue))) &&
2125 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2126 
2127 		netif_dbg(priv, tx_done, priv->dev,
2128 			  "%s: restart transmit\n", __func__);
2129 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2130 	}
2131 
2132 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2133 		stmmac_enable_eee_mode(priv);
2134 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2135 	}
2136 
2137 	/* We still have pending packets, let's call for a new scheduling */
2138 	if (tx_q->dirty_tx != tx_q->cur_tx)
2139 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2140 
2141 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2142 
2143 	return count;
2144 }
2145 
2146 /**
2147  * stmmac_tx_err - to manage the tx error
2148  * @priv: driver private structure
2149  * @chan: channel index
2150  * Description: it cleans the descriptors and restarts the transmission
2151  * in case of transmission errors.
2152  */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2153 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2154 {
2155 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2156 
2157 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2158 
2159 	stmmac_stop_tx_dma(priv, chan);
2160 	dma_free_tx_skbufs(priv, chan);
2161 	stmmac_clear_tx_descriptors(priv, chan);
2162 	tx_q->dirty_tx = 0;
2163 	tx_q->cur_tx = 0;
2164 	tx_q->mss = 0;
2165 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2166 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2167 			    tx_q->dma_tx_phy, chan);
2168 	stmmac_start_tx_dma(priv, chan);
2169 
2170 	priv->dev->stats.tx_errors++;
2171 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2172 }
2173 
2174 /**
2175  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2176  *  @priv: driver private structure
2177  *  @txmode: TX operating mode
2178  *  @rxmode: RX operating mode
2179  *  @chan: channel index
2180  *  Description: it is used for configuring of the DMA operation mode in
2181  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2182  *  mode.
2183  */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2184 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2185 					  u32 rxmode, u32 chan)
2186 {
2187 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2188 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2189 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2190 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2191 	int rxfifosz = priv->plat->rx_fifo_size;
2192 	int txfifosz = priv->plat->tx_fifo_size;
2193 
2194 	if (rxfifosz == 0)
2195 		rxfifosz = priv->dma_cap.rx_fifo_size;
2196 	if (txfifosz == 0)
2197 		txfifosz = priv->dma_cap.tx_fifo_size;
2198 
2199 	/* Adjust for real per queue fifo size */
2200 	rxfifosz /= rx_channels_count;
2201 	txfifosz /= tx_channels_count;
2202 
2203 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2204 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2205 }
2206 
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2207 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2208 {
2209 	int ret;
2210 
2211 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2212 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2213 	if (ret && (ret != -EINVAL)) {
2214 		stmmac_global_err(priv);
2215 		return true;
2216 	}
2217 
2218 	return false;
2219 }
2220 
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2221 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2222 {
2223 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2224 						 &priv->xstats, chan);
2225 	struct stmmac_channel *ch = &priv->channel[chan];
2226 	unsigned long flags;
2227 
2228 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2229 		if (napi_schedule_prep(&ch->rx_napi)) {
2230 			spin_lock_irqsave(&ch->lock, flags);
2231 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2232 			spin_unlock_irqrestore(&ch->lock, flags);
2233 			__napi_schedule(&ch->rx_napi);
2234 		}
2235 	}
2236 
2237 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2238 		if (napi_schedule_prep(&ch->tx_napi)) {
2239 			spin_lock_irqsave(&ch->lock, flags);
2240 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2241 			spin_unlock_irqrestore(&ch->lock, flags);
2242 			__napi_schedule(&ch->tx_napi);
2243 		}
2244 	}
2245 
2246 	return status;
2247 }
2248 
2249 /**
2250  * stmmac_dma_interrupt - DMA ISR
2251  * @priv: driver private structure
2252  * Description: this is the DMA ISR. It is called by the main ISR.
2253  * It calls the dwmac dma routine and schedule poll method in case of some
2254  * work can be done.
2255  */
stmmac_dma_interrupt(struct stmmac_priv * priv)2256 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2257 {
2258 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2259 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2260 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2261 				tx_channel_count : rx_channel_count;
2262 	u32 chan;
2263 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2264 
2265 	/* Make sure we never check beyond our status buffer. */
2266 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2267 		channels_to_check = ARRAY_SIZE(status);
2268 
2269 	for (chan = 0; chan < channels_to_check; chan++)
2270 		status[chan] = stmmac_napi_check(priv, chan);
2271 
2272 	for (chan = 0; chan < tx_channel_count; chan++) {
2273 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2274 			/* Try to bump up the dma threshold on this failure */
2275 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2276 			    (tc <= 256)) {
2277 				tc += 64;
2278 				if (priv->plat->force_thresh_dma_mode)
2279 					stmmac_set_dma_operation_mode(priv,
2280 								      tc,
2281 								      tc,
2282 								      chan);
2283 				else
2284 					stmmac_set_dma_operation_mode(priv,
2285 								    tc,
2286 								    SF_DMA_MODE,
2287 								    chan);
2288 				priv->xstats.threshold = tc;
2289 			}
2290 		} else if (unlikely(status[chan] == tx_hard_error)) {
2291 			stmmac_tx_err(priv, chan);
2292 		}
2293 	}
2294 }
2295 
2296 /**
2297  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2298  * @priv: driver private structure
2299  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2300  */
stmmac_mmc_setup(struct stmmac_priv * priv)2301 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2302 {
2303 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2304 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2305 
2306 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2307 
2308 	if (priv->dma_cap.rmon) {
2309 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2310 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2311 	} else
2312 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2313 }
2314 
2315 /**
2316  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2317  * @priv: driver private structure
2318  * Description:
2319  *  new GMAC chip generations have a new register to indicate the
2320  *  presence of the optional feature/functions.
2321  *  This can be also used to override the value passed through the
2322  *  platform and necessary for old MAC10/100 and GMAC chips.
2323  */
stmmac_get_hw_features(struct stmmac_priv * priv)2324 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2325 {
2326 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2327 }
2328 
2329 /**
2330  * stmmac_check_ether_addr - check if the MAC addr is valid
2331  * @priv: driver private structure
2332  * Description:
2333  * it is to verify if the MAC address is valid, in case of failures it
2334  * generates a random MAC address
2335  */
stmmac_check_ether_addr(struct stmmac_priv * priv)2336 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2337 {
2338 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2339 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2340 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2341 			eth_hw_addr_random(priv->dev);
2342 		dev_info(priv->device, "device MAC address %pM\n",
2343 			 priv->dev->dev_addr);
2344 	}
2345 }
2346 
2347 /**
2348  * stmmac_init_dma_engine - DMA init.
2349  * @priv: driver private structure
2350  * Description:
2351  * It inits the DMA invoking the specific MAC/GMAC callback.
2352  * Some DMA parameters can be passed from the platform;
2353  * in case of these are not passed a default is kept for the MAC or GMAC.
2354  */
stmmac_init_dma_engine(struct stmmac_priv * priv)2355 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2356 {
2357 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2358 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2359 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2360 	struct stmmac_rx_queue *rx_q;
2361 	struct stmmac_tx_queue *tx_q;
2362 	u32 chan = 0;
2363 	int atds = 0;
2364 	int ret = 0;
2365 
2366 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2367 		dev_err(priv->device, "Invalid DMA configuration\n");
2368 		return -EINVAL;
2369 	}
2370 
2371 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2372 		atds = 1;
2373 
2374 	ret = stmmac_reset(priv, priv->ioaddr);
2375 	if (ret) {
2376 		dev_err(priv->device, "Failed to reset the dma\n");
2377 		return ret;
2378 	}
2379 
2380 	/* DMA Configuration */
2381 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2382 
2383 	if (priv->plat->axi)
2384 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2385 
2386 	/* DMA CSR Channel configuration */
2387 	for (chan = 0; chan < dma_csr_ch; chan++)
2388 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2389 
2390 	/* DMA RX Channel Configuration */
2391 	for (chan = 0; chan < rx_channels_count; chan++) {
2392 		rx_q = &priv->rx_queue[chan];
2393 
2394 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2395 				    rx_q->dma_rx_phy, chan);
2396 
2397 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2398 				     (priv->dma_rx_size *
2399 				      sizeof(struct dma_desc));
2400 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2401 				       rx_q->rx_tail_addr, chan);
2402 	}
2403 
2404 	/* DMA TX Channel Configuration */
2405 	for (chan = 0; chan < tx_channels_count; chan++) {
2406 		tx_q = &priv->tx_queue[chan];
2407 
2408 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2409 				    tx_q->dma_tx_phy, chan);
2410 
2411 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2412 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2413 				       tx_q->tx_tail_addr, chan);
2414 	}
2415 
2416 	return ret;
2417 }
2418 
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2419 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2420 {
2421 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2422 
2423 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2424 }
2425 
2426 /**
2427  * stmmac_tx_timer - mitigation sw timer for tx.
2428  * @t: data pointer
2429  * Description:
2430  * This is the timer handler to directly invoke the stmmac_tx_clean.
2431  */
stmmac_tx_timer(struct timer_list * t)2432 static void stmmac_tx_timer(struct timer_list *t)
2433 {
2434 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2435 	struct stmmac_priv *priv = tx_q->priv_data;
2436 	struct stmmac_channel *ch;
2437 
2438 	ch = &priv->channel[tx_q->queue_index];
2439 
2440 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2441 		unsigned long flags;
2442 
2443 		spin_lock_irqsave(&ch->lock, flags);
2444 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2445 		spin_unlock_irqrestore(&ch->lock, flags);
2446 		__napi_schedule(&ch->tx_napi);
2447 	}
2448 }
2449 
2450 /**
2451  * stmmac_init_coalesce - init mitigation options.
2452  * @priv: driver private structure
2453  * Description:
2454  * This inits the coalesce parameters: i.e. timer rate,
2455  * timer handler and default threshold used for enabling the
2456  * interrupt on completion bit.
2457  */
stmmac_init_coalesce(struct stmmac_priv * priv)2458 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2459 {
2460 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2461 	u32 chan;
2462 
2463 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2464 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2465 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2466 
2467 	for (chan = 0; chan < tx_channel_count; chan++) {
2468 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2469 
2470 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2471 	}
2472 }
2473 
stmmac_set_rings_length(struct stmmac_priv * priv)2474 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2475 {
2476 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2477 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2478 	u32 chan;
2479 
2480 	/* set TX ring length */
2481 	for (chan = 0; chan < tx_channels_count; chan++)
2482 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2483 				       (priv->dma_tx_size - 1), chan);
2484 
2485 	/* set RX ring length */
2486 	for (chan = 0; chan < rx_channels_count; chan++)
2487 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2488 				       (priv->dma_rx_size - 1), chan);
2489 }
2490 
2491 /**
2492  *  stmmac_set_tx_queue_weight - Set TX queue weight
2493  *  @priv: driver private structure
2494  *  Description: It is used for setting TX queues weight
2495  */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2496 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2497 {
2498 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2499 	u32 weight;
2500 	u32 queue;
2501 
2502 	for (queue = 0; queue < tx_queues_count; queue++) {
2503 		weight = priv->plat->tx_queues_cfg[queue].weight;
2504 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2505 	}
2506 }
2507 
2508 /**
2509  *  stmmac_configure_cbs - Configure CBS in TX queue
2510  *  @priv: driver private structure
2511  *  Description: It is used for configuring CBS in AVB TX queues
2512  */
stmmac_configure_cbs(struct stmmac_priv * priv)2513 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2514 {
2515 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2516 	u32 mode_to_use;
2517 	u32 queue;
2518 
2519 	/* queue 0 is reserved for legacy traffic */
2520 	for (queue = 1; queue < tx_queues_count; queue++) {
2521 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2522 		if (mode_to_use == MTL_QUEUE_DCB)
2523 			continue;
2524 
2525 		stmmac_config_cbs(priv, priv->hw,
2526 				priv->plat->tx_queues_cfg[queue].send_slope,
2527 				priv->plat->tx_queues_cfg[queue].idle_slope,
2528 				priv->plat->tx_queues_cfg[queue].high_credit,
2529 				priv->plat->tx_queues_cfg[queue].low_credit,
2530 				queue);
2531 	}
2532 }
2533 
2534 /**
2535  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2536  *  @priv: driver private structure
2537  *  Description: It is used for mapping RX queues to RX dma channels
2538  */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2539 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2540 {
2541 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2542 	u32 queue;
2543 	u32 chan;
2544 
2545 	for (queue = 0; queue < rx_queues_count; queue++) {
2546 		chan = priv->plat->rx_queues_cfg[queue].chan;
2547 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2548 	}
2549 }
2550 
2551 /**
2552  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2553  *  @priv: driver private structure
2554  *  Description: It is used for configuring the RX Queue Priority
2555  */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2556 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2557 {
2558 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2559 	u32 queue;
2560 	u32 prio;
2561 
2562 	for (queue = 0; queue < rx_queues_count; queue++) {
2563 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2564 			continue;
2565 
2566 		prio = priv->plat->rx_queues_cfg[queue].prio;
2567 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2568 	}
2569 }
2570 
2571 /**
2572  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2573  *  @priv: driver private structure
2574  *  Description: It is used for configuring the TX Queue Priority
2575  */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2576 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2577 {
2578 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2579 	u32 queue;
2580 	u32 prio;
2581 
2582 	for (queue = 0; queue < tx_queues_count; queue++) {
2583 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2584 			continue;
2585 
2586 		prio = priv->plat->tx_queues_cfg[queue].prio;
2587 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2588 	}
2589 }
2590 
2591 /**
2592  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2593  *  @priv: driver private structure
2594  *  Description: It is used for configuring the RX queue routing
2595  */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2596 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2597 {
2598 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2599 	u32 queue;
2600 	u8 packet;
2601 
2602 	for (queue = 0; queue < rx_queues_count; queue++) {
2603 		/* no specific packet type routing specified for the queue */
2604 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2605 			continue;
2606 
2607 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2608 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2609 	}
2610 }
2611 
stmmac_mac_config_rss(struct stmmac_priv * priv)2612 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2613 {
2614 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2615 		priv->rss.enable = false;
2616 		return;
2617 	}
2618 
2619 	if (priv->dev->features & NETIF_F_RXHASH)
2620 		priv->rss.enable = true;
2621 	else
2622 		priv->rss.enable = false;
2623 
2624 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2625 			     priv->plat->rx_queues_to_use);
2626 }
2627 
2628 /**
2629  *  stmmac_mtl_configuration - Configure MTL
2630  *  @priv: driver private structure
2631  *  Description: It is used for configurring MTL
2632  */
stmmac_mtl_configuration(struct stmmac_priv * priv)2633 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2634 {
2635 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2636 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2637 
2638 	if (tx_queues_count > 1)
2639 		stmmac_set_tx_queue_weight(priv);
2640 
2641 	/* Configure MTL RX algorithms */
2642 	if (rx_queues_count > 1)
2643 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2644 				priv->plat->rx_sched_algorithm);
2645 
2646 	/* Configure MTL TX algorithms */
2647 	if (tx_queues_count > 1)
2648 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2649 				priv->plat->tx_sched_algorithm);
2650 
2651 	/* Configure CBS in AVB TX queues */
2652 	if (tx_queues_count > 1)
2653 		stmmac_configure_cbs(priv);
2654 
2655 	/* Map RX MTL to DMA channels */
2656 	stmmac_rx_queue_dma_chan_map(priv);
2657 
2658 	/* Enable MAC RX Queues */
2659 	stmmac_mac_enable_rx_queues(priv);
2660 
2661 	/* Set RX priorities */
2662 	if (rx_queues_count > 1)
2663 		stmmac_mac_config_rx_queues_prio(priv);
2664 
2665 	/* Set TX priorities */
2666 	if (tx_queues_count > 1)
2667 		stmmac_mac_config_tx_queues_prio(priv);
2668 
2669 	/* Set RX routing */
2670 	if (rx_queues_count > 1)
2671 		stmmac_mac_config_rx_queues_routing(priv);
2672 
2673 	/* Receive Side Scaling */
2674 	if (rx_queues_count > 1)
2675 		stmmac_mac_config_rss(priv);
2676 }
2677 
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2678 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2679 {
2680 	if (priv->dma_cap.asp) {
2681 		netdev_info(priv->dev, "Enabling Safety Features\n");
2682 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2683 	} else {
2684 		netdev_info(priv->dev, "No Safety Features support found\n");
2685 	}
2686 }
2687 
2688 /**
2689  * stmmac_hw_setup - setup mac in a usable state.
2690  *  @dev : pointer to the device structure.
2691  *  @ptp_register: register PTP if set
2692  *  Description:
2693  *  this is the main function to setup the HW in a usable state because the
2694  *  dma engine is reset, the core registers are configured (e.g. AXI,
2695  *  Checksum features, timers). The DMA is ready to start receiving and
2696  *  transmitting.
2697  *  Return value:
2698  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2699  *  file on failure.
2700  */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)2701 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
2702 {
2703 	struct stmmac_priv *priv = netdev_priv(dev);
2704 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2705 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2706 	u32 chan;
2707 	int ret;
2708 
2709 	/* DMA initialization and SW reset */
2710 	ret = stmmac_init_dma_engine(priv);
2711 	if (ret < 0) {
2712 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2713 			   __func__);
2714 		return ret;
2715 	}
2716 
2717 	/* Copy the MAC addr into the HW  */
2718 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2719 
2720 	/* PS and related bits will be programmed according to the speed */
2721 	if (priv->hw->pcs) {
2722 		int speed = priv->plat->mac_port_sel_speed;
2723 
2724 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2725 		    (speed == SPEED_1000)) {
2726 			priv->hw->ps = speed;
2727 		} else {
2728 			dev_warn(priv->device, "invalid port speed\n");
2729 			priv->hw->ps = 0;
2730 		}
2731 	}
2732 
2733 	/* Initialize the MAC Core */
2734 	stmmac_core_init(priv, priv->hw, dev);
2735 
2736 	/* Initialize MTL*/
2737 	stmmac_mtl_configuration(priv);
2738 
2739 	/* Initialize Safety Features */
2740 	stmmac_safety_feat_configuration(priv);
2741 
2742 	ret = stmmac_rx_ipc(priv, priv->hw);
2743 	if (!ret) {
2744 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2745 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2746 		priv->hw->rx_csum = 0;
2747 	}
2748 
2749 	/* Enable the MAC Rx/Tx */
2750 	stmmac_mac_set(priv, priv->ioaddr, true);
2751 
2752 	/* Set the HW DMA mode and the COE */
2753 	stmmac_dma_operation_mode(priv);
2754 
2755 	stmmac_mmc_setup(priv);
2756 
2757 	if (ptp_register) {
2758 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2759 		if (ret < 0)
2760 			netdev_warn(priv->dev,
2761 				    "failed to enable PTP reference clock: %pe\n",
2762 				    ERR_PTR(ret));
2763 	}
2764 
2765 	ret = stmmac_init_ptp(priv);
2766 	if (ret == -EOPNOTSUPP)
2767 		netdev_warn(priv->dev, "PTP not supported by HW\n");
2768 	else if (ret)
2769 		netdev_warn(priv->dev, "PTP init failed\n");
2770 	else if (ptp_register)
2771 		stmmac_ptp_register(priv);
2772 
2773 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2774 
2775 	/* Convert the timer from msec to usec */
2776 	if (!priv->tx_lpi_timer)
2777 		priv->tx_lpi_timer = eee_timer * 1000;
2778 
2779 	if (priv->use_riwt) {
2780 		if (!priv->rx_riwt)
2781 			priv->rx_riwt = DEF_DMA_RIWT;
2782 
2783 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2784 	}
2785 
2786 	if (priv->hw->pcs)
2787 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2788 
2789 	/* set TX and RX rings length */
2790 	stmmac_set_rings_length(priv);
2791 
2792 	/* Enable TSO */
2793 	if (priv->tso) {
2794 		for (chan = 0; chan < tx_cnt; chan++) {
2795 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2796 
2797 			/* TSO and TBS cannot co-exist */
2798 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
2799 				continue;
2800 
2801 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2802 		}
2803 	}
2804 
2805 	/* Enable Split Header */
2806 	if (priv->sph && priv->hw->rx_csum) {
2807 		for (chan = 0; chan < rx_cnt; chan++)
2808 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2809 	}
2810 
2811 	/* VLAN Tag Insertion */
2812 	if (priv->dma_cap.vlins)
2813 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2814 
2815 	/* TBS */
2816 	for (chan = 0; chan < tx_cnt; chan++) {
2817 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2818 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2819 
2820 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2821 	}
2822 
2823 	/* Configure real RX and TX queues */
2824 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2825 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2826 
2827 	/* Start the ball rolling... */
2828 	stmmac_start_all_dma(priv);
2829 
2830 	return 0;
2831 }
2832 
stmmac_hw_teardown(struct net_device * dev)2833 static void stmmac_hw_teardown(struct net_device *dev)
2834 {
2835 	struct stmmac_priv *priv = netdev_priv(dev);
2836 
2837 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2838 }
2839 
2840 /**
2841  *  stmmac_open - open entry point of the driver
2842  *  @dev : pointer to the device structure.
2843  *  Description:
2844  *  This function is the open entry point of the driver.
2845  *  Return value:
2846  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2847  *  file on failure.
2848  */
stmmac_open(struct net_device * dev)2849 static int stmmac_open(struct net_device *dev)
2850 {
2851 	struct stmmac_priv *priv = netdev_priv(dev);
2852 	int bfsize = 0;
2853 	u32 chan;
2854 	int ret;
2855 
2856 	ret = pm_runtime_get_sync(priv->device);
2857 	if (ret < 0) {
2858 		pm_runtime_put_noidle(priv->device);
2859 		return ret;
2860 	}
2861 
2862 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2863 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2864 	    priv->hw->xpcs == NULL) {
2865 		ret = stmmac_init_phy(dev);
2866 		if (ret) {
2867 			netdev_err(priv->dev,
2868 				   "%s: Cannot attach to PHY (error: %d)\n",
2869 				   __func__, ret);
2870 			goto init_phy_error;
2871 		}
2872 	}
2873 
2874 	/* Extra statistics */
2875 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2876 	priv->xstats.threshold = tc;
2877 
2878 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2879 	if (bfsize < 0)
2880 		bfsize = 0;
2881 
2882 	if (bfsize < BUF_SIZE_16KiB)
2883 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2884 
2885 	priv->dma_buf_sz = bfsize;
2886 	buf_sz = bfsize;
2887 
2888 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2889 
2890 	if (!priv->dma_tx_size)
2891 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2892 	if (!priv->dma_rx_size)
2893 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2894 
2895 	/* Earlier check for TBS */
2896 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2897 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2898 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2899 
2900 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
2901 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2902 	}
2903 
2904 	ret = alloc_dma_desc_resources(priv);
2905 	if (ret < 0) {
2906 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2907 			   __func__);
2908 		goto dma_desc_error;
2909 	}
2910 
2911 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2912 	if (ret < 0) {
2913 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2914 			   __func__);
2915 		goto init_error;
2916 	}
2917 
2918 	if (priv->plat->serdes_powerup) {
2919 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
2920 		if (ret < 0) {
2921 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
2922 				   __func__);
2923 			goto init_error;
2924 		}
2925 	}
2926 
2927 	ret = stmmac_hw_setup(dev, true);
2928 	if (ret < 0) {
2929 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2930 		goto init_error;
2931 	}
2932 
2933 	stmmac_init_coalesce(priv);
2934 
2935 	phylink_start(priv->phylink);
2936 	/* We may have called phylink_speed_down before */
2937 	phylink_speed_up(priv->phylink);
2938 
2939 	/* Request the IRQ lines */
2940 	ret = request_irq(dev->irq, stmmac_interrupt,
2941 			  IRQF_SHARED, dev->name, dev);
2942 	if (unlikely(ret < 0)) {
2943 		netdev_err(priv->dev,
2944 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2945 			   __func__, dev->irq, ret);
2946 		goto irq_error;
2947 	}
2948 
2949 	/* Request the Wake IRQ in case of another line is used for WoL */
2950 	if (priv->wol_irq != dev->irq) {
2951 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2952 				  IRQF_SHARED, dev->name, dev);
2953 		if (unlikely(ret < 0)) {
2954 			netdev_err(priv->dev,
2955 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2956 				   __func__, priv->wol_irq, ret);
2957 			goto wolirq_error;
2958 		}
2959 	}
2960 
2961 	/* Request the IRQ lines */
2962 	if (priv->lpi_irq > 0) {
2963 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2964 				  dev->name, dev);
2965 		if (unlikely(ret < 0)) {
2966 			netdev_err(priv->dev,
2967 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2968 				   __func__, priv->lpi_irq, ret);
2969 			goto lpiirq_error;
2970 		}
2971 	}
2972 
2973 	stmmac_enable_all_queues(priv);
2974 	netif_tx_start_all_queues(priv->dev);
2975 
2976 	return 0;
2977 
2978 lpiirq_error:
2979 	if (priv->wol_irq != dev->irq)
2980 		free_irq(priv->wol_irq, dev);
2981 wolirq_error:
2982 	free_irq(dev->irq, dev);
2983 irq_error:
2984 	phylink_stop(priv->phylink);
2985 
2986 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2987 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2988 
2989 	stmmac_hw_teardown(dev);
2990 init_error:
2991 	free_dma_desc_resources(priv);
2992 dma_desc_error:
2993 	phylink_disconnect_phy(priv->phylink);
2994 init_phy_error:
2995 	pm_runtime_put(priv->device);
2996 	return ret;
2997 }
2998 
2999 /**
3000  *  stmmac_release - close entry point of the driver
3001  *  @dev : device pointer.
3002  *  Description:
3003  *  This is the stop entry point of the driver.
3004  */
stmmac_release(struct net_device * dev)3005 static int stmmac_release(struct net_device *dev)
3006 {
3007 	struct stmmac_priv *priv = netdev_priv(dev);
3008 	u32 chan;
3009 
3010 	if (device_may_wakeup(priv->device))
3011 		phylink_speed_down(priv->phylink, false);
3012 	/* Stop and disconnect the PHY */
3013 	phylink_stop(priv->phylink);
3014 	phylink_disconnect_phy(priv->phylink);
3015 
3016 	stmmac_disable_all_queues(priv);
3017 
3018 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3019 		del_timer_sync(&priv->tx_queue[chan].txtimer);
3020 
3021 	/* Free the IRQ lines */
3022 	free_irq(dev->irq, dev);
3023 	if (priv->wol_irq != dev->irq)
3024 		free_irq(priv->wol_irq, dev);
3025 	if (priv->lpi_irq > 0)
3026 		free_irq(priv->lpi_irq, dev);
3027 
3028 	if (priv->eee_enabled) {
3029 		priv->tx_path_in_lpi_mode = false;
3030 		del_timer_sync(&priv->eee_ctrl_timer);
3031 	}
3032 
3033 	/* Stop TX/RX DMA and clear the descriptors */
3034 	stmmac_stop_all_dma(priv);
3035 
3036 	/* Release and free the Rx/Tx resources */
3037 	free_dma_desc_resources(priv);
3038 
3039 	/* Disable the MAC Rx/Tx */
3040 	stmmac_mac_set(priv, priv->ioaddr, false);
3041 
3042 	/* Powerdown Serdes if there is */
3043 	if (priv->plat->serdes_powerdown)
3044 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3045 
3046 	netif_carrier_off(dev);
3047 
3048 	stmmac_release_ptp(priv);
3049 
3050 	pm_runtime_put(priv->device);
3051 
3052 	return 0;
3053 }
3054 
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3055 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3056 			       struct stmmac_tx_queue *tx_q)
3057 {
3058 	u16 tag = 0x0, inner_tag = 0x0;
3059 	u32 inner_type = 0x0;
3060 	struct dma_desc *p;
3061 
3062 	if (!priv->dma_cap.vlins)
3063 		return false;
3064 	if (!skb_vlan_tag_present(skb))
3065 		return false;
3066 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3067 		inner_tag = skb_vlan_tag_get(skb);
3068 		inner_type = STMMAC_VLAN_INSERT;
3069 	}
3070 
3071 	tag = skb_vlan_tag_get(skb);
3072 
3073 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3074 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3075 	else
3076 		p = &tx_q->dma_tx[tx_q->cur_tx];
3077 
3078 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3079 		return false;
3080 
3081 	stmmac_set_tx_owner(priv, p);
3082 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3083 	return true;
3084 }
3085 
3086 /**
3087  *  stmmac_tso_allocator - close entry point of the driver
3088  *  @priv: driver private structure
3089  *  @des: buffer start address
3090  *  @total_len: total length to fill in descriptors
3091  *  @last_segment: condition for the last descriptor
3092  *  @queue: TX queue index
3093  *  Description:
3094  *  This function fills descriptor and request new descriptors according to
3095  *  buffer length to fill
3096  */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3097 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3098 				 int total_len, bool last_segment, u32 queue)
3099 {
3100 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3101 	struct dma_desc *desc;
3102 	u32 buff_size;
3103 	int tmp_len;
3104 
3105 	tmp_len = total_len;
3106 
3107 	while (tmp_len > 0) {
3108 		dma_addr_t curr_addr;
3109 
3110 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3111 						priv->dma_tx_size);
3112 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3113 
3114 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3115 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3116 		else
3117 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3118 
3119 		curr_addr = des + (total_len - tmp_len);
3120 		if (priv->dma_cap.addr64 <= 32)
3121 			desc->des0 = cpu_to_le32(curr_addr);
3122 		else
3123 			stmmac_set_desc_addr(priv, desc, curr_addr);
3124 
3125 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3126 			    TSO_MAX_BUFF_SIZE : tmp_len;
3127 
3128 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3129 				0, 1,
3130 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3131 				0, 0);
3132 
3133 		tmp_len -= TSO_MAX_BUFF_SIZE;
3134 	}
3135 }
3136 
3137 /**
3138  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3139  *  @skb : the socket buffer
3140  *  @dev : device pointer
3141  *  Description: this is the transmit function that is called on TSO frames
3142  *  (support available on GMAC4 and newer chips).
3143  *  Diagram below show the ring programming in case of TSO frames:
3144  *
3145  *  First Descriptor
3146  *   --------
3147  *   | DES0 |---> buffer1 = L2/L3/L4 header
3148  *   | DES1 |---> TCP Payload (can continue on next descr...)
3149  *   | DES2 |---> buffer 1 and 2 len
3150  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3151  *   --------
3152  *	|
3153  *     ...
3154  *	|
3155  *   --------
3156  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3157  *   | DES1 | --|
3158  *   | DES2 | --> buffer 1 and 2 len
3159  *   | DES3 |
3160  *   --------
3161  *
3162  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3163  */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3164 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3165 {
3166 	struct dma_desc *desc, *first, *mss_desc = NULL;
3167 	struct stmmac_priv *priv = netdev_priv(dev);
3168 	int desc_size, tmp_pay_len = 0, first_tx;
3169 	int nfrags = skb_shinfo(skb)->nr_frags;
3170 	u32 queue = skb_get_queue_mapping(skb);
3171 	unsigned int first_entry, tx_packets;
3172 	struct stmmac_tx_queue *tx_q;
3173 	bool has_vlan, set_ic;
3174 	u8 proto_hdr_len, hdr;
3175 	u32 pay_len, mss;
3176 	dma_addr_t des;
3177 	int i;
3178 
3179 	tx_q = &priv->tx_queue[queue];
3180 	first_tx = tx_q->cur_tx;
3181 
3182 	/* Compute header lengths */
3183 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3184 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3185 		hdr = sizeof(struct udphdr);
3186 	} else {
3187 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3188 		hdr = tcp_hdrlen(skb);
3189 	}
3190 
3191 	/* Desc availability based on threshold should be enough safe */
3192 	if (unlikely(stmmac_tx_avail(priv, queue) <
3193 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3194 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3195 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3196 								queue));
3197 			/* This is a hard error, log it. */
3198 			netdev_err(priv->dev,
3199 				   "%s: Tx Ring full when queue awake\n",
3200 				   __func__);
3201 		}
3202 		return NETDEV_TX_BUSY;
3203 	}
3204 
3205 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3206 
3207 	mss = skb_shinfo(skb)->gso_size;
3208 
3209 	/* set new MSS value if needed */
3210 	if (mss != tx_q->mss) {
3211 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3212 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3213 		else
3214 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3215 
3216 		stmmac_set_mss(priv, mss_desc, mss);
3217 		tx_q->mss = mss;
3218 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3219 						priv->dma_tx_size);
3220 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3221 	}
3222 
3223 	if (netif_msg_tx_queued(priv)) {
3224 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3225 			__func__, hdr, proto_hdr_len, pay_len, mss);
3226 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3227 			skb->data_len);
3228 	}
3229 
3230 	/* Check if VLAN can be inserted by HW */
3231 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3232 
3233 	first_entry = tx_q->cur_tx;
3234 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3235 
3236 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3237 		desc = &tx_q->dma_entx[first_entry].basic;
3238 	else
3239 		desc = &tx_q->dma_tx[first_entry];
3240 	first = desc;
3241 
3242 	if (has_vlan)
3243 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3244 
3245 	/* first descriptor: fill Headers on Buf1 */
3246 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3247 			     DMA_TO_DEVICE);
3248 	if (dma_mapping_error(priv->device, des))
3249 		goto dma_map_err;
3250 
3251 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3252 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3253 
3254 	if (priv->dma_cap.addr64 <= 32) {
3255 		first->des0 = cpu_to_le32(des);
3256 
3257 		/* Fill start of payload in buff2 of first descriptor */
3258 		if (pay_len)
3259 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3260 
3261 		/* If needed take extra descriptors to fill the remaining payload */
3262 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3263 	} else {
3264 		stmmac_set_desc_addr(priv, first, des);
3265 		tmp_pay_len = pay_len;
3266 		des += proto_hdr_len;
3267 		pay_len = 0;
3268 	}
3269 
3270 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3271 
3272 	/* Prepare fragments */
3273 	for (i = 0; i < nfrags; i++) {
3274 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3275 
3276 		des = skb_frag_dma_map(priv->device, frag, 0,
3277 				       skb_frag_size(frag),
3278 				       DMA_TO_DEVICE);
3279 		if (dma_mapping_error(priv->device, des))
3280 			goto dma_map_err;
3281 
3282 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3283 				     (i == nfrags - 1), queue);
3284 
3285 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3286 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3287 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3288 	}
3289 
3290 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3291 
3292 	/* Only the last descriptor gets to point to the skb. */
3293 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3294 
3295 	/* Manage tx mitigation */
3296 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3297 	tx_q->tx_count_frames += tx_packets;
3298 
3299 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3300 		set_ic = true;
3301 	else if (!priv->tx_coal_frames)
3302 		set_ic = false;
3303 	else if (tx_packets > priv->tx_coal_frames)
3304 		set_ic = true;
3305 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3306 		set_ic = true;
3307 	else
3308 		set_ic = false;
3309 
3310 	if (set_ic) {
3311 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3312 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3313 		else
3314 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3315 
3316 		tx_q->tx_count_frames = 0;
3317 		stmmac_set_tx_ic(priv, desc);
3318 		priv->xstats.tx_set_ic_bit++;
3319 	}
3320 
3321 	/* We've used all descriptors we need for this skb, however,
3322 	 * advance cur_tx so that it references a fresh descriptor.
3323 	 * ndo_start_xmit will fill this descriptor the next time it's
3324 	 * called and stmmac_tx_clean may clean up to this descriptor.
3325 	 */
3326 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3327 
3328 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3329 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3330 			  __func__);
3331 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3332 	}
3333 
3334 	dev->stats.tx_bytes += skb->len;
3335 	priv->xstats.tx_tso_frames++;
3336 	priv->xstats.tx_tso_nfrags += nfrags;
3337 
3338 	if (priv->sarc_type)
3339 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3340 
3341 	skb_tx_timestamp(skb);
3342 
3343 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3344 		     priv->hwts_tx_en)) {
3345 		/* declare that device is doing timestamping */
3346 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3347 		stmmac_enable_tx_timestamp(priv, first);
3348 	}
3349 
3350 	/* Complete the first descriptor before granting the DMA */
3351 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3352 			proto_hdr_len,
3353 			pay_len,
3354 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3355 			hdr / 4, (skb->len - proto_hdr_len));
3356 
3357 	/* If context desc is used to change MSS */
3358 	if (mss_desc) {
3359 		/* Make sure that first descriptor has been completely
3360 		 * written, including its own bit. This is because MSS is
3361 		 * actually before first descriptor, so we need to make
3362 		 * sure that MSS's own bit is the last thing written.
3363 		 */
3364 		dma_wmb();
3365 		stmmac_set_tx_owner(priv, mss_desc);
3366 	}
3367 
3368 	/* The own bit must be the latest setting done when prepare the
3369 	 * descriptor and then barrier is needed to make sure that
3370 	 * all is coherent before granting the DMA engine.
3371 	 */
3372 	wmb();
3373 
3374 	if (netif_msg_pktdata(priv)) {
3375 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3376 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3377 			tx_q->cur_tx, first, nfrags);
3378 		pr_info(">>> frame to be transmitted: ");
3379 		print_pkt(skb->data, skb_headlen(skb));
3380 	}
3381 
3382 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3383 
3384 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3385 		desc_size = sizeof(struct dma_edesc);
3386 	else
3387 		desc_size = sizeof(struct dma_desc);
3388 
3389 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3390 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3391 	stmmac_tx_timer_arm(priv, queue);
3392 
3393 	return NETDEV_TX_OK;
3394 
3395 dma_map_err:
3396 	dev_err(priv->device, "Tx dma map failed\n");
3397 	dev_kfree_skb(skb);
3398 	priv->dev->stats.tx_dropped++;
3399 	return NETDEV_TX_OK;
3400 }
3401 
3402 /**
3403  *  stmmac_xmit - Tx entry point of the driver
3404  *  @skb : the socket buffer
3405  *  @dev : device pointer
3406  *  Description : this is the tx entry point of the driver.
3407  *  It programs the chain or the ring and supports oversized frames
3408  *  and SG feature.
3409  */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3410 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3411 {
3412 	unsigned int first_entry, tx_packets, enh_desc;
3413 	struct stmmac_priv *priv = netdev_priv(dev);
3414 	unsigned int nopaged_len = skb_headlen(skb);
3415 	int i, csum_insertion = 0, is_jumbo = 0;
3416 	u32 queue = skb_get_queue_mapping(skb);
3417 	int nfrags = skb_shinfo(skb)->nr_frags;
3418 	int gso = skb_shinfo(skb)->gso_type;
3419 	struct dma_edesc *tbs_desc = NULL;
3420 	int entry, desc_size, first_tx;
3421 	struct dma_desc *desc, *first;
3422 	struct stmmac_tx_queue *tx_q;
3423 	bool has_vlan, set_ic;
3424 	dma_addr_t des;
3425 
3426 	tx_q = &priv->tx_queue[queue];
3427 	first_tx = tx_q->cur_tx;
3428 
3429 	if (priv->tx_path_in_lpi_mode)
3430 		stmmac_disable_eee_mode(priv);
3431 
3432 	/* Manage oversized TCP frames for GMAC4 device */
3433 	if (skb_is_gso(skb) && priv->tso) {
3434 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3435 			return stmmac_tso_xmit(skb, dev);
3436 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3437 			return stmmac_tso_xmit(skb, dev);
3438 	}
3439 
3440 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3441 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3442 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3443 								queue));
3444 			/* This is a hard error, log it. */
3445 			netdev_err(priv->dev,
3446 				   "%s: Tx Ring full when queue awake\n",
3447 				   __func__);
3448 		}
3449 		return NETDEV_TX_BUSY;
3450 	}
3451 
3452 	/* Check if VLAN can be inserted by HW */
3453 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3454 
3455 	entry = tx_q->cur_tx;
3456 	first_entry = entry;
3457 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3458 
3459 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3460 
3461 	if (likely(priv->extend_desc))
3462 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3463 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3464 		desc = &tx_q->dma_entx[entry].basic;
3465 	else
3466 		desc = tx_q->dma_tx + entry;
3467 
3468 	first = desc;
3469 
3470 	if (has_vlan)
3471 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3472 
3473 	enh_desc = priv->plat->enh_desc;
3474 	/* To program the descriptors according to the size of the frame */
3475 	if (enh_desc)
3476 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3477 
3478 	if (unlikely(is_jumbo)) {
3479 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3480 		if (unlikely(entry < 0) && (entry != -EINVAL))
3481 			goto dma_map_err;
3482 	}
3483 
3484 	for (i = 0; i < nfrags; i++) {
3485 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3486 		int len = skb_frag_size(frag);
3487 		bool last_segment = (i == (nfrags - 1));
3488 
3489 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3490 		WARN_ON(tx_q->tx_skbuff[entry]);
3491 
3492 		if (likely(priv->extend_desc))
3493 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3494 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3495 			desc = &tx_q->dma_entx[entry].basic;
3496 		else
3497 			desc = tx_q->dma_tx + entry;
3498 
3499 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3500 				       DMA_TO_DEVICE);
3501 		if (dma_mapping_error(priv->device, des))
3502 			goto dma_map_err; /* should reuse desc w/o issues */
3503 
3504 		tx_q->tx_skbuff_dma[entry].buf = des;
3505 
3506 		stmmac_set_desc_addr(priv, desc, des);
3507 
3508 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3509 		tx_q->tx_skbuff_dma[entry].len = len;
3510 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3511 
3512 		/* Prepare the descriptor and set the own bit too */
3513 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3514 				priv->mode, 1, last_segment, skb->len);
3515 	}
3516 
3517 	/* Only the last descriptor gets to point to the skb. */
3518 	tx_q->tx_skbuff[entry] = skb;
3519 
3520 	/* According to the coalesce parameter the IC bit for the latest
3521 	 * segment is reset and the timer re-started to clean the tx status.
3522 	 * This approach takes care about the fragments: desc is the first
3523 	 * element in case of no SG.
3524 	 */
3525 	tx_packets = (entry + 1) - first_tx;
3526 	tx_q->tx_count_frames += tx_packets;
3527 
3528 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3529 		set_ic = true;
3530 	else if (!priv->tx_coal_frames)
3531 		set_ic = false;
3532 	else if (tx_packets > priv->tx_coal_frames)
3533 		set_ic = true;
3534 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3535 		set_ic = true;
3536 	else
3537 		set_ic = false;
3538 
3539 	if (set_ic) {
3540 		if (likely(priv->extend_desc))
3541 			desc = &tx_q->dma_etx[entry].basic;
3542 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3543 			desc = &tx_q->dma_entx[entry].basic;
3544 		else
3545 			desc = &tx_q->dma_tx[entry];
3546 
3547 		tx_q->tx_count_frames = 0;
3548 		stmmac_set_tx_ic(priv, desc);
3549 		priv->xstats.tx_set_ic_bit++;
3550 	}
3551 
3552 	/* We've used all descriptors we need for this skb, however,
3553 	 * advance cur_tx so that it references a fresh descriptor.
3554 	 * ndo_start_xmit will fill this descriptor the next time it's
3555 	 * called and stmmac_tx_clean may clean up to this descriptor.
3556 	 */
3557 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3558 	tx_q->cur_tx = entry;
3559 
3560 	if (netif_msg_pktdata(priv)) {
3561 		netdev_dbg(priv->dev,
3562 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3563 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3564 			   entry, first, nfrags);
3565 
3566 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3567 		print_pkt(skb->data, skb->len);
3568 	}
3569 
3570 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3571 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3572 			  __func__);
3573 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3574 	}
3575 
3576 	dev->stats.tx_bytes += skb->len;
3577 
3578 	if (priv->sarc_type)
3579 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3580 
3581 	skb_tx_timestamp(skb);
3582 
3583 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3584 	 * problems because all the descriptors are actually ready to be
3585 	 * passed to the DMA engine.
3586 	 */
3587 	if (likely(!is_jumbo)) {
3588 		bool last_segment = (nfrags == 0);
3589 
3590 		des = dma_map_single(priv->device, skb->data,
3591 				     nopaged_len, DMA_TO_DEVICE);
3592 		if (dma_mapping_error(priv->device, des))
3593 			goto dma_map_err;
3594 
3595 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3596 
3597 		stmmac_set_desc_addr(priv, first, des);
3598 
3599 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3600 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3601 
3602 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3603 			     priv->hwts_tx_en)) {
3604 			/* declare that device is doing timestamping */
3605 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3606 			stmmac_enable_tx_timestamp(priv, first);
3607 		}
3608 
3609 		/* Prepare the first descriptor setting the OWN bit too */
3610 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3611 				csum_insertion, priv->mode, 0, last_segment,
3612 				skb->len);
3613 	}
3614 
3615 	if (tx_q->tbs & STMMAC_TBS_EN) {
3616 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3617 
3618 		tbs_desc = &tx_q->dma_entx[first_entry];
3619 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3620 	}
3621 
3622 	stmmac_set_tx_owner(priv, first);
3623 
3624 	/* The own bit must be the latest setting done when prepare the
3625 	 * descriptor and then barrier is needed to make sure that
3626 	 * all is coherent before granting the DMA engine.
3627 	 */
3628 	wmb();
3629 
3630 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3631 
3632 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3633 
3634 	if (likely(priv->extend_desc))
3635 		desc_size = sizeof(struct dma_extended_desc);
3636 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3637 		desc_size = sizeof(struct dma_edesc);
3638 	else
3639 		desc_size = sizeof(struct dma_desc);
3640 
3641 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3642 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3643 	stmmac_tx_timer_arm(priv, queue);
3644 
3645 	return NETDEV_TX_OK;
3646 
3647 dma_map_err:
3648 	netdev_err(priv->dev, "Tx DMA map failed\n");
3649 	dev_kfree_skb(skb);
3650 	priv->dev->stats.tx_dropped++;
3651 	return NETDEV_TX_OK;
3652 }
3653 
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3654 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3655 {
3656 	struct vlan_ethhdr *veth;
3657 	__be16 vlan_proto;
3658 	u16 vlanid;
3659 
3660 	veth = (struct vlan_ethhdr *)skb->data;
3661 	vlan_proto = veth->h_vlan_proto;
3662 
3663 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3664 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3665 	    (vlan_proto == htons(ETH_P_8021AD) &&
3666 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3667 		/* pop the vlan tag */
3668 		vlanid = ntohs(veth->h_vlan_TCI);
3669 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3670 		skb_pull(skb, VLAN_HLEN);
3671 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3672 	}
3673 }
3674 
3675 /**
3676  * stmmac_rx_refill - refill used skb preallocated buffers
3677  * @priv: driver private structure
3678  * @queue: RX queue index
3679  * Description : this is to reallocate the skb for the reception process
3680  * that is based on zero-copy.
3681  */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3682 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3683 {
3684 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3685 	int len, dirty = stmmac_rx_dirty(priv, queue);
3686 	unsigned int entry = rx_q->dirty_rx;
3687 
3688 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3689 
3690 	while (dirty-- > 0) {
3691 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3692 		struct dma_desc *p;
3693 		bool use_rx_wd;
3694 
3695 		if (priv->extend_desc)
3696 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3697 		else
3698 			p = rx_q->dma_rx + entry;
3699 
3700 		if (!buf->page) {
3701 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3702 			if (!buf->page)
3703 				break;
3704 		}
3705 
3706 		if (priv->sph && !buf->sec_page) {
3707 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3708 			if (!buf->sec_page)
3709 				break;
3710 
3711 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3712 
3713 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3714 						   len, DMA_FROM_DEVICE);
3715 		}
3716 
3717 		buf->addr = page_pool_get_dma_addr(buf->page);
3718 
3719 		/* Sync whole allocation to device. This will invalidate old
3720 		 * data.
3721 		 */
3722 		dma_sync_single_for_device(priv->device, buf->addr, len,
3723 					   DMA_FROM_DEVICE);
3724 
3725 		stmmac_set_desc_addr(priv, p, buf->addr);
3726 		if (priv->sph)
3727 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3728 		else
3729 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3730 		stmmac_refill_desc3(priv, rx_q, p);
3731 
3732 		rx_q->rx_count_frames++;
3733 		rx_q->rx_count_frames += priv->rx_coal_frames;
3734 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3735 			rx_q->rx_count_frames = 0;
3736 
3737 		use_rx_wd = !priv->rx_coal_frames;
3738 		use_rx_wd |= rx_q->rx_count_frames > 0;
3739 		if (!priv->use_riwt)
3740 			use_rx_wd = false;
3741 
3742 		dma_wmb();
3743 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3744 
3745 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3746 	}
3747 	rx_q->dirty_rx = entry;
3748 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3749 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3750 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3751 }
3752 
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3753 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3754 				       struct dma_desc *p,
3755 				       int status, unsigned int len)
3756 {
3757 	unsigned int plen = 0, hlen = 0;
3758 	int coe = priv->hw->rx_csum;
3759 
3760 	/* Not first descriptor, buffer is always zero */
3761 	if (priv->sph && len)
3762 		return 0;
3763 
3764 	/* First descriptor, get split header length */
3765 	stmmac_get_rx_header_len(priv, p, &hlen);
3766 	if (priv->sph && hlen) {
3767 		priv->xstats.rx_split_hdr_pkt_n++;
3768 		return hlen;
3769 	}
3770 
3771 	/* First descriptor, not last descriptor and not split header */
3772 	if (status & rx_not_ls)
3773 		return priv->dma_buf_sz;
3774 
3775 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3776 
3777 	/* First descriptor and last descriptor and not split header */
3778 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3779 }
3780 
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3781 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3782 				       struct dma_desc *p,
3783 				       int status, unsigned int len)
3784 {
3785 	int coe = priv->hw->rx_csum;
3786 	unsigned int plen = 0;
3787 
3788 	/* Not split header, buffer is not available */
3789 	if (!priv->sph)
3790 		return 0;
3791 
3792 	/* Not last descriptor */
3793 	if (status & rx_not_ls)
3794 		return priv->dma_buf_sz;
3795 
3796 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3797 
3798 	/* Last descriptor */
3799 	return plen - len;
3800 }
3801 
3802 /**
3803  * stmmac_rx - manage the receive process
3804  * @priv: driver private structure
3805  * @limit: napi bugget
3806  * @queue: RX queue index.
3807  * Description :  this the function called by the napi poll method.
3808  * It gets all the frames inside the ring.
3809  */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3810 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3811 {
3812 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3813 	struct stmmac_channel *ch = &priv->channel[queue];
3814 	unsigned int count = 0, error = 0, len = 0;
3815 	int status = 0, coe = priv->hw->rx_csum;
3816 	unsigned int next_entry = rx_q->cur_rx;
3817 	unsigned int desc_size;
3818 	struct sk_buff *skb = NULL;
3819 
3820 	if (netif_msg_rx_status(priv)) {
3821 		void *rx_head;
3822 
3823 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3824 		if (priv->extend_desc) {
3825 			rx_head = (void *)rx_q->dma_erx;
3826 			desc_size = sizeof(struct dma_extended_desc);
3827 		} else {
3828 			rx_head = (void *)rx_q->dma_rx;
3829 			desc_size = sizeof(struct dma_desc);
3830 		}
3831 
3832 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3833 				    rx_q->dma_rx_phy, desc_size);
3834 	}
3835 	while (count < limit) {
3836 		unsigned int buf1_len = 0, buf2_len = 0;
3837 		enum pkt_hash_types hash_type;
3838 		struct stmmac_rx_buffer *buf;
3839 		struct dma_desc *np, *p;
3840 		int entry;
3841 		u32 hash;
3842 
3843 		if (!count && rx_q->state_saved) {
3844 			skb = rx_q->state.skb;
3845 			error = rx_q->state.error;
3846 			len = rx_q->state.len;
3847 		} else {
3848 			rx_q->state_saved = false;
3849 			skb = NULL;
3850 			error = 0;
3851 			len = 0;
3852 		}
3853 
3854 		if (count >= limit)
3855 			break;
3856 
3857 read_again:
3858 		buf1_len = 0;
3859 		buf2_len = 0;
3860 		entry = next_entry;
3861 		buf = &rx_q->buf_pool[entry];
3862 
3863 		if (priv->extend_desc)
3864 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3865 		else
3866 			p = rx_q->dma_rx + entry;
3867 
3868 		/* read the status of the incoming frame */
3869 		status = stmmac_rx_status(priv, &priv->dev->stats,
3870 				&priv->xstats, p);
3871 		/* check if managed by the DMA otherwise go ahead */
3872 		if (unlikely(status & dma_own))
3873 			break;
3874 
3875 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3876 						priv->dma_rx_size);
3877 		next_entry = rx_q->cur_rx;
3878 
3879 		if (priv->extend_desc)
3880 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3881 		else
3882 			np = rx_q->dma_rx + next_entry;
3883 
3884 		prefetch(np);
3885 
3886 		if (priv->extend_desc)
3887 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3888 					&priv->xstats, rx_q->dma_erx + entry);
3889 		if (unlikely(status == discard_frame)) {
3890 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3891 			buf->page = NULL;
3892 			error = 1;
3893 			if (!priv->hwts_rx_en)
3894 				priv->dev->stats.rx_errors++;
3895 		}
3896 
3897 		if (unlikely(error && (status & rx_not_ls)))
3898 			goto read_again;
3899 		if (unlikely(error)) {
3900 			dev_kfree_skb(skb);
3901 			skb = NULL;
3902 			count++;
3903 			continue;
3904 		}
3905 
3906 		/* Buffer is good. Go on. */
3907 
3908 		prefetch(page_address(buf->page));
3909 		if (buf->sec_page)
3910 			prefetch(page_address(buf->sec_page));
3911 
3912 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3913 		len += buf1_len;
3914 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3915 		len += buf2_len;
3916 
3917 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3918 		 * Type frames (LLC/LLC-SNAP)
3919 		 *
3920 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3921 		 * feature is always disabled and packets need to be
3922 		 * stripped manually.
3923 		 */
3924 		if (likely(!(status & rx_not_ls)) &&
3925 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3926 		     unlikely(status != llc_snap))) {
3927 			if (buf2_len)
3928 				buf2_len -= ETH_FCS_LEN;
3929 			else
3930 				buf1_len -= ETH_FCS_LEN;
3931 
3932 			len -= ETH_FCS_LEN;
3933 		}
3934 
3935 		if (!skb) {
3936 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3937 			if (!skb) {
3938 				priv->dev->stats.rx_dropped++;
3939 				count++;
3940 				goto drain_data;
3941 			}
3942 
3943 			dma_sync_single_for_cpu(priv->device, buf->addr,
3944 						buf1_len, DMA_FROM_DEVICE);
3945 			skb_copy_to_linear_data(skb, page_address(buf->page),
3946 						buf1_len);
3947 			skb_put(skb, buf1_len);
3948 
3949 			/* Data payload copied into SKB, page ready for recycle */
3950 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3951 			buf->page = NULL;
3952 		} else if (buf1_len) {
3953 			dma_sync_single_for_cpu(priv->device, buf->addr,
3954 						buf1_len, DMA_FROM_DEVICE);
3955 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3956 					buf->page, 0, buf1_len,
3957 					priv->dma_buf_sz);
3958 
3959 			/* Data payload appended into SKB */
3960 			page_pool_release_page(rx_q->page_pool, buf->page);
3961 			buf->page = NULL;
3962 		}
3963 
3964 		if (buf2_len) {
3965 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3966 						buf2_len, DMA_FROM_DEVICE);
3967 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3968 					buf->sec_page, 0, buf2_len,
3969 					priv->dma_buf_sz);
3970 
3971 			/* Data payload appended into SKB */
3972 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3973 			buf->sec_page = NULL;
3974 		}
3975 
3976 drain_data:
3977 		if (likely(status & rx_not_ls))
3978 			goto read_again;
3979 		if (!skb)
3980 			continue;
3981 
3982 		/* Got entire packet into SKB. Finish it. */
3983 
3984 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3985 		stmmac_rx_vlan(priv->dev, skb);
3986 		skb->protocol = eth_type_trans(skb, priv->dev);
3987 
3988 		if (unlikely(!coe))
3989 			skb_checksum_none_assert(skb);
3990 		else
3991 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3992 
3993 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3994 			skb_set_hash(skb, hash, hash_type);
3995 
3996 		skb_record_rx_queue(skb, queue);
3997 		napi_gro_receive(&ch->rx_napi, skb);
3998 		skb = NULL;
3999 
4000 		priv->dev->stats.rx_packets++;
4001 		priv->dev->stats.rx_bytes += len;
4002 		count++;
4003 	}
4004 
4005 	if (status & rx_not_ls || skb) {
4006 		rx_q->state_saved = true;
4007 		rx_q->state.skb = skb;
4008 		rx_q->state.error = error;
4009 		rx_q->state.len = len;
4010 	}
4011 
4012 	stmmac_rx_refill(priv, queue);
4013 
4014 	priv->xstats.rx_pkt_n += count;
4015 
4016 	return count;
4017 }
4018 
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)4019 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
4020 {
4021 	struct stmmac_channel *ch =
4022 		container_of(napi, struct stmmac_channel, rx_napi);
4023 	struct stmmac_priv *priv = ch->priv_data;
4024 	u32 chan = ch->index;
4025 	int work_done;
4026 
4027 	priv->xstats.napi_poll++;
4028 
4029 	work_done = stmmac_rx(priv, budget, chan);
4030 	if (work_done < budget && napi_complete_done(napi, work_done)) {
4031 		unsigned long flags;
4032 
4033 		spin_lock_irqsave(&ch->lock, flags);
4034 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
4035 		spin_unlock_irqrestore(&ch->lock, flags);
4036 	}
4037 
4038 	return work_done;
4039 }
4040 
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)4041 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
4042 {
4043 	struct stmmac_channel *ch =
4044 		container_of(napi, struct stmmac_channel, tx_napi);
4045 	struct stmmac_priv *priv = ch->priv_data;
4046 	u32 chan = ch->index;
4047 	int work_done;
4048 
4049 	priv->xstats.napi_poll++;
4050 
4051 	work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
4052 	work_done = min(work_done, budget);
4053 
4054 	if (work_done < budget && napi_complete_done(napi, work_done)) {
4055 		unsigned long flags;
4056 
4057 		spin_lock_irqsave(&ch->lock, flags);
4058 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
4059 		spin_unlock_irqrestore(&ch->lock, flags);
4060 	}
4061 
4062 	return work_done;
4063 }
4064 
4065 /**
4066  *  stmmac_tx_timeout
4067  *  @dev : Pointer to net device structure
4068  *  @txqueue: the index of the hanging transmit queue
4069  *  Description: this function is called when a packet transmission fails to
4070  *   complete within a reasonable time. The driver will mark the error in the
4071  *   netdev structure and arrange for the device to be reset to a sane state
4072  *   in order to transmit a new packet.
4073  */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)4074 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
4075 {
4076 	struct stmmac_priv *priv = netdev_priv(dev);
4077 
4078 	stmmac_global_err(priv);
4079 }
4080 
4081 /**
4082  *  stmmac_set_rx_mode - entry point for multicast addressing
4083  *  @dev : pointer to the device structure
4084  *  Description:
4085  *  This function is a driver entry point which gets called by the kernel
4086  *  whenever multicast addresses must be enabled/disabled.
4087  *  Return value:
4088  *  void.
4089  */
stmmac_set_rx_mode(struct net_device * dev)4090 static void stmmac_set_rx_mode(struct net_device *dev)
4091 {
4092 	struct stmmac_priv *priv = netdev_priv(dev);
4093 
4094 	stmmac_set_filter(priv, priv->hw, dev);
4095 }
4096 
4097 /**
4098  *  stmmac_change_mtu - entry point to change MTU size for the device.
4099  *  @dev : device pointer.
4100  *  @new_mtu : the new MTU size for the device.
4101  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
4102  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
4103  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
4104  *  Return value:
4105  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4106  *  file on failure.
4107  */
stmmac_change_mtu(struct net_device * dev,int new_mtu)4108 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4109 {
4110 	struct stmmac_priv *priv = netdev_priv(dev);
4111 	int txfifosz = priv->plat->tx_fifo_size;
4112 	const int mtu = new_mtu;
4113 
4114 	if (txfifosz == 0)
4115 		txfifosz = priv->dma_cap.tx_fifo_size;
4116 
4117 	txfifosz /= priv->plat->tx_queues_to_use;
4118 
4119 	if (netif_running(dev)) {
4120 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
4121 		return -EBUSY;
4122 	}
4123 
4124 	new_mtu = STMMAC_ALIGN(new_mtu);
4125 
4126 	/* If condition true, FIFO is too small or MTU too large */
4127 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4128 		return -EINVAL;
4129 
4130 	dev->mtu = mtu;
4131 
4132 	netdev_update_features(dev);
4133 
4134 	return 0;
4135 }
4136 
stmmac_fix_features(struct net_device * dev,netdev_features_t features)4137 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4138 					     netdev_features_t features)
4139 {
4140 	struct stmmac_priv *priv = netdev_priv(dev);
4141 
4142 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4143 		features &= ~NETIF_F_RXCSUM;
4144 
4145 	if (!priv->plat->tx_coe)
4146 		features &= ~NETIF_F_CSUM_MASK;
4147 
4148 	/* Some GMAC devices have a bugged Jumbo frame support that
4149 	 * needs to have the Tx COE disabled for oversized frames
4150 	 * (due to limited buffer sizes). In this case we disable
4151 	 * the TX csum insertion in the TDES and not use SF.
4152 	 */
4153 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4154 		features &= ~NETIF_F_CSUM_MASK;
4155 
4156 	/* Disable tso if asked by ethtool */
4157 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4158 		if (features & NETIF_F_TSO)
4159 			priv->tso = true;
4160 		else
4161 			priv->tso = false;
4162 	}
4163 
4164 	return features;
4165 }
4166 
stmmac_set_features(struct net_device * netdev,netdev_features_t features)4167 static int stmmac_set_features(struct net_device *netdev,
4168 			       netdev_features_t features)
4169 {
4170 	struct stmmac_priv *priv = netdev_priv(netdev);
4171 	bool sph_en;
4172 	u32 chan;
4173 
4174 	/* Keep the COE Type in case of csum is supporting */
4175 	if (features & NETIF_F_RXCSUM)
4176 		priv->hw->rx_csum = priv->plat->rx_coe;
4177 	else
4178 		priv->hw->rx_csum = 0;
4179 	/* No check needed because rx_coe has been set before and it will be
4180 	 * fixed in case of issue.
4181 	 */
4182 	stmmac_rx_ipc(priv, priv->hw);
4183 
4184 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4185 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4186 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4187 
4188 	return 0;
4189 }
4190 
4191 /**
4192  *  stmmac_interrupt - main ISR
4193  *  @irq: interrupt number.
4194  *  @dev_id: to pass the net device pointer (must be valid).
4195  *  Description: this is the main driver interrupt service routine.
4196  *  It can call:
4197  *  o DMA service routine (to manage incoming frame reception and transmission
4198  *    status)
4199  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4200  *    interrupts.
4201  */
stmmac_interrupt(int irq,void * dev_id)4202 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4203 {
4204 	struct net_device *dev = (struct net_device *)dev_id;
4205 	struct stmmac_priv *priv = netdev_priv(dev);
4206 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4207 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4208 	u32 queues_count;
4209 	u32 queue;
4210 	bool xmac;
4211 
4212 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4213 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4214 
4215 	if (priv->irq_wake)
4216 		pm_wakeup_event(priv->device, 0);
4217 
4218 	/* Check if adapter is up */
4219 	if (test_bit(STMMAC_DOWN, &priv->state))
4220 		return IRQ_HANDLED;
4221 	/* Check if a fatal error happened */
4222 	if (stmmac_safety_feat_interrupt(priv))
4223 		return IRQ_HANDLED;
4224 
4225 	/* To handle GMAC own interrupts */
4226 	if ((priv->plat->has_gmac) || xmac) {
4227 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4228 
4229 		if (unlikely(status)) {
4230 			/* For LPI we need to save the tx status */
4231 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4232 				priv->tx_path_in_lpi_mode = true;
4233 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4234 				priv->tx_path_in_lpi_mode = false;
4235 		}
4236 
4237 		for (queue = 0; queue < queues_count; queue++) {
4238 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
4239 							    queue);
4240 		}
4241 
4242 		/* PCS link status */
4243 		if (priv->hw->pcs) {
4244 			if (priv->xstats.pcs_link)
4245 				netif_carrier_on(dev);
4246 			else
4247 				netif_carrier_off(dev);
4248 		}
4249 	}
4250 
4251 	/* To handle DMA interrupts */
4252 	stmmac_dma_interrupt(priv);
4253 
4254 	return IRQ_HANDLED;
4255 }
4256 
4257 #ifdef CONFIG_NET_POLL_CONTROLLER
4258 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4259  * to allow network I/O with interrupts disabled.
4260  */
stmmac_poll_controller(struct net_device * dev)4261 static void stmmac_poll_controller(struct net_device *dev)
4262 {
4263 	disable_irq(dev->irq);
4264 	stmmac_interrupt(dev->irq, dev);
4265 	enable_irq(dev->irq);
4266 }
4267 #endif
4268 
4269 /**
4270  *  stmmac_ioctl - Entry point for the Ioctl
4271  *  @dev: Device pointer.
4272  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4273  *  a proprietary structure used to pass information to the driver.
4274  *  @cmd: IOCTL command
4275  *  Description:
4276  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4277  */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)4278 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4279 {
4280 	struct stmmac_priv *priv = netdev_priv (dev);
4281 	int ret = -EOPNOTSUPP;
4282 
4283 	if (!netif_running(dev))
4284 		return -EINVAL;
4285 
4286 	switch (cmd) {
4287 	case SIOCGMIIPHY:
4288 	case SIOCGMIIREG:
4289 	case SIOCSMIIREG:
4290 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4291 		break;
4292 	case SIOCSHWTSTAMP:
4293 		ret = stmmac_hwtstamp_set(dev, rq);
4294 		break;
4295 	case SIOCGHWTSTAMP:
4296 		ret = stmmac_hwtstamp_get(dev, rq);
4297 		break;
4298 	default:
4299 		break;
4300 	}
4301 
4302 	return ret;
4303 }
4304 
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4305 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4306 				    void *cb_priv)
4307 {
4308 	struct stmmac_priv *priv = cb_priv;
4309 	int ret = -EOPNOTSUPP;
4310 
4311 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4312 		return ret;
4313 
4314 	stmmac_disable_all_queues(priv);
4315 
4316 	switch (type) {
4317 	case TC_SETUP_CLSU32:
4318 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4319 		break;
4320 	case TC_SETUP_CLSFLOWER:
4321 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4322 		break;
4323 	default:
4324 		break;
4325 	}
4326 
4327 	stmmac_enable_all_queues(priv);
4328 	return ret;
4329 }
4330 
4331 static LIST_HEAD(stmmac_block_cb_list);
4332 
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)4333 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4334 			   void *type_data)
4335 {
4336 	struct stmmac_priv *priv = netdev_priv(ndev);
4337 
4338 	switch (type) {
4339 	case TC_SETUP_BLOCK:
4340 		return flow_block_cb_setup_simple(type_data,
4341 						  &stmmac_block_cb_list,
4342 						  stmmac_setup_tc_block_cb,
4343 						  priv, priv, true);
4344 	case TC_SETUP_QDISC_CBS:
4345 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4346 	case TC_SETUP_QDISC_TAPRIO:
4347 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4348 	case TC_SETUP_QDISC_ETF:
4349 		return stmmac_tc_setup_etf(priv, priv, type_data);
4350 	default:
4351 		return -EOPNOTSUPP;
4352 	}
4353 }
4354 
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4355 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4356 			       struct net_device *sb_dev)
4357 {
4358 	int gso = skb_shinfo(skb)->gso_type;
4359 
4360 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4361 		/*
4362 		 * There is no way to determine the number of TSO/USO
4363 		 * capable Queues. Let's use always the Queue 0
4364 		 * because if TSO/USO is supported then at least this
4365 		 * one will be capable.
4366 		 */
4367 		return 0;
4368 	}
4369 
4370 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4371 }
4372 
stmmac_set_mac_address(struct net_device * ndev,void * addr)4373 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4374 {
4375 	struct stmmac_priv *priv = netdev_priv(ndev);
4376 	int ret = 0;
4377 
4378 	ret = pm_runtime_get_sync(priv->device);
4379 	if (ret < 0) {
4380 		pm_runtime_put_noidle(priv->device);
4381 		return ret;
4382 	}
4383 
4384 	ret = eth_mac_addr(ndev, addr);
4385 	if (ret)
4386 		goto set_mac_error;
4387 
4388 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4389 
4390 set_mac_error:
4391 	pm_runtime_put(priv->device);
4392 
4393 	return ret;
4394 }
4395 
4396 #ifdef CONFIG_DEBUG_FS
4397 static struct dentry *stmmac_fs_dir;
4398 
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)4399 static void sysfs_display_ring(void *head, int size, int extend_desc,
4400 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
4401 {
4402 	int i;
4403 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4404 	struct dma_desc *p = (struct dma_desc *)head;
4405 	dma_addr_t dma_addr;
4406 
4407 	for (i = 0; i < size; i++) {
4408 		if (extend_desc) {
4409 			dma_addr = dma_phy_addr + i * sizeof(*ep);
4410 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4411 				   i, &dma_addr,
4412 				   le32_to_cpu(ep->basic.des0),
4413 				   le32_to_cpu(ep->basic.des1),
4414 				   le32_to_cpu(ep->basic.des2),
4415 				   le32_to_cpu(ep->basic.des3));
4416 			ep++;
4417 		} else {
4418 			dma_addr = dma_phy_addr + i * sizeof(*p);
4419 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4420 				   i, &dma_addr,
4421 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4422 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4423 			p++;
4424 		}
4425 		seq_printf(seq, "\n");
4426 	}
4427 }
4428 
stmmac_rings_status_show(struct seq_file * seq,void * v)4429 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4430 {
4431 	struct net_device *dev = seq->private;
4432 	struct stmmac_priv *priv = netdev_priv(dev);
4433 	u32 rx_count = priv->plat->rx_queues_to_use;
4434 	u32 tx_count = priv->plat->tx_queues_to_use;
4435 	u32 queue;
4436 
4437 	if ((dev->flags & IFF_UP) == 0)
4438 		return 0;
4439 
4440 	for (queue = 0; queue < rx_count; queue++) {
4441 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4442 
4443 		seq_printf(seq, "RX Queue %d:\n", queue);
4444 
4445 		if (priv->extend_desc) {
4446 			seq_printf(seq, "Extended descriptor ring:\n");
4447 			sysfs_display_ring((void *)rx_q->dma_erx,
4448 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4449 		} else {
4450 			seq_printf(seq, "Descriptor ring:\n");
4451 			sysfs_display_ring((void *)rx_q->dma_rx,
4452 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4453 		}
4454 	}
4455 
4456 	for (queue = 0; queue < tx_count; queue++) {
4457 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4458 
4459 		seq_printf(seq, "TX Queue %d:\n", queue);
4460 
4461 		if (priv->extend_desc) {
4462 			seq_printf(seq, "Extended descriptor ring:\n");
4463 			sysfs_display_ring((void *)tx_q->dma_etx,
4464 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4465 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4466 			seq_printf(seq, "Descriptor ring:\n");
4467 			sysfs_display_ring((void *)tx_q->dma_tx,
4468 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4469 		}
4470 	}
4471 
4472 	return 0;
4473 }
4474 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4475 
stmmac_dma_cap_show(struct seq_file * seq,void * v)4476 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4477 {
4478 	struct net_device *dev = seq->private;
4479 	struct stmmac_priv *priv = netdev_priv(dev);
4480 
4481 	if (!priv->hw_cap_support) {
4482 		seq_printf(seq, "DMA HW features not supported\n");
4483 		return 0;
4484 	}
4485 
4486 	seq_printf(seq, "==============================\n");
4487 	seq_printf(seq, "\tDMA HW features\n");
4488 	seq_printf(seq, "==============================\n");
4489 
4490 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4491 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4492 	seq_printf(seq, "\t1000 Mbps: %s\n",
4493 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4494 	seq_printf(seq, "\tHalf duplex: %s\n",
4495 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4496 	seq_printf(seq, "\tHash Filter: %s\n",
4497 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4498 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4499 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4500 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4501 		   (priv->dma_cap.pcs) ? "Y" : "N");
4502 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4503 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4504 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4505 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4506 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4507 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4508 	seq_printf(seq, "\tRMON module: %s\n",
4509 		   (priv->dma_cap.rmon) ? "Y" : "N");
4510 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4511 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4512 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4513 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4514 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4515 		   (priv->dma_cap.eee) ? "Y" : "N");
4516 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4517 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4518 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4519 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4520 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4521 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4522 	} else {
4523 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4524 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4525 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4526 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4527 	}
4528 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4529 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4530 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4531 		   priv->dma_cap.number_rx_channel);
4532 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4533 		   priv->dma_cap.number_tx_channel);
4534 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4535 		   priv->dma_cap.number_rx_queues);
4536 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4537 		   priv->dma_cap.number_tx_queues);
4538 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4539 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4540 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4541 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4542 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4543 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4544 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4545 		   priv->dma_cap.pps_out_num);
4546 	seq_printf(seq, "\tSafety Features: %s\n",
4547 		   priv->dma_cap.asp ? "Y" : "N");
4548 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4549 		   priv->dma_cap.frpsel ? "Y" : "N");
4550 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4551 		   priv->dma_cap.addr64);
4552 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4553 		   priv->dma_cap.rssen ? "Y" : "N");
4554 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4555 		   priv->dma_cap.vlhash ? "Y" : "N");
4556 	seq_printf(seq, "\tSplit Header: %s\n",
4557 		   priv->dma_cap.sphen ? "Y" : "N");
4558 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4559 		   priv->dma_cap.vlins ? "Y" : "N");
4560 	seq_printf(seq, "\tDouble VLAN: %s\n",
4561 		   priv->dma_cap.dvlan ? "Y" : "N");
4562 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4563 		   priv->dma_cap.l3l4fnum);
4564 	seq_printf(seq, "\tARP Offloading: %s\n",
4565 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4566 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4567 		   priv->dma_cap.estsel ? "Y" : "N");
4568 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4569 		   priv->dma_cap.fpesel ? "Y" : "N");
4570 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4571 		   priv->dma_cap.tbssel ? "Y" : "N");
4572 	return 0;
4573 }
4574 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4575 
4576 /* Use network device events to rename debugfs file entries.
4577  */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)4578 static int stmmac_device_event(struct notifier_block *unused,
4579 			       unsigned long event, void *ptr)
4580 {
4581 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4582 	struct stmmac_priv *priv = netdev_priv(dev);
4583 
4584 	if (dev->netdev_ops != &stmmac_netdev_ops)
4585 		goto done;
4586 
4587 	switch (event) {
4588 	case NETDEV_CHANGENAME:
4589 		if (priv->dbgfs_dir)
4590 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4591 							 priv->dbgfs_dir,
4592 							 stmmac_fs_dir,
4593 							 dev->name);
4594 		break;
4595 	}
4596 done:
4597 	return NOTIFY_DONE;
4598 }
4599 
4600 static struct notifier_block stmmac_notifier = {
4601 	.notifier_call = stmmac_device_event,
4602 };
4603 
stmmac_init_fs(struct net_device * dev)4604 static void stmmac_init_fs(struct net_device *dev)
4605 {
4606 	struct stmmac_priv *priv = netdev_priv(dev);
4607 
4608 	rtnl_lock();
4609 
4610 	/* Create per netdev entries */
4611 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4612 
4613 	/* Entry to report DMA RX/TX rings */
4614 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4615 			    &stmmac_rings_status_fops);
4616 
4617 	/* Entry to report the DMA HW features */
4618 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4619 			    &stmmac_dma_cap_fops);
4620 
4621 	rtnl_unlock();
4622 }
4623 
stmmac_exit_fs(struct net_device * dev)4624 static void stmmac_exit_fs(struct net_device *dev)
4625 {
4626 	struct stmmac_priv *priv = netdev_priv(dev);
4627 
4628 	debugfs_remove_recursive(priv->dbgfs_dir);
4629 }
4630 #endif /* CONFIG_DEBUG_FS */
4631 
stmmac_vid_crc32_le(__le16 vid_le)4632 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4633 {
4634 	unsigned char *data = (unsigned char *)&vid_le;
4635 	unsigned char data_byte = 0;
4636 	u32 crc = ~0x0;
4637 	u32 temp = 0;
4638 	int i, bits;
4639 
4640 	bits = get_bitmask_order(VLAN_VID_MASK);
4641 	for (i = 0; i < bits; i++) {
4642 		if ((i % 8) == 0)
4643 			data_byte = data[i / 8];
4644 
4645 		temp = ((crc & 1) ^ data_byte) & 1;
4646 		crc >>= 1;
4647 		data_byte >>= 1;
4648 
4649 		if (temp)
4650 			crc ^= 0xedb88320;
4651 	}
4652 
4653 	return crc;
4654 }
4655 
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4656 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4657 {
4658 	u32 crc, hash = 0;
4659 	__le16 pmatch = 0;
4660 	int count = 0;
4661 	u16 vid = 0;
4662 
4663 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4664 		__le16 vid_le = cpu_to_le16(vid);
4665 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4666 		hash |= (1 << crc);
4667 		count++;
4668 	}
4669 
4670 	if (!priv->dma_cap.vlhash) {
4671 		if (count > 2) /* VID = 0 always passes filter */
4672 			return -EOPNOTSUPP;
4673 
4674 		pmatch = cpu_to_le16(vid);
4675 		hash = 0;
4676 	}
4677 
4678 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4679 }
4680 
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4681 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4682 {
4683 	struct stmmac_priv *priv = netdev_priv(ndev);
4684 	bool is_double = false;
4685 	int ret;
4686 
4687 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4688 		is_double = true;
4689 
4690 	set_bit(vid, priv->active_vlans);
4691 	ret = stmmac_vlan_update(priv, is_double);
4692 	if (ret) {
4693 		clear_bit(vid, priv->active_vlans);
4694 		return ret;
4695 	}
4696 
4697 	if (priv->hw->num_vlan) {
4698 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4699 		if (ret)
4700 			return ret;
4701 	}
4702 
4703 	return 0;
4704 }
4705 
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4706 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4707 {
4708 	struct stmmac_priv *priv = netdev_priv(ndev);
4709 	bool is_double = false;
4710 	int ret;
4711 
4712 	ret = pm_runtime_get_sync(priv->device);
4713 	if (ret < 0) {
4714 		pm_runtime_put_noidle(priv->device);
4715 		return ret;
4716 	}
4717 
4718 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4719 		is_double = true;
4720 
4721 	clear_bit(vid, priv->active_vlans);
4722 
4723 	if (priv->hw->num_vlan) {
4724 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4725 		if (ret)
4726 			goto del_vlan_error;
4727 	}
4728 
4729 	ret = stmmac_vlan_update(priv, is_double);
4730 
4731 del_vlan_error:
4732 	pm_runtime_put(priv->device);
4733 
4734 	return ret;
4735 }
4736 
4737 static const struct net_device_ops stmmac_netdev_ops = {
4738 	.ndo_open = stmmac_open,
4739 	.ndo_start_xmit = stmmac_xmit,
4740 	.ndo_stop = stmmac_release,
4741 	.ndo_change_mtu = stmmac_change_mtu,
4742 	.ndo_fix_features = stmmac_fix_features,
4743 	.ndo_set_features = stmmac_set_features,
4744 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4745 	.ndo_tx_timeout = stmmac_tx_timeout,
4746 	.ndo_do_ioctl = stmmac_ioctl,
4747 	.ndo_setup_tc = stmmac_setup_tc,
4748 	.ndo_select_queue = stmmac_select_queue,
4749 #ifdef CONFIG_NET_POLL_CONTROLLER
4750 	.ndo_poll_controller = stmmac_poll_controller,
4751 #endif
4752 	.ndo_set_mac_address = stmmac_set_mac_address,
4753 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4754 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4755 };
4756 
stmmac_reset_subtask(struct stmmac_priv * priv)4757 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4758 {
4759 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4760 		return;
4761 	if (test_bit(STMMAC_DOWN, &priv->state))
4762 		return;
4763 
4764 	netdev_err(priv->dev, "Reset adapter.\n");
4765 
4766 	rtnl_lock();
4767 	netif_trans_update(priv->dev);
4768 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4769 		usleep_range(1000, 2000);
4770 
4771 	set_bit(STMMAC_DOWN, &priv->state);
4772 	dev_close(priv->dev);
4773 	dev_open(priv->dev, NULL);
4774 	clear_bit(STMMAC_DOWN, &priv->state);
4775 	clear_bit(STMMAC_RESETING, &priv->state);
4776 	rtnl_unlock();
4777 }
4778 
stmmac_service_task(struct work_struct * work)4779 static void stmmac_service_task(struct work_struct *work)
4780 {
4781 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4782 			service_task);
4783 
4784 	stmmac_reset_subtask(priv);
4785 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4786 }
4787 
4788 /**
4789  *  stmmac_hw_init - Init the MAC device
4790  *  @priv: driver private structure
4791  *  Description: this function is to configure the MAC device according to
4792  *  some platform parameters or the HW capability register. It prepares the
4793  *  driver to use either ring or chain modes and to setup either enhanced or
4794  *  normal descriptors.
4795  */
stmmac_hw_init(struct stmmac_priv * priv)4796 static int stmmac_hw_init(struct stmmac_priv *priv)
4797 {
4798 	int ret;
4799 
4800 	/* dwmac-sun8i only work in chain mode */
4801 	if (priv->plat->has_sun8i)
4802 		chain_mode = 1;
4803 	priv->chain_mode = chain_mode;
4804 
4805 	/* Initialize HW Interface */
4806 	ret = stmmac_hwif_init(priv);
4807 	if (ret)
4808 		return ret;
4809 
4810 	/* Get the HW capability (new GMAC newer than 3.50a) */
4811 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4812 	if (priv->hw_cap_support) {
4813 		dev_info(priv->device, "DMA HW capability register supported\n");
4814 
4815 		/* We can override some gmac/dma configuration fields: e.g.
4816 		 * enh_desc, tx_coe (e.g. that are passed through the
4817 		 * platform) with the values from the HW capability
4818 		 * register (if supported).
4819 		 */
4820 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4821 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4822 		priv->hw->pmt = priv->plat->pmt;
4823 		if (priv->dma_cap.hash_tb_sz) {
4824 			priv->hw->multicast_filter_bins =
4825 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4826 			priv->hw->mcast_bits_log2 =
4827 					ilog2(priv->hw->multicast_filter_bins);
4828 		}
4829 
4830 		/* TXCOE doesn't work in thresh DMA mode */
4831 		if (priv->plat->force_thresh_dma_mode)
4832 			priv->plat->tx_coe = 0;
4833 		else
4834 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4835 
4836 		/* In case of GMAC4 rx_coe is from HW cap register. */
4837 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4838 
4839 		if (priv->dma_cap.rx_coe_type2)
4840 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4841 		else if (priv->dma_cap.rx_coe_type1)
4842 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4843 
4844 	} else {
4845 		dev_info(priv->device, "No HW DMA feature register supported\n");
4846 	}
4847 
4848 	if (priv->plat->rx_coe) {
4849 		priv->hw->rx_csum = priv->plat->rx_coe;
4850 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4851 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4852 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4853 	}
4854 	if (priv->plat->tx_coe)
4855 		dev_info(priv->device, "TX Checksum insertion supported\n");
4856 
4857 	if (priv->plat->pmt) {
4858 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4859 		device_set_wakeup_capable(priv->device, 1);
4860 	}
4861 
4862 	if (priv->dma_cap.tsoen)
4863 		dev_info(priv->device, "TSO supported\n");
4864 
4865 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4866 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4867 
4868 	/* Run HW quirks, if any */
4869 	if (priv->hwif_quirks) {
4870 		ret = priv->hwif_quirks(priv);
4871 		if (ret)
4872 			return ret;
4873 	}
4874 
4875 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4876 	 * In some case, for example on bugged HW this feature
4877 	 * has to be disable and this can be done by passing the
4878 	 * riwt_off field from the platform.
4879 	 */
4880 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4881 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4882 		priv->use_riwt = 1;
4883 		dev_info(priv->device,
4884 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4885 	}
4886 
4887 	return 0;
4888 }
4889 
stmmac_napi_add(struct net_device * dev)4890 static void stmmac_napi_add(struct net_device *dev)
4891 {
4892 	struct stmmac_priv *priv = netdev_priv(dev);
4893 	u32 queue, maxq;
4894 
4895 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4896 
4897 	for (queue = 0; queue < maxq; queue++) {
4898 		struct stmmac_channel *ch = &priv->channel[queue];
4899 
4900 		ch->priv_data = priv;
4901 		ch->index = queue;
4902 		spin_lock_init(&ch->lock);
4903 
4904 		if (queue < priv->plat->rx_queues_to_use) {
4905 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4906 				       NAPI_POLL_WEIGHT);
4907 		}
4908 		if (queue < priv->plat->tx_queues_to_use) {
4909 			netif_tx_napi_add(dev, &ch->tx_napi,
4910 					  stmmac_napi_poll_tx,
4911 					  NAPI_POLL_WEIGHT);
4912 		}
4913 	}
4914 }
4915 
stmmac_napi_del(struct net_device * dev)4916 static void stmmac_napi_del(struct net_device *dev)
4917 {
4918 	struct stmmac_priv *priv = netdev_priv(dev);
4919 	u32 queue, maxq;
4920 
4921 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4922 
4923 	for (queue = 0; queue < maxq; queue++) {
4924 		struct stmmac_channel *ch = &priv->channel[queue];
4925 
4926 		if (queue < priv->plat->rx_queues_to_use)
4927 			netif_napi_del(&ch->rx_napi);
4928 		if (queue < priv->plat->tx_queues_to_use)
4929 			netif_napi_del(&ch->tx_napi);
4930 	}
4931 }
4932 
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)4933 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4934 {
4935 	struct stmmac_priv *priv = netdev_priv(dev);
4936 	int ret = 0;
4937 
4938 	if (netif_running(dev))
4939 		stmmac_release(dev);
4940 
4941 	stmmac_napi_del(dev);
4942 
4943 	priv->plat->rx_queues_to_use = rx_cnt;
4944 	priv->plat->tx_queues_to_use = tx_cnt;
4945 
4946 	stmmac_napi_add(dev);
4947 
4948 	if (netif_running(dev))
4949 		ret = stmmac_open(dev);
4950 
4951 	return ret;
4952 }
4953 
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)4954 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4955 {
4956 	struct stmmac_priv *priv = netdev_priv(dev);
4957 	int ret = 0;
4958 
4959 	if (netif_running(dev))
4960 		stmmac_release(dev);
4961 
4962 	priv->dma_rx_size = rx_size;
4963 	priv->dma_tx_size = tx_size;
4964 
4965 	if (netif_running(dev))
4966 		ret = stmmac_open(dev);
4967 
4968 	return ret;
4969 }
4970 
4971 /**
4972  * stmmac_dvr_probe
4973  * @device: device pointer
4974  * @plat_dat: platform data pointer
4975  * @res: stmmac resource pointer
4976  * Description: this is the main probe function used to
4977  * call the alloc_etherdev, allocate the priv structure.
4978  * Return:
4979  * returns 0 on success, otherwise errno.
4980  */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)4981 int stmmac_dvr_probe(struct device *device,
4982 		     struct plat_stmmacenet_data *plat_dat,
4983 		     struct stmmac_resources *res)
4984 {
4985 	struct net_device *ndev = NULL;
4986 	struct stmmac_priv *priv;
4987 	u32 rxq;
4988 	int i, ret = 0;
4989 
4990 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4991 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4992 	if (!ndev)
4993 		return -ENOMEM;
4994 
4995 	SET_NETDEV_DEV(ndev, device);
4996 
4997 	priv = netdev_priv(ndev);
4998 	priv->device = device;
4999 	priv->dev = ndev;
5000 
5001 	stmmac_set_ethtool_ops(ndev);
5002 	priv->pause = pause;
5003 	priv->plat = plat_dat;
5004 	priv->ioaddr = res->addr;
5005 	priv->dev->base_addr = (unsigned long)res->addr;
5006 
5007 	priv->dev->irq = res->irq;
5008 	priv->wol_irq = res->wol_irq;
5009 	priv->lpi_irq = res->lpi_irq;
5010 
5011 	if (!IS_ERR_OR_NULL(res->mac))
5012 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
5013 
5014 	dev_set_drvdata(device, priv->dev);
5015 
5016 	/* Verify driver arguments */
5017 	stmmac_verify_args();
5018 
5019 	/* Allocate workqueue */
5020 	priv->wq = create_singlethread_workqueue("stmmac_wq");
5021 	if (!priv->wq) {
5022 		dev_err(priv->device, "failed to create workqueue\n");
5023 		return -ENOMEM;
5024 	}
5025 
5026 	INIT_WORK(&priv->service_task, stmmac_service_task);
5027 
5028 	/* Override with kernel parameters if supplied XXX CRS XXX
5029 	 * this needs to have multiple instances
5030 	 */
5031 	if ((phyaddr >= 0) && (phyaddr <= 31))
5032 		priv->plat->phy_addr = phyaddr;
5033 
5034 	if (priv->plat->stmmac_rst) {
5035 		ret = reset_control_assert(priv->plat->stmmac_rst);
5036 		reset_control_deassert(priv->plat->stmmac_rst);
5037 		/* Some reset controllers have only reset callback instead of
5038 		 * assert + deassert callbacks pair.
5039 		 */
5040 		if (ret == -ENOTSUPP)
5041 			reset_control_reset(priv->plat->stmmac_rst);
5042 	}
5043 
5044 	/* Init MAC and get the capabilities */
5045 	ret = stmmac_hw_init(priv);
5046 	if (ret)
5047 		goto error_hw_init;
5048 
5049 	stmmac_check_ether_addr(priv);
5050 
5051 	ndev->netdev_ops = &stmmac_netdev_ops;
5052 
5053 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5054 			    NETIF_F_RXCSUM;
5055 
5056 	ret = stmmac_tc_init(priv, priv);
5057 	if (!ret) {
5058 		ndev->hw_features |= NETIF_F_HW_TC;
5059 	}
5060 
5061 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5062 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
5063 		if (priv->plat->has_gmac4)
5064 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
5065 		priv->tso = true;
5066 		dev_info(priv->device, "TSO feature enabled\n");
5067 	}
5068 
5069 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
5070 		ndev->hw_features |= NETIF_F_GRO;
5071 		priv->sph = true;
5072 		dev_info(priv->device, "SPH feature enabled\n");
5073 	}
5074 
5075 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
5076 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
5077 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
5078 	 * So overwrite dma_cap.addr64 according to HW real design.
5079 	 */
5080 	if (priv->plat->addr64)
5081 		priv->dma_cap.addr64 = priv->plat->addr64;
5082 
5083 	if (priv->dma_cap.addr64) {
5084 		ret = dma_set_mask_and_coherent(device,
5085 				DMA_BIT_MASK(priv->dma_cap.addr64));
5086 		if (!ret) {
5087 			dev_info(priv->device, "Using %d bits DMA width\n",
5088 				 priv->dma_cap.addr64);
5089 
5090 			/*
5091 			 * If more than 32 bits can be addressed, make sure to
5092 			 * enable enhanced addressing mode.
5093 			 */
5094 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
5095 				priv->plat->dma_cfg->eame = true;
5096 		} else {
5097 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5098 			if (ret) {
5099 				dev_err(priv->device, "Failed to set DMA Mask\n");
5100 				goto error_hw_init;
5101 			}
5102 
5103 			priv->dma_cap.addr64 = 32;
5104 		}
5105 	}
5106 
5107 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5108 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5109 #ifdef STMMAC_VLAN_TAG_USED
5110 	/* Both mac100 and gmac support receive VLAN tag detection */
5111 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5112 	if (priv->dma_cap.vlhash) {
5113 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5114 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5115 	}
5116 	if (priv->dma_cap.vlins) {
5117 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5118 		if (priv->dma_cap.dvlan)
5119 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5120 	}
5121 #endif
5122 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
5123 
5124 	/* Initialize RSS */
5125 	rxq = priv->plat->rx_queues_to_use;
5126 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5127 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5128 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5129 
5130 	if (priv->dma_cap.rssen && priv->plat->rss_en)
5131 		ndev->features |= NETIF_F_RXHASH;
5132 
5133 	/* MTU range: 46 - hw-specific max */
5134 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5135 	if (priv->plat->has_xgmac)
5136 		ndev->max_mtu = XGMAC_JUMBO_LEN;
5137 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5138 		ndev->max_mtu = JUMBO_LEN;
5139 	else
5140 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5141 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5142 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5143 	 */
5144 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
5145 	    (priv->plat->maxmtu >= ndev->min_mtu))
5146 		ndev->max_mtu = priv->plat->maxmtu;
5147 	else if (priv->plat->maxmtu < ndev->min_mtu)
5148 		dev_warn(priv->device,
5149 			 "%s: warning: maxmtu having invalid value (%d)\n",
5150 			 __func__, priv->plat->maxmtu);
5151 
5152 	if (flow_ctrl)
5153 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
5154 
5155 	/* Setup channels NAPI */
5156 	stmmac_napi_add(ndev);
5157 
5158 	mutex_init(&priv->lock);
5159 
5160 	/* If a specific clk_csr value is passed from the platform
5161 	 * this means that the CSR Clock Range selection cannot be
5162 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
5163 	 * set the MDC clock dynamically according to the csr actual
5164 	 * clock input.
5165 	 */
5166 	if (priv->plat->clk_csr >= 0)
5167 		priv->clk_csr = priv->plat->clk_csr;
5168 	else
5169 		stmmac_clk_csr_set(priv);
5170 
5171 	stmmac_check_pcs_mode(priv);
5172 
5173 	pm_runtime_get_noresume(device);
5174 	pm_runtime_set_active(device);
5175 	pm_runtime_enable(device);
5176 
5177 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5178 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
5179 		/* MDIO bus Registration */
5180 		ret = stmmac_mdio_register(ndev);
5181 		if (ret < 0) {
5182 			dev_err(priv->device,
5183 				"%s: MDIO bus (id: %d) registration failed",
5184 				__func__, priv->plat->bus_id);
5185 			goto error_mdio_register;
5186 		}
5187 	}
5188 
5189 	ret = stmmac_phy_setup(priv);
5190 	if (ret) {
5191 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5192 		goto error_phy_setup;
5193 	}
5194 
5195 	ret = register_netdev(ndev);
5196 	if (ret) {
5197 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
5198 			__func__, ret);
5199 		goto error_netdev_register;
5200 	}
5201 
5202 #ifdef CONFIG_DEBUG_FS
5203 	stmmac_init_fs(ndev);
5204 #endif
5205 
5206 	/* Let pm_runtime_put() disable the clocks.
5207 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
5208 	 */
5209 	pm_runtime_put(device);
5210 
5211 	return ret;
5212 
5213 error_netdev_register:
5214 	phylink_destroy(priv->phylink);
5215 error_phy_setup:
5216 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5217 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5218 		stmmac_mdio_unregister(ndev);
5219 error_mdio_register:
5220 	stmmac_napi_del(ndev);
5221 error_hw_init:
5222 	destroy_workqueue(priv->wq);
5223 
5224 	return ret;
5225 }
5226 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5227 
5228 /**
5229  * stmmac_dvr_remove
5230  * @dev: device pointer
5231  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5232  * changes the link status, releases the DMA descriptor rings.
5233  */
stmmac_dvr_remove(struct device * dev)5234 int stmmac_dvr_remove(struct device *dev)
5235 {
5236 	struct net_device *ndev = dev_get_drvdata(dev);
5237 	struct stmmac_priv *priv = netdev_priv(ndev);
5238 
5239 	netdev_info(priv->dev, "%s: removing driver", __func__);
5240 
5241 	stmmac_stop_all_dma(priv);
5242 	stmmac_mac_set(priv, priv->ioaddr, false);
5243 	netif_carrier_off(ndev);
5244 	unregister_netdev(ndev);
5245 
5246 	/* Serdes power down needs to happen after VLAN filter
5247 	 * is deleted that is triggered by unregister_netdev().
5248 	 */
5249 	if (priv->plat->serdes_powerdown)
5250 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5251 
5252 #ifdef CONFIG_DEBUG_FS
5253 	stmmac_exit_fs(ndev);
5254 #endif
5255 	phylink_destroy(priv->phylink);
5256 	if (priv->plat->stmmac_rst)
5257 		reset_control_assert(priv->plat->stmmac_rst);
5258 	pm_runtime_put(dev);
5259 	pm_runtime_disable(dev);
5260 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5261 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5262 		stmmac_mdio_unregister(ndev);
5263 	destroy_workqueue(priv->wq);
5264 	mutex_destroy(&priv->lock);
5265 
5266 	return 0;
5267 }
5268 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5269 
5270 /**
5271  * stmmac_suspend - suspend callback
5272  * @dev: device pointer
5273  * Description: this is the function to suspend the device and it is called
5274  * by the platform driver to stop the network queue, release the resources,
5275  * program the PMT register (for WoL), clean and release driver resources.
5276  */
stmmac_suspend(struct device * dev)5277 int stmmac_suspend(struct device *dev)
5278 {
5279 	struct net_device *ndev = dev_get_drvdata(dev);
5280 	struct stmmac_priv *priv = netdev_priv(ndev);
5281 	u32 chan;
5282 
5283 	if (!ndev || !netif_running(ndev))
5284 		return 0;
5285 
5286 	phylink_mac_change(priv->phylink, false);
5287 
5288 	mutex_lock(&priv->lock);
5289 
5290 	netif_device_detach(ndev);
5291 
5292 	stmmac_disable_all_queues(priv);
5293 
5294 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5295 		del_timer_sync(&priv->tx_queue[chan].txtimer);
5296 
5297 	if (priv->eee_enabled) {
5298 		priv->tx_path_in_lpi_mode = false;
5299 		del_timer_sync(&priv->eee_ctrl_timer);
5300 	}
5301 
5302 	/* Stop TX/RX DMA */
5303 	stmmac_stop_all_dma(priv);
5304 
5305 	if (priv->plat->serdes_powerdown)
5306 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5307 
5308 	/* Enable Power down mode by programming the PMT regs */
5309 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5310 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5311 		priv->irq_wake = 1;
5312 	} else {
5313 		mutex_unlock(&priv->lock);
5314 		rtnl_lock();
5315 		if (device_may_wakeup(priv->device))
5316 			phylink_speed_down(priv->phylink, false);
5317 		phylink_stop(priv->phylink);
5318 		rtnl_unlock();
5319 		mutex_lock(&priv->lock);
5320 
5321 		stmmac_mac_set(priv, priv->ioaddr, false);
5322 		pinctrl_pm_select_sleep_state(priv->device);
5323 	}
5324 	mutex_unlock(&priv->lock);
5325 
5326 	priv->speed = SPEED_UNKNOWN;
5327 	return 0;
5328 }
5329 EXPORT_SYMBOL_GPL(stmmac_suspend);
5330 
5331 /**
5332  * stmmac_reset_queues_param - reset queue parameters
5333  * @priv: device pointer
5334  */
stmmac_reset_queues_param(struct stmmac_priv * priv)5335 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5336 {
5337 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5338 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5339 	u32 queue;
5340 
5341 	for (queue = 0; queue < rx_cnt; queue++) {
5342 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5343 
5344 		rx_q->cur_rx = 0;
5345 		rx_q->dirty_rx = 0;
5346 	}
5347 
5348 	for (queue = 0; queue < tx_cnt; queue++) {
5349 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5350 
5351 		tx_q->cur_tx = 0;
5352 		tx_q->dirty_tx = 0;
5353 		tx_q->mss = 0;
5354 
5355 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5356 	}
5357 }
5358 
5359 /**
5360  * stmmac_resume - resume callback
5361  * @dev: device pointer
5362  * Description: when resume this function is invoked to setup the DMA and CORE
5363  * in a usable state.
5364  */
stmmac_resume(struct device * dev)5365 int stmmac_resume(struct device *dev)
5366 {
5367 	struct net_device *ndev = dev_get_drvdata(dev);
5368 	struct stmmac_priv *priv = netdev_priv(ndev);
5369 	int ret;
5370 
5371 	if (!netif_running(ndev))
5372 		return 0;
5373 
5374 	/* Power Down bit, into the PM register, is cleared
5375 	 * automatically as soon as a magic packet or a Wake-up frame
5376 	 * is received. Anyway, it's better to manually clear
5377 	 * this bit because it can generate problems while resuming
5378 	 * from another devices (e.g. serial console).
5379 	 */
5380 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5381 		mutex_lock(&priv->lock);
5382 		stmmac_pmt(priv, priv->hw, 0);
5383 		mutex_unlock(&priv->lock);
5384 		priv->irq_wake = 0;
5385 	} else {
5386 		pinctrl_pm_select_default_state(priv->device);
5387 		/* reset the phy so that it's ready */
5388 		if (priv->mii)
5389 			stmmac_mdio_reset(priv->mii);
5390 	}
5391 
5392 	if (priv->plat->serdes_powerup) {
5393 		ret = priv->plat->serdes_powerup(ndev,
5394 						 priv->plat->bsp_priv);
5395 
5396 		if (ret < 0)
5397 			return ret;
5398 	}
5399 
5400 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5401 		rtnl_lock();
5402 		phylink_start(priv->phylink);
5403 		/* We may have called phylink_speed_down before */
5404 		phylink_speed_up(priv->phylink);
5405 		rtnl_unlock();
5406 	}
5407 
5408 	rtnl_lock();
5409 	mutex_lock(&priv->lock);
5410 
5411 	stmmac_reset_queues_param(priv);
5412 
5413 	stmmac_free_tx_skbufs(priv);
5414 	stmmac_clear_descriptors(priv);
5415 
5416 	stmmac_hw_setup(ndev, false);
5417 	stmmac_init_coalesce(priv);
5418 	stmmac_set_rx_mode(ndev);
5419 
5420 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5421 
5422 	stmmac_enable_all_queues(priv);
5423 
5424 	mutex_unlock(&priv->lock);
5425 	rtnl_unlock();
5426 
5427 	phylink_mac_change(priv->phylink, true);
5428 
5429 	netif_device_attach(ndev);
5430 
5431 	return 0;
5432 }
5433 EXPORT_SYMBOL_GPL(stmmac_resume);
5434 
5435 #ifndef MODULE
stmmac_cmdline_opt(char * str)5436 static int __init stmmac_cmdline_opt(char *str)
5437 {
5438 	char *opt;
5439 
5440 	if (!str || !*str)
5441 		return 1;
5442 	while ((opt = strsep(&str, ",")) != NULL) {
5443 		if (!strncmp(opt, "debug:", 6)) {
5444 			if (kstrtoint(opt + 6, 0, &debug))
5445 				goto err;
5446 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5447 			if (kstrtoint(opt + 8, 0, &phyaddr))
5448 				goto err;
5449 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5450 			if (kstrtoint(opt + 7, 0, &buf_sz))
5451 				goto err;
5452 		} else if (!strncmp(opt, "tc:", 3)) {
5453 			if (kstrtoint(opt + 3, 0, &tc))
5454 				goto err;
5455 		} else if (!strncmp(opt, "watchdog:", 9)) {
5456 			if (kstrtoint(opt + 9, 0, &watchdog))
5457 				goto err;
5458 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5459 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5460 				goto err;
5461 		} else if (!strncmp(opt, "pause:", 6)) {
5462 			if (kstrtoint(opt + 6, 0, &pause))
5463 				goto err;
5464 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5465 			if (kstrtoint(opt + 10, 0, &eee_timer))
5466 				goto err;
5467 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5468 			if (kstrtoint(opt + 11, 0, &chain_mode))
5469 				goto err;
5470 		}
5471 	}
5472 	return 1;
5473 
5474 err:
5475 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5476 	return 1;
5477 }
5478 
5479 __setup("stmmaceth=", stmmac_cmdline_opt);
5480 #endif /* MODULE */
5481 
stmmac_init(void)5482 static int __init stmmac_init(void)
5483 {
5484 #ifdef CONFIG_DEBUG_FS
5485 	/* Create debugfs main directory if it doesn't exist yet */
5486 	if (!stmmac_fs_dir)
5487 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5488 	register_netdevice_notifier(&stmmac_notifier);
5489 #endif
5490 
5491 	return 0;
5492 }
5493 
stmmac_exit(void)5494 static void __exit stmmac_exit(void)
5495 {
5496 #ifdef CONFIG_DEBUG_FS
5497 	unregister_netdevice_notifier(&stmmac_notifier);
5498 	debugfs_remove_recursive(stmmac_fs_dir);
5499 #endif
5500 }
5501 
5502 module_init(stmmac_init)
5503 module_exit(stmmac_exit)
5504 
5505 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5506 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5507 MODULE_LICENSE("GPL");
5508