1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8 /*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97
98 /*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106 /*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119 /*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123 #define WL_MAX_FAILURES 32
124
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
130
131 /**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 struct rb_node **p, *parent = NULL;
142
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
146
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
160 }
161 }
162
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
165 }
166
167 /**
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180
181 /**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
do_work(struct ubi_device * ubi)188 static int do_work(struct ubi_device *ubi)
189 {
190 int err;
191 struct ubi_work *wrk;
192
193 cond_resched();
194
195 /*
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
200 */
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
207 }
208
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
214
215 /*
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
219 */
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
224
225 return err;
226 }
227
228 /**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 struct rb_node *p;
239
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
243
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
249 }
250
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
261 }
262 }
263
264 return 0;
265 }
266
267 /**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 struct ubi_wl_entry *p;
278 int i;
279
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
284
285 return 0;
286 }
287
288 /**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 int pq_tail = ubi->pq_head - 1;
301
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308
309 /**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
320 {
321 struct rb_node *p;
322 struct ubi_wl_entry *e;
323 int max;
324
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
327
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
331
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
338 }
339 }
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 int vol_id, int lnum, int torture, bool nested)
584 {
585 struct ubi_work *wl_wrk;
586
587 ubi_assert(e);
588
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
591
592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 if (!wl_wrk)
594 return -ENOMEM;
595
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
600 wl_wrk->torture = torture;
601
602 if (nested)
603 __schedule_ubi_work(ubi, wl_wrk);
604 else
605 schedule_ubi_work(ubi, wl_wrk);
606 return 0;
607 }
608
609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
610 /**
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
617 *
618 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 int vol_id, int lnum, int torture)
621 {
622 struct ubi_work wl_wrk;
623
624 dbg_wl("sync erase of PEB %i", e->pnum);
625
626 wl_wrk.e = e;
627 wl_wrk.vol_id = vol_id;
628 wl_wrk.lnum = lnum;
629 wl_wrk.torture = torture;
630
631 return __erase_worker(ubi, &wl_wrk);
632 }
633
634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
635 /**
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
641 *
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
644 * failure.
645 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647 int shutdown)
648 {
649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
651 struct ubi_wl_entry *e1, *e2;
652 struct ubi_vid_io_buf *vidb;
653 struct ubi_vid_hdr *vid_hdr;
654 int dst_leb_clean = 0;
655
656 kfree(wrk);
657 if (shutdown)
658 return 0;
659
660 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
661 if (!vidb)
662 return -ENOMEM;
663
664 vid_hdr = ubi_get_vid_hdr(vidb);
665
666 down_read(&ubi->fm_eba_sem);
667 mutex_lock(&ubi->move_mutex);
668 spin_lock(&ubi->wl_lock);
669 ubi_assert(!ubi->move_from && !ubi->move_to);
670 ubi_assert(!ubi->move_to_put);
671
672 if (!ubi->free.rb_node ||
673 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
674 /*
675 * No free physical eraseblocks? Well, they must be waiting in
676 * the queue to be erased. Cancel movement - it will be
677 * triggered again when a free physical eraseblock appears.
678 *
679 * No used physical eraseblocks? They must be temporarily
680 * protected from being moved. They will be moved to the
681 * @ubi->used tree later and the wear-leveling will be
682 * triggered again.
683 */
684 dbg_wl("cancel WL, a list is empty: free %d, used %d",
685 !ubi->free.rb_node, !ubi->used.rb_node);
686 goto out_cancel;
687 }
688
689 #ifdef CONFIG_MTD_UBI_FASTMAP
690 e1 = find_anchor_wl_entry(&ubi->used);
691 if (e1 && ubi->fm_anchor &&
692 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
693 ubi->fm_do_produce_anchor = 1;
694 /*
695 * fm_anchor is no longer considered a good anchor.
696 * NULL assignment also prevents multiple wear level checks
697 * of this PEB.
698 */
699 wl_tree_add(ubi->fm_anchor, &ubi->free);
700 ubi->fm_anchor = NULL;
701 ubi->free_count++;
702 }
703
704 if (ubi->fm_do_produce_anchor) {
705 if (!e1)
706 goto out_cancel;
707 e2 = get_peb_for_wl(ubi);
708 if (!e2)
709 goto out_cancel;
710
711 self_check_in_wl_tree(ubi, e1, &ubi->used);
712 rb_erase(&e1->u.rb, &ubi->used);
713 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
714 ubi->fm_do_produce_anchor = 0;
715 } else if (!ubi->scrub.rb_node) {
716 #else
717 if (!ubi->scrub.rb_node) {
718 #endif
719 /*
720 * Now pick the least worn-out used physical eraseblock and a
721 * highly worn-out free physical eraseblock. If the erase
722 * counters differ much enough, start wear-leveling.
723 */
724 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
725 e2 = get_peb_for_wl(ubi);
726 if (!e2)
727 goto out_cancel;
728
729 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
730 dbg_wl("no WL needed: min used EC %d, max free EC %d",
731 e1->ec, e2->ec);
732
733 /* Give the unused PEB back */
734 wl_tree_add(e2, &ubi->free);
735 ubi->free_count++;
736 goto out_cancel;
737 }
738 self_check_in_wl_tree(ubi, e1, &ubi->used);
739 rb_erase(&e1->u.rb, &ubi->used);
740 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
741 e1->pnum, e1->ec, e2->pnum, e2->ec);
742 } else {
743 /* Perform scrubbing */
744 scrubbing = 1;
745 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
746 e2 = get_peb_for_wl(ubi);
747 if (!e2)
748 goto out_cancel;
749
750 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
751 rb_erase(&e1->u.rb, &ubi->scrub);
752 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
753 }
754
755 ubi->move_from = e1;
756 ubi->move_to = e2;
757 spin_unlock(&ubi->wl_lock);
758
759 /*
760 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
761 * We so far do not know which logical eraseblock our physical
762 * eraseblock (@e1) belongs to. We have to read the volume identifier
763 * header first.
764 *
765 * Note, we are protected from this PEB being unmapped and erased. The
766 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
767 * which is being moved was unmapped.
768 */
769
770 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
771 if (err && err != UBI_IO_BITFLIPS) {
772 dst_leb_clean = 1;
773 if (err == UBI_IO_FF) {
774 /*
775 * We are trying to move PEB without a VID header. UBI
776 * always write VID headers shortly after the PEB was
777 * given, so we have a situation when it has not yet
778 * had a chance to write it, because it was preempted.
779 * So add this PEB to the protection queue so far,
780 * because presumably more data will be written there
781 * (including the missing VID header), and then we'll
782 * move it.
783 */
784 dbg_wl("PEB %d has no VID header", e1->pnum);
785 protect = 1;
786 goto out_not_moved;
787 } else if (err == UBI_IO_FF_BITFLIPS) {
788 /*
789 * The same situation as %UBI_IO_FF, but bit-flips were
790 * detected. It is better to schedule this PEB for
791 * scrubbing.
792 */
793 dbg_wl("PEB %d has no VID header but has bit-flips",
794 e1->pnum);
795 scrubbing = 1;
796 goto out_not_moved;
797 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
798 /*
799 * While a full scan would detect interrupted erasures
800 * at attach time we can face them here when attached from
801 * Fastmap.
802 */
803 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
804 e1->pnum);
805 erase = 1;
806 goto out_not_moved;
807 }
808
809 ubi_err(ubi, "error %d while reading VID header from PEB %d",
810 err, e1->pnum);
811 goto out_error;
812 }
813
814 vol_id = be32_to_cpu(vid_hdr->vol_id);
815 lnum = be32_to_cpu(vid_hdr->lnum);
816
817 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
818 if (err) {
819 if (err == MOVE_CANCEL_RACE) {
820 /*
821 * The LEB has not been moved because the volume is
822 * being deleted or the PEB has been put meanwhile. We
823 * should prevent this PEB from being selected for
824 * wear-leveling movement again, so put it to the
825 * protection queue.
826 */
827 protect = 1;
828 dst_leb_clean = 1;
829 goto out_not_moved;
830 }
831 if (err == MOVE_RETRY) {
832 scrubbing = 1;
833 dst_leb_clean = 1;
834 goto out_not_moved;
835 }
836 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
837 err == MOVE_TARGET_RD_ERR) {
838 /*
839 * Target PEB had bit-flips or write error - torture it.
840 */
841 torture = 1;
842 keep = 1;
843 goto out_not_moved;
844 }
845
846 if (err == MOVE_SOURCE_RD_ERR) {
847 /*
848 * An error happened while reading the source PEB. Do
849 * not switch to R/O mode in this case, and give the
850 * upper layers a possibility to recover from this,
851 * e.g. by unmapping corresponding LEB. Instead, just
852 * put this PEB to the @ubi->erroneous list to prevent
853 * UBI from trying to move it over and over again.
854 */
855 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
856 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
857 ubi->erroneous_peb_count);
858 goto out_error;
859 }
860 dst_leb_clean = 1;
861 erroneous = 1;
862 goto out_not_moved;
863 }
864
865 if (err < 0)
866 goto out_error;
867
868 ubi_assert(0);
869 }
870
871 /* The PEB has been successfully moved */
872 if (scrubbing)
873 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
874 e1->pnum, vol_id, lnum, e2->pnum);
875 ubi_free_vid_buf(vidb);
876
877 spin_lock(&ubi->wl_lock);
878 if (!ubi->move_to_put) {
879 wl_tree_add(e2, &ubi->used);
880 e2 = NULL;
881 }
882 ubi->move_from = ubi->move_to = NULL;
883 ubi->move_to_put = ubi->wl_scheduled = 0;
884 spin_unlock(&ubi->wl_lock);
885
886 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
887 if (err) {
888 if (e2)
889 wl_entry_destroy(ubi, e2);
890 goto out_ro;
891 }
892
893 if (e2) {
894 /*
895 * Well, the target PEB was put meanwhile, schedule it for
896 * erasure.
897 */
898 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
899 e2->pnum, vol_id, lnum);
900 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
901 if (err)
902 goto out_ro;
903 }
904
905 dbg_wl("done");
906 mutex_unlock(&ubi->move_mutex);
907 up_read(&ubi->fm_eba_sem);
908 return 0;
909
910 /*
911 * For some reasons the LEB was not moved, might be an error, might be
912 * something else. @e1 was not changed, so return it back. @e2 might
913 * have been changed, schedule it for erasure.
914 */
915 out_not_moved:
916 if (vol_id != -1)
917 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
918 e1->pnum, vol_id, lnum, e2->pnum, err);
919 else
920 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
921 e1->pnum, e2->pnum, err);
922 spin_lock(&ubi->wl_lock);
923 if (protect)
924 prot_queue_add(ubi, e1);
925 else if (erroneous) {
926 wl_tree_add(e1, &ubi->erroneous);
927 ubi->erroneous_peb_count += 1;
928 } else if (scrubbing)
929 wl_tree_add(e1, &ubi->scrub);
930 else if (keep)
931 wl_tree_add(e1, &ubi->used);
932 if (dst_leb_clean) {
933 wl_tree_add(e2, &ubi->free);
934 ubi->free_count++;
935 }
936
937 ubi_assert(!ubi->move_to_put);
938 ubi->move_from = ubi->move_to = NULL;
939 ubi->wl_scheduled = 0;
940 spin_unlock(&ubi->wl_lock);
941
942 ubi_free_vid_buf(vidb);
943 if (dst_leb_clean) {
944 ensure_wear_leveling(ubi, 1);
945 } else {
946 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
947 if (err)
948 goto out_ro;
949 }
950
951 if (erase) {
952 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
953 if (err)
954 goto out_ro;
955 }
956
957 mutex_unlock(&ubi->move_mutex);
958 up_read(&ubi->fm_eba_sem);
959 return 0;
960
961 out_error:
962 if (vol_id != -1)
963 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
964 err, e1->pnum, e2->pnum);
965 else
966 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
967 err, e1->pnum, vol_id, lnum, e2->pnum);
968 spin_lock(&ubi->wl_lock);
969 ubi->move_from = ubi->move_to = NULL;
970 ubi->move_to_put = ubi->wl_scheduled = 0;
971 spin_unlock(&ubi->wl_lock);
972
973 ubi_free_vid_buf(vidb);
974 wl_entry_destroy(ubi, e1);
975 wl_entry_destroy(ubi, e2);
976
977 out_ro:
978 ubi_ro_mode(ubi);
979 mutex_unlock(&ubi->move_mutex);
980 up_read(&ubi->fm_eba_sem);
981 ubi_assert(err != 0);
982 return err < 0 ? err : -EIO;
983
984 out_cancel:
985 ubi->wl_scheduled = 0;
986 spin_unlock(&ubi->wl_lock);
987 mutex_unlock(&ubi->move_mutex);
988 up_read(&ubi->fm_eba_sem);
989 ubi_free_vid_buf(vidb);
990 return 0;
991 }
992
993 /**
994 * ensure_wear_leveling - schedule wear-leveling if it is needed.
995 * @ubi: UBI device description object
996 * @nested: set to non-zero if this function is called from UBI worker
997 *
998 * This function checks if it is time to start wear-leveling and schedules it
999 * if yes. This function returns zero in case of success and a negative error
1000 * code in case of failure.
1001 */
1002 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1003 {
1004 int err = 0;
1005 struct ubi_wl_entry *e1;
1006 struct ubi_wl_entry *e2;
1007 struct ubi_work *wrk;
1008
1009 spin_lock(&ubi->wl_lock);
1010 if (ubi->wl_scheduled)
1011 /* Wear-leveling is already in the work queue */
1012 goto out_unlock;
1013
1014 /*
1015 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1016 * the WL worker has to be scheduled anyway.
1017 */
1018 if (!ubi->scrub.rb_node) {
1019 if (!ubi->used.rb_node || !ubi->free.rb_node)
1020 /* No physical eraseblocks - no deal */
1021 goto out_unlock;
1022
1023 /*
1024 * We schedule wear-leveling only if the difference between the
1025 * lowest erase counter of used physical eraseblocks and a high
1026 * erase counter of free physical eraseblocks is greater than
1027 * %UBI_WL_THRESHOLD.
1028 */
1029 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1030 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1031
1032 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1033 goto out_unlock;
1034 dbg_wl("schedule wear-leveling");
1035 } else
1036 dbg_wl("schedule scrubbing");
1037
1038 ubi->wl_scheduled = 1;
1039 spin_unlock(&ubi->wl_lock);
1040
1041 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1042 if (!wrk) {
1043 err = -ENOMEM;
1044 goto out_cancel;
1045 }
1046
1047 wrk->func = &wear_leveling_worker;
1048 if (nested)
1049 __schedule_ubi_work(ubi, wrk);
1050 else
1051 schedule_ubi_work(ubi, wrk);
1052 return err;
1053
1054 out_cancel:
1055 spin_lock(&ubi->wl_lock);
1056 ubi->wl_scheduled = 0;
1057 out_unlock:
1058 spin_unlock(&ubi->wl_lock);
1059 return err;
1060 }
1061
1062 /**
1063 * __erase_worker - physical eraseblock erase worker function.
1064 * @ubi: UBI device description object
1065 * @wl_wrk: the work object
1066 * @shutdown: non-zero if the worker has to free memory and exit
1067 * because the WL sub-system is shutting down
1068 *
1069 * This function erases a physical eraseblock and perform torture testing if
1070 * needed. It also takes care about marking the physical eraseblock bad if
1071 * needed. Returns zero in case of success and a negative error code in case of
1072 * failure.
1073 */
1074 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1075 {
1076 struct ubi_wl_entry *e = wl_wrk->e;
1077 int pnum = e->pnum;
1078 int vol_id = wl_wrk->vol_id;
1079 int lnum = wl_wrk->lnum;
1080 int err, available_consumed = 0;
1081
1082 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1083 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1084
1085 err = sync_erase(ubi, e, wl_wrk->torture);
1086 if (!err) {
1087 spin_lock(&ubi->wl_lock);
1088
1089 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1090 e->pnum < UBI_FM_MAX_START) {
1091 /*
1092 * Abort anchor production, if needed it will be
1093 * enabled again in the wear leveling started below.
1094 */
1095 ubi->fm_anchor = e;
1096 ubi->fm_do_produce_anchor = 0;
1097 } else {
1098 wl_tree_add(e, &ubi->free);
1099 ubi->free_count++;
1100 }
1101
1102 spin_unlock(&ubi->wl_lock);
1103
1104 /*
1105 * One more erase operation has happened, take care about
1106 * protected physical eraseblocks.
1107 */
1108 serve_prot_queue(ubi);
1109
1110 /* And take care about wear-leveling */
1111 err = ensure_wear_leveling(ubi, 1);
1112 return err;
1113 }
1114
1115 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1116
1117 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1118 err == -EBUSY) {
1119 int err1;
1120
1121 /* Re-schedule the LEB for erasure */
1122 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1123 if (err1) {
1124 wl_entry_destroy(ubi, e);
1125 err = err1;
1126 goto out_ro;
1127 }
1128 return err;
1129 }
1130
1131 wl_entry_destroy(ubi, e);
1132 if (err != -EIO)
1133 /*
1134 * If this is not %-EIO, we have no idea what to do. Scheduling
1135 * this physical eraseblock for erasure again would cause
1136 * errors again and again. Well, lets switch to R/O mode.
1137 */
1138 goto out_ro;
1139
1140 /* It is %-EIO, the PEB went bad */
1141
1142 if (!ubi->bad_allowed) {
1143 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1144 goto out_ro;
1145 }
1146
1147 spin_lock(&ubi->volumes_lock);
1148 if (ubi->beb_rsvd_pebs == 0) {
1149 if (ubi->avail_pebs == 0) {
1150 spin_unlock(&ubi->volumes_lock);
1151 ubi_err(ubi, "no reserved/available physical eraseblocks");
1152 goto out_ro;
1153 }
1154 ubi->avail_pebs -= 1;
1155 available_consumed = 1;
1156 }
1157 spin_unlock(&ubi->volumes_lock);
1158
1159 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1160 err = ubi_io_mark_bad(ubi, pnum);
1161 if (err)
1162 goto out_ro;
1163
1164 spin_lock(&ubi->volumes_lock);
1165 if (ubi->beb_rsvd_pebs > 0) {
1166 if (available_consumed) {
1167 /*
1168 * The amount of reserved PEBs increased since we last
1169 * checked.
1170 */
1171 ubi->avail_pebs += 1;
1172 available_consumed = 0;
1173 }
1174 ubi->beb_rsvd_pebs -= 1;
1175 }
1176 ubi->bad_peb_count += 1;
1177 ubi->good_peb_count -= 1;
1178 ubi_calculate_reserved(ubi);
1179 if (available_consumed)
1180 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1181 else if (ubi->beb_rsvd_pebs)
1182 ubi_msg(ubi, "%d PEBs left in the reserve",
1183 ubi->beb_rsvd_pebs);
1184 else
1185 ubi_warn(ubi, "last PEB from the reserve was used");
1186 spin_unlock(&ubi->volumes_lock);
1187
1188 return err;
1189
1190 out_ro:
1191 if (available_consumed) {
1192 spin_lock(&ubi->volumes_lock);
1193 ubi->avail_pebs += 1;
1194 spin_unlock(&ubi->volumes_lock);
1195 }
1196 ubi_ro_mode(ubi);
1197 return err;
1198 }
1199
1200 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1201 int shutdown)
1202 {
1203 int ret;
1204
1205 if (shutdown) {
1206 struct ubi_wl_entry *e = wl_wrk->e;
1207
1208 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1209 kfree(wl_wrk);
1210 wl_entry_destroy(ubi, e);
1211 return 0;
1212 }
1213
1214 ret = __erase_worker(ubi, wl_wrk);
1215 kfree(wl_wrk);
1216 return ret;
1217 }
1218
1219 /**
1220 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1221 * @ubi: UBI device description object
1222 * @vol_id: the volume ID that last used this PEB
1223 * @lnum: the last used logical eraseblock number for the PEB
1224 * @pnum: physical eraseblock to return
1225 * @torture: if this physical eraseblock has to be tortured
1226 *
1227 * This function is called to return physical eraseblock @pnum to the pool of
1228 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1229 * occurred to this @pnum and it has to be tested. This function returns zero
1230 * in case of success, and a negative error code in case of failure.
1231 */
1232 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1233 int pnum, int torture)
1234 {
1235 int err;
1236 struct ubi_wl_entry *e;
1237
1238 dbg_wl("PEB %d", pnum);
1239 ubi_assert(pnum >= 0);
1240 ubi_assert(pnum < ubi->peb_count);
1241
1242 down_read(&ubi->fm_protect);
1243
1244 retry:
1245 spin_lock(&ubi->wl_lock);
1246 e = ubi->lookuptbl[pnum];
1247 if (e == ubi->move_from) {
1248 /*
1249 * User is putting the physical eraseblock which was selected to
1250 * be moved. It will be scheduled for erasure in the
1251 * wear-leveling worker.
1252 */
1253 dbg_wl("PEB %d is being moved, wait", pnum);
1254 spin_unlock(&ubi->wl_lock);
1255
1256 /* Wait for the WL worker by taking the @ubi->move_mutex */
1257 mutex_lock(&ubi->move_mutex);
1258 mutex_unlock(&ubi->move_mutex);
1259 goto retry;
1260 } else if (e == ubi->move_to) {
1261 /*
1262 * User is putting the physical eraseblock which was selected
1263 * as the target the data is moved to. It may happen if the EBA
1264 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1265 * but the WL sub-system has not put the PEB to the "used" tree
1266 * yet, but it is about to do this. So we just set a flag which
1267 * will tell the WL worker that the PEB is not needed anymore
1268 * and should be scheduled for erasure.
1269 */
1270 dbg_wl("PEB %d is the target of data moving", pnum);
1271 ubi_assert(!ubi->move_to_put);
1272 ubi->move_to_put = 1;
1273 spin_unlock(&ubi->wl_lock);
1274 up_read(&ubi->fm_protect);
1275 return 0;
1276 } else {
1277 if (in_wl_tree(e, &ubi->used)) {
1278 self_check_in_wl_tree(ubi, e, &ubi->used);
1279 rb_erase(&e->u.rb, &ubi->used);
1280 } else if (in_wl_tree(e, &ubi->scrub)) {
1281 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1282 rb_erase(&e->u.rb, &ubi->scrub);
1283 } else if (in_wl_tree(e, &ubi->erroneous)) {
1284 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1285 rb_erase(&e->u.rb, &ubi->erroneous);
1286 ubi->erroneous_peb_count -= 1;
1287 ubi_assert(ubi->erroneous_peb_count >= 0);
1288 /* Erroneous PEBs should be tortured */
1289 torture = 1;
1290 } else {
1291 err = prot_queue_del(ubi, e->pnum);
1292 if (err) {
1293 ubi_err(ubi, "PEB %d not found", pnum);
1294 ubi_ro_mode(ubi);
1295 spin_unlock(&ubi->wl_lock);
1296 up_read(&ubi->fm_protect);
1297 return err;
1298 }
1299 }
1300 }
1301 spin_unlock(&ubi->wl_lock);
1302
1303 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1304 if (err) {
1305 spin_lock(&ubi->wl_lock);
1306 wl_tree_add(e, &ubi->used);
1307 spin_unlock(&ubi->wl_lock);
1308 }
1309
1310 up_read(&ubi->fm_protect);
1311 return err;
1312 }
1313
1314 /**
1315 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1316 * @ubi: UBI device description object
1317 * @pnum: the physical eraseblock to schedule
1318 *
1319 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1320 * needs scrubbing. This function schedules a physical eraseblock for
1321 * scrubbing which is done in background. This function returns zero in case of
1322 * success and a negative error code in case of failure.
1323 */
1324 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1325 {
1326 struct ubi_wl_entry *e;
1327
1328 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1329
1330 retry:
1331 spin_lock(&ubi->wl_lock);
1332 e = ubi->lookuptbl[pnum];
1333 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1334 in_wl_tree(e, &ubi->erroneous)) {
1335 spin_unlock(&ubi->wl_lock);
1336 return 0;
1337 }
1338
1339 if (e == ubi->move_to) {
1340 /*
1341 * This physical eraseblock was used to move data to. The data
1342 * was moved but the PEB was not yet inserted to the proper
1343 * tree. We should just wait a little and let the WL worker
1344 * proceed.
1345 */
1346 spin_unlock(&ubi->wl_lock);
1347 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1348 yield();
1349 goto retry;
1350 }
1351
1352 if (in_wl_tree(e, &ubi->used)) {
1353 self_check_in_wl_tree(ubi, e, &ubi->used);
1354 rb_erase(&e->u.rb, &ubi->used);
1355 } else {
1356 int err;
1357
1358 err = prot_queue_del(ubi, e->pnum);
1359 if (err) {
1360 ubi_err(ubi, "PEB %d not found", pnum);
1361 ubi_ro_mode(ubi);
1362 spin_unlock(&ubi->wl_lock);
1363 return err;
1364 }
1365 }
1366
1367 wl_tree_add(e, &ubi->scrub);
1368 spin_unlock(&ubi->wl_lock);
1369
1370 /*
1371 * Technically scrubbing is the same as wear-leveling, so it is done
1372 * by the WL worker.
1373 */
1374 return ensure_wear_leveling(ubi, 0);
1375 }
1376
1377 /**
1378 * ubi_wl_flush - flush all pending works.
1379 * @ubi: UBI device description object
1380 * @vol_id: the volume id to flush for
1381 * @lnum: the logical eraseblock number to flush for
1382 *
1383 * This function executes all pending works for a particular volume id /
1384 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1385 * acts as a wildcard for all of the corresponding volume numbers or logical
1386 * eraseblock numbers. It returns zero in case of success and a negative error
1387 * code in case of failure.
1388 */
1389 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1390 {
1391 int err = 0;
1392 int found = 1;
1393
1394 /*
1395 * Erase while the pending works queue is not empty, but not more than
1396 * the number of currently pending works.
1397 */
1398 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1399 vol_id, lnum, ubi->works_count);
1400
1401 while (found) {
1402 struct ubi_work *wrk, *tmp;
1403 found = 0;
1404
1405 down_read(&ubi->work_sem);
1406 spin_lock(&ubi->wl_lock);
1407 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1408 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1409 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1410 list_del(&wrk->list);
1411 ubi->works_count -= 1;
1412 ubi_assert(ubi->works_count >= 0);
1413 spin_unlock(&ubi->wl_lock);
1414
1415 err = wrk->func(ubi, wrk, 0);
1416 if (err) {
1417 up_read(&ubi->work_sem);
1418 return err;
1419 }
1420
1421 spin_lock(&ubi->wl_lock);
1422 found = 1;
1423 break;
1424 }
1425 }
1426 spin_unlock(&ubi->wl_lock);
1427 up_read(&ubi->work_sem);
1428 }
1429
1430 /*
1431 * Make sure all the works which have been done in parallel are
1432 * finished.
1433 */
1434 down_write(&ubi->work_sem);
1435 up_write(&ubi->work_sem);
1436
1437 return err;
1438 }
1439
1440 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1441 {
1442 if (in_wl_tree(e, &ubi->scrub))
1443 return false;
1444 else if (in_wl_tree(e, &ubi->erroneous))
1445 return false;
1446 else if (ubi->move_from == e)
1447 return false;
1448 else if (ubi->move_to == e)
1449 return false;
1450
1451 return true;
1452 }
1453
1454 /**
1455 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1456 * @ubi: UBI device description object
1457 * @pnum: the physical eraseblock to schedule
1458 * @force: dont't read the block, assume bitflips happened and take action.
1459 *
1460 * This function reads the given eraseblock and checks if bitflips occured.
1461 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1462 * If scrubbing is forced with @force, the eraseblock is not read,
1463 * but scheduled for scrubbing right away.
1464 *
1465 * Returns:
1466 * %EINVAL, PEB is out of range
1467 * %ENOENT, PEB is no longer used by UBI
1468 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1469 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1470 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1471 * %0, no bit flips detected
1472 */
1473 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1474 {
1475 int err = 0;
1476 struct ubi_wl_entry *e;
1477
1478 if (pnum < 0 || pnum >= ubi->peb_count) {
1479 err = -EINVAL;
1480 goto out;
1481 }
1482
1483 /*
1484 * Pause all parallel work, otherwise it can happen that the
1485 * erase worker frees a wl entry under us.
1486 */
1487 down_write(&ubi->work_sem);
1488
1489 /*
1490 * Make sure that the wl entry does not change state while
1491 * inspecting it.
1492 */
1493 spin_lock(&ubi->wl_lock);
1494 e = ubi->lookuptbl[pnum];
1495 if (!e) {
1496 spin_unlock(&ubi->wl_lock);
1497 err = -ENOENT;
1498 goto out_resume;
1499 }
1500
1501 /*
1502 * Does it make sense to check this PEB?
1503 */
1504 if (!scrub_possible(ubi, e)) {
1505 spin_unlock(&ubi->wl_lock);
1506 err = -EBUSY;
1507 goto out_resume;
1508 }
1509 spin_unlock(&ubi->wl_lock);
1510
1511 if (!force) {
1512 mutex_lock(&ubi->buf_mutex);
1513 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1514 mutex_unlock(&ubi->buf_mutex);
1515 }
1516
1517 if (force || err == UBI_IO_BITFLIPS) {
1518 /*
1519 * Okay, bit flip happened, let's figure out what we can do.
1520 */
1521 spin_lock(&ubi->wl_lock);
1522
1523 /*
1524 * Recheck. We released wl_lock, UBI might have killed the
1525 * wl entry under us.
1526 */
1527 e = ubi->lookuptbl[pnum];
1528 if (!e) {
1529 spin_unlock(&ubi->wl_lock);
1530 err = -ENOENT;
1531 goto out_resume;
1532 }
1533
1534 /*
1535 * Need to re-check state
1536 */
1537 if (!scrub_possible(ubi, e)) {
1538 spin_unlock(&ubi->wl_lock);
1539 err = -EBUSY;
1540 goto out_resume;
1541 }
1542
1543 if (in_pq(ubi, e)) {
1544 prot_queue_del(ubi, e->pnum);
1545 wl_tree_add(e, &ubi->scrub);
1546 spin_unlock(&ubi->wl_lock);
1547
1548 err = ensure_wear_leveling(ubi, 1);
1549 } else if (in_wl_tree(e, &ubi->used)) {
1550 rb_erase(&e->u.rb, &ubi->used);
1551 wl_tree_add(e, &ubi->scrub);
1552 spin_unlock(&ubi->wl_lock);
1553
1554 err = ensure_wear_leveling(ubi, 1);
1555 } else if (in_wl_tree(e, &ubi->free)) {
1556 rb_erase(&e->u.rb, &ubi->free);
1557 ubi->free_count--;
1558 spin_unlock(&ubi->wl_lock);
1559
1560 /*
1561 * This PEB is empty we can schedule it for
1562 * erasure right away. No wear leveling needed.
1563 */
1564 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1565 force ? 0 : 1, true);
1566 } else {
1567 spin_unlock(&ubi->wl_lock);
1568 err = -EAGAIN;
1569 }
1570
1571 if (!err && !force)
1572 err = -EUCLEAN;
1573 } else {
1574 err = 0;
1575 }
1576
1577 out_resume:
1578 up_write(&ubi->work_sem);
1579 out:
1580
1581 return err;
1582 }
1583
1584 /**
1585 * tree_destroy - destroy an RB-tree.
1586 * @ubi: UBI device description object
1587 * @root: the root of the tree to destroy
1588 */
1589 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1590 {
1591 struct rb_node *rb;
1592 struct ubi_wl_entry *e;
1593
1594 rb = root->rb_node;
1595 while (rb) {
1596 if (rb->rb_left)
1597 rb = rb->rb_left;
1598 else if (rb->rb_right)
1599 rb = rb->rb_right;
1600 else {
1601 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1602
1603 rb = rb_parent(rb);
1604 if (rb) {
1605 if (rb->rb_left == &e->u.rb)
1606 rb->rb_left = NULL;
1607 else
1608 rb->rb_right = NULL;
1609 }
1610
1611 wl_entry_destroy(ubi, e);
1612 }
1613 }
1614 }
1615
1616 /**
1617 * ubi_thread - UBI background thread.
1618 * @u: the UBI device description object pointer
1619 */
1620 int ubi_thread(void *u)
1621 {
1622 int failures = 0;
1623 struct ubi_device *ubi = u;
1624
1625 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1626 ubi->bgt_name, task_pid_nr(current));
1627
1628 set_freezable();
1629 for (;;) {
1630 int err;
1631
1632 if (kthread_should_stop())
1633 break;
1634
1635 if (try_to_freeze())
1636 continue;
1637
1638 spin_lock(&ubi->wl_lock);
1639 if (list_empty(&ubi->works) || ubi->ro_mode ||
1640 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1641 set_current_state(TASK_INTERRUPTIBLE);
1642 spin_unlock(&ubi->wl_lock);
1643
1644 /*
1645 * Check kthread_should_stop() after we set the task
1646 * state to guarantee that we either see the stop bit
1647 * and exit or the task state is reset to runnable such
1648 * that it's not scheduled out indefinitely and detects
1649 * the stop bit at kthread_should_stop().
1650 */
1651 if (kthread_should_stop()) {
1652 set_current_state(TASK_RUNNING);
1653 break;
1654 }
1655
1656 schedule();
1657 continue;
1658 }
1659 spin_unlock(&ubi->wl_lock);
1660
1661 err = do_work(ubi);
1662 if (err) {
1663 ubi_err(ubi, "%s: work failed with error code %d",
1664 ubi->bgt_name, err);
1665 if (failures++ > WL_MAX_FAILURES) {
1666 /*
1667 * Too many failures, disable the thread and
1668 * switch to read-only mode.
1669 */
1670 ubi_msg(ubi, "%s: %d consecutive failures",
1671 ubi->bgt_name, WL_MAX_FAILURES);
1672 ubi_ro_mode(ubi);
1673 ubi->thread_enabled = 0;
1674 continue;
1675 }
1676 } else
1677 failures = 0;
1678
1679 cond_resched();
1680 }
1681
1682 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1683 ubi->thread_enabled = 0;
1684 return 0;
1685 }
1686
1687 /**
1688 * shutdown_work - shutdown all pending works.
1689 * @ubi: UBI device description object
1690 */
1691 static void shutdown_work(struct ubi_device *ubi)
1692 {
1693 while (!list_empty(&ubi->works)) {
1694 struct ubi_work *wrk;
1695
1696 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1697 list_del(&wrk->list);
1698 wrk->func(ubi, wrk, 1);
1699 ubi->works_count -= 1;
1700 ubi_assert(ubi->works_count >= 0);
1701 }
1702 }
1703
1704 /**
1705 * erase_aeb - erase a PEB given in UBI attach info PEB
1706 * @ubi: UBI device description object
1707 * @aeb: UBI attach info PEB
1708 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1709 */
1710 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1711 {
1712 struct ubi_wl_entry *e;
1713 int err;
1714
1715 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1716 if (!e)
1717 return -ENOMEM;
1718
1719 e->pnum = aeb->pnum;
1720 e->ec = aeb->ec;
1721 ubi->lookuptbl[e->pnum] = e;
1722
1723 if (sync) {
1724 err = sync_erase(ubi, e, false);
1725 if (err)
1726 goto out_free;
1727
1728 wl_tree_add(e, &ubi->free);
1729 ubi->free_count++;
1730 } else {
1731 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1732 if (err)
1733 goto out_free;
1734 }
1735
1736 return 0;
1737
1738 out_free:
1739 wl_entry_destroy(ubi, e);
1740
1741 return err;
1742 }
1743
1744 /**
1745 * ubi_wl_init - initialize the WL sub-system using attaching information.
1746 * @ubi: UBI device description object
1747 * @ai: attaching information
1748 *
1749 * This function returns zero in case of success, and a negative error code in
1750 * case of failure.
1751 */
1752 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1753 {
1754 int err, i, reserved_pebs, found_pebs = 0;
1755 struct rb_node *rb1, *rb2;
1756 struct ubi_ainf_volume *av;
1757 struct ubi_ainf_peb *aeb, *tmp;
1758 struct ubi_wl_entry *e;
1759
1760 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1761 spin_lock_init(&ubi->wl_lock);
1762 mutex_init(&ubi->move_mutex);
1763 init_rwsem(&ubi->work_sem);
1764 ubi->max_ec = ai->max_ec;
1765 INIT_LIST_HEAD(&ubi->works);
1766
1767 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1768
1769 err = -ENOMEM;
1770 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1771 if (!ubi->lookuptbl)
1772 return err;
1773
1774 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1775 INIT_LIST_HEAD(&ubi->pq[i]);
1776 ubi->pq_head = 0;
1777
1778 ubi->free_count = 0;
1779 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1780 cond_resched();
1781
1782 err = erase_aeb(ubi, aeb, false);
1783 if (err)
1784 goto out_free;
1785
1786 found_pebs++;
1787 }
1788
1789 list_for_each_entry(aeb, &ai->free, u.list) {
1790 cond_resched();
1791
1792 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1793 if (!e) {
1794 err = -ENOMEM;
1795 goto out_free;
1796 }
1797
1798 e->pnum = aeb->pnum;
1799 e->ec = aeb->ec;
1800 ubi_assert(e->ec >= 0);
1801
1802 wl_tree_add(e, &ubi->free);
1803 ubi->free_count++;
1804
1805 ubi->lookuptbl[e->pnum] = e;
1806
1807 found_pebs++;
1808 }
1809
1810 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1811 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1812 cond_resched();
1813
1814 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1815 if (!e) {
1816 err = -ENOMEM;
1817 goto out_free;
1818 }
1819
1820 e->pnum = aeb->pnum;
1821 e->ec = aeb->ec;
1822 ubi->lookuptbl[e->pnum] = e;
1823
1824 if (!aeb->scrub) {
1825 dbg_wl("add PEB %d EC %d to the used tree",
1826 e->pnum, e->ec);
1827 wl_tree_add(e, &ubi->used);
1828 } else {
1829 dbg_wl("add PEB %d EC %d to the scrub tree",
1830 e->pnum, e->ec);
1831 wl_tree_add(e, &ubi->scrub);
1832 }
1833
1834 found_pebs++;
1835 }
1836 }
1837
1838 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1839 cond_resched();
1840
1841 e = ubi_find_fm_block(ubi, aeb->pnum);
1842
1843 if (e) {
1844 ubi_assert(!ubi->lookuptbl[e->pnum]);
1845 ubi->lookuptbl[e->pnum] = e;
1846 } else {
1847 bool sync = false;
1848
1849 /*
1850 * Usually old Fastmap PEBs are scheduled for erasure
1851 * and we don't have to care about them but if we face
1852 * an power cut before scheduling them we need to
1853 * take care of them here.
1854 */
1855 if (ubi->lookuptbl[aeb->pnum])
1856 continue;
1857
1858 /*
1859 * The fastmap update code might not find a free PEB for
1860 * writing the fastmap anchor to and then reuses the
1861 * current fastmap anchor PEB. When this PEB gets erased
1862 * and a power cut happens before it is written again we
1863 * must make sure that the fastmap attach code doesn't
1864 * find any outdated fastmap anchors, hence we erase the
1865 * outdated fastmap anchor PEBs synchronously here.
1866 */
1867 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1868 sync = true;
1869
1870 err = erase_aeb(ubi, aeb, sync);
1871 if (err)
1872 goto out_free;
1873 }
1874
1875 found_pebs++;
1876 }
1877
1878 dbg_wl("found %i PEBs", found_pebs);
1879
1880 ubi_assert(ubi->good_peb_count == found_pebs);
1881
1882 reserved_pebs = WL_RESERVED_PEBS;
1883 ubi_fastmap_init(ubi, &reserved_pebs);
1884
1885 if (ubi->avail_pebs < reserved_pebs) {
1886 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1887 ubi->avail_pebs, reserved_pebs);
1888 if (ubi->corr_peb_count)
1889 ubi_err(ubi, "%d PEBs are corrupted and not used",
1890 ubi->corr_peb_count);
1891 err = -ENOSPC;
1892 goto out_free;
1893 }
1894 ubi->avail_pebs -= reserved_pebs;
1895 ubi->rsvd_pebs += reserved_pebs;
1896
1897 /* Schedule wear-leveling if needed */
1898 err = ensure_wear_leveling(ubi, 0);
1899 if (err)
1900 goto out_free;
1901
1902 #ifdef CONFIG_MTD_UBI_FASTMAP
1903 if (!ubi->ro_mode && !ubi->fm_disabled)
1904 ubi_ensure_anchor_pebs(ubi);
1905 #endif
1906 return 0;
1907
1908 out_free:
1909 shutdown_work(ubi);
1910 tree_destroy(ubi, &ubi->used);
1911 tree_destroy(ubi, &ubi->free);
1912 tree_destroy(ubi, &ubi->scrub);
1913 kfree(ubi->lookuptbl);
1914 return err;
1915 }
1916
1917 /**
1918 * protection_queue_destroy - destroy the protection queue.
1919 * @ubi: UBI device description object
1920 */
1921 static void protection_queue_destroy(struct ubi_device *ubi)
1922 {
1923 int i;
1924 struct ubi_wl_entry *e, *tmp;
1925
1926 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1927 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1928 list_del(&e->u.list);
1929 wl_entry_destroy(ubi, e);
1930 }
1931 }
1932 }
1933
1934 /**
1935 * ubi_wl_close - close the wear-leveling sub-system.
1936 * @ubi: UBI device description object
1937 */
1938 void ubi_wl_close(struct ubi_device *ubi)
1939 {
1940 dbg_wl("close the WL sub-system");
1941 ubi_fastmap_close(ubi);
1942 shutdown_work(ubi);
1943 protection_queue_destroy(ubi);
1944 tree_destroy(ubi, &ubi->used);
1945 tree_destroy(ubi, &ubi->erroneous);
1946 tree_destroy(ubi, &ubi->free);
1947 tree_destroy(ubi, &ubi->scrub);
1948 kfree(ubi->lookuptbl);
1949 }
1950
1951 /**
1952 * self_check_ec - make sure that the erase counter of a PEB is correct.
1953 * @ubi: UBI device description object
1954 * @pnum: the physical eraseblock number to check
1955 * @ec: the erase counter to check
1956 *
1957 * This function returns zero if the erase counter of physical eraseblock @pnum
1958 * is equivalent to @ec, and a negative error code if not or if an error
1959 * occurred.
1960 */
1961 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1962 {
1963 int err;
1964 long long read_ec;
1965 struct ubi_ec_hdr *ec_hdr;
1966
1967 if (!ubi_dbg_chk_gen(ubi))
1968 return 0;
1969
1970 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1971 if (!ec_hdr)
1972 return -ENOMEM;
1973
1974 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1975 if (err && err != UBI_IO_BITFLIPS) {
1976 /* The header does not have to exist */
1977 err = 0;
1978 goto out_free;
1979 }
1980
1981 read_ec = be64_to_cpu(ec_hdr->ec);
1982 if (ec != read_ec && read_ec - ec > 1) {
1983 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1984 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1985 dump_stack();
1986 err = 1;
1987 } else
1988 err = 0;
1989
1990 out_free:
1991 kfree(ec_hdr);
1992 return err;
1993 }
1994
1995 /**
1996 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1997 * @ubi: UBI device description object
1998 * @e: the wear-leveling entry to check
1999 * @root: the root of the tree
2000 *
2001 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2002 * is not.
2003 */
2004 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2005 struct ubi_wl_entry *e, struct rb_root *root)
2006 {
2007 if (!ubi_dbg_chk_gen(ubi))
2008 return 0;
2009
2010 if (in_wl_tree(e, root))
2011 return 0;
2012
2013 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2014 e->pnum, e->ec, root);
2015 dump_stack();
2016 return -EINVAL;
2017 }
2018
2019 /**
2020 * self_check_in_pq - check if wear-leveling entry is in the protection
2021 * queue.
2022 * @ubi: UBI device description object
2023 * @e: the wear-leveling entry to check
2024 *
2025 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2026 */
2027 static int self_check_in_pq(const struct ubi_device *ubi,
2028 struct ubi_wl_entry *e)
2029 {
2030 if (!ubi_dbg_chk_gen(ubi))
2031 return 0;
2032
2033 if (in_pq(ubi, e))
2034 return 0;
2035
2036 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2037 e->pnum, e->ec);
2038 dump_stack();
2039 return -EINVAL;
2040 }
2041 #ifndef CONFIG_MTD_UBI_FASTMAP
2042 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2043 {
2044 struct ubi_wl_entry *e;
2045
2046 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2047 self_check_in_wl_tree(ubi, e, &ubi->free);
2048 ubi->free_count--;
2049 ubi_assert(ubi->free_count >= 0);
2050 rb_erase(&e->u.rb, &ubi->free);
2051
2052 return e;
2053 }
2054
2055 /**
2056 * produce_free_peb - produce a free physical eraseblock.
2057 * @ubi: UBI device description object
2058 *
2059 * This function tries to make a free PEB by means of synchronous execution of
2060 * pending works. This may be needed if, for example the background thread is
2061 * disabled. Returns zero in case of success and a negative error code in case
2062 * of failure.
2063 */
2064 static int produce_free_peb(struct ubi_device *ubi)
2065 {
2066 int err;
2067
2068 while (!ubi->free.rb_node && ubi->works_count) {
2069 spin_unlock(&ubi->wl_lock);
2070
2071 dbg_wl("do one work synchronously");
2072 err = do_work(ubi);
2073
2074 spin_lock(&ubi->wl_lock);
2075 if (err)
2076 return err;
2077 }
2078
2079 return 0;
2080 }
2081
2082 /**
2083 * ubi_wl_get_peb - get a physical eraseblock.
2084 * @ubi: UBI device description object
2085 *
2086 * This function returns a physical eraseblock in case of success and a
2087 * negative error code in case of failure.
2088 * Returns with ubi->fm_eba_sem held in read mode!
2089 */
2090 int ubi_wl_get_peb(struct ubi_device *ubi)
2091 {
2092 int err;
2093 struct ubi_wl_entry *e;
2094
2095 retry:
2096 down_read(&ubi->fm_eba_sem);
2097 spin_lock(&ubi->wl_lock);
2098 if (!ubi->free.rb_node) {
2099 if (ubi->works_count == 0) {
2100 ubi_err(ubi, "no free eraseblocks");
2101 ubi_assert(list_empty(&ubi->works));
2102 spin_unlock(&ubi->wl_lock);
2103 return -ENOSPC;
2104 }
2105
2106 err = produce_free_peb(ubi);
2107 if (err < 0) {
2108 spin_unlock(&ubi->wl_lock);
2109 return err;
2110 }
2111 spin_unlock(&ubi->wl_lock);
2112 up_read(&ubi->fm_eba_sem);
2113 goto retry;
2114
2115 }
2116 e = wl_get_wle(ubi);
2117 prot_queue_add(ubi, e);
2118 spin_unlock(&ubi->wl_lock);
2119
2120 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2121 ubi->peb_size - ubi->vid_hdr_aloffset);
2122 if (err) {
2123 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2124 return err;
2125 }
2126
2127 return e->pnum;
2128 }
2129 #else
2130 #include "fastmap-wl.c"
2131 #endif
2132