1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16
17 /*
18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19 * irrelevant.
20 */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22
23 static DEFINE_PER_CPU(int, flush_idx);
24
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 struct nd_region_data *ndrd)
27 {
28 int i, j;
29
30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 struct resource *res = &nvdimm->flush_wpq[i];
34 unsigned long pfn = PHYS_PFN(res->start);
35 void __iomem *flush_page;
36
37 /* check if flush hints share a page */
38 for (j = 0; j < i; j++) {
39 struct resource *res_j = &nvdimm->flush_wpq[j];
40 unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42 if (pfn == pfn_j)
43 break;
44 }
45
46 if (j < i)
47 flush_page = (void __iomem *) ((unsigned long)
48 ndrd_get_flush_wpq(ndrd, dimm, j)
49 & PAGE_MASK);
50 else
51 flush_page = devm_nvdimm_ioremap(dev,
52 PFN_PHYS(pfn), PAGE_SIZE);
53 if (!flush_page)
54 return -ENXIO;
55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 + (res->start & ~PAGE_MASK));
57 }
58
59 return 0;
60 }
61
nd_region_activate(struct nd_region * nd_region)62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 int i, j, num_flush = 0;
65 struct nd_region_data *ndrd;
66 struct device *dev = &nd_region->dev;
67 size_t flush_data_size = sizeof(void *);
68
69 nvdimm_bus_lock(&nd_region->dev);
70 for (i = 0; i < nd_region->ndr_mappings; i++) {
71 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 nvdimm_bus_unlock(&nd_region->dev);
76 return -EBUSY;
77 }
78
79 /* at least one null hint slot per-dimm for the "no-hint" case */
80 flush_data_size += sizeof(void *);
81 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 if (!nvdimm->num_flush)
83 continue;
84 flush_data_size += nvdimm->num_flush * sizeof(void *);
85 }
86 nvdimm_bus_unlock(&nd_region->dev);
87
88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 if (!ndrd)
90 return -ENOMEM;
91 dev_set_drvdata(dev, ndrd);
92
93 if (!num_flush)
94 return 0;
95
96 ndrd->hints_shift = ilog2(num_flush);
97 for (i = 0; i < nd_region->ndr_mappings; i++) {
98 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102 if (rc)
103 return rc;
104 }
105
106 /*
107 * Clear out entries that are duplicates. This should prevent the
108 * extra flushings.
109 */
110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 /* ignore if NULL already */
112 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 continue;
114
115 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 ndrd_get_flush_wpq(ndrd, j, 0))
118 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 }
120
121 return 0;
122 }
123
nd_region_release(struct device * dev)124 static void nd_region_release(struct device *dev)
125 {
126 struct nd_region *nd_region = to_nd_region(dev);
127 u16 i;
128
129 for (i = 0; i < nd_region->ndr_mappings; i++) {
130 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133 put_device(&nvdimm->dev);
134 }
135 free_percpu(nd_region->lane);
136 memregion_free(nd_region->id);
137 if (is_nd_blk(dev))
138 kfree(to_nd_blk_region(dev));
139 else
140 kfree(nd_region);
141 }
142
to_nd_region(struct device * dev)143 struct nd_region *to_nd_region(struct device *dev)
144 {
145 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
146
147 WARN_ON(dev->type->release != nd_region_release);
148 return nd_region;
149 }
150 EXPORT_SYMBOL_GPL(to_nd_region);
151
nd_region_dev(struct nd_region * nd_region)152 struct device *nd_region_dev(struct nd_region *nd_region)
153 {
154 if (!nd_region)
155 return NULL;
156 return &nd_region->dev;
157 }
158 EXPORT_SYMBOL_GPL(nd_region_dev);
159
to_nd_blk_region(struct device * dev)160 struct nd_blk_region *to_nd_blk_region(struct device *dev)
161 {
162 struct nd_region *nd_region = to_nd_region(dev);
163
164 WARN_ON(!is_nd_blk(dev));
165 return container_of(nd_region, struct nd_blk_region, nd_region);
166 }
167 EXPORT_SYMBOL_GPL(to_nd_blk_region);
168
nd_region_provider_data(struct nd_region * nd_region)169 void *nd_region_provider_data(struct nd_region *nd_region)
170 {
171 return nd_region->provider_data;
172 }
173 EXPORT_SYMBOL_GPL(nd_region_provider_data);
174
nd_blk_region_provider_data(struct nd_blk_region * ndbr)175 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
176 {
177 return ndbr->blk_provider_data;
178 }
179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
180
nd_blk_region_set_provider_data(struct nd_blk_region * ndbr,void * data)181 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
182 {
183 ndbr->blk_provider_data = data;
184 }
185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
186
187 /**
188 * nd_region_to_nstype() - region to an integer namespace type
189 * @nd_region: region-device to interrogate
190 *
191 * This is the 'nstype' attribute of a region as well, an input to the
192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
193 * namespace devices with namespace drivers.
194 */
nd_region_to_nstype(struct nd_region * nd_region)195 int nd_region_to_nstype(struct nd_region *nd_region)
196 {
197 if (is_memory(&nd_region->dev)) {
198 u16 i, label;
199
200 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
201 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
202 struct nvdimm *nvdimm = nd_mapping->nvdimm;
203
204 if (test_bit(NDD_LABELING, &nvdimm->flags))
205 label++;
206 }
207 if (label)
208 return ND_DEVICE_NAMESPACE_PMEM;
209 else
210 return ND_DEVICE_NAMESPACE_IO;
211 } else if (is_nd_blk(&nd_region->dev)) {
212 return ND_DEVICE_NAMESPACE_BLK;
213 }
214
215 return 0;
216 }
217 EXPORT_SYMBOL(nd_region_to_nstype);
218
region_size(struct nd_region * nd_region)219 static unsigned long long region_size(struct nd_region *nd_region)
220 {
221 if (is_memory(&nd_region->dev)) {
222 return nd_region->ndr_size;
223 } else if (nd_region->ndr_mappings == 1) {
224 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
225
226 return nd_mapping->size;
227 }
228
229 return 0;
230 }
231
size_show(struct device * dev,struct device_attribute * attr,char * buf)232 static ssize_t size_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234 {
235 struct nd_region *nd_region = to_nd_region(dev);
236
237 return sprintf(buf, "%llu\n", region_size(nd_region));
238 }
239 static DEVICE_ATTR_RO(size);
240
deep_flush_show(struct device * dev,struct device_attribute * attr,char * buf)241 static ssize_t deep_flush_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
243 {
244 struct nd_region *nd_region = to_nd_region(dev);
245
246 /*
247 * NOTE: in the nvdimm_has_flush() error case this attribute is
248 * not visible.
249 */
250 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
251 }
252
deep_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)253 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t len)
255 {
256 bool flush;
257 int rc = strtobool(buf, &flush);
258 struct nd_region *nd_region = to_nd_region(dev);
259
260 if (rc)
261 return rc;
262 if (!flush)
263 return -EINVAL;
264 rc = nvdimm_flush(nd_region, NULL);
265 if (rc)
266 return rc;
267
268 return len;
269 }
270 static DEVICE_ATTR_RW(deep_flush);
271
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)272 static ssize_t mappings_show(struct device *dev,
273 struct device_attribute *attr, char *buf)
274 {
275 struct nd_region *nd_region = to_nd_region(dev);
276
277 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
278 }
279 static DEVICE_ATTR_RO(mappings);
280
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t nstype_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct nd_region *nd_region = to_nd_region(dev);
285
286 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
287 }
288 static DEVICE_ATTR_RO(nstype);
289
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)290 static ssize_t set_cookie_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292 {
293 struct nd_region *nd_region = to_nd_region(dev);
294 struct nd_interleave_set *nd_set = nd_region->nd_set;
295 ssize_t rc = 0;
296
297 if (is_memory(dev) && nd_set)
298 /* pass, should be precluded by region_visible */;
299 else
300 return -ENXIO;
301
302 /*
303 * The cookie to show depends on which specification of the
304 * labels we are using. If there are not labels then default to
305 * the v1.1 namespace label cookie definition. To read all this
306 * data we need to wait for probing to settle.
307 */
308 nd_device_lock(dev);
309 nvdimm_bus_lock(dev);
310 wait_nvdimm_bus_probe_idle(dev);
311 if (nd_region->ndr_mappings) {
312 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
313 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
314
315 if (ndd) {
316 struct nd_namespace_index *nsindex;
317
318 nsindex = to_namespace_index(ndd, ndd->ns_current);
319 rc = sprintf(buf, "%#llx\n",
320 nd_region_interleave_set_cookie(nd_region,
321 nsindex));
322 }
323 }
324 nvdimm_bus_unlock(dev);
325 nd_device_unlock(dev);
326
327 if (rc)
328 return rc;
329 return sprintf(buf, "%#llx\n", nd_set->cookie1);
330 }
331 static DEVICE_ATTR_RO(set_cookie);
332
nd_region_available_dpa(struct nd_region * nd_region)333 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
334 {
335 resource_size_t blk_max_overlap = 0, available, overlap;
336 int i;
337
338 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
339
340 retry:
341 available = 0;
342 overlap = blk_max_overlap;
343 for (i = 0; i < nd_region->ndr_mappings; i++) {
344 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
345 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
346
347 /* if a dimm is disabled the available capacity is zero */
348 if (!ndd)
349 return 0;
350
351 if (is_memory(&nd_region->dev)) {
352 available += nd_pmem_available_dpa(nd_region,
353 nd_mapping, &overlap);
354 if (overlap > blk_max_overlap) {
355 blk_max_overlap = overlap;
356 goto retry;
357 }
358 } else if (is_nd_blk(&nd_region->dev))
359 available += nd_blk_available_dpa(nd_region);
360 }
361
362 return available;
363 }
364
nd_region_allocatable_dpa(struct nd_region * nd_region)365 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
366 {
367 resource_size_t available = 0;
368 int i;
369
370 if (is_memory(&nd_region->dev))
371 available = PHYS_ADDR_MAX;
372
373 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
374 for (i = 0; i < nd_region->ndr_mappings; i++) {
375 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
376
377 if (is_memory(&nd_region->dev))
378 available = min(available,
379 nd_pmem_max_contiguous_dpa(nd_region,
380 nd_mapping));
381 else if (is_nd_blk(&nd_region->dev))
382 available += nd_blk_available_dpa(nd_region);
383 }
384 if (is_memory(&nd_region->dev))
385 return available * nd_region->ndr_mappings;
386 return available;
387 }
388
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)389 static ssize_t available_size_show(struct device *dev,
390 struct device_attribute *attr, char *buf)
391 {
392 struct nd_region *nd_region = to_nd_region(dev);
393 unsigned long long available = 0;
394
395 /*
396 * Flush in-flight updates and grab a snapshot of the available
397 * size. Of course, this value is potentially invalidated the
398 * memory nvdimm_bus_lock() is dropped, but that's userspace's
399 * problem to not race itself.
400 */
401 nd_device_lock(dev);
402 nvdimm_bus_lock(dev);
403 wait_nvdimm_bus_probe_idle(dev);
404 available = nd_region_available_dpa(nd_region);
405 nvdimm_bus_unlock(dev);
406 nd_device_unlock(dev);
407
408 return sprintf(buf, "%llu\n", available);
409 }
410 static DEVICE_ATTR_RO(available_size);
411
max_available_extent_show(struct device * dev,struct device_attribute * attr,char * buf)412 static ssize_t max_available_extent_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
414 {
415 struct nd_region *nd_region = to_nd_region(dev);
416 unsigned long long available = 0;
417
418 nd_device_lock(dev);
419 nvdimm_bus_lock(dev);
420 wait_nvdimm_bus_probe_idle(dev);
421 available = nd_region_allocatable_dpa(nd_region);
422 nvdimm_bus_unlock(dev);
423 nd_device_unlock(dev);
424
425 return sprintf(buf, "%llu\n", available);
426 }
427 static DEVICE_ATTR_RO(max_available_extent);
428
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)429 static ssize_t init_namespaces_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct nd_region_data *ndrd = dev_get_drvdata(dev);
433 ssize_t rc;
434
435 nvdimm_bus_lock(dev);
436 if (ndrd)
437 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
438 else
439 rc = -ENXIO;
440 nvdimm_bus_unlock(dev);
441
442 return rc;
443 }
444 static DEVICE_ATTR_RO(init_namespaces);
445
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)446 static ssize_t namespace_seed_show(struct device *dev,
447 struct device_attribute *attr, char *buf)
448 {
449 struct nd_region *nd_region = to_nd_region(dev);
450 ssize_t rc;
451
452 nvdimm_bus_lock(dev);
453 if (nd_region->ns_seed)
454 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
455 else
456 rc = sprintf(buf, "\n");
457 nvdimm_bus_unlock(dev);
458 return rc;
459 }
460 static DEVICE_ATTR_RO(namespace_seed);
461
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)462 static ssize_t btt_seed_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct nd_region *nd_region = to_nd_region(dev);
466 ssize_t rc;
467
468 nvdimm_bus_lock(dev);
469 if (nd_region->btt_seed)
470 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
471 else
472 rc = sprintf(buf, "\n");
473 nvdimm_bus_unlock(dev);
474
475 return rc;
476 }
477 static DEVICE_ATTR_RO(btt_seed);
478
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)479 static ssize_t pfn_seed_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct nd_region *nd_region = to_nd_region(dev);
483 ssize_t rc;
484
485 nvdimm_bus_lock(dev);
486 if (nd_region->pfn_seed)
487 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
488 else
489 rc = sprintf(buf, "\n");
490 nvdimm_bus_unlock(dev);
491
492 return rc;
493 }
494 static DEVICE_ATTR_RO(pfn_seed);
495
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)496 static ssize_t dax_seed_show(struct device *dev,
497 struct device_attribute *attr, char *buf)
498 {
499 struct nd_region *nd_region = to_nd_region(dev);
500 ssize_t rc;
501
502 nvdimm_bus_lock(dev);
503 if (nd_region->dax_seed)
504 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
505 else
506 rc = sprintf(buf, "\n");
507 nvdimm_bus_unlock(dev);
508
509 return rc;
510 }
511 static DEVICE_ATTR_RO(dax_seed);
512
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)513 static ssize_t read_only_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct nd_region *nd_region = to_nd_region(dev);
517
518 return sprintf(buf, "%d\n", nd_region->ro);
519 }
520
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)521 static ssize_t read_only_store(struct device *dev,
522 struct device_attribute *attr, const char *buf, size_t len)
523 {
524 bool ro;
525 int rc = strtobool(buf, &ro);
526 struct nd_region *nd_region = to_nd_region(dev);
527
528 if (rc)
529 return rc;
530
531 nd_region->ro = ro;
532 return len;
533 }
534 static DEVICE_ATTR_RW(read_only);
535
align_show(struct device * dev,struct device_attribute * attr,char * buf)536 static ssize_t align_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 struct nd_region *nd_region = to_nd_region(dev);
540
541 return sprintf(buf, "%#lx\n", nd_region->align);
542 }
543
align_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)544 static ssize_t align_store(struct device *dev,
545 struct device_attribute *attr, const char *buf, size_t len)
546 {
547 struct nd_region *nd_region = to_nd_region(dev);
548 unsigned long val, dpa;
549 u32 remainder;
550 int rc;
551
552 rc = kstrtoul(buf, 0, &val);
553 if (rc)
554 return rc;
555
556 if (!nd_region->ndr_mappings)
557 return -ENXIO;
558
559 /*
560 * Ensure space-align is evenly divisible by the region
561 * interleave-width because the kernel typically has no facility
562 * to determine which DIMM(s), dimm-physical-addresses, would
563 * contribute to the tail capacity in system-physical-address
564 * space for the namespace.
565 */
566 dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
567 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
568 || val > region_size(nd_region) || remainder)
569 return -EINVAL;
570
571 /*
572 * Given that space allocation consults this value multiple
573 * times ensure it does not change for the duration of the
574 * allocation.
575 */
576 nvdimm_bus_lock(dev);
577 nd_region->align = val;
578 nvdimm_bus_unlock(dev);
579
580 return len;
581 }
582 static DEVICE_ATTR_RW(align);
583
region_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)584 static ssize_t region_badblocks_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
586 {
587 struct nd_region *nd_region = to_nd_region(dev);
588 ssize_t rc;
589
590 nd_device_lock(dev);
591 if (dev->driver)
592 rc = badblocks_show(&nd_region->bb, buf, 0);
593 else
594 rc = -ENXIO;
595 nd_device_unlock(dev);
596
597 return rc;
598 }
599 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
600
resource_show(struct device * dev,struct device_attribute * attr,char * buf)601 static ssize_t resource_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603 {
604 struct nd_region *nd_region = to_nd_region(dev);
605
606 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
607 }
608 static DEVICE_ATTR_ADMIN_RO(resource);
609
persistence_domain_show(struct device * dev,struct device_attribute * attr,char * buf)610 static ssize_t persistence_domain_show(struct device *dev,
611 struct device_attribute *attr, char *buf)
612 {
613 struct nd_region *nd_region = to_nd_region(dev);
614
615 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
616 return sprintf(buf, "cpu_cache\n");
617 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
618 return sprintf(buf, "memory_controller\n");
619 else
620 return sprintf(buf, "\n");
621 }
622 static DEVICE_ATTR_RO(persistence_domain);
623
624 static struct attribute *nd_region_attributes[] = {
625 &dev_attr_size.attr,
626 &dev_attr_align.attr,
627 &dev_attr_nstype.attr,
628 &dev_attr_mappings.attr,
629 &dev_attr_btt_seed.attr,
630 &dev_attr_pfn_seed.attr,
631 &dev_attr_dax_seed.attr,
632 &dev_attr_deep_flush.attr,
633 &dev_attr_read_only.attr,
634 &dev_attr_set_cookie.attr,
635 &dev_attr_available_size.attr,
636 &dev_attr_max_available_extent.attr,
637 &dev_attr_namespace_seed.attr,
638 &dev_attr_init_namespaces.attr,
639 &dev_attr_badblocks.attr,
640 &dev_attr_resource.attr,
641 &dev_attr_persistence_domain.attr,
642 NULL,
643 };
644
region_visible(struct kobject * kobj,struct attribute * a,int n)645 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
646 {
647 struct device *dev = container_of(kobj, typeof(*dev), kobj);
648 struct nd_region *nd_region = to_nd_region(dev);
649 struct nd_interleave_set *nd_set = nd_region->nd_set;
650 int type = nd_region_to_nstype(nd_region);
651
652 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
653 return 0;
654
655 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
656 return 0;
657
658 if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
659 return 0;
660
661 if (a == &dev_attr_resource.attr && !is_memory(dev))
662 return 0;
663
664 if (a == &dev_attr_deep_flush.attr) {
665 int has_flush = nvdimm_has_flush(nd_region);
666
667 if (has_flush == 1)
668 return a->mode;
669 else if (has_flush == 0)
670 return 0444;
671 else
672 return 0;
673 }
674
675 if (a == &dev_attr_persistence_domain.attr) {
676 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
677 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
678 return 0;
679 return a->mode;
680 }
681
682 if (a == &dev_attr_align.attr)
683 return a->mode;
684
685 if (a != &dev_attr_set_cookie.attr
686 && a != &dev_attr_available_size.attr)
687 return a->mode;
688
689 if ((type == ND_DEVICE_NAMESPACE_PMEM
690 || type == ND_DEVICE_NAMESPACE_BLK)
691 && a == &dev_attr_available_size.attr)
692 return a->mode;
693 else if (is_memory(dev) && nd_set)
694 return a->mode;
695
696 return 0;
697 }
698
mappingN(struct device * dev,char * buf,int n)699 static ssize_t mappingN(struct device *dev, char *buf, int n)
700 {
701 struct nd_region *nd_region = to_nd_region(dev);
702 struct nd_mapping *nd_mapping;
703 struct nvdimm *nvdimm;
704
705 if (n >= nd_region->ndr_mappings)
706 return -ENXIO;
707 nd_mapping = &nd_region->mapping[n];
708 nvdimm = nd_mapping->nvdimm;
709
710 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
711 nd_mapping->start, nd_mapping->size,
712 nd_mapping->position);
713 }
714
715 #define REGION_MAPPING(idx) \
716 static ssize_t mapping##idx##_show(struct device *dev, \
717 struct device_attribute *attr, char *buf) \
718 { \
719 return mappingN(dev, buf, idx); \
720 } \
721 static DEVICE_ATTR_RO(mapping##idx)
722
723 /*
724 * 32 should be enough for a while, even in the presence of socket
725 * interleave a 32-way interleave set is a degenerate case.
726 */
727 REGION_MAPPING(0);
728 REGION_MAPPING(1);
729 REGION_MAPPING(2);
730 REGION_MAPPING(3);
731 REGION_MAPPING(4);
732 REGION_MAPPING(5);
733 REGION_MAPPING(6);
734 REGION_MAPPING(7);
735 REGION_MAPPING(8);
736 REGION_MAPPING(9);
737 REGION_MAPPING(10);
738 REGION_MAPPING(11);
739 REGION_MAPPING(12);
740 REGION_MAPPING(13);
741 REGION_MAPPING(14);
742 REGION_MAPPING(15);
743 REGION_MAPPING(16);
744 REGION_MAPPING(17);
745 REGION_MAPPING(18);
746 REGION_MAPPING(19);
747 REGION_MAPPING(20);
748 REGION_MAPPING(21);
749 REGION_MAPPING(22);
750 REGION_MAPPING(23);
751 REGION_MAPPING(24);
752 REGION_MAPPING(25);
753 REGION_MAPPING(26);
754 REGION_MAPPING(27);
755 REGION_MAPPING(28);
756 REGION_MAPPING(29);
757 REGION_MAPPING(30);
758 REGION_MAPPING(31);
759
mapping_visible(struct kobject * kobj,struct attribute * a,int n)760 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
761 {
762 struct device *dev = container_of(kobj, struct device, kobj);
763 struct nd_region *nd_region = to_nd_region(dev);
764
765 if (n < nd_region->ndr_mappings)
766 return a->mode;
767 return 0;
768 }
769
770 static struct attribute *mapping_attributes[] = {
771 &dev_attr_mapping0.attr,
772 &dev_attr_mapping1.attr,
773 &dev_attr_mapping2.attr,
774 &dev_attr_mapping3.attr,
775 &dev_attr_mapping4.attr,
776 &dev_attr_mapping5.attr,
777 &dev_attr_mapping6.attr,
778 &dev_attr_mapping7.attr,
779 &dev_attr_mapping8.attr,
780 &dev_attr_mapping9.attr,
781 &dev_attr_mapping10.attr,
782 &dev_attr_mapping11.attr,
783 &dev_attr_mapping12.attr,
784 &dev_attr_mapping13.attr,
785 &dev_attr_mapping14.attr,
786 &dev_attr_mapping15.attr,
787 &dev_attr_mapping16.attr,
788 &dev_attr_mapping17.attr,
789 &dev_attr_mapping18.attr,
790 &dev_attr_mapping19.attr,
791 &dev_attr_mapping20.attr,
792 &dev_attr_mapping21.attr,
793 &dev_attr_mapping22.attr,
794 &dev_attr_mapping23.attr,
795 &dev_attr_mapping24.attr,
796 &dev_attr_mapping25.attr,
797 &dev_attr_mapping26.attr,
798 &dev_attr_mapping27.attr,
799 &dev_attr_mapping28.attr,
800 &dev_attr_mapping29.attr,
801 &dev_attr_mapping30.attr,
802 &dev_attr_mapping31.attr,
803 NULL,
804 };
805
806 static const struct attribute_group nd_mapping_attribute_group = {
807 .is_visible = mapping_visible,
808 .attrs = mapping_attributes,
809 };
810
811 static const struct attribute_group nd_region_attribute_group = {
812 .attrs = nd_region_attributes,
813 .is_visible = region_visible,
814 };
815
816 static const struct attribute_group *nd_region_attribute_groups[] = {
817 &nd_device_attribute_group,
818 &nd_region_attribute_group,
819 &nd_numa_attribute_group,
820 &nd_mapping_attribute_group,
821 NULL,
822 };
823
824 static const struct device_type nd_blk_device_type = {
825 .name = "nd_blk",
826 .release = nd_region_release,
827 .groups = nd_region_attribute_groups,
828 };
829
830 static const struct device_type nd_pmem_device_type = {
831 .name = "nd_pmem",
832 .release = nd_region_release,
833 .groups = nd_region_attribute_groups,
834 };
835
836 static const struct device_type nd_volatile_device_type = {
837 .name = "nd_volatile",
838 .release = nd_region_release,
839 .groups = nd_region_attribute_groups,
840 };
841
is_nd_pmem(struct device * dev)842 bool is_nd_pmem(struct device *dev)
843 {
844 return dev ? dev->type == &nd_pmem_device_type : false;
845 }
846
is_nd_blk(struct device * dev)847 bool is_nd_blk(struct device *dev)
848 {
849 return dev ? dev->type == &nd_blk_device_type : false;
850 }
851
is_nd_volatile(struct device * dev)852 bool is_nd_volatile(struct device *dev)
853 {
854 return dev ? dev->type == &nd_volatile_device_type : false;
855 }
856
nd_region_interleave_set_cookie(struct nd_region * nd_region,struct nd_namespace_index * nsindex)857 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
858 struct nd_namespace_index *nsindex)
859 {
860 struct nd_interleave_set *nd_set = nd_region->nd_set;
861
862 if (!nd_set)
863 return 0;
864
865 if (nsindex && __le16_to_cpu(nsindex->major) == 1
866 && __le16_to_cpu(nsindex->minor) == 1)
867 return nd_set->cookie1;
868 return nd_set->cookie2;
869 }
870
nd_region_interleave_set_altcookie(struct nd_region * nd_region)871 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
872 {
873 struct nd_interleave_set *nd_set = nd_region->nd_set;
874
875 if (nd_set)
876 return nd_set->altcookie;
877 return 0;
878 }
879
nd_mapping_free_labels(struct nd_mapping * nd_mapping)880 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
881 {
882 struct nd_label_ent *label_ent, *e;
883
884 lockdep_assert_held(&nd_mapping->lock);
885 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
886 list_del(&label_ent->list);
887 kfree(label_ent);
888 }
889 }
890
891 /*
892 * When a namespace is activated create new seeds for the next
893 * namespace, or namespace-personality to be configured.
894 */
nd_region_advance_seeds(struct nd_region * nd_region,struct device * dev)895 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
896 {
897 nvdimm_bus_lock(dev);
898 if (nd_region->ns_seed == dev) {
899 nd_region_create_ns_seed(nd_region);
900 } else if (is_nd_btt(dev)) {
901 struct nd_btt *nd_btt = to_nd_btt(dev);
902
903 if (nd_region->btt_seed == dev)
904 nd_region_create_btt_seed(nd_region);
905 if (nd_region->ns_seed == &nd_btt->ndns->dev)
906 nd_region_create_ns_seed(nd_region);
907 } else if (is_nd_pfn(dev)) {
908 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
909
910 if (nd_region->pfn_seed == dev)
911 nd_region_create_pfn_seed(nd_region);
912 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
913 nd_region_create_ns_seed(nd_region);
914 } else if (is_nd_dax(dev)) {
915 struct nd_dax *nd_dax = to_nd_dax(dev);
916
917 if (nd_region->dax_seed == dev)
918 nd_region_create_dax_seed(nd_region);
919 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
920 nd_region_create_ns_seed(nd_region);
921 }
922 nvdimm_bus_unlock(dev);
923 }
924
nd_blk_region_init(struct nd_region * nd_region)925 int nd_blk_region_init(struct nd_region *nd_region)
926 {
927 struct device *dev = &nd_region->dev;
928 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
929
930 if (!is_nd_blk(dev))
931 return 0;
932
933 if (nd_region->ndr_mappings < 1) {
934 dev_dbg(dev, "invalid BLK region\n");
935 return -ENXIO;
936 }
937
938 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
939 }
940
941 /**
942 * nd_region_acquire_lane - allocate and lock a lane
943 * @nd_region: region id and number of lanes possible
944 *
945 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
946 * We optimize for the common case where there are 256 lanes, one
947 * per-cpu. For larger systems we need to lock to share lanes. For now
948 * this implementation assumes the cost of maintaining an allocator for
949 * free lanes is on the order of the lock hold time, so it implements a
950 * static lane = cpu % num_lanes mapping.
951 *
952 * In the case of a BTT instance on top of a BLK namespace a lane may be
953 * acquired recursively. We lock on the first instance.
954 *
955 * In the case of a BTT instance on top of PMEM, we only acquire a lane
956 * for the BTT metadata updates.
957 */
nd_region_acquire_lane(struct nd_region * nd_region)958 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
959 {
960 unsigned int cpu, lane;
961
962 cpu = get_cpu();
963 if (nd_region->num_lanes < nr_cpu_ids) {
964 struct nd_percpu_lane *ndl_lock, *ndl_count;
965
966 lane = cpu % nd_region->num_lanes;
967 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
968 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
969 if (ndl_count->count++ == 0)
970 spin_lock(&ndl_lock->lock);
971 } else
972 lane = cpu;
973
974 return lane;
975 }
976 EXPORT_SYMBOL(nd_region_acquire_lane);
977
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)978 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
979 {
980 if (nd_region->num_lanes < nr_cpu_ids) {
981 unsigned int cpu = get_cpu();
982 struct nd_percpu_lane *ndl_lock, *ndl_count;
983
984 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
985 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
986 if (--ndl_count->count == 0)
987 spin_unlock(&ndl_lock->lock);
988 put_cpu();
989 }
990 put_cpu();
991 }
992 EXPORT_SYMBOL(nd_region_release_lane);
993
994 /*
995 * PowerPC requires this alignment for memremap_pages(). All other archs
996 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
997 */
998 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
999
default_align(struct nd_region * nd_region)1000 static unsigned long default_align(struct nd_region *nd_region)
1001 {
1002 unsigned long align;
1003 int i, mappings;
1004 u32 remainder;
1005
1006 if (is_nd_blk(&nd_region->dev))
1007 align = PAGE_SIZE;
1008 else
1009 align = MEMREMAP_COMPAT_ALIGN_MAX;
1010
1011 for (i = 0; i < nd_region->ndr_mappings; i++) {
1012 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1013 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1014
1015 if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
1016 align = MEMREMAP_COMPAT_ALIGN_MAX;
1017 break;
1018 }
1019 }
1020
1021 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
1022 align = PAGE_SIZE;
1023
1024 mappings = max_t(u16, 1, nd_region->ndr_mappings);
1025 div_u64_rem(align, mappings, &remainder);
1026 if (remainder)
1027 align *= mappings;
1028
1029 return align;
1030 }
1031
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,const struct device_type * dev_type,const char * caller)1032 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1033 struct nd_region_desc *ndr_desc,
1034 const struct device_type *dev_type, const char *caller)
1035 {
1036 struct nd_region *nd_region;
1037 struct device *dev;
1038 void *region_buf;
1039 unsigned int i;
1040 int ro = 0;
1041
1042 for (i = 0; i < ndr_desc->num_mappings; i++) {
1043 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1044 struct nvdimm *nvdimm = mapping->nvdimm;
1045
1046 if ((mapping->start | mapping->size) % PAGE_SIZE) {
1047 dev_err(&nvdimm_bus->dev,
1048 "%s: %s mapping%d is not %ld aligned\n",
1049 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1050 return NULL;
1051 }
1052
1053 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1054 ro = 1;
1055
1056 if (test_bit(NDD_NOBLK, &nvdimm->flags)
1057 && dev_type == &nd_blk_device_type) {
1058 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1059 caller, dev_name(&nvdimm->dev), i);
1060 return NULL;
1061 }
1062 }
1063
1064 if (dev_type == &nd_blk_device_type) {
1065 struct nd_blk_region_desc *ndbr_desc;
1066 struct nd_blk_region *ndbr;
1067
1068 ndbr_desc = to_blk_region_desc(ndr_desc);
1069 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1070 * ndr_desc->num_mappings,
1071 GFP_KERNEL);
1072 if (ndbr) {
1073 nd_region = &ndbr->nd_region;
1074 ndbr->enable = ndbr_desc->enable;
1075 ndbr->do_io = ndbr_desc->do_io;
1076 }
1077 region_buf = ndbr;
1078 } else {
1079 nd_region = kzalloc(struct_size(nd_region, mapping,
1080 ndr_desc->num_mappings),
1081 GFP_KERNEL);
1082 region_buf = nd_region;
1083 }
1084
1085 if (!region_buf)
1086 return NULL;
1087 nd_region->id = memregion_alloc(GFP_KERNEL);
1088 if (nd_region->id < 0)
1089 goto err_id;
1090
1091 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1092 if (!nd_region->lane)
1093 goto err_percpu;
1094
1095 for (i = 0; i < nr_cpu_ids; i++) {
1096 struct nd_percpu_lane *ndl;
1097
1098 ndl = per_cpu_ptr(nd_region->lane, i);
1099 spin_lock_init(&ndl->lock);
1100 ndl->count = 0;
1101 }
1102
1103 for (i = 0; i < ndr_desc->num_mappings; i++) {
1104 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1105 struct nvdimm *nvdimm = mapping->nvdimm;
1106
1107 nd_region->mapping[i].nvdimm = nvdimm;
1108 nd_region->mapping[i].start = mapping->start;
1109 nd_region->mapping[i].size = mapping->size;
1110 nd_region->mapping[i].position = mapping->position;
1111 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1112 mutex_init(&nd_region->mapping[i].lock);
1113
1114 get_device(&nvdimm->dev);
1115 }
1116 nd_region->ndr_mappings = ndr_desc->num_mappings;
1117 nd_region->provider_data = ndr_desc->provider_data;
1118 nd_region->nd_set = ndr_desc->nd_set;
1119 nd_region->num_lanes = ndr_desc->num_lanes;
1120 nd_region->flags = ndr_desc->flags;
1121 nd_region->ro = ro;
1122 nd_region->numa_node = ndr_desc->numa_node;
1123 nd_region->target_node = ndr_desc->target_node;
1124 ida_init(&nd_region->ns_ida);
1125 ida_init(&nd_region->btt_ida);
1126 ida_init(&nd_region->pfn_ida);
1127 ida_init(&nd_region->dax_ida);
1128 dev = &nd_region->dev;
1129 dev_set_name(dev, "region%d", nd_region->id);
1130 dev->parent = &nvdimm_bus->dev;
1131 dev->type = dev_type;
1132 dev->groups = ndr_desc->attr_groups;
1133 dev->of_node = ndr_desc->of_node;
1134 nd_region->ndr_size = resource_size(ndr_desc->res);
1135 nd_region->ndr_start = ndr_desc->res->start;
1136 nd_region->align = default_align(nd_region);
1137 if (ndr_desc->flush)
1138 nd_region->flush = ndr_desc->flush;
1139 else
1140 nd_region->flush = NULL;
1141
1142 nd_device_register(dev);
1143
1144 return nd_region;
1145
1146 err_percpu:
1147 memregion_free(nd_region->id);
1148 err_id:
1149 kfree(region_buf);
1150 return NULL;
1151 }
1152
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1153 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1154 struct nd_region_desc *ndr_desc)
1155 {
1156 ndr_desc->num_lanes = ND_MAX_LANES;
1157 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1158 __func__);
1159 }
1160 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1161
nvdimm_blk_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1162 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1163 struct nd_region_desc *ndr_desc)
1164 {
1165 if (ndr_desc->num_mappings > 1)
1166 return NULL;
1167 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1168 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1169 __func__);
1170 }
1171 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1172
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1173 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1174 struct nd_region_desc *ndr_desc)
1175 {
1176 ndr_desc->num_lanes = ND_MAX_LANES;
1177 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1178 __func__);
1179 }
1180 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1181
nvdimm_flush(struct nd_region * nd_region,struct bio * bio)1182 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1183 {
1184 int rc = 0;
1185
1186 if (!nd_region->flush)
1187 rc = generic_nvdimm_flush(nd_region);
1188 else {
1189 if (nd_region->flush(nd_region, bio))
1190 rc = -EIO;
1191 }
1192
1193 return rc;
1194 }
1195 /**
1196 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1197 * @nd_region: blk or interleaved pmem region
1198 */
generic_nvdimm_flush(struct nd_region * nd_region)1199 int generic_nvdimm_flush(struct nd_region *nd_region)
1200 {
1201 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1202 int i, idx;
1203
1204 /*
1205 * Try to encourage some diversity in flush hint addresses
1206 * across cpus assuming a limited number of flush hints.
1207 */
1208 idx = this_cpu_read(flush_idx);
1209 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1210
1211 /*
1212 * The pmem_wmb() is needed to 'sfence' all
1213 * previous writes such that they are architecturally visible for
1214 * the platform buffer flush. Note that we've already arranged for pmem
1215 * writes to avoid the cache via memcpy_flushcache(). The final
1216 * wmb() ensures ordering for the NVDIMM flush write.
1217 */
1218 pmem_wmb();
1219 for (i = 0; i < nd_region->ndr_mappings; i++)
1220 if (ndrd_get_flush_wpq(ndrd, i, 0))
1221 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1222 wmb();
1223
1224 return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(nvdimm_flush);
1227
1228 /**
1229 * nvdimm_has_flush - determine write flushing requirements
1230 * @nd_region: blk or interleaved pmem region
1231 *
1232 * Returns 1 if writes require flushing
1233 * Returns 0 if writes do not require flushing
1234 * Returns -ENXIO if flushing capability can not be determined
1235 */
nvdimm_has_flush(struct nd_region * nd_region)1236 int nvdimm_has_flush(struct nd_region *nd_region)
1237 {
1238 int i;
1239
1240 /* no nvdimm or pmem api == flushing capability unknown */
1241 if (nd_region->ndr_mappings == 0
1242 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1243 return -ENXIO;
1244
1245 /* Test if an explicit flush function is defined */
1246 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1247 return 1;
1248
1249 /* Test if any flush hints for the region are available */
1250 for (i = 0; i < nd_region->ndr_mappings; i++) {
1251 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1252 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1253
1254 /* flush hints present / available */
1255 if (nvdimm->num_flush)
1256 return 1;
1257 }
1258
1259 /*
1260 * The platform defines dimm devices without hints nor explicit flush,
1261 * assume platform persistence mechanism like ADR
1262 */
1263 return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1266
nvdimm_has_cache(struct nd_region * nd_region)1267 int nvdimm_has_cache(struct nd_region *nd_region)
1268 {
1269 return is_nd_pmem(&nd_region->dev) &&
1270 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1271 }
1272 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1273
is_nvdimm_sync(struct nd_region * nd_region)1274 bool is_nvdimm_sync(struct nd_region *nd_region)
1275 {
1276 if (is_nd_volatile(&nd_region->dev))
1277 return true;
1278
1279 return is_nd_pmem(&nd_region->dev) &&
1280 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1281 }
1282 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1283
1284 struct conflict_context {
1285 struct nd_region *nd_region;
1286 resource_size_t start, size;
1287 };
1288
region_conflict(struct device * dev,void * data)1289 static int region_conflict(struct device *dev, void *data)
1290 {
1291 struct nd_region *nd_region;
1292 struct conflict_context *ctx = data;
1293 resource_size_t res_end, region_end, region_start;
1294
1295 if (!is_memory(dev))
1296 return 0;
1297
1298 nd_region = to_nd_region(dev);
1299 if (nd_region == ctx->nd_region)
1300 return 0;
1301
1302 res_end = ctx->start + ctx->size;
1303 region_start = nd_region->ndr_start;
1304 region_end = region_start + nd_region->ndr_size;
1305 if (ctx->start >= region_start && ctx->start < region_end)
1306 return -EBUSY;
1307 if (res_end > region_start && res_end <= region_end)
1308 return -EBUSY;
1309 return 0;
1310 }
1311
nd_region_conflict(struct nd_region * nd_region,resource_size_t start,resource_size_t size)1312 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1313 resource_size_t size)
1314 {
1315 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1316 struct conflict_context ctx = {
1317 .nd_region = nd_region,
1318 .start = start,
1319 .size = size,
1320 };
1321
1322 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1323 }
1324