1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 /*
12 * Ring initialization rules:
13 * 1. Each segment is initialized to zero, except for link TRBs.
14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
15 * Consumer Cycle State (CCS), depending on ring function.
16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17 *
18 * Ring behavior rules:
19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
20 * least one free TRB in the ring. This is useful if you want to turn that
21 * into a link TRB and expand the ring.
22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23 * link TRB, then load the pointer with the address in the link TRB. If the
24 * link TRB had its toggle bit set, you may need to update the ring cycle
25 * state (see cycle bit rules). You may have to do this multiple times
26 * until you reach a non-link TRB.
27 * 3. A ring is full if enqueue++ (for the definition of increment above)
28 * equals the dequeue pointer.
29 *
30 * Cycle bit rules:
31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32 * in a link TRB, it must toggle the ring cycle state.
33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 *
36 * Producer rules:
37 * 1. Check if ring is full before you enqueue.
38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39 * Update enqueue pointer between each write (which may update the ring
40 * cycle state).
41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
42 * and endpoint rings. If HC is the producer for the event ring,
43 * and it generates an interrupt according to interrupt modulation rules.
44 *
45 * Consumer rules:
46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
47 * the TRB is owned by the consumer.
48 * 2. Update dequeue pointer (which may update the ring cycle state) and
49 * continue processing TRBs until you reach a TRB which is not owned by you.
50 * 3. Notify the producer. SW is the consumer for the event ring, and it
51 * updates event ring dequeue pointer. HC is the consumer for the command and
52 * endpoint rings; it generates events on the event ring for these.
53 */
54
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60 #include "xhci-mtk.h"
61
62 /*
63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64 * address of the TRB.
65 */
xhci_trb_virt_to_dma(struct xhci_segment * seg,union xhci_trb * trb)66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 union xhci_trb *trb)
68 {
69 unsigned long segment_offset;
70
71 if (!seg || !trb || trb < seg->trbs)
72 return 0;
73 /* offset in TRBs */
74 segment_offset = trb - seg->trbs;
75 if (segment_offset >= TRBS_PER_SEGMENT)
76 return 0;
77 return seg->dma + (segment_offset * sizeof(*trb));
78 }
79
trb_is_noop(union xhci_trb * trb)80 static bool trb_is_noop(union xhci_trb *trb)
81 {
82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
83 }
84
trb_is_link(union xhci_trb * trb)85 static bool trb_is_link(union xhci_trb *trb)
86 {
87 return TRB_TYPE_LINK_LE32(trb->link.control);
88 }
89
last_trb_on_seg(struct xhci_segment * seg,union xhci_trb * trb)90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
91 {
92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
93 }
94
last_trb_on_ring(struct xhci_ring * ring,struct xhci_segment * seg,union xhci_trb * trb)95 static bool last_trb_on_ring(struct xhci_ring *ring,
96 struct xhci_segment *seg, union xhci_trb *trb)
97 {
98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
99 }
100
link_trb_toggles_cycle(union xhci_trb * trb)101 static bool link_trb_toggles_cycle(union xhci_trb *trb)
102 {
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
last_td_in_urb(struct xhci_td * td)106 static bool last_td_in_urb(struct xhci_td *td)
107 {
108 struct urb_priv *urb_priv = td->urb->hcpriv;
109
110 return urb_priv->num_tds_done == urb_priv->num_tds;
111 }
112
inc_td_cnt(struct urb * urb)113 static void inc_td_cnt(struct urb *urb)
114 {
115 struct urb_priv *urb_priv = urb->hcpriv;
116
117 urb_priv->num_tds_done++;
118 }
119
trb_to_noop(union xhci_trb * trb,u32 noop_type)120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
121 {
122 if (trb_is_link(trb)) {
123 /* unchain chained link TRBs */
124 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 } else {
126 trb->generic.field[0] = 0;
127 trb->generic.field[1] = 0;
128 trb->generic.field[2] = 0;
129 /* Preserve only the cycle bit of this TRB */
130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
132 }
133 }
134
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
138 */
next_trb(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment ** seg,union xhci_trb ** trb)139 static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
143 {
144 if (trb_is_link(*trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
149 }
150 }
151
152 /*
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
155 */
inc_deq(struct xhci_hcd * xhci,struct xhci_ring * ring)156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 /* event ring doesn't have link trbs, check for last trb */
159 if (ring->type == TYPE_EVENT) {
160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 ring->dequeue++;
162 goto out;
163 }
164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 ring->cycle_state ^= 1;
166 ring->deq_seg = ring->deq_seg->next;
167 ring->dequeue = ring->deq_seg->trbs;
168 goto out;
169 }
170
171 /* All other rings have link trbs */
172 if (!trb_is_link(ring->dequeue)) {
173 ring->dequeue++;
174 ring->num_trbs_free++;
175 }
176 while (trb_is_link(ring->dequeue)) {
177 ring->deq_seg = ring->deq_seg->next;
178 ring->dequeue = ring->deq_seg->trbs;
179 }
180
181 out:
182 trace_xhci_inc_deq(ring);
183
184 return;
185 }
186
187 /*
188 * See Cycle bit rules. SW is the consumer for the event ring only.
189 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
190 *
191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192 * chain bit is set), then set the chain bit in all the following link TRBs.
193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194 * have their chain bit cleared (so that each Link TRB is a separate TD).
195 *
196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197 * set, but other sections talk about dealing with the chain bit set. This was
198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
200 *
201 * @more_trbs_coming: Will you enqueue more TRBs before calling
202 * prepare_transfer()?
203 */
inc_enq(struct xhci_hcd * xhci,struct xhci_ring * ring,bool more_trbs_coming)204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 bool more_trbs_coming)
206 {
207 u32 chain;
208 union xhci_trb *next;
209
210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 /* If this is not event ring, there is one less usable TRB */
212 if (!trb_is_link(ring->enqueue))
213 ring->num_trbs_free--;
214 next = ++(ring->enqueue);
215
216 /* Update the dequeue pointer further if that was a link TRB */
217 while (trb_is_link(next)) {
218
219 /*
220 * If the caller doesn't plan on enqueueing more TDs before
221 * ringing the doorbell, then we don't want to give the link TRB
222 * to the hardware just yet. We'll give the link TRB back in
223 * prepare_ring() just before we enqueue the TD at the top of
224 * the ring.
225 */
226 if (!chain && !more_trbs_coming)
227 break;
228
229 /* If we're not dealing with 0.95 hardware or isoc rings on
230 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 * (which may mean the chain bit is cleared).
232 */
233 if (!(ring->type == TYPE_ISOC &&
234 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 !xhci_link_trb_quirk(xhci)) {
236 next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 next->link.control |= cpu_to_le32(chain);
238 }
239 /* Give this link TRB to the hardware */
240 wmb();
241 next->link.control ^= cpu_to_le32(TRB_CYCLE);
242
243 /* Toggle the cycle bit after the last ring segment. */
244 if (link_trb_toggles_cycle(next))
245 ring->cycle_state ^= 1;
246
247 ring->enq_seg = ring->enq_seg->next;
248 ring->enqueue = ring->enq_seg->trbs;
249 next = ring->enqueue;
250 }
251
252 trace_xhci_inc_enq(ring);
253 }
254
255 /*
256 * Check to see if there's room to enqueue num_trbs on the ring and make sure
257 * enqueue pointer will not advance into dequeue segment. See rules above.
258 */
room_on_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs)259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 unsigned int num_trbs)
261 {
262 int num_trbs_in_deq_seg;
263
264 if (ring->num_trbs_free < num_trbs)
265 return 0;
266
267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 return 0;
271 }
272
273 return 1;
274 }
275
276 /* Ring the host controller doorbell after placing a command on the ring */
xhci_ring_cmd_db(struct xhci_hcd * xhci)277 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
278 {
279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 return;
281
282 xhci_dbg(xhci, "// Ding dong!\n");
283
284 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST);
285
286 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
287 /* Flush PCI posted writes */
288 readl(&xhci->dba->doorbell[0]);
289 }
290
xhci_mod_cmd_timer(struct xhci_hcd * xhci,unsigned long delay)291 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
292 {
293 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
294 }
295
xhci_next_queued_cmd(struct xhci_hcd * xhci)296 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
297 {
298 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
299 cmd_list);
300 }
301
302 /*
303 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
304 * If there are other commands waiting then restart the ring and kick the timer.
305 * This must be called with command ring stopped and xhci->lock held.
306 */
xhci_handle_stopped_cmd_ring(struct xhci_hcd * xhci,struct xhci_command * cur_cmd)307 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
308 struct xhci_command *cur_cmd)
309 {
310 struct xhci_command *i_cmd;
311
312 /* Turn all aborted commands in list to no-ops, then restart */
313 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
314
315 if (i_cmd->status != COMP_COMMAND_ABORTED)
316 continue;
317
318 i_cmd->status = COMP_COMMAND_RING_STOPPED;
319
320 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
321 i_cmd->command_trb);
322
323 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
324
325 /*
326 * caller waiting for completion is called when command
327 * completion event is received for these no-op commands
328 */
329 }
330
331 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
332
333 /* ring command ring doorbell to restart the command ring */
334 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
335 !(xhci->xhc_state & XHCI_STATE_DYING)) {
336 xhci->current_cmd = cur_cmd;
337 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
338 xhci_ring_cmd_db(xhci);
339 }
340 }
341
342 /* Must be called with xhci->lock held, releases and aquires lock back */
xhci_abort_cmd_ring(struct xhci_hcd * xhci,unsigned long flags)343 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
344 {
345 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg;
346 union xhci_trb *new_deq = xhci->cmd_ring->dequeue;
347 u64 crcr;
348 int ret;
349
350 xhci_dbg(xhci, "Abort command ring\n");
351
352 reinit_completion(&xhci->cmd_ring_stop_completion);
353
354 /*
355 * The control bits like command stop, abort are located in lower
356 * dword of the command ring control register.
357 * Some controllers require all 64 bits to be written to abort the ring.
358 * Make sure the upper dword is valid, pointing to the next command,
359 * avoiding corrupting the command ring pointer in case the command ring
360 * is stopped by the time the upper dword is written.
361 */
362 next_trb(xhci, NULL, &new_seg, &new_deq);
363 if (trb_is_link(new_deq))
364 next_trb(xhci, NULL, &new_seg, &new_deq);
365
366 crcr = xhci_trb_virt_to_dma(new_seg, new_deq);
367 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring);
368
369 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
370 * completion of the Command Abort operation. If CRR is not negated in 5
371 * seconds then driver handles it as if host died (-ENODEV).
372 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
373 * and try to recover a -ETIMEDOUT with a host controller reset.
374 */
375 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
376 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
377 if (ret < 0) {
378 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
379 xhci_halt(xhci);
380 xhci_hc_died(xhci);
381 return ret;
382 }
383 /*
384 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
385 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
386 * but the completion event in never sent. Wait 2 secs (arbitrary
387 * number) to handle those cases after negation of CMD_RING_RUNNING.
388 */
389 spin_unlock_irqrestore(&xhci->lock, flags);
390 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
391 msecs_to_jiffies(2000));
392 spin_lock_irqsave(&xhci->lock, flags);
393 if (!ret) {
394 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
395 xhci_cleanup_command_queue(xhci);
396 } else {
397 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
398 }
399 return 0;
400 }
401
xhci_ring_ep_doorbell(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id)402 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
403 unsigned int slot_id,
404 unsigned int ep_index,
405 unsigned int stream_id)
406 {
407 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
408 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
409 unsigned int ep_state = ep->ep_state;
410
411 /* Don't ring the doorbell for this endpoint if there are pending
412 * cancellations because we don't want to interrupt processing.
413 * We don't want to restart any stream rings if there's a set dequeue
414 * pointer command pending because the device can choose to start any
415 * stream once the endpoint is on the HW schedule.
416 */
417 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
418 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT))
419 return;
420
421 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id));
422
423 writel(DB_VALUE(ep_index, stream_id), db_addr);
424 /* The CPU has better things to do at this point than wait for a
425 * write-posting flush. It'll get there soon enough.
426 */
427 }
428
429 /* Ring the doorbell for any rings with pending URBs */
ring_doorbell_for_active_rings(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index)430 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
431 unsigned int slot_id,
432 unsigned int ep_index)
433 {
434 unsigned int stream_id;
435 struct xhci_virt_ep *ep;
436
437 ep = &xhci->devs[slot_id]->eps[ep_index];
438
439 /* A ring has pending URBs if its TD list is not empty */
440 if (!(ep->ep_state & EP_HAS_STREAMS)) {
441 if (ep->ring && !(list_empty(&ep->ring->td_list)))
442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
443 return;
444 }
445
446 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
447 stream_id++) {
448 struct xhci_stream_info *stream_info = ep->stream_info;
449 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
450 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
451 stream_id);
452 }
453 }
454
xhci_ring_doorbell_for_active_rings(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index)455 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
456 unsigned int slot_id,
457 unsigned int ep_index)
458 {
459 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
460 }
461
xhci_get_virt_ep(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index)462 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci,
463 unsigned int slot_id,
464 unsigned int ep_index)
465 {
466 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) {
467 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id);
468 return NULL;
469 }
470 if (ep_index >= EP_CTX_PER_DEV) {
471 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index);
472 return NULL;
473 }
474 if (!xhci->devs[slot_id]) {
475 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id);
476 return NULL;
477 }
478
479 return &xhci->devs[slot_id]->eps[ep_index];
480 }
481
482 /* Get the right ring for the given slot_id, ep_index and stream_id.
483 * If the endpoint supports streams, boundary check the URB's stream ID.
484 * If the endpoint doesn't support streams, return the singular endpoint ring.
485 */
xhci_triad_to_transfer_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id)486 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
487 unsigned int slot_id, unsigned int ep_index,
488 unsigned int stream_id)
489 {
490 struct xhci_virt_ep *ep;
491
492 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
493 if (!ep)
494 return NULL;
495
496 /* Common case: no streams */
497 if (!(ep->ep_state & EP_HAS_STREAMS))
498 return ep->ring;
499
500 if (stream_id == 0) {
501 xhci_warn(xhci,
502 "WARN: Slot ID %u, ep index %u has streams, "
503 "but URB has no stream ID.\n",
504 slot_id, ep_index);
505 return NULL;
506 }
507
508 if (stream_id < ep->stream_info->num_streams)
509 return ep->stream_info->stream_rings[stream_id];
510
511 xhci_warn(xhci,
512 "WARN: Slot ID %u, ep index %u has "
513 "stream IDs 1 to %u allocated, "
514 "but stream ID %u is requested.\n",
515 slot_id, ep_index,
516 ep->stream_info->num_streams - 1,
517 stream_id);
518 return NULL;
519 }
520
521
522 /*
523 * Get the hw dequeue pointer xHC stopped on, either directly from the
524 * endpoint context, or if streams are in use from the stream context.
525 * The returned hw_dequeue contains the lowest four bits with cycle state
526 * and possbile stream context type.
527 */
xhci_get_hw_deq(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,unsigned int ep_index,unsigned int stream_id)528 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
529 unsigned int ep_index, unsigned int stream_id)
530 {
531 struct xhci_ep_ctx *ep_ctx;
532 struct xhci_stream_ctx *st_ctx;
533 struct xhci_virt_ep *ep;
534
535 ep = &vdev->eps[ep_index];
536
537 if (ep->ep_state & EP_HAS_STREAMS) {
538 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
539 return le64_to_cpu(st_ctx->stream_ring);
540 }
541 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
542 return le64_to_cpu(ep_ctx->deq);
543 }
544
545 /*
546 * Move the xHC's endpoint ring dequeue pointer past cur_td.
547 * Record the new state of the xHC's endpoint ring dequeue segment,
548 * dequeue pointer, stream id, and new consumer cycle state in state.
549 * Update our internal representation of the ring's dequeue pointer.
550 *
551 * We do this in three jumps:
552 * - First we update our new ring state to be the same as when the xHC stopped.
553 * - Then we traverse the ring to find the segment that contains
554 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
555 * any link TRBs with the toggle cycle bit set.
556 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
557 * if we've moved it past a link TRB with the toggle cycle bit set.
558 *
559 * Some of the uses of xhci_generic_trb are grotty, but if they're done
560 * with correct __le32 accesses they should work fine. Only users of this are
561 * in here.
562 */
xhci_find_new_dequeue_state(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * cur_td,struct xhci_dequeue_state * state)563 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
564 unsigned int slot_id, unsigned int ep_index,
565 unsigned int stream_id, struct xhci_td *cur_td,
566 struct xhci_dequeue_state *state)
567 {
568 struct xhci_virt_device *dev = xhci->devs[slot_id];
569 struct xhci_virt_ep *ep = &dev->eps[ep_index];
570 struct xhci_ring *ep_ring;
571 struct xhci_segment *new_seg;
572 struct xhci_segment *halted_seg = NULL;
573 union xhci_trb *new_deq;
574 union xhci_trb *halted_trb;
575 int index = 0;
576 dma_addr_t addr;
577 u64 hw_dequeue;
578 bool cycle_found = false;
579 bool td_last_trb_found = false;
580
581 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
582 ep_index, stream_id);
583 if (!ep_ring) {
584 xhci_warn(xhci, "WARN can't find new dequeue state "
585 "for invalid stream ID %u.\n",
586 stream_id);
587 return;
588 }
589 /*
590 * A cancelled TD can complete with a stall if HW cached the trb.
591 * In this case driver can't find cur_td, but if the ring is empty we
592 * can move the dequeue pointer to the current enqueue position.
593 */
594 if (!cur_td) {
595 if (list_empty(&ep_ring->td_list)) {
596 state->new_deq_seg = ep_ring->enq_seg;
597 state->new_deq_ptr = ep_ring->enqueue;
598 state->new_cycle_state = ep_ring->cycle_state;
599 goto done;
600 } else {
601 xhci_warn(xhci, "Can't find new dequeue state, missing cur_td\n");
602 return;
603 }
604 }
605
606 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
607 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
608 "Finding endpoint context");
609
610 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
611 new_seg = ep_ring->deq_seg;
612 new_deq = ep_ring->dequeue;
613
614 /*
615 * Quirk: xHC write-back of the DCS field in the hardware dequeue
616 * pointer is wrong - use the cycle state of the TRB pointed to by
617 * the dequeue pointer.
618 */
619 if (xhci->quirks & XHCI_EP_CTX_BROKEN_DCS &&
620 !(ep->ep_state & EP_HAS_STREAMS))
621 halted_seg = trb_in_td(xhci, cur_td->start_seg,
622 cur_td->first_trb, cur_td->last_trb,
623 hw_dequeue & ~0xf, false);
624 if (halted_seg) {
625 index = ((dma_addr_t)(hw_dequeue & ~0xf) - halted_seg->dma) /
626 sizeof(*halted_trb);
627 halted_trb = &halted_seg->trbs[index];
628 state->new_cycle_state = halted_trb->generic.field[3] & 0x1;
629 xhci_dbg(xhci, "Endpoint DCS = %d TRB index = %d cycle = %d\n",
630 (u8)(hw_dequeue & 0x1), index,
631 state->new_cycle_state);
632 } else {
633 state->new_cycle_state = hw_dequeue & 0x1;
634 }
635 state->stream_id = stream_id;
636
637 /*
638 * We want to find the pointer, segment and cycle state of the new trb
639 * (the one after current TD's last_trb). We know the cycle state at
640 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
641 * found.
642 */
643 do {
644 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
645 == (dma_addr_t)(hw_dequeue & ~0xf)) {
646 cycle_found = true;
647 if (td_last_trb_found)
648 break;
649 }
650 if (new_deq == cur_td->last_trb)
651 td_last_trb_found = true;
652
653 if (cycle_found && trb_is_link(new_deq) &&
654 link_trb_toggles_cycle(new_deq))
655 state->new_cycle_state ^= 0x1;
656
657 next_trb(xhci, ep_ring, &new_seg, &new_deq);
658
659 /* Search wrapped around, bail out */
660 if (new_deq == ep->ring->dequeue) {
661 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
662 state->new_deq_seg = NULL;
663 state->new_deq_ptr = NULL;
664 return;
665 }
666
667 } while (!cycle_found || !td_last_trb_found);
668
669 state->new_deq_seg = new_seg;
670 state->new_deq_ptr = new_deq;
671
672 done:
673 /* Don't update the ring cycle state for the producer (us). */
674 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
675 "Cycle state = 0x%x", state->new_cycle_state);
676
677 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
678 "New dequeue segment = %p (virtual)",
679 state->new_deq_seg);
680 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
681 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
682 "New dequeue pointer = 0x%llx (DMA)",
683 (unsigned long long) addr);
684 }
685
686 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
687 * (The last TRB actually points to the ring enqueue pointer, which is not part
688 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
689 */
td_to_noop(struct xhci_hcd * xhci,struct xhci_ring * ep_ring,struct xhci_td * td,bool flip_cycle)690 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
691 struct xhci_td *td, bool flip_cycle)
692 {
693 struct xhci_segment *seg = td->start_seg;
694 union xhci_trb *trb = td->first_trb;
695
696 while (1) {
697 trb_to_noop(trb, TRB_TR_NOOP);
698
699 /* flip cycle if asked to */
700 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
701 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
702
703 if (trb == td->last_trb)
704 break;
705
706 next_trb(xhci, ep_ring, &seg, &trb);
707 }
708 }
709
xhci_stop_watchdog_timer_in_irq(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)710 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
711 struct xhci_virt_ep *ep)
712 {
713 ep->ep_state &= ~EP_STOP_CMD_PENDING;
714 /* Can't del_timer_sync in interrupt */
715 del_timer(&ep->stop_cmd_timer);
716 }
717
718 /*
719 * Must be called with xhci->lock held in interrupt context,
720 * releases and re-acquires xhci->lock
721 */
xhci_giveback_urb_in_irq(struct xhci_hcd * xhci,struct xhci_td * cur_td,int status)722 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
723 struct xhci_td *cur_td, int status)
724 {
725 struct urb *urb = cur_td->urb;
726 struct urb_priv *urb_priv = urb->hcpriv;
727 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
728
729 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
730 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
731 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
732 if (xhci->quirks & XHCI_AMD_PLL_FIX)
733 usb_amd_quirk_pll_enable();
734 }
735 }
736 xhci_urb_free_priv(urb_priv);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 trace_xhci_urb_giveback(urb);
739 usb_hcd_giveback_urb(hcd, urb, status);
740 }
741
xhci_unmap_td_bounce_buffer(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_td * td)742 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
743 struct xhci_ring *ring, struct xhci_td *td)
744 {
745 struct device *dev = xhci_to_hcd(xhci)->self.controller;
746 struct xhci_segment *seg = td->bounce_seg;
747 struct urb *urb = td->urb;
748 size_t len;
749
750 if (!ring || !seg || !urb)
751 return;
752
753 if (usb_urb_dir_out(urb)) {
754 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
755 DMA_TO_DEVICE);
756 return;
757 }
758
759 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
760 DMA_FROM_DEVICE);
761 /* for in tranfers we need to copy the data from bounce to sg */
762 if (urb->num_sgs) {
763 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf,
764 seg->bounce_len, seg->bounce_offs);
765 if (len != seg->bounce_len)
766 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n",
767 len, seg->bounce_len);
768 } else {
769 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf,
770 seg->bounce_len);
771 }
772 seg->bounce_len = 0;
773 seg->bounce_offs = 0;
774 }
775
xhci_td_cleanup(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_ring * ep_ring,int status)776 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
777 struct xhci_ring *ep_ring, int status)
778 {
779 struct urb *urb = NULL;
780
781 /* Clean up the endpoint's TD list */
782 urb = td->urb;
783
784 /* if a bounce buffer was used to align this td then unmap it */
785 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
786
787 /* Do one last check of the actual transfer length.
788 * If the host controller said we transferred more data than the buffer
789 * length, urb->actual_length will be a very big number (since it's
790 * unsigned). Play it safe and say we didn't transfer anything.
791 */
792 if (urb->actual_length > urb->transfer_buffer_length) {
793 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
794 urb->transfer_buffer_length, urb->actual_length);
795 urb->actual_length = 0;
796 status = 0;
797 }
798 list_del_init(&td->td_list);
799 /* Was this TD slated to be cancelled but completed anyway? */
800 if (!list_empty(&td->cancelled_td_list))
801 list_del_init(&td->cancelled_td_list);
802
803 inc_td_cnt(urb);
804 /* Giveback the urb when all the tds are completed */
805 if (last_td_in_urb(td)) {
806 if ((urb->actual_length != urb->transfer_buffer_length &&
807 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
808 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
809 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
810 urb, urb->actual_length,
811 urb->transfer_buffer_length, status);
812
813 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
814 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
815 status = 0;
816 xhci_giveback_urb_in_irq(xhci, td, status);
817 }
818
819 return 0;
820 }
821
xhci_reset_halted_ep(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,enum xhci_ep_reset_type reset_type)822 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id,
823 unsigned int ep_index, enum xhci_ep_reset_type reset_type)
824 {
825 struct xhci_command *command;
826 int ret = 0;
827
828 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
829 if (!command) {
830 ret = -ENOMEM;
831 goto done;
832 }
833
834 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
835 done:
836 if (ret)
837 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n",
838 slot_id, ep_index, ret);
839 return ret;
840 }
841
xhci_handle_halted_endpoint(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,unsigned int stream_id,struct xhci_td * td,enum xhci_ep_reset_type reset_type)842 static void xhci_handle_halted_endpoint(struct xhci_hcd *xhci,
843 struct xhci_virt_ep *ep, unsigned int stream_id,
844 struct xhci_td *td,
845 enum xhci_ep_reset_type reset_type)
846 {
847 unsigned int slot_id = ep->vdev->slot_id;
848 int err;
849
850 /*
851 * Avoid resetting endpoint if link is inactive. Can cause host hang.
852 * Device will be reset soon to recover the link so don't do anything
853 */
854 if (ep->vdev->flags & VDEV_PORT_ERROR)
855 return;
856
857 ep->ep_state |= EP_HALTED;
858
859 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type);
860 if (err)
861 return;
862
863 if (reset_type == EP_HARD_RESET) {
864 ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
865 xhci_cleanup_stalled_ring(xhci, slot_id, ep->ep_index, stream_id,
866 td);
867 }
868 xhci_ring_cmd_db(xhci);
869 }
870
871 /*
872 * When we get a command completion for a Stop Endpoint Command, we need to
873 * unlink any cancelled TDs from the ring. There are two ways to do that:
874 *
875 * 1. If the HW was in the middle of processing the TD that needs to be
876 * cancelled, then we must move the ring's dequeue pointer past the last TRB
877 * in the TD with a Set Dequeue Pointer Command.
878 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
879 * bit cleared) so that the HW will skip over them.
880 */
xhci_handle_cmd_stop_ep(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,struct xhci_event_cmd * event)881 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
882 union xhci_trb *trb, struct xhci_event_cmd *event)
883 {
884 unsigned int ep_index;
885 struct xhci_ring *ep_ring;
886 struct xhci_virt_ep *ep;
887 struct xhci_td *cur_td = NULL;
888 struct xhci_td *last_unlinked_td;
889 struct xhci_ep_ctx *ep_ctx;
890 struct xhci_virt_device *vdev;
891 u64 hw_deq;
892 struct xhci_dequeue_state deq_state;
893
894 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
895 if (!xhci->devs[slot_id])
896 xhci_warn(xhci, "Stop endpoint command "
897 "completion for disabled slot %u\n",
898 slot_id);
899 return;
900 }
901
902 memset(&deq_state, 0, sizeof(deq_state));
903 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
904
905 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
906 if (!ep)
907 return;
908
909 vdev = xhci->devs[slot_id];
910 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
911 trace_xhci_handle_cmd_stop_ep(ep_ctx);
912
913 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
914 struct xhci_td, cancelled_td_list);
915
916 if (list_empty(&ep->cancelled_td_list)) {
917 xhci_stop_watchdog_timer_in_irq(xhci, ep);
918 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
919 return;
920 }
921
922 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
923 * We have the xHCI lock, so nothing can modify this list until we drop
924 * it. We're also in the event handler, so we can't get re-interrupted
925 * if another Stop Endpoint command completes
926 */
927 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
928 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
929 "Removing canceled TD starting at 0x%llx (dma).",
930 (unsigned long long)xhci_trb_virt_to_dma(
931 cur_td->start_seg, cur_td->first_trb));
932 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
933 if (!ep_ring) {
934 /* This shouldn't happen unless a driver is mucking
935 * with the stream ID after submission. This will
936 * leave the TD on the hardware ring, and the hardware
937 * will try to execute it, and may access a buffer
938 * that has already been freed. In the best case, the
939 * hardware will execute it, and the event handler will
940 * ignore the completion event for that TD, since it was
941 * removed from the td_list for that endpoint. In
942 * short, don't muck with the stream ID after
943 * submission.
944 */
945 xhci_warn(xhci, "WARN Cancelled URB %p "
946 "has invalid stream ID %u.\n",
947 cur_td->urb,
948 cur_td->urb->stream_id);
949 goto remove_finished_td;
950 }
951 /*
952 * If we stopped on the TD we need to cancel, then we have to
953 * move the xHC endpoint ring dequeue pointer past this TD.
954 */
955 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
956 cur_td->urb->stream_id);
957 hw_deq &= ~0xf;
958
959 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
960 cur_td->last_trb, hw_deq, false)) {
961 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
962 cur_td->urb->stream_id,
963 cur_td, &deq_state);
964 } else {
965 td_to_noop(xhci, ep_ring, cur_td, false);
966 }
967
968 remove_finished_td:
969 /*
970 * The event handler won't see a completion for this TD anymore,
971 * so remove it from the endpoint ring's TD list. Keep it in
972 * the cancelled TD list for URB completion later.
973 */
974 list_del_init(&cur_td->td_list);
975 }
976
977 xhci_stop_watchdog_timer_in_irq(xhci, ep);
978
979 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
980 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
981 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
982 &deq_state);
983 xhci_ring_cmd_db(xhci);
984 } else {
985 /* Otherwise ring the doorbell(s) to restart queued transfers */
986 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
987 }
988
989 /*
990 * Drop the lock and complete the URBs in the cancelled TD list.
991 * New TDs to be cancelled might be added to the end of the list before
992 * we can complete all the URBs for the TDs we already unlinked.
993 * So stop when we've completed the URB for the last TD we unlinked.
994 */
995 do {
996 cur_td = list_first_entry(&ep->cancelled_td_list,
997 struct xhci_td, cancelled_td_list);
998 list_del_init(&cur_td->cancelled_td_list);
999
1000 /* Clean up the cancelled URB */
1001 /* Doesn't matter what we pass for status, since the core will
1002 * just overwrite it (because the URB has been unlinked).
1003 */
1004 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
1005 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
1006 inc_td_cnt(cur_td->urb);
1007 if (last_td_in_urb(cur_td))
1008 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
1009
1010 /* Stop processing the cancelled list if the watchdog timer is
1011 * running.
1012 */
1013 if (xhci->xhc_state & XHCI_STATE_DYING)
1014 return;
1015 } while (cur_td != last_unlinked_td);
1016
1017 /* Return to the event handler with xhci->lock re-acquired */
1018 }
1019
xhci_kill_ring_urbs(struct xhci_hcd * xhci,struct xhci_ring * ring)1020 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
1021 {
1022 struct xhci_td *cur_td;
1023 struct xhci_td *tmp;
1024
1025 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
1026 list_del_init(&cur_td->td_list);
1027
1028 if (!list_empty(&cur_td->cancelled_td_list))
1029 list_del_init(&cur_td->cancelled_td_list);
1030
1031 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
1032
1033 inc_td_cnt(cur_td->urb);
1034 if (last_td_in_urb(cur_td))
1035 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
1036 }
1037 }
1038
xhci_kill_endpoint_urbs(struct xhci_hcd * xhci,int slot_id,int ep_index)1039 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
1040 int slot_id, int ep_index)
1041 {
1042 struct xhci_td *cur_td;
1043 struct xhci_td *tmp;
1044 struct xhci_virt_ep *ep;
1045 struct xhci_ring *ring;
1046
1047 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1048 if (!ep)
1049 return;
1050
1051 if ((ep->ep_state & EP_HAS_STREAMS) ||
1052 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
1053 int stream_id;
1054
1055 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
1056 stream_id++) {
1057 ring = ep->stream_info->stream_rings[stream_id];
1058 if (!ring)
1059 continue;
1060
1061 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1062 "Killing URBs for slot ID %u, ep index %u, stream %u",
1063 slot_id, ep_index, stream_id);
1064 xhci_kill_ring_urbs(xhci, ring);
1065 }
1066 } else {
1067 ring = ep->ring;
1068 if (!ring)
1069 return;
1070 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1071 "Killing URBs for slot ID %u, ep index %u",
1072 slot_id, ep_index);
1073 xhci_kill_ring_urbs(xhci, ring);
1074 }
1075
1076 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
1077 cancelled_td_list) {
1078 list_del_init(&cur_td->cancelled_td_list);
1079 inc_td_cnt(cur_td->urb);
1080
1081 if (last_td_in_urb(cur_td))
1082 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
1083 }
1084 }
1085
1086 /*
1087 * host controller died, register read returns 0xffffffff
1088 * Complete pending commands, mark them ABORTED.
1089 * URBs need to be given back as usb core might be waiting with device locks
1090 * held for the URBs to finish during device disconnect, blocking host remove.
1091 *
1092 * Call with xhci->lock held.
1093 * lock is relased and re-acquired while giving back urb.
1094 */
xhci_hc_died(struct xhci_hcd * xhci)1095 void xhci_hc_died(struct xhci_hcd *xhci)
1096 {
1097 int i, j;
1098
1099 if (xhci->xhc_state & XHCI_STATE_DYING)
1100 return;
1101
1102 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
1103 xhci->xhc_state |= XHCI_STATE_DYING;
1104
1105 xhci_cleanup_command_queue(xhci);
1106
1107 /* return any pending urbs, remove may be waiting for them */
1108 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1109 if (!xhci->devs[i])
1110 continue;
1111 for (j = 0; j < 31; j++)
1112 xhci_kill_endpoint_urbs(xhci, i, j);
1113 }
1114
1115 /* inform usb core hc died if PCI remove isn't already handling it */
1116 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
1117 usb_hc_died(xhci_to_hcd(xhci));
1118 }
1119
1120 /* Watchdog timer function for when a stop endpoint command fails to complete.
1121 * In this case, we assume the host controller is broken or dying or dead. The
1122 * host may still be completing some other events, so we have to be careful to
1123 * let the event ring handler and the URB dequeueing/enqueueing functions know
1124 * through xhci->state.
1125 *
1126 * The timer may also fire if the host takes a very long time to respond to the
1127 * command, and the stop endpoint command completion handler cannot delete the
1128 * timer before the timer function is called. Another endpoint cancellation may
1129 * sneak in before the timer function can grab the lock, and that may queue
1130 * another stop endpoint command and add the timer back. So we cannot use a
1131 * simple flag to say whether there is a pending stop endpoint command for a
1132 * particular endpoint.
1133 *
1134 * Instead we use a combination of that flag and checking if a new timer is
1135 * pending.
1136 */
xhci_stop_endpoint_command_watchdog(struct timer_list * t)1137 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
1138 {
1139 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
1140 struct xhci_hcd *xhci = ep->xhci;
1141 unsigned long flags;
1142 u32 usbsts;
1143 char str[XHCI_MSG_MAX];
1144
1145 spin_lock_irqsave(&xhci->lock, flags);
1146
1147 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
1148 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
1149 timer_pending(&ep->stop_cmd_timer)) {
1150 spin_unlock_irqrestore(&xhci->lock, flags);
1151 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
1152 return;
1153 }
1154 usbsts = readl(&xhci->op_regs->status);
1155
1156 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
1157 xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(str, usbsts));
1158
1159 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1160
1161 xhci_halt(xhci);
1162
1163 /*
1164 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
1165 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
1166 * and try to recover a -ETIMEDOUT with a host controller reset
1167 */
1168 xhci_hc_died(xhci);
1169
1170 spin_unlock_irqrestore(&xhci->lock, flags);
1171 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1172 "xHCI host controller is dead.");
1173 }
1174
update_ring_for_set_deq_completion(struct xhci_hcd * xhci,struct xhci_virt_device * dev,struct xhci_ring * ep_ring,unsigned int ep_index)1175 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1176 struct xhci_virt_device *dev,
1177 struct xhci_ring *ep_ring,
1178 unsigned int ep_index)
1179 {
1180 union xhci_trb *dequeue_temp;
1181 int num_trbs_free_temp;
1182 bool revert = false;
1183
1184 num_trbs_free_temp = ep_ring->num_trbs_free;
1185 dequeue_temp = ep_ring->dequeue;
1186
1187 /* If we get two back-to-back stalls, and the first stalled transfer
1188 * ends just before a link TRB, the dequeue pointer will be left on
1189 * the link TRB by the code in the while loop. So we have to update
1190 * the dequeue pointer one segment further, or we'll jump off
1191 * the segment into la-la-land.
1192 */
1193 if (trb_is_link(ep_ring->dequeue)) {
1194 ep_ring->deq_seg = ep_ring->deq_seg->next;
1195 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1196 }
1197
1198 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1199 /* We have more usable TRBs */
1200 ep_ring->num_trbs_free++;
1201 ep_ring->dequeue++;
1202 if (trb_is_link(ep_ring->dequeue)) {
1203 if (ep_ring->dequeue ==
1204 dev->eps[ep_index].queued_deq_ptr)
1205 break;
1206 ep_ring->deq_seg = ep_ring->deq_seg->next;
1207 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1208 }
1209 if (ep_ring->dequeue == dequeue_temp) {
1210 revert = true;
1211 break;
1212 }
1213 }
1214
1215 if (revert) {
1216 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1217 ep_ring->num_trbs_free = num_trbs_free_temp;
1218 }
1219 }
1220
1221 /*
1222 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1223 * we need to clear the set deq pending flag in the endpoint ring state, so that
1224 * the TD queueing code can ring the doorbell again. We also need to ring the
1225 * endpoint doorbell to restart the ring, but only if there aren't more
1226 * cancellations pending.
1227 */
xhci_handle_cmd_set_deq(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,u32 cmd_comp_code)1228 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1229 union xhci_trb *trb, u32 cmd_comp_code)
1230 {
1231 unsigned int ep_index;
1232 unsigned int stream_id;
1233 struct xhci_ring *ep_ring;
1234 struct xhci_virt_device *dev;
1235 struct xhci_virt_ep *ep;
1236 struct xhci_ep_ctx *ep_ctx;
1237 struct xhci_slot_ctx *slot_ctx;
1238
1239 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1240 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1241 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1242 if (!ep)
1243 return;
1244
1245 dev = xhci->devs[slot_id];
1246 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1247 if (!ep_ring) {
1248 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1249 stream_id);
1250 /* XXX: Harmless??? */
1251 goto cleanup;
1252 }
1253
1254 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1255 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1256 trace_xhci_handle_cmd_set_deq(slot_ctx);
1257 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1258
1259 if (cmd_comp_code != COMP_SUCCESS) {
1260 unsigned int ep_state;
1261 unsigned int slot_state;
1262
1263 switch (cmd_comp_code) {
1264 case COMP_TRB_ERROR:
1265 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1266 break;
1267 case COMP_CONTEXT_STATE_ERROR:
1268 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1269 ep_state = GET_EP_CTX_STATE(ep_ctx);
1270 slot_state = le32_to_cpu(slot_ctx->dev_state);
1271 slot_state = GET_SLOT_STATE(slot_state);
1272 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1273 "Slot state = %u, EP state = %u",
1274 slot_state, ep_state);
1275 break;
1276 case COMP_SLOT_NOT_ENABLED_ERROR:
1277 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1278 slot_id);
1279 break;
1280 default:
1281 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1282 cmd_comp_code);
1283 break;
1284 }
1285 /* OK what do we do now? The endpoint state is hosed, and we
1286 * should never get to this point if the synchronization between
1287 * queueing, and endpoint state are correct. This might happen
1288 * if the device gets disconnected after we've finished
1289 * cancelling URBs, which might not be an error...
1290 */
1291 } else {
1292 u64 deq;
1293 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1294 if (ep->ep_state & EP_HAS_STREAMS) {
1295 struct xhci_stream_ctx *ctx =
1296 &ep->stream_info->stream_ctx_array[stream_id];
1297 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1298 } else {
1299 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1300 }
1301 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1302 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1303 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1304 ep->queued_deq_ptr) == deq) {
1305 /* Update the ring's dequeue segment and dequeue pointer
1306 * to reflect the new position.
1307 */
1308 update_ring_for_set_deq_completion(xhci, dev,
1309 ep_ring, ep_index);
1310 } else {
1311 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1312 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1313 ep->queued_deq_seg, ep->queued_deq_ptr);
1314 }
1315 }
1316
1317 cleanup:
1318 ep->ep_state &= ~SET_DEQ_PENDING;
1319 ep->queued_deq_seg = NULL;
1320 ep->queued_deq_ptr = NULL;
1321 /* Restart any rings with pending URBs */
1322 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1323 }
1324
xhci_handle_cmd_reset_ep(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,u32 cmd_comp_code)1325 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1326 union xhci_trb *trb, u32 cmd_comp_code)
1327 {
1328 struct xhci_virt_device *vdev;
1329 struct xhci_virt_ep *ep;
1330 struct xhci_ep_ctx *ep_ctx;
1331 unsigned int ep_index;
1332
1333 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1334 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1335 if (!ep)
1336 return;
1337
1338 vdev = xhci->devs[slot_id];
1339 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1340 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1341
1342 /* This command will only fail if the endpoint wasn't halted,
1343 * but we don't care.
1344 */
1345 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1346 "Ignoring reset ep completion code of %u", cmd_comp_code);
1347
1348 /* HW with the reset endpoint quirk needs to have a configure endpoint
1349 * command complete before the endpoint can be used. Queue that here
1350 * because the HW can't handle two commands being queued in a row.
1351 */
1352 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1353 struct xhci_command *command;
1354
1355 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1356 if (!command)
1357 return;
1358
1359 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1360 "Queueing configure endpoint command");
1361 xhci_queue_configure_endpoint(xhci, command,
1362 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1363 false);
1364 xhci_ring_cmd_db(xhci);
1365 } else {
1366 /* Clear our internal halted state */
1367 ep->ep_state &= ~EP_HALTED;
1368 }
1369
1370 /* if this was a soft reset, then restart */
1371 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
1372 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1373 }
1374
xhci_handle_cmd_enable_slot(struct xhci_hcd * xhci,int slot_id,struct xhci_command * command,u32 cmd_comp_code)1375 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1376 struct xhci_command *command, u32 cmd_comp_code)
1377 {
1378 if (cmd_comp_code == COMP_SUCCESS)
1379 command->slot_id = slot_id;
1380 else
1381 command->slot_id = 0;
1382 }
1383
xhci_handle_cmd_disable_slot(struct xhci_hcd * xhci,int slot_id)1384 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1385 {
1386 struct xhci_virt_device *virt_dev;
1387 struct xhci_slot_ctx *slot_ctx;
1388
1389 virt_dev = xhci->devs[slot_id];
1390 if (!virt_dev)
1391 return;
1392
1393 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1394 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1395
1396 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1397 /* Delete default control endpoint resources */
1398 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1399 }
1400
xhci_handle_cmd_config_ep(struct xhci_hcd * xhci,int slot_id,struct xhci_event_cmd * event,u32 cmd_comp_code)1401 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1402 struct xhci_event_cmd *event, u32 cmd_comp_code)
1403 {
1404 struct xhci_virt_device *virt_dev;
1405 struct xhci_input_control_ctx *ctrl_ctx;
1406 struct xhci_ep_ctx *ep_ctx;
1407 unsigned int ep_index;
1408 unsigned int ep_state;
1409 u32 add_flags, drop_flags;
1410
1411 /*
1412 * Configure endpoint commands can come from the USB core
1413 * configuration or alt setting changes, or because the HW
1414 * needed an extra configure endpoint command after a reset
1415 * endpoint command or streams were being configured.
1416 * If the command was for a halted endpoint, the xHCI driver
1417 * is not waiting on the configure endpoint command.
1418 */
1419 virt_dev = xhci->devs[slot_id];
1420 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1421 if (!ctrl_ctx) {
1422 xhci_warn(xhci, "Could not get input context, bad type.\n");
1423 return;
1424 }
1425
1426 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1427 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1428 /* Input ctx add_flags are the endpoint index plus one */
1429 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1430
1431 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1432 trace_xhci_handle_cmd_config_ep(ep_ctx);
1433
1434 /* A usb_set_interface() call directly after clearing a halted
1435 * condition may race on this quirky hardware. Not worth
1436 * worrying about, since this is prototype hardware. Not sure
1437 * if this will work for streams, but streams support was
1438 * untested on this prototype.
1439 */
1440 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1441 ep_index != (unsigned int) -1 &&
1442 add_flags - SLOT_FLAG == drop_flags) {
1443 ep_state = virt_dev->eps[ep_index].ep_state;
1444 if (!(ep_state & EP_HALTED))
1445 return;
1446 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1447 "Completed config ep cmd - "
1448 "last ep index = %d, state = %d",
1449 ep_index, ep_state);
1450 /* Clear internal halted state and restart ring(s) */
1451 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1452 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1453 return;
1454 }
1455 return;
1456 }
1457
xhci_handle_cmd_addr_dev(struct xhci_hcd * xhci,int slot_id)1458 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1459 {
1460 struct xhci_virt_device *vdev;
1461 struct xhci_slot_ctx *slot_ctx;
1462
1463 vdev = xhci->devs[slot_id];
1464 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1465 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1466 }
1467
xhci_handle_cmd_reset_dev(struct xhci_hcd * xhci,int slot_id,struct xhci_event_cmd * event)1468 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1469 struct xhci_event_cmd *event)
1470 {
1471 struct xhci_virt_device *vdev;
1472 struct xhci_slot_ctx *slot_ctx;
1473
1474 vdev = xhci->devs[slot_id];
1475 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1476 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1477
1478 xhci_dbg(xhci, "Completed reset device command.\n");
1479 if (!xhci->devs[slot_id])
1480 xhci_warn(xhci, "Reset device command completion "
1481 "for disabled slot %u\n", slot_id);
1482 }
1483
xhci_handle_cmd_nec_get_fw(struct xhci_hcd * xhci,struct xhci_event_cmd * event)1484 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1485 struct xhci_event_cmd *event)
1486 {
1487 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1488 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1489 return;
1490 }
1491 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1492 "NEC firmware version %2x.%02x",
1493 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1494 NEC_FW_MINOR(le32_to_cpu(event->status)));
1495 }
1496
xhci_complete_del_and_free_cmd(struct xhci_command * cmd,u32 status)1497 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1498 {
1499 list_del(&cmd->cmd_list);
1500
1501 if (cmd->completion) {
1502 cmd->status = status;
1503 complete(cmd->completion);
1504 } else {
1505 kfree(cmd);
1506 }
1507 }
1508
xhci_cleanup_command_queue(struct xhci_hcd * xhci)1509 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1510 {
1511 struct xhci_command *cur_cmd, *tmp_cmd;
1512 xhci->current_cmd = NULL;
1513 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1514 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1515 }
1516
xhci_handle_command_timeout(struct work_struct * work)1517 void xhci_handle_command_timeout(struct work_struct *work)
1518 {
1519 struct xhci_hcd *xhci;
1520 unsigned long flags;
1521 u64 hw_ring_state;
1522
1523 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1524
1525 spin_lock_irqsave(&xhci->lock, flags);
1526
1527 /*
1528 * If timeout work is pending, or current_cmd is NULL, it means we
1529 * raced with command completion. Command is handled so just return.
1530 */
1531 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1532 spin_unlock_irqrestore(&xhci->lock, flags);
1533 return;
1534 }
1535 /* mark this command to be cancelled */
1536 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1537
1538 /* Make sure command ring is running before aborting it */
1539 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1540 if (hw_ring_state == ~(u64)0) {
1541 xhci_hc_died(xhci);
1542 goto time_out_completed;
1543 }
1544
1545 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1546 (hw_ring_state & CMD_RING_RUNNING)) {
1547 /* Prevent new doorbell, and start command abort */
1548 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1549 xhci_dbg(xhci, "Command timeout\n");
1550 xhci_abort_cmd_ring(xhci, flags);
1551 goto time_out_completed;
1552 }
1553
1554 /* host removed. Bail out */
1555 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1556 xhci_dbg(xhci, "host removed, ring start fail?\n");
1557 xhci_cleanup_command_queue(xhci);
1558
1559 goto time_out_completed;
1560 }
1561
1562 /* command timeout on stopped ring, ring can't be aborted */
1563 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1564 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1565
1566 time_out_completed:
1567 spin_unlock_irqrestore(&xhci->lock, flags);
1568 return;
1569 }
1570
handle_cmd_completion(struct xhci_hcd * xhci,struct xhci_event_cmd * event)1571 static void handle_cmd_completion(struct xhci_hcd *xhci,
1572 struct xhci_event_cmd *event)
1573 {
1574 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1575 u64 cmd_dma;
1576 dma_addr_t cmd_dequeue_dma;
1577 u32 cmd_comp_code;
1578 union xhci_trb *cmd_trb;
1579 struct xhci_command *cmd;
1580 u32 cmd_type;
1581
1582 cmd_dma = le64_to_cpu(event->cmd_trb);
1583 cmd_trb = xhci->cmd_ring->dequeue;
1584
1585 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1586
1587 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1588 cmd_trb);
1589 /*
1590 * Check whether the completion event is for our internal kept
1591 * command.
1592 */
1593 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1594 xhci_warn(xhci,
1595 "ERROR mismatched command completion event\n");
1596 return;
1597 }
1598
1599 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1600
1601 cancel_delayed_work(&xhci->cmd_timer);
1602
1603 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1604
1605 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1606 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1607 complete_all(&xhci->cmd_ring_stop_completion);
1608 return;
1609 }
1610
1611 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1612 xhci_err(xhci,
1613 "Command completion event does not match command\n");
1614 return;
1615 }
1616
1617 /*
1618 * Host aborted the command ring, check if the current command was
1619 * supposed to be aborted, otherwise continue normally.
1620 * The command ring is stopped now, but the xHC will issue a Command
1621 * Ring Stopped event which will cause us to restart it.
1622 */
1623 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1624 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1625 if (cmd->status == COMP_COMMAND_ABORTED) {
1626 if (xhci->current_cmd == cmd)
1627 xhci->current_cmd = NULL;
1628 goto event_handled;
1629 }
1630 }
1631
1632 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1633 switch (cmd_type) {
1634 case TRB_ENABLE_SLOT:
1635 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1636 break;
1637 case TRB_DISABLE_SLOT:
1638 xhci_handle_cmd_disable_slot(xhci, slot_id);
1639 break;
1640 case TRB_CONFIG_EP:
1641 if (!cmd->completion)
1642 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1643 cmd_comp_code);
1644 break;
1645 case TRB_EVAL_CONTEXT:
1646 break;
1647 case TRB_ADDR_DEV:
1648 xhci_handle_cmd_addr_dev(xhci, slot_id);
1649 break;
1650 case TRB_STOP_RING:
1651 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1652 le32_to_cpu(cmd_trb->generic.field[3])));
1653 if (!cmd->completion)
1654 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1655 break;
1656 case TRB_SET_DEQ:
1657 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1658 le32_to_cpu(cmd_trb->generic.field[3])));
1659 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1660 break;
1661 case TRB_CMD_NOOP:
1662 /* Is this an aborted command turned to NO-OP? */
1663 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1664 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1665 break;
1666 case TRB_RESET_EP:
1667 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1668 le32_to_cpu(cmd_trb->generic.field[3])));
1669 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1670 break;
1671 case TRB_RESET_DEV:
1672 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1673 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1674 */
1675 slot_id = TRB_TO_SLOT_ID(
1676 le32_to_cpu(cmd_trb->generic.field[3]));
1677 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1678 break;
1679 case TRB_NEC_GET_FW:
1680 xhci_handle_cmd_nec_get_fw(xhci, event);
1681 break;
1682 default:
1683 /* Skip over unknown commands on the event ring */
1684 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1685 break;
1686 }
1687
1688 /* restart timer if this wasn't the last command */
1689 if (!list_is_singular(&xhci->cmd_list)) {
1690 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1691 struct xhci_command, cmd_list);
1692 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1693 } else if (xhci->current_cmd == cmd) {
1694 xhci->current_cmd = NULL;
1695 }
1696
1697 event_handled:
1698 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1699
1700 inc_deq(xhci, xhci->cmd_ring);
1701 }
1702
handle_vendor_event(struct xhci_hcd * xhci,union xhci_trb * event)1703 static void handle_vendor_event(struct xhci_hcd *xhci,
1704 union xhci_trb *event)
1705 {
1706 u32 trb_type;
1707
1708 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1709 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1710 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1711 handle_cmd_completion(xhci, &event->event_cmd);
1712 }
1713
handle_device_notification(struct xhci_hcd * xhci,union xhci_trb * event)1714 static void handle_device_notification(struct xhci_hcd *xhci,
1715 union xhci_trb *event)
1716 {
1717 u32 slot_id;
1718 struct usb_device *udev;
1719
1720 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1721 if (!xhci->devs[slot_id]) {
1722 xhci_warn(xhci, "Device Notification event for "
1723 "unused slot %u\n", slot_id);
1724 return;
1725 }
1726
1727 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1728 slot_id);
1729 udev = xhci->devs[slot_id]->udev;
1730 if (udev && udev->parent)
1731 usb_wakeup_notification(udev->parent, udev->portnum);
1732 }
1733
1734 /*
1735 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
1736 * Controller.
1737 * As per ThunderX2errata-129 USB 2 device may come up as USB 1
1738 * If a connection to a USB 1 device is followed by another connection
1739 * to a USB 2 device.
1740 *
1741 * Reset the PHY after the USB device is disconnected if device speed
1742 * is less than HCD_USB3.
1743 * Retry the reset sequence max of 4 times checking the PLL lock status.
1744 *
1745 */
xhci_cavium_reset_phy_quirk(struct xhci_hcd * xhci)1746 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
1747 {
1748 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1749 u32 pll_lock_check;
1750 u32 retry_count = 4;
1751
1752 do {
1753 /* Assert PHY reset */
1754 writel(0x6F, hcd->regs + 0x1048);
1755 udelay(10);
1756 /* De-assert the PHY reset */
1757 writel(0x7F, hcd->regs + 0x1048);
1758 udelay(200);
1759 pll_lock_check = readl(hcd->regs + 0x1070);
1760 } while (!(pll_lock_check & 0x1) && --retry_count);
1761 }
1762
handle_port_status(struct xhci_hcd * xhci,union xhci_trb * event)1763 static void handle_port_status(struct xhci_hcd *xhci,
1764 union xhci_trb *event)
1765 {
1766 struct usb_hcd *hcd;
1767 u32 port_id;
1768 u32 portsc, cmd_reg;
1769 int max_ports;
1770 int slot_id;
1771 unsigned int hcd_portnum;
1772 struct xhci_bus_state *bus_state;
1773 bool bogus_port_status = false;
1774 struct xhci_port *port;
1775
1776 /* Port status change events always have a successful completion code */
1777 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1778 xhci_warn(xhci,
1779 "WARN: xHC returned failed port status event\n");
1780
1781 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1782 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1783
1784 if ((port_id <= 0) || (port_id > max_ports)) {
1785 xhci_warn(xhci, "Port change event with invalid port ID %d\n",
1786 port_id);
1787 inc_deq(xhci, xhci->event_ring);
1788 return;
1789 }
1790
1791 port = &xhci->hw_ports[port_id - 1];
1792 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1793 xhci_warn(xhci, "Port change event, no port for port ID %u\n",
1794 port_id);
1795 bogus_port_status = true;
1796 goto cleanup;
1797 }
1798
1799 /* We might get interrupts after shared_hcd is removed */
1800 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
1801 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
1802 bogus_port_status = true;
1803 goto cleanup;
1804 }
1805
1806 hcd = port->rhub->hcd;
1807 bus_state = &port->rhub->bus_state;
1808 hcd_portnum = port->hcd_portnum;
1809 portsc = readl(port->addr);
1810
1811 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n",
1812 hcd->self.busnum, hcd_portnum + 1, port_id, portsc);
1813
1814 trace_xhci_handle_port_status(hcd_portnum, portsc);
1815
1816 if (hcd->state == HC_STATE_SUSPENDED) {
1817 xhci_dbg(xhci, "resume root hub\n");
1818 usb_hcd_resume_root_hub(hcd);
1819 }
1820
1821 if (hcd->speed >= HCD_USB3 &&
1822 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) {
1823 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1824 if (slot_id && xhci->devs[slot_id])
1825 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR;
1826 }
1827
1828 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1829 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1830
1831 cmd_reg = readl(&xhci->op_regs->command);
1832 if (!(cmd_reg & CMD_RUN)) {
1833 xhci_warn(xhci, "xHC is not running.\n");
1834 goto cleanup;
1835 }
1836
1837 if (DEV_SUPERSPEED_ANY(portsc)) {
1838 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1839 /* Set a flag to say the port signaled remote wakeup,
1840 * so we can tell the difference between the end of
1841 * device and host initiated resume.
1842 */
1843 bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1844 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1845 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1846 xhci_set_link_state(xhci, port, XDEV_U0);
1847 /* Need to wait until the next link state change
1848 * indicates the device is actually in U0.
1849 */
1850 bogus_port_status = true;
1851 goto cleanup;
1852 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1853 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1854 bus_state->resume_done[hcd_portnum] = jiffies +
1855 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1856 set_bit(hcd_portnum, &bus_state->resuming_ports);
1857 /* Do the rest in GetPortStatus after resume time delay.
1858 * Avoid polling roothub status before that so that a
1859 * usb device auto-resume latency around ~40ms.
1860 */
1861 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1862 mod_timer(&hcd->rh_timer,
1863 bus_state->resume_done[hcd_portnum]);
1864 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1865 bogus_port_status = true;
1866 }
1867 }
1868
1869 if ((portsc & PORT_PLC) &&
1870 DEV_SUPERSPEED_ANY(portsc) &&
1871 ((portsc & PORT_PLS_MASK) == XDEV_U0 ||
1872 (portsc & PORT_PLS_MASK) == XDEV_U1 ||
1873 (portsc & PORT_PLS_MASK) == XDEV_U2)) {
1874 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1875 complete(&bus_state->u3exit_done[hcd_portnum]);
1876 /* We've just brought the device into U0/1/2 through either the
1877 * Resume state after a device remote wakeup, or through the
1878 * U3Exit state after a host-initiated resume. If it's a device
1879 * initiated remote wake, don't pass up the link state change,
1880 * so the roothub behavior is consistent with external
1881 * USB 3.0 hub behavior.
1882 */
1883 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1884 if (slot_id && xhci->devs[slot_id])
1885 xhci_ring_device(xhci, slot_id);
1886 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1887 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1888 usb_wakeup_notification(hcd->self.root_hub,
1889 hcd_portnum + 1);
1890 bogus_port_status = true;
1891 goto cleanup;
1892 }
1893 }
1894
1895 /*
1896 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1897 * RExit to a disconnect state). If so, let the the driver know it's
1898 * out of the RExit state.
1899 */
1900 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 &&
1901 test_and_clear_bit(hcd_portnum,
1902 &bus_state->rexit_ports)) {
1903 complete(&bus_state->rexit_done[hcd_portnum]);
1904 bogus_port_status = true;
1905 goto cleanup;
1906 }
1907
1908 if (hcd->speed < HCD_USB3) {
1909 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1910 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
1911 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
1912 xhci_cavium_reset_phy_quirk(xhci);
1913 }
1914
1915 cleanup:
1916 /* Update event ring dequeue pointer before dropping the lock */
1917 inc_deq(xhci, xhci->event_ring);
1918
1919 /* Don't make the USB core poll the roothub if we got a bad port status
1920 * change event. Besides, at that point we can't tell which roothub
1921 * (USB 2.0 or USB 3.0) to kick.
1922 */
1923 if (bogus_port_status)
1924 return;
1925
1926 /*
1927 * xHCI port-status-change events occur when the "or" of all the
1928 * status-change bits in the portsc register changes from 0 to 1.
1929 * New status changes won't cause an event if any other change
1930 * bits are still set. When an event occurs, switch over to
1931 * polling to avoid losing status changes.
1932 */
1933 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1934 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1935 spin_unlock(&xhci->lock);
1936 /* Pass this up to the core */
1937 usb_hcd_poll_rh_status(hcd);
1938 spin_lock(&xhci->lock);
1939 }
1940
1941 /*
1942 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1943 * at end_trb, which may be in another segment. If the suspect DMA address is a
1944 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1945 * returns 0.
1946 */
trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * start_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t suspect_dma,bool debug)1947 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1948 struct xhci_segment *start_seg,
1949 union xhci_trb *start_trb,
1950 union xhci_trb *end_trb,
1951 dma_addr_t suspect_dma,
1952 bool debug)
1953 {
1954 dma_addr_t start_dma;
1955 dma_addr_t end_seg_dma;
1956 dma_addr_t end_trb_dma;
1957 struct xhci_segment *cur_seg;
1958
1959 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1960 cur_seg = start_seg;
1961
1962 do {
1963 if (start_dma == 0)
1964 return NULL;
1965 /* We may get an event for a Link TRB in the middle of a TD */
1966 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1967 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1968 /* If the end TRB isn't in this segment, this is set to 0 */
1969 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1970
1971 if (debug)
1972 xhci_warn(xhci,
1973 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1974 (unsigned long long)suspect_dma,
1975 (unsigned long long)start_dma,
1976 (unsigned long long)end_trb_dma,
1977 (unsigned long long)cur_seg->dma,
1978 (unsigned long long)end_seg_dma);
1979
1980 if (end_trb_dma > 0) {
1981 /* The end TRB is in this segment, so suspect should be here */
1982 if (start_dma <= end_trb_dma) {
1983 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1984 return cur_seg;
1985 } else {
1986 /* Case for one segment with
1987 * a TD wrapped around to the top
1988 */
1989 if ((suspect_dma >= start_dma &&
1990 suspect_dma <= end_seg_dma) ||
1991 (suspect_dma >= cur_seg->dma &&
1992 suspect_dma <= end_trb_dma))
1993 return cur_seg;
1994 }
1995 return NULL;
1996 } else {
1997 /* Might still be somewhere in this segment */
1998 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1999 return cur_seg;
2000 }
2001 cur_seg = cur_seg->next;
2002 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
2003 } while (cur_seg != start_seg);
2004
2005 return NULL;
2006 }
2007
xhci_clear_hub_tt_buffer(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_virt_ep * ep)2008 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td,
2009 struct xhci_virt_ep *ep)
2010 {
2011 /*
2012 * As part of low/full-speed endpoint-halt processing
2013 * we must clear the TT buffer (USB 2.0 specification 11.17.5).
2014 */
2015 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) &&
2016 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) &&
2017 !(ep->ep_state & EP_CLEARING_TT)) {
2018 ep->ep_state |= EP_CLEARING_TT;
2019 td->urb->ep->hcpriv = td->urb->dev;
2020 if (usb_hub_clear_tt_buffer(td->urb))
2021 ep->ep_state &= ~EP_CLEARING_TT;
2022 }
2023 }
2024
2025 /* Check if an error has halted the endpoint ring. The class driver will
2026 * cleanup the halt for a non-default control endpoint if we indicate a stall.
2027 * However, a babble and other errors also halt the endpoint ring, and the class
2028 * driver won't clear the halt in that case, so we need to issue a Set Transfer
2029 * Ring Dequeue Pointer command manually.
2030 */
xhci_requires_manual_halt_cleanup(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,unsigned int trb_comp_code)2031 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
2032 struct xhci_ep_ctx *ep_ctx,
2033 unsigned int trb_comp_code)
2034 {
2035 /* TRB completion codes that may require a manual halt cleanup */
2036 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
2037 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
2038 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
2039 /* The 0.95 spec says a babbling control endpoint
2040 * is not halted. The 0.96 spec says it is. Some HW
2041 * claims to be 0.95 compliant, but it halts the control
2042 * endpoint anyway. Check if a babble halted the
2043 * endpoint.
2044 */
2045 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
2046 return 1;
2047
2048 return 0;
2049 }
2050
xhci_is_vendor_info_code(struct xhci_hcd * xhci,unsigned int trb_comp_code)2051 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
2052 {
2053 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
2054 /* Vendor defined "informational" completion code,
2055 * treat as not-an-error.
2056 */
2057 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
2058 trb_comp_code);
2059 xhci_dbg(xhci, "Treating code as success.\n");
2060 return 1;
2061 }
2062 return 0;
2063 }
2064
finish_td(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_transfer_event * event,struct xhci_virt_ep * ep)2065 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
2066 struct xhci_transfer_event *event, struct xhci_virt_ep *ep)
2067 {
2068 struct xhci_ep_ctx *ep_ctx;
2069 struct xhci_ring *ep_ring;
2070 u32 trb_comp_code;
2071
2072 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2073 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
2074 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2075
2076 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2077 trb_comp_code == COMP_STOPPED ||
2078 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
2079 /* The Endpoint Stop Command completion will take care of any
2080 * stopped TDs. A stopped TD may be restarted, so don't update
2081 * the ring dequeue pointer or take this TD off any lists yet.
2082 */
2083 return 0;
2084 }
2085 if (trb_comp_code == COMP_STALL_ERROR ||
2086 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2087 trb_comp_code)) {
2088 /*
2089 * xhci internal endpoint state will go to a "halt" state for
2090 * any stall, including default control pipe protocol stall.
2091 * To clear the host side halt we need to issue a reset endpoint
2092 * command, followed by a set dequeue command to move past the
2093 * TD.
2094 * Class drivers clear the device side halt from a functional
2095 * stall later. Hub TT buffer should only be cleared for FS/LS
2096 * devices behind HS hubs for functional stalls.
2097 */
2098 if ((ep->ep_index != 0) || (trb_comp_code != COMP_STALL_ERROR))
2099 xhci_clear_hub_tt_buffer(xhci, td, ep);
2100
2101 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td,
2102 EP_HARD_RESET);
2103 } else {
2104 /* Update ring dequeue pointer */
2105 while (ep_ring->dequeue != td->last_trb)
2106 inc_deq(xhci, ep_ring);
2107 inc_deq(xhci, ep_ring);
2108 }
2109
2110 return xhci_td_cleanup(xhci, td, ep_ring, td->status);
2111 }
2112
2113 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
sum_trb_lengths(struct xhci_hcd * xhci,struct xhci_ring * ring,union xhci_trb * stop_trb)2114 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
2115 union xhci_trb *stop_trb)
2116 {
2117 u32 sum;
2118 union xhci_trb *trb = ring->dequeue;
2119 struct xhci_segment *seg = ring->deq_seg;
2120
2121 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
2122 if (!trb_is_noop(trb) && !trb_is_link(trb))
2123 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
2124 }
2125 return sum;
2126 }
2127
2128 /*
2129 * Process control tds, update urb status and actual_length.
2130 */
process_ctrl_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep)2131 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2132 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2133 struct xhci_virt_ep *ep)
2134 {
2135 struct xhci_ep_ctx *ep_ctx;
2136 u32 trb_comp_code;
2137 u32 remaining, requested;
2138 u32 trb_type;
2139
2140 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2141 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
2142 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2143 requested = td->urb->transfer_buffer_length;
2144 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2145
2146 switch (trb_comp_code) {
2147 case COMP_SUCCESS:
2148 if (trb_type != TRB_STATUS) {
2149 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2150 (trb_type == TRB_DATA) ? "data" : "setup");
2151 td->status = -ESHUTDOWN;
2152 break;
2153 }
2154 td->status = 0;
2155 break;
2156 case COMP_SHORT_PACKET:
2157 td->status = 0;
2158 break;
2159 case COMP_STOPPED_SHORT_PACKET:
2160 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2161 td->urb->actual_length = remaining;
2162 else
2163 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2164 goto finish_td;
2165 case COMP_STOPPED:
2166 switch (trb_type) {
2167 case TRB_SETUP:
2168 td->urb->actual_length = 0;
2169 goto finish_td;
2170 case TRB_DATA:
2171 case TRB_NORMAL:
2172 td->urb->actual_length = requested - remaining;
2173 goto finish_td;
2174 case TRB_STATUS:
2175 td->urb->actual_length = requested;
2176 goto finish_td;
2177 default:
2178 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2179 trb_type);
2180 goto finish_td;
2181 }
2182 case COMP_STOPPED_LENGTH_INVALID:
2183 goto finish_td;
2184 default:
2185 if (!xhci_requires_manual_halt_cleanup(xhci,
2186 ep_ctx, trb_comp_code))
2187 break;
2188 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2189 trb_comp_code, ep->ep_index);
2190 fallthrough;
2191 case COMP_STALL_ERROR:
2192 /* Did we transfer part of the data (middle) phase? */
2193 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2194 td->urb->actual_length = requested - remaining;
2195 else if (!td->urb_length_set)
2196 td->urb->actual_length = 0;
2197 goto finish_td;
2198 }
2199
2200 /* stopped at setup stage, no data transferred */
2201 if (trb_type == TRB_SETUP)
2202 goto finish_td;
2203
2204 /*
2205 * if on data stage then update the actual_length of the URB and flag it
2206 * as set, so it won't be overwritten in the event for the last TRB.
2207 */
2208 if (trb_type == TRB_DATA ||
2209 trb_type == TRB_NORMAL) {
2210 td->urb_length_set = true;
2211 td->urb->actual_length = requested - remaining;
2212 xhci_dbg(xhci, "Waiting for status stage event\n");
2213 return 0;
2214 }
2215
2216 /* at status stage */
2217 if (!td->urb_length_set)
2218 td->urb->actual_length = requested;
2219
2220 finish_td:
2221 return finish_td(xhci, td, event, ep);
2222 }
2223
2224 /*
2225 * Process isochronous tds, update urb packet status and actual_length.
2226 */
process_isoc_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep)2227 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2228 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2229 struct xhci_virt_ep *ep)
2230 {
2231 struct urb_priv *urb_priv;
2232 int idx;
2233 struct usb_iso_packet_descriptor *frame;
2234 u32 trb_comp_code;
2235 bool sum_trbs_for_length = false;
2236 u32 remaining, requested, ep_trb_len;
2237 int short_framestatus;
2238
2239 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2240 urb_priv = td->urb->hcpriv;
2241 idx = urb_priv->num_tds_done;
2242 frame = &td->urb->iso_frame_desc[idx];
2243 requested = frame->length;
2244 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2245 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2246 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2247 -EREMOTEIO : 0;
2248
2249 /* handle completion code */
2250 switch (trb_comp_code) {
2251 case COMP_SUCCESS:
2252 if (remaining) {
2253 frame->status = short_framestatus;
2254 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2255 sum_trbs_for_length = true;
2256 break;
2257 }
2258 frame->status = 0;
2259 break;
2260 case COMP_SHORT_PACKET:
2261 frame->status = short_framestatus;
2262 sum_trbs_for_length = true;
2263 break;
2264 case COMP_BANDWIDTH_OVERRUN_ERROR:
2265 frame->status = -ECOMM;
2266 break;
2267 case COMP_ISOCH_BUFFER_OVERRUN:
2268 case COMP_BABBLE_DETECTED_ERROR:
2269 frame->status = -EOVERFLOW;
2270 break;
2271 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2272 case COMP_STALL_ERROR:
2273 frame->status = -EPROTO;
2274 break;
2275 case COMP_USB_TRANSACTION_ERROR:
2276 frame->status = -EPROTO;
2277 if (ep_trb != td->last_trb)
2278 return 0;
2279 break;
2280 case COMP_STOPPED:
2281 sum_trbs_for_length = true;
2282 break;
2283 case COMP_STOPPED_SHORT_PACKET:
2284 /* field normally containing residue now contains tranferred */
2285 frame->status = short_framestatus;
2286 requested = remaining;
2287 break;
2288 case COMP_STOPPED_LENGTH_INVALID:
2289 requested = 0;
2290 remaining = 0;
2291 break;
2292 default:
2293 sum_trbs_for_length = true;
2294 frame->status = -1;
2295 break;
2296 }
2297
2298 if (sum_trbs_for_length)
2299 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) +
2300 ep_trb_len - remaining;
2301 else
2302 frame->actual_length = requested;
2303
2304 td->urb->actual_length += frame->actual_length;
2305
2306 return finish_td(xhci, td, event, ep);
2307 }
2308
skip_isoc_td(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_virt_ep * ep,int status)2309 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2310 struct xhci_virt_ep *ep, int status)
2311 {
2312 struct urb_priv *urb_priv;
2313 struct usb_iso_packet_descriptor *frame;
2314 int idx;
2315
2316 urb_priv = td->urb->hcpriv;
2317 idx = urb_priv->num_tds_done;
2318 frame = &td->urb->iso_frame_desc[idx];
2319
2320 /* The transfer is partly done. */
2321 frame->status = -EXDEV;
2322
2323 /* calc actual length */
2324 frame->actual_length = 0;
2325
2326 /* Update ring dequeue pointer */
2327 while (ep->ring->dequeue != td->last_trb)
2328 inc_deq(xhci, ep->ring);
2329 inc_deq(xhci, ep->ring);
2330
2331 return xhci_td_cleanup(xhci, td, ep->ring, status);
2332 }
2333
2334 /*
2335 * Process bulk and interrupt tds, update urb status and actual_length.
2336 */
process_bulk_intr_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep)2337 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2338 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2339 struct xhci_virt_ep *ep)
2340 {
2341 struct xhci_slot_ctx *slot_ctx;
2342 struct xhci_ring *ep_ring;
2343 u32 trb_comp_code;
2344 u32 remaining, requested, ep_trb_len;
2345
2346 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx);
2347 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2348 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2349 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2350 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2351 requested = td->urb->transfer_buffer_length;
2352
2353 switch (trb_comp_code) {
2354 case COMP_SUCCESS:
2355 ep->err_count = 0;
2356 /* handle success with untransferred data as short packet */
2357 if (ep_trb != td->last_trb || remaining) {
2358 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2359 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2360 td->urb->ep->desc.bEndpointAddress,
2361 requested, remaining);
2362 }
2363 td->status = 0;
2364 break;
2365 case COMP_SHORT_PACKET:
2366 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2367 td->urb->ep->desc.bEndpointAddress,
2368 requested, remaining);
2369 td->status = 0;
2370 break;
2371 case COMP_STOPPED_SHORT_PACKET:
2372 td->urb->actual_length = remaining;
2373 goto finish_td;
2374 case COMP_STOPPED_LENGTH_INVALID:
2375 /* stopped on ep trb with invalid length, exclude it */
2376 ep_trb_len = 0;
2377 remaining = 0;
2378 break;
2379 case COMP_USB_TRANSACTION_ERROR:
2380 if (xhci->quirks & XHCI_NO_SOFT_RETRY ||
2381 (ep->err_count++ > MAX_SOFT_RETRY) ||
2382 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
2383 break;
2384
2385 td->status = 0;
2386
2387 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td,
2388 EP_SOFT_RESET);
2389 return 0;
2390 default:
2391 /* do nothing */
2392 break;
2393 }
2394
2395 if (ep_trb == td->last_trb)
2396 td->urb->actual_length = requested - remaining;
2397 else
2398 td->urb->actual_length =
2399 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2400 ep_trb_len - remaining;
2401 finish_td:
2402 if (remaining > requested) {
2403 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2404 remaining);
2405 td->urb->actual_length = 0;
2406 }
2407 return finish_td(xhci, td, event, ep);
2408 }
2409
2410 /*
2411 * If this function returns an error condition, it means it got a Transfer
2412 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2413 * At this point, the host controller is probably hosed and should be reset.
2414 */
handle_tx_event(struct xhci_hcd * xhci,struct xhci_transfer_event * event)2415 static int handle_tx_event(struct xhci_hcd *xhci,
2416 struct xhci_transfer_event *event)
2417 {
2418 struct xhci_virt_device *xdev;
2419 struct xhci_virt_ep *ep;
2420 struct xhci_ring *ep_ring;
2421 unsigned int slot_id;
2422 int ep_index;
2423 struct xhci_td *td = NULL;
2424 dma_addr_t ep_trb_dma;
2425 struct xhci_segment *ep_seg;
2426 union xhci_trb *ep_trb;
2427 int status = -EINPROGRESS;
2428 struct xhci_ep_ctx *ep_ctx;
2429 struct list_head *tmp;
2430 u32 trb_comp_code;
2431 int td_num = 0;
2432 bool handling_skipped_tds = false;
2433
2434 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2435 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2436 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2437 ep_trb_dma = le64_to_cpu(event->buffer);
2438
2439 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
2440 if (!ep) {
2441 xhci_err(xhci, "ERROR Invalid Transfer event\n");
2442 goto err_out;
2443 }
2444
2445 xdev = xhci->devs[slot_id];
2446 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2447 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2448
2449 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2450 xhci_err(xhci,
2451 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2452 slot_id, ep_index);
2453 goto err_out;
2454 }
2455
2456 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2457 if (!ep_ring) {
2458 switch (trb_comp_code) {
2459 case COMP_STALL_ERROR:
2460 case COMP_USB_TRANSACTION_ERROR:
2461 case COMP_INVALID_STREAM_TYPE_ERROR:
2462 case COMP_INVALID_STREAM_ID_ERROR:
2463 xhci_dbg(xhci, "Stream transaction error ep %u no id\n",
2464 ep_index);
2465 if (ep->err_count++ > MAX_SOFT_RETRY)
2466 xhci_handle_halted_endpoint(xhci, ep, 0, NULL,
2467 EP_HARD_RESET);
2468 else
2469 xhci_handle_halted_endpoint(xhci, ep, 0, NULL,
2470 EP_SOFT_RESET);
2471 goto cleanup;
2472 case COMP_RING_UNDERRUN:
2473 case COMP_RING_OVERRUN:
2474 case COMP_STOPPED_LENGTH_INVALID:
2475 goto cleanup;
2476 default:
2477 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2478 slot_id, ep_index);
2479 goto err_out;
2480 }
2481 }
2482
2483 /* Count current td numbers if ep->skip is set */
2484 if (ep->skip) {
2485 list_for_each(tmp, &ep_ring->td_list)
2486 td_num++;
2487 }
2488
2489 /* Look for common error cases */
2490 switch (trb_comp_code) {
2491 /* Skip codes that require special handling depending on
2492 * transfer type
2493 */
2494 case COMP_SUCCESS:
2495 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2496 break;
2497 if (xhci->quirks & XHCI_TRUST_TX_LENGTH ||
2498 ep_ring->last_td_was_short)
2499 trb_comp_code = COMP_SHORT_PACKET;
2500 else
2501 xhci_warn_ratelimited(xhci,
2502 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2503 slot_id, ep_index);
2504 case COMP_SHORT_PACKET:
2505 break;
2506 /* Completion codes for endpoint stopped state */
2507 case COMP_STOPPED:
2508 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2509 slot_id, ep_index);
2510 break;
2511 case COMP_STOPPED_LENGTH_INVALID:
2512 xhci_dbg(xhci,
2513 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2514 slot_id, ep_index);
2515 break;
2516 case COMP_STOPPED_SHORT_PACKET:
2517 xhci_dbg(xhci,
2518 "Stopped with short packet transfer detected for slot %u ep %u\n",
2519 slot_id, ep_index);
2520 break;
2521 /* Completion codes for endpoint halted state */
2522 case COMP_STALL_ERROR:
2523 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2524 ep_index);
2525 ep->ep_state |= EP_HALTED;
2526 status = -EPIPE;
2527 break;
2528 case COMP_SPLIT_TRANSACTION_ERROR:
2529 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n",
2530 slot_id, ep_index);
2531 status = -EPROTO;
2532 break;
2533 case COMP_USB_TRANSACTION_ERROR:
2534 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2535 slot_id, ep_index);
2536 status = -EPROTO;
2537 break;
2538 case COMP_BABBLE_DETECTED_ERROR:
2539 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2540 slot_id, ep_index);
2541 status = -EOVERFLOW;
2542 break;
2543 /* Completion codes for endpoint error state */
2544 case COMP_TRB_ERROR:
2545 xhci_warn(xhci,
2546 "WARN: TRB error for slot %u ep %u on endpoint\n",
2547 slot_id, ep_index);
2548 status = -EILSEQ;
2549 break;
2550 /* completion codes not indicating endpoint state change */
2551 case COMP_DATA_BUFFER_ERROR:
2552 xhci_warn(xhci,
2553 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2554 slot_id, ep_index);
2555 status = -ENOSR;
2556 break;
2557 case COMP_BANDWIDTH_OVERRUN_ERROR:
2558 xhci_warn(xhci,
2559 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2560 slot_id, ep_index);
2561 break;
2562 case COMP_ISOCH_BUFFER_OVERRUN:
2563 xhci_warn(xhci,
2564 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2565 slot_id, ep_index);
2566 break;
2567 case COMP_RING_UNDERRUN:
2568 /*
2569 * When the Isoch ring is empty, the xHC will generate
2570 * a Ring Overrun Event for IN Isoch endpoint or Ring
2571 * Underrun Event for OUT Isoch endpoint.
2572 */
2573 xhci_dbg(xhci, "underrun event on endpoint\n");
2574 if (!list_empty(&ep_ring->td_list))
2575 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2576 "still with TDs queued?\n",
2577 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2578 ep_index);
2579 goto cleanup;
2580 case COMP_RING_OVERRUN:
2581 xhci_dbg(xhci, "overrun event on endpoint\n");
2582 if (!list_empty(&ep_ring->td_list))
2583 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2584 "still with TDs queued?\n",
2585 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2586 ep_index);
2587 goto cleanup;
2588 case COMP_MISSED_SERVICE_ERROR:
2589 /*
2590 * When encounter missed service error, one or more isoc tds
2591 * may be missed by xHC.
2592 * Set skip flag of the ep_ring; Complete the missed tds as
2593 * short transfer when process the ep_ring next time.
2594 */
2595 ep->skip = true;
2596 xhci_dbg(xhci,
2597 "Miss service interval error for slot %u ep %u, set skip flag\n",
2598 slot_id, ep_index);
2599 goto cleanup;
2600 case COMP_NO_PING_RESPONSE_ERROR:
2601 ep->skip = true;
2602 xhci_dbg(xhci,
2603 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2604 slot_id, ep_index);
2605 goto cleanup;
2606
2607 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2608 /* needs disable slot command to recover */
2609 xhci_warn(xhci,
2610 "WARN: detect an incompatible device for slot %u ep %u",
2611 slot_id, ep_index);
2612 status = -EPROTO;
2613 break;
2614 default:
2615 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2616 status = 0;
2617 break;
2618 }
2619 xhci_warn(xhci,
2620 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2621 trb_comp_code, slot_id, ep_index);
2622 goto cleanup;
2623 }
2624
2625 do {
2626 /* This TRB should be in the TD at the head of this ring's
2627 * TD list.
2628 */
2629 if (list_empty(&ep_ring->td_list)) {
2630 /*
2631 * Don't print wanings if it's due to a stopped endpoint
2632 * generating an extra completion event if the device
2633 * was suspended. Or, a event for the last TRB of a
2634 * short TD we already got a short event for.
2635 * The short TD is already removed from the TD list.
2636 */
2637
2638 if (!(trb_comp_code == COMP_STOPPED ||
2639 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2640 ep_ring->last_td_was_short)) {
2641 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2642 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2643 ep_index);
2644 }
2645 if (ep->skip) {
2646 ep->skip = false;
2647 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2648 slot_id, ep_index);
2649 }
2650 if (trb_comp_code == COMP_STALL_ERROR ||
2651 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2652 trb_comp_code)) {
2653 xhci_handle_halted_endpoint(xhci, ep,
2654 ep_ring->stream_id,
2655 NULL,
2656 EP_HARD_RESET);
2657 }
2658 goto cleanup;
2659 }
2660
2661 /* We've skipped all the TDs on the ep ring when ep->skip set */
2662 if (ep->skip && td_num == 0) {
2663 ep->skip = false;
2664 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2665 slot_id, ep_index);
2666 goto cleanup;
2667 }
2668
2669 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2670 td_list);
2671 if (ep->skip)
2672 td_num--;
2673
2674 /* Is this a TRB in the currently executing TD? */
2675 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2676 td->last_trb, ep_trb_dma, false);
2677
2678 /*
2679 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2680 * is not in the current TD pointed by ep_ring->dequeue because
2681 * that the hardware dequeue pointer still at the previous TRB
2682 * of the current TD. The previous TRB maybe a Link TD or the
2683 * last TRB of the previous TD. The command completion handle
2684 * will take care the rest.
2685 */
2686 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2687 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2688 goto cleanup;
2689 }
2690
2691 if (!ep_seg) {
2692 if (!ep->skip ||
2693 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2694 /* Some host controllers give a spurious
2695 * successful event after a short transfer.
2696 * Ignore it.
2697 */
2698 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2699 ep_ring->last_td_was_short) {
2700 ep_ring->last_td_was_short = false;
2701 goto cleanup;
2702 }
2703 /* HC is busted, give up! */
2704 xhci_err(xhci,
2705 "ERROR Transfer event TRB DMA ptr not "
2706 "part of current TD ep_index %d "
2707 "comp_code %u\n", ep_index,
2708 trb_comp_code);
2709 trb_in_td(xhci, ep_ring->deq_seg,
2710 ep_ring->dequeue, td->last_trb,
2711 ep_trb_dma, true);
2712 return -ESHUTDOWN;
2713 }
2714
2715 skip_isoc_td(xhci, td, ep, status);
2716 goto cleanup;
2717 }
2718 if (trb_comp_code == COMP_SHORT_PACKET)
2719 ep_ring->last_td_was_short = true;
2720 else
2721 ep_ring->last_td_was_short = false;
2722
2723 if (ep->skip) {
2724 xhci_dbg(xhci,
2725 "Found td. Clear skip flag for slot %u ep %u.\n",
2726 slot_id, ep_index);
2727 ep->skip = false;
2728 }
2729
2730 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2731 sizeof(*ep_trb)];
2732
2733 trace_xhci_handle_transfer(ep_ring,
2734 (struct xhci_generic_trb *) ep_trb);
2735
2736 /*
2737 * No-op TRB could trigger interrupts in a case where
2738 * a URB was killed and a STALL_ERROR happens right
2739 * after the endpoint ring stopped. Reset the halted
2740 * endpoint. Otherwise, the endpoint remains stalled
2741 * indefinitely.
2742 */
2743
2744 if (trb_is_noop(ep_trb)) {
2745 if (trb_comp_code == COMP_STALL_ERROR ||
2746 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2747 trb_comp_code))
2748 xhci_handle_halted_endpoint(xhci, ep,
2749 ep_ring->stream_id,
2750 td, EP_HARD_RESET);
2751 goto cleanup;
2752 }
2753
2754 td->status = status;
2755
2756 /* update the urb's actual_length and give back to the core */
2757 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2758 process_ctrl_td(xhci, td, ep_trb, event, ep);
2759 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2760 process_isoc_td(xhci, td, ep_trb, event, ep);
2761 else
2762 process_bulk_intr_td(xhci, td, ep_trb, event, ep);
2763 cleanup:
2764 handling_skipped_tds = ep->skip &&
2765 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2766 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2767
2768 /*
2769 * Do not update event ring dequeue pointer if we're in a loop
2770 * processing missed tds.
2771 */
2772 if (!handling_skipped_tds)
2773 inc_deq(xhci, xhci->event_ring);
2774
2775 /*
2776 * If ep->skip is set, it means there are missed tds on the
2777 * endpoint ring need to take care of.
2778 * Process them as short transfer until reach the td pointed by
2779 * the event.
2780 */
2781 } while (handling_skipped_tds);
2782
2783 return 0;
2784
2785 err_out:
2786 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2787 (unsigned long long) xhci_trb_virt_to_dma(
2788 xhci->event_ring->deq_seg,
2789 xhci->event_ring->dequeue),
2790 lower_32_bits(le64_to_cpu(event->buffer)),
2791 upper_32_bits(le64_to_cpu(event->buffer)),
2792 le32_to_cpu(event->transfer_len),
2793 le32_to_cpu(event->flags));
2794 return -ENODEV;
2795 }
2796
2797 /*
2798 * This function handles all OS-owned events on the event ring. It may drop
2799 * xhci->lock between event processing (e.g. to pass up port status changes).
2800 * Returns >0 for "possibly more events to process" (caller should call again),
2801 * otherwise 0 if done. In future, <0 returns should indicate error code.
2802 */
xhci_handle_event(struct xhci_hcd * xhci)2803 static int xhci_handle_event(struct xhci_hcd *xhci)
2804 {
2805 union xhci_trb *event;
2806 int update_ptrs = 1;
2807 int ret;
2808
2809 /* Event ring hasn't been allocated yet. */
2810 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2811 xhci_err(xhci, "ERROR event ring not ready\n");
2812 return -ENOMEM;
2813 }
2814
2815 event = xhci->event_ring->dequeue;
2816 /* Does the HC or OS own the TRB? */
2817 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2818 xhci->event_ring->cycle_state)
2819 return 0;
2820
2821 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2822
2823 /*
2824 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2825 * speculative reads of the event's flags/data below.
2826 */
2827 rmb();
2828 /* FIXME: Handle more event types. */
2829 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2830 case TRB_TYPE(TRB_COMPLETION):
2831 handle_cmd_completion(xhci, &event->event_cmd);
2832 break;
2833 case TRB_TYPE(TRB_PORT_STATUS):
2834 handle_port_status(xhci, event);
2835 update_ptrs = 0;
2836 break;
2837 case TRB_TYPE(TRB_TRANSFER):
2838 ret = handle_tx_event(xhci, &event->trans_event);
2839 if (ret >= 0)
2840 update_ptrs = 0;
2841 break;
2842 case TRB_TYPE(TRB_DEV_NOTE):
2843 handle_device_notification(xhci, event);
2844 break;
2845 default:
2846 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2847 TRB_TYPE(48))
2848 handle_vendor_event(xhci, event);
2849 else
2850 xhci_warn(xhci, "ERROR unknown event type %d\n",
2851 TRB_FIELD_TO_TYPE(
2852 le32_to_cpu(event->event_cmd.flags)));
2853 }
2854 /* Any of the above functions may drop and re-acquire the lock, so check
2855 * to make sure a watchdog timer didn't mark the host as non-responsive.
2856 */
2857 if (xhci->xhc_state & XHCI_STATE_DYING) {
2858 xhci_dbg(xhci, "xHCI host dying, returning from "
2859 "event handler.\n");
2860 return 0;
2861 }
2862
2863 if (update_ptrs)
2864 /* Update SW event ring dequeue pointer */
2865 inc_deq(xhci, xhci->event_ring);
2866
2867 /* Are there more items on the event ring? Caller will call us again to
2868 * check.
2869 */
2870 return 1;
2871 }
2872
2873 /*
2874 * Update Event Ring Dequeue Pointer:
2875 * - When all events have finished
2876 * - To avoid "Event Ring Full Error" condition
2877 */
xhci_update_erst_dequeue(struct xhci_hcd * xhci,union xhci_trb * event_ring_deq)2878 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci,
2879 union xhci_trb *event_ring_deq)
2880 {
2881 u64 temp_64;
2882 dma_addr_t deq;
2883
2884 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2885 /* If necessary, update the HW's version of the event ring deq ptr. */
2886 if (event_ring_deq != xhci->event_ring->dequeue) {
2887 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2888 xhci->event_ring->dequeue);
2889 if (deq == 0)
2890 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n");
2891 /*
2892 * Per 4.9.4, Software writes to the ERDP register shall
2893 * always advance the Event Ring Dequeue Pointer value.
2894 */
2895 if ((temp_64 & (u64) ~ERST_PTR_MASK) ==
2896 ((u64) deq & (u64) ~ERST_PTR_MASK))
2897 return;
2898
2899 /* Update HC event ring dequeue pointer */
2900 temp_64 &= ERST_PTR_MASK;
2901 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2902 }
2903
2904 /* Clear the event handler busy flag (RW1C) */
2905 temp_64 |= ERST_EHB;
2906 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2907 }
2908
2909 /*
2910 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2911 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2912 * indicators of an event TRB error, but we check the status *first* to be safe.
2913 */
xhci_irq(struct usb_hcd * hcd)2914 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2915 {
2916 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2917 union xhci_trb *event_ring_deq;
2918 irqreturn_t ret = IRQ_NONE;
2919 unsigned long flags;
2920 u64 temp_64;
2921 u32 status;
2922 int event_loop = 0;
2923
2924 spin_lock_irqsave(&xhci->lock, flags);
2925 /* Check if the xHC generated the interrupt, or the irq is shared */
2926 status = readl(&xhci->op_regs->status);
2927 if (status == ~(u32)0) {
2928 xhci_hc_died(xhci);
2929 ret = IRQ_HANDLED;
2930 goto out;
2931 }
2932
2933 if (!(status & STS_EINT))
2934 goto out;
2935
2936 if (status & STS_FATAL) {
2937 xhci_warn(xhci, "WARNING: Host System Error\n");
2938 xhci_halt(xhci);
2939 ret = IRQ_HANDLED;
2940 goto out;
2941 }
2942
2943 /*
2944 * Clear the op reg interrupt status first,
2945 * so we can receive interrupts from other MSI-X interrupters.
2946 * Write 1 to clear the interrupt status.
2947 */
2948 status |= STS_EINT;
2949 writel(status, &xhci->op_regs->status);
2950
2951 if (!hcd->msi_enabled) {
2952 u32 irq_pending;
2953 irq_pending = readl(&xhci->ir_set->irq_pending);
2954 irq_pending |= IMAN_IP;
2955 writel(irq_pending, &xhci->ir_set->irq_pending);
2956 }
2957
2958 if (xhci->xhc_state & XHCI_STATE_DYING ||
2959 xhci->xhc_state & XHCI_STATE_HALTED) {
2960 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2961 "Shouldn't IRQs be disabled?\n");
2962 /* Clear the event handler busy flag (RW1C);
2963 * the event ring should be empty.
2964 */
2965 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2966 xhci_write_64(xhci, temp_64 | ERST_EHB,
2967 &xhci->ir_set->erst_dequeue);
2968 ret = IRQ_HANDLED;
2969 goto out;
2970 }
2971
2972 event_ring_deq = xhci->event_ring->dequeue;
2973 /* FIXME this should be a delayed service routine
2974 * that clears the EHB.
2975 */
2976 while (xhci_handle_event(xhci) > 0) {
2977 if (event_loop++ < TRBS_PER_SEGMENT / 2)
2978 continue;
2979 xhci_update_erst_dequeue(xhci, event_ring_deq);
2980 event_ring_deq = xhci->event_ring->dequeue;
2981
2982 event_loop = 0;
2983 }
2984
2985 xhci_update_erst_dequeue(xhci, event_ring_deq);
2986 ret = IRQ_HANDLED;
2987
2988 out:
2989 spin_unlock_irqrestore(&xhci->lock, flags);
2990
2991 return ret;
2992 }
2993
xhci_msi_irq(int irq,void * hcd)2994 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2995 {
2996 return xhci_irq(hcd);
2997 }
2998
2999 /**** Endpoint Ring Operations ****/
3000
3001 /*
3002 * Generic function for queueing a TRB on a ring.
3003 * The caller must have checked to make sure there's room on the ring.
3004 *
3005 * @more_trbs_coming: Will you enqueue more TRBs before calling
3006 * prepare_transfer()?
3007 */
queue_trb(struct xhci_hcd * xhci,struct xhci_ring * ring,bool more_trbs_coming,u32 field1,u32 field2,u32 field3,u32 field4)3008 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
3009 bool more_trbs_coming,
3010 u32 field1, u32 field2, u32 field3, u32 field4)
3011 {
3012 struct xhci_generic_trb *trb;
3013
3014 trb = &ring->enqueue->generic;
3015 trb->field[0] = cpu_to_le32(field1);
3016 trb->field[1] = cpu_to_le32(field2);
3017 trb->field[2] = cpu_to_le32(field3);
3018 /* make sure TRB is fully written before giving it to the controller */
3019 wmb();
3020 trb->field[3] = cpu_to_le32(field4);
3021
3022 trace_xhci_queue_trb(ring, trb);
3023
3024 inc_enq(xhci, ring, more_trbs_coming);
3025 }
3026
3027 /*
3028 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
3029 * FIXME allocate segments if the ring is full.
3030 */
prepare_ring(struct xhci_hcd * xhci,struct xhci_ring * ep_ring,u32 ep_state,unsigned int num_trbs,gfp_t mem_flags)3031 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
3032 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
3033 {
3034 unsigned int num_trbs_needed;
3035
3036 /* Make sure the endpoint has been added to xHC schedule */
3037 switch (ep_state) {
3038 case EP_STATE_DISABLED:
3039 /*
3040 * USB core changed config/interfaces without notifying us,
3041 * or hardware is reporting the wrong state.
3042 */
3043 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
3044 return -ENOENT;
3045 case EP_STATE_ERROR:
3046 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
3047 /* FIXME event handling code for error needs to clear it */
3048 /* XXX not sure if this should be -ENOENT or not */
3049 return -EINVAL;
3050 case EP_STATE_HALTED:
3051 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
3052 case EP_STATE_STOPPED:
3053 case EP_STATE_RUNNING:
3054 break;
3055 default:
3056 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
3057 /*
3058 * FIXME issue Configure Endpoint command to try to get the HC
3059 * back into a known state.
3060 */
3061 return -EINVAL;
3062 }
3063
3064 while (1) {
3065 if (room_on_ring(xhci, ep_ring, num_trbs))
3066 break;
3067
3068 if (ep_ring == xhci->cmd_ring) {
3069 xhci_err(xhci, "Do not support expand command ring\n");
3070 return -ENOMEM;
3071 }
3072
3073 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
3074 "ERROR no room on ep ring, try ring expansion");
3075 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
3076 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
3077 mem_flags)) {
3078 xhci_err(xhci, "Ring expansion failed\n");
3079 return -ENOMEM;
3080 }
3081 }
3082
3083 while (trb_is_link(ep_ring->enqueue)) {
3084 /* If we're not dealing with 0.95 hardware or isoc rings
3085 * on AMD 0.96 host, clear the chain bit.
3086 */
3087 if (!xhci_link_trb_quirk(xhci) &&
3088 !(ep_ring->type == TYPE_ISOC &&
3089 (xhci->quirks & XHCI_AMD_0x96_HOST)))
3090 ep_ring->enqueue->link.control &=
3091 cpu_to_le32(~TRB_CHAIN);
3092 else
3093 ep_ring->enqueue->link.control |=
3094 cpu_to_le32(TRB_CHAIN);
3095
3096 wmb();
3097 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
3098
3099 /* Toggle the cycle bit after the last ring segment. */
3100 if (link_trb_toggles_cycle(ep_ring->enqueue))
3101 ep_ring->cycle_state ^= 1;
3102
3103 ep_ring->enq_seg = ep_ring->enq_seg->next;
3104 ep_ring->enqueue = ep_ring->enq_seg->trbs;
3105 }
3106 return 0;
3107 }
3108
prepare_transfer(struct xhci_hcd * xhci,struct xhci_virt_device * xdev,unsigned int ep_index,unsigned int stream_id,unsigned int num_trbs,struct urb * urb,unsigned int td_index,gfp_t mem_flags)3109 static int prepare_transfer(struct xhci_hcd *xhci,
3110 struct xhci_virt_device *xdev,
3111 unsigned int ep_index,
3112 unsigned int stream_id,
3113 unsigned int num_trbs,
3114 struct urb *urb,
3115 unsigned int td_index,
3116 gfp_t mem_flags)
3117 {
3118 int ret;
3119 struct urb_priv *urb_priv;
3120 struct xhci_td *td;
3121 struct xhci_ring *ep_ring;
3122 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3123
3124 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
3125 if (!ep_ring) {
3126 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3127 stream_id);
3128 return -EINVAL;
3129 }
3130
3131 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3132 num_trbs, mem_flags);
3133 if (ret)
3134 return ret;
3135
3136 urb_priv = urb->hcpriv;
3137 td = &urb_priv->td[td_index];
3138
3139 INIT_LIST_HEAD(&td->td_list);
3140 INIT_LIST_HEAD(&td->cancelled_td_list);
3141
3142 if (td_index == 0) {
3143 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3144 if (unlikely(ret))
3145 return ret;
3146 }
3147
3148 td->urb = urb;
3149 /* Add this TD to the tail of the endpoint ring's TD list */
3150 list_add_tail(&td->td_list, &ep_ring->td_list);
3151 td->start_seg = ep_ring->enq_seg;
3152 td->first_trb = ep_ring->enqueue;
3153
3154 return 0;
3155 }
3156
count_trbs(u64 addr,u64 len)3157 unsigned int count_trbs(u64 addr, u64 len)
3158 {
3159 unsigned int num_trbs;
3160
3161 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3162 TRB_MAX_BUFF_SIZE);
3163 if (num_trbs == 0)
3164 num_trbs++;
3165
3166 return num_trbs;
3167 }
3168
count_trbs_needed(struct urb * urb)3169 static inline unsigned int count_trbs_needed(struct urb *urb)
3170 {
3171 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
3172 }
3173
count_sg_trbs_needed(struct urb * urb)3174 static unsigned int count_sg_trbs_needed(struct urb *urb)
3175 {
3176 struct scatterlist *sg;
3177 unsigned int i, len, full_len, num_trbs = 0;
3178
3179 full_len = urb->transfer_buffer_length;
3180
3181 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3182 len = sg_dma_len(sg);
3183 num_trbs += count_trbs(sg_dma_address(sg), len);
3184 len = min_t(unsigned int, len, full_len);
3185 full_len -= len;
3186 if (full_len == 0)
3187 break;
3188 }
3189
3190 return num_trbs;
3191 }
3192
count_isoc_trbs_needed(struct urb * urb,int i)3193 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3194 {
3195 u64 addr, len;
3196
3197 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3198 len = urb->iso_frame_desc[i].length;
3199
3200 return count_trbs(addr, len);
3201 }
3202
check_trb_math(struct urb * urb,int running_total)3203 static void check_trb_math(struct urb *urb, int running_total)
3204 {
3205 if (unlikely(running_total != urb->transfer_buffer_length))
3206 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3207 "queued %#x (%d), asked for %#x (%d)\n",
3208 __func__,
3209 urb->ep->desc.bEndpointAddress,
3210 running_total, running_total,
3211 urb->transfer_buffer_length,
3212 urb->transfer_buffer_length);
3213 }
3214
giveback_first_trb(struct xhci_hcd * xhci,int slot_id,unsigned int ep_index,unsigned int stream_id,int start_cycle,struct xhci_generic_trb * start_trb)3215 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3216 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3217 struct xhci_generic_trb *start_trb)
3218 {
3219 /*
3220 * Pass all the TRBs to the hardware at once and make sure this write
3221 * isn't reordered.
3222 */
3223 wmb();
3224 if (start_cycle)
3225 start_trb->field[3] |= cpu_to_le32(start_cycle);
3226 else
3227 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3228 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3229 }
3230
check_interval(struct xhci_hcd * xhci,struct urb * urb,struct xhci_ep_ctx * ep_ctx)3231 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3232 struct xhci_ep_ctx *ep_ctx)
3233 {
3234 int xhci_interval;
3235 int ep_interval;
3236
3237 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3238 ep_interval = urb->interval;
3239
3240 /* Convert to microframes */
3241 if (urb->dev->speed == USB_SPEED_LOW ||
3242 urb->dev->speed == USB_SPEED_FULL)
3243 ep_interval *= 8;
3244
3245 /* FIXME change this to a warning and a suggestion to use the new API
3246 * to set the polling interval (once the API is added).
3247 */
3248 if (xhci_interval != ep_interval) {
3249 dev_dbg_ratelimited(&urb->dev->dev,
3250 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3251 ep_interval, ep_interval == 1 ? "" : "s",
3252 xhci_interval, xhci_interval == 1 ? "" : "s");
3253 urb->interval = xhci_interval;
3254 /* Convert back to frames for LS/FS devices */
3255 if (urb->dev->speed == USB_SPEED_LOW ||
3256 urb->dev->speed == USB_SPEED_FULL)
3257 urb->interval /= 8;
3258 }
3259 }
3260
3261 /*
3262 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3263 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3264 * (comprised of sg list entries) can take several service intervals to
3265 * transmit.
3266 */
xhci_queue_intr_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3267 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3268 struct urb *urb, int slot_id, unsigned int ep_index)
3269 {
3270 struct xhci_ep_ctx *ep_ctx;
3271
3272 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3273 check_interval(xhci, urb, ep_ctx);
3274
3275 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3276 }
3277
3278 /*
3279 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3280 * packets remaining in the TD (*not* including this TRB).
3281 *
3282 * Total TD packet count = total_packet_count =
3283 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3284 *
3285 * Packets transferred up to and including this TRB = packets_transferred =
3286 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3287 *
3288 * TD size = total_packet_count - packets_transferred
3289 *
3290 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3291 * including this TRB, right shifted by 10
3292 *
3293 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3294 * This is taken care of in the TRB_TD_SIZE() macro
3295 *
3296 * The last TRB in a TD must have the TD size set to zero.
3297 */
xhci_td_remainder(struct xhci_hcd * xhci,int transferred,int trb_buff_len,unsigned int td_total_len,struct urb * urb,bool more_trbs_coming)3298 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3299 int trb_buff_len, unsigned int td_total_len,
3300 struct urb *urb, bool more_trbs_coming)
3301 {
3302 u32 maxp, total_packet_count;
3303
3304 /* MTK xHCI 0.96 contains some features from 1.0 */
3305 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3306 return ((td_total_len - transferred) >> 10);
3307
3308 /* One TRB with a zero-length data packet. */
3309 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3310 trb_buff_len == td_total_len)
3311 return 0;
3312
3313 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3314 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3315 trb_buff_len = 0;
3316
3317 maxp = usb_endpoint_maxp(&urb->ep->desc);
3318 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3319
3320 /* Queueing functions don't count the current TRB into transferred */
3321 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3322 }
3323
3324
xhci_align_td(struct xhci_hcd * xhci,struct urb * urb,u32 enqd_len,u32 * trb_buff_len,struct xhci_segment * seg)3325 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3326 u32 *trb_buff_len, struct xhci_segment *seg)
3327 {
3328 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3329 unsigned int unalign;
3330 unsigned int max_pkt;
3331 u32 new_buff_len;
3332 size_t len;
3333
3334 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3335 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3336
3337 /* we got lucky, last normal TRB data on segment is packet aligned */
3338 if (unalign == 0)
3339 return 0;
3340
3341 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3342 unalign, *trb_buff_len);
3343
3344 /* is the last nornal TRB alignable by splitting it */
3345 if (*trb_buff_len > unalign) {
3346 *trb_buff_len -= unalign;
3347 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3348 return 0;
3349 }
3350
3351 /*
3352 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3353 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3354 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3355 */
3356 new_buff_len = max_pkt - (enqd_len % max_pkt);
3357
3358 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3359 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3360
3361 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3362 if (usb_urb_dir_out(urb)) {
3363 if (urb->num_sgs) {
3364 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
3365 seg->bounce_buf, new_buff_len, enqd_len);
3366 if (len != new_buff_len)
3367 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n",
3368 len, new_buff_len);
3369 } else {
3370 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len);
3371 }
3372
3373 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3374 max_pkt, DMA_TO_DEVICE);
3375 } else {
3376 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3377 max_pkt, DMA_FROM_DEVICE);
3378 }
3379
3380 if (dma_mapping_error(dev, seg->bounce_dma)) {
3381 /* try without aligning. Some host controllers survive */
3382 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3383 return 0;
3384 }
3385 *trb_buff_len = new_buff_len;
3386 seg->bounce_len = new_buff_len;
3387 seg->bounce_offs = enqd_len;
3388
3389 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3390
3391 return 1;
3392 }
3393
3394 /* This is very similar to what ehci-q.c qtd_fill() does */
xhci_queue_bulk_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3395 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3396 struct urb *urb, int slot_id, unsigned int ep_index)
3397 {
3398 struct xhci_ring *ring;
3399 struct urb_priv *urb_priv;
3400 struct xhci_td *td;
3401 struct xhci_generic_trb *start_trb;
3402 struct scatterlist *sg = NULL;
3403 bool more_trbs_coming = true;
3404 bool need_zero_pkt = false;
3405 bool first_trb = true;
3406 unsigned int num_trbs;
3407 unsigned int start_cycle, num_sgs = 0;
3408 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3409 int sent_len, ret;
3410 u32 field, length_field, remainder;
3411 u64 addr, send_addr;
3412
3413 ring = xhci_urb_to_transfer_ring(xhci, urb);
3414 if (!ring)
3415 return -EINVAL;
3416
3417 full_len = urb->transfer_buffer_length;
3418 /* If we have scatter/gather list, we use it. */
3419 if (urb->num_sgs) {
3420 num_sgs = urb->num_mapped_sgs;
3421 sg = urb->sg;
3422 addr = (u64) sg_dma_address(sg);
3423 block_len = sg_dma_len(sg);
3424 num_trbs = count_sg_trbs_needed(urb);
3425 } else {
3426 num_trbs = count_trbs_needed(urb);
3427 addr = (u64) urb->transfer_dma;
3428 block_len = full_len;
3429 }
3430 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3431 ep_index, urb->stream_id,
3432 num_trbs, urb, 0, mem_flags);
3433 if (unlikely(ret < 0))
3434 return ret;
3435
3436 urb_priv = urb->hcpriv;
3437
3438 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3439 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3440 need_zero_pkt = true;
3441
3442 td = &urb_priv->td[0];
3443
3444 /*
3445 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3446 * until we've finished creating all the other TRBs. The ring's cycle
3447 * state may change as we enqueue the other TRBs, so save it too.
3448 */
3449 start_trb = &ring->enqueue->generic;
3450 start_cycle = ring->cycle_state;
3451 send_addr = addr;
3452
3453 /* Queue the TRBs, even if they are zero-length */
3454 for (enqd_len = 0; first_trb || enqd_len < full_len;
3455 enqd_len += trb_buff_len) {
3456 field = TRB_TYPE(TRB_NORMAL);
3457
3458 /* TRB buffer should not cross 64KB boundaries */
3459 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3460 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3461
3462 if (enqd_len + trb_buff_len > full_len)
3463 trb_buff_len = full_len - enqd_len;
3464
3465 /* Don't change the cycle bit of the first TRB until later */
3466 if (first_trb) {
3467 first_trb = false;
3468 if (start_cycle == 0)
3469 field |= TRB_CYCLE;
3470 } else
3471 field |= ring->cycle_state;
3472
3473 /* Chain all the TRBs together; clear the chain bit in the last
3474 * TRB to indicate it's the last TRB in the chain.
3475 */
3476 if (enqd_len + trb_buff_len < full_len) {
3477 field |= TRB_CHAIN;
3478 if (trb_is_link(ring->enqueue + 1)) {
3479 if (xhci_align_td(xhci, urb, enqd_len,
3480 &trb_buff_len,
3481 ring->enq_seg)) {
3482 send_addr = ring->enq_seg->bounce_dma;
3483 /* assuming TD won't span 2 segs */
3484 td->bounce_seg = ring->enq_seg;
3485 }
3486 }
3487 }
3488 if (enqd_len + trb_buff_len >= full_len) {
3489 field &= ~TRB_CHAIN;
3490 field |= TRB_IOC;
3491 more_trbs_coming = false;
3492 td->last_trb = ring->enqueue;
3493
3494 if (xhci_urb_suitable_for_idt(urb)) {
3495 memcpy(&send_addr, urb->transfer_buffer,
3496 trb_buff_len);
3497 le64_to_cpus(&send_addr);
3498 field |= TRB_IDT;
3499 }
3500 }
3501
3502 /* Only set interrupt on short packet for IN endpoints */
3503 if (usb_urb_dir_in(urb))
3504 field |= TRB_ISP;
3505
3506 /* Set the TRB length, TD size, and interrupter fields. */
3507 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3508 full_len, urb, more_trbs_coming);
3509
3510 length_field = TRB_LEN(trb_buff_len) |
3511 TRB_TD_SIZE(remainder) |
3512 TRB_INTR_TARGET(0);
3513
3514 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3515 lower_32_bits(send_addr),
3516 upper_32_bits(send_addr),
3517 length_field,
3518 field);
3519
3520 addr += trb_buff_len;
3521 sent_len = trb_buff_len;
3522
3523 while (sg && sent_len >= block_len) {
3524 /* New sg entry */
3525 --num_sgs;
3526 sent_len -= block_len;
3527 sg = sg_next(sg);
3528 if (num_sgs != 0 && sg) {
3529 block_len = sg_dma_len(sg);
3530 addr = (u64) sg_dma_address(sg);
3531 addr += sent_len;
3532 }
3533 }
3534 block_len -= sent_len;
3535 send_addr = addr;
3536 }
3537
3538 if (need_zero_pkt) {
3539 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3540 ep_index, urb->stream_id,
3541 1, urb, 1, mem_flags);
3542 urb_priv->td[1].last_trb = ring->enqueue;
3543 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3544 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3545 }
3546
3547 check_trb_math(urb, enqd_len);
3548 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3549 start_cycle, start_trb);
3550 return 0;
3551 }
3552
3553 /* Caller must have locked xhci->lock */
xhci_queue_ctrl_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3554 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3555 struct urb *urb, int slot_id, unsigned int ep_index)
3556 {
3557 struct xhci_ring *ep_ring;
3558 int num_trbs;
3559 int ret;
3560 struct usb_ctrlrequest *setup;
3561 struct xhci_generic_trb *start_trb;
3562 int start_cycle;
3563 u32 field;
3564 struct urb_priv *urb_priv;
3565 struct xhci_td *td;
3566
3567 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3568 if (!ep_ring)
3569 return -EINVAL;
3570
3571 /*
3572 * Need to copy setup packet into setup TRB, so we can't use the setup
3573 * DMA address.
3574 */
3575 if (!urb->setup_packet)
3576 return -EINVAL;
3577
3578 /* 1 TRB for setup, 1 for status */
3579 num_trbs = 2;
3580 /*
3581 * Don't need to check if we need additional event data and normal TRBs,
3582 * since data in control transfers will never get bigger than 16MB
3583 * XXX: can we get a buffer that crosses 64KB boundaries?
3584 */
3585 if (urb->transfer_buffer_length > 0)
3586 num_trbs++;
3587 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3588 ep_index, urb->stream_id,
3589 num_trbs, urb, 0, mem_flags);
3590 if (ret < 0)
3591 return ret;
3592
3593 urb_priv = urb->hcpriv;
3594 td = &urb_priv->td[0];
3595
3596 /*
3597 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3598 * until we've finished creating all the other TRBs. The ring's cycle
3599 * state may change as we enqueue the other TRBs, so save it too.
3600 */
3601 start_trb = &ep_ring->enqueue->generic;
3602 start_cycle = ep_ring->cycle_state;
3603
3604 /* Queue setup TRB - see section 6.4.1.2.1 */
3605 /* FIXME better way to translate setup_packet into two u32 fields? */
3606 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3607 field = 0;
3608 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3609 if (start_cycle == 0)
3610 field |= 0x1;
3611
3612 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3613 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3614 if (urb->transfer_buffer_length > 0) {
3615 if (setup->bRequestType & USB_DIR_IN)
3616 field |= TRB_TX_TYPE(TRB_DATA_IN);
3617 else
3618 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3619 }
3620 }
3621
3622 queue_trb(xhci, ep_ring, true,
3623 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3624 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3625 TRB_LEN(8) | TRB_INTR_TARGET(0),
3626 /* Immediate data in pointer */
3627 field);
3628
3629 /* If there's data, queue data TRBs */
3630 /* Only set interrupt on short packet for IN endpoints */
3631 if (usb_urb_dir_in(urb))
3632 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3633 else
3634 field = TRB_TYPE(TRB_DATA);
3635
3636 if (urb->transfer_buffer_length > 0) {
3637 u32 length_field, remainder;
3638 u64 addr;
3639
3640 if (xhci_urb_suitable_for_idt(urb)) {
3641 memcpy(&addr, urb->transfer_buffer,
3642 urb->transfer_buffer_length);
3643 le64_to_cpus(&addr);
3644 field |= TRB_IDT;
3645 } else {
3646 addr = (u64) urb->transfer_dma;
3647 }
3648
3649 remainder = xhci_td_remainder(xhci, 0,
3650 urb->transfer_buffer_length,
3651 urb->transfer_buffer_length,
3652 urb, 1);
3653 length_field = TRB_LEN(urb->transfer_buffer_length) |
3654 TRB_TD_SIZE(remainder) |
3655 TRB_INTR_TARGET(0);
3656 if (setup->bRequestType & USB_DIR_IN)
3657 field |= TRB_DIR_IN;
3658 queue_trb(xhci, ep_ring, true,
3659 lower_32_bits(addr),
3660 upper_32_bits(addr),
3661 length_field,
3662 field | ep_ring->cycle_state);
3663 }
3664
3665 /* Save the DMA address of the last TRB in the TD */
3666 td->last_trb = ep_ring->enqueue;
3667
3668 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3669 /* If the device sent data, the status stage is an OUT transfer */
3670 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3671 field = 0;
3672 else
3673 field = TRB_DIR_IN;
3674 queue_trb(xhci, ep_ring, false,
3675 0,
3676 0,
3677 TRB_INTR_TARGET(0),
3678 /* Event on completion */
3679 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3680
3681 giveback_first_trb(xhci, slot_id, ep_index, 0,
3682 start_cycle, start_trb);
3683 return 0;
3684 }
3685
3686 /*
3687 * The transfer burst count field of the isochronous TRB defines the number of
3688 * bursts that are required to move all packets in this TD. Only SuperSpeed
3689 * devices can burst up to bMaxBurst number of packets per service interval.
3690 * This field is zero based, meaning a value of zero in the field means one
3691 * burst. Basically, for everything but SuperSpeed devices, this field will be
3692 * zero. Only xHCI 1.0 host controllers support this field.
3693 */
xhci_get_burst_count(struct xhci_hcd * xhci,struct urb * urb,unsigned int total_packet_count)3694 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3695 struct urb *urb, unsigned int total_packet_count)
3696 {
3697 unsigned int max_burst;
3698
3699 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3700 return 0;
3701
3702 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3703 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3704 }
3705
3706 /*
3707 * Returns the number of packets in the last "burst" of packets. This field is
3708 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3709 * the last burst packet count is equal to the total number of packets in the
3710 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3711 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3712 * contain 1 to (bMaxBurst + 1) packets.
3713 */
xhci_get_last_burst_packet_count(struct xhci_hcd * xhci,struct urb * urb,unsigned int total_packet_count)3714 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3715 struct urb *urb, unsigned int total_packet_count)
3716 {
3717 unsigned int max_burst;
3718 unsigned int residue;
3719
3720 if (xhci->hci_version < 0x100)
3721 return 0;
3722
3723 if (urb->dev->speed >= USB_SPEED_SUPER) {
3724 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3725 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3726 residue = total_packet_count % (max_burst + 1);
3727 /* If residue is zero, the last burst contains (max_burst + 1)
3728 * number of packets, but the TLBPC field is zero-based.
3729 */
3730 if (residue == 0)
3731 return max_burst;
3732 return residue - 1;
3733 }
3734 if (total_packet_count == 0)
3735 return 0;
3736 return total_packet_count - 1;
3737 }
3738
3739 /*
3740 * Calculates Frame ID field of the isochronous TRB identifies the
3741 * target frame that the Interval associated with this Isochronous
3742 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3743 *
3744 * Returns actual frame id on success, negative value on error.
3745 */
xhci_get_isoc_frame_id(struct xhci_hcd * xhci,struct urb * urb,int index)3746 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3747 struct urb *urb, int index)
3748 {
3749 int start_frame, ist, ret = 0;
3750 int start_frame_id, end_frame_id, current_frame_id;
3751
3752 if (urb->dev->speed == USB_SPEED_LOW ||
3753 urb->dev->speed == USB_SPEED_FULL)
3754 start_frame = urb->start_frame + index * urb->interval;
3755 else
3756 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3757
3758 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3759 *
3760 * If bit [3] of IST is cleared to '0', software can add a TRB no
3761 * later than IST[2:0] Microframes before that TRB is scheduled to
3762 * be executed.
3763 * If bit [3] of IST is set to '1', software can add a TRB no later
3764 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3765 */
3766 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3767 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3768 ist <<= 3;
3769
3770 /* Software shall not schedule an Isoch TD with a Frame ID value that
3771 * is less than the Start Frame ID or greater than the End Frame ID,
3772 * where:
3773 *
3774 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3775 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3776 *
3777 * Both the End Frame ID and Start Frame ID values are calculated
3778 * in microframes. When software determines the valid Frame ID value;
3779 * The End Frame ID value should be rounded down to the nearest Frame
3780 * boundary, and the Start Frame ID value should be rounded up to the
3781 * nearest Frame boundary.
3782 */
3783 current_frame_id = readl(&xhci->run_regs->microframe_index);
3784 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3785 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3786
3787 start_frame &= 0x7ff;
3788 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3789 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3790
3791 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3792 __func__, index, readl(&xhci->run_regs->microframe_index),
3793 start_frame_id, end_frame_id, start_frame);
3794
3795 if (start_frame_id < end_frame_id) {
3796 if (start_frame > end_frame_id ||
3797 start_frame < start_frame_id)
3798 ret = -EINVAL;
3799 } else if (start_frame_id > end_frame_id) {
3800 if ((start_frame > end_frame_id &&
3801 start_frame < start_frame_id))
3802 ret = -EINVAL;
3803 } else {
3804 ret = -EINVAL;
3805 }
3806
3807 if (index == 0) {
3808 if (ret == -EINVAL || start_frame == start_frame_id) {
3809 start_frame = start_frame_id + 1;
3810 if (urb->dev->speed == USB_SPEED_LOW ||
3811 urb->dev->speed == USB_SPEED_FULL)
3812 urb->start_frame = start_frame;
3813 else
3814 urb->start_frame = start_frame << 3;
3815 ret = 0;
3816 }
3817 }
3818
3819 if (ret) {
3820 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3821 start_frame, current_frame_id, index,
3822 start_frame_id, end_frame_id);
3823 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3824 return ret;
3825 }
3826
3827 return start_frame;
3828 }
3829
3830 /* Check if we should generate event interrupt for a TD in an isoc URB */
trb_block_event_intr(struct xhci_hcd * xhci,int num_tds,int i)3831 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i)
3832 {
3833 if (xhci->hci_version < 0x100)
3834 return false;
3835 /* always generate an event interrupt for the last TD */
3836 if (i == num_tds - 1)
3837 return false;
3838 /*
3839 * If AVOID_BEI is set the host handles full event rings poorly,
3840 * generate an event at least every 8th TD to clear the event ring
3841 */
3842 if (i && xhci->quirks & XHCI_AVOID_BEI)
3843 return !!(i % 8);
3844
3845 return true;
3846 }
3847
3848 /* This is for isoc transfer */
xhci_queue_isoc_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3849 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3850 struct urb *urb, int slot_id, unsigned int ep_index)
3851 {
3852 struct xhci_ring *ep_ring;
3853 struct urb_priv *urb_priv;
3854 struct xhci_td *td;
3855 int num_tds, trbs_per_td;
3856 struct xhci_generic_trb *start_trb;
3857 bool first_trb;
3858 int start_cycle;
3859 u32 field, length_field;
3860 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3861 u64 start_addr, addr;
3862 int i, j;
3863 bool more_trbs_coming;
3864 struct xhci_virt_ep *xep;
3865 int frame_id;
3866
3867 xep = &xhci->devs[slot_id]->eps[ep_index];
3868 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3869
3870 num_tds = urb->number_of_packets;
3871 if (num_tds < 1) {
3872 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3873 return -EINVAL;
3874 }
3875 start_addr = (u64) urb->transfer_dma;
3876 start_trb = &ep_ring->enqueue->generic;
3877 start_cycle = ep_ring->cycle_state;
3878
3879 urb_priv = urb->hcpriv;
3880 /* Queue the TRBs for each TD, even if they are zero-length */
3881 for (i = 0; i < num_tds; i++) {
3882 unsigned int total_pkt_count, max_pkt;
3883 unsigned int burst_count, last_burst_pkt_count;
3884 u32 sia_frame_id;
3885
3886 first_trb = true;
3887 running_total = 0;
3888 addr = start_addr + urb->iso_frame_desc[i].offset;
3889 td_len = urb->iso_frame_desc[i].length;
3890 td_remain_len = td_len;
3891 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3892 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3893
3894 /* A zero-length transfer still involves at least one packet. */
3895 if (total_pkt_count == 0)
3896 total_pkt_count++;
3897 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3898 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3899 urb, total_pkt_count);
3900
3901 trbs_per_td = count_isoc_trbs_needed(urb, i);
3902
3903 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3904 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3905 if (ret < 0) {
3906 if (i == 0)
3907 return ret;
3908 goto cleanup;
3909 }
3910 td = &urb_priv->td[i];
3911
3912 /* use SIA as default, if frame id is used overwrite it */
3913 sia_frame_id = TRB_SIA;
3914 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3915 HCC_CFC(xhci->hcc_params)) {
3916 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3917 if (frame_id >= 0)
3918 sia_frame_id = TRB_FRAME_ID(frame_id);
3919 }
3920 /*
3921 * Set isoc specific data for the first TRB in a TD.
3922 * Prevent HW from getting the TRBs by keeping the cycle state
3923 * inverted in the first TDs isoc TRB.
3924 */
3925 field = TRB_TYPE(TRB_ISOC) |
3926 TRB_TLBPC(last_burst_pkt_count) |
3927 sia_frame_id |
3928 (i ? ep_ring->cycle_state : !start_cycle);
3929
3930 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3931 if (!xep->use_extended_tbc)
3932 field |= TRB_TBC(burst_count);
3933
3934 /* fill the rest of the TRB fields, and remaining normal TRBs */
3935 for (j = 0; j < trbs_per_td; j++) {
3936 u32 remainder = 0;
3937
3938 /* only first TRB is isoc, overwrite otherwise */
3939 if (!first_trb)
3940 field = TRB_TYPE(TRB_NORMAL) |
3941 ep_ring->cycle_state;
3942
3943 /* Only set interrupt on short packet for IN EPs */
3944 if (usb_urb_dir_in(urb))
3945 field |= TRB_ISP;
3946
3947 /* Set the chain bit for all except the last TRB */
3948 if (j < trbs_per_td - 1) {
3949 more_trbs_coming = true;
3950 field |= TRB_CHAIN;
3951 } else {
3952 more_trbs_coming = false;
3953 td->last_trb = ep_ring->enqueue;
3954 field |= TRB_IOC;
3955 if (trb_block_event_intr(xhci, num_tds, i))
3956 field |= TRB_BEI;
3957 }
3958 /* Calculate TRB length */
3959 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3960 if (trb_buff_len > td_remain_len)
3961 trb_buff_len = td_remain_len;
3962
3963 /* Set the TRB length, TD size, & interrupter fields. */
3964 remainder = xhci_td_remainder(xhci, running_total,
3965 trb_buff_len, td_len,
3966 urb, more_trbs_coming);
3967
3968 length_field = TRB_LEN(trb_buff_len) |
3969 TRB_INTR_TARGET(0);
3970
3971 /* xhci 1.1 with ETE uses TD Size field for TBC */
3972 if (first_trb && xep->use_extended_tbc)
3973 length_field |= TRB_TD_SIZE_TBC(burst_count);
3974 else
3975 length_field |= TRB_TD_SIZE(remainder);
3976 first_trb = false;
3977
3978 queue_trb(xhci, ep_ring, more_trbs_coming,
3979 lower_32_bits(addr),
3980 upper_32_bits(addr),
3981 length_field,
3982 field);
3983 running_total += trb_buff_len;
3984
3985 addr += trb_buff_len;
3986 td_remain_len -= trb_buff_len;
3987 }
3988
3989 /* Check TD length */
3990 if (running_total != td_len) {
3991 xhci_err(xhci, "ISOC TD length unmatch\n");
3992 ret = -EINVAL;
3993 goto cleanup;
3994 }
3995 }
3996
3997 /* store the next frame id */
3998 if (HCC_CFC(xhci->hcc_params))
3999 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
4000
4001 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
4002 if (xhci->quirks & XHCI_AMD_PLL_FIX)
4003 usb_amd_quirk_pll_disable();
4004 }
4005 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
4006
4007 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
4008 start_cycle, start_trb);
4009 return 0;
4010 cleanup:
4011 /* Clean up a partially enqueued isoc transfer. */
4012
4013 for (i--; i >= 0; i--)
4014 list_del_init(&urb_priv->td[i].td_list);
4015
4016 /* Use the first TD as a temporary variable to turn the TDs we've queued
4017 * into No-ops with a software-owned cycle bit. That way the hardware
4018 * won't accidentally start executing bogus TDs when we partially
4019 * overwrite them. td->first_trb and td->start_seg are already set.
4020 */
4021 urb_priv->td[0].last_trb = ep_ring->enqueue;
4022 /* Every TRB except the first & last will have its cycle bit flipped. */
4023 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
4024
4025 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
4026 ep_ring->enqueue = urb_priv->td[0].first_trb;
4027 ep_ring->enq_seg = urb_priv->td[0].start_seg;
4028 ep_ring->cycle_state = start_cycle;
4029 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
4030 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
4031 return ret;
4032 }
4033
4034 /*
4035 * Check transfer ring to guarantee there is enough room for the urb.
4036 * Update ISO URB start_frame and interval.
4037 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
4038 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
4039 * Contiguous Frame ID is not supported by HC.
4040 */
xhci_queue_isoc_tx_prepare(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)4041 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
4042 struct urb *urb, int slot_id, unsigned int ep_index)
4043 {
4044 struct xhci_virt_device *xdev;
4045 struct xhci_ring *ep_ring;
4046 struct xhci_ep_ctx *ep_ctx;
4047 int start_frame;
4048 int num_tds, num_trbs, i;
4049 int ret;
4050 struct xhci_virt_ep *xep;
4051 int ist;
4052
4053 xdev = xhci->devs[slot_id];
4054 xep = &xhci->devs[slot_id]->eps[ep_index];
4055 ep_ring = xdev->eps[ep_index].ring;
4056 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
4057
4058 num_trbs = 0;
4059 num_tds = urb->number_of_packets;
4060 for (i = 0; i < num_tds; i++)
4061 num_trbs += count_isoc_trbs_needed(urb, i);
4062
4063 /* Check the ring to guarantee there is enough room for the whole urb.
4064 * Do not insert any td of the urb to the ring if the check failed.
4065 */
4066 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
4067 num_trbs, mem_flags);
4068 if (ret)
4069 return ret;
4070
4071 /*
4072 * Check interval value. This should be done before we start to
4073 * calculate the start frame value.
4074 */
4075 check_interval(xhci, urb, ep_ctx);
4076
4077 /* Calculate the start frame and put it in urb->start_frame. */
4078 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
4079 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
4080 urb->start_frame = xep->next_frame_id;
4081 goto skip_start_over;
4082 }
4083 }
4084
4085 start_frame = readl(&xhci->run_regs->microframe_index);
4086 start_frame &= 0x3fff;
4087 /*
4088 * Round up to the next frame and consider the time before trb really
4089 * gets scheduled by hardare.
4090 */
4091 ist = HCS_IST(xhci->hcs_params2) & 0x7;
4092 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
4093 ist <<= 3;
4094 start_frame += ist + XHCI_CFC_DELAY;
4095 start_frame = roundup(start_frame, 8);
4096
4097 /*
4098 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
4099 * is greate than 8 microframes.
4100 */
4101 if (urb->dev->speed == USB_SPEED_LOW ||
4102 urb->dev->speed == USB_SPEED_FULL) {
4103 start_frame = roundup(start_frame, urb->interval << 3);
4104 urb->start_frame = start_frame >> 3;
4105 } else {
4106 start_frame = roundup(start_frame, urb->interval);
4107 urb->start_frame = start_frame;
4108 }
4109
4110 skip_start_over:
4111 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
4112
4113 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
4114 }
4115
4116 /**** Command Ring Operations ****/
4117
4118 /* Generic function for queueing a command TRB on the command ring.
4119 * Check to make sure there's room on the command ring for one command TRB.
4120 * Also check that there's room reserved for commands that must not fail.
4121 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
4122 * then only check for the number of reserved spots.
4123 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
4124 * because the command event handler may want to resubmit a failed command.
4125 */
queue_command(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 field1,u32 field2,u32 field3,u32 field4,bool command_must_succeed)4126 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4127 u32 field1, u32 field2,
4128 u32 field3, u32 field4, bool command_must_succeed)
4129 {
4130 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4131 int ret;
4132
4133 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
4134 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4135 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
4136 return -ESHUTDOWN;
4137 }
4138
4139 if (!command_must_succeed)
4140 reserved_trbs++;
4141
4142 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4143 reserved_trbs, GFP_ATOMIC);
4144 if (ret < 0) {
4145 xhci_err(xhci, "ERR: No room for command on command ring\n");
4146 if (command_must_succeed)
4147 xhci_err(xhci, "ERR: Reserved TRB counting for "
4148 "unfailable commands failed.\n");
4149 return ret;
4150 }
4151
4152 cmd->command_trb = xhci->cmd_ring->enqueue;
4153
4154 /* if there are no other commands queued we start the timeout timer */
4155 if (list_empty(&xhci->cmd_list)) {
4156 xhci->current_cmd = cmd;
4157 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
4158 }
4159
4160 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
4161
4162 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4163 field4 | xhci->cmd_ring->cycle_state);
4164 return 0;
4165 }
4166
4167 /* Queue a slot enable or disable request on the command ring */
xhci_queue_slot_control(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 trb_type,u32 slot_id)4168 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
4169 u32 trb_type, u32 slot_id)
4170 {
4171 return queue_command(xhci, cmd, 0, 0, 0,
4172 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4173 }
4174
4175 /* Queue an address device command TRB */
xhci_queue_address_device(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,enum xhci_setup_dev setup)4176 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4177 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
4178 {
4179 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4180 upper_32_bits(in_ctx_ptr), 0,
4181 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4182 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4183 }
4184
xhci_queue_vendor_command(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 field1,u32 field2,u32 field3,u32 field4)4185 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4186 u32 field1, u32 field2, u32 field3, u32 field4)
4187 {
4188 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4189 }
4190
4191 /* Queue a reset device command TRB */
xhci_queue_reset_device(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 slot_id)4192 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4193 u32 slot_id)
4194 {
4195 return queue_command(xhci, cmd, 0, 0, 0,
4196 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4197 false);
4198 }
4199
4200 /* Queue a configure endpoint command TRB */
xhci_queue_configure_endpoint(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,bool command_must_succeed)4201 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4202 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4203 u32 slot_id, bool command_must_succeed)
4204 {
4205 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4206 upper_32_bits(in_ctx_ptr), 0,
4207 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4208 command_must_succeed);
4209 }
4210
4211 /* Queue an evaluate context command TRB */
xhci_queue_evaluate_context(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,bool command_must_succeed)4212 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4213 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4214 {
4215 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4216 upper_32_bits(in_ctx_ptr), 0,
4217 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4218 command_must_succeed);
4219 }
4220
4221 /*
4222 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4223 * activity on an endpoint that is about to be suspended.
4224 */
xhci_queue_stop_endpoint(struct xhci_hcd * xhci,struct xhci_command * cmd,int slot_id,unsigned int ep_index,int suspend)4225 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4226 int slot_id, unsigned int ep_index, int suspend)
4227 {
4228 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4229 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4230 u32 type = TRB_TYPE(TRB_STOP_RING);
4231 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4232
4233 return queue_command(xhci, cmd, 0, 0, 0,
4234 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4235 }
4236
4237 /* Set Transfer Ring Dequeue Pointer command */
xhci_queue_new_dequeue_state(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)4238 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4239 unsigned int slot_id, unsigned int ep_index,
4240 struct xhci_dequeue_state *deq_state)
4241 {
4242 dma_addr_t addr;
4243 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4244 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4245 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4246 u32 trb_sct = 0;
4247 u32 type = TRB_TYPE(TRB_SET_DEQ);
4248 struct xhci_virt_ep *ep;
4249 struct xhci_command *cmd;
4250 int ret;
4251
4252 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4253 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4254 deq_state->new_deq_seg,
4255 (unsigned long long)deq_state->new_deq_seg->dma,
4256 deq_state->new_deq_ptr,
4257 (unsigned long long)xhci_trb_virt_to_dma(
4258 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4259 deq_state->new_cycle_state);
4260
4261 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4262 deq_state->new_deq_ptr);
4263 if (addr == 0) {
4264 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4265 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4266 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4267 return;
4268 }
4269 ep = &xhci->devs[slot_id]->eps[ep_index];
4270 if ((ep->ep_state & SET_DEQ_PENDING)) {
4271 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4272 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4273 return;
4274 }
4275
4276 /* This function gets called from contexts where it cannot sleep */
4277 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
4278 if (!cmd)
4279 return;
4280
4281 ep->queued_deq_seg = deq_state->new_deq_seg;
4282 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4283 if (deq_state->stream_id)
4284 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4285 ret = queue_command(xhci, cmd,
4286 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4287 upper_32_bits(addr), trb_stream_id,
4288 trb_slot_id | trb_ep_index | type, false);
4289 if (ret < 0) {
4290 xhci_free_command(xhci, cmd);
4291 return;
4292 }
4293
4294 /* Stop the TD queueing code from ringing the doorbell until
4295 * this command completes. The HC won't set the dequeue pointer
4296 * if the ring is running, and ringing the doorbell starts the
4297 * ring running.
4298 */
4299 ep->ep_state |= SET_DEQ_PENDING;
4300 }
4301
xhci_queue_reset_ep(struct xhci_hcd * xhci,struct xhci_command * cmd,int slot_id,unsigned int ep_index,enum xhci_ep_reset_type reset_type)4302 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4303 int slot_id, unsigned int ep_index,
4304 enum xhci_ep_reset_type reset_type)
4305 {
4306 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4307 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4308 u32 type = TRB_TYPE(TRB_RESET_EP);
4309
4310 if (reset_type == EP_SOFT_RESET)
4311 type |= TRB_TSP;
4312
4313 return queue_command(xhci, cmd, 0, 0, 0,
4314 trb_slot_id | trb_ep_index | type, false);
4315 }
4316