1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct kmem_cache *se_sess_cache;
45 struct kmem_cache *se_ua_cache;
46 struct kmem_cache *t10_pr_reg_cache;
47 struct kmem_cache *t10_alua_lu_gp_cache;
48 struct kmem_cache *t10_alua_lu_gp_mem_cache;
49 struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 struct kmem_cache *t10_alua_lba_map_cache;
51 struct kmem_cache *t10_alua_lba_map_mem_cache;
52
53 static void transport_complete_task_attr(struct se_cmd *cmd);
54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55 static void transport_handle_queue_full(struct se_cmd *cmd,
56 struct se_device *dev, int err, bool write_pending);
57 static void target_complete_ok_work(struct work_struct *work);
58
init_se_kmem_caches(void)59 int init_se_kmem_caches(void)
60 {
61 se_sess_cache = kmem_cache_create("se_sess_cache",
62 sizeof(struct se_session), __alignof__(struct se_session),
63 0, NULL);
64 if (!se_sess_cache) {
65 pr_err("kmem_cache_create() for struct se_session"
66 " failed\n");
67 goto out;
68 }
69 se_ua_cache = kmem_cache_create("se_ua_cache",
70 sizeof(struct se_ua), __alignof__(struct se_ua),
71 0, NULL);
72 if (!se_ua_cache) {
73 pr_err("kmem_cache_create() for struct se_ua failed\n");
74 goto out_free_sess_cache;
75 }
76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
77 sizeof(struct t10_pr_registration),
78 __alignof__(struct t10_pr_registration), 0, NULL);
79 if (!t10_pr_reg_cache) {
80 pr_err("kmem_cache_create() for struct t10_pr_registration"
81 " failed\n");
82 goto out_free_ua_cache;
83 }
84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
86 0, NULL);
87 if (!t10_alua_lu_gp_cache) {
88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89 " failed\n");
90 goto out_free_pr_reg_cache;
91 }
92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 sizeof(struct t10_alua_lu_gp_member),
94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 if (!t10_alua_lu_gp_mem_cache) {
96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97 "cache failed\n");
98 goto out_free_lu_gp_cache;
99 }
100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 sizeof(struct t10_alua_tg_pt_gp),
102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 if (!t10_alua_tg_pt_gp_cache) {
104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105 "cache failed\n");
106 goto out_free_lu_gp_mem_cache;
107 }
108 t10_alua_lba_map_cache = kmem_cache_create(
109 "t10_alua_lba_map_cache",
110 sizeof(struct t10_alua_lba_map),
111 __alignof__(struct t10_alua_lba_map), 0, NULL);
112 if (!t10_alua_lba_map_cache) {
113 pr_err("kmem_cache_create() for t10_alua_lba_map_"
114 "cache failed\n");
115 goto out_free_tg_pt_gp_cache;
116 }
117 t10_alua_lba_map_mem_cache = kmem_cache_create(
118 "t10_alua_lba_map_mem_cache",
119 sizeof(struct t10_alua_lba_map_member),
120 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
121 if (!t10_alua_lba_map_mem_cache) {
122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
123 "cache failed\n");
124 goto out_free_lba_map_cache;
125 }
126
127 target_completion_wq = alloc_workqueue("target_completion",
128 WQ_MEM_RECLAIM, 0);
129 if (!target_completion_wq)
130 goto out_free_lba_map_mem_cache;
131
132 return 0;
133
134 out_free_lba_map_mem_cache:
135 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
136 out_free_lba_map_cache:
137 kmem_cache_destroy(t10_alua_lba_map_cache);
138 out_free_tg_pt_gp_cache:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
140 out_free_lu_gp_mem_cache:
141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
142 out_free_lu_gp_cache:
143 kmem_cache_destroy(t10_alua_lu_gp_cache);
144 out_free_pr_reg_cache:
145 kmem_cache_destroy(t10_pr_reg_cache);
146 out_free_ua_cache:
147 kmem_cache_destroy(se_ua_cache);
148 out_free_sess_cache:
149 kmem_cache_destroy(se_sess_cache);
150 out:
151 return -ENOMEM;
152 }
153
release_se_kmem_caches(void)154 void release_se_kmem_caches(void)
155 {
156 destroy_workqueue(target_completion_wq);
157 kmem_cache_destroy(se_sess_cache);
158 kmem_cache_destroy(se_ua_cache);
159 kmem_cache_destroy(t10_pr_reg_cache);
160 kmem_cache_destroy(t10_alua_lu_gp_cache);
161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 kmem_cache_destroy(t10_alua_lba_map_cache);
164 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 }
166
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock);
169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170
171 /*
172 * Allocate a new row index for the entry type specified
173 */
scsi_get_new_index(scsi_index_t type)174 u32 scsi_get_new_index(scsi_index_t type)
175 {
176 u32 new_index;
177
178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179
180 spin_lock(&scsi_mib_index_lock);
181 new_index = ++scsi_mib_index[type];
182 spin_unlock(&scsi_mib_index_lock);
183
184 return new_index;
185 }
186
transport_subsystem_check_init(void)187 void transport_subsystem_check_init(void)
188 {
189 int ret;
190 static int sub_api_initialized;
191
192 if (sub_api_initialized)
193 return;
194
195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196 if (ret != 0)
197 pr_err("Unable to load target_core_iblock\n");
198
199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200 if (ret != 0)
201 pr_err("Unable to load target_core_file\n");
202
203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204 if (ret != 0)
205 pr_err("Unable to load target_core_pscsi\n");
206
207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 if (ret != 0)
209 pr_err("Unable to load target_core_user\n");
210
211 sub_api_initialized = 1;
212 }
213
target_release_sess_cmd_refcnt(struct percpu_ref * ref)214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
215 {
216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
217
218 wake_up(&sess->cmd_list_wq);
219 }
220
221 /**
222 * transport_init_session - initialize a session object
223 * @se_sess: Session object pointer.
224 *
225 * The caller must have zero-initialized @se_sess before calling this function.
226 */
transport_init_session(struct se_session * se_sess)227 int transport_init_session(struct se_session *se_sess)
228 {
229 INIT_LIST_HEAD(&se_sess->sess_list);
230 INIT_LIST_HEAD(&se_sess->sess_acl_list);
231 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
232 spin_lock_init(&se_sess->sess_cmd_lock);
233 init_waitqueue_head(&se_sess->cmd_list_wq);
234 return percpu_ref_init(&se_sess->cmd_count,
235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
236 }
237 EXPORT_SYMBOL(transport_init_session);
238
transport_uninit_session(struct se_session * se_sess)239 void transport_uninit_session(struct se_session *se_sess)
240 {
241 percpu_ref_exit(&se_sess->cmd_count);
242 }
243
244 /**
245 * transport_alloc_session - allocate a session object and initialize it
246 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
247 */
transport_alloc_session(enum target_prot_op sup_prot_ops)248 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
249 {
250 struct se_session *se_sess;
251 int ret;
252
253 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
254 if (!se_sess) {
255 pr_err("Unable to allocate struct se_session from"
256 " se_sess_cache\n");
257 return ERR_PTR(-ENOMEM);
258 }
259 ret = transport_init_session(se_sess);
260 if (ret < 0) {
261 kmem_cache_free(se_sess_cache, se_sess);
262 return ERR_PTR(ret);
263 }
264 se_sess->sup_prot_ops = sup_prot_ops;
265
266 return se_sess;
267 }
268 EXPORT_SYMBOL(transport_alloc_session);
269
270 /**
271 * transport_alloc_session_tags - allocate target driver private data
272 * @se_sess: Session pointer.
273 * @tag_num: Maximum number of in-flight commands between initiator and target.
274 * @tag_size: Size in bytes of the private data a target driver associates with
275 * each command.
276 */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)277 int transport_alloc_session_tags(struct se_session *se_sess,
278 unsigned int tag_num, unsigned int tag_size)
279 {
280 int rc;
281
282 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
283 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
284 if (!se_sess->sess_cmd_map) {
285 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
286 return -ENOMEM;
287 }
288
289 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
290 false, GFP_KERNEL, NUMA_NO_NODE);
291 if (rc < 0) {
292 pr_err("Unable to init se_sess->sess_tag_pool,"
293 " tag_num: %u\n", tag_num);
294 kvfree(se_sess->sess_cmd_map);
295 se_sess->sess_cmd_map = NULL;
296 return -ENOMEM;
297 }
298
299 return 0;
300 }
301 EXPORT_SYMBOL(transport_alloc_session_tags);
302
303 /**
304 * transport_init_session_tags - allocate a session and target driver private data
305 * @tag_num: Maximum number of in-flight commands between initiator and target.
306 * @tag_size: Size in bytes of the private data a target driver associates with
307 * each command.
308 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
309 */
310 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)311 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
312 enum target_prot_op sup_prot_ops)
313 {
314 struct se_session *se_sess;
315 int rc;
316
317 if (tag_num != 0 && !tag_size) {
318 pr_err("init_session_tags called with percpu-ida tag_num:"
319 " %u, but zero tag_size\n", tag_num);
320 return ERR_PTR(-EINVAL);
321 }
322 if (!tag_num && tag_size) {
323 pr_err("init_session_tags called with percpu-ida tag_size:"
324 " %u, but zero tag_num\n", tag_size);
325 return ERR_PTR(-EINVAL);
326 }
327
328 se_sess = transport_alloc_session(sup_prot_ops);
329 if (IS_ERR(se_sess))
330 return se_sess;
331
332 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
333 if (rc < 0) {
334 transport_free_session(se_sess);
335 return ERR_PTR(-ENOMEM);
336 }
337
338 return se_sess;
339 }
340
341 /*
342 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
343 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)344 void __transport_register_session(
345 struct se_portal_group *se_tpg,
346 struct se_node_acl *se_nacl,
347 struct se_session *se_sess,
348 void *fabric_sess_ptr)
349 {
350 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
351 unsigned char buf[PR_REG_ISID_LEN];
352 unsigned long flags;
353
354 se_sess->se_tpg = se_tpg;
355 se_sess->fabric_sess_ptr = fabric_sess_ptr;
356 /*
357 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
358 *
359 * Only set for struct se_session's that will actually be moving I/O.
360 * eg: *NOT* discovery sessions.
361 */
362 if (se_nacl) {
363 /*
364 *
365 * Determine if fabric allows for T10-PI feature bits exposed to
366 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
367 *
368 * If so, then always save prot_type on a per se_node_acl node
369 * basis and re-instate the previous sess_prot_type to avoid
370 * disabling PI from below any previously initiator side
371 * registered LUNs.
372 */
373 if (se_nacl->saved_prot_type)
374 se_sess->sess_prot_type = se_nacl->saved_prot_type;
375 else if (tfo->tpg_check_prot_fabric_only)
376 se_sess->sess_prot_type = se_nacl->saved_prot_type =
377 tfo->tpg_check_prot_fabric_only(se_tpg);
378 /*
379 * If the fabric module supports an ISID based TransportID,
380 * save this value in binary from the fabric I_T Nexus now.
381 */
382 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
383 memset(&buf[0], 0, PR_REG_ISID_LEN);
384 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
385 &buf[0], PR_REG_ISID_LEN);
386 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
387 }
388
389 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
390 /*
391 * The se_nacl->nacl_sess pointer will be set to the
392 * last active I_T Nexus for each struct se_node_acl.
393 */
394 se_nacl->nacl_sess = se_sess;
395
396 list_add_tail(&se_sess->sess_acl_list,
397 &se_nacl->acl_sess_list);
398 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
399 }
400 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
401
402 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
403 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
404 }
405 EXPORT_SYMBOL(__transport_register_session);
406
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)407 void transport_register_session(
408 struct se_portal_group *se_tpg,
409 struct se_node_acl *se_nacl,
410 struct se_session *se_sess,
411 void *fabric_sess_ptr)
412 {
413 unsigned long flags;
414
415 spin_lock_irqsave(&se_tpg->session_lock, flags);
416 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
417 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
418 }
419 EXPORT_SYMBOL(transport_register_session);
420
421 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))422 target_setup_session(struct se_portal_group *tpg,
423 unsigned int tag_num, unsigned int tag_size,
424 enum target_prot_op prot_op,
425 const char *initiatorname, void *private,
426 int (*callback)(struct se_portal_group *,
427 struct se_session *, void *))
428 {
429 struct se_session *sess;
430
431 /*
432 * If the fabric driver is using percpu-ida based pre allocation
433 * of I/O descriptor tags, go ahead and perform that setup now..
434 */
435 if (tag_num != 0)
436 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
437 else
438 sess = transport_alloc_session(prot_op);
439
440 if (IS_ERR(sess))
441 return sess;
442
443 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
444 (unsigned char *)initiatorname);
445 if (!sess->se_node_acl) {
446 transport_free_session(sess);
447 return ERR_PTR(-EACCES);
448 }
449 /*
450 * Go ahead and perform any remaining fabric setup that is
451 * required before transport_register_session().
452 */
453 if (callback != NULL) {
454 int rc = callback(tpg, sess, private);
455 if (rc) {
456 transport_free_session(sess);
457 return ERR_PTR(rc);
458 }
459 }
460
461 transport_register_session(tpg, sess->se_node_acl, sess, private);
462 return sess;
463 }
464 EXPORT_SYMBOL(target_setup_session);
465
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)466 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
467 {
468 struct se_session *se_sess;
469 ssize_t len = 0;
470
471 spin_lock_bh(&se_tpg->session_lock);
472 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
473 if (!se_sess->se_node_acl)
474 continue;
475 if (!se_sess->se_node_acl->dynamic_node_acl)
476 continue;
477 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
478 break;
479
480 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
481 se_sess->se_node_acl->initiatorname);
482 len += 1; /* Include NULL terminator */
483 }
484 spin_unlock_bh(&se_tpg->session_lock);
485
486 return len;
487 }
488 EXPORT_SYMBOL(target_show_dynamic_sessions);
489
target_complete_nacl(struct kref * kref)490 static void target_complete_nacl(struct kref *kref)
491 {
492 struct se_node_acl *nacl = container_of(kref,
493 struct se_node_acl, acl_kref);
494 struct se_portal_group *se_tpg = nacl->se_tpg;
495
496 if (!nacl->dynamic_stop) {
497 complete(&nacl->acl_free_comp);
498 return;
499 }
500
501 mutex_lock(&se_tpg->acl_node_mutex);
502 list_del_init(&nacl->acl_list);
503 mutex_unlock(&se_tpg->acl_node_mutex);
504
505 core_tpg_wait_for_nacl_pr_ref(nacl);
506 core_free_device_list_for_node(nacl, se_tpg);
507 kfree(nacl);
508 }
509
target_put_nacl(struct se_node_acl * nacl)510 void target_put_nacl(struct se_node_acl *nacl)
511 {
512 kref_put(&nacl->acl_kref, target_complete_nacl);
513 }
514 EXPORT_SYMBOL(target_put_nacl);
515
transport_deregister_session_configfs(struct se_session * se_sess)516 void transport_deregister_session_configfs(struct se_session *se_sess)
517 {
518 struct se_node_acl *se_nacl;
519 unsigned long flags;
520 /*
521 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
522 */
523 se_nacl = se_sess->se_node_acl;
524 if (se_nacl) {
525 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
526 if (!list_empty(&se_sess->sess_acl_list))
527 list_del_init(&se_sess->sess_acl_list);
528 /*
529 * If the session list is empty, then clear the pointer.
530 * Otherwise, set the struct se_session pointer from the tail
531 * element of the per struct se_node_acl active session list.
532 */
533 if (list_empty(&se_nacl->acl_sess_list))
534 se_nacl->nacl_sess = NULL;
535 else {
536 se_nacl->nacl_sess = container_of(
537 se_nacl->acl_sess_list.prev,
538 struct se_session, sess_acl_list);
539 }
540 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
541 }
542 }
543 EXPORT_SYMBOL(transport_deregister_session_configfs);
544
transport_free_session(struct se_session * se_sess)545 void transport_free_session(struct se_session *se_sess)
546 {
547 struct se_node_acl *se_nacl = se_sess->se_node_acl;
548
549 /*
550 * Drop the se_node_acl->nacl_kref obtained from within
551 * core_tpg_get_initiator_node_acl().
552 */
553 if (se_nacl) {
554 struct se_portal_group *se_tpg = se_nacl->se_tpg;
555 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
556 unsigned long flags;
557
558 se_sess->se_node_acl = NULL;
559
560 /*
561 * Also determine if we need to drop the extra ->cmd_kref if
562 * it had been previously dynamically generated, and
563 * the endpoint is not caching dynamic ACLs.
564 */
565 mutex_lock(&se_tpg->acl_node_mutex);
566 if (se_nacl->dynamic_node_acl &&
567 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
568 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
569 if (list_empty(&se_nacl->acl_sess_list))
570 se_nacl->dynamic_stop = true;
571 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
572
573 if (se_nacl->dynamic_stop)
574 list_del_init(&se_nacl->acl_list);
575 }
576 mutex_unlock(&se_tpg->acl_node_mutex);
577
578 if (se_nacl->dynamic_stop)
579 target_put_nacl(se_nacl);
580
581 target_put_nacl(se_nacl);
582 }
583 if (se_sess->sess_cmd_map) {
584 sbitmap_queue_free(&se_sess->sess_tag_pool);
585 kvfree(se_sess->sess_cmd_map);
586 }
587 transport_uninit_session(se_sess);
588 kmem_cache_free(se_sess_cache, se_sess);
589 }
590 EXPORT_SYMBOL(transport_free_session);
591
target_release_res(struct se_device * dev,void * data)592 static int target_release_res(struct se_device *dev, void *data)
593 {
594 struct se_session *sess = data;
595
596 if (dev->reservation_holder == sess)
597 target_release_reservation(dev);
598 return 0;
599 }
600
transport_deregister_session(struct se_session * se_sess)601 void transport_deregister_session(struct se_session *se_sess)
602 {
603 struct se_portal_group *se_tpg = se_sess->se_tpg;
604 unsigned long flags;
605
606 if (!se_tpg) {
607 transport_free_session(se_sess);
608 return;
609 }
610
611 spin_lock_irqsave(&se_tpg->session_lock, flags);
612 list_del(&se_sess->sess_list);
613 se_sess->se_tpg = NULL;
614 se_sess->fabric_sess_ptr = NULL;
615 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
616
617 /*
618 * Since the session is being removed, release SPC-2
619 * reservations held by the session that is disappearing.
620 */
621 target_for_each_device(target_release_res, se_sess);
622
623 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
624 se_tpg->se_tpg_tfo->fabric_name);
625 /*
626 * If last kref is dropping now for an explicit NodeACL, awake sleeping
627 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
628 * removal context from within transport_free_session() code.
629 *
630 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
631 * to release all remaining generate_node_acl=1 created ACL resources.
632 */
633
634 transport_free_session(se_sess);
635 }
636 EXPORT_SYMBOL(transport_deregister_session);
637
target_remove_session(struct se_session * se_sess)638 void target_remove_session(struct se_session *se_sess)
639 {
640 transport_deregister_session_configfs(se_sess);
641 transport_deregister_session(se_sess);
642 }
643 EXPORT_SYMBOL(target_remove_session);
644
target_remove_from_state_list(struct se_cmd * cmd)645 static void target_remove_from_state_list(struct se_cmd *cmd)
646 {
647 struct se_device *dev = cmd->se_dev;
648 unsigned long flags;
649
650 if (!dev)
651 return;
652
653 spin_lock_irqsave(&dev->execute_task_lock, flags);
654 if (cmd->state_active) {
655 list_del(&cmd->state_list);
656 cmd->state_active = false;
657 }
658 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
659 }
660
661 /*
662 * This function is called by the target core after the target core has
663 * finished processing a SCSI command or SCSI TMF. Both the regular command
664 * processing code and the code for aborting commands can call this
665 * function. CMD_T_STOP is set if and only if another thread is waiting
666 * inside transport_wait_for_tasks() for t_transport_stop_comp.
667 */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)668 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
669 {
670 unsigned long flags;
671
672 target_remove_from_state_list(cmd);
673
674 /*
675 * Clear struct se_cmd->se_lun before the handoff to FE.
676 */
677 cmd->se_lun = NULL;
678
679 spin_lock_irqsave(&cmd->t_state_lock, flags);
680 /*
681 * Determine if frontend context caller is requesting the stopping of
682 * this command for frontend exceptions.
683 */
684 if (cmd->transport_state & CMD_T_STOP) {
685 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
686 __func__, __LINE__, cmd->tag);
687
688 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
689
690 complete_all(&cmd->t_transport_stop_comp);
691 return 1;
692 }
693 cmd->transport_state &= ~CMD_T_ACTIVE;
694 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
695
696 /*
697 * Some fabric modules like tcm_loop can release their internally
698 * allocated I/O reference and struct se_cmd now.
699 *
700 * Fabric modules are expected to return '1' here if the se_cmd being
701 * passed is released at this point, or zero if not being released.
702 */
703 return cmd->se_tfo->check_stop_free(cmd);
704 }
705
transport_lun_remove_cmd(struct se_cmd * cmd)706 static void transport_lun_remove_cmd(struct se_cmd *cmd)
707 {
708 struct se_lun *lun = cmd->se_lun;
709
710 if (!lun)
711 return;
712
713 if (cmpxchg(&cmd->lun_ref_active, true, false))
714 percpu_ref_put(&lun->lun_ref);
715 }
716
target_complete_failure_work(struct work_struct * work)717 static void target_complete_failure_work(struct work_struct *work)
718 {
719 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
720
721 transport_generic_request_failure(cmd,
722 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
723 }
724
725 /*
726 * Used when asking transport to copy Sense Data from the underlying
727 * Linux/SCSI struct scsi_cmnd
728 */
transport_get_sense_buffer(struct se_cmd * cmd)729 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
730 {
731 struct se_device *dev = cmd->se_dev;
732
733 WARN_ON(!cmd->se_lun);
734
735 if (!dev)
736 return NULL;
737
738 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
739 return NULL;
740
741 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
742
743 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
744 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
745 return cmd->sense_buffer;
746 }
747
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)748 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
749 {
750 unsigned char *cmd_sense_buf;
751 unsigned long flags;
752
753 spin_lock_irqsave(&cmd->t_state_lock, flags);
754 cmd_sense_buf = transport_get_sense_buffer(cmd);
755 if (!cmd_sense_buf) {
756 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
757 return;
758 }
759
760 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
761 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
762 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763 }
764 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
765
target_handle_abort(struct se_cmd * cmd)766 static void target_handle_abort(struct se_cmd *cmd)
767 {
768 bool tas = cmd->transport_state & CMD_T_TAS;
769 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
770 int ret;
771
772 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
773
774 if (tas) {
775 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
776 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
777 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
778 cmd->t_task_cdb[0], cmd->tag);
779 trace_target_cmd_complete(cmd);
780 ret = cmd->se_tfo->queue_status(cmd);
781 if (ret) {
782 transport_handle_queue_full(cmd, cmd->se_dev,
783 ret, false);
784 return;
785 }
786 } else {
787 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
788 cmd->se_tfo->queue_tm_rsp(cmd);
789 }
790 } else {
791 /*
792 * Allow the fabric driver to unmap any resources before
793 * releasing the descriptor via TFO->release_cmd().
794 */
795 cmd->se_tfo->aborted_task(cmd);
796 if (ack_kref)
797 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
798 /*
799 * To do: establish a unit attention condition on the I_T
800 * nexus associated with cmd. See also the paragraph "Aborting
801 * commands" in SAM.
802 */
803 }
804
805 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
806
807 transport_lun_remove_cmd(cmd);
808
809 transport_cmd_check_stop_to_fabric(cmd);
810 }
811
target_abort_work(struct work_struct * work)812 static void target_abort_work(struct work_struct *work)
813 {
814 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
815
816 target_handle_abort(cmd);
817 }
818
target_cmd_interrupted(struct se_cmd * cmd)819 static bool target_cmd_interrupted(struct se_cmd *cmd)
820 {
821 int post_ret;
822
823 if (cmd->transport_state & CMD_T_ABORTED) {
824 if (cmd->transport_complete_callback)
825 cmd->transport_complete_callback(cmd, false, &post_ret);
826 INIT_WORK(&cmd->work, target_abort_work);
827 queue_work(target_completion_wq, &cmd->work);
828 return true;
829 } else if (cmd->transport_state & CMD_T_STOP) {
830 if (cmd->transport_complete_callback)
831 cmd->transport_complete_callback(cmd, false, &post_ret);
832 complete_all(&cmd->t_transport_stop_comp);
833 return true;
834 }
835
836 return false;
837 }
838
839 /* May be called from interrupt context so must not sleep. */
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)840 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
841 {
842 int success;
843 unsigned long flags;
844
845 if (target_cmd_interrupted(cmd))
846 return;
847
848 cmd->scsi_status = scsi_status;
849
850 spin_lock_irqsave(&cmd->t_state_lock, flags);
851 switch (cmd->scsi_status) {
852 case SAM_STAT_CHECK_CONDITION:
853 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
854 success = 1;
855 else
856 success = 0;
857 break;
858 default:
859 success = 1;
860 break;
861 }
862
863 cmd->t_state = TRANSPORT_COMPLETE;
864 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
865 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
866
867 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
868 target_complete_failure_work);
869 if (cmd->se_cmd_flags & SCF_USE_CPUID)
870 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
871 else
872 queue_work(target_completion_wq, &cmd->work);
873 }
874 EXPORT_SYMBOL(target_complete_cmd);
875
target_set_cmd_data_length(struct se_cmd * cmd,int length)876 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
877 {
878 if (length < cmd->data_length) {
879 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
880 cmd->residual_count += cmd->data_length - length;
881 } else {
882 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
883 cmd->residual_count = cmd->data_length - length;
884 }
885
886 cmd->data_length = length;
887 }
888 }
889 EXPORT_SYMBOL(target_set_cmd_data_length);
890
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)891 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
892 {
893 if (scsi_status == SAM_STAT_GOOD ||
894 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
895 target_set_cmd_data_length(cmd, length);
896 }
897
898 target_complete_cmd(cmd, scsi_status);
899 }
900 EXPORT_SYMBOL(target_complete_cmd_with_length);
901
target_add_to_state_list(struct se_cmd * cmd)902 static void target_add_to_state_list(struct se_cmd *cmd)
903 {
904 struct se_device *dev = cmd->se_dev;
905 unsigned long flags;
906
907 spin_lock_irqsave(&dev->execute_task_lock, flags);
908 if (!cmd->state_active) {
909 list_add_tail(&cmd->state_list, &dev->state_list);
910 cmd->state_active = true;
911 }
912 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
913 }
914
915 /*
916 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
917 */
918 static void transport_write_pending_qf(struct se_cmd *cmd);
919 static void transport_complete_qf(struct se_cmd *cmd);
920
target_qf_do_work(struct work_struct * work)921 void target_qf_do_work(struct work_struct *work)
922 {
923 struct se_device *dev = container_of(work, struct se_device,
924 qf_work_queue);
925 LIST_HEAD(qf_cmd_list);
926 struct se_cmd *cmd, *cmd_tmp;
927
928 spin_lock_irq(&dev->qf_cmd_lock);
929 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
930 spin_unlock_irq(&dev->qf_cmd_lock);
931
932 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
933 list_del(&cmd->se_qf_node);
934 atomic_dec_mb(&dev->dev_qf_count);
935
936 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
937 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
938 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
939 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
940 : "UNKNOWN");
941
942 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
943 transport_write_pending_qf(cmd);
944 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
945 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
946 transport_complete_qf(cmd);
947 }
948 }
949
transport_dump_cmd_direction(struct se_cmd * cmd)950 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
951 {
952 switch (cmd->data_direction) {
953 case DMA_NONE:
954 return "NONE";
955 case DMA_FROM_DEVICE:
956 return "READ";
957 case DMA_TO_DEVICE:
958 return "WRITE";
959 case DMA_BIDIRECTIONAL:
960 return "BIDI";
961 default:
962 break;
963 }
964
965 return "UNKNOWN";
966 }
967
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)968 void transport_dump_dev_state(
969 struct se_device *dev,
970 char *b,
971 int *bl)
972 {
973 *bl += sprintf(b + *bl, "Status: ");
974 if (dev->export_count)
975 *bl += sprintf(b + *bl, "ACTIVATED");
976 else
977 *bl += sprintf(b + *bl, "DEACTIVATED");
978
979 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
980 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
981 dev->dev_attrib.block_size,
982 dev->dev_attrib.hw_max_sectors);
983 *bl += sprintf(b + *bl, " ");
984 }
985
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)986 void transport_dump_vpd_proto_id(
987 struct t10_vpd *vpd,
988 unsigned char *p_buf,
989 int p_buf_len)
990 {
991 unsigned char buf[VPD_TMP_BUF_SIZE];
992 int len;
993
994 memset(buf, 0, VPD_TMP_BUF_SIZE);
995 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
996
997 switch (vpd->protocol_identifier) {
998 case 0x00:
999 sprintf(buf+len, "Fibre Channel\n");
1000 break;
1001 case 0x10:
1002 sprintf(buf+len, "Parallel SCSI\n");
1003 break;
1004 case 0x20:
1005 sprintf(buf+len, "SSA\n");
1006 break;
1007 case 0x30:
1008 sprintf(buf+len, "IEEE 1394\n");
1009 break;
1010 case 0x40:
1011 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1012 " Protocol\n");
1013 break;
1014 case 0x50:
1015 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1016 break;
1017 case 0x60:
1018 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1019 break;
1020 case 0x70:
1021 sprintf(buf+len, "Automation/Drive Interface Transport"
1022 " Protocol\n");
1023 break;
1024 case 0x80:
1025 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1026 break;
1027 default:
1028 sprintf(buf+len, "Unknown 0x%02x\n",
1029 vpd->protocol_identifier);
1030 break;
1031 }
1032
1033 if (p_buf)
1034 strncpy(p_buf, buf, p_buf_len);
1035 else
1036 pr_debug("%s", buf);
1037 }
1038
1039 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1040 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1041 {
1042 /*
1043 * Check if the Protocol Identifier Valid (PIV) bit is set..
1044 *
1045 * from spc3r23.pdf section 7.5.1
1046 */
1047 if (page_83[1] & 0x80) {
1048 vpd->protocol_identifier = (page_83[0] & 0xf0);
1049 vpd->protocol_identifier_set = 1;
1050 transport_dump_vpd_proto_id(vpd, NULL, 0);
1051 }
1052 }
1053 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1054
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1055 int transport_dump_vpd_assoc(
1056 struct t10_vpd *vpd,
1057 unsigned char *p_buf,
1058 int p_buf_len)
1059 {
1060 unsigned char buf[VPD_TMP_BUF_SIZE];
1061 int ret = 0;
1062 int len;
1063
1064 memset(buf, 0, VPD_TMP_BUF_SIZE);
1065 len = sprintf(buf, "T10 VPD Identifier Association: ");
1066
1067 switch (vpd->association) {
1068 case 0x00:
1069 sprintf(buf+len, "addressed logical unit\n");
1070 break;
1071 case 0x10:
1072 sprintf(buf+len, "target port\n");
1073 break;
1074 case 0x20:
1075 sprintf(buf+len, "SCSI target device\n");
1076 break;
1077 default:
1078 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1079 ret = -EINVAL;
1080 break;
1081 }
1082
1083 if (p_buf)
1084 strncpy(p_buf, buf, p_buf_len);
1085 else
1086 pr_debug("%s", buf);
1087
1088 return ret;
1089 }
1090
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1091 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1092 {
1093 /*
1094 * The VPD identification association..
1095 *
1096 * from spc3r23.pdf Section 7.6.3.1 Table 297
1097 */
1098 vpd->association = (page_83[1] & 0x30);
1099 return transport_dump_vpd_assoc(vpd, NULL, 0);
1100 }
1101 EXPORT_SYMBOL(transport_set_vpd_assoc);
1102
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1103 int transport_dump_vpd_ident_type(
1104 struct t10_vpd *vpd,
1105 unsigned char *p_buf,
1106 int p_buf_len)
1107 {
1108 unsigned char buf[VPD_TMP_BUF_SIZE];
1109 int ret = 0;
1110 int len;
1111
1112 memset(buf, 0, VPD_TMP_BUF_SIZE);
1113 len = sprintf(buf, "T10 VPD Identifier Type: ");
1114
1115 switch (vpd->device_identifier_type) {
1116 case 0x00:
1117 sprintf(buf+len, "Vendor specific\n");
1118 break;
1119 case 0x01:
1120 sprintf(buf+len, "T10 Vendor ID based\n");
1121 break;
1122 case 0x02:
1123 sprintf(buf+len, "EUI-64 based\n");
1124 break;
1125 case 0x03:
1126 sprintf(buf+len, "NAA\n");
1127 break;
1128 case 0x04:
1129 sprintf(buf+len, "Relative target port identifier\n");
1130 break;
1131 case 0x08:
1132 sprintf(buf+len, "SCSI name string\n");
1133 break;
1134 default:
1135 sprintf(buf+len, "Unsupported: 0x%02x\n",
1136 vpd->device_identifier_type);
1137 ret = -EINVAL;
1138 break;
1139 }
1140
1141 if (p_buf) {
1142 if (p_buf_len < strlen(buf)+1)
1143 return -EINVAL;
1144 strncpy(p_buf, buf, p_buf_len);
1145 } else {
1146 pr_debug("%s", buf);
1147 }
1148
1149 return ret;
1150 }
1151
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1152 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1153 {
1154 /*
1155 * The VPD identifier type..
1156 *
1157 * from spc3r23.pdf Section 7.6.3.1 Table 298
1158 */
1159 vpd->device_identifier_type = (page_83[1] & 0x0f);
1160 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1161 }
1162 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1163
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1164 int transport_dump_vpd_ident(
1165 struct t10_vpd *vpd,
1166 unsigned char *p_buf,
1167 int p_buf_len)
1168 {
1169 unsigned char buf[VPD_TMP_BUF_SIZE];
1170 int ret = 0;
1171
1172 memset(buf, 0, VPD_TMP_BUF_SIZE);
1173
1174 switch (vpd->device_identifier_code_set) {
1175 case 0x01: /* Binary */
1176 snprintf(buf, sizeof(buf),
1177 "T10 VPD Binary Device Identifier: %s\n",
1178 &vpd->device_identifier[0]);
1179 break;
1180 case 0x02: /* ASCII */
1181 snprintf(buf, sizeof(buf),
1182 "T10 VPD ASCII Device Identifier: %s\n",
1183 &vpd->device_identifier[0]);
1184 break;
1185 case 0x03: /* UTF-8 */
1186 snprintf(buf, sizeof(buf),
1187 "T10 VPD UTF-8 Device Identifier: %s\n",
1188 &vpd->device_identifier[0]);
1189 break;
1190 default:
1191 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1192 " 0x%02x", vpd->device_identifier_code_set);
1193 ret = -EINVAL;
1194 break;
1195 }
1196
1197 if (p_buf)
1198 strncpy(p_buf, buf, p_buf_len);
1199 else
1200 pr_debug("%s", buf);
1201
1202 return ret;
1203 }
1204
1205 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1206 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1207 {
1208 static const char hex_str[] = "0123456789abcdef";
1209 int j = 0, i = 4; /* offset to start of the identifier */
1210
1211 /*
1212 * The VPD Code Set (encoding)
1213 *
1214 * from spc3r23.pdf Section 7.6.3.1 Table 296
1215 */
1216 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1217 switch (vpd->device_identifier_code_set) {
1218 case 0x01: /* Binary */
1219 vpd->device_identifier[j++] =
1220 hex_str[vpd->device_identifier_type];
1221 while (i < (4 + page_83[3])) {
1222 vpd->device_identifier[j++] =
1223 hex_str[(page_83[i] & 0xf0) >> 4];
1224 vpd->device_identifier[j++] =
1225 hex_str[page_83[i] & 0x0f];
1226 i++;
1227 }
1228 break;
1229 case 0x02: /* ASCII */
1230 case 0x03: /* UTF-8 */
1231 while (i < (4 + page_83[3]))
1232 vpd->device_identifier[j++] = page_83[i++];
1233 break;
1234 default:
1235 break;
1236 }
1237
1238 return transport_dump_vpd_ident(vpd, NULL, 0);
1239 }
1240 EXPORT_SYMBOL(transport_set_vpd_ident);
1241
1242 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1243 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1244 unsigned int size)
1245 {
1246 u32 mtl;
1247
1248 if (!cmd->se_tfo->max_data_sg_nents)
1249 return TCM_NO_SENSE;
1250 /*
1251 * Check if fabric enforced maximum SGL entries per I/O descriptor
1252 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1253 * residual_count and reduce original cmd->data_length to maximum
1254 * length based on single PAGE_SIZE entry scatter-lists.
1255 */
1256 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1257 if (cmd->data_length > mtl) {
1258 /*
1259 * If an existing CDB overflow is present, calculate new residual
1260 * based on CDB size minus fabric maximum transfer length.
1261 *
1262 * If an existing CDB underflow is present, calculate new residual
1263 * based on original cmd->data_length minus fabric maximum transfer
1264 * length.
1265 *
1266 * Otherwise, set the underflow residual based on cmd->data_length
1267 * minus fabric maximum transfer length.
1268 */
1269 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1270 cmd->residual_count = (size - mtl);
1271 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1272 u32 orig_dl = size + cmd->residual_count;
1273 cmd->residual_count = (orig_dl - mtl);
1274 } else {
1275 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1276 cmd->residual_count = (cmd->data_length - mtl);
1277 }
1278 cmd->data_length = mtl;
1279 /*
1280 * Reset sbc_check_prot() calculated protection payload
1281 * length based upon the new smaller MTL.
1282 */
1283 if (cmd->prot_length) {
1284 u32 sectors = (mtl / dev->dev_attrib.block_size);
1285 cmd->prot_length = dev->prot_length * sectors;
1286 }
1287 }
1288 return TCM_NO_SENSE;
1289 }
1290
1291 /**
1292 * target_cmd_size_check - Check whether there will be a residual.
1293 * @cmd: SCSI command.
1294 * @size: Data buffer size derived from CDB. The data buffer size provided by
1295 * the SCSI transport driver is available in @cmd->data_length.
1296 *
1297 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1298 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1299 *
1300 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
1301 *
1302 * Return: TCM_NO_SENSE
1303 */
1304 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1305 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1306 {
1307 struct se_device *dev = cmd->se_dev;
1308
1309 if (cmd->unknown_data_length) {
1310 cmd->data_length = size;
1311 } else if (size != cmd->data_length) {
1312 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1313 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1314 " 0x%02x\n", cmd->se_tfo->fabric_name,
1315 cmd->data_length, size, cmd->t_task_cdb[0]);
1316
1317 if (cmd->data_direction == DMA_TO_DEVICE) {
1318 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1319 pr_err_ratelimited("Rejecting underflow/overflow"
1320 " for WRITE data CDB\n");
1321 return TCM_INVALID_CDB_FIELD;
1322 }
1323 /*
1324 * Some fabric drivers like iscsi-target still expect to
1325 * always reject overflow writes. Reject this case until
1326 * full fabric driver level support for overflow writes
1327 * is introduced tree-wide.
1328 */
1329 if (size > cmd->data_length) {
1330 pr_err_ratelimited("Rejecting overflow for"
1331 " WRITE control CDB\n");
1332 return TCM_INVALID_CDB_FIELD;
1333 }
1334 }
1335 /*
1336 * Reject READ_* or WRITE_* with overflow/underflow for
1337 * type SCF_SCSI_DATA_CDB.
1338 */
1339 if (dev->dev_attrib.block_size != 512) {
1340 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1341 " CDB on non 512-byte sector setup subsystem"
1342 " plugin: %s\n", dev->transport->name);
1343 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1344 return TCM_INVALID_CDB_FIELD;
1345 }
1346 /*
1347 * For the overflow case keep the existing fabric provided
1348 * ->data_length. Otherwise for the underflow case, reset
1349 * ->data_length to the smaller SCSI expected data transfer
1350 * length.
1351 */
1352 if (size > cmd->data_length) {
1353 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1354 cmd->residual_count = (size - cmd->data_length);
1355 } else {
1356 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1357 cmd->residual_count = (cmd->data_length - size);
1358 cmd->data_length = size;
1359 }
1360 }
1361
1362 return target_check_max_data_sg_nents(cmd, dev, size);
1363
1364 }
1365
1366 /*
1367 * Used by fabric modules containing a local struct se_cmd within their
1368 * fabric dependent per I/O descriptor.
1369 *
1370 * Preserves the value of @cmd->tag.
1371 */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer,u64 unpacked_lun)1372 void transport_init_se_cmd(
1373 struct se_cmd *cmd,
1374 const struct target_core_fabric_ops *tfo,
1375 struct se_session *se_sess,
1376 u32 data_length,
1377 int data_direction,
1378 int task_attr,
1379 unsigned char *sense_buffer, u64 unpacked_lun)
1380 {
1381 INIT_LIST_HEAD(&cmd->se_delayed_node);
1382 INIT_LIST_HEAD(&cmd->se_qf_node);
1383 INIT_LIST_HEAD(&cmd->se_cmd_list);
1384 INIT_LIST_HEAD(&cmd->state_list);
1385 init_completion(&cmd->t_transport_stop_comp);
1386 cmd->free_compl = NULL;
1387 cmd->abrt_compl = NULL;
1388 spin_lock_init(&cmd->t_state_lock);
1389 INIT_WORK(&cmd->work, NULL);
1390 kref_init(&cmd->cmd_kref);
1391
1392 cmd->se_tfo = tfo;
1393 cmd->se_sess = se_sess;
1394 cmd->data_length = data_length;
1395 cmd->data_direction = data_direction;
1396 cmd->sam_task_attr = task_attr;
1397 cmd->sense_buffer = sense_buffer;
1398 cmd->orig_fe_lun = unpacked_lun;
1399
1400 cmd->state_active = false;
1401 }
1402 EXPORT_SYMBOL(transport_init_se_cmd);
1403
1404 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1405 transport_check_alloc_task_attr(struct se_cmd *cmd)
1406 {
1407 struct se_device *dev = cmd->se_dev;
1408
1409 /*
1410 * Check if SAM Task Attribute emulation is enabled for this
1411 * struct se_device storage object
1412 */
1413 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1414 return 0;
1415
1416 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1417 pr_debug("SAM Task Attribute ACA"
1418 " emulation is not supported\n");
1419 return TCM_INVALID_CDB_FIELD;
1420 }
1421
1422 return 0;
1423 }
1424
1425 sense_reason_t
target_cmd_init_cdb(struct se_cmd * cmd,unsigned char * cdb)1426 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb)
1427 {
1428 sense_reason_t ret;
1429
1430 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1431 /*
1432 * Ensure that the received CDB is less than the max (252 + 8) bytes
1433 * for VARIABLE_LENGTH_CMD
1434 */
1435 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1436 pr_err("Received SCSI CDB with command_size: %d that"
1437 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1438 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1439 ret = TCM_INVALID_CDB_FIELD;
1440 goto err;
1441 }
1442 /*
1443 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1444 * allocate the additional extended CDB buffer now.. Otherwise
1445 * setup the pointer from __t_task_cdb to t_task_cdb.
1446 */
1447 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1448 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1449 GFP_KERNEL);
1450 if (!cmd->t_task_cdb) {
1451 pr_err("Unable to allocate cmd->t_task_cdb"
1452 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1453 scsi_command_size(cdb),
1454 (unsigned long)sizeof(cmd->__t_task_cdb));
1455 ret = TCM_OUT_OF_RESOURCES;
1456 goto err;
1457 }
1458 }
1459 /*
1460 * Copy the original CDB into cmd->
1461 */
1462 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1463
1464 trace_target_sequencer_start(cmd);
1465 return 0;
1466
1467 err:
1468 /*
1469 * Copy the CDB here to allow trace_target_cmd_complete() to
1470 * print the cdb to the trace buffers.
1471 */
1472 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1473 (unsigned int)TCM_MAX_COMMAND_SIZE));
1474 return ret;
1475 }
1476 EXPORT_SYMBOL(target_cmd_init_cdb);
1477
1478 sense_reason_t
target_cmd_parse_cdb(struct se_cmd * cmd)1479 target_cmd_parse_cdb(struct se_cmd *cmd)
1480 {
1481 struct se_device *dev = cmd->se_dev;
1482 sense_reason_t ret;
1483
1484 ret = dev->transport->parse_cdb(cmd);
1485 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1486 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1487 cmd->se_tfo->fabric_name,
1488 cmd->se_sess->se_node_acl->initiatorname,
1489 cmd->t_task_cdb[0]);
1490 if (ret)
1491 return ret;
1492
1493 ret = transport_check_alloc_task_attr(cmd);
1494 if (ret)
1495 return ret;
1496
1497 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1498 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1499 return 0;
1500 }
1501 EXPORT_SYMBOL(target_cmd_parse_cdb);
1502
1503 /*
1504 * Used by fabric module frontends to queue tasks directly.
1505 * May only be used from process context.
1506 */
transport_handle_cdb_direct(struct se_cmd * cmd)1507 int transport_handle_cdb_direct(
1508 struct se_cmd *cmd)
1509 {
1510 sense_reason_t ret;
1511
1512 if (!cmd->se_lun) {
1513 dump_stack();
1514 pr_err("cmd->se_lun is NULL\n");
1515 return -EINVAL;
1516 }
1517 if (in_interrupt()) {
1518 dump_stack();
1519 pr_err("transport_generic_handle_cdb cannot be called"
1520 " from interrupt context\n");
1521 return -EINVAL;
1522 }
1523 /*
1524 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1525 * outstanding descriptors are handled correctly during shutdown via
1526 * transport_wait_for_tasks()
1527 *
1528 * Also, we don't take cmd->t_state_lock here as we only expect
1529 * this to be called for initial descriptor submission.
1530 */
1531 cmd->t_state = TRANSPORT_NEW_CMD;
1532 cmd->transport_state |= CMD_T_ACTIVE;
1533
1534 /*
1535 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1536 * so follow TRANSPORT_NEW_CMD processing thread context usage
1537 * and call transport_generic_request_failure() if necessary..
1538 */
1539 ret = transport_generic_new_cmd(cmd);
1540 if (ret)
1541 transport_generic_request_failure(cmd, ret);
1542 return 0;
1543 }
1544 EXPORT_SYMBOL(transport_handle_cdb_direct);
1545
1546 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1547 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1548 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1549 {
1550 if (!sgl || !sgl_count)
1551 return 0;
1552
1553 /*
1554 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1555 * scatterlists already have been set to follow what the fabric
1556 * passes for the original expected data transfer length.
1557 */
1558 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1559 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1560 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1561 return TCM_INVALID_CDB_FIELD;
1562 }
1563
1564 cmd->t_data_sg = sgl;
1565 cmd->t_data_nents = sgl_count;
1566 cmd->t_bidi_data_sg = sgl_bidi;
1567 cmd->t_bidi_data_nents = sgl_bidi_count;
1568
1569 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1570 return 0;
1571 }
1572
1573 /**
1574 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1575 * se_cmd + use pre-allocated SGL memory.
1576 *
1577 * @se_cmd: command descriptor to submit
1578 * @se_sess: associated se_sess for endpoint
1579 * @cdb: pointer to SCSI CDB
1580 * @sense: pointer to SCSI sense buffer
1581 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1582 * @data_length: fabric expected data transfer length
1583 * @task_attr: SAM task attribute
1584 * @data_dir: DMA data direction
1585 * @flags: flags for command submission from target_sc_flags_tables
1586 * @sgl: struct scatterlist memory for unidirectional mapping
1587 * @sgl_count: scatterlist count for unidirectional mapping
1588 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1589 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1590 * @sgl_prot: struct scatterlist memory protection information
1591 * @sgl_prot_count: scatterlist count for protection information
1592 *
1593 * Task tags are supported if the caller has set @se_cmd->tag.
1594 *
1595 * Returns non zero to signal active I/O shutdown failure. All other
1596 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1597 * but still return zero here.
1598 *
1599 * This may only be called from process context, and also currently
1600 * assumes internal allocation of fabric payload buffer by target-core.
1601 */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1602 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1603 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1604 u32 data_length, int task_attr, int data_dir, int flags,
1605 struct scatterlist *sgl, u32 sgl_count,
1606 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1607 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1608 {
1609 struct se_portal_group *se_tpg;
1610 sense_reason_t rc;
1611 int ret;
1612
1613 se_tpg = se_sess->se_tpg;
1614 BUG_ON(!se_tpg);
1615 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1616 BUG_ON(in_interrupt());
1617 /*
1618 * Initialize se_cmd for target operation. From this point
1619 * exceptions are handled by sending exception status via
1620 * target_core_fabric_ops->queue_status() callback
1621 */
1622 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1623 data_length, data_dir, task_attr, sense,
1624 unpacked_lun);
1625
1626 if (flags & TARGET_SCF_USE_CPUID)
1627 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1628 else
1629 se_cmd->cpuid = WORK_CPU_UNBOUND;
1630
1631 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1632 se_cmd->unknown_data_length = 1;
1633 /*
1634 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1635 * se_sess->sess_cmd_list. A second kref_get here is necessary
1636 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1637 * kref_put() to happen during fabric packet acknowledgement.
1638 */
1639 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1640 if (ret)
1641 return ret;
1642 /*
1643 * Signal bidirectional data payloads to target-core
1644 */
1645 if (flags & TARGET_SCF_BIDI_OP)
1646 se_cmd->se_cmd_flags |= SCF_BIDI;
1647
1648 rc = target_cmd_init_cdb(se_cmd, cdb);
1649 if (rc) {
1650 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1651 target_put_sess_cmd(se_cmd);
1652 return 0;
1653 }
1654
1655 /*
1656 * Locate se_lun pointer and attach it to struct se_cmd
1657 */
1658 rc = transport_lookup_cmd_lun(se_cmd);
1659 if (rc) {
1660 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1661 target_put_sess_cmd(se_cmd);
1662 return 0;
1663 }
1664
1665 rc = target_cmd_parse_cdb(se_cmd);
1666 if (rc != 0) {
1667 transport_generic_request_failure(se_cmd, rc);
1668 return 0;
1669 }
1670
1671 /*
1672 * Save pointers for SGLs containing protection information,
1673 * if present.
1674 */
1675 if (sgl_prot_count) {
1676 se_cmd->t_prot_sg = sgl_prot;
1677 se_cmd->t_prot_nents = sgl_prot_count;
1678 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1679 }
1680
1681 /*
1682 * When a non zero sgl_count has been passed perform SGL passthrough
1683 * mapping for pre-allocated fabric memory instead of having target
1684 * core perform an internal SGL allocation..
1685 */
1686 if (sgl_count != 0) {
1687 BUG_ON(!sgl);
1688
1689 /*
1690 * A work-around for tcm_loop as some userspace code via
1691 * scsi-generic do not memset their associated read buffers,
1692 * so go ahead and do that here for type non-data CDBs. Also
1693 * note that this is currently guaranteed to be a single SGL
1694 * for this case by target core in target_setup_cmd_from_cdb()
1695 * -> transport_generic_cmd_sequencer().
1696 */
1697 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1698 se_cmd->data_direction == DMA_FROM_DEVICE) {
1699 unsigned char *buf = NULL;
1700
1701 if (sgl)
1702 buf = kmap(sg_page(sgl)) + sgl->offset;
1703
1704 if (buf) {
1705 memset(buf, 0, sgl->length);
1706 kunmap(sg_page(sgl));
1707 }
1708 }
1709
1710 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1711 sgl_bidi, sgl_bidi_count);
1712 if (rc != 0) {
1713 transport_generic_request_failure(se_cmd, rc);
1714 return 0;
1715 }
1716 }
1717
1718 /*
1719 * Check if we need to delay processing because of ALUA
1720 * Active/NonOptimized primary access state..
1721 */
1722 core_alua_check_nonop_delay(se_cmd);
1723
1724 transport_handle_cdb_direct(se_cmd);
1725 return 0;
1726 }
1727 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1728
1729 /**
1730 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1731 *
1732 * @se_cmd: command descriptor to submit
1733 * @se_sess: associated se_sess for endpoint
1734 * @cdb: pointer to SCSI CDB
1735 * @sense: pointer to SCSI sense buffer
1736 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1737 * @data_length: fabric expected data transfer length
1738 * @task_attr: SAM task attribute
1739 * @data_dir: DMA data direction
1740 * @flags: flags for command submission from target_sc_flags_tables
1741 *
1742 * Task tags are supported if the caller has set @se_cmd->tag.
1743 *
1744 * Returns non zero to signal active I/O shutdown failure. All other
1745 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1746 * but still return zero here.
1747 *
1748 * This may only be called from process context, and also currently
1749 * assumes internal allocation of fabric payload buffer by target-core.
1750 *
1751 * It also assumes interal target core SGL memory allocation.
1752 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1753 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1754 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1755 u32 data_length, int task_attr, int data_dir, int flags)
1756 {
1757 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1758 unpacked_lun, data_length, task_attr, data_dir,
1759 flags, NULL, 0, NULL, 0, NULL, 0);
1760 }
1761 EXPORT_SYMBOL(target_submit_cmd);
1762
target_complete_tmr_failure(struct work_struct * work)1763 static void target_complete_tmr_failure(struct work_struct *work)
1764 {
1765 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1766
1767 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1768 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1769
1770 transport_lun_remove_cmd(se_cmd);
1771 transport_cmd_check_stop_to_fabric(se_cmd);
1772 }
1773
target_lookup_lun_from_tag(struct se_session * se_sess,u64 tag,u64 * unpacked_lun)1774 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1775 u64 *unpacked_lun)
1776 {
1777 struct se_cmd *se_cmd;
1778 unsigned long flags;
1779 bool ret = false;
1780
1781 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1782 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1783 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1784 continue;
1785
1786 if (se_cmd->tag == tag) {
1787 *unpacked_lun = se_cmd->orig_fe_lun;
1788 ret = true;
1789 break;
1790 }
1791 }
1792 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1793
1794 return ret;
1795 }
1796
1797 /**
1798 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1799 * for TMR CDBs
1800 *
1801 * @se_cmd: command descriptor to submit
1802 * @se_sess: associated se_sess for endpoint
1803 * @sense: pointer to SCSI sense buffer
1804 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1805 * @fabric_tmr_ptr: fabric context for TMR req
1806 * @tm_type: Type of TM request
1807 * @gfp: gfp type for caller
1808 * @tag: referenced task tag for TMR_ABORT_TASK
1809 * @flags: submit cmd flags
1810 *
1811 * Callable from all contexts.
1812 **/
1813
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1814 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1815 unsigned char *sense, u64 unpacked_lun,
1816 void *fabric_tmr_ptr, unsigned char tm_type,
1817 gfp_t gfp, u64 tag, int flags)
1818 {
1819 struct se_portal_group *se_tpg;
1820 int ret;
1821
1822 se_tpg = se_sess->se_tpg;
1823 BUG_ON(!se_tpg);
1824
1825 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1826 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1827 /*
1828 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1829 * allocation failure.
1830 */
1831 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1832 if (ret < 0)
1833 return -ENOMEM;
1834
1835 if (tm_type == TMR_ABORT_TASK)
1836 se_cmd->se_tmr_req->ref_task_tag = tag;
1837
1838 /* See target_submit_cmd for commentary */
1839 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1840 if (ret) {
1841 core_tmr_release_req(se_cmd->se_tmr_req);
1842 return ret;
1843 }
1844 /*
1845 * If this is ABORT_TASK with no explicit fabric provided LUN,
1846 * go ahead and search active session tags for a match to figure
1847 * out unpacked_lun for the original se_cmd.
1848 */
1849 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1850 if (!target_lookup_lun_from_tag(se_sess, tag,
1851 &se_cmd->orig_fe_lun))
1852 goto failure;
1853 }
1854
1855 ret = transport_lookup_tmr_lun(se_cmd);
1856 if (ret)
1857 goto failure;
1858
1859 transport_generic_handle_tmr(se_cmd);
1860 return 0;
1861
1862 /*
1863 * For callback during failure handling, push this work off
1864 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1865 */
1866 failure:
1867 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1868 schedule_work(&se_cmd->work);
1869 return 0;
1870 }
1871 EXPORT_SYMBOL(target_submit_tmr);
1872
1873 /*
1874 * Handle SAM-esque emulation for generic transport request failures.
1875 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1876 void transport_generic_request_failure(struct se_cmd *cmd,
1877 sense_reason_t sense_reason)
1878 {
1879 int ret = 0, post_ret;
1880
1881 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1882 sense_reason);
1883 target_show_cmd("-----[ ", cmd);
1884
1885 /*
1886 * For SAM Task Attribute emulation for failed struct se_cmd
1887 */
1888 transport_complete_task_attr(cmd);
1889
1890 if (cmd->transport_complete_callback)
1891 cmd->transport_complete_callback(cmd, false, &post_ret);
1892
1893 if (cmd->transport_state & CMD_T_ABORTED) {
1894 INIT_WORK(&cmd->work, target_abort_work);
1895 queue_work(target_completion_wq, &cmd->work);
1896 return;
1897 }
1898
1899 switch (sense_reason) {
1900 case TCM_NON_EXISTENT_LUN:
1901 case TCM_UNSUPPORTED_SCSI_OPCODE:
1902 case TCM_INVALID_CDB_FIELD:
1903 case TCM_INVALID_PARAMETER_LIST:
1904 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1905 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1906 case TCM_UNKNOWN_MODE_PAGE:
1907 case TCM_WRITE_PROTECTED:
1908 case TCM_ADDRESS_OUT_OF_RANGE:
1909 case TCM_CHECK_CONDITION_ABORT_CMD:
1910 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1911 case TCM_CHECK_CONDITION_NOT_READY:
1912 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1913 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1914 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1915 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1916 case TCM_TOO_MANY_TARGET_DESCS:
1917 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1918 case TCM_TOO_MANY_SEGMENT_DESCS:
1919 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1920 break;
1921 case TCM_OUT_OF_RESOURCES:
1922 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1923 goto queue_status;
1924 case TCM_LUN_BUSY:
1925 cmd->scsi_status = SAM_STAT_BUSY;
1926 goto queue_status;
1927 case TCM_RESERVATION_CONFLICT:
1928 /*
1929 * No SENSE Data payload for this case, set SCSI Status
1930 * and queue the response to $FABRIC_MOD.
1931 *
1932 * Uses linux/include/scsi/scsi.h SAM status codes defs
1933 */
1934 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1935 /*
1936 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1937 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1938 * CONFLICT STATUS.
1939 *
1940 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1941 */
1942 if (cmd->se_sess &&
1943 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
1944 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
1945 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1946 cmd->orig_fe_lun, 0x2C,
1947 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1948 }
1949
1950 goto queue_status;
1951 default:
1952 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1953 cmd->t_task_cdb[0], sense_reason);
1954 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1955 break;
1956 }
1957
1958 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1959 if (ret)
1960 goto queue_full;
1961
1962 check_stop:
1963 transport_lun_remove_cmd(cmd);
1964 transport_cmd_check_stop_to_fabric(cmd);
1965 return;
1966
1967 queue_status:
1968 trace_target_cmd_complete(cmd);
1969 ret = cmd->se_tfo->queue_status(cmd);
1970 if (!ret)
1971 goto check_stop;
1972 queue_full:
1973 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1974 }
1975 EXPORT_SYMBOL(transport_generic_request_failure);
1976
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1977 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1978 {
1979 sense_reason_t ret;
1980
1981 if (!cmd->execute_cmd) {
1982 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1983 goto err;
1984 }
1985 if (do_checks) {
1986 /*
1987 * Check for an existing UNIT ATTENTION condition after
1988 * target_handle_task_attr() has done SAM task attr
1989 * checking, and possibly have already defered execution
1990 * out to target_restart_delayed_cmds() context.
1991 */
1992 ret = target_scsi3_ua_check(cmd);
1993 if (ret)
1994 goto err;
1995
1996 ret = target_alua_state_check(cmd);
1997 if (ret)
1998 goto err;
1999
2000 ret = target_check_reservation(cmd);
2001 if (ret) {
2002 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2003 goto err;
2004 }
2005 }
2006
2007 ret = cmd->execute_cmd(cmd);
2008 if (!ret)
2009 return;
2010 err:
2011 spin_lock_irq(&cmd->t_state_lock);
2012 cmd->transport_state &= ~CMD_T_SENT;
2013 spin_unlock_irq(&cmd->t_state_lock);
2014
2015 transport_generic_request_failure(cmd, ret);
2016 }
2017
target_write_prot_action(struct se_cmd * cmd)2018 static int target_write_prot_action(struct se_cmd *cmd)
2019 {
2020 u32 sectors;
2021 /*
2022 * Perform WRITE_INSERT of PI using software emulation when backend
2023 * device has PI enabled, if the transport has not already generated
2024 * PI using hardware WRITE_INSERT offload.
2025 */
2026 switch (cmd->prot_op) {
2027 case TARGET_PROT_DOUT_INSERT:
2028 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2029 sbc_dif_generate(cmd);
2030 break;
2031 case TARGET_PROT_DOUT_STRIP:
2032 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2033 break;
2034
2035 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2036 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2037 sectors, 0, cmd->t_prot_sg, 0);
2038 if (unlikely(cmd->pi_err)) {
2039 spin_lock_irq(&cmd->t_state_lock);
2040 cmd->transport_state &= ~CMD_T_SENT;
2041 spin_unlock_irq(&cmd->t_state_lock);
2042 transport_generic_request_failure(cmd, cmd->pi_err);
2043 return -1;
2044 }
2045 break;
2046 default:
2047 break;
2048 }
2049
2050 return 0;
2051 }
2052
target_handle_task_attr(struct se_cmd * cmd)2053 static bool target_handle_task_attr(struct se_cmd *cmd)
2054 {
2055 struct se_device *dev = cmd->se_dev;
2056
2057 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2058 return false;
2059
2060 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2061
2062 /*
2063 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2064 * to allow the passed struct se_cmd list of tasks to the front of the list.
2065 */
2066 switch (cmd->sam_task_attr) {
2067 case TCM_HEAD_TAG:
2068 atomic_inc_mb(&dev->non_ordered);
2069 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2070 cmd->t_task_cdb[0]);
2071 return false;
2072 case TCM_ORDERED_TAG:
2073 atomic_inc_mb(&dev->delayed_cmd_count);
2074
2075 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2076 cmd->t_task_cdb[0]);
2077 break;
2078 default:
2079 /*
2080 * For SIMPLE and UNTAGGED Task Attribute commands
2081 */
2082 atomic_inc_mb(&dev->non_ordered);
2083
2084 if (atomic_read(&dev->delayed_cmd_count) == 0)
2085 return false;
2086 break;
2087 }
2088
2089 if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2090 atomic_inc_mb(&dev->delayed_cmd_count);
2091 /*
2092 * We will account for this when we dequeue from the delayed
2093 * list.
2094 */
2095 atomic_dec_mb(&dev->non_ordered);
2096 }
2097
2098 spin_lock(&dev->delayed_cmd_lock);
2099 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2100 spin_unlock(&dev->delayed_cmd_lock);
2101
2102 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2103 cmd->t_task_cdb[0], cmd->sam_task_attr);
2104 /*
2105 * We may have no non ordered cmds when this function started or we
2106 * could have raced with the last simple/head cmd completing, so kick
2107 * the delayed handler here.
2108 */
2109 schedule_work(&dev->delayed_cmd_work);
2110 return true;
2111 }
2112
target_execute_cmd(struct se_cmd * cmd)2113 void target_execute_cmd(struct se_cmd *cmd)
2114 {
2115 /*
2116 * Determine if frontend context caller is requesting the stopping of
2117 * this command for frontend exceptions.
2118 *
2119 * If the received CDB has already been aborted stop processing it here.
2120 */
2121 if (target_cmd_interrupted(cmd))
2122 return;
2123
2124 spin_lock_irq(&cmd->t_state_lock);
2125 cmd->t_state = TRANSPORT_PROCESSING;
2126 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2127 spin_unlock_irq(&cmd->t_state_lock);
2128
2129 if (target_write_prot_action(cmd))
2130 return;
2131
2132 if (target_handle_task_attr(cmd)) {
2133 spin_lock_irq(&cmd->t_state_lock);
2134 cmd->transport_state &= ~CMD_T_SENT;
2135 spin_unlock_irq(&cmd->t_state_lock);
2136 return;
2137 }
2138
2139 __target_execute_cmd(cmd, true);
2140 }
2141 EXPORT_SYMBOL(target_execute_cmd);
2142
2143 /*
2144 * Process all commands up to the last received ORDERED task attribute which
2145 * requires another blocking boundary
2146 */
target_do_delayed_work(struct work_struct * work)2147 void target_do_delayed_work(struct work_struct *work)
2148 {
2149 struct se_device *dev = container_of(work, struct se_device,
2150 delayed_cmd_work);
2151
2152 spin_lock(&dev->delayed_cmd_lock);
2153 while (!dev->ordered_sync_in_progress) {
2154 struct se_cmd *cmd;
2155
2156 if (list_empty(&dev->delayed_cmd_list))
2157 break;
2158
2159 cmd = list_entry(dev->delayed_cmd_list.next,
2160 struct se_cmd, se_delayed_node);
2161
2162 if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2163 /*
2164 * Check if we started with:
2165 * [ordered] [simple] [ordered]
2166 * and we are now at the last ordered so we have to wait
2167 * for the simple cmd.
2168 */
2169 if (atomic_read(&dev->non_ordered) > 0)
2170 break;
2171
2172 dev->ordered_sync_in_progress = true;
2173 }
2174
2175 list_del(&cmd->se_delayed_node);
2176 atomic_dec_mb(&dev->delayed_cmd_count);
2177 spin_unlock(&dev->delayed_cmd_lock);
2178
2179 if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2180 atomic_inc_mb(&dev->non_ordered);
2181
2182 cmd->transport_state |= CMD_T_SENT;
2183
2184 __target_execute_cmd(cmd, true);
2185
2186 spin_lock(&dev->delayed_cmd_lock);
2187 }
2188 spin_unlock(&dev->delayed_cmd_lock);
2189 }
2190
2191 /*
2192 * Called from I/O completion to determine which dormant/delayed
2193 * and ordered cmds need to have their tasks added to the execution queue.
2194 */
transport_complete_task_attr(struct se_cmd * cmd)2195 static void transport_complete_task_attr(struct se_cmd *cmd)
2196 {
2197 struct se_device *dev = cmd->se_dev;
2198
2199 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2200 return;
2201
2202 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2203 goto restart;
2204
2205 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2206 atomic_dec_mb(&dev->non_ordered);
2207 dev->dev_cur_ordered_id++;
2208 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2209 atomic_dec_mb(&dev->non_ordered);
2210 dev->dev_cur_ordered_id++;
2211 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2212 dev->dev_cur_ordered_id);
2213 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2214 spin_lock(&dev->delayed_cmd_lock);
2215 dev->ordered_sync_in_progress = false;
2216 spin_unlock(&dev->delayed_cmd_lock);
2217
2218 dev->dev_cur_ordered_id++;
2219 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2220 dev->dev_cur_ordered_id);
2221 }
2222 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2223
2224 restart:
2225 if (atomic_read(&dev->delayed_cmd_count) > 0)
2226 schedule_work(&dev->delayed_cmd_work);
2227 }
2228
transport_complete_qf(struct se_cmd * cmd)2229 static void transport_complete_qf(struct se_cmd *cmd)
2230 {
2231 int ret = 0;
2232
2233 transport_complete_task_attr(cmd);
2234 /*
2235 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2236 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2237 * the same callbacks should not be retried. Return CHECK_CONDITION
2238 * if a scsi_status is not already set.
2239 *
2240 * If a fabric driver ->queue_status() has returned non zero, always
2241 * keep retrying no matter what..
2242 */
2243 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2244 if (cmd->scsi_status)
2245 goto queue_status;
2246
2247 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2248 goto queue_status;
2249 }
2250
2251 /*
2252 * Check if we need to send a sense buffer from
2253 * the struct se_cmd in question. We do NOT want
2254 * to take this path of the IO has been marked as
2255 * needing to be treated like a "normal read". This
2256 * is the case if it's a tape read, and either the
2257 * FM, EOM, or ILI bits are set, but there is no
2258 * sense data.
2259 */
2260 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2261 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2262 goto queue_status;
2263
2264 switch (cmd->data_direction) {
2265 case DMA_FROM_DEVICE:
2266 /* queue status if not treating this as a normal read */
2267 if (cmd->scsi_status &&
2268 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2269 goto queue_status;
2270
2271 trace_target_cmd_complete(cmd);
2272 ret = cmd->se_tfo->queue_data_in(cmd);
2273 break;
2274 case DMA_TO_DEVICE:
2275 if (cmd->se_cmd_flags & SCF_BIDI) {
2276 ret = cmd->se_tfo->queue_data_in(cmd);
2277 break;
2278 }
2279 fallthrough;
2280 case DMA_NONE:
2281 queue_status:
2282 trace_target_cmd_complete(cmd);
2283 ret = cmd->se_tfo->queue_status(cmd);
2284 break;
2285 default:
2286 break;
2287 }
2288
2289 if (ret < 0) {
2290 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2291 return;
2292 }
2293 transport_lun_remove_cmd(cmd);
2294 transport_cmd_check_stop_to_fabric(cmd);
2295 }
2296
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2297 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2298 int err, bool write_pending)
2299 {
2300 /*
2301 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2302 * ->queue_data_in() callbacks from new process context.
2303 *
2304 * Otherwise for other errors, transport_complete_qf() will send
2305 * CHECK_CONDITION via ->queue_status() instead of attempting to
2306 * retry associated fabric driver data-transfer callbacks.
2307 */
2308 if (err == -EAGAIN || err == -ENOMEM) {
2309 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2310 TRANSPORT_COMPLETE_QF_OK;
2311 } else {
2312 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2313 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2314 }
2315
2316 spin_lock_irq(&dev->qf_cmd_lock);
2317 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2318 atomic_inc_mb(&dev->dev_qf_count);
2319 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2320
2321 schedule_work(&cmd->se_dev->qf_work_queue);
2322 }
2323
target_read_prot_action(struct se_cmd * cmd)2324 static bool target_read_prot_action(struct se_cmd *cmd)
2325 {
2326 switch (cmd->prot_op) {
2327 case TARGET_PROT_DIN_STRIP:
2328 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2329 u32 sectors = cmd->data_length >>
2330 ilog2(cmd->se_dev->dev_attrib.block_size);
2331
2332 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2333 sectors, 0, cmd->t_prot_sg,
2334 0);
2335 if (cmd->pi_err)
2336 return true;
2337 }
2338 break;
2339 case TARGET_PROT_DIN_INSERT:
2340 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2341 break;
2342
2343 sbc_dif_generate(cmd);
2344 break;
2345 default:
2346 break;
2347 }
2348
2349 return false;
2350 }
2351
target_complete_ok_work(struct work_struct * work)2352 static void target_complete_ok_work(struct work_struct *work)
2353 {
2354 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2355 int ret;
2356
2357 /*
2358 * Check if we need to move delayed/dormant tasks from cmds on the
2359 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2360 * Attribute.
2361 */
2362 transport_complete_task_attr(cmd);
2363
2364 /*
2365 * Check to schedule QUEUE_FULL work, or execute an existing
2366 * cmd->transport_qf_callback()
2367 */
2368 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2369 schedule_work(&cmd->se_dev->qf_work_queue);
2370
2371 /*
2372 * Check if we need to send a sense buffer from
2373 * the struct se_cmd in question. We do NOT want
2374 * to take this path of the IO has been marked as
2375 * needing to be treated like a "normal read". This
2376 * is the case if it's a tape read, and either the
2377 * FM, EOM, or ILI bits are set, but there is no
2378 * sense data.
2379 */
2380 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2381 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2382 WARN_ON(!cmd->scsi_status);
2383 ret = transport_send_check_condition_and_sense(
2384 cmd, 0, 1);
2385 if (ret)
2386 goto queue_full;
2387
2388 transport_lun_remove_cmd(cmd);
2389 transport_cmd_check_stop_to_fabric(cmd);
2390 return;
2391 }
2392 /*
2393 * Check for a callback, used by amongst other things
2394 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2395 */
2396 if (cmd->transport_complete_callback) {
2397 sense_reason_t rc;
2398 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2399 bool zero_dl = !(cmd->data_length);
2400 int post_ret = 0;
2401
2402 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2403 if (!rc && !post_ret) {
2404 if (caw && zero_dl)
2405 goto queue_rsp;
2406
2407 return;
2408 } else if (rc) {
2409 ret = transport_send_check_condition_and_sense(cmd,
2410 rc, 0);
2411 if (ret)
2412 goto queue_full;
2413
2414 transport_lun_remove_cmd(cmd);
2415 transport_cmd_check_stop_to_fabric(cmd);
2416 return;
2417 }
2418 }
2419
2420 queue_rsp:
2421 switch (cmd->data_direction) {
2422 case DMA_FROM_DEVICE:
2423 /*
2424 * if this is a READ-type IO, but SCSI status
2425 * is set, then skip returning data and just
2426 * return the status -- unless this IO is marked
2427 * as needing to be treated as a normal read,
2428 * in which case we want to go ahead and return
2429 * the data. This happens, for example, for tape
2430 * reads with the FM, EOM, or ILI bits set, with
2431 * no sense data.
2432 */
2433 if (cmd->scsi_status &&
2434 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2435 goto queue_status;
2436
2437 atomic_long_add(cmd->data_length,
2438 &cmd->se_lun->lun_stats.tx_data_octets);
2439 /*
2440 * Perform READ_STRIP of PI using software emulation when
2441 * backend had PI enabled, if the transport will not be
2442 * performing hardware READ_STRIP offload.
2443 */
2444 if (target_read_prot_action(cmd)) {
2445 ret = transport_send_check_condition_and_sense(cmd,
2446 cmd->pi_err, 0);
2447 if (ret)
2448 goto queue_full;
2449
2450 transport_lun_remove_cmd(cmd);
2451 transport_cmd_check_stop_to_fabric(cmd);
2452 return;
2453 }
2454
2455 trace_target_cmd_complete(cmd);
2456 ret = cmd->se_tfo->queue_data_in(cmd);
2457 if (ret)
2458 goto queue_full;
2459 break;
2460 case DMA_TO_DEVICE:
2461 atomic_long_add(cmd->data_length,
2462 &cmd->se_lun->lun_stats.rx_data_octets);
2463 /*
2464 * Check if we need to send READ payload for BIDI-COMMAND
2465 */
2466 if (cmd->se_cmd_flags & SCF_BIDI) {
2467 atomic_long_add(cmd->data_length,
2468 &cmd->se_lun->lun_stats.tx_data_octets);
2469 ret = cmd->se_tfo->queue_data_in(cmd);
2470 if (ret)
2471 goto queue_full;
2472 break;
2473 }
2474 fallthrough;
2475 case DMA_NONE:
2476 queue_status:
2477 trace_target_cmd_complete(cmd);
2478 ret = cmd->se_tfo->queue_status(cmd);
2479 if (ret)
2480 goto queue_full;
2481 break;
2482 default:
2483 break;
2484 }
2485
2486 transport_lun_remove_cmd(cmd);
2487 transport_cmd_check_stop_to_fabric(cmd);
2488 return;
2489
2490 queue_full:
2491 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2492 " data_direction: %d\n", cmd, cmd->data_direction);
2493
2494 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2495 }
2496
target_free_sgl(struct scatterlist * sgl,int nents)2497 void target_free_sgl(struct scatterlist *sgl, int nents)
2498 {
2499 sgl_free_n_order(sgl, nents, 0);
2500 }
2501 EXPORT_SYMBOL(target_free_sgl);
2502
transport_reset_sgl_orig(struct se_cmd * cmd)2503 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2504 {
2505 /*
2506 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2507 * emulation, and free + reset pointers if necessary..
2508 */
2509 if (!cmd->t_data_sg_orig)
2510 return;
2511
2512 kfree(cmd->t_data_sg);
2513 cmd->t_data_sg = cmd->t_data_sg_orig;
2514 cmd->t_data_sg_orig = NULL;
2515 cmd->t_data_nents = cmd->t_data_nents_orig;
2516 cmd->t_data_nents_orig = 0;
2517 }
2518
transport_free_pages(struct se_cmd * cmd)2519 static inline void transport_free_pages(struct se_cmd *cmd)
2520 {
2521 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2522 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2523 cmd->t_prot_sg = NULL;
2524 cmd->t_prot_nents = 0;
2525 }
2526
2527 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2528 /*
2529 * Release special case READ buffer payload required for
2530 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2531 */
2532 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2533 target_free_sgl(cmd->t_bidi_data_sg,
2534 cmd->t_bidi_data_nents);
2535 cmd->t_bidi_data_sg = NULL;
2536 cmd->t_bidi_data_nents = 0;
2537 }
2538 transport_reset_sgl_orig(cmd);
2539 return;
2540 }
2541 transport_reset_sgl_orig(cmd);
2542
2543 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2544 cmd->t_data_sg = NULL;
2545 cmd->t_data_nents = 0;
2546
2547 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2548 cmd->t_bidi_data_sg = NULL;
2549 cmd->t_bidi_data_nents = 0;
2550 }
2551
transport_kmap_data_sg(struct se_cmd * cmd)2552 void *transport_kmap_data_sg(struct se_cmd *cmd)
2553 {
2554 struct scatterlist *sg = cmd->t_data_sg;
2555 struct page **pages;
2556 int i;
2557
2558 /*
2559 * We need to take into account a possible offset here for fabrics like
2560 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2561 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2562 */
2563 if (!cmd->t_data_nents)
2564 return NULL;
2565
2566 BUG_ON(!sg);
2567 if (cmd->t_data_nents == 1)
2568 return kmap(sg_page(sg)) + sg->offset;
2569
2570 /* >1 page. use vmap */
2571 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2572 if (!pages)
2573 return NULL;
2574
2575 /* convert sg[] to pages[] */
2576 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2577 pages[i] = sg_page(sg);
2578 }
2579
2580 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2581 kfree(pages);
2582 if (!cmd->t_data_vmap)
2583 return NULL;
2584
2585 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2586 }
2587 EXPORT_SYMBOL(transport_kmap_data_sg);
2588
transport_kunmap_data_sg(struct se_cmd * cmd)2589 void transport_kunmap_data_sg(struct se_cmd *cmd)
2590 {
2591 if (!cmd->t_data_nents) {
2592 return;
2593 } else if (cmd->t_data_nents == 1) {
2594 kunmap(sg_page(cmd->t_data_sg));
2595 return;
2596 }
2597
2598 vunmap(cmd->t_data_vmap);
2599 cmd->t_data_vmap = NULL;
2600 }
2601 EXPORT_SYMBOL(transport_kunmap_data_sg);
2602
2603 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2604 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2605 bool zero_page, bool chainable)
2606 {
2607 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2608
2609 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2610 return *sgl ? 0 : -ENOMEM;
2611 }
2612 EXPORT_SYMBOL(target_alloc_sgl);
2613
2614 /*
2615 * Allocate any required resources to execute the command. For writes we
2616 * might not have the payload yet, so notify the fabric via a call to
2617 * ->write_pending instead. Otherwise place it on the execution queue.
2618 */
2619 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2620 transport_generic_new_cmd(struct se_cmd *cmd)
2621 {
2622 unsigned long flags;
2623 int ret = 0;
2624 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2625
2626 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2627 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2628 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2629 cmd->prot_length, true, false);
2630 if (ret < 0)
2631 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2632 }
2633
2634 /*
2635 * Determine if the TCM fabric module has already allocated physical
2636 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2637 * beforehand.
2638 */
2639 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2640 cmd->data_length) {
2641
2642 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2643 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2644 u32 bidi_length;
2645
2646 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2647 bidi_length = cmd->t_task_nolb *
2648 cmd->se_dev->dev_attrib.block_size;
2649 else
2650 bidi_length = cmd->data_length;
2651
2652 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2653 &cmd->t_bidi_data_nents,
2654 bidi_length, zero_flag, false);
2655 if (ret < 0)
2656 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2657 }
2658
2659 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2660 cmd->data_length, zero_flag, false);
2661 if (ret < 0)
2662 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2663 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2664 cmd->data_length) {
2665 /*
2666 * Special case for COMPARE_AND_WRITE with fabrics
2667 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2668 */
2669 u32 caw_length = cmd->t_task_nolb *
2670 cmd->se_dev->dev_attrib.block_size;
2671
2672 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2673 &cmd->t_bidi_data_nents,
2674 caw_length, zero_flag, false);
2675 if (ret < 0)
2676 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2677 }
2678 /*
2679 * If this command is not a write we can execute it right here,
2680 * for write buffers we need to notify the fabric driver first
2681 * and let it call back once the write buffers are ready.
2682 */
2683 target_add_to_state_list(cmd);
2684 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2685 target_execute_cmd(cmd);
2686 return 0;
2687 }
2688
2689 spin_lock_irqsave(&cmd->t_state_lock, flags);
2690 cmd->t_state = TRANSPORT_WRITE_PENDING;
2691 /*
2692 * Determine if frontend context caller is requesting the stopping of
2693 * this command for frontend exceptions.
2694 */
2695 if (cmd->transport_state & CMD_T_STOP &&
2696 !cmd->se_tfo->write_pending_must_be_called) {
2697 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2698 __func__, __LINE__, cmd->tag);
2699
2700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2701
2702 complete_all(&cmd->t_transport_stop_comp);
2703 return 0;
2704 }
2705 cmd->transport_state &= ~CMD_T_ACTIVE;
2706 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2707
2708 ret = cmd->se_tfo->write_pending(cmd);
2709 if (ret)
2710 goto queue_full;
2711
2712 return 0;
2713
2714 queue_full:
2715 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2716 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2717 return 0;
2718 }
2719 EXPORT_SYMBOL(transport_generic_new_cmd);
2720
transport_write_pending_qf(struct se_cmd * cmd)2721 static void transport_write_pending_qf(struct se_cmd *cmd)
2722 {
2723 unsigned long flags;
2724 int ret;
2725 bool stop;
2726
2727 spin_lock_irqsave(&cmd->t_state_lock, flags);
2728 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2729 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2730
2731 if (stop) {
2732 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2733 __func__, __LINE__, cmd->tag);
2734 complete_all(&cmd->t_transport_stop_comp);
2735 return;
2736 }
2737
2738 ret = cmd->se_tfo->write_pending(cmd);
2739 if (ret) {
2740 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2741 cmd);
2742 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2743 }
2744 }
2745
2746 static bool
2747 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2748 unsigned long *flags);
2749
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2750 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2751 {
2752 unsigned long flags;
2753
2754 spin_lock_irqsave(&cmd->t_state_lock, flags);
2755 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2756 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2757 }
2758
2759 /*
2760 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2761 * finished.
2762 */
target_put_cmd_and_wait(struct se_cmd * cmd)2763 void target_put_cmd_and_wait(struct se_cmd *cmd)
2764 {
2765 DECLARE_COMPLETION_ONSTACK(compl);
2766
2767 WARN_ON_ONCE(cmd->abrt_compl);
2768 cmd->abrt_compl = &compl;
2769 target_put_sess_cmd(cmd);
2770 wait_for_completion(&compl);
2771 }
2772
2773 /*
2774 * This function is called by frontend drivers after processing of a command
2775 * has finished.
2776 *
2777 * The protocol for ensuring that either the regular frontend command
2778 * processing flow or target_handle_abort() code drops one reference is as
2779 * follows:
2780 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2781 * the frontend driver to call this function synchronously or asynchronously.
2782 * That will cause one reference to be dropped.
2783 * - During regular command processing the target core sets CMD_T_COMPLETE
2784 * before invoking one of the .queue_*() functions.
2785 * - The code that aborts commands skips commands and TMFs for which
2786 * CMD_T_COMPLETE has been set.
2787 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2788 * commands that will be aborted.
2789 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2790 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2791 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2792 * be called and will drop a reference.
2793 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2794 * will be called. target_handle_abort() will drop the final reference.
2795 */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2796 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2797 {
2798 DECLARE_COMPLETION_ONSTACK(compl);
2799 int ret = 0;
2800 bool aborted = false, tas = false;
2801
2802 if (wait_for_tasks)
2803 target_wait_free_cmd(cmd, &aborted, &tas);
2804
2805 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2806 /*
2807 * Handle WRITE failure case where transport_generic_new_cmd()
2808 * has already added se_cmd to state_list, but fabric has
2809 * failed command before I/O submission.
2810 */
2811 if (cmd->state_active)
2812 target_remove_from_state_list(cmd);
2813
2814 if (cmd->se_lun)
2815 transport_lun_remove_cmd(cmd);
2816 }
2817 if (aborted)
2818 cmd->free_compl = &compl;
2819 ret = target_put_sess_cmd(cmd);
2820 if (aborted) {
2821 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2822 wait_for_completion(&compl);
2823 ret = 1;
2824 }
2825 return ret;
2826 }
2827 EXPORT_SYMBOL(transport_generic_free_cmd);
2828
2829 /**
2830 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2831 * @se_cmd: command descriptor to add
2832 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2833 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2834 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2835 {
2836 struct se_session *se_sess = se_cmd->se_sess;
2837 unsigned long flags;
2838 int ret = 0;
2839
2840 /*
2841 * Add a second kref if the fabric caller is expecting to handle
2842 * fabric acknowledgement that requires two target_put_sess_cmd()
2843 * invocations before se_cmd descriptor release.
2844 */
2845 if (ack_kref) {
2846 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2847 return -EINVAL;
2848
2849 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2850 }
2851
2852 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2853 if (se_sess->sess_tearing_down) {
2854 ret = -ESHUTDOWN;
2855 goto out;
2856 }
2857 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2858 percpu_ref_get(&se_sess->cmd_count);
2859 out:
2860 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2861
2862 if (ret && ack_kref)
2863 target_put_sess_cmd(se_cmd);
2864
2865 return ret;
2866 }
2867 EXPORT_SYMBOL(target_get_sess_cmd);
2868
target_free_cmd_mem(struct se_cmd * cmd)2869 static void target_free_cmd_mem(struct se_cmd *cmd)
2870 {
2871 transport_free_pages(cmd);
2872
2873 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2874 core_tmr_release_req(cmd->se_tmr_req);
2875 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2876 kfree(cmd->t_task_cdb);
2877 }
2878
target_release_cmd_kref(struct kref * kref)2879 static void target_release_cmd_kref(struct kref *kref)
2880 {
2881 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2882 struct se_session *se_sess = se_cmd->se_sess;
2883 struct completion *free_compl = se_cmd->free_compl;
2884 struct completion *abrt_compl = se_cmd->abrt_compl;
2885 unsigned long flags;
2886
2887 if (se_sess) {
2888 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2889 list_del_init(&se_cmd->se_cmd_list);
2890 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2891 }
2892
2893 target_free_cmd_mem(se_cmd);
2894 se_cmd->se_tfo->release_cmd(se_cmd);
2895 if (free_compl)
2896 complete(free_compl);
2897 if (abrt_compl)
2898 complete(abrt_compl);
2899
2900 percpu_ref_put(&se_sess->cmd_count);
2901 }
2902
2903 /**
2904 * target_put_sess_cmd - decrease the command reference count
2905 * @se_cmd: command to drop a reference from
2906 *
2907 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2908 * refcount to drop to zero. Returns zero otherwise.
2909 */
target_put_sess_cmd(struct se_cmd * se_cmd)2910 int target_put_sess_cmd(struct se_cmd *se_cmd)
2911 {
2912 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2913 }
2914 EXPORT_SYMBOL(target_put_sess_cmd);
2915
data_dir_name(enum dma_data_direction d)2916 static const char *data_dir_name(enum dma_data_direction d)
2917 {
2918 switch (d) {
2919 case DMA_BIDIRECTIONAL: return "BIDI";
2920 case DMA_TO_DEVICE: return "WRITE";
2921 case DMA_FROM_DEVICE: return "READ";
2922 case DMA_NONE: return "NONE";
2923 }
2924
2925 return "(?)";
2926 }
2927
cmd_state_name(enum transport_state_table t)2928 static const char *cmd_state_name(enum transport_state_table t)
2929 {
2930 switch (t) {
2931 case TRANSPORT_NO_STATE: return "NO_STATE";
2932 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2933 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2934 case TRANSPORT_PROCESSING: return "PROCESSING";
2935 case TRANSPORT_COMPLETE: return "COMPLETE";
2936 case TRANSPORT_ISTATE_PROCESSING:
2937 return "ISTATE_PROCESSING";
2938 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2939 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2940 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2941 }
2942
2943 return "(?)";
2944 }
2945
target_append_str(char ** str,const char * txt)2946 static void target_append_str(char **str, const char *txt)
2947 {
2948 char *prev = *str;
2949
2950 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2951 kstrdup(txt, GFP_ATOMIC);
2952 kfree(prev);
2953 }
2954
2955 /*
2956 * Convert a transport state bitmask into a string. The caller is
2957 * responsible for freeing the returned pointer.
2958 */
target_ts_to_str(u32 ts)2959 static char *target_ts_to_str(u32 ts)
2960 {
2961 char *str = NULL;
2962
2963 if (ts & CMD_T_ABORTED)
2964 target_append_str(&str, "aborted");
2965 if (ts & CMD_T_ACTIVE)
2966 target_append_str(&str, "active");
2967 if (ts & CMD_T_COMPLETE)
2968 target_append_str(&str, "complete");
2969 if (ts & CMD_T_SENT)
2970 target_append_str(&str, "sent");
2971 if (ts & CMD_T_STOP)
2972 target_append_str(&str, "stop");
2973 if (ts & CMD_T_FABRIC_STOP)
2974 target_append_str(&str, "fabric_stop");
2975
2976 return str;
2977 }
2978
target_tmf_name(enum tcm_tmreq_table tmf)2979 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2980 {
2981 switch (tmf) {
2982 case TMR_ABORT_TASK: return "ABORT_TASK";
2983 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2984 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2985 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2986 case TMR_LUN_RESET: return "LUN_RESET";
2987 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2988 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2989 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO";
2990 case TMR_UNKNOWN: break;
2991 }
2992 return "(?)";
2993 }
2994
target_show_cmd(const char * pfx,struct se_cmd * cmd)2995 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2996 {
2997 char *ts_str = target_ts_to_str(cmd->transport_state);
2998 const u8 *cdb = cmd->t_task_cdb;
2999 struct se_tmr_req *tmf = cmd->se_tmr_req;
3000
3001 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3002 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3003 pfx, cdb[0], cdb[1], cmd->tag,
3004 data_dir_name(cmd->data_direction),
3005 cmd->se_tfo->get_cmd_state(cmd),
3006 cmd_state_name(cmd->t_state), cmd->data_length,
3007 kref_read(&cmd->cmd_kref), ts_str);
3008 } else {
3009 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3010 pfx, target_tmf_name(tmf->function), cmd->tag,
3011 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3012 cmd_state_name(cmd->t_state),
3013 kref_read(&cmd->cmd_kref), ts_str);
3014 }
3015 kfree(ts_str);
3016 }
3017 EXPORT_SYMBOL(target_show_cmd);
3018
3019 /**
3020 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
3021 * @se_sess: session to flag
3022 */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)3023 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
3024 {
3025 unsigned long flags;
3026
3027 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3028 se_sess->sess_tearing_down = 1;
3029 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3030
3031 percpu_ref_kill(&se_sess->cmd_count);
3032 }
3033 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
3034
3035 /**
3036 * target_wait_for_sess_cmds - Wait for outstanding commands
3037 * @se_sess: session to wait for active I/O
3038 */
target_wait_for_sess_cmds(struct se_session * se_sess)3039 void target_wait_for_sess_cmds(struct se_session *se_sess)
3040 {
3041 struct se_cmd *cmd;
3042 int ret;
3043
3044 WARN_ON_ONCE(!se_sess->sess_tearing_down);
3045
3046 do {
3047 ret = wait_event_timeout(se_sess->cmd_list_wq,
3048 percpu_ref_is_zero(&se_sess->cmd_count),
3049 180 * HZ);
3050 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
3051 target_show_cmd("session shutdown: still waiting for ",
3052 cmd);
3053 } while (ret <= 0);
3054 }
3055 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3056
3057 /*
3058 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3059 * all references to the LUN have been released. Called during LUN shutdown.
3060 */
transport_clear_lun_ref(struct se_lun * lun)3061 void transport_clear_lun_ref(struct se_lun *lun)
3062 {
3063 percpu_ref_kill(&lun->lun_ref);
3064 wait_for_completion(&lun->lun_shutdown_comp);
3065 }
3066
3067 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)3068 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3069 bool *aborted, bool *tas, unsigned long *flags)
3070 __releases(&cmd->t_state_lock)
3071 __acquires(&cmd->t_state_lock)
3072 {
3073 lockdep_assert_held(&cmd->t_state_lock);
3074
3075 if (fabric_stop)
3076 cmd->transport_state |= CMD_T_FABRIC_STOP;
3077
3078 if (cmd->transport_state & CMD_T_ABORTED)
3079 *aborted = true;
3080
3081 if (cmd->transport_state & CMD_T_TAS)
3082 *tas = true;
3083
3084 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3085 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3086 return false;
3087
3088 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3089 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3090 return false;
3091
3092 if (!(cmd->transport_state & CMD_T_ACTIVE))
3093 return false;
3094
3095 if (fabric_stop && *aborted)
3096 return false;
3097
3098 cmd->transport_state |= CMD_T_STOP;
3099
3100 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3101
3102 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3103
3104 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3105 180 * HZ))
3106 target_show_cmd("wait for tasks: ", cmd);
3107
3108 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3109 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3110
3111 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3112 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3113
3114 return true;
3115 }
3116
3117 /**
3118 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3119 * @cmd: command to wait on
3120 */
transport_wait_for_tasks(struct se_cmd * cmd)3121 bool transport_wait_for_tasks(struct se_cmd *cmd)
3122 {
3123 unsigned long flags;
3124 bool ret, aborted = false, tas = false;
3125
3126 spin_lock_irqsave(&cmd->t_state_lock, flags);
3127 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3128 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3129
3130 return ret;
3131 }
3132 EXPORT_SYMBOL(transport_wait_for_tasks);
3133
3134 struct sense_info {
3135 u8 key;
3136 u8 asc;
3137 u8 ascq;
3138 bool add_sector_info;
3139 };
3140
3141 static const struct sense_info sense_info_table[] = {
3142 [TCM_NO_SENSE] = {
3143 .key = NOT_READY
3144 },
3145 [TCM_NON_EXISTENT_LUN] = {
3146 .key = ILLEGAL_REQUEST,
3147 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3148 },
3149 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3150 .key = ILLEGAL_REQUEST,
3151 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3152 },
3153 [TCM_SECTOR_COUNT_TOO_MANY] = {
3154 .key = ILLEGAL_REQUEST,
3155 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3156 },
3157 [TCM_UNKNOWN_MODE_PAGE] = {
3158 .key = ILLEGAL_REQUEST,
3159 .asc = 0x24, /* INVALID FIELD IN CDB */
3160 },
3161 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3162 .key = ABORTED_COMMAND,
3163 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3164 .ascq = 0x03,
3165 },
3166 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3167 .key = ABORTED_COMMAND,
3168 .asc = 0x0c, /* WRITE ERROR */
3169 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3170 },
3171 [TCM_INVALID_CDB_FIELD] = {
3172 .key = ILLEGAL_REQUEST,
3173 .asc = 0x24, /* INVALID FIELD IN CDB */
3174 },
3175 [TCM_INVALID_PARAMETER_LIST] = {
3176 .key = ILLEGAL_REQUEST,
3177 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3178 },
3179 [TCM_TOO_MANY_TARGET_DESCS] = {
3180 .key = ILLEGAL_REQUEST,
3181 .asc = 0x26,
3182 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3183 },
3184 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3185 .key = ILLEGAL_REQUEST,
3186 .asc = 0x26,
3187 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3188 },
3189 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3190 .key = ILLEGAL_REQUEST,
3191 .asc = 0x26,
3192 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3193 },
3194 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3195 .key = ILLEGAL_REQUEST,
3196 .asc = 0x26,
3197 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3198 },
3199 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3200 .key = ILLEGAL_REQUEST,
3201 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3202 },
3203 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3204 .key = ILLEGAL_REQUEST,
3205 .asc = 0x0c, /* WRITE ERROR */
3206 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3207 },
3208 [TCM_SERVICE_CRC_ERROR] = {
3209 .key = ABORTED_COMMAND,
3210 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3211 .ascq = 0x05, /* N/A */
3212 },
3213 [TCM_SNACK_REJECTED] = {
3214 .key = ABORTED_COMMAND,
3215 .asc = 0x11, /* READ ERROR */
3216 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3217 },
3218 [TCM_WRITE_PROTECTED] = {
3219 .key = DATA_PROTECT,
3220 .asc = 0x27, /* WRITE PROTECTED */
3221 },
3222 [TCM_ADDRESS_OUT_OF_RANGE] = {
3223 .key = ILLEGAL_REQUEST,
3224 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3225 },
3226 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3227 .key = UNIT_ATTENTION,
3228 },
3229 [TCM_CHECK_CONDITION_NOT_READY] = {
3230 .key = NOT_READY,
3231 },
3232 [TCM_MISCOMPARE_VERIFY] = {
3233 .key = MISCOMPARE,
3234 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3235 .ascq = 0x00,
3236 },
3237 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3238 .key = ABORTED_COMMAND,
3239 .asc = 0x10,
3240 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3241 .add_sector_info = true,
3242 },
3243 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3244 .key = ABORTED_COMMAND,
3245 .asc = 0x10,
3246 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3247 .add_sector_info = true,
3248 },
3249 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3250 .key = ABORTED_COMMAND,
3251 .asc = 0x10,
3252 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3253 .add_sector_info = true,
3254 },
3255 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3256 .key = COPY_ABORTED,
3257 .asc = 0x0d,
3258 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3259
3260 },
3261 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3262 /*
3263 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3264 * Solaris initiators. Returning NOT READY instead means the
3265 * operations will be retried a finite number of times and we
3266 * can survive intermittent errors.
3267 */
3268 .key = NOT_READY,
3269 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3270 },
3271 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3272 /*
3273 * From spc4r22 section5.7.7,5.7.8
3274 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3275 * or a REGISTER AND IGNORE EXISTING KEY service action or
3276 * REGISTER AND MOVE service actionis attempted,
3277 * but there are insufficient device server resources to complete the
3278 * operation, then the command shall be terminated with CHECK CONDITION
3279 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3280 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3281 */
3282 .key = ILLEGAL_REQUEST,
3283 .asc = 0x55,
3284 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3285 },
3286 };
3287
3288 /**
3289 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3290 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3291 * be stored.
3292 * @reason: LIO sense reason code. If this argument has the value
3293 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3294 * dequeuing a unit attention fails due to multiple commands being processed
3295 * concurrently, set the command status to BUSY.
3296 *
3297 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3298 */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3299 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3300 {
3301 const struct sense_info *si;
3302 u8 *buffer = cmd->sense_buffer;
3303 int r = (__force int)reason;
3304 u8 key, asc, ascq;
3305 bool desc_format = target_sense_desc_format(cmd->se_dev);
3306
3307 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3308 si = &sense_info_table[r];
3309 else
3310 si = &sense_info_table[(__force int)
3311 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3312
3313 key = si->key;
3314 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3315 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3316 &ascq)) {
3317 cmd->scsi_status = SAM_STAT_BUSY;
3318 return;
3319 }
3320 } else if (si->asc == 0) {
3321 WARN_ON_ONCE(cmd->scsi_asc == 0);
3322 asc = cmd->scsi_asc;
3323 ascq = cmd->scsi_ascq;
3324 } else {
3325 asc = si->asc;
3326 ascq = si->ascq;
3327 }
3328
3329 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3330 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3331 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3332 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3333 if (si->add_sector_info)
3334 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3335 cmd->scsi_sense_length,
3336 cmd->bad_sector) < 0);
3337 }
3338
3339 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3340 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3341 sense_reason_t reason, int from_transport)
3342 {
3343 unsigned long flags;
3344
3345 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3346
3347 spin_lock_irqsave(&cmd->t_state_lock, flags);
3348 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3349 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3350 return 0;
3351 }
3352 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3353 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3354
3355 if (!from_transport)
3356 translate_sense_reason(cmd, reason);
3357
3358 trace_target_cmd_complete(cmd);
3359 return cmd->se_tfo->queue_status(cmd);
3360 }
3361 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3362
3363 /**
3364 * target_send_busy - Send SCSI BUSY status back to the initiator
3365 * @cmd: SCSI command for which to send a BUSY reply.
3366 *
3367 * Note: Only call this function if target_submit_cmd*() failed.
3368 */
target_send_busy(struct se_cmd * cmd)3369 int target_send_busy(struct se_cmd *cmd)
3370 {
3371 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3372
3373 cmd->scsi_status = SAM_STAT_BUSY;
3374 trace_target_cmd_complete(cmd);
3375 return cmd->se_tfo->queue_status(cmd);
3376 }
3377 EXPORT_SYMBOL(target_send_busy);
3378
target_tmr_work(struct work_struct * work)3379 static void target_tmr_work(struct work_struct *work)
3380 {
3381 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3382 struct se_device *dev = cmd->se_dev;
3383 struct se_tmr_req *tmr = cmd->se_tmr_req;
3384 int ret;
3385
3386 if (cmd->transport_state & CMD_T_ABORTED)
3387 goto aborted;
3388
3389 switch (tmr->function) {
3390 case TMR_ABORT_TASK:
3391 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3392 break;
3393 case TMR_ABORT_TASK_SET:
3394 case TMR_CLEAR_ACA:
3395 case TMR_CLEAR_TASK_SET:
3396 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3397 break;
3398 case TMR_LUN_RESET:
3399 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3400 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3401 TMR_FUNCTION_REJECTED;
3402 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3403 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3404 cmd->orig_fe_lun, 0x29,
3405 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3406 }
3407 break;
3408 case TMR_TARGET_WARM_RESET:
3409 tmr->response = TMR_FUNCTION_REJECTED;
3410 break;
3411 case TMR_TARGET_COLD_RESET:
3412 tmr->response = TMR_FUNCTION_REJECTED;
3413 break;
3414 default:
3415 pr_err("Unknown TMR function: 0x%02x.\n",
3416 tmr->function);
3417 tmr->response = TMR_FUNCTION_REJECTED;
3418 break;
3419 }
3420
3421 if (cmd->transport_state & CMD_T_ABORTED)
3422 goto aborted;
3423
3424 cmd->se_tfo->queue_tm_rsp(cmd);
3425
3426 transport_lun_remove_cmd(cmd);
3427 transport_cmd_check_stop_to_fabric(cmd);
3428 return;
3429
3430 aborted:
3431 target_handle_abort(cmd);
3432 }
3433
transport_generic_handle_tmr(struct se_cmd * cmd)3434 int transport_generic_handle_tmr(
3435 struct se_cmd *cmd)
3436 {
3437 unsigned long flags;
3438 bool aborted = false;
3439
3440 spin_lock_irqsave(&cmd->t_state_lock, flags);
3441 if (cmd->transport_state & CMD_T_ABORTED) {
3442 aborted = true;
3443 } else {
3444 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3445 cmd->transport_state |= CMD_T_ACTIVE;
3446 }
3447 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3448
3449 if (aborted) {
3450 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3451 cmd->se_tmr_req->function,
3452 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3453 target_handle_abort(cmd);
3454 return 0;
3455 }
3456
3457 INIT_WORK(&cmd->work, target_tmr_work);
3458 schedule_work(&cmd->work);
3459 return 0;
3460 }
3461 EXPORT_SYMBOL(transport_generic_handle_tmr);
3462
3463 bool
target_check_wce(struct se_device * dev)3464 target_check_wce(struct se_device *dev)
3465 {
3466 bool wce = false;
3467
3468 if (dev->transport->get_write_cache)
3469 wce = dev->transport->get_write_cache(dev);
3470 else if (dev->dev_attrib.emulate_write_cache > 0)
3471 wce = true;
3472
3473 return wce;
3474 }
3475
3476 bool
target_check_fua(struct se_device * dev)3477 target_check_fua(struct se_device *dev)
3478 {
3479 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3480 }
3481