• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/of_graph.h>
10 #include <linux/pm_runtime.h>
11 
12 #include <drm/drm_atomic.h>
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_crtc.h>
15 #include <drm/drm_fb_cma_helper.h>
16 #include <drm/drm_fourcc.h>
17 #include <drm/drm_gem_cma_helper.h>
18 #include <drm/drm_modeset_helper_vtables.h>
19 #include <drm/drm_print.h>
20 #include <drm/drm_vblank.h>
21 
22 #include "tilcdc_drv.h"
23 #include "tilcdc_regs.h"
24 
25 #define TILCDC_VBLANK_SAFETY_THRESHOLD_US	1000
26 #define TILCDC_PALETTE_SIZE			32
27 #define TILCDC_PALETTE_FIRST_ENTRY		0x4000
28 
29 struct tilcdc_crtc {
30 	struct drm_crtc base;
31 
32 	struct drm_plane primary;
33 	const struct tilcdc_panel_info *info;
34 	struct drm_pending_vblank_event *event;
35 	struct mutex enable_lock;
36 	bool enabled;
37 	bool shutdown;
38 	wait_queue_head_t frame_done_wq;
39 	bool frame_done;
40 	spinlock_t irq_lock;
41 
42 	unsigned int lcd_fck_rate;
43 
44 	ktime_t last_vblank;
45 	unsigned int hvtotal_us;
46 
47 	struct drm_framebuffer *next_fb;
48 
49 	/* Only set if an external encoder is connected */
50 	bool simulate_vesa_sync;
51 
52 	int sync_lost_count;
53 	bool frame_intact;
54 	struct work_struct recover_work;
55 
56 	dma_addr_t palette_dma_handle;
57 	u16 *palette_base;
58 	struct completion palette_loaded;
59 };
60 #define to_tilcdc_crtc(x) container_of(x, struct tilcdc_crtc, base)
61 
set_scanout(struct drm_crtc * crtc,struct drm_framebuffer * fb)62 static void set_scanout(struct drm_crtc *crtc, struct drm_framebuffer *fb)
63 {
64 	struct drm_device *dev = crtc->dev;
65 	struct tilcdc_drm_private *priv = dev->dev_private;
66 	struct drm_gem_cma_object *gem;
67 	dma_addr_t start, end;
68 	u64 dma_base_and_ceiling;
69 
70 	gem = drm_fb_cma_get_gem_obj(fb, 0);
71 
72 	start = gem->paddr + fb->offsets[0] +
73 		crtc->y * fb->pitches[0] +
74 		crtc->x * fb->format->cpp[0];
75 
76 	end = start + (crtc->mode.vdisplay * fb->pitches[0]);
77 
78 	/* Write LCDC_DMA_FB_BASE_ADDR_0_REG and LCDC_DMA_FB_CEILING_ADDR_0_REG
79 	 * with a single insruction, if available. This should make it more
80 	 * unlikely that LCDC would fetch the DMA addresses in the middle of
81 	 * an update.
82 	 */
83 	if (priv->rev == 1)
84 		end -= 1;
85 
86 	dma_base_and_ceiling = (u64)end << 32 | start;
87 	tilcdc_write64(dev, LCDC_DMA_FB_BASE_ADDR_0_REG, dma_base_and_ceiling);
88 }
89 
90 /*
91  * The driver currently only supports only true color formats. For
92  * true color the palette block is bypassed, but a 32 byte palette
93  * should still be loaded. The first 16-bit entry must be 0x4000 while
94  * all other entries must be zeroed.
95  */
tilcdc_crtc_load_palette(struct drm_crtc * crtc)96 static void tilcdc_crtc_load_palette(struct drm_crtc *crtc)
97 {
98 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
99 	struct drm_device *dev = crtc->dev;
100 	struct tilcdc_drm_private *priv = dev->dev_private;
101 	int ret;
102 
103 	reinit_completion(&tilcdc_crtc->palette_loaded);
104 
105 	/* Tell the LCDC where the palette is located. */
106 	tilcdc_write(dev, LCDC_DMA_FB_BASE_ADDR_0_REG,
107 		     tilcdc_crtc->palette_dma_handle);
108 	tilcdc_write(dev, LCDC_DMA_FB_CEILING_ADDR_0_REG,
109 		     (u32) tilcdc_crtc->palette_dma_handle +
110 		     TILCDC_PALETTE_SIZE - 1);
111 
112 	/* Set dma load mode for palette loading only. */
113 	tilcdc_write_mask(dev, LCDC_RASTER_CTRL_REG,
114 			  LCDC_PALETTE_LOAD_MODE(PALETTE_ONLY),
115 			  LCDC_PALETTE_LOAD_MODE_MASK);
116 
117 	/* Enable DMA Palette Loaded Interrupt */
118 	if (priv->rev == 1)
119 		tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_PL_INT_ENA);
120 	else
121 		tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG, LCDC_V2_PL_INT_ENA);
122 
123 	/* Enable LCDC DMA and wait for palette to be loaded. */
124 	tilcdc_clear_irqstatus(dev, 0xffffffff);
125 	tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
126 
127 	ret = wait_for_completion_timeout(&tilcdc_crtc->palette_loaded,
128 					  msecs_to_jiffies(50));
129 	if (ret == 0)
130 		dev_err(dev->dev, "%s: Palette loading timeout", __func__);
131 
132 	/* Disable LCDC DMA and DMA Palette Loaded Interrupt. */
133 	tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
134 	if (priv->rev == 1)
135 		tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_PL_INT_ENA);
136 	else
137 		tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG, LCDC_V2_PL_INT_ENA);
138 }
139 
tilcdc_crtc_enable_irqs(struct drm_device * dev)140 static void tilcdc_crtc_enable_irqs(struct drm_device *dev)
141 {
142 	struct tilcdc_drm_private *priv = dev->dev_private;
143 
144 	tilcdc_clear_irqstatus(dev, 0xffffffff);
145 
146 	if (priv->rev == 1) {
147 		tilcdc_set(dev, LCDC_RASTER_CTRL_REG,
148 			LCDC_V1_SYNC_LOST_INT_ENA | LCDC_V1_FRAME_DONE_INT_ENA |
149 			LCDC_V1_UNDERFLOW_INT_ENA);
150 		tilcdc_set(dev, LCDC_DMA_CTRL_REG,
151 			LCDC_V1_END_OF_FRAME_INT_ENA);
152 	} else {
153 		tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG,
154 			LCDC_V2_UNDERFLOW_INT_ENA |
155 			LCDC_V2_END_OF_FRAME0_INT_ENA |
156 			LCDC_FRAME_DONE | LCDC_SYNC_LOST);
157 	}
158 }
159 
tilcdc_crtc_disable_irqs(struct drm_device * dev)160 static void tilcdc_crtc_disable_irqs(struct drm_device *dev)
161 {
162 	struct tilcdc_drm_private *priv = dev->dev_private;
163 
164 	/* disable irqs that we might have enabled: */
165 	if (priv->rev == 1) {
166 		tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
167 			LCDC_V1_SYNC_LOST_INT_ENA | LCDC_V1_FRAME_DONE_INT_ENA |
168 			LCDC_V1_UNDERFLOW_INT_ENA | LCDC_V1_PL_INT_ENA);
169 		tilcdc_clear(dev, LCDC_DMA_CTRL_REG,
170 			LCDC_V1_END_OF_FRAME_INT_ENA);
171 	} else {
172 		tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
173 			LCDC_V2_UNDERFLOW_INT_ENA | LCDC_V2_PL_INT_ENA |
174 			LCDC_V2_END_OF_FRAME0_INT_ENA |
175 			LCDC_FRAME_DONE | LCDC_SYNC_LOST);
176 	}
177 }
178 
reset(struct drm_crtc * crtc)179 static void reset(struct drm_crtc *crtc)
180 {
181 	struct drm_device *dev = crtc->dev;
182 	struct tilcdc_drm_private *priv = dev->dev_private;
183 
184 	if (priv->rev != 2)
185 		return;
186 
187 	tilcdc_set(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
188 	usleep_range(250, 1000);
189 	tilcdc_clear(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
190 }
191 
192 /*
193  * Calculate the percentage difference between the requested pixel clock rate
194  * and the effective rate resulting from calculating the clock divider value.
195  */
tilcdc_pclk_diff(unsigned long rate,unsigned long real_rate)196 static unsigned int tilcdc_pclk_diff(unsigned long rate,
197 				     unsigned long real_rate)
198 {
199 	int r = rate / 100, rr = real_rate / 100;
200 
201 	return (unsigned int)(abs(((rr - r) * 100) / r));
202 }
203 
tilcdc_crtc_set_clk(struct drm_crtc * crtc)204 static void tilcdc_crtc_set_clk(struct drm_crtc *crtc)
205 {
206 	struct drm_device *dev = crtc->dev;
207 	struct tilcdc_drm_private *priv = dev->dev_private;
208 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
209 	unsigned long clk_rate, real_rate, req_rate;
210 	unsigned int clkdiv;
211 	int ret;
212 
213 	clkdiv = 2; /* first try using a standard divider of 2 */
214 
215 	/* mode.clock is in KHz, set_rate wants parameter in Hz */
216 	req_rate = crtc->mode.clock * 1000;
217 
218 	ret = clk_set_rate(priv->clk, req_rate * clkdiv);
219 	clk_rate = clk_get_rate(priv->clk);
220 	if (ret < 0 || tilcdc_pclk_diff(req_rate, clk_rate) > 5) {
221 		/*
222 		 * If we fail to set the clock rate (some architectures don't
223 		 * use the common clock framework yet and may not implement
224 		 * all the clk API calls for every clock), try the next best
225 		 * thing: adjusting the clock divider, unless clk_get_rate()
226 		 * failed as well.
227 		 */
228 		if (!clk_rate) {
229 			/* Nothing more we can do. Just bail out. */
230 			dev_err(dev->dev,
231 				"failed to set the pixel clock - unable to read current lcdc clock rate\n");
232 			return;
233 		}
234 
235 		clkdiv = DIV_ROUND_CLOSEST(clk_rate, req_rate);
236 
237 		/*
238 		 * Emit a warning if the real clock rate resulting from the
239 		 * calculated divider differs much from the requested rate.
240 		 *
241 		 * 5% is an arbitrary value - LCDs are usually quite tolerant
242 		 * about pixel clock rates.
243 		 */
244 		real_rate = clkdiv * req_rate;
245 
246 		if (tilcdc_pclk_diff(clk_rate, real_rate) > 5) {
247 			dev_warn(dev->dev,
248 				 "effective pixel clock rate (%luHz) differs from the calculated rate (%luHz)\n",
249 				 clk_rate, real_rate);
250 		}
251 	}
252 
253 	tilcdc_crtc->lcd_fck_rate = clk_rate;
254 
255 	DBG("lcd_clk=%u, mode clock=%d, div=%u",
256 	    tilcdc_crtc->lcd_fck_rate, crtc->mode.clock, clkdiv);
257 
258 	/* Configure the LCD clock divisor. */
259 	tilcdc_write(dev, LCDC_CTRL_REG, LCDC_CLK_DIVISOR(clkdiv) |
260 		     LCDC_RASTER_MODE);
261 
262 	if (priv->rev == 2)
263 		tilcdc_set(dev, LCDC_CLK_ENABLE_REG,
264 				LCDC_V2_DMA_CLK_EN | LCDC_V2_LIDD_CLK_EN |
265 				LCDC_V2_CORE_CLK_EN);
266 }
267 
tilcdc_mode_hvtotal(const struct drm_display_mode * mode)268 static uint tilcdc_mode_hvtotal(const struct drm_display_mode *mode)
269 {
270 	return (uint) div_u64(1000llu * mode->htotal * mode->vtotal,
271 			      mode->clock);
272 }
273 
tilcdc_crtc_set_mode(struct drm_crtc * crtc)274 static void tilcdc_crtc_set_mode(struct drm_crtc *crtc)
275 {
276 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
277 	struct drm_device *dev = crtc->dev;
278 	struct tilcdc_drm_private *priv = dev->dev_private;
279 	const struct tilcdc_panel_info *info = tilcdc_crtc->info;
280 	uint32_t reg, hbp, hfp, hsw, vbp, vfp, vsw;
281 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
282 	struct drm_framebuffer *fb = crtc->primary->state->fb;
283 
284 	if (WARN_ON(!info))
285 		return;
286 
287 	if (WARN_ON(!fb))
288 		return;
289 
290 	/* Configure the Burst Size and fifo threshold of DMA: */
291 	reg = tilcdc_read(dev, LCDC_DMA_CTRL_REG) & ~0x00000770;
292 	switch (info->dma_burst_sz) {
293 	case 1:
294 		reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_1);
295 		break;
296 	case 2:
297 		reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_2);
298 		break;
299 	case 4:
300 		reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_4);
301 		break;
302 	case 8:
303 		reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_8);
304 		break;
305 	case 16:
306 		reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_16);
307 		break;
308 	default:
309 		dev_err(dev->dev, "invalid burst size\n");
310 		return;
311 	}
312 	reg |= (info->fifo_th << 8);
313 	tilcdc_write(dev, LCDC_DMA_CTRL_REG, reg);
314 
315 	/* Configure timings: */
316 	hbp = mode->htotal - mode->hsync_end;
317 	hfp = mode->hsync_start - mode->hdisplay;
318 	hsw = mode->hsync_end - mode->hsync_start;
319 	vbp = mode->vtotal - mode->vsync_end;
320 	vfp = mode->vsync_start - mode->vdisplay;
321 	vsw = mode->vsync_end - mode->vsync_start;
322 
323 	DBG("%dx%d, hbp=%u, hfp=%u, hsw=%u, vbp=%u, vfp=%u, vsw=%u",
324 	    mode->hdisplay, mode->vdisplay, hbp, hfp, hsw, vbp, vfp, vsw);
325 
326 	/* Set AC Bias Period and Number of Transitions per Interrupt: */
327 	reg = tilcdc_read(dev, LCDC_RASTER_TIMING_2_REG) & ~0x000fff00;
328 	reg |= LCDC_AC_BIAS_FREQUENCY(info->ac_bias) |
329 		LCDC_AC_BIAS_TRANSITIONS_PER_INT(info->ac_bias_intrpt);
330 
331 	/*
332 	 * subtract one from hfp, hbp, hsw because the hardware uses
333 	 * a value of 0 as 1
334 	 */
335 	if (priv->rev == 2) {
336 		/* clear bits we're going to set */
337 		reg &= ~0x78000033;
338 		reg |= ((hfp-1) & 0x300) >> 8;
339 		reg |= ((hbp-1) & 0x300) >> 4;
340 		reg |= ((hsw-1) & 0x3c0) << 21;
341 	}
342 	tilcdc_write(dev, LCDC_RASTER_TIMING_2_REG, reg);
343 
344 	reg = (((mode->hdisplay >> 4) - 1) << 4) |
345 		(((hbp-1) & 0xff) << 24) |
346 		(((hfp-1) & 0xff) << 16) |
347 		(((hsw-1) & 0x3f) << 10);
348 	if (priv->rev == 2)
349 		reg |= (((mode->hdisplay >> 4) - 1) & 0x40) >> 3;
350 	tilcdc_write(dev, LCDC_RASTER_TIMING_0_REG, reg);
351 
352 	reg = ((mode->vdisplay - 1) & 0x3ff) |
353 		((vbp & 0xff) << 24) |
354 		((vfp & 0xff) << 16) |
355 		(((vsw-1) & 0x3f) << 10);
356 	tilcdc_write(dev, LCDC_RASTER_TIMING_1_REG, reg);
357 
358 	/*
359 	 * be sure to set Bit 10 for the V2 LCDC controller,
360 	 * otherwise limited to 1024 pixels width, stopping
361 	 * 1920x1080 being supported.
362 	 */
363 	if (priv->rev == 2) {
364 		if ((mode->vdisplay - 1) & 0x400) {
365 			tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG,
366 				LCDC_LPP_B10);
367 		} else {
368 			tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG,
369 				LCDC_LPP_B10);
370 		}
371 	}
372 
373 	/* Configure display type: */
374 	reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG) &
375 		~(LCDC_TFT_MODE | LCDC_MONO_8BIT_MODE | LCDC_MONOCHROME_MODE |
376 		  LCDC_V2_TFT_24BPP_MODE | LCDC_V2_TFT_24BPP_UNPACK |
377 		  0x000ff000 /* Palette Loading Delay bits */);
378 	reg |= LCDC_TFT_MODE; /* no monochrome/passive support */
379 	if (info->tft_alt_mode)
380 		reg |= LCDC_TFT_ALT_ENABLE;
381 	if (priv->rev == 2) {
382 		switch (fb->format->format) {
383 		case DRM_FORMAT_BGR565:
384 		case DRM_FORMAT_RGB565:
385 			break;
386 		case DRM_FORMAT_XBGR8888:
387 		case DRM_FORMAT_XRGB8888:
388 			reg |= LCDC_V2_TFT_24BPP_UNPACK;
389 			fallthrough;
390 		case DRM_FORMAT_BGR888:
391 		case DRM_FORMAT_RGB888:
392 			reg |= LCDC_V2_TFT_24BPP_MODE;
393 			break;
394 		default:
395 			dev_err(dev->dev, "invalid pixel format\n");
396 			return;
397 		}
398 	}
399 	reg |= info->fdd < 12;
400 	tilcdc_write(dev, LCDC_RASTER_CTRL_REG, reg);
401 
402 	if (info->invert_pxl_clk)
403 		tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
404 	else
405 		tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
406 
407 	if (info->sync_ctrl)
408 		tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
409 	else
410 		tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
411 
412 	if (info->sync_edge)
413 		tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
414 	else
415 		tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
416 
417 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
418 		tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
419 	else
420 		tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
421 
422 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
423 		tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
424 	else
425 		tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
426 
427 	if (info->raster_order)
428 		tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
429 	else
430 		tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
431 
432 	tilcdc_crtc_set_clk(crtc);
433 
434 	tilcdc_crtc_load_palette(crtc);
435 
436 	set_scanout(crtc, fb);
437 
438 	crtc->hwmode = crtc->state->adjusted_mode;
439 
440 	tilcdc_crtc->hvtotal_us =
441 		tilcdc_mode_hvtotal(&crtc->hwmode);
442 }
443 
tilcdc_crtc_enable(struct drm_crtc * crtc)444 static void tilcdc_crtc_enable(struct drm_crtc *crtc)
445 {
446 	struct drm_device *dev = crtc->dev;
447 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
448 	unsigned long flags;
449 
450 	mutex_lock(&tilcdc_crtc->enable_lock);
451 	if (tilcdc_crtc->enabled || tilcdc_crtc->shutdown) {
452 		mutex_unlock(&tilcdc_crtc->enable_lock);
453 		return;
454 	}
455 
456 	pm_runtime_get_sync(dev->dev);
457 
458 	reset(crtc);
459 
460 	tilcdc_crtc_set_mode(crtc);
461 
462 	tilcdc_crtc_enable_irqs(dev);
463 
464 	tilcdc_clear(dev, LCDC_DMA_CTRL_REG, LCDC_DUAL_FRAME_BUFFER_ENABLE);
465 	tilcdc_write_mask(dev, LCDC_RASTER_CTRL_REG,
466 			  LCDC_PALETTE_LOAD_MODE(DATA_ONLY),
467 			  LCDC_PALETTE_LOAD_MODE_MASK);
468 
469 	/* There is no real chance for a race here as the time stamp
470 	 * is taken before the raster DMA is started. The spin-lock is
471 	 * taken to have a memory barrier after taking the time-stamp
472 	 * and to avoid a context switch between taking the stamp and
473 	 * enabling the raster.
474 	 */
475 	spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
476 	tilcdc_crtc->last_vblank = ktime_get();
477 	tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
478 	spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
479 
480 	drm_crtc_vblank_on(crtc);
481 
482 	tilcdc_crtc->enabled = true;
483 	mutex_unlock(&tilcdc_crtc->enable_lock);
484 }
485 
tilcdc_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)486 static void tilcdc_crtc_atomic_enable(struct drm_crtc *crtc,
487 				      struct drm_crtc_state *old_state)
488 {
489 	tilcdc_crtc_enable(crtc);
490 }
491 
tilcdc_crtc_off(struct drm_crtc * crtc,bool shutdown)492 static void tilcdc_crtc_off(struct drm_crtc *crtc, bool shutdown)
493 {
494 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
495 	struct drm_device *dev = crtc->dev;
496 	int ret;
497 
498 	mutex_lock(&tilcdc_crtc->enable_lock);
499 	if (shutdown)
500 		tilcdc_crtc->shutdown = true;
501 	if (!tilcdc_crtc->enabled) {
502 		mutex_unlock(&tilcdc_crtc->enable_lock);
503 		return;
504 	}
505 	tilcdc_crtc->frame_done = false;
506 	tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
507 
508 	/*
509 	 * Wait for framedone irq which will still come before putting
510 	 * things to sleep..
511 	 */
512 	ret = wait_event_timeout(tilcdc_crtc->frame_done_wq,
513 				 tilcdc_crtc->frame_done,
514 				 msecs_to_jiffies(500));
515 	if (ret == 0)
516 		dev_err(dev->dev, "%s: timeout waiting for framedone\n",
517 			__func__);
518 
519 	drm_crtc_vblank_off(crtc);
520 
521 	spin_lock_irq(&crtc->dev->event_lock);
522 
523 	if (crtc->state->event) {
524 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
525 		crtc->state->event = NULL;
526 	}
527 
528 	spin_unlock_irq(&crtc->dev->event_lock);
529 
530 	tilcdc_crtc_disable_irqs(dev);
531 
532 	pm_runtime_put_sync(dev->dev);
533 
534 	tilcdc_crtc->enabled = false;
535 	mutex_unlock(&tilcdc_crtc->enable_lock);
536 }
537 
tilcdc_crtc_disable(struct drm_crtc * crtc)538 static void tilcdc_crtc_disable(struct drm_crtc *crtc)
539 {
540 	tilcdc_crtc_off(crtc, false);
541 }
542 
tilcdc_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)543 static void tilcdc_crtc_atomic_disable(struct drm_crtc *crtc,
544 				       struct drm_crtc_state *old_state)
545 {
546 	tilcdc_crtc_disable(crtc);
547 }
548 
tilcdc_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_state)549 static void tilcdc_crtc_atomic_flush(struct drm_crtc *crtc,
550 				     struct drm_crtc_state *old_state)
551 {
552 	if (!crtc->state->event)
553 		return;
554 
555 	spin_lock_irq(&crtc->dev->event_lock);
556 	drm_crtc_send_vblank_event(crtc, crtc->state->event);
557 	crtc->state->event = NULL;
558 	spin_unlock_irq(&crtc->dev->event_lock);
559 }
560 
tilcdc_crtc_shutdown(struct drm_crtc * crtc)561 void tilcdc_crtc_shutdown(struct drm_crtc *crtc)
562 {
563 	tilcdc_crtc_off(crtc, true);
564 }
565 
tilcdc_crtc_is_on(struct drm_crtc * crtc)566 static bool tilcdc_crtc_is_on(struct drm_crtc *crtc)
567 {
568 	return crtc->state && crtc->state->enable && crtc->state->active;
569 }
570 
tilcdc_crtc_recover_work(struct work_struct * work)571 static void tilcdc_crtc_recover_work(struct work_struct *work)
572 {
573 	struct tilcdc_crtc *tilcdc_crtc =
574 		container_of(work, struct tilcdc_crtc, recover_work);
575 	struct drm_crtc *crtc = &tilcdc_crtc->base;
576 
577 	dev_info(crtc->dev->dev, "%s: Reset CRTC", __func__);
578 
579 	drm_modeset_lock(&crtc->mutex, NULL);
580 
581 	if (!tilcdc_crtc_is_on(crtc))
582 		goto out;
583 
584 	tilcdc_crtc_disable(crtc);
585 	tilcdc_crtc_enable(crtc);
586 out:
587 	drm_modeset_unlock(&crtc->mutex);
588 }
589 
tilcdc_crtc_destroy(struct drm_crtc * crtc)590 static void tilcdc_crtc_destroy(struct drm_crtc *crtc)
591 {
592 	struct tilcdc_drm_private *priv = crtc->dev->dev_private;
593 
594 	tilcdc_crtc_shutdown(crtc);
595 
596 	flush_workqueue(priv->wq);
597 
598 	of_node_put(crtc->port);
599 	drm_crtc_cleanup(crtc);
600 }
601 
tilcdc_crtc_update_fb(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event)602 int tilcdc_crtc_update_fb(struct drm_crtc *crtc,
603 		struct drm_framebuffer *fb,
604 		struct drm_pending_vblank_event *event)
605 {
606 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
607 	struct drm_device *dev = crtc->dev;
608 
609 	if (tilcdc_crtc->event) {
610 		dev_err(dev->dev, "already pending page flip!\n");
611 		return -EBUSY;
612 	}
613 
614 	tilcdc_crtc->event = event;
615 
616 	mutex_lock(&tilcdc_crtc->enable_lock);
617 
618 	if (tilcdc_crtc->enabled) {
619 		unsigned long flags;
620 		ktime_t next_vblank;
621 		s64 tdiff;
622 
623 		spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
624 
625 		next_vblank = ktime_add_us(tilcdc_crtc->last_vblank,
626 					   tilcdc_crtc->hvtotal_us);
627 		tdiff = ktime_to_us(ktime_sub(next_vblank, ktime_get()));
628 
629 		if (tdiff < TILCDC_VBLANK_SAFETY_THRESHOLD_US)
630 			tilcdc_crtc->next_fb = fb;
631 		else
632 			set_scanout(crtc, fb);
633 
634 		spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
635 	}
636 
637 	mutex_unlock(&tilcdc_crtc->enable_lock);
638 
639 	return 0;
640 }
641 
tilcdc_crtc_mode_fixup(struct drm_crtc * crtc,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)642 static bool tilcdc_crtc_mode_fixup(struct drm_crtc *crtc,
643 		const struct drm_display_mode *mode,
644 		struct drm_display_mode *adjusted_mode)
645 {
646 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
647 
648 	if (!tilcdc_crtc->simulate_vesa_sync)
649 		return true;
650 
651 	/*
652 	 * tilcdc does not generate VESA-compliant sync but aligns
653 	 * VS on the second edge of HS instead of first edge.
654 	 * We use adjusted_mode, to fixup sync by aligning both rising
655 	 * edges and add HSKEW offset to fix the sync.
656 	 */
657 	adjusted_mode->hskew = mode->hsync_end - mode->hsync_start;
658 	adjusted_mode->flags |= DRM_MODE_FLAG_HSKEW;
659 
660 	if (mode->flags & DRM_MODE_FLAG_NHSYNC) {
661 		adjusted_mode->flags |= DRM_MODE_FLAG_PHSYNC;
662 		adjusted_mode->flags &= ~DRM_MODE_FLAG_NHSYNC;
663 	} else {
664 		adjusted_mode->flags |= DRM_MODE_FLAG_NHSYNC;
665 		adjusted_mode->flags &= ~DRM_MODE_FLAG_PHSYNC;
666 	}
667 
668 	return true;
669 }
670 
tilcdc_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)671 static int tilcdc_crtc_atomic_check(struct drm_crtc *crtc,
672 				    struct drm_crtc_state *state)
673 {
674 	/* If we are not active we don't care */
675 	if (!state->active)
676 		return 0;
677 
678 	if (state->state->planes[0].ptr != crtc->primary ||
679 	    state->state->planes[0].state == NULL ||
680 	    state->state->planes[0].state->crtc != crtc) {
681 		dev_dbg(crtc->dev->dev, "CRTC primary plane must be present");
682 		return -EINVAL;
683 	}
684 
685 	return 0;
686 }
687 
tilcdc_crtc_enable_vblank(struct drm_crtc * crtc)688 static int tilcdc_crtc_enable_vblank(struct drm_crtc *crtc)
689 {
690 	return 0;
691 }
692 
tilcdc_crtc_disable_vblank(struct drm_crtc * crtc)693 static void tilcdc_crtc_disable_vblank(struct drm_crtc *crtc)
694 {
695 }
696 
tilcdc_crtc_reset(struct drm_crtc * crtc)697 static void tilcdc_crtc_reset(struct drm_crtc *crtc)
698 {
699 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
700 	struct drm_device *dev = crtc->dev;
701 	int ret;
702 
703 	drm_atomic_helper_crtc_reset(crtc);
704 
705 	/* Turn the raster off if it for some reason is on. */
706 	pm_runtime_get_sync(dev->dev);
707 	if (tilcdc_read(dev, LCDC_RASTER_CTRL_REG) & LCDC_RASTER_ENABLE) {
708 		/* Enable DMA Frame Done Interrupt */
709 		tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG, LCDC_FRAME_DONE);
710 		tilcdc_clear_irqstatus(dev, 0xffffffff);
711 
712 		tilcdc_crtc->frame_done = false;
713 		tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
714 
715 		ret = wait_event_timeout(tilcdc_crtc->frame_done_wq,
716 					 tilcdc_crtc->frame_done,
717 					 msecs_to_jiffies(500));
718 		if (ret == 0)
719 			dev_err(dev->dev, "%s: timeout waiting for framedone\n",
720 				__func__);
721 	}
722 	pm_runtime_put_sync(dev->dev);
723 }
724 
725 static const struct drm_crtc_funcs tilcdc_crtc_funcs = {
726 	.destroy        = tilcdc_crtc_destroy,
727 	.set_config     = drm_atomic_helper_set_config,
728 	.page_flip      = drm_atomic_helper_page_flip,
729 	.reset		= tilcdc_crtc_reset,
730 	.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
731 	.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
732 	.enable_vblank	= tilcdc_crtc_enable_vblank,
733 	.disable_vblank	= tilcdc_crtc_disable_vblank,
734 };
735 
tilcdc_crtc_max_width(struct drm_crtc * crtc)736 int tilcdc_crtc_max_width(struct drm_crtc *crtc)
737 {
738 	struct drm_device *dev = crtc->dev;
739 	struct tilcdc_drm_private *priv = dev->dev_private;
740 	int max_width = 0;
741 
742 	if (priv->rev == 1)
743 		max_width = 1024;
744 	else if (priv->rev == 2)
745 		max_width = 2048;
746 
747 	return max_width;
748 }
749 
750 static enum drm_mode_status
tilcdc_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)751 tilcdc_crtc_mode_valid(struct drm_crtc *crtc,
752 		       const struct drm_display_mode *mode)
753 {
754 	struct tilcdc_drm_private *priv = crtc->dev->dev_private;
755 	unsigned int bandwidth;
756 	uint32_t hbp, hfp, hsw, vbp, vfp, vsw;
757 
758 	/*
759 	 * check to see if the width is within the range that
760 	 * the LCD Controller physically supports
761 	 */
762 	if (mode->hdisplay > tilcdc_crtc_max_width(crtc))
763 		return MODE_VIRTUAL_X;
764 
765 	/* width must be multiple of 16 */
766 	if (mode->hdisplay & 0xf)
767 		return MODE_VIRTUAL_X;
768 
769 	if (mode->vdisplay > 2048)
770 		return MODE_VIRTUAL_Y;
771 
772 	DBG("Processing mode %dx%d@%d with pixel clock %d",
773 		mode->hdisplay, mode->vdisplay,
774 		drm_mode_vrefresh(mode), mode->clock);
775 
776 	hbp = mode->htotal - mode->hsync_end;
777 	hfp = mode->hsync_start - mode->hdisplay;
778 	hsw = mode->hsync_end - mode->hsync_start;
779 	vbp = mode->vtotal - mode->vsync_end;
780 	vfp = mode->vsync_start - mode->vdisplay;
781 	vsw = mode->vsync_end - mode->vsync_start;
782 
783 	if ((hbp-1) & ~0x3ff) {
784 		DBG("Pruning mode: Horizontal Back Porch out of range");
785 		return MODE_HBLANK_WIDE;
786 	}
787 
788 	if ((hfp-1) & ~0x3ff) {
789 		DBG("Pruning mode: Horizontal Front Porch out of range");
790 		return MODE_HBLANK_WIDE;
791 	}
792 
793 	if ((hsw-1) & ~0x3ff) {
794 		DBG("Pruning mode: Horizontal Sync Width out of range");
795 		return MODE_HSYNC_WIDE;
796 	}
797 
798 	if (vbp & ~0xff) {
799 		DBG("Pruning mode: Vertical Back Porch out of range");
800 		return MODE_VBLANK_WIDE;
801 	}
802 
803 	if (vfp & ~0xff) {
804 		DBG("Pruning mode: Vertical Front Porch out of range");
805 		return MODE_VBLANK_WIDE;
806 	}
807 
808 	if ((vsw-1) & ~0x3f) {
809 		DBG("Pruning mode: Vertical Sync Width out of range");
810 		return MODE_VSYNC_WIDE;
811 	}
812 
813 	/*
814 	 * some devices have a maximum allowed pixel clock
815 	 * configured from the DT
816 	 */
817 	if (mode->clock > priv->max_pixelclock) {
818 		DBG("Pruning mode: pixel clock too high");
819 		return MODE_CLOCK_HIGH;
820 	}
821 
822 	/*
823 	 * some devices further limit the max horizontal resolution
824 	 * configured from the DT
825 	 */
826 	if (mode->hdisplay > priv->max_width)
827 		return MODE_BAD_WIDTH;
828 
829 	/* filter out modes that would require too much memory bandwidth: */
830 	bandwidth = mode->hdisplay * mode->vdisplay *
831 		drm_mode_vrefresh(mode);
832 	if (bandwidth > priv->max_bandwidth) {
833 		DBG("Pruning mode: exceeds defined bandwidth limit");
834 		return MODE_BAD;
835 	}
836 
837 	return MODE_OK;
838 }
839 
840 static const struct drm_crtc_helper_funcs tilcdc_crtc_helper_funcs = {
841 	.mode_valid	= tilcdc_crtc_mode_valid,
842 	.mode_fixup	= tilcdc_crtc_mode_fixup,
843 	.atomic_check	= tilcdc_crtc_atomic_check,
844 	.atomic_enable	= tilcdc_crtc_atomic_enable,
845 	.atomic_disable	= tilcdc_crtc_atomic_disable,
846 	.atomic_flush	= tilcdc_crtc_atomic_flush,
847 };
848 
tilcdc_crtc_set_panel_info(struct drm_crtc * crtc,const struct tilcdc_panel_info * info)849 void tilcdc_crtc_set_panel_info(struct drm_crtc *crtc,
850 		const struct tilcdc_panel_info *info)
851 {
852 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
853 	tilcdc_crtc->info = info;
854 }
855 
tilcdc_crtc_set_simulate_vesa_sync(struct drm_crtc * crtc,bool simulate_vesa_sync)856 void tilcdc_crtc_set_simulate_vesa_sync(struct drm_crtc *crtc,
857 					bool simulate_vesa_sync)
858 {
859 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
860 
861 	tilcdc_crtc->simulate_vesa_sync = simulate_vesa_sync;
862 }
863 
tilcdc_crtc_update_clk(struct drm_crtc * crtc)864 void tilcdc_crtc_update_clk(struct drm_crtc *crtc)
865 {
866 	struct drm_device *dev = crtc->dev;
867 	struct tilcdc_drm_private *priv = dev->dev_private;
868 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
869 
870 	drm_modeset_lock(&crtc->mutex, NULL);
871 	if (tilcdc_crtc->lcd_fck_rate != clk_get_rate(priv->clk)) {
872 		if (tilcdc_crtc_is_on(crtc)) {
873 			pm_runtime_get_sync(dev->dev);
874 			tilcdc_crtc_disable(crtc);
875 
876 			tilcdc_crtc_set_clk(crtc);
877 
878 			tilcdc_crtc_enable(crtc);
879 			pm_runtime_put_sync(dev->dev);
880 		}
881 	}
882 	drm_modeset_unlock(&crtc->mutex);
883 }
884 
885 #define SYNC_LOST_COUNT_LIMIT 50
886 
tilcdc_crtc_irq(struct drm_crtc * crtc)887 irqreturn_t tilcdc_crtc_irq(struct drm_crtc *crtc)
888 {
889 	struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
890 	struct drm_device *dev = crtc->dev;
891 	struct tilcdc_drm_private *priv = dev->dev_private;
892 	uint32_t stat, reg;
893 
894 	stat = tilcdc_read_irqstatus(dev);
895 	tilcdc_clear_irqstatus(dev, stat);
896 
897 	if (stat & LCDC_END_OF_FRAME0) {
898 		unsigned long flags;
899 		bool skip_event = false;
900 		ktime_t now;
901 
902 		now = ktime_get();
903 
904 		spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
905 
906 		tilcdc_crtc->last_vblank = now;
907 
908 		if (tilcdc_crtc->next_fb) {
909 			set_scanout(crtc, tilcdc_crtc->next_fb);
910 			tilcdc_crtc->next_fb = NULL;
911 			skip_event = true;
912 		}
913 
914 		spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
915 
916 		drm_crtc_handle_vblank(crtc);
917 
918 		if (!skip_event) {
919 			struct drm_pending_vblank_event *event;
920 
921 			spin_lock_irqsave(&dev->event_lock, flags);
922 
923 			event = tilcdc_crtc->event;
924 			tilcdc_crtc->event = NULL;
925 			if (event)
926 				drm_crtc_send_vblank_event(crtc, event);
927 
928 			spin_unlock_irqrestore(&dev->event_lock, flags);
929 		}
930 
931 		if (tilcdc_crtc->frame_intact)
932 			tilcdc_crtc->sync_lost_count = 0;
933 		else
934 			tilcdc_crtc->frame_intact = true;
935 	}
936 
937 	if (stat & LCDC_FIFO_UNDERFLOW)
938 		dev_err_ratelimited(dev->dev, "%s(0x%08x): FIFO underflow",
939 				    __func__, stat);
940 
941 	if (stat & LCDC_PL_LOAD_DONE) {
942 		complete(&tilcdc_crtc->palette_loaded);
943 		if (priv->rev == 1)
944 			tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
945 				     LCDC_V1_PL_INT_ENA);
946 		else
947 			tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
948 				     LCDC_V2_PL_INT_ENA);
949 	}
950 
951 	if (stat & LCDC_SYNC_LOST) {
952 		dev_err_ratelimited(dev->dev, "%s(0x%08x): Sync lost",
953 				    __func__, stat);
954 		tilcdc_crtc->frame_intact = false;
955 		if (priv->rev == 1) {
956 			reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG);
957 			if (reg & LCDC_RASTER_ENABLE) {
958 				tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
959 					     LCDC_RASTER_ENABLE);
960 				tilcdc_set(dev, LCDC_RASTER_CTRL_REG,
961 					   LCDC_RASTER_ENABLE);
962 			}
963 		} else {
964 			if (tilcdc_crtc->sync_lost_count++ >
965 			    SYNC_LOST_COUNT_LIMIT) {
966 				dev_err(dev->dev,
967 					"%s(0x%08x): Sync lost flood detected, recovering",
968 					__func__, stat);
969 				queue_work(system_wq,
970 					   &tilcdc_crtc->recover_work);
971 				tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
972 					     LCDC_SYNC_LOST);
973 				tilcdc_crtc->sync_lost_count = 0;
974 			}
975 		}
976 	}
977 
978 	if (stat & LCDC_FRAME_DONE) {
979 		tilcdc_crtc->frame_done = true;
980 		wake_up(&tilcdc_crtc->frame_done_wq);
981 		/* rev 1 lcdc appears to hang if irq is not disbaled here */
982 		if (priv->rev == 1)
983 			tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
984 				     LCDC_V1_FRAME_DONE_INT_ENA);
985 	}
986 
987 	/* For revision 2 only */
988 	if (priv->rev == 2) {
989 		/* Indicate to LCDC that the interrupt service routine has
990 		 * completed, see 13.3.6.1.6 in AM335x TRM.
991 		 */
992 		tilcdc_write(dev, LCDC_END_OF_INT_IND_REG, 0);
993 	}
994 
995 	return IRQ_HANDLED;
996 }
997 
tilcdc_crtc_create(struct drm_device * dev)998 int tilcdc_crtc_create(struct drm_device *dev)
999 {
1000 	struct tilcdc_drm_private *priv = dev->dev_private;
1001 	struct tilcdc_crtc *tilcdc_crtc;
1002 	struct drm_crtc *crtc;
1003 	int ret;
1004 
1005 	tilcdc_crtc = devm_kzalloc(dev->dev, sizeof(*tilcdc_crtc), GFP_KERNEL);
1006 	if (!tilcdc_crtc)
1007 		return -ENOMEM;
1008 
1009 	init_completion(&tilcdc_crtc->palette_loaded);
1010 	tilcdc_crtc->palette_base = dmam_alloc_coherent(dev->dev,
1011 					TILCDC_PALETTE_SIZE,
1012 					&tilcdc_crtc->palette_dma_handle,
1013 					GFP_KERNEL | __GFP_ZERO);
1014 	if (!tilcdc_crtc->palette_base)
1015 		return -ENOMEM;
1016 	*tilcdc_crtc->palette_base = TILCDC_PALETTE_FIRST_ENTRY;
1017 
1018 	crtc = &tilcdc_crtc->base;
1019 
1020 	ret = tilcdc_plane_init(dev, &tilcdc_crtc->primary);
1021 	if (ret < 0)
1022 		goto fail;
1023 
1024 	mutex_init(&tilcdc_crtc->enable_lock);
1025 
1026 	init_waitqueue_head(&tilcdc_crtc->frame_done_wq);
1027 
1028 	spin_lock_init(&tilcdc_crtc->irq_lock);
1029 	INIT_WORK(&tilcdc_crtc->recover_work, tilcdc_crtc_recover_work);
1030 
1031 	ret = drm_crtc_init_with_planes(dev, crtc,
1032 					&tilcdc_crtc->primary,
1033 					NULL,
1034 					&tilcdc_crtc_funcs,
1035 					"tilcdc crtc");
1036 	if (ret < 0)
1037 		goto fail;
1038 
1039 	drm_crtc_helper_add(crtc, &tilcdc_crtc_helper_funcs);
1040 
1041 	if (priv->is_componentized) {
1042 		crtc->port = of_graph_get_port_by_id(dev->dev->of_node, 0);
1043 		if (!crtc->port) { /* This should never happen */
1044 			dev_err(dev->dev, "Port node not found in %pOF\n",
1045 				dev->dev->of_node);
1046 			ret = -EINVAL;
1047 			goto fail;
1048 		}
1049 	}
1050 
1051 	priv->crtc = crtc;
1052 	return 0;
1053 
1054 fail:
1055 	tilcdc_crtc_destroy(crtc);
1056 	return ret;
1057 }
1058