• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_tree_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
do_work(struct ubi_device * ubi)188 static int do_work(struct ubi_device *ubi)
189 {
190 	int err;
191 	struct ubi_work *wrk;
192 
193 	cond_resched();
194 
195 	/*
196 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 	 * it in read mode, so many of them may be doing works at a time. But
198 	 * the queue flush code has to be sure the whole queue of works is
199 	 * done, and it takes the mutex in write mode.
200 	 */
201 	down_read(&ubi->work_sem);
202 	spin_lock(&ubi->wl_lock);
203 	if (list_empty(&ubi->works)) {
204 		spin_unlock(&ubi->wl_lock);
205 		up_read(&ubi->work_sem);
206 		return 0;
207 	}
208 
209 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 	list_del(&wrk->list);
211 	ubi->works_count -= 1;
212 	ubi_assert(ubi->works_count >= 0);
213 	spin_unlock(&ubi->wl_lock);
214 
215 	/*
216 	 * Call the worker function. Do not touch the work structure
217 	 * after this call as it will have been freed or reused by that
218 	 * time by the worker function.
219 	 */
220 	err = wrk->func(ubi, wrk, 0);
221 	if (err)
222 		ubi_err(ubi, "work failed with error code %d", err);
223 	up_read(&ubi->work_sem);
224 
225 	return err;
226 }
227 
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 	struct rb_node *p;
239 
240 	p = root->rb_node;
241 	while (p) {
242 		struct ubi_wl_entry *e1;
243 
244 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245 
246 		if (e->pnum == e1->pnum) {
247 			ubi_assert(e == e1);
248 			return 1;
249 		}
250 
251 		if (e->ec < e1->ec)
252 			p = p->rb_left;
253 		else if (e->ec > e1->ec)
254 			p = p->rb_right;
255 		else {
256 			ubi_assert(e->pnum != e1->pnum);
257 			if (e->pnum < e1->pnum)
258 				p = p->rb_left;
259 			else
260 				p = p->rb_right;
261 		}
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	struct ubi_wl_entry *p;
278 	int i;
279 
280 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 		list_for_each_entry(p, &ubi->pq[i], u.list)
282 			if (p == e)
283 				return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 	int pq_tail = ubi->pq_head - 1;
301 
302 	if (pq_tail < 0)
303 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308 
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 					  struct rb_root *root, int diff)
320 {
321 	struct rb_node *p;
322 	struct ubi_wl_entry *e;
323 	int max;
324 
325 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 	max = e->ec + diff;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 		if (e1->ec >= max)
334 			p = p->rb_left;
335 		else {
336 			p = p->rb_right;
337 			e = e1;
338 		}
339 	}
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 			  int vol_id, int lnum, int torture, bool nested)
584 {
585 	struct ubi_work *wl_wrk;
586 
587 	ubi_assert(e);
588 
589 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 	       e->pnum, e->ec, torture);
591 
592 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 	if (!wl_wrk)
594 		return -ENOMEM;
595 
596 	wl_wrk->func = &erase_worker;
597 	wl_wrk->e = e;
598 	wl_wrk->vol_id = vol_id;
599 	wl_wrk->lnum = lnum;
600 	wl_wrk->torture = torture;
601 
602 	if (nested)
603 		__schedule_ubi_work(ubi, wl_wrk);
604 	else
605 		schedule_ubi_work(ubi, wl_wrk);
606 	return 0;
607 }
608 
609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
610 /**
611  * do_sync_erase - run the erase worker synchronously.
612  * @ubi: UBI device description object
613  * @e: the WL entry of the physical eraseblock to erase
614  * @vol_id: the volume ID that last used this PEB
615  * @lnum: the last used logical eraseblock number for the PEB
616  * @torture: if the physical eraseblock has to be tortured
617  *
618  */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 			 int vol_id, int lnum, int torture)
621 {
622 	struct ubi_work wl_wrk;
623 
624 	dbg_wl("sync erase of PEB %i", e->pnum);
625 
626 	wl_wrk.e = e;
627 	wl_wrk.vol_id = vol_id;
628 	wl_wrk.lnum = lnum;
629 	wl_wrk.torture = torture;
630 
631 	return __erase_worker(ubi, &wl_wrk);
632 }
633 
634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
635 /**
636  * wear_leveling_worker - wear-leveling worker function.
637  * @ubi: UBI device description object
638  * @wrk: the work object
639  * @shutdown: non-zero if the worker has to free memory and exit
640  * because the WL-subsystem is shutting down
641  *
642  * This function copies a more worn out physical eraseblock to a less worn out
643  * one. Returns zero in case of success and a negative error code in case of
644  * failure.
645  */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647 				int shutdown)
648 {
649 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
651 	struct ubi_wl_entry *e1, *e2;
652 	struct ubi_vid_io_buf *vidb;
653 	struct ubi_vid_hdr *vid_hdr;
654 	int dst_leb_clean = 0;
655 
656 	kfree(wrk);
657 	if (shutdown)
658 		return 0;
659 
660 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
661 	if (!vidb)
662 		return -ENOMEM;
663 
664 	vid_hdr = ubi_get_vid_hdr(vidb);
665 
666 	down_read(&ubi->fm_eba_sem);
667 	mutex_lock(&ubi->move_mutex);
668 	spin_lock(&ubi->wl_lock);
669 	ubi_assert(!ubi->move_from && !ubi->move_to);
670 	ubi_assert(!ubi->move_to_put);
671 
672 	if (!ubi->free.rb_node ||
673 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
674 		/*
675 		 * No free physical eraseblocks? Well, they must be waiting in
676 		 * the queue to be erased. Cancel movement - it will be
677 		 * triggered again when a free physical eraseblock appears.
678 		 *
679 		 * No used physical eraseblocks? They must be temporarily
680 		 * protected from being moved. They will be moved to the
681 		 * @ubi->used tree later and the wear-leveling will be
682 		 * triggered again.
683 		 */
684 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
685 		       !ubi->free.rb_node, !ubi->used.rb_node);
686 		goto out_cancel;
687 	}
688 
689 #ifdef CONFIG_MTD_UBI_FASTMAP
690 	e1 = find_anchor_wl_entry(&ubi->used);
691 	if (e1 && ubi->fm_anchor &&
692 	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
693 		ubi->fm_do_produce_anchor = 1;
694 		/*
695 		 * fm_anchor is no longer considered a good anchor.
696 		 * NULL assignment also prevents multiple wear level checks
697 		 * of this PEB.
698 		 */
699 		wl_tree_add(ubi->fm_anchor, &ubi->free);
700 		ubi->fm_anchor = NULL;
701 		ubi->free_count++;
702 	}
703 
704 	if (ubi->fm_do_produce_anchor) {
705 		if (!e1)
706 			goto out_cancel;
707 		e2 = get_peb_for_wl(ubi);
708 		if (!e2)
709 			goto out_cancel;
710 
711 		self_check_in_wl_tree(ubi, e1, &ubi->used);
712 		rb_erase(&e1->u.rb, &ubi->used);
713 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
714 		ubi->fm_do_produce_anchor = 0;
715 	} else if (!ubi->scrub.rb_node) {
716 #else
717 	if (!ubi->scrub.rb_node) {
718 #endif
719 		/*
720 		 * Now pick the least worn-out used physical eraseblock and a
721 		 * highly worn-out free physical eraseblock. If the erase
722 		 * counters differ much enough, start wear-leveling.
723 		 */
724 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
725 		e2 = get_peb_for_wl(ubi);
726 		if (!e2)
727 			goto out_cancel;
728 
729 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
730 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
731 			       e1->ec, e2->ec);
732 
733 			/* Give the unused PEB back */
734 			wl_tree_add(e2, &ubi->free);
735 			ubi->free_count++;
736 			goto out_cancel;
737 		}
738 		self_check_in_wl_tree(ubi, e1, &ubi->used);
739 		rb_erase(&e1->u.rb, &ubi->used);
740 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
741 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
742 	} else {
743 		/* Perform scrubbing */
744 		scrubbing = 1;
745 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
746 		e2 = get_peb_for_wl(ubi);
747 		if (!e2)
748 			goto out_cancel;
749 
750 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
751 		rb_erase(&e1->u.rb, &ubi->scrub);
752 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
753 	}
754 
755 	ubi->move_from = e1;
756 	ubi->move_to = e2;
757 	spin_unlock(&ubi->wl_lock);
758 
759 	/*
760 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
761 	 * We so far do not know which logical eraseblock our physical
762 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
763 	 * header first.
764 	 *
765 	 * Note, we are protected from this PEB being unmapped and erased. The
766 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
767 	 * which is being moved was unmapped.
768 	 */
769 
770 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
771 	if (err && err != UBI_IO_BITFLIPS) {
772 		dst_leb_clean = 1;
773 		if (err == UBI_IO_FF) {
774 			/*
775 			 * We are trying to move PEB without a VID header. UBI
776 			 * always write VID headers shortly after the PEB was
777 			 * given, so we have a situation when it has not yet
778 			 * had a chance to write it, because it was preempted.
779 			 * So add this PEB to the protection queue so far,
780 			 * because presumably more data will be written there
781 			 * (including the missing VID header), and then we'll
782 			 * move it.
783 			 */
784 			dbg_wl("PEB %d has no VID header", e1->pnum);
785 			protect = 1;
786 			goto out_not_moved;
787 		} else if (err == UBI_IO_FF_BITFLIPS) {
788 			/*
789 			 * The same situation as %UBI_IO_FF, but bit-flips were
790 			 * detected. It is better to schedule this PEB for
791 			 * scrubbing.
792 			 */
793 			dbg_wl("PEB %d has no VID header but has bit-flips",
794 			       e1->pnum);
795 			scrubbing = 1;
796 			goto out_not_moved;
797 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
798 			/*
799 			 * While a full scan would detect interrupted erasures
800 			 * at attach time we can face them here when attached from
801 			 * Fastmap.
802 			 */
803 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
804 			       e1->pnum);
805 			erase = 1;
806 			goto out_not_moved;
807 		}
808 
809 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
810 			err, e1->pnum);
811 		goto out_error;
812 	}
813 
814 	vol_id = be32_to_cpu(vid_hdr->vol_id);
815 	lnum = be32_to_cpu(vid_hdr->lnum);
816 
817 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
818 	if (err) {
819 		if (err == MOVE_CANCEL_RACE) {
820 			/*
821 			 * The LEB has not been moved because the volume is
822 			 * being deleted or the PEB has been put meanwhile. We
823 			 * should prevent this PEB from being selected for
824 			 * wear-leveling movement again, so put it to the
825 			 * protection queue.
826 			 */
827 			protect = 1;
828 			dst_leb_clean = 1;
829 			goto out_not_moved;
830 		}
831 		if (err == MOVE_RETRY) {
832 			scrubbing = 1;
833 			dst_leb_clean = 1;
834 			goto out_not_moved;
835 		}
836 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
837 		    err == MOVE_TARGET_RD_ERR) {
838 			/*
839 			 * Target PEB had bit-flips or write error - torture it.
840 			 */
841 			torture = 1;
842 			keep = 1;
843 			goto out_not_moved;
844 		}
845 
846 		if (err == MOVE_SOURCE_RD_ERR) {
847 			/*
848 			 * An error happened while reading the source PEB. Do
849 			 * not switch to R/O mode in this case, and give the
850 			 * upper layers a possibility to recover from this,
851 			 * e.g. by unmapping corresponding LEB. Instead, just
852 			 * put this PEB to the @ubi->erroneous list to prevent
853 			 * UBI from trying to move it over and over again.
854 			 */
855 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
856 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
857 					ubi->erroneous_peb_count);
858 				goto out_error;
859 			}
860 			dst_leb_clean = 1;
861 			erroneous = 1;
862 			goto out_not_moved;
863 		}
864 
865 		if (err < 0)
866 			goto out_error;
867 
868 		ubi_assert(0);
869 	}
870 
871 	/* The PEB has been successfully moved */
872 	if (scrubbing)
873 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
874 			e1->pnum, vol_id, lnum, e2->pnum);
875 	ubi_free_vid_buf(vidb);
876 
877 	spin_lock(&ubi->wl_lock);
878 	if (!ubi->move_to_put) {
879 		wl_tree_add(e2, &ubi->used);
880 		e2 = NULL;
881 	}
882 	ubi->move_from = ubi->move_to = NULL;
883 	ubi->move_to_put = ubi->wl_scheduled = 0;
884 	spin_unlock(&ubi->wl_lock);
885 
886 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
887 	if (err) {
888 		if (e2)
889 			wl_entry_destroy(ubi, e2);
890 		goto out_ro;
891 	}
892 
893 	if (e2) {
894 		/*
895 		 * Well, the target PEB was put meanwhile, schedule it for
896 		 * erasure.
897 		 */
898 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
899 		       e2->pnum, vol_id, lnum);
900 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
901 		if (err)
902 			goto out_ro;
903 	}
904 
905 	dbg_wl("done");
906 	mutex_unlock(&ubi->move_mutex);
907 	up_read(&ubi->fm_eba_sem);
908 	return 0;
909 
910 	/*
911 	 * For some reasons the LEB was not moved, might be an error, might be
912 	 * something else. @e1 was not changed, so return it back. @e2 might
913 	 * have been changed, schedule it for erasure.
914 	 */
915 out_not_moved:
916 	if (vol_id != -1)
917 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
918 		       e1->pnum, vol_id, lnum, e2->pnum, err);
919 	else
920 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
921 		       e1->pnum, e2->pnum, err);
922 	spin_lock(&ubi->wl_lock);
923 	if (protect)
924 		prot_queue_add(ubi, e1);
925 	else if (erroneous) {
926 		wl_tree_add(e1, &ubi->erroneous);
927 		ubi->erroneous_peb_count += 1;
928 	} else if (scrubbing)
929 		wl_tree_add(e1, &ubi->scrub);
930 	else if (keep)
931 		wl_tree_add(e1, &ubi->used);
932 	if (dst_leb_clean) {
933 		wl_tree_add(e2, &ubi->free);
934 		ubi->free_count++;
935 	}
936 
937 	ubi_assert(!ubi->move_to_put);
938 	ubi->move_from = ubi->move_to = NULL;
939 	ubi->wl_scheduled = 0;
940 	spin_unlock(&ubi->wl_lock);
941 
942 	ubi_free_vid_buf(vidb);
943 	if (dst_leb_clean) {
944 		ensure_wear_leveling(ubi, 1);
945 	} else {
946 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
947 		if (err)
948 			goto out_ro;
949 	}
950 
951 	if (erase) {
952 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
953 		if (err)
954 			goto out_ro;
955 	}
956 
957 	mutex_unlock(&ubi->move_mutex);
958 	up_read(&ubi->fm_eba_sem);
959 	return 0;
960 
961 out_error:
962 	if (vol_id != -1)
963 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
964 			err, e1->pnum, e2->pnum);
965 	else
966 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
967 			err, e1->pnum, vol_id, lnum, e2->pnum);
968 	spin_lock(&ubi->wl_lock);
969 	ubi->move_from = ubi->move_to = NULL;
970 	ubi->move_to_put = ubi->wl_scheduled = 0;
971 	spin_unlock(&ubi->wl_lock);
972 
973 	ubi_free_vid_buf(vidb);
974 	wl_entry_destroy(ubi, e1);
975 	wl_entry_destroy(ubi, e2);
976 
977 out_ro:
978 	ubi_ro_mode(ubi);
979 	mutex_unlock(&ubi->move_mutex);
980 	up_read(&ubi->fm_eba_sem);
981 	ubi_assert(err != 0);
982 	return err < 0 ? err : -EIO;
983 
984 out_cancel:
985 	ubi->wl_scheduled = 0;
986 	spin_unlock(&ubi->wl_lock);
987 	mutex_unlock(&ubi->move_mutex);
988 	up_read(&ubi->fm_eba_sem);
989 	ubi_free_vid_buf(vidb);
990 	return 0;
991 }
992 
993 /**
994  * ensure_wear_leveling - schedule wear-leveling if it is needed.
995  * @ubi: UBI device description object
996  * @nested: set to non-zero if this function is called from UBI worker
997  *
998  * This function checks if it is time to start wear-leveling and schedules it
999  * if yes. This function returns zero in case of success and a negative error
1000  * code in case of failure.
1001  */
1002 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1003 {
1004 	int err = 0;
1005 	struct ubi_wl_entry *e1;
1006 	struct ubi_wl_entry *e2;
1007 	struct ubi_work *wrk;
1008 
1009 	spin_lock(&ubi->wl_lock);
1010 	if (ubi->wl_scheduled)
1011 		/* Wear-leveling is already in the work queue */
1012 		goto out_unlock;
1013 
1014 	/*
1015 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1016 	 * the WL worker has to be scheduled anyway.
1017 	 */
1018 	if (!ubi->scrub.rb_node) {
1019 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1020 			/* No physical eraseblocks - no deal */
1021 			goto out_unlock;
1022 
1023 		/*
1024 		 * We schedule wear-leveling only if the difference between the
1025 		 * lowest erase counter of used physical eraseblocks and a high
1026 		 * erase counter of free physical eraseblocks is greater than
1027 		 * %UBI_WL_THRESHOLD.
1028 		 */
1029 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1030 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1031 
1032 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1033 			goto out_unlock;
1034 		dbg_wl("schedule wear-leveling");
1035 	} else
1036 		dbg_wl("schedule scrubbing");
1037 
1038 	ubi->wl_scheduled = 1;
1039 	spin_unlock(&ubi->wl_lock);
1040 
1041 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1042 	if (!wrk) {
1043 		err = -ENOMEM;
1044 		goto out_cancel;
1045 	}
1046 
1047 	wrk->func = &wear_leveling_worker;
1048 	if (nested)
1049 		__schedule_ubi_work(ubi, wrk);
1050 	else
1051 		schedule_ubi_work(ubi, wrk);
1052 	return err;
1053 
1054 out_cancel:
1055 	spin_lock(&ubi->wl_lock);
1056 	ubi->wl_scheduled = 0;
1057 out_unlock:
1058 	spin_unlock(&ubi->wl_lock);
1059 	return err;
1060 }
1061 
1062 /**
1063  * __erase_worker - physical eraseblock erase worker function.
1064  * @ubi: UBI device description object
1065  * @wl_wrk: the work object
1066  * @shutdown: non-zero if the worker has to free memory and exit
1067  * because the WL sub-system is shutting down
1068  *
1069  * This function erases a physical eraseblock and perform torture testing if
1070  * needed. It also takes care about marking the physical eraseblock bad if
1071  * needed. Returns zero in case of success and a negative error code in case of
1072  * failure.
1073  */
1074 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1075 {
1076 	struct ubi_wl_entry *e = wl_wrk->e;
1077 	int pnum = e->pnum;
1078 	int vol_id = wl_wrk->vol_id;
1079 	int lnum = wl_wrk->lnum;
1080 	int err, available_consumed = 0;
1081 
1082 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1083 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1084 
1085 	err = sync_erase(ubi, e, wl_wrk->torture);
1086 	if (!err) {
1087 		spin_lock(&ubi->wl_lock);
1088 
1089 		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1090 		    e->pnum < UBI_FM_MAX_START) {
1091 			/*
1092 			 * Abort anchor production, if needed it will be
1093 			 * enabled again in the wear leveling started below.
1094 			 */
1095 			ubi->fm_anchor = e;
1096 			ubi->fm_do_produce_anchor = 0;
1097 		} else {
1098 			wl_tree_add(e, &ubi->free);
1099 			ubi->free_count++;
1100 		}
1101 
1102 		spin_unlock(&ubi->wl_lock);
1103 
1104 		/*
1105 		 * One more erase operation has happened, take care about
1106 		 * protected physical eraseblocks.
1107 		 */
1108 		serve_prot_queue(ubi);
1109 
1110 		/* And take care about wear-leveling */
1111 		err = ensure_wear_leveling(ubi, 1);
1112 		return err;
1113 	}
1114 
1115 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1116 
1117 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1118 	    err == -EBUSY) {
1119 		int err1;
1120 
1121 		/* Re-schedule the LEB for erasure */
1122 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1123 		if (err1) {
1124 			wl_entry_destroy(ubi, e);
1125 			err = err1;
1126 			goto out_ro;
1127 		}
1128 		return err;
1129 	}
1130 
1131 	wl_entry_destroy(ubi, e);
1132 	if (err != -EIO)
1133 		/*
1134 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1135 		 * this physical eraseblock for erasure again would cause
1136 		 * errors again and again. Well, lets switch to R/O mode.
1137 		 */
1138 		goto out_ro;
1139 
1140 	/* It is %-EIO, the PEB went bad */
1141 
1142 	if (!ubi->bad_allowed) {
1143 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1144 		goto out_ro;
1145 	}
1146 
1147 	spin_lock(&ubi->volumes_lock);
1148 	if (ubi->beb_rsvd_pebs == 0) {
1149 		if (ubi->avail_pebs == 0) {
1150 			spin_unlock(&ubi->volumes_lock);
1151 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1152 			goto out_ro;
1153 		}
1154 		ubi->avail_pebs -= 1;
1155 		available_consumed = 1;
1156 	}
1157 	spin_unlock(&ubi->volumes_lock);
1158 
1159 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1160 	err = ubi_io_mark_bad(ubi, pnum);
1161 	if (err)
1162 		goto out_ro;
1163 
1164 	spin_lock(&ubi->volumes_lock);
1165 	if (ubi->beb_rsvd_pebs > 0) {
1166 		if (available_consumed) {
1167 			/*
1168 			 * The amount of reserved PEBs increased since we last
1169 			 * checked.
1170 			 */
1171 			ubi->avail_pebs += 1;
1172 			available_consumed = 0;
1173 		}
1174 		ubi->beb_rsvd_pebs -= 1;
1175 	}
1176 	ubi->bad_peb_count += 1;
1177 	ubi->good_peb_count -= 1;
1178 	ubi_calculate_reserved(ubi);
1179 	if (available_consumed)
1180 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1181 	else if (ubi->beb_rsvd_pebs)
1182 		ubi_msg(ubi, "%d PEBs left in the reserve",
1183 			ubi->beb_rsvd_pebs);
1184 	else
1185 		ubi_warn(ubi, "last PEB from the reserve was used");
1186 	spin_unlock(&ubi->volumes_lock);
1187 
1188 	return err;
1189 
1190 out_ro:
1191 	if (available_consumed) {
1192 		spin_lock(&ubi->volumes_lock);
1193 		ubi->avail_pebs += 1;
1194 		spin_unlock(&ubi->volumes_lock);
1195 	}
1196 	ubi_ro_mode(ubi);
1197 	return err;
1198 }
1199 
1200 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1201 			  int shutdown)
1202 {
1203 	int ret;
1204 
1205 	if (shutdown) {
1206 		struct ubi_wl_entry *e = wl_wrk->e;
1207 
1208 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1209 		kfree(wl_wrk);
1210 		wl_entry_destroy(ubi, e);
1211 		return 0;
1212 	}
1213 
1214 	ret = __erase_worker(ubi, wl_wrk);
1215 	kfree(wl_wrk);
1216 	return ret;
1217 }
1218 
1219 /**
1220  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1221  * @ubi: UBI device description object
1222  * @vol_id: the volume ID that last used this PEB
1223  * @lnum: the last used logical eraseblock number for the PEB
1224  * @pnum: physical eraseblock to return
1225  * @torture: if this physical eraseblock has to be tortured
1226  *
1227  * This function is called to return physical eraseblock @pnum to the pool of
1228  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1229  * occurred to this @pnum and it has to be tested. This function returns zero
1230  * in case of success, and a negative error code in case of failure.
1231  */
1232 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1233 		   int pnum, int torture)
1234 {
1235 	int err;
1236 	struct ubi_wl_entry *e;
1237 
1238 	dbg_wl("PEB %d", pnum);
1239 	ubi_assert(pnum >= 0);
1240 	ubi_assert(pnum < ubi->peb_count);
1241 
1242 	down_read(&ubi->fm_protect);
1243 
1244 retry:
1245 	spin_lock(&ubi->wl_lock);
1246 	e = ubi->lookuptbl[pnum];
1247 	if (e == ubi->move_from) {
1248 		/*
1249 		 * User is putting the physical eraseblock which was selected to
1250 		 * be moved. It will be scheduled for erasure in the
1251 		 * wear-leveling worker.
1252 		 */
1253 		dbg_wl("PEB %d is being moved, wait", pnum);
1254 		spin_unlock(&ubi->wl_lock);
1255 
1256 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1257 		mutex_lock(&ubi->move_mutex);
1258 		mutex_unlock(&ubi->move_mutex);
1259 		goto retry;
1260 	} else if (e == ubi->move_to) {
1261 		/*
1262 		 * User is putting the physical eraseblock which was selected
1263 		 * as the target the data is moved to. It may happen if the EBA
1264 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1265 		 * but the WL sub-system has not put the PEB to the "used" tree
1266 		 * yet, but it is about to do this. So we just set a flag which
1267 		 * will tell the WL worker that the PEB is not needed anymore
1268 		 * and should be scheduled for erasure.
1269 		 */
1270 		dbg_wl("PEB %d is the target of data moving", pnum);
1271 		ubi_assert(!ubi->move_to_put);
1272 		ubi->move_to_put = 1;
1273 		spin_unlock(&ubi->wl_lock);
1274 		up_read(&ubi->fm_protect);
1275 		return 0;
1276 	} else {
1277 		if (in_wl_tree(e, &ubi->used)) {
1278 			self_check_in_wl_tree(ubi, e, &ubi->used);
1279 			rb_erase(&e->u.rb, &ubi->used);
1280 		} else if (in_wl_tree(e, &ubi->scrub)) {
1281 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1282 			rb_erase(&e->u.rb, &ubi->scrub);
1283 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1284 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1285 			rb_erase(&e->u.rb, &ubi->erroneous);
1286 			ubi->erroneous_peb_count -= 1;
1287 			ubi_assert(ubi->erroneous_peb_count >= 0);
1288 			/* Erroneous PEBs should be tortured */
1289 			torture = 1;
1290 		} else {
1291 			err = prot_queue_del(ubi, e->pnum);
1292 			if (err) {
1293 				ubi_err(ubi, "PEB %d not found", pnum);
1294 				ubi_ro_mode(ubi);
1295 				spin_unlock(&ubi->wl_lock);
1296 				up_read(&ubi->fm_protect);
1297 				return err;
1298 			}
1299 		}
1300 	}
1301 	spin_unlock(&ubi->wl_lock);
1302 
1303 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1304 	if (err) {
1305 		spin_lock(&ubi->wl_lock);
1306 		wl_tree_add(e, &ubi->used);
1307 		spin_unlock(&ubi->wl_lock);
1308 	}
1309 
1310 	up_read(&ubi->fm_protect);
1311 	return err;
1312 }
1313 
1314 /**
1315  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1316  * @ubi: UBI device description object
1317  * @pnum: the physical eraseblock to schedule
1318  *
1319  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1320  * needs scrubbing. This function schedules a physical eraseblock for
1321  * scrubbing which is done in background. This function returns zero in case of
1322  * success and a negative error code in case of failure.
1323  */
1324 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1325 {
1326 	struct ubi_wl_entry *e;
1327 
1328 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1329 
1330 retry:
1331 	spin_lock(&ubi->wl_lock);
1332 	e = ubi->lookuptbl[pnum];
1333 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1334 				   in_wl_tree(e, &ubi->erroneous)) {
1335 		spin_unlock(&ubi->wl_lock);
1336 		return 0;
1337 	}
1338 
1339 	if (e == ubi->move_to) {
1340 		/*
1341 		 * This physical eraseblock was used to move data to. The data
1342 		 * was moved but the PEB was not yet inserted to the proper
1343 		 * tree. We should just wait a little and let the WL worker
1344 		 * proceed.
1345 		 */
1346 		spin_unlock(&ubi->wl_lock);
1347 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1348 		yield();
1349 		goto retry;
1350 	}
1351 
1352 	if (in_wl_tree(e, &ubi->used)) {
1353 		self_check_in_wl_tree(ubi, e, &ubi->used);
1354 		rb_erase(&e->u.rb, &ubi->used);
1355 	} else {
1356 		int err;
1357 
1358 		err = prot_queue_del(ubi, e->pnum);
1359 		if (err) {
1360 			ubi_err(ubi, "PEB %d not found", pnum);
1361 			ubi_ro_mode(ubi);
1362 			spin_unlock(&ubi->wl_lock);
1363 			return err;
1364 		}
1365 	}
1366 
1367 	wl_tree_add(e, &ubi->scrub);
1368 	spin_unlock(&ubi->wl_lock);
1369 
1370 	/*
1371 	 * Technically scrubbing is the same as wear-leveling, so it is done
1372 	 * by the WL worker.
1373 	 */
1374 	return ensure_wear_leveling(ubi, 0);
1375 }
1376 
1377 /**
1378  * ubi_wl_flush - flush all pending works.
1379  * @ubi: UBI device description object
1380  * @vol_id: the volume id to flush for
1381  * @lnum: the logical eraseblock number to flush for
1382  *
1383  * This function executes all pending works for a particular volume id /
1384  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1385  * acts as a wildcard for all of the corresponding volume numbers or logical
1386  * eraseblock numbers. It returns zero in case of success and a negative error
1387  * code in case of failure.
1388  */
1389 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1390 {
1391 	int err = 0;
1392 	int found = 1;
1393 
1394 	/*
1395 	 * Erase while the pending works queue is not empty, but not more than
1396 	 * the number of currently pending works.
1397 	 */
1398 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1399 	       vol_id, lnum, ubi->works_count);
1400 
1401 	while (found) {
1402 		struct ubi_work *wrk, *tmp;
1403 		found = 0;
1404 
1405 		down_read(&ubi->work_sem);
1406 		spin_lock(&ubi->wl_lock);
1407 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1408 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1409 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1410 				list_del(&wrk->list);
1411 				ubi->works_count -= 1;
1412 				ubi_assert(ubi->works_count >= 0);
1413 				spin_unlock(&ubi->wl_lock);
1414 
1415 				err = wrk->func(ubi, wrk, 0);
1416 				if (err) {
1417 					up_read(&ubi->work_sem);
1418 					return err;
1419 				}
1420 
1421 				spin_lock(&ubi->wl_lock);
1422 				found = 1;
1423 				break;
1424 			}
1425 		}
1426 		spin_unlock(&ubi->wl_lock);
1427 		up_read(&ubi->work_sem);
1428 	}
1429 
1430 	/*
1431 	 * Make sure all the works which have been done in parallel are
1432 	 * finished.
1433 	 */
1434 	down_write(&ubi->work_sem);
1435 	up_write(&ubi->work_sem);
1436 
1437 	return err;
1438 }
1439 
1440 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1441 {
1442 	if (in_wl_tree(e, &ubi->scrub))
1443 		return false;
1444 	else if (in_wl_tree(e, &ubi->erroneous))
1445 		return false;
1446 	else if (ubi->move_from == e)
1447 		return false;
1448 	else if (ubi->move_to == e)
1449 		return false;
1450 
1451 	return true;
1452 }
1453 
1454 /**
1455  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1456  * @ubi: UBI device description object
1457  * @pnum: the physical eraseblock to schedule
1458  * @force: dont't read the block, assume bitflips happened and take action.
1459  *
1460  * This function reads the given eraseblock and checks if bitflips occured.
1461  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1462  * If scrubbing is forced with @force, the eraseblock is not read,
1463  * but scheduled for scrubbing right away.
1464  *
1465  * Returns:
1466  * %EINVAL, PEB is out of range
1467  * %ENOENT, PEB is no longer used by UBI
1468  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1469  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1470  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1471  * %0, no bit flips detected
1472  */
1473 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1474 {
1475 	int err = 0;
1476 	struct ubi_wl_entry *e;
1477 
1478 	if (pnum < 0 || pnum >= ubi->peb_count) {
1479 		err = -EINVAL;
1480 		goto out;
1481 	}
1482 
1483 	/*
1484 	 * Pause all parallel work, otherwise it can happen that the
1485 	 * erase worker frees a wl entry under us.
1486 	 */
1487 	down_write(&ubi->work_sem);
1488 
1489 	/*
1490 	 * Make sure that the wl entry does not change state while
1491 	 * inspecting it.
1492 	 */
1493 	spin_lock(&ubi->wl_lock);
1494 	e = ubi->lookuptbl[pnum];
1495 	if (!e) {
1496 		spin_unlock(&ubi->wl_lock);
1497 		err = -ENOENT;
1498 		goto out_resume;
1499 	}
1500 
1501 	/*
1502 	 * Does it make sense to check this PEB?
1503 	 */
1504 	if (!scrub_possible(ubi, e)) {
1505 		spin_unlock(&ubi->wl_lock);
1506 		err = -EBUSY;
1507 		goto out_resume;
1508 	}
1509 	spin_unlock(&ubi->wl_lock);
1510 
1511 	if (!force) {
1512 		mutex_lock(&ubi->buf_mutex);
1513 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1514 		mutex_unlock(&ubi->buf_mutex);
1515 	}
1516 
1517 	if (force || err == UBI_IO_BITFLIPS) {
1518 		/*
1519 		 * Okay, bit flip happened, let's figure out what we can do.
1520 		 */
1521 		spin_lock(&ubi->wl_lock);
1522 
1523 		/*
1524 		 * Recheck. We released wl_lock, UBI might have killed the
1525 		 * wl entry under us.
1526 		 */
1527 		e = ubi->lookuptbl[pnum];
1528 		if (!e) {
1529 			spin_unlock(&ubi->wl_lock);
1530 			err = -ENOENT;
1531 			goto out_resume;
1532 		}
1533 
1534 		/*
1535 		 * Need to re-check state
1536 		 */
1537 		if (!scrub_possible(ubi, e)) {
1538 			spin_unlock(&ubi->wl_lock);
1539 			err = -EBUSY;
1540 			goto out_resume;
1541 		}
1542 
1543 		if (in_pq(ubi, e)) {
1544 			prot_queue_del(ubi, e->pnum);
1545 			wl_tree_add(e, &ubi->scrub);
1546 			spin_unlock(&ubi->wl_lock);
1547 
1548 			err = ensure_wear_leveling(ubi, 1);
1549 		} else if (in_wl_tree(e, &ubi->used)) {
1550 			rb_erase(&e->u.rb, &ubi->used);
1551 			wl_tree_add(e, &ubi->scrub);
1552 			spin_unlock(&ubi->wl_lock);
1553 
1554 			err = ensure_wear_leveling(ubi, 1);
1555 		} else if (in_wl_tree(e, &ubi->free)) {
1556 			rb_erase(&e->u.rb, &ubi->free);
1557 			ubi->free_count--;
1558 			spin_unlock(&ubi->wl_lock);
1559 
1560 			/*
1561 			 * This PEB is empty we can schedule it for
1562 			 * erasure right away. No wear leveling needed.
1563 			 */
1564 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1565 					     force ? 0 : 1, true);
1566 		} else {
1567 			spin_unlock(&ubi->wl_lock);
1568 			err = -EAGAIN;
1569 		}
1570 
1571 		if (!err && !force)
1572 			err = -EUCLEAN;
1573 	} else {
1574 		err = 0;
1575 	}
1576 
1577 out_resume:
1578 	up_write(&ubi->work_sem);
1579 out:
1580 
1581 	return err;
1582 }
1583 
1584 /**
1585  * tree_destroy - destroy an RB-tree.
1586  * @ubi: UBI device description object
1587  * @root: the root of the tree to destroy
1588  */
1589 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1590 {
1591 	struct rb_node *rb;
1592 	struct ubi_wl_entry *e;
1593 
1594 	rb = root->rb_node;
1595 	while (rb) {
1596 		if (rb->rb_left)
1597 			rb = rb->rb_left;
1598 		else if (rb->rb_right)
1599 			rb = rb->rb_right;
1600 		else {
1601 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1602 
1603 			rb = rb_parent(rb);
1604 			if (rb) {
1605 				if (rb->rb_left == &e->u.rb)
1606 					rb->rb_left = NULL;
1607 				else
1608 					rb->rb_right = NULL;
1609 			}
1610 
1611 			wl_entry_destroy(ubi, e);
1612 		}
1613 	}
1614 }
1615 
1616 /**
1617  * ubi_thread - UBI background thread.
1618  * @u: the UBI device description object pointer
1619  */
1620 int ubi_thread(void *u)
1621 {
1622 	int failures = 0;
1623 	struct ubi_device *ubi = u;
1624 
1625 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1626 		ubi->bgt_name, task_pid_nr(current));
1627 
1628 	set_freezable();
1629 	for (;;) {
1630 		int err;
1631 
1632 		if (kthread_should_stop())
1633 			break;
1634 
1635 		if (try_to_freeze())
1636 			continue;
1637 
1638 		spin_lock(&ubi->wl_lock);
1639 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1640 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1641 			set_current_state(TASK_INTERRUPTIBLE);
1642 			spin_unlock(&ubi->wl_lock);
1643 
1644 			/*
1645 			 * Check kthread_should_stop() after we set the task
1646 			 * state to guarantee that we either see the stop bit
1647 			 * and exit or the task state is reset to runnable such
1648 			 * that it's not scheduled out indefinitely and detects
1649 			 * the stop bit at kthread_should_stop().
1650 			 */
1651 			if (kthread_should_stop()) {
1652 				set_current_state(TASK_RUNNING);
1653 				break;
1654 			}
1655 
1656 			schedule();
1657 			continue;
1658 		}
1659 		spin_unlock(&ubi->wl_lock);
1660 
1661 		err = do_work(ubi);
1662 		if (err) {
1663 			ubi_err(ubi, "%s: work failed with error code %d",
1664 				ubi->bgt_name, err);
1665 			if (failures++ > WL_MAX_FAILURES) {
1666 				/*
1667 				 * Too many failures, disable the thread and
1668 				 * switch to read-only mode.
1669 				 */
1670 				ubi_msg(ubi, "%s: %d consecutive failures",
1671 					ubi->bgt_name, WL_MAX_FAILURES);
1672 				ubi_ro_mode(ubi);
1673 				ubi->thread_enabled = 0;
1674 				continue;
1675 			}
1676 		} else
1677 			failures = 0;
1678 
1679 		cond_resched();
1680 	}
1681 
1682 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1683 	ubi->thread_enabled = 0;
1684 	return 0;
1685 }
1686 
1687 /**
1688  * shutdown_work - shutdown all pending works.
1689  * @ubi: UBI device description object
1690  */
1691 static void shutdown_work(struct ubi_device *ubi)
1692 {
1693 	while (!list_empty(&ubi->works)) {
1694 		struct ubi_work *wrk;
1695 
1696 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1697 		list_del(&wrk->list);
1698 		wrk->func(ubi, wrk, 1);
1699 		ubi->works_count -= 1;
1700 		ubi_assert(ubi->works_count >= 0);
1701 	}
1702 }
1703 
1704 /**
1705  * erase_aeb - erase a PEB given in UBI attach info PEB
1706  * @ubi: UBI device description object
1707  * @aeb: UBI attach info PEB
1708  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1709  */
1710 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1711 {
1712 	struct ubi_wl_entry *e;
1713 	int err;
1714 
1715 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1716 	if (!e)
1717 		return -ENOMEM;
1718 
1719 	e->pnum = aeb->pnum;
1720 	e->ec = aeb->ec;
1721 	ubi->lookuptbl[e->pnum] = e;
1722 
1723 	if (sync) {
1724 		err = sync_erase(ubi, e, false);
1725 		if (err)
1726 			goto out_free;
1727 
1728 		wl_tree_add(e, &ubi->free);
1729 		ubi->free_count++;
1730 	} else {
1731 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1732 		if (err)
1733 			goto out_free;
1734 	}
1735 
1736 	return 0;
1737 
1738 out_free:
1739 	wl_entry_destroy(ubi, e);
1740 
1741 	return err;
1742 }
1743 
1744 /**
1745  * ubi_wl_init - initialize the WL sub-system using attaching information.
1746  * @ubi: UBI device description object
1747  * @ai: attaching information
1748  *
1749  * This function returns zero in case of success, and a negative error code in
1750  * case of failure.
1751  */
1752 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1753 {
1754 	int err, i, reserved_pebs, found_pebs = 0;
1755 	struct rb_node *rb1, *rb2;
1756 	struct ubi_ainf_volume *av;
1757 	struct ubi_ainf_peb *aeb, *tmp;
1758 	struct ubi_wl_entry *e;
1759 
1760 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1761 	spin_lock_init(&ubi->wl_lock);
1762 	mutex_init(&ubi->move_mutex);
1763 	init_rwsem(&ubi->work_sem);
1764 	ubi->max_ec = ai->max_ec;
1765 	INIT_LIST_HEAD(&ubi->works);
1766 
1767 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1768 
1769 	err = -ENOMEM;
1770 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1771 	if (!ubi->lookuptbl)
1772 		return err;
1773 
1774 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1775 		INIT_LIST_HEAD(&ubi->pq[i]);
1776 	ubi->pq_head = 0;
1777 
1778 	ubi->free_count = 0;
1779 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1780 		cond_resched();
1781 
1782 		err = erase_aeb(ubi, aeb, false);
1783 		if (err)
1784 			goto out_free;
1785 
1786 		found_pebs++;
1787 	}
1788 
1789 	list_for_each_entry(aeb, &ai->free, u.list) {
1790 		cond_resched();
1791 
1792 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1793 		if (!e) {
1794 			err = -ENOMEM;
1795 			goto out_free;
1796 		}
1797 
1798 		e->pnum = aeb->pnum;
1799 		e->ec = aeb->ec;
1800 		ubi_assert(e->ec >= 0);
1801 
1802 		wl_tree_add(e, &ubi->free);
1803 		ubi->free_count++;
1804 
1805 		ubi->lookuptbl[e->pnum] = e;
1806 
1807 		found_pebs++;
1808 	}
1809 
1810 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1811 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1812 			cond_resched();
1813 
1814 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1815 			if (!e) {
1816 				err = -ENOMEM;
1817 				goto out_free;
1818 			}
1819 
1820 			e->pnum = aeb->pnum;
1821 			e->ec = aeb->ec;
1822 			ubi->lookuptbl[e->pnum] = e;
1823 
1824 			if (!aeb->scrub) {
1825 				dbg_wl("add PEB %d EC %d to the used tree",
1826 				       e->pnum, e->ec);
1827 				wl_tree_add(e, &ubi->used);
1828 			} else {
1829 				dbg_wl("add PEB %d EC %d to the scrub tree",
1830 				       e->pnum, e->ec);
1831 				wl_tree_add(e, &ubi->scrub);
1832 			}
1833 
1834 			found_pebs++;
1835 		}
1836 	}
1837 
1838 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1839 		cond_resched();
1840 
1841 		e = ubi_find_fm_block(ubi, aeb->pnum);
1842 
1843 		if (e) {
1844 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1845 			ubi->lookuptbl[e->pnum] = e;
1846 		} else {
1847 			bool sync = false;
1848 
1849 			/*
1850 			 * Usually old Fastmap PEBs are scheduled for erasure
1851 			 * and we don't have to care about them but if we face
1852 			 * an power cut before scheduling them we need to
1853 			 * take care of them here.
1854 			 */
1855 			if (ubi->lookuptbl[aeb->pnum])
1856 				continue;
1857 
1858 			/*
1859 			 * The fastmap update code might not find a free PEB for
1860 			 * writing the fastmap anchor to and then reuses the
1861 			 * current fastmap anchor PEB. When this PEB gets erased
1862 			 * and a power cut happens before it is written again we
1863 			 * must make sure that the fastmap attach code doesn't
1864 			 * find any outdated fastmap anchors, hence we erase the
1865 			 * outdated fastmap anchor PEBs synchronously here.
1866 			 */
1867 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1868 				sync = true;
1869 
1870 			err = erase_aeb(ubi, aeb, sync);
1871 			if (err)
1872 				goto out_free;
1873 		}
1874 
1875 		found_pebs++;
1876 	}
1877 
1878 	dbg_wl("found %i PEBs", found_pebs);
1879 
1880 	ubi_assert(ubi->good_peb_count == found_pebs);
1881 
1882 	reserved_pebs = WL_RESERVED_PEBS;
1883 	ubi_fastmap_init(ubi, &reserved_pebs);
1884 
1885 	if (ubi->avail_pebs < reserved_pebs) {
1886 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1887 			ubi->avail_pebs, reserved_pebs);
1888 		if (ubi->corr_peb_count)
1889 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1890 				ubi->corr_peb_count);
1891 		err = -ENOSPC;
1892 		goto out_free;
1893 	}
1894 	ubi->avail_pebs -= reserved_pebs;
1895 	ubi->rsvd_pebs += reserved_pebs;
1896 
1897 	/* Schedule wear-leveling if needed */
1898 	err = ensure_wear_leveling(ubi, 0);
1899 	if (err)
1900 		goto out_free;
1901 
1902 #ifdef CONFIG_MTD_UBI_FASTMAP
1903 	if (!ubi->ro_mode && !ubi->fm_disabled)
1904 		ubi_ensure_anchor_pebs(ubi);
1905 #endif
1906 	return 0;
1907 
1908 out_free:
1909 	shutdown_work(ubi);
1910 	tree_destroy(ubi, &ubi->used);
1911 	tree_destroy(ubi, &ubi->free);
1912 	tree_destroy(ubi, &ubi->scrub);
1913 	kfree(ubi->lookuptbl);
1914 	return err;
1915 }
1916 
1917 /**
1918  * protection_queue_destroy - destroy the protection queue.
1919  * @ubi: UBI device description object
1920  */
1921 static void protection_queue_destroy(struct ubi_device *ubi)
1922 {
1923 	int i;
1924 	struct ubi_wl_entry *e, *tmp;
1925 
1926 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1927 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1928 			list_del(&e->u.list);
1929 			wl_entry_destroy(ubi, e);
1930 		}
1931 	}
1932 }
1933 
1934 /**
1935  * ubi_wl_close - close the wear-leveling sub-system.
1936  * @ubi: UBI device description object
1937  */
1938 void ubi_wl_close(struct ubi_device *ubi)
1939 {
1940 	dbg_wl("close the WL sub-system");
1941 	ubi_fastmap_close(ubi);
1942 	shutdown_work(ubi);
1943 	protection_queue_destroy(ubi);
1944 	tree_destroy(ubi, &ubi->used);
1945 	tree_destroy(ubi, &ubi->erroneous);
1946 	tree_destroy(ubi, &ubi->free);
1947 	tree_destroy(ubi, &ubi->scrub);
1948 	kfree(ubi->lookuptbl);
1949 }
1950 
1951 /**
1952  * self_check_ec - make sure that the erase counter of a PEB is correct.
1953  * @ubi: UBI device description object
1954  * @pnum: the physical eraseblock number to check
1955  * @ec: the erase counter to check
1956  *
1957  * This function returns zero if the erase counter of physical eraseblock @pnum
1958  * is equivalent to @ec, and a negative error code if not or if an error
1959  * occurred.
1960  */
1961 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1962 {
1963 	int err;
1964 	long long read_ec;
1965 	struct ubi_ec_hdr *ec_hdr;
1966 
1967 	if (!ubi_dbg_chk_gen(ubi))
1968 		return 0;
1969 
1970 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1971 	if (!ec_hdr)
1972 		return -ENOMEM;
1973 
1974 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1975 	if (err && err != UBI_IO_BITFLIPS) {
1976 		/* The header does not have to exist */
1977 		err = 0;
1978 		goto out_free;
1979 	}
1980 
1981 	read_ec = be64_to_cpu(ec_hdr->ec);
1982 	if (ec != read_ec && read_ec - ec > 1) {
1983 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1984 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1985 		dump_stack();
1986 		err = 1;
1987 	} else
1988 		err = 0;
1989 
1990 out_free:
1991 	kfree(ec_hdr);
1992 	return err;
1993 }
1994 
1995 /**
1996  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1997  * @ubi: UBI device description object
1998  * @e: the wear-leveling entry to check
1999  * @root: the root of the tree
2000  *
2001  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2002  * is not.
2003  */
2004 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2005 				 struct ubi_wl_entry *e, struct rb_root *root)
2006 {
2007 	if (!ubi_dbg_chk_gen(ubi))
2008 		return 0;
2009 
2010 	if (in_wl_tree(e, root))
2011 		return 0;
2012 
2013 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2014 		e->pnum, e->ec, root);
2015 	dump_stack();
2016 	return -EINVAL;
2017 }
2018 
2019 /**
2020  * self_check_in_pq - check if wear-leveling entry is in the protection
2021  *                        queue.
2022  * @ubi: UBI device description object
2023  * @e: the wear-leveling entry to check
2024  *
2025  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2026  */
2027 static int self_check_in_pq(const struct ubi_device *ubi,
2028 			    struct ubi_wl_entry *e)
2029 {
2030 	if (!ubi_dbg_chk_gen(ubi))
2031 		return 0;
2032 
2033 	if (in_pq(ubi, e))
2034 		return 0;
2035 
2036 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2037 		e->pnum, e->ec);
2038 	dump_stack();
2039 	return -EINVAL;
2040 }
2041 #ifndef CONFIG_MTD_UBI_FASTMAP
2042 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2043 {
2044 	struct ubi_wl_entry *e;
2045 
2046 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2047 	self_check_in_wl_tree(ubi, e, &ubi->free);
2048 	ubi->free_count--;
2049 	ubi_assert(ubi->free_count >= 0);
2050 	rb_erase(&e->u.rb, &ubi->free);
2051 
2052 	return e;
2053 }
2054 
2055 /**
2056  * produce_free_peb - produce a free physical eraseblock.
2057  * @ubi: UBI device description object
2058  *
2059  * This function tries to make a free PEB by means of synchronous execution of
2060  * pending works. This may be needed if, for example the background thread is
2061  * disabled. Returns zero in case of success and a negative error code in case
2062  * of failure.
2063  */
2064 static int produce_free_peb(struct ubi_device *ubi)
2065 {
2066 	int err;
2067 
2068 	while (!ubi->free.rb_node && ubi->works_count) {
2069 		spin_unlock(&ubi->wl_lock);
2070 
2071 		dbg_wl("do one work synchronously");
2072 		err = do_work(ubi);
2073 
2074 		spin_lock(&ubi->wl_lock);
2075 		if (err)
2076 			return err;
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 /**
2083  * ubi_wl_get_peb - get a physical eraseblock.
2084  * @ubi: UBI device description object
2085  *
2086  * This function returns a physical eraseblock in case of success and a
2087  * negative error code in case of failure.
2088  * Returns with ubi->fm_eba_sem held in read mode!
2089  */
2090 int ubi_wl_get_peb(struct ubi_device *ubi)
2091 {
2092 	int err;
2093 	struct ubi_wl_entry *e;
2094 
2095 retry:
2096 	down_read(&ubi->fm_eba_sem);
2097 	spin_lock(&ubi->wl_lock);
2098 	if (!ubi->free.rb_node) {
2099 		if (ubi->works_count == 0) {
2100 			ubi_err(ubi, "no free eraseblocks");
2101 			ubi_assert(list_empty(&ubi->works));
2102 			spin_unlock(&ubi->wl_lock);
2103 			return -ENOSPC;
2104 		}
2105 
2106 		err = produce_free_peb(ubi);
2107 		if (err < 0) {
2108 			spin_unlock(&ubi->wl_lock);
2109 			return err;
2110 		}
2111 		spin_unlock(&ubi->wl_lock);
2112 		up_read(&ubi->fm_eba_sem);
2113 		goto retry;
2114 
2115 	}
2116 	e = wl_get_wle(ubi);
2117 	prot_queue_add(ubi, e);
2118 	spin_unlock(&ubi->wl_lock);
2119 
2120 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2121 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2122 	if (err) {
2123 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2124 		return err;
2125 	}
2126 
2127 	return e->pnum;
2128 }
2129 #else
2130 #include "fastmap-wl.c"
2131 #endif
2132