1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28
29 #include <asm/irq_regs.h>
30
31 #include "tick-internal.h"
32
33 #include <trace/events/timer.h>
34
35 /*
36 * Per-CPU nohz control structure
37 */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39
tick_get_tick_sched(int cpu)40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 return &per_cpu(tick_cpu_sched, cpu);
43 }
44
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49 static ktime_t last_jiffies_update;
50
51 /*
52 * Must be called with interrupts disabled !
53 */
tick_do_update_jiffies64(ktime_t now)54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 unsigned long ticks = 0;
57 ktime_t delta;
58
59 /*
60 * Do a quick check without holding jiffies_lock:
61 * The READ_ONCE() pairs with two updates done later in this function.
62 */
63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 if (delta < tick_period)
65 return;
66
67 /* Reevaluate with jiffies_lock held */
68 raw_spin_lock(&jiffies_lock);
69 write_seqcount_begin(&jiffies_seq);
70
71 delta = ktime_sub(now, last_jiffies_update);
72 if (delta >= tick_period) {
73
74 delta = ktime_sub(delta, tick_period);
75 /* Pairs with the lockless read in this function. */
76 WRITE_ONCE(last_jiffies_update,
77 ktime_add(last_jiffies_update, tick_period));
78
79 /* Slow path for long timeouts */
80 if (unlikely(delta >= tick_period)) {
81 s64 incr = ktime_to_ns(tick_period);
82
83 ticks = ktime_divns(delta, incr);
84
85 /* Pairs with the lockless read in this function. */
86 WRITE_ONCE(last_jiffies_update,
87 ktime_add_ns(last_jiffies_update,
88 incr * ticks));
89 }
90 do_timer(++ticks);
91
92 /* Keep the tick_next_period variable up to date */
93 tick_next_period = ktime_add(last_jiffies_update, tick_period);
94 } else {
95 write_seqcount_end(&jiffies_seq);
96 raw_spin_unlock(&jiffies_lock);
97 return;
98 }
99 write_seqcount_end(&jiffies_seq);
100 raw_spin_unlock(&jiffies_lock);
101 update_wall_time();
102 }
103
104 /*
105 * Initialize and return retrieve the jiffies update.
106 */
tick_init_jiffy_update(void)107 static ktime_t tick_init_jiffy_update(void)
108 {
109 ktime_t period;
110
111 raw_spin_lock(&jiffies_lock);
112 write_seqcount_begin(&jiffies_seq);
113 /* Did we start the jiffies update yet ? */
114 if (last_jiffies_update == 0)
115 last_jiffies_update = tick_next_period;
116 period = last_jiffies_update;
117 write_seqcount_end(&jiffies_seq);
118 raw_spin_unlock(&jiffies_lock);
119 return period;
120 }
121
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)122 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
123 {
124 int cpu = smp_processor_id();
125
126 #ifdef CONFIG_NO_HZ_COMMON
127 /*
128 * Check if the do_timer duty was dropped. We don't care about
129 * concurrency: This happens only when the CPU in charge went
130 * into a long sleep. If two CPUs happen to assign themselves to
131 * this duty, then the jiffies update is still serialized by
132 * jiffies_lock.
133 *
134 * If nohz_full is enabled, this should not happen because the
135 * tick_do_timer_cpu never relinquishes.
136 */
137 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
138 #ifdef CONFIG_NO_HZ_FULL
139 WARN_ON_ONCE(tick_nohz_full_running);
140 #endif
141 tick_do_timer_cpu = cpu;
142 }
143 #endif
144
145 /* Check, if the jiffies need an update */
146 if (tick_do_timer_cpu == cpu)
147 tick_do_update_jiffies64(now);
148
149 if (ts->inidle)
150 ts->got_idle_tick = 1;
151 }
152
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)153 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
154 {
155 #ifdef CONFIG_NO_HZ_COMMON
156 /*
157 * When we are idle and the tick is stopped, we have to touch
158 * the watchdog as we might not schedule for a really long
159 * time. This happens on complete idle SMP systems while
160 * waiting on the login prompt. We also increment the "start of
161 * idle" jiffy stamp so the idle accounting adjustment we do
162 * when we go busy again does not account too much ticks.
163 */
164 if (ts->tick_stopped) {
165 touch_softlockup_watchdog_sched();
166 if (is_idle_task(current))
167 ts->idle_jiffies++;
168 /*
169 * In case the current tick fired too early past its expected
170 * expiration, make sure we don't bypass the next clock reprogramming
171 * to the same deadline.
172 */
173 ts->next_tick = 0;
174 }
175 #endif
176 update_process_times(user_mode(regs));
177 profile_tick(CPU_PROFILING);
178 }
179 #endif
180
181 #ifdef CONFIG_NO_HZ_FULL
182 cpumask_var_t tick_nohz_full_mask;
183 bool tick_nohz_full_running;
184 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
185 static atomic_t tick_dep_mask;
186
check_tick_dependency(atomic_t * dep)187 static bool check_tick_dependency(atomic_t *dep)
188 {
189 int val = atomic_read(dep);
190
191 if (val & TICK_DEP_MASK_POSIX_TIMER) {
192 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
193 return true;
194 }
195
196 if (val & TICK_DEP_MASK_PERF_EVENTS) {
197 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
198 return true;
199 }
200
201 if (val & TICK_DEP_MASK_SCHED) {
202 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
203 return true;
204 }
205
206 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
207 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
208 return true;
209 }
210
211 if (val & TICK_DEP_MASK_RCU) {
212 trace_tick_stop(0, TICK_DEP_MASK_RCU);
213 return true;
214 }
215
216 return false;
217 }
218
can_stop_full_tick(int cpu,struct tick_sched * ts)219 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
220 {
221 lockdep_assert_irqs_disabled();
222
223 if (unlikely(!cpu_online(cpu)))
224 return false;
225
226 if (check_tick_dependency(&tick_dep_mask))
227 return false;
228
229 if (check_tick_dependency(&ts->tick_dep_mask))
230 return false;
231
232 if (check_tick_dependency(¤t->tick_dep_mask))
233 return false;
234
235 if (check_tick_dependency(¤t->signal->tick_dep_mask))
236 return false;
237
238 return true;
239 }
240
nohz_full_kick_func(struct irq_work * work)241 static void nohz_full_kick_func(struct irq_work *work)
242 {
243 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
244 }
245
246 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
247 .func = nohz_full_kick_func,
248 .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
249 };
250
251 /*
252 * Kick this CPU if it's full dynticks in order to force it to
253 * re-evaluate its dependency on the tick and restart it if necessary.
254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
255 * is NMI safe.
256 */
tick_nohz_full_kick(void)257 static void tick_nohz_full_kick(void)
258 {
259 if (!tick_nohz_full_cpu(smp_processor_id()))
260 return;
261
262 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
263 }
264
265 /*
266 * Kick the CPU if it's full dynticks in order to force it to
267 * re-evaluate its dependency on the tick and restart it if necessary.
268 */
tick_nohz_full_kick_cpu(int cpu)269 void tick_nohz_full_kick_cpu(int cpu)
270 {
271 if (!tick_nohz_full_cpu(cpu))
272 return;
273
274 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
275 }
276
277 /*
278 * Kick all full dynticks CPUs in order to force these to re-evaluate
279 * their dependency on the tick and restart it if necessary.
280 */
tick_nohz_full_kick_all(void)281 static void tick_nohz_full_kick_all(void)
282 {
283 int cpu;
284
285 if (!tick_nohz_full_running)
286 return;
287
288 preempt_disable();
289 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
290 tick_nohz_full_kick_cpu(cpu);
291 preempt_enable();
292 }
293
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)294 static void tick_nohz_dep_set_all(atomic_t *dep,
295 enum tick_dep_bits bit)
296 {
297 int prev;
298
299 prev = atomic_fetch_or(BIT(bit), dep);
300 if (!prev)
301 tick_nohz_full_kick_all();
302 }
303
304 /*
305 * Set a global tick dependency. Used by perf events that rely on freq and
306 * by unstable clock.
307 */
tick_nohz_dep_set(enum tick_dep_bits bit)308 void tick_nohz_dep_set(enum tick_dep_bits bit)
309 {
310 tick_nohz_dep_set_all(&tick_dep_mask, bit);
311 }
312
tick_nohz_dep_clear(enum tick_dep_bits bit)313 void tick_nohz_dep_clear(enum tick_dep_bits bit)
314 {
315 atomic_andnot(BIT(bit), &tick_dep_mask);
316 }
317
318 /*
319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
320 * manage events throttling.
321 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)322 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
323 {
324 int prev;
325 struct tick_sched *ts;
326
327 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
328
329 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
330 if (!prev) {
331 preempt_disable();
332 /* Perf needs local kick that is NMI safe */
333 if (cpu == smp_processor_id()) {
334 tick_nohz_full_kick();
335 } else {
336 /* Remote irq work not NMI-safe */
337 if (!WARN_ON_ONCE(in_nmi()))
338 tick_nohz_full_kick_cpu(cpu);
339 }
340 preempt_enable();
341 }
342 }
343 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
344
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)345 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
346 {
347 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
348
349 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
350 }
351 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
352
353 /*
354 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
355 * in order to elapse per task timers.
356 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)357 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
358 {
359 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
360 if (tsk == current) {
361 preempt_disable();
362 tick_nohz_full_kick();
363 preempt_enable();
364 } else {
365 /*
366 * Some future tick_nohz_full_kick_task()
367 * should optimize this.
368 */
369 tick_nohz_full_kick_all();
370 }
371 }
372 }
373 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
374
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)375 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
376 {
377 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
378 }
379 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
380
381 /*
382 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
383 * per process timers.
384 */
tick_nohz_dep_set_signal(struct signal_struct * sig,enum tick_dep_bits bit)385 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
386 {
387 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
388 }
389
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)390 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
391 {
392 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
393 }
394
395 /*
396 * Re-evaluate the need for the tick as we switch the current task.
397 * It might need the tick due to per task/process properties:
398 * perf events, posix CPU timers, ...
399 */
__tick_nohz_task_switch(void)400 void __tick_nohz_task_switch(void)
401 {
402 unsigned long flags;
403 struct tick_sched *ts;
404
405 local_irq_save(flags);
406
407 if (!tick_nohz_full_cpu(smp_processor_id()))
408 goto out;
409
410 ts = this_cpu_ptr(&tick_cpu_sched);
411
412 if (ts->tick_stopped) {
413 if (atomic_read(¤t->tick_dep_mask) ||
414 atomic_read(¤t->signal->tick_dep_mask))
415 tick_nohz_full_kick();
416 }
417 out:
418 local_irq_restore(flags);
419 }
420
421 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)422 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
423 {
424 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
425 cpumask_copy(tick_nohz_full_mask, cpumask);
426 tick_nohz_full_running = true;
427 }
428
tick_nohz_cpu_down(unsigned int cpu)429 static int tick_nohz_cpu_down(unsigned int cpu)
430 {
431 /*
432 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
433 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
434 * CPUs. It must remain online when nohz full is enabled.
435 */
436 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
437 return -EBUSY;
438 return 0;
439 }
440
tick_nohz_init(void)441 void __init tick_nohz_init(void)
442 {
443 int cpu, ret;
444
445 if (!tick_nohz_full_running)
446 return;
447
448 /*
449 * Full dynticks uses irq work to drive the tick rescheduling on safe
450 * locking contexts. But then we need irq work to raise its own
451 * interrupts to avoid circular dependency on the tick
452 */
453 if (!arch_irq_work_has_interrupt()) {
454 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
455 cpumask_clear(tick_nohz_full_mask);
456 tick_nohz_full_running = false;
457 return;
458 }
459
460 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
461 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
462 cpu = smp_processor_id();
463
464 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
465 pr_warn("NO_HZ: Clearing %d from nohz_full range "
466 "for timekeeping\n", cpu);
467 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
468 }
469 }
470
471 for_each_cpu(cpu, tick_nohz_full_mask)
472 context_tracking_cpu_set(cpu);
473
474 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
475 "kernel/nohz:predown", NULL,
476 tick_nohz_cpu_down);
477 WARN_ON(ret < 0);
478 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
479 cpumask_pr_args(tick_nohz_full_mask));
480 }
481 #endif
482
483 /*
484 * NOHZ - aka dynamic tick functionality
485 */
486 #ifdef CONFIG_NO_HZ_COMMON
487 /*
488 * NO HZ enabled ?
489 */
490 bool tick_nohz_enabled __read_mostly = true;
491 unsigned long tick_nohz_active __read_mostly;
492 /*
493 * Enable / Disable tickless mode
494 */
setup_tick_nohz(char * str)495 static int __init setup_tick_nohz(char *str)
496 {
497 return (kstrtobool(str, &tick_nohz_enabled) == 0);
498 }
499
500 __setup("nohz=", setup_tick_nohz);
501
tick_nohz_tick_stopped(void)502 bool tick_nohz_tick_stopped(void)
503 {
504 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
505
506 return ts->tick_stopped;
507 }
508
tick_nohz_tick_stopped_cpu(int cpu)509 bool tick_nohz_tick_stopped_cpu(int cpu)
510 {
511 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
512
513 return ts->tick_stopped;
514 }
515
516 /**
517 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
518 *
519 * Called from interrupt entry when the CPU was idle
520 *
521 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
522 * must be updated. Otherwise an interrupt handler could use a stale jiffy
523 * value. We do this unconditionally on any CPU, as we don't know whether the
524 * CPU, which has the update task assigned is in a long sleep.
525 */
tick_nohz_update_jiffies(ktime_t now)526 static void tick_nohz_update_jiffies(ktime_t now)
527 {
528 unsigned long flags;
529
530 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
531
532 local_irq_save(flags);
533 tick_do_update_jiffies64(now);
534 local_irq_restore(flags);
535
536 touch_softlockup_watchdog_sched();
537 }
538
539 /*
540 * Updates the per-CPU time idle statistics counters
541 */
542 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)543 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
544 {
545 ktime_t delta;
546
547 if (ts->idle_active) {
548 delta = ktime_sub(now, ts->idle_entrytime);
549 if (nr_iowait_cpu(cpu) > 0)
550 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
551 else
552 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
553 ts->idle_entrytime = now;
554 }
555
556 if (last_update_time)
557 *last_update_time = ktime_to_us(now);
558
559 }
560
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)561 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
562 {
563 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
564 ts->idle_active = 0;
565
566 sched_clock_idle_wakeup_event();
567 }
568
tick_nohz_start_idle(struct tick_sched * ts)569 static void tick_nohz_start_idle(struct tick_sched *ts)
570 {
571 ts->idle_entrytime = ktime_get();
572 ts->idle_active = 1;
573 sched_clock_idle_sleep_event();
574 }
575
576 /**
577 * get_cpu_idle_time_us - get the total idle time of a CPU
578 * @cpu: CPU number to query
579 * @last_update_time: variable to store update time in. Do not update
580 * counters if NULL.
581 *
582 * Return the cumulative idle time (since boot) for a given
583 * CPU, in microseconds.
584 *
585 * This time is measured via accounting rather than sampling,
586 * and is as accurate as ktime_get() is.
587 *
588 * This function returns -1 if NOHZ is not enabled.
589 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)590 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
591 {
592 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
593 ktime_t now, idle;
594
595 if (!tick_nohz_active)
596 return -1;
597
598 now = ktime_get();
599 if (last_update_time) {
600 update_ts_time_stats(cpu, ts, now, last_update_time);
601 idle = ts->idle_sleeptime;
602 } else {
603 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
604 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
605
606 idle = ktime_add(ts->idle_sleeptime, delta);
607 } else {
608 idle = ts->idle_sleeptime;
609 }
610 }
611
612 return ktime_to_us(idle);
613
614 }
615 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
616
617 /**
618 * get_cpu_iowait_time_us - get the total iowait time of a CPU
619 * @cpu: CPU number to query
620 * @last_update_time: variable to store update time in. Do not update
621 * counters if NULL.
622 *
623 * Return the cumulative iowait time (since boot) for a given
624 * CPU, in microseconds.
625 *
626 * This time is measured via accounting rather than sampling,
627 * and is as accurate as ktime_get() is.
628 *
629 * This function returns -1 if NOHZ is not enabled.
630 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)631 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
632 {
633 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
634 ktime_t now, iowait;
635
636 if (!tick_nohz_active)
637 return -1;
638
639 now = ktime_get();
640 if (last_update_time) {
641 update_ts_time_stats(cpu, ts, now, last_update_time);
642 iowait = ts->iowait_sleeptime;
643 } else {
644 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
645 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
646
647 iowait = ktime_add(ts->iowait_sleeptime, delta);
648 } else {
649 iowait = ts->iowait_sleeptime;
650 }
651 }
652
653 return ktime_to_us(iowait);
654 }
655 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
656
tick_nohz_restart(struct tick_sched * ts,ktime_t now)657 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
658 {
659 hrtimer_cancel(&ts->sched_timer);
660 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
661
662 /* Forward the time to expire in the future */
663 hrtimer_forward(&ts->sched_timer, now, tick_period);
664
665 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
666 hrtimer_start_expires(&ts->sched_timer,
667 HRTIMER_MODE_ABS_PINNED_HARD);
668 } else {
669 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
670 }
671
672 /*
673 * Reset to make sure next tick stop doesn't get fooled by past
674 * cached clock deadline.
675 */
676 ts->next_tick = 0;
677 }
678
local_timer_softirq_pending(void)679 static inline bool local_timer_softirq_pending(void)
680 {
681 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
682 }
683
tick_nohz_next_event(struct tick_sched * ts,int cpu)684 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
685 {
686 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
687 unsigned long basejiff;
688 unsigned int seq;
689
690 /* Read jiffies and the time when jiffies were updated last */
691 do {
692 seq = read_seqcount_begin(&jiffies_seq);
693 basemono = last_jiffies_update;
694 basejiff = jiffies;
695 } while (read_seqcount_retry(&jiffies_seq, seq));
696 ts->last_jiffies = basejiff;
697 ts->timer_expires_base = basemono;
698
699 /*
700 * Keep the periodic tick, when RCU, architecture or irq_work
701 * requests it.
702 * Aside of that check whether the local timer softirq is
703 * pending. If so its a bad idea to call get_next_timer_interrupt()
704 * because there is an already expired timer, so it will request
705 * immeditate expiry, which rearms the hardware timer with a
706 * minimal delta which brings us back to this place
707 * immediately. Lather, rinse and repeat...
708 */
709 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
710 irq_work_needs_cpu() || local_timer_softirq_pending()) {
711 next_tick = basemono + TICK_NSEC;
712 } else {
713 /*
714 * Get the next pending timer. If high resolution
715 * timers are enabled this only takes the timer wheel
716 * timers into account. If high resolution timers are
717 * disabled this also looks at the next expiring
718 * hrtimer.
719 */
720 next_tmr = get_next_timer_interrupt(basejiff, basemono);
721 ts->next_timer = next_tmr;
722 /* Take the next rcu event into account */
723 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
724 }
725
726 /*
727 * If the tick is due in the next period, keep it ticking or
728 * force prod the timer.
729 */
730 delta = next_tick - basemono;
731 if (delta <= (u64)TICK_NSEC) {
732 /*
733 * Tell the timer code that the base is not idle, i.e. undo
734 * the effect of get_next_timer_interrupt():
735 */
736 timer_clear_idle();
737 /*
738 * We've not stopped the tick yet, and there's a timer in the
739 * next period, so no point in stopping it either, bail.
740 */
741 if (!ts->tick_stopped) {
742 ts->timer_expires = 0;
743 goto out;
744 }
745 }
746
747 /*
748 * If this CPU is the one which had the do_timer() duty last, we limit
749 * the sleep time to the timekeeping max_deferment value.
750 * Otherwise we can sleep as long as we want.
751 */
752 delta = timekeeping_max_deferment();
753 if (cpu != tick_do_timer_cpu &&
754 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
755 delta = KTIME_MAX;
756
757 /* Calculate the next expiry time */
758 if (delta < (KTIME_MAX - basemono))
759 expires = basemono + delta;
760 else
761 expires = KTIME_MAX;
762
763 ts->timer_expires = min_t(u64, expires, next_tick);
764
765 out:
766 return ts->timer_expires;
767 }
768
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)769 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
770 {
771 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
772 u64 basemono = ts->timer_expires_base;
773 u64 expires = ts->timer_expires;
774 ktime_t tick = expires;
775
776 /* Make sure we won't be trying to stop it twice in a row. */
777 ts->timer_expires_base = 0;
778
779 /*
780 * If this CPU is the one which updates jiffies, then give up
781 * the assignment and let it be taken by the CPU which runs
782 * the tick timer next, which might be this CPU as well. If we
783 * don't drop this here the jiffies might be stale and
784 * do_timer() never invoked. Keep track of the fact that it
785 * was the one which had the do_timer() duty last.
786 */
787 if (cpu == tick_do_timer_cpu) {
788 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
789 ts->do_timer_last = 1;
790 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
791 ts->do_timer_last = 0;
792 }
793
794 /* Skip reprogram of event if its not changed */
795 if (ts->tick_stopped && (expires == ts->next_tick)) {
796 /* Sanity check: make sure clockevent is actually programmed */
797 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
798 return;
799
800 WARN_ON_ONCE(1);
801 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
802 basemono, ts->next_tick, dev->next_event,
803 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
804 }
805
806 /*
807 * nohz_stop_sched_tick can be called several times before
808 * the nohz_restart_sched_tick is called. This happens when
809 * interrupts arrive which do not cause a reschedule. In the
810 * first call we save the current tick time, so we can restart
811 * the scheduler tick in nohz_restart_sched_tick.
812 */
813 if (!ts->tick_stopped) {
814 calc_load_nohz_start();
815 quiet_vmstat();
816
817 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
818 ts->tick_stopped = 1;
819 trace_tick_stop(1, TICK_DEP_MASK_NONE);
820 }
821
822 ts->next_tick = tick;
823
824 /*
825 * If the expiration time == KTIME_MAX, then we simply stop
826 * the tick timer.
827 */
828 if (unlikely(expires == KTIME_MAX)) {
829 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
830 hrtimer_cancel(&ts->sched_timer);
831 return;
832 }
833
834 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
835 hrtimer_start(&ts->sched_timer, tick,
836 HRTIMER_MODE_ABS_PINNED_HARD);
837 } else {
838 hrtimer_set_expires(&ts->sched_timer, tick);
839 tick_program_event(tick, 1);
840 }
841 }
842
tick_nohz_retain_tick(struct tick_sched * ts)843 static void tick_nohz_retain_tick(struct tick_sched *ts)
844 {
845 ts->timer_expires_base = 0;
846 }
847
848 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)849 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
850 {
851 if (tick_nohz_next_event(ts, cpu))
852 tick_nohz_stop_tick(ts, cpu);
853 else
854 tick_nohz_retain_tick(ts);
855 }
856 #endif /* CONFIG_NO_HZ_FULL */
857
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)858 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
859 {
860 /* Update jiffies first */
861 tick_do_update_jiffies64(now);
862
863 /*
864 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
865 * the clock forward checks in the enqueue path:
866 */
867 timer_clear_idle();
868
869 calc_load_nohz_stop();
870 touch_softlockup_watchdog_sched();
871 /*
872 * Cancel the scheduled timer and restore the tick
873 */
874 ts->tick_stopped = 0;
875 ts->idle_exittime = now;
876
877 tick_nohz_restart(ts, now);
878 }
879
tick_nohz_full_update_tick(struct tick_sched * ts)880 static void tick_nohz_full_update_tick(struct tick_sched *ts)
881 {
882 #ifdef CONFIG_NO_HZ_FULL
883 int cpu = smp_processor_id();
884
885 if (!tick_nohz_full_cpu(cpu))
886 return;
887
888 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
889 return;
890
891 if (can_stop_full_tick(cpu, ts))
892 tick_nohz_stop_sched_tick(ts, cpu);
893 else if (ts->tick_stopped)
894 tick_nohz_restart_sched_tick(ts, ktime_get());
895 #endif
896 }
897
can_stop_idle_tick(int cpu,struct tick_sched * ts)898 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
899 {
900 /*
901 * If this CPU is offline and it is the one which updates
902 * jiffies, then give up the assignment and let it be taken by
903 * the CPU which runs the tick timer next. If we don't drop
904 * this here the jiffies might be stale and do_timer() never
905 * invoked.
906 */
907 if (unlikely(!cpu_online(cpu))) {
908 if (cpu == tick_do_timer_cpu)
909 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
910 /*
911 * Make sure the CPU doesn't get fooled by obsolete tick
912 * deadline if it comes back online later.
913 */
914 ts->next_tick = 0;
915 return false;
916 }
917
918 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
919 return false;
920
921 if (need_resched())
922 return false;
923
924 if (unlikely(local_softirq_pending())) {
925 static int ratelimit;
926
927 if (ratelimit < 10 &&
928 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
929 pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
930 (unsigned int) local_softirq_pending());
931 ratelimit++;
932 }
933 return false;
934 }
935
936 if (tick_nohz_full_enabled()) {
937 /*
938 * Keep the tick alive to guarantee timekeeping progression
939 * if there are full dynticks CPUs around
940 */
941 if (tick_do_timer_cpu == cpu)
942 return false;
943
944 /* Should not happen for nohz-full */
945 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
946 return false;
947 }
948
949 return true;
950 }
951
__tick_nohz_idle_stop_tick(struct tick_sched * ts)952 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
953 {
954 ktime_t expires;
955 int cpu = smp_processor_id();
956
957 /*
958 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
959 * tick timer expiration time is known already.
960 */
961 if (ts->timer_expires_base)
962 expires = ts->timer_expires;
963 else if (can_stop_idle_tick(cpu, ts))
964 expires = tick_nohz_next_event(ts, cpu);
965 else
966 return;
967
968 ts->idle_calls++;
969
970 if (expires > 0LL) {
971 int was_stopped = ts->tick_stopped;
972
973 tick_nohz_stop_tick(ts, cpu);
974
975 ts->idle_sleeps++;
976 ts->idle_expires = expires;
977
978 if (!was_stopped && ts->tick_stopped) {
979 ts->idle_jiffies = ts->last_jiffies;
980 nohz_balance_enter_idle(cpu);
981 }
982 } else {
983 tick_nohz_retain_tick(ts);
984 }
985 }
986
987 /**
988 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
989 *
990 * When the next event is more than a tick into the future, stop the idle tick
991 */
tick_nohz_idle_stop_tick(void)992 void tick_nohz_idle_stop_tick(void)
993 {
994 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
995 }
996
tick_nohz_idle_retain_tick(void)997 void tick_nohz_idle_retain_tick(void)
998 {
999 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1000 /*
1001 * Undo the effect of get_next_timer_interrupt() called from
1002 * tick_nohz_next_event().
1003 */
1004 timer_clear_idle();
1005 }
1006
1007 /**
1008 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1009 *
1010 * Called when we start the idle loop.
1011 */
tick_nohz_idle_enter(void)1012 void tick_nohz_idle_enter(void)
1013 {
1014 struct tick_sched *ts;
1015
1016 lockdep_assert_irqs_enabled();
1017
1018 local_irq_disable();
1019
1020 ts = this_cpu_ptr(&tick_cpu_sched);
1021
1022 WARN_ON_ONCE(ts->timer_expires_base);
1023
1024 ts->inidle = 1;
1025 tick_nohz_start_idle(ts);
1026
1027 local_irq_enable();
1028 }
1029
1030 /**
1031 * tick_nohz_irq_exit - update next tick event from interrupt exit
1032 *
1033 * When an interrupt fires while we are idle and it doesn't cause
1034 * a reschedule, it may still add, modify or delete a timer, enqueue
1035 * an RCU callback, etc...
1036 * So we need to re-calculate and reprogram the next tick event.
1037 */
tick_nohz_irq_exit(void)1038 void tick_nohz_irq_exit(void)
1039 {
1040 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1041
1042 if (ts->inidle)
1043 tick_nohz_start_idle(ts);
1044 else
1045 tick_nohz_full_update_tick(ts);
1046 }
1047
1048 /**
1049 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1050 */
tick_nohz_idle_got_tick(void)1051 bool tick_nohz_idle_got_tick(void)
1052 {
1053 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1054
1055 if (ts->got_idle_tick) {
1056 ts->got_idle_tick = 0;
1057 return true;
1058 }
1059 return false;
1060 }
1061
1062 /**
1063 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1064 * or the tick, whatever that expires first. Note that, if the tick has been
1065 * stopped, it returns the next hrtimer.
1066 *
1067 * Called from power state control code with interrupts disabled
1068 */
tick_nohz_get_next_hrtimer(void)1069 ktime_t tick_nohz_get_next_hrtimer(void)
1070 {
1071 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1072 }
1073
1074 /**
1075 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1076 * @delta_next: duration until the next event if the tick cannot be stopped
1077 *
1078 * Called from power state control code with interrupts disabled
1079 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1080 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1081 {
1082 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1083 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1084 int cpu = smp_processor_id();
1085 /*
1086 * The idle entry time is expected to be a sufficient approximation of
1087 * the current time at this point.
1088 */
1089 ktime_t now = ts->idle_entrytime;
1090 ktime_t next_event;
1091
1092 WARN_ON_ONCE(!ts->inidle);
1093
1094 *delta_next = ktime_sub(dev->next_event, now);
1095
1096 if (!can_stop_idle_tick(cpu, ts))
1097 return *delta_next;
1098
1099 next_event = tick_nohz_next_event(ts, cpu);
1100 if (!next_event)
1101 return *delta_next;
1102
1103 /*
1104 * If the next highres timer to expire is earlier than next_event, the
1105 * idle governor needs to know that.
1106 */
1107 next_event = min_t(u64, next_event,
1108 hrtimer_next_event_without(&ts->sched_timer));
1109
1110 return ktime_sub(next_event, now);
1111 }
1112
1113 /**
1114 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1115 * for a particular CPU.
1116 *
1117 * Called from the schedutil frequency scaling governor in scheduler context.
1118 */
tick_nohz_get_idle_calls_cpu(int cpu)1119 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1120 {
1121 struct tick_sched *ts = tick_get_tick_sched(cpu);
1122
1123 return ts->idle_calls;
1124 }
1125
1126 /**
1127 * tick_nohz_get_idle_calls - return the current idle calls counter value
1128 *
1129 * Called from the schedutil frequency scaling governor in scheduler context.
1130 */
tick_nohz_get_idle_calls(void)1131 unsigned long tick_nohz_get_idle_calls(void)
1132 {
1133 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1134
1135 return ts->idle_calls;
1136 }
1137
tick_nohz_account_idle_ticks(struct tick_sched * ts)1138 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1139 {
1140 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1141 unsigned long ticks;
1142
1143 if (vtime_accounting_enabled_this_cpu())
1144 return;
1145 /*
1146 * We stopped the tick in idle. Update process times would miss the
1147 * time we slept as update_process_times does only a 1 tick
1148 * accounting. Enforce that this is accounted to idle !
1149 */
1150 ticks = jiffies - ts->idle_jiffies;
1151 /*
1152 * We might be one off. Do not randomly account a huge number of ticks!
1153 */
1154 if (ticks && ticks < LONG_MAX)
1155 account_idle_ticks(ticks);
1156 #endif
1157 }
1158
__tick_nohz_idle_restart_tick(struct tick_sched * ts,ktime_t now)1159 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1160 {
1161 tick_nohz_restart_sched_tick(ts, now);
1162 tick_nohz_account_idle_ticks(ts);
1163 }
1164
tick_nohz_idle_restart_tick(void)1165 void tick_nohz_idle_restart_tick(void)
1166 {
1167 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1168
1169 if (ts->tick_stopped)
1170 __tick_nohz_idle_restart_tick(ts, ktime_get());
1171 }
1172
1173 /**
1174 * tick_nohz_idle_exit - restart the idle tick from the idle task
1175 *
1176 * Restart the idle tick when the CPU is woken up from idle
1177 * This also exit the RCU extended quiescent state. The CPU
1178 * can use RCU again after this function is called.
1179 */
tick_nohz_idle_exit(void)1180 void tick_nohz_idle_exit(void)
1181 {
1182 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1183 bool idle_active, tick_stopped;
1184 ktime_t now;
1185
1186 local_irq_disable();
1187
1188 WARN_ON_ONCE(!ts->inidle);
1189 WARN_ON_ONCE(ts->timer_expires_base);
1190
1191 ts->inidle = 0;
1192 idle_active = ts->idle_active;
1193 tick_stopped = ts->tick_stopped;
1194
1195 if (idle_active || tick_stopped)
1196 now = ktime_get();
1197
1198 if (idle_active)
1199 tick_nohz_stop_idle(ts, now);
1200
1201 if (tick_stopped)
1202 __tick_nohz_idle_restart_tick(ts, now);
1203
1204 local_irq_enable();
1205 }
1206
1207 /*
1208 * The nohz low res interrupt handler
1209 */
tick_nohz_handler(struct clock_event_device * dev)1210 static void tick_nohz_handler(struct clock_event_device *dev)
1211 {
1212 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1213 struct pt_regs *regs = get_irq_regs();
1214 ktime_t now = ktime_get();
1215
1216 dev->next_event = KTIME_MAX;
1217
1218 tick_sched_do_timer(ts, now);
1219 tick_sched_handle(ts, regs);
1220
1221 /* No need to reprogram if we are running tickless */
1222 if (unlikely(ts->tick_stopped))
1223 return;
1224
1225 hrtimer_forward(&ts->sched_timer, now, tick_period);
1226 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1227 }
1228
tick_nohz_activate(struct tick_sched * ts,int mode)1229 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1230 {
1231 if (!tick_nohz_enabled)
1232 return;
1233 ts->nohz_mode = mode;
1234 /* One update is enough */
1235 if (!test_and_set_bit(0, &tick_nohz_active))
1236 timers_update_nohz();
1237 }
1238
1239 /**
1240 * tick_nohz_switch_to_nohz - switch to nohz mode
1241 */
tick_nohz_switch_to_nohz(void)1242 static void tick_nohz_switch_to_nohz(void)
1243 {
1244 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1245 ktime_t next;
1246
1247 if (!tick_nohz_enabled)
1248 return;
1249
1250 if (tick_switch_to_oneshot(tick_nohz_handler))
1251 return;
1252
1253 /*
1254 * Recycle the hrtimer in ts, so we can share the
1255 * hrtimer_forward with the highres code.
1256 */
1257 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1258 /* Get the next period */
1259 next = tick_init_jiffy_update();
1260
1261 hrtimer_set_expires(&ts->sched_timer, next);
1262 hrtimer_forward_now(&ts->sched_timer, tick_period);
1263 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1264 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1265 }
1266
tick_nohz_irq_enter(void)1267 static inline void tick_nohz_irq_enter(void)
1268 {
1269 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1270 ktime_t now;
1271
1272 if (!ts->idle_active && !ts->tick_stopped)
1273 return;
1274 now = ktime_get();
1275 if (ts->idle_active)
1276 tick_nohz_stop_idle(ts, now);
1277 if (ts->tick_stopped)
1278 tick_nohz_update_jiffies(now);
1279 }
1280
1281 #else
1282
tick_nohz_switch_to_nohz(void)1283 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1284 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1285 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1286
1287 #endif /* CONFIG_NO_HZ_COMMON */
1288
1289 /*
1290 * Called from irq_enter to notify about the possible interruption of idle()
1291 */
tick_irq_enter(void)1292 void tick_irq_enter(void)
1293 {
1294 tick_check_oneshot_broadcast_this_cpu();
1295 tick_nohz_irq_enter();
1296 }
1297
1298 /*
1299 * High resolution timer specific code
1300 */
1301 #ifdef CONFIG_HIGH_RES_TIMERS
1302 /*
1303 * We rearm the timer until we get disabled by the idle code.
1304 * Called with interrupts disabled.
1305 */
tick_sched_timer(struct hrtimer * timer)1306 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1307 {
1308 struct tick_sched *ts =
1309 container_of(timer, struct tick_sched, sched_timer);
1310 struct pt_regs *regs = get_irq_regs();
1311 ktime_t now = ktime_get();
1312
1313 tick_sched_do_timer(ts, now);
1314
1315 /*
1316 * Do not call, when we are not in irq context and have
1317 * no valid regs pointer
1318 */
1319 if (regs)
1320 tick_sched_handle(ts, regs);
1321 else
1322 ts->next_tick = 0;
1323
1324 /* No need to reprogram if we are in idle or full dynticks mode */
1325 if (unlikely(ts->tick_stopped))
1326 return HRTIMER_NORESTART;
1327
1328 hrtimer_forward(timer, now, tick_period);
1329
1330 return HRTIMER_RESTART;
1331 }
1332
1333 static int sched_skew_tick;
1334
skew_tick(char * str)1335 static int __init skew_tick(char *str)
1336 {
1337 get_option(&str, &sched_skew_tick);
1338
1339 return 0;
1340 }
1341 early_param("skew_tick", skew_tick);
1342
1343 /**
1344 * tick_setup_sched_timer - setup the tick emulation timer
1345 */
tick_setup_sched_timer(void)1346 void tick_setup_sched_timer(void)
1347 {
1348 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1349 ktime_t now = ktime_get();
1350
1351 /*
1352 * Emulate tick processing via per-CPU hrtimers:
1353 */
1354 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1355 ts->sched_timer.function = tick_sched_timer;
1356
1357 /* Get the next period (per-CPU) */
1358 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1359
1360 /* Offset the tick to avert jiffies_lock contention. */
1361 if (sched_skew_tick) {
1362 u64 offset = ktime_to_ns(tick_period) >> 1;
1363 do_div(offset, num_possible_cpus());
1364 offset *= smp_processor_id();
1365 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1366 }
1367
1368 hrtimer_forward(&ts->sched_timer, now, tick_period);
1369 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1370 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1371 }
1372 #endif /* HIGH_RES_TIMERS */
1373
1374 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1375 void tick_cancel_sched_timer(int cpu)
1376 {
1377 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1378
1379 # ifdef CONFIG_HIGH_RES_TIMERS
1380 if (ts->sched_timer.base)
1381 hrtimer_cancel(&ts->sched_timer);
1382 # endif
1383
1384 memset(ts, 0, sizeof(*ts));
1385 }
1386 #endif
1387
1388 /**
1389 * Async notification about clocksource changes
1390 */
tick_clock_notify(void)1391 void tick_clock_notify(void)
1392 {
1393 int cpu;
1394
1395 for_each_possible_cpu(cpu)
1396 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1397 }
1398
1399 /*
1400 * Async notification about clock event changes
1401 */
tick_oneshot_notify(void)1402 void tick_oneshot_notify(void)
1403 {
1404 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1405
1406 set_bit(0, &ts->check_clocks);
1407 }
1408
1409 /**
1410 * Check, if a change happened, which makes oneshot possible.
1411 *
1412 * Called cyclic from the hrtimer softirq (driven by the timer
1413 * softirq) allow_nohz signals, that we can switch into low-res nohz
1414 * mode, because high resolution timers are disabled (either compile
1415 * or runtime). Called with interrupts disabled.
1416 */
tick_check_oneshot_change(int allow_nohz)1417 int tick_check_oneshot_change(int allow_nohz)
1418 {
1419 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1420
1421 if (!test_and_clear_bit(0, &ts->check_clocks))
1422 return 0;
1423
1424 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1425 return 0;
1426
1427 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1428 return 0;
1429
1430 if (!allow_nohz)
1431 return 1;
1432
1433 tick_nohz_switch_to_nohz();
1434 return 0;
1435 }
1436