1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11 /*
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13 * the UBIFS B-tree.
14 *
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
18 * the mutex locked.
19 */
20
21 #include <linux/crc32.h>
22 #include <linux/slab.h>
23 #include "ubifs.h"
24
25 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26 struct ubifs_zbranch *zbr);
27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28 struct ubifs_zbranch *zbr, void *node);
29
30 /*
31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32 * @NAME_LESS: name corresponding to the first argument is less than second
33 * @NAME_MATCHES: names match
34 * @NAME_GREATER: name corresponding to the second argument is greater than
35 * first
36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
37 *
38 * These constants were introduce to improve readability.
39 */
40 enum {
41 NAME_LESS = 0,
42 NAME_MATCHES = 1,
43 NAME_GREATER = 2,
44 NOT_ON_MEDIA = 3,
45 };
46
47 /**
48 * insert_old_idx - record an index node obsoleted since the last commit start.
49 * @c: UBIFS file-system description object
50 * @lnum: LEB number of obsoleted index node
51 * @offs: offset of obsoleted index node
52 *
53 * Returns %0 on success, and a negative error code on failure.
54 *
55 * For recovery, there must always be a complete intact version of the index on
56 * flash at all times. That is called the "old index". It is the index as at the
57 * time of the last successful commit. Many of the index nodes in the old index
58 * may be dirty, but they must not be erased until the next successful commit
59 * (at which point that index becomes the old index).
60 *
61 * That means that the garbage collection and the in-the-gaps method of
62 * committing must be able to determine if an index node is in the old index.
63 * Most of the old index nodes can be found by looking up the TNC using the
64 * 'lookup_znode()' function. However, some of the old index nodes may have
65 * been deleted from the current index or may have been changed so much that
66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
67 * That is what this function does. The RB-tree is ordered by LEB number and
68 * offset because they uniquely identify the old index node.
69 */
insert_old_idx(struct ubifs_info * c,int lnum,int offs)70 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
71 {
72 struct ubifs_old_idx *old_idx, *o;
73 struct rb_node **p, *parent = NULL;
74
75 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
76 if (unlikely(!old_idx))
77 return -ENOMEM;
78 old_idx->lnum = lnum;
79 old_idx->offs = offs;
80
81 p = &c->old_idx.rb_node;
82 while (*p) {
83 parent = *p;
84 o = rb_entry(parent, struct ubifs_old_idx, rb);
85 if (lnum < o->lnum)
86 p = &(*p)->rb_left;
87 else if (lnum > o->lnum)
88 p = &(*p)->rb_right;
89 else if (offs < o->offs)
90 p = &(*p)->rb_left;
91 else if (offs > o->offs)
92 p = &(*p)->rb_right;
93 else {
94 ubifs_err(c, "old idx added twice!");
95 kfree(old_idx);
96 return 0;
97 }
98 }
99 rb_link_node(&old_idx->rb, parent, p);
100 rb_insert_color(&old_idx->rb, &c->old_idx);
101 return 0;
102 }
103
104 /**
105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
106 * @c: UBIFS file-system description object
107 * @znode: znode of obsoleted index node
108 *
109 * Returns %0 on success, and a negative error code on failure.
110 */
insert_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)111 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
112 {
113 if (znode->parent) {
114 struct ubifs_zbranch *zbr;
115
116 zbr = &znode->parent->zbranch[znode->iip];
117 if (zbr->len)
118 return insert_old_idx(c, zbr->lnum, zbr->offs);
119 } else
120 if (c->zroot.len)
121 return insert_old_idx(c, c->zroot.lnum,
122 c->zroot.offs);
123 return 0;
124 }
125
126 /**
127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
128 * @c: UBIFS file-system description object
129 * @znode: znode of obsoleted index node
130 *
131 * Returns %0 on success, and a negative error code on failure.
132 */
ins_clr_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)133 static int ins_clr_old_idx_znode(struct ubifs_info *c,
134 struct ubifs_znode *znode)
135 {
136 int err;
137
138 if (znode->parent) {
139 struct ubifs_zbranch *zbr;
140
141 zbr = &znode->parent->zbranch[znode->iip];
142 if (zbr->len) {
143 err = insert_old_idx(c, zbr->lnum, zbr->offs);
144 if (err)
145 return err;
146 zbr->lnum = 0;
147 zbr->offs = 0;
148 zbr->len = 0;
149 }
150 } else
151 if (c->zroot.len) {
152 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
153 if (err)
154 return err;
155 c->zroot.lnum = 0;
156 c->zroot.offs = 0;
157 c->zroot.len = 0;
158 }
159 return 0;
160 }
161
162 /**
163 * destroy_old_idx - destroy the old_idx RB-tree.
164 * @c: UBIFS file-system description object
165 *
166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
167 * nodes that were in the index last commit but have since been deleted. This
168 * is necessary for recovery i.e. the old index must be kept intact until the
169 * new index is successfully written. The old-idx RB-tree is used for the
170 * in-the-gaps method of writing index nodes and is destroyed every commit.
171 */
destroy_old_idx(struct ubifs_info * c)172 void destroy_old_idx(struct ubifs_info *c)
173 {
174 struct ubifs_old_idx *old_idx, *n;
175
176 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
177 kfree(old_idx);
178
179 c->old_idx = RB_ROOT;
180 }
181
182 /**
183 * copy_znode - copy a dirty znode.
184 * @c: UBIFS file-system description object
185 * @znode: znode to copy
186 *
187 * A dirty znode being committed may not be changed, so it is copied.
188 */
copy_znode(struct ubifs_info * c,struct ubifs_znode * znode)189 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
190 struct ubifs_znode *znode)
191 {
192 struct ubifs_znode *zn;
193
194 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
195 if (unlikely(!zn))
196 return ERR_PTR(-ENOMEM);
197
198 zn->cnext = NULL;
199 __set_bit(DIRTY_ZNODE, &zn->flags);
200 __clear_bit(COW_ZNODE, &zn->flags);
201
202 ubifs_assert(c, !ubifs_zn_obsolete(znode));
203 __set_bit(OBSOLETE_ZNODE, &znode->flags);
204
205 if (znode->level != 0) {
206 int i;
207 const int n = zn->child_cnt;
208
209 /* The children now have new parent */
210 for (i = 0; i < n; i++) {
211 struct ubifs_zbranch *zbr = &zn->zbranch[i];
212
213 if (zbr->znode)
214 zbr->znode->parent = zn;
215 }
216 }
217
218 atomic_long_inc(&c->dirty_zn_cnt);
219 return zn;
220 }
221
222 /**
223 * add_idx_dirt - add dirt due to a dirty znode.
224 * @c: UBIFS file-system description object
225 * @lnum: LEB number of index node
226 * @dirt: size of index node
227 *
228 * This function updates lprops dirty space and the new size of the index.
229 */
add_idx_dirt(struct ubifs_info * c,int lnum,int dirt)230 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
231 {
232 c->calc_idx_sz -= ALIGN(dirt, 8);
233 return ubifs_add_dirt(c, lnum, dirt);
234 }
235
236 /**
237 * dirty_cow_znode - ensure a znode is not being committed.
238 * @c: UBIFS file-system description object
239 * @zbr: branch of znode to check
240 *
241 * Returns dirtied znode on success or negative error code on failure.
242 */
dirty_cow_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)243 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
244 struct ubifs_zbranch *zbr)
245 {
246 struct ubifs_znode *znode = zbr->znode;
247 struct ubifs_znode *zn;
248 int err;
249
250 if (!ubifs_zn_cow(znode)) {
251 /* znode is not being committed */
252 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
253 atomic_long_inc(&c->dirty_zn_cnt);
254 atomic_long_dec(&c->clean_zn_cnt);
255 atomic_long_dec(&ubifs_clean_zn_cnt);
256 err = add_idx_dirt(c, zbr->lnum, zbr->len);
257 if (unlikely(err))
258 return ERR_PTR(err);
259 }
260 return znode;
261 }
262
263 zn = copy_znode(c, znode);
264 if (IS_ERR(zn))
265 return zn;
266
267 if (zbr->len) {
268 err = insert_old_idx(c, zbr->lnum, zbr->offs);
269 if (unlikely(err))
270 return ERR_PTR(err);
271 err = add_idx_dirt(c, zbr->lnum, zbr->len);
272 } else
273 err = 0;
274
275 zbr->znode = zn;
276 zbr->lnum = 0;
277 zbr->offs = 0;
278 zbr->len = 0;
279
280 if (unlikely(err))
281 return ERR_PTR(err);
282 return zn;
283 }
284
285 /**
286 * lnc_add - add a leaf node to the leaf node cache.
287 * @c: UBIFS file-system description object
288 * @zbr: zbranch of leaf node
289 * @node: leaf node
290 *
291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
292 * purpose of the leaf node cache is to save re-reading the same leaf node over
293 * and over again. Most things are cached by VFS, however the file system must
294 * cache directory entries for readdir and for resolving hash collisions. The
295 * present implementation of the leaf node cache is extremely simple, and
296 * allows for error returns that are not used but that may be needed if a more
297 * complex implementation is created.
298 *
299 * Note, this function does not add the @node object to LNC directly, but
300 * allocates a copy of the object and adds the copy to LNC. The reason for this
301 * is that @node has been allocated outside of the TNC subsystem and will be
302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
303 * may be changed at any time, e.g. freed by the shrinker.
304 */
lnc_add(struct ubifs_info * c,struct ubifs_zbranch * zbr,const void * node)305 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
306 const void *node)
307 {
308 int err;
309 void *lnc_node;
310 const struct ubifs_dent_node *dent = node;
311
312 ubifs_assert(c, !zbr->leaf);
313 ubifs_assert(c, zbr->len != 0);
314 ubifs_assert(c, is_hash_key(c, &zbr->key));
315
316 err = ubifs_validate_entry(c, dent);
317 if (err) {
318 dump_stack();
319 ubifs_dump_node(c, dent, zbr->len);
320 return err;
321 }
322
323 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
324 if (!lnc_node)
325 /* We don't have to have the cache, so no error */
326 return 0;
327
328 zbr->leaf = lnc_node;
329 return 0;
330 }
331
332 /**
333 * lnc_add_directly - add a leaf node to the leaf-node-cache.
334 * @c: UBIFS file-system description object
335 * @zbr: zbranch of leaf node
336 * @node: leaf node
337 *
338 * This function is similar to 'lnc_add()', but it does not create a copy of
339 * @node but inserts @node to TNC directly.
340 */
lnc_add_directly(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)341 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
342 void *node)
343 {
344 int err;
345
346 ubifs_assert(c, !zbr->leaf);
347 ubifs_assert(c, zbr->len != 0);
348
349 err = ubifs_validate_entry(c, node);
350 if (err) {
351 dump_stack();
352 ubifs_dump_node(c, node, zbr->len);
353 return err;
354 }
355
356 zbr->leaf = node;
357 return 0;
358 }
359
360 /**
361 * lnc_free - remove a leaf node from the leaf node cache.
362 * @zbr: zbranch of leaf node
363 */
lnc_free(struct ubifs_zbranch * zbr)364 static void lnc_free(struct ubifs_zbranch *zbr)
365 {
366 if (!zbr->leaf)
367 return;
368 kfree(zbr->leaf);
369 zbr->leaf = NULL;
370 }
371
372 /**
373 * tnc_read_hashed_node - read a "hashed" leaf node.
374 * @c: UBIFS file-system description object
375 * @zbr: key and position of the node
376 * @node: node is returned here
377 *
378 * This function reads a "hashed" node defined by @zbr from the leaf node cache
379 * (in it is there) or from the hash media, in which case the node is also
380 * added to LNC. Returns zero in case of success or a negative negative error
381 * code in case of failure.
382 */
tnc_read_hashed_node(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)383 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
384 void *node)
385 {
386 int err;
387
388 ubifs_assert(c, is_hash_key(c, &zbr->key));
389
390 if (zbr->leaf) {
391 /* Read from the leaf node cache */
392 ubifs_assert(c, zbr->len != 0);
393 memcpy(node, zbr->leaf, zbr->len);
394 return 0;
395 }
396
397 if (c->replaying) {
398 err = fallible_read_node(c, &zbr->key, zbr, node);
399 /*
400 * When the node was not found, return -ENOENT, 0 otherwise.
401 * Negative return codes stay as-is.
402 */
403 if (err == 0)
404 err = -ENOENT;
405 else if (err == 1)
406 err = 0;
407 } else {
408 err = ubifs_tnc_read_node(c, zbr, node);
409 }
410 if (err)
411 return err;
412
413 /* Add the node to the leaf node cache */
414 err = lnc_add(c, zbr, node);
415 return err;
416 }
417
418 /**
419 * try_read_node - read a node if it is a node.
420 * @c: UBIFS file-system description object
421 * @buf: buffer to read to
422 * @type: node type
423 * @zbr: the zbranch describing the node to read
424 *
425 * This function tries to read a node of known type and length, checks it and
426 * stores it in @buf. This function returns %1 if a node is present and %0 if
427 * a node is not present. A negative error code is returned for I/O errors.
428 * This function performs that same function as ubifs_read_node except that
429 * it does not require that there is actually a node present and instead
430 * the return code indicates if a node was read.
431 *
432 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
433 * is true (it is controlled by corresponding mount option). However, if
434 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
435 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
436 * because during mounting or re-mounting from R/O mode to R/W mode we may read
437 * journal nodes (when replying the journal or doing the recovery) and the
438 * journal nodes may potentially be corrupted, so checking is required.
439 */
try_read_node(const struct ubifs_info * c,void * buf,int type,struct ubifs_zbranch * zbr)440 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
441 struct ubifs_zbranch *zbr)
442 {
443 int len = zbr->len;
444 int lnum = zbr->lnum;
445 int offs = zbr->offs;
446 int err, node_len;
447 struct ubifs_ch *ch = buf;
448 uint32_t crc, node_crc;
449
450 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
451
452 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
453 if (err) {
454 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
455 type, lnum, offs, err);
456 return err;
457 }
458
459 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
460 return 0;
461
462 if (ch->node_type != type)
463 return 0;
464
465 node_len = le32_to_cpu(ch->len);
466 if (node_len != len)
467 return 0;
468
469 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
470 c->remounting_rw) {
471 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
472 node_crc = le32_to_cpu(ch->crc);
473 if (crc != node_crc)
474 return 0;
475 }
476
477 err = ubifs_node_check_hash(c, buf, zbr->hash);
478 if (err) {
479 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
480 return 0;
481 }
482
483 return 1;
484 }
485
486 /**
487 * fallible_read_node - try to read a leaf node.
488 * @c: UBIFS file-system description object
489 * @key: key of node to read
490 * @zbr: position of node
491 * @node: node returned
492 *
493 * This function tries to read a node and returns %1 if the node is read, %0
494 * if the node is not present, and a negative error code in the case of error.
495 */
fallible_read_node(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_zbranch * zbr,void * node)496 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
497 struct ubifs_zbranch *zbr, void *node)
498 {
499 int ret;
500
501 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
502
503 ret = try_read_node(c, node, key_type(c, key), zbr);
504 if (ret == 1) {
505 union ubifs_key node_key;
506 struct ubifs_dent_node *dent = node;
507
508 /* All nodes have key in the same place */
509 key_read(c, &dent->key, &node_key);
510 if (keys_cmp(c, key, &node_key) != 0)
511 ret = 0;
512 }
513 if (ret == 0 && c->replaying)
514 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
515 zbr->lnum, zbr->offs, zbr->len);
516 return ret;
517 }
518
519 /**
520 * matches_name - determine if a direntry or xattr entry matches a given name.
521 * @c: UBIFS file-system description object
522 * @zbr: zbranch of dent
523 * @nm: name to match
524 *
525 * This function checks if xentry/direntry referred by zbranch @zbr matches name
526 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
527 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
528 * of failure, a negative error code is returned.
529 */
matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct fscrypt_name * nm)530 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
531 const struct fscrypt_name *nm)
532 {
533 struct ubifs_dent_node *dent;
534 int nlen, err;
535
536 /* If possible, match against the dent in the leaf node cache */
537 if (!zbr->leaf) {
538 dent = kmalloc(zbr->len, GFP_NOFS);
539 if (!dent)
540 return -ENOMEM;
541
542 err = ubifs_tnc_read_node(c, zbr, dent);
543 if (err)
544 goto out_free;
545
546 /* Add the node to the leaf node cache */
547 err = lnc_add_directly(c, zbr, dent);
548 if (err)
549 goto out_free;
550 } else
551 dent = zbr->leaf;
552
553 nlen = le16_to_cpu(dent->nlen);
554 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
555 if (err == 0) {
556 if (nlen == fname_len(nm))
557 return NAME_MATCHES;
558 else if (nlen < fname_len(nm))
559 return NAME_LESS;
560 else
561 return NAME_GREATER;
562 } else if (err < 0)
563 return NAME_LESS;
564 else
565 return NAME_GREATER;
566
567 out_free:
568 kfree(dent);
569 return err;
570 }
571
572 /**
573 * get_znode - get a TNC znode that may not be loaded yet.
574 * @c: UBIFS file-system description object
575 * @znode: parent znode
576 * @n: znode branch slot number
577 *
578 * This function returns the znode or a negative error code.
579 */
get_znode(struct ubifs_info * c,struct ubifs_znode * znode,int n)580 static struct ubifs_znode *get_znode(struct ubifs_info *c,
581 struct ubifs_znode *znode, int n)
582 {
583 struct ubifs_zbranch *zbr;
584
585 zbr = &znode->zbranch[n];
586 if (zbr->znode)
587 znode = zbr->znode;
588 else
589 znode = ubifs_load_znode(c, zbr, znode, n);
590 return znode;
591 }
592
593 /**
594 * tnc_next - find next TNC entry.
595 * @c: UBIFS file-system description object
596 * @zn: znode is passed and returned here
597 * @n: znode branch slot number is passed and returned here
598 *
599 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
600 * no next entry, or a negative error code otherwise.
601 */
tnc_next(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)602 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
603 {
604 struct ubifs_znode *znode = *zn;
605 int nn = *n;
606
607 nn += 1;
608 if (nn < znode->child_cnt) {
609 *n = nn;
610 return 0;
611 }
612 while (1) {
613 struct ubifs_znode *zp;
614
615 zp = znode->parent;
616 if (!zp)
617 return -ENOENT;
618 nn = znode->iip + 1;
619 znode = zp;
620 if (nn < znode->child_cnt) {
621 znode = get_znode(c, znode, nn);
622 if (IS_ERR(znode))
623 return PTR_ERR(znode);
624 while (znode->level != 0) {
625 znode = get_znode(c, znode, 0);
626 if (IS_ERR(znode))
627 return PTR_ERR(znode);
628 }
629 nn = 0;
630 break;
631 }
632 }
633 *zn = znode;
634 *n = nn;
635 return 0;
636 }
637
638 /**
639 * tnc_prev - find previous TNC entry.
640 * @c: UBIFS file-system description object
641 * @zn: znode is returned here
642 * @n: znode branch slot number is passed and returned here
643 *
644 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
645 * there is no next entry, or a negative error code otherwise.
646 */
tnc_prev(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)647 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
648 {
649 struct ubifs_znode *znode = *zn;
650 int nn = *n;
651
652 if (nn > 0) {
653 *n = nn - 1;
654 return 0;
655 }
656 while (1) {
657 struct ubifs_znode *zp;
658
659 zp = znode->parent;
660 if (!zp)
661 return -ENOENT;
662 nn = znode->iip - 1;
663 znode = zp;
664 if (nn >= 0) {
665 znode = get_znode(c, znode, nn);
666 if (IS_ERR(znode))
667 return PTR_ERR(znode);
668 while (znode->level != 0) {
669 nn = znode->child_cnt - 1;
670 znode = get_znode(c, znode, nn);
671 if (IS_ERR(znode))
672 return PTR_ERR(znode);
673 }
674 nn = znode->child_cnt - 1;
675 break;
676 }
677 }
678 *zn = znode;
679 *n = nn;
680 return 0;
681 }
682
683 /**
684 * resolve_collision - resolve a collision.
685 * @c: UBIFS file-system description object
686 * @key: key of a directory or extended attribute entry
687 * @zn: znode is returned here
688 * @n: zbranch number is passed and returned here
689 * @nm: name of the entry
690 *
691 * This function is called for "hashed" keys to make sure that the found key
692 * really corresponds to the looked up node (directory or extended attribute
693 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
694 * %0 is returned if @nm is not found and @zn and @n are set to the previous
695 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
696 * This means that @n may be set to %-1 if the leftmost key in @zn is the
697 * previous one. A negative error code is returned on failures.
698 */
resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct fscrypt_name * nm)699 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
700 struct ubifs_znode **zn, int *n,
701 const struct fscrypt_name *nm)
702 {
703 int err;
704
705 err = matches_name(c, &(*zn)->zbranch[*n], nm);
706 if (unlikely(err < 0))
707 return err;
708 if (err == NAME_MATCHES)
709 return 1;
710
711 if (err == NAME_GREATER) {
712 /* Look left */
713 while (1) {
714 err = tnc_prev(c, zn, n);
715 if (err == -ENOENT) {
716 ubifs_assert(c, *n == 0);
717 *n = -1;
718 return 0;
719 }
720 if (err < 0)
721 return err;
722 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
723 /*
724 * We have found the branch after which we would
725 * like to insert, but inserting in this znode
726 * may still be wrong. Consider the following 3
727 * znodes, in the case where we are resolving a
728 * collision with Key2.
729 *
730 * znode zp
731 * ----------------------
732 * level 1 | Key0 | Key1 |
733 * -----------------------
734 * | |
735 * znode za | | znode zb
736 * ------------ ------------
737 * level 0 | Key0 | | Key2 |
738 * ------------ ------------
739 *
740 * The lookup finds Key2 in znode zb. Lets say
741 * there is no match and the name is greater so
742 * we look left. When we find Key0, we end up
743 * here. If we return now, we will insert into
744 * znode za at slot n = 1. But that is invalid
745 * according to the parent's keys. Key2 must
746 * be inserted into znode zb.
747 *
748 * Note, this problem is not relevant for the
749 * case when we go right, because
750 * 'tnc_insert()' would correct the parent key.
751 */
752 if (*n == (*zn)->child_cnt - 1) {
753 err = tnc_next(c, zn, n);
754 if (err) {
755 /* Should be impossible */
756 ubifs_assert(c, 0);
757 if (err == -ENOENT)
758 err = -EINVAL;
759 return err;
760 }
761 ubifs_assert(c, *n == 0);
762 *n = -1;
763 }
764 return 0;
765 }
766 err = matches_name(c, &(*zn)->zbranch[*n], nm);
767 if (err < 0)
768 return err;
769 if (err == NAME_LESS)
770 return 0;
771 if (err == NAME_MATCHES)
772 return 1;
773 ubifs_assert(c, err == NAME_GREATER);
774 }
775 } else {
776 int nn = *n;
777 struct ubifs_znode *znode = *zn;
778
779 /* Look right */
780 while (1) {
781 err = tnc_next(c, &znode, &nn);
782 if (err == -ENOENT)
783 return 0;
784 if (err < 0)
785 return err;
786 if (keys_cmp(c, &znode->zbranch[nn].key, key))
787 return 0;
788 err = matches_name(c, &znode->zbranch[nn], nm);
789 if (err < 0)
790 return err;
791 if (err == NAME_GREATER)
792 return 0;
793 *zn = znode;
794 *n = nn;
795 if (err == NAME_MATCHES)
796 return 1;
797 ubifs_assert(c, err == NAME_LESS);
798 }
799 }
800 }
801
802 /**
803 * fallible_matches_name - determine if a dent matches a given name.
804 * @c: UBIFS file-system description object
805 * @zbr: zbranch of dent
806 * @nm: name to match
807 *
808 * This is a "fallible" version of 'matches_name()' function which does not
809 * panic if the direntry/xentry referred by @zbr does not exist on the media.
810 *
811 * This function checks if xentry/direntry referred by zbranch @zbr matches name
812 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
813 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
814 * if xentry/direntry referred by @zbr does not exist on the media. A negative
815 * error code is returned in case of failure.
816 */
fallible_matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct fscrypt_name * nm)817 static int fallible_matches_name(struct ubifs_info *c,
818 struct ubifs_zbranch *zbr,
819 const struct fscrypt_name *nm)
820 {
821 struct ubifs_dent_node *dent;
822 int nlen, err;
823
824 /* If possible, match against the dent in the leaf node cache */
825 if (!zbr->leaf) {
826 dent = kmalloc(zbr->len, GFP_NOFS);
827 if (!dent)
828 return -ENOMEM;
829
830 err = fallible_read_node(c, &zbr->key, zbr, dent);
831 if (err < 0)
832 goto out_free;
833 if (err == 0) {
834 /* The node was not present */
835 err = NOT_ON_MEDIA;
836 goto out_free;
837 }
838 ubifs_assert(c, err == 1);
839
840 err = lnc_add_directly(c, zbr, dent);
841 if (err)
842 goto out_free;
843 } else
844 dent = zbr->leaf;
845
846 nlen = le16_to_cpu(dent->nlen);
847 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
848 if (err == 0) {
849 if (nlen == fname_len(nm))
850 return NAME_MATCHES;
851 else if (nlen < fname_len(nm))
852 return NAME_LESS;
853 else
854 return NAME_GREATER;
855 } else if (err < 0)
856 return NAME_LESS;
857 else
858 return NAME_GREATER;
859
860 out_free:
861 kfree(dent);
862 return err;
863 }
864
865 /**
866 * fallible_resolve_collision - resolve a collision even if nodes are missing.
867 * @c: UBIFS file-system description object
868 * @key: key
869 * @zn: znode is returned here
870 * @n: branch number is passed and returned here
871 * @nm: name of directory entry
872 * @adding: indicates caller is adding a key to the TNC
873 *
874 * This is a "fallible" version of the 'resolve_collision()' function which
875 * does not panic if one of the nodes referred to by TNC does not exist on the
876 * media. This may happen when replaying the journal if a deleted node was
877 * Garbage-collected and the commit was not done. A branch that refers to a node
878 * that is not present is called a dangling branch. The following are the return
879 * codes for this function:
880 * o if @nm was found, %1 is returned and @zn and @n are set to the found
881 * branch;
882 * o if we are @adding and @nm was not found, %0 is returned;
883 * o if we are not @adding and @nm was not found, but a dangling branch was
884 * found, then %1 is returned and @zn and @n are set to the dangling branch;
885 * o a negative error code is returned in case of failure.
886 */
fallible_resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct fscrypt_name * nm,int adding)887 static int fallible_resolve_collision(struct ubifs_info *c,
888 const union ubifs_key *key,
889 struct ubifs_znode **zn, int *n,
890 const struct fscrypt_name *nm,
891 int adding)
892 {
893 struct ubifs_znode *o_znode = NULL, *znode = *zn;
894 int o_n, err, cmp, unsure = 0, nn = *n;
895
896 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
897 if (unlikely(cmp < 0))
898 return cmp;
899 if (cmp == NAME_MATCHES)
900 return 1;
901 if (cmp == NOT_ON_MEDIA) {
902 o_znode = znode;
903 o_n = nn;
904 /*
905 * We are unlucky and hit a dangling branch straight away.
906 * Now we do not really know where to go to find the needed
907 * branch - to the left or to the right. Well, let's try left.
908 */
909 unsure = 1;
910 } else if (!adding)
911 unsure = 1; /* Remove a dangling branch wherever it is */
912
913 if (cmp == NAME_GREATER || unsure) {
914 /* Look left */
915 while (1) {
916 err = tnc_prev(c, zn, n);
917 if (err == -ENOENT) {
918 ubifs_assert(c, *n == 0);
919 *n = -1;
920 break;
921 }
922 if (err < 0)
923 return err;
924 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
925 /* See comments in 'resolve_collision()' */
926 if (*n == (*zn)->child_cnt - 1) {
927 err = tnc_next(c, zn, n);
928 if (err) {
929 /* Should be impossible */
930 ubifs_assert(c, 0);
931 if (err == -ENOENT)
932 err = -EINVAL;
933 return err;
934 }
935 ubifs_assert(c, *n == 0);
936 *n = -1;
937 }
938 break;
939 }
940 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
941 if (err < 0)
942 return err;
943 if (err == NAME_MATCHES)
944 return 1;
945 if (err == NOT_ON_MEDIA) {
946 o_znode = *zn;
947 o_n = *n;
948 continue;
949 }
950 if (!adding)
951 continue;
952 if (err == NAME_LESS)
953 break;
954 else
955 unsure = 0;
956 }
957 }
958
959 if (cmp == NAME_LESS || unsure) {
960 /* Look right */
961 *zn = znode;
962 *n = nn;
963 while (1) {
964 err = tnc_next(c, &znode, &nn);
965 if (err == -ENOENT)
966 break;
967 if (err < 0)
968 return err;
969 if (keys_cmp(c, &znode->zbranch[nn].key, key))
970 break;
971 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
972 if (err < 0)
973 return err;
974 if (err == NAME_GREATER)
975 break;
976 *zn = znode;
977 *n = nn;
978 if (err == NAME_MATCHES)
979 return 1;
980 if (err == NOT_ON_MEDIA) {
981 o_znode = znode;
982 o_n = nn;
983 }
984 }
985 }
986
987 /* Never match a dangling branch when adding */
988 if (adding || !o_znode)
989 return 0;
990
991 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
992 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
993 o_znode->zbranch[o_n].len);
994 *zn = o_znode;
995 *n = o_n;
996 return 1;
997 }
998
999 /**
1000 * matches_position - determine if a zbranch matches a given position.
1001 * @zbr: zbranch of dent
1002 * @lnum: LEB number of dent to match
1003 * @offs: offset of dent to match
1004 *
1005 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1006 */
matches_position(struct ubifs_zbranch * zbr,int lnum,int offs)1007 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1008 {
1009 if (zbr->lnum == lnum && zbr->offs == offs)
1010 return 1;
1011 else
1012 return 0;
1013 }
1014
1015 /**
1016 * resolve_collision_directly - resolve a collision directly.
1017 * @c: UBIFS file-system description object
1018 * @key: key of directory entry
1019 * @zn: znode is passed and returned here
1020 * @n: zbranch number is passed and returned here
1021 * @lnum: LEB number of dent node to match
1022 * @offs: offset of dent node to match
1023 *
1024 * This function is used for "hashed" keys to make sure the found directory or
1025 * extended attribute entry node is what was looked for. It is used when the
1026 * flash address of the right node is known (@lnum:@offs) which makes it much
1027 * easier to resolve collisions (no need to read entries and match full
1028 * names). This function returns %1 and sets @zn and @n if the collision is
1029 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1030 * previous directory entry. Otherwise a negative error code is returned.
1031 */
resolve_collision_directly(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,int lnum,int offs)1032 static int resolve_collision_directly(struct ubifs_info *c,
1033 const union ubifs_key *key,
1034 struct ubifs_znode **zn, int *n,
1035 int lnum, int offs)
1036 {
1037 struct ubifs_znode *znode;
1038 int nn, err;
1039
1040 znode = *zn;
1041 nn = *n;
1042 if (matches_position(&znode->zbranch[nn], lnum, offs))
1043 return 1;
1044
1045 /* Look left */
1046 while (1) {
1047 err = tnc_prev(c, &znode, &nn);
1048 if (err == -ENOENT)
1049 break;
1050 if (err < 0)
1051 return err;
1052 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1053 break;
1054 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1055 *zn = znode;
1056 *n = nn;
1057 return 1;
1058 }
1059 }
1060
1061 /* Look right */
1062 znode = *zn;
1063 nn = *n;
1064 while (1) {
1065 err = tnc_next(c, &znode, &nn);
1066 if (err == -ENOENT)
1067 return 0;
1068 if (err < 0)
1069 return err;
1070 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1071 return 0;
1072 *zn = znode;
1073 *n = nn;
1074 if (matches_position(&znode->zbranch[nn], lnum, offs))
1075 return 1;
1076 }
1077 }
1078
1079 /**
1080 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1081 * @c: UBIFS file-system description object
1082 * @znode: znode to dirty
1083 *
1084 * If we do not have a unique key that resides in a znode, then we cannot
1085 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1086 * This function records the path back to the last dirty ancestor, and then
1087 * dirties the znodes on that path.
1088 */
dirty_cow_bottom_up(struct ubifs_info * c,struct ubifs_znode * znode)1089 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1090 struct ubifs_znode *znode)
1091 {
1092 struct ubifs_znode *zp;
1093 int *path = c->bottom_up_buf, p = 0;
1094
1095 ubifs_assert(c, c->zroot.znode);
1096 ubifs_assert(c, znode);
1097 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1098 kfree(c->bottom_up_buf);
1099 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1100 sizeof(int),
1101 GFP_NOFS);
1102 if (!c->bottom_up_buf)
1103 return ERR_PTR(-ENOMEM);
1104 path = c->bottom_up_buf;
1105 }
1106 if (c->zroot.znode->level) {
1107 /* Go up until parent is dirty */
1108 while (1) {
1109 int n;
1110
1111 zp = znode->parent;
1112 if (!zp)
1113 break;
1114 n = znode->iip;
1115 ubifs_assert(c, p < c->zroot.znode->level);
1116 path[p++] = n;
1117 if (!zp->cnext && ubifs_zn_dirty(znode))
1118 break;
1119 znode = zp;
1120 }
1121 }
1122
1123 /* Come back down, dirtying as we go */
1124 while (1) {
1125 struct ubifs_zbranch *zbr;
1126
1127 zp = znode->parent;
1128 if (zp) {
1129 ubifs_assert(c, path[p - 1] >= 0);
1130 ubifs_assert(c, path[p - 1] < zp->child_cnt);
1131 zbr = &zp->zbranch[path[--p]];
1132 znode = dirty_cow_znode(c, zbr);
1133 } else {
1134 ubifs_assert(c, znode == c->zroot.znode);
1135 znode = dirty_cow_znode(c, &c->zroot);
1136 }
1137 if (IS_ERR(znode) || !p)
1138 break;
1139 ubifs_assert(c, path[p - 1] >= 0);
1140 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1141 znode = znode->zbranch[path[p - 1]].znode;
1142 }
1143
1144 return znode;
1145 }
1146
1147 /**
1148 * ubifs_lookup_level0 - search for zero-level znode.
1149 * @c: UBIFS file-system description object
1150 * @key: key to lookup
1151 * @zn: znode is returned here
1152 * @n: znode branch slot number is returned here
1153 *
1154 * This function looks up the TNC tree and search for zero-level znode which
1155 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1156 * cases:
1157 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1158 * is returned and slot number of the matched branch is stored in @n;
1159 * o not exact match, which means that zero-level znode does not contain
1160 * @key, then %0 is returned and slot number of the closest branch or %-1
1161 * is stored in @n; In this case calling tnc_next() is mandatory.
1162 * o @key is so small that it is even less than the lowest key of the
1163 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1164 *
1165 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1166 * function reads corresponding indexing nodes and inserts them to TNC. In
1167 * case of failure, a negative error code is returned.
1168 */
ubifs_lookup_level0(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1169 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1170 struct ubifs_znode **zn, int *n)
1171 {
1172 int err, exact;
1173 struct ubifs_znode *znode;
1174 time64_t time = ktime_get_seconds();
1175
1176 dbg_tnck(key, "search key ");
1177 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1178
1179 znode = c->zroot.znode;
1180 if (unlikely(!znode)) {
1181 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1182 if (IS_ERR(znode))
1183 return PTR_ERR(znode);
1184 }
1185
1186 znode->time = time;
1187
1188 while (1) {
1189 struct ubifs_zbranch *zbr;
1190
1191 exact = ubifs_search_zbranch(c, znode, key, n);
1192
1193 if (znode->level == 0)
1194 break;
1195
1196 if (*n < 0)
1197 *n = 0;
1198 zbr = &znode->zbranch[*n];
1199
1200 if (zbr->znode) {
1201 znode->time = time;
1202 znode = zbr->znode;
1203 continue;
1204 }
1205
1206 /* znode is not in TNC cache, load it from the media */
1207 znode = ubifs_load_znode(c, zbr, znode, *n);
1208 if (IS_ERR(znode))
1209 return PTR_ERR(znode);
1210 }
1211
1212 *zn = znode;
1213 if (exact || !is_hash_key(c, key) || *n != -1) {
1214 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1215 return exact;
1216 }
1217
1218 /*
1219 * Here is a tricky place. We have not found the key and this is a
1220 * "hashed" key, which may collide. The rest of the code deals with
1221 * situations like this:
1222 *
1223 * | 3 | 5 |
1224 * / \
1225 * | 3 | 5 | | 6 | 7 | (x)
1226 *
1227 * Or more a complex example:
1228 *
1229 * | 1 | 5 |
1230 * / \
1231 * | 1 | 3 | | 5 | 8 |
1232 * \ /
1233 * | 5 | 5 | | 6 | 7 | (x)
1234 *
1235 * In the examples, if we are looking for key "5", we may reach nodes
1236 * marked with "(x)". In this case what we have do is to look at the
1237 * left and see if there is "5" key there. If there is, we have to
1238 * return it.
1239 *
1240 * Note, this whole situation is possible because we allow to have
1241 * elements which are equivalent to the next key in the parent in the
1242 * children of current znode. For example, this happens if we split a
1243 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1244 * like this:
1245 * | 3 | 5 |
1246 * / \
1247 * | 3 | 5 | | 5 | 6 | 7 |
1248 * ^
1249 * And this becomes what is at the first "picture" after key "5" marked
1250 * with "^" is removed. What could be done is we could prohibit
1251 * splitting in the middle of the colliding sequence. Also, when
1252 * removing the leftmost key, we would have to correct the key of the
1253 * parent node, which would introduce additional complications. Namely,
1254 * if we changed the leftmost key of the parent znode, the garbage
1255 * collector would be unable to find it (GC is doing this when GC'ing
1256 * indexing LEBs). Although we already have an additional RB-tree where
1257 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1258 * after the commit. But anyway, this does not look easy to implement
1259 * so we did not try this.
1260 */
1261 err = tnc_prev(c, &znode, n);
1262 if (err == -ENOENT) {
1263 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1264 *n = -1;
1265 return 0;
1266 }
1267 if (unlikely(err < 0))
1268 return err;
1269 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1270 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 *n = -1;
1272 return 0;
1273 }
1274
1275 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1276 *zn = znode;
1277 return 1;
1278 }
1279
1280 /**
1281 * lookup_level0_dirty - search for zero-level znode dirtying.
1282 * @c: UBIFS file-system description object
1283 * @key: key to lookup
1284 * @zn: znode is returned here
1285 * @n: znode branch slot number is returned here
1286 *
1287 * This function looks up the TNC tree and search for zero-level znode which
1288 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1289 * cases:
1290 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1291 * is returned and slot number of the matched branch is stored in @n;
1292 * o not exact match, which means that zero-level znode does not contain @key
1293 * then %0 is returned and slot number of the closed branch is stored in
1294 * @n;
1295 * o @key is so small that it is even less than the lowest key of the
1296 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1297 *
1298 * Additionally all znodes in the path from the root to the located zero-level
1299 * znode are marked as dirty.
1300 *
1301 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1302 * function reads corresponding indexing nodes and inserts them to TNC. In
1303 * case of failure, a negative error code is returned.
1304 */
lookup_level0_dirty(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1305 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1306 struct ubifs_znode **zn, int *n)
1307 {
1308 int err, exact;
1309 struct ubifs_znode *znode;
1310 time64_t time = ktime_get_seconds();
1311
1312 dbg_tnck(key, "search and dirty key ");
1313
1314 znode = c->zroot.znode;
1315 if (unlikely(!znode)) {
1316 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1317 if (IS_ERR(znode))
1318 return PTR_ERR(znode);
1319 }
1320
1321 znode = dirty_cow_znode(c, &c->zroot);
1322 if (IS_ERR(znode))
1323 return PTR_ERR(znode);
1324
1325 znode->time = time;
1326
1327 while (1) {
1328 struct ubifs_zbranch *zbr;
1329
1330 exact = ubifs_search_zbranch(c, znode, key, n);
1331
1332 if (znode->level == 0)
1333 break;
1334
1335 if (*n < 0)
1336 *n = 0;
1337 zbr = &znode->zbranch[*n];
1338
1339 if (zbr->znode) {
1340 znode->time = time;
1341 znode = dirty_cow_znode(c, zbr);
1342 if (IS_ERR(znode))
1343 return PTR_ERR(znode);
1344 continue;
1345 }
1346
1347 /* znode is not in TNC cache, load it from the media */
1348 znode = ubifs_load_znode(c, zbr, znode, *n);
1349 if (IS_ERR(znode))
1350 return PTR_ERR(znode);
1351 znode = dirty_cow_znode(c, zbr);
1352 if (IS_ERR(znode))
1353 return PTR_ERR(znode);
1354 }
1355
1356 *zn = znode;
1357 if (exact || !is_hash_key(c, key) || *n != -1) {
1358 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1359 return exact;
1360 }
1361
1362 /*
1363 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1364 * code.
1365 */
1366 err = tnc_prev(c, &znode, n);
1367 if (err == -ENOENT) {
1368 *n = -1;
1369 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1370 return 0;
1371 }
1372 if (unlikely(err < 0))
1373 return err;
1374 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1375 *n = -1;
1376 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 return 0;
1378 }
1379
1380 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1381 znode = dirty_cow_bottom_up(c, znode);
1382 if (IS_ERR(znode))
1383 return PTR_ERR(znode);
1384 }
1385
1386 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1387 *zn = znode;
1388 return 1;
1389 }
1390
1391 /**
1392 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1393 * @c: UBIFS file-system description object
1394 * @lnum: LEB number
1395 * @gc_seq1: garbage collection sequence number
1396 *
1397 * This function determines if @lnum may have been garbage collected since
1398 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1399 * %0 is returned.
1400 */
maybe_leb_gced(struct ubifs_info * c,int lnum,int gc_seq1)1401 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1402 {
1403 int gc_seq2, gced_lnum;
1404
1405 gced_lnum = c->gced_lnum;
1406 smp_rmb();
1407 gc_seq2 = c->gc_seq;
1408 /* Same seq means no GC */
1409 if (gc_seq1 == gc_seq2)
1410 return 0;
1411 /* Different by more than 1 means we don't know */
1412 if (gc_seq1 + 1 != gc_seq2)
1413 return 1;
1414 /*
1415 * We have seen the sequence number has increased by 1. Now we need to
1416 * be sure we read the right LEB number, so read it again.
1417 */
1418 smp_rmb();
1419 if (gced_lnum != c->gced_lnum)
1420 return 1;
1421 /* Finally we can check lnum */
1422 if (gced_lnum == lnum)
1423 return 1;
1424 return 0;
1425 }
1426
1427 /**
1428 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1429 * @c: UBIFS file-system description object
1430 * @key: node key to lookup
1431 * @node: the node is returned here
1432 * @lnum: LEB number is returned here
1433 * @offs: offset is returned here
1434 *
1435 * This function looks up and reads node with key @key. The caller has to make
1436 * sure the @node buffer is large enough to fit the node. Returns zero in case
1437 * of success, %-ENOENT if the node was not found, and a negative error code in
1438 * case of failure. The node location can be returned in @lnum and @offs.
1439 */
ubifs_tnc_locate(struct ubifs_info * c,const union ubifs_key * key,void * node,int * lnum,int * offs)1440 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1441 void *node, int *lnum, int *offs)
1442 {
1443 int found, n, err, safely = 0, gc_seq1;
1444 struct ubifs_znode *znode;
1445 struct ubifs_zbranch zbr, *zt;
1446
1447 again:
1448 mutex_lock(&c->tnc_mutex);
1449 found = ubifs_lookup_level0(c, key, &znode, &n);
1450 if (!found) {
1451 err = -ENOENT;
1452 goto out;
1453 } else if (found < 0) {
1454 err = found;
1455 goto out;
1456 }
1457 zt = &znode->zbranch[n];
1458 if (lnum) {
1459 *lnum = zt->lnum;
1460 *offs = zt->offs;
1461 }
1462 if (is_hash_key(c, key)) {
1463 /*
1464 * In this case the leaf node cache gets used, so we pass the
1465 * address of the zbranch and keep the mutex locked
1466 */
1467 err = tnc_read_hashed_node(c, zt, node);
1468 goto out;
1469 }
1470 if (safely) {
1471 err = ubifs_tnc_read_node(c, zt, node);
1472 goto out;
1473 }
1474 /* Drop the TNC mutex prematurely and race with garbage collection */
1475 zbr = znode->zbranch[n];
1476 gc_seq1 = c->gc_seq;
1477 mutex_unlock(&c->tnc_mutex);
1478
1479 if (ubifs_get_wbuf(c, zbr.lnum)) {
1480 /* We do not GC journal heads */
1481 err = ubifs_tnc_read_node(c, &zbr, node);
1482 return err;
1483 }
1484
1485 err = fallible_read_node(c, key, &zbr, node);
1486 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1487 /*
1488 * The node may have been GC'ed out from under us so try again
1489 * while keeping the TNC mutex locked.
1490 */
1491 safely = 1;
1492 goto again;
1493 }
1494 return 0;
1495
1496 out:
1497 mutex_unlock(&c->tnc_mutex);
1498 return err;
1499 }
1500
1501 /**
1502 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1503 * @c: UBIFS file-system description object
1504 * @bu: bulk-read parameters and results
1505 *
1506 * Lookup consecutive data node keys for the same inode that reside
1507 * consecutively in the same LEB. This function returns zero in case of success
1508 * and a negative error code in case of failure.
1509 *
1510 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1511 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1512 * maximum possible amount of nodes for bulk-read.
1513 */
ubifs_tnc_get_bu_keys(struct ubifs_info * c,struct bu_info * bu)1514 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1515 {
1516 int n, err = 0, lnum = -1, offs;
1517 int len;
1518 unsigned int block = key_block(c, &bu->key);
1519 struct ubifs_znode *znode;
1520
1521 bu->cnt = 0;
1522 bu->blk_cnt = 0;
1523 bu->eof = 0;
1524
1525 mutex_lock(&c->tnc_mutex);
1526 /* Find first key */
1527 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1528 if (err < 0)
1529 goto out;
1530 if (err) {
1531 /* Key found */
1532 len = znode->zbranch[n].len;
1533 /* The buffer must be big enough for at least 1 node */
1534 if (len > bu->buf_len) {
1535 err = -EINVAL;
1536 goto out;
1537 }
1538 /* Add this key */
1539 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1540 bu->blk_cnt += 1;
1541 lnum = znode->zbranch[n].lnum;
1542 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1543 }
1544 while (1) {
1545 struct ubifs_zbranch *zbr;
1546 union ubifs_key *key;
1547 unsigned int next_block;
1548
1549 /* Find next key */
1550 err = tnc_next(c, &znode, &n);
1551 if (err)
1552 goto out;
1553 zbr = &znode->zbranch[n];
1554 key = &zbr->key;
1555 /* See if there is another data key for this file */
1556 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1557 key_type(c, key) != UBIFS_DATA_KEY) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 if (lnum < 0) {
1562 /* First key found */
1563 lnum = zbr->lnum;
1564 offs = ALIGN(zbr->offs + zbr->len, 8);
1565 len = zbr->len;
1566 if (len > bu->buf_len) {
1567 err = -EINVAL;
1568 goto out;
1569 }
1570 } else {
1571 /*
1572 * The data nodes must be in consecutive positions in
1573 * the same LEB.
1574 */
1575 if (zbr->lnum != lnum || zbr->offs != offs)
1576 goto out;
1577 offs += ALIGN(zbr->len, 8);
1578 len = ALIGN(len, 8) + zbr->len;
1579 /* Must not exceed buffer length */
1580 if (len > bu->buf_len)
1581 goto out;
1582 }
1583 /* Allow for holes */
1584 next_block = key_block(c, key);
1585 bu->blk_cnt += (next_block - block - 1);
1586 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1587 goto out;
1588 block = next_block;
1589 /* Add this key */
1590 bu->zbranch[bu->cnt++] = *zbr;
1591 bu->blk_cnt += 1;
1592 /* See if we have room for more */
1593 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1594 goto out;
1595 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1596 goto out;
1597 }
1598 out:
1599 if (err == -ENOENT) {
1600 bu->eof = 1;
1601 err = 0;
1602 }
1603 bu->gc_seq = c->gc_seq;
1604 mutex_unlock(&c->tnc_mutex);
1605 if (err)
1606 return err;
1607 /*
1608 * An enormous hole could cause bulk-read to encompass too many
1609 * page cache pages, so limit the number here.
1610 */
1611 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1612 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1613 /*
1614 * Ensure that bulk-read covers a whole number of page cache
1615 * pages.
1616 */
1617 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1618 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1619 return 0;
1620 if (bu->eof) {
1621 /* At the end of file we can round up */
1622 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1623 return 0;
1624 }
1625 /* Exclude data nodes that do not make up a whole page cache page */
1626 block = key_block(c, &bu->key) + bu->blk_cnt;
1627 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1628 while (bu->cnt) {
1629 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1630 break;
1631 bu->cnt -= 1;
1632 }
1633 return 0;
1634 }
1635
1636 /**
1637 * read_wbuf - bulk-read from a LEB with a wbuf.
1638 * @wbuf: wbuf that may overlap the read
1639 * @buf: buffer into which to read
1640 * @len: read length
1641 * @lnum: LEB number from which to read
1642 * @offs: offset from which to read
1643 *
1644 * This functions returns %0 on success or a negative error code on failure.
1645 */
read_wbuf(struct ubifs_wbuf * wbuf,void * buf,int len,int lnum,int offs)1646 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1647 int offs)
1648 {
1649 const struct ubifs_info *c = wbuf->c;
1650 int rlen, overlap;
1651
1652 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1653 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1654 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1655 ubifs_assert(c, offs + len <= c->leb_size);
1656
1657 spin_lock(&wbuf->lock);
1658 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1659 if (!overlap) {
1660 /* We may safely unlock the write-buffer and read the data */
1661 spin_unlock(&wbuf->lock);
1662 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1663 }
1664
1665 /* Don't read under wbuf */
1666 rlen = wbuf->offs - offs;
1667 if (rlen < 0)
1668 rlen = 0;
1669
1670 /* Copy the rest from the write-buffer */
1671 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1672 spin_unlock(&wbuf->lock);
1673
1674 if (rlen > 0)
1675 /* Read everything that goes before write-buffer */
1676 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1677
1678 return 0;
1679 }
1680
1681 /**
1682 * validate_data_node - validate data nodes for bulk-read.
1683 * @c: UBIFS file-system description object
1684 * @buf: buffer containing data node to validate
1685 * @zbr: zbranch of data node to validate
1686 *
1687 * This functions returns %0 on success or a negative error code on failure.
1688 */
validate_data_node(struct ubifs_info * c,void * buf,struct ubifs_zbranch * zbr)1689 static int validate_data_node(struct ubifs_info *c, void *buf,
1690 struct ubifs_zbranch *zbr)
1691 {
1692 union ubifs_key key1;
1693 struct ubifs_ch *ch = buf;
1694 int err, len;
1695
1696 if (ch->node_type != UBIFS_DATA_NODE) {
1697 ubifs_err(c, "bad node type (%d but expected %d)",
1698 ch->node_type, UBIFS_DATA_NODE);
1699 goto out_err;
1700 }
1701
1702 err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1703 if (err) {
1704 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1705 goto out;
1706 }
1707
1708 err = ubifs_node_check_hash(c, buf, zbr->hash);
1709 if (err) {
1710 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1711 return err;
1712 }
1713
1714 len = le32_to_cpu(ch->len);
1715 if (len != zbr->len) {
1716 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1717 goto out_err;
1718 }
1719
1720 /* Make sure the key of the read node is correct */
1721 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1722 if (!keys_eq(c, &zbr->key, &key1)) {
1723 ubifs_err(c, "bad key in node at LEB %d:%d",
1724 zbr->lnum, zbr->offs);
1725 dbg_tnck(&zbr->key, "looked for key ");
1726 dbg_tnck(&key1, "found node's key ");
1727 goto out_err;
1728 }
1729
1730 return 0;
1731
1732 out_err:
1733 err = -EINVAL;
1734 out:
1735 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1736 ubifs_dump_node(c, buf, zbr->len);
1737 dump_stack();
1738 return err;
1739 }
1740
1741 /**
1742 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1743 * @c: UBIFS file-system description object
1744 * @bu: bulk-read parameters and results
1745 *
1746 * This functions reads and validates the data nodes that were identified by the
1747 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1748 * -EAGAIN to indicate a race with GC, or another negative error code on
1749 * failure.
1750 */
ubifs_tnc_bulk_read(struct ubifs_info * c,struct bu_info * bu)1751 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1752 {
1753 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1754 struct ubifs_wbuf *wbuf;
1755 void *buf;
1756
1757 len = bu->zbranch[bu->cnt - 1].offs;
1758 len += bu->zbranch[bu->cnt - 1].len - offs;
1759 if (len > bu->buf_len) {
1760 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1761 return -EINVAL;
1762 }
1763
1764 /* Do the read */
1765 wbuf = ubifs_get_wbuf(c, lnum);
1766 if (wbuf)
1767 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1768 else
1769 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1770
1771 /* Check for a race with GC */
1772 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1773 return -EAGAIN;
1774
1775 if (err && err != -EBADMSG) {
1776 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1777 lnum, offs, err);
1778 dump_stack();
1779 dbg_tnck(&bu->key, "key ");
1780 return err;
1781 }
1782
1783 /* Validate the nodes read */
1784 buf = bu->buf;
1785 for (i = 0; i < bu->cnt; i++) {
1786 err = validate_data_node(c, buf, &bu->zbranch[i]);
1787 if (err)
1788 return err;
1789 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1790 }
1791
1792 return 0;
1793 }
1794
1795 /**
1796 * do_lookup_nm- look up a "hashed" node.
1797 * @c: UBIFS file-system description object
1798 * @key: node key to lookup
1799 * @node: the node is returned here
1800 * @nm: node name
1801 *
1802 * This function looks up and reads a node which contains name hash in the key.
1803 * Since the hash may have collisions, there may be many nodes with the same
1804 * key, so we have to sequentially look to all of them until the needed one is
1805 * found. This function returns zero in case of success, %-ENOENT if the node
1806 * was not found, and a negative error code in case of failure.
1807 */
do_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct fscrypt_name * nm)1808 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1809 void *node, const struct fscrypt_name *nm)
1810 {
1811 int found, n, err;
1812 struct ubifs_znode *znode;
1813
1814 dbg_tnck(key, "key ");
1815 mutex_lock(&c->tnc_mutex);
1816 found = ubifs_lookup_level0(c, key, &znode, &n);
1817 if (!found) {
1818 err = -ENOENT;
1819 goto out_unlock;
1820 } else if (found < 0) {
1821 err = found;
1822 goto out_unlock;
1823 }
1824
1825 ubifs_assert(c, n >= 0);
1826
1827 err = resolve_collision(c, key, &znode, &n, nm);
1828 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1829 if (unlikely(err < 0))
1830 goto out_unlock;
1831 if (err == 0) {
1832 err = -ENOENT;
1833 goto out_unlock;
1834 }
1835
1836 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1837
1838 out_unlock:
1839 mutex_unlock(&c->tnc_mutex);
1840 return err;
1841 }
1842
1843 /**
1844 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1845 * @c: UBIFS file-system description object
1846 * @key: node key to lookup
1847 * @node: the node is returned here
1848 * @nm: node name
1849 *
1850 * This function looks up and reads a node which contains name hash in the key.
1851 * Since the hash may have collisions, there may be many nodes with the same
1852 * key, so we have to sequentially look to all of them until the needed one is
1853 * found. This function returns zero in case of success, %-ENOENT if the node
1854 * was not found, and a negative error code in case of failure.
1855 */
ubifs_tnc_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct fscrypt_name * nm)1856 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1857 void *node, const struct fscrypt_name *nm)
1858 {
1859 int err, len;
1860 const struct ubifs_dent_node *dent = node;
1861
1862 /*
1863 * We assume that in most of the cases there are no name collisions and
1864 * 'ubifs_tnc_lookup()' returns us the right direntry.
1865 */
1866 err = ubifs_tnc_lookup(c, key, node);
1867 if (err)
1868 return err;
1869
1870 len = le16_to_cpu(dent->nlen);
1871 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1872 return 0;
1873
1874 /*
1875 * Unluckily, there are hash collisions and we have to iterate over
1876 * them look at each direntry with colliding name hash sequentially.
1877 */
1878
1879 return do_lookup_nm(c, key, node, nm);
1880 }
1881
search_dh_cookie(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_dent_node * dent,uint32_t cookie,struct ubifs_znode ** zn,int * n,int exact)1882 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1883 struct ubifs_dent_node *dent, uint32_t cookie,
1884 struct ubifs_znode **zn, int *n, int exact)
1885 {
1886 int err;
1887 struct ubifs_znode *znode = *zn;
1888 struct ubifs_zbranch *zbr;
1889 union ubifs_key *dkey;
1890
1891 if (!exact) {
1892 err = tnc_next(c, &znode, n);
1893 if (err)
1894 return err;
1895 }
1896
1897 for (;;) {
1898 zbr = &znode->zbranch[*n];
1899 dkey = &zbr->key;
1900
1901 if (key_inum(c, dkey) != key_inum(c, key) ||
1902 key_type(c, dkey) != key_type(c, key)) {
1903 return -ENOENT;
1904 }
1905
1906 err = tnc_read_hashed_node(c, zbr, dent);
1907 if (err)
1908 return err;
1909
1910 if (key_hash(c, key) == key_hash(c, dkey) &&
1911 le32_to_cpu(dent->cookie) == cookie) {
1912 *zn = znode;
1913 return 0;
1914 }
1915
1916 err = tnc_next(c, &znode, n);
1917 if (err)
1918 return err;
1919 }
1920 }
1921
do_lookup_dh(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_dent_node * dent,uint32_t cookie)1922 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1923 struct ubifs_dent_node *dent, uint32_t cookie)
1924 {
1925 int n, err;
1926 struct ubifs_znode *znode;
1927 union ubifs_key start_key;
1928
1929 ubifs_assert(c, is_hash_key(c, key));
1930
1931 lowest_dent_key(c, &start_key, key_inum(c, key));
1932
1933 mutex_lock(&c->tnc_mutex);
1934 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1935 if (unlikely(err < 0))
1936 goto out_unlock;
1937
1938 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1939
1940 out_unlock:
1941 mutex_unlock(&c->tnc_mutex);
1942 return err;
1943 }
1944
1945 /**
1946 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1947 * @c: UBIFS file-system description object
1948 * @key: node key to lookup
1949 * @node: the node is returned here
1950 * @cookie: node cookie for collision resolution
1951 *
1952 * This function looks up and reads a node which contains name hash in the key.
1953 * Since the hash may have collisions, there may be many nodes with the same
1954 * key, so we have to sequentially look to all of them until the needed one
1955 * with the same cookie value is found.
1956 * This function returns zero in case of success, %-ENOENT if the node
1957 * was not found, and a negative error code in case of failure.
1958 */
ubifs_tnc_lookup_dh(struct ubifs_info * c,const union ubifs_key * key,void * node,uint32_t cookie)1959 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1960 void *node, uint32_t cookie)
1961 {
1962 int err;
1963 const struct ubifs_dent_node *dent = node;
1964
1965 if (!c->double_hash)
1966 return -EOPNOTSUPP;
1967
1968 /*
1969 * We assume that in most of the cases there are no name collisions and
1970 * 'ubifs_tnc_lookup()' returns us the right direntry.
1971 */
1972 err = ubifs_tnc_lookup(c, key, node);
1973 if (err)
1974 return err;
1975
1976 if (le32_to_cpu(dent->cookie) == cookie)
1977 return 0;
1978
1979 /*
1980 * Unluckily, there are hash collisions and we have to iterate over
1981 * them look at each direntry with colliding name hash sequentially.
1982 */
1983 return do_lookup_dh(c, key, node, cookie);
1984 }
1985
1986 /**
1987 * correct_parent_keys - correct parent znodes' keys.
1988 * @c: UBIFS file-system description object
1989 * @znode: znode to correct parent znodes for
1990 *
1991 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1992 * zbranch changes, keys of parent znodes have to be corrected. This helper
1993 * function is called in such situations and corrects the keys if needed.
1994 */
correct_parent_keys(const struct ubifs_info * c,struct ubifs_znode * znode)1995 static void correct_parent_keys(const struct ubifs_info *c,
1996 struct ubifs_znode *znode)
1997 {
1998 union ubifs_key *key, *key1;
1999
2000 ubifs_assert(c, znode->parent);
2001 ubifs_assert(c, znode->iip == 0);
2002
2003 key = &znode->zbranch[0].key;
2004 key1 = &znode->parent->zbranch[0].key;
2005
2006 while (keys_cmp(c, key, key1) < 0) {
2007 key_copy(c, key, key1);
2008 znode = znode->parent;
2009 znode->alt = 1;
2010 if (!znode->parent || znode->iip)
2011 break;
2012 key1 = &znode->parent->zbranch[0].key;
2013 }
2014 }
2015
2016 /**
2017 * insert_zbranch - insert a zbranch into a znode.
2018 * @c: UBIFS file-system description object
2019 * @znode: znode into which to insert
2020 * @zbr: zbranch to insert
2021 * @n: slot number to insert to
2022 *
2023 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2024 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2025 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2026 * slot, zbranches starting from @n have to be moved right.
2027 */
insert_zbranch(struct ubifs_info * c,struct ubifs_znode * znode,const struct ubifs_zbranch * zbr,int n)2028 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2029 const struct ubifs_zbranch *zbr, int n)
2030 {
2031 int i;
2032
2033 ubifs_assert(c, ubifs_zn_dirty(znode));
2034
2035 if (znode->level) {
2036 for (i = znode->child_cnt; i > n; i--) {
2037 znode->zbranch[i] = znode->zbranch[i - 1];
2038 if (znode->zbranch[i].znode)
2039 znode->zbranch[i].znode->iip = i;
2040 }
2041 if (zbr->znode)
2042 zbr->znode->iip = n;
2043 } else
2044 for (i = znode->child_cnt; i > n; i--)
2045 znode->zbranch[i] = znode->zbranch[i - 1];
2046
2047 znode->zbranch[n] = *zbr;
2048 znode->child_cnt += 1;
2049
2050 /*
2051 * After inserting at slot zero, the lower bound of the key range of
2052 * this znode may have changed. If this znode is subsequently split
2053 * then the upper bound of the key range may change, and furthermore
2054 * it could change to be lower than the original lower bound. If that
2055 * happens, then it will no longer be possible to find this znode in the
2056 * TNC using the key from the index node on flash. That is bad because
2057 * if it is not found, we will assume it is obsolete and may overwrite
2058 * it. Then if there is an unclean unmount, we will start using the
2059 * old index which will be broken.
2060 *
2061 * So we first mark znodes that have insertions at slot zero, and then
2062 * if they are split we add their lnum/offs to the old_idx tree.
2063 */
2064 if (n == 0)
2065 znode->alt = 1;
2066 }
2067
2068 /**
2069 * tnc_insert - insert a node into TNC.
2070 * @c: UBIFS file-system description object
2071 * @znode: znode to insert into
2072 * @zbr: branch to insert
2073 * @n: slot number to insert new zbranch to
2074 *
2075 * This function inserts a new node described by @zbr into znode @znode. If
2076 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2077 * are splat as well if needed. Returns zero in case of success or a negative
2078 * error code in case of failure.
2079 */
tnc_insert(struct ubifs_info * c,struct ubifs_znode * znode,struct ubifs_zbranch * zbr,int n)2080 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2081 struct ubifs_zbranch *zbr, int n)
2082 {
2083 struct ubifs_znode *zn, *zi, *zp;
2084 int i, keep, move, appending = 0;
2085 union ubifs_key *key = &zbr->key, *key1;
2086
2087 ubifs_assert(c, n >= 0 && n <= c->fanout);
2088
2089 /* Implement naive insert for now */
2090 again:
2091 zp = znode->parent;
2092 if (znode->child_cnt < c->fanout) {
2093 ubifs_assert(c, n != c->fanout);
2094 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2095
2096 insert_zbranch(c, znode, zbr, n);
2097
2098 /* Ensure parent's key is correct */
2099 if (n == 0 && zp && znode->iip == 0)
2100 correct_parent_keys(c, znode);
2101
2102 return 0;
2103 }
2104
2105 /*
2106 * Unfortunately, @znode does not have more empty slots and we have to
2107 * split it.
2108 */
2109 dbg_tnck(key, "splitting level %d, key ", znode->level);
2110
2111 if (znode->alt)
2112 /*
2113 * We can no longer be sure of finding this znode by key, so we
2114 * record it in the old_idx tree.
2115 */
2116 ins_clr_old_idx_znode(c, znode);
2117
2118 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2119 if (!zn)
2120 return -ENOMEM;
2121 zn->parent = zp;
2122 zn->level = znode->level;
2123
2124 /* Decide where to split */
2125 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2126 /* Try not to split consecutive data keys */
2127 if (n == c->fanout) {
2128 key1 = &znode->zbranch[n - 1].key;
2129 if (key_inum(c, key1) == key_inum(c, key) &&
2130 key_type(c, key1) == UBIFS_DATA_KEY)
2131 appending = 1;
2132 } else
2133 goto check_split;
2134 } else if (appending && n != c->fanout) {
2135 /* Try not to split consecutive data keys */
2136 appending = 0;
2137 check_split:
2138 if (n >= (c->fanout + 1) / 2) {
2139 key1 = &znode->zbranch[0].key;
2140 if (key_inum(c, key1) == key_inum(c, key) &&
2141 key_type(c, key1) == UBIFS_DATA_KEY) {
2142 key1 = &znode->zbranch[n].key;
2143 if (key_inum(c, key1) != key_inum(c, key) ||
2144 key_type(c, key1) != UBIFS_DATA_KEY) {
2145 keep = n;
2146 move = c->fanout - keep;
2147 zi = znode;
2148 goto do_split;
2149 }
2150 }
2151 }
2152 }
2153
2154 if (appending) {
2155 keep = c->fanout;
2156 move = 0;
2157 } else {
2158 keep = (c->fanout + 1) / 2;
2159 move = c->fanout - keep;
2160 }
2161
2162 /*
2163 * Although we don't at present, we could look at the neighbors and see
2164 * if we can move some zbranches there.
2165 */
2166
2167 if (n < keep) {
2168 /* Insert into existing znode */
2169 zi = znode;
2170 move += 1;
2171 keep -= 1;
2172 } else {
2173 /* Insert into new znode */
2174 zi = zn;
2175 n -= keep;
2176 /* Re-parent */
2177 if (zn->level != 0)
2178 zbr->znode->parent = zn;
2179 }
2180
2181 do_split:
2182
2183 __set_bit(DIRTY_ZNODE, &zn->flags);
2184 atomic_long_inc(&c->dirty_zn_cnt);
2185
2186 zn->child_cnt = move;
2187 znode->child_cnt = keep;
2188
2189 dbg_tnc("moving %d, keeping %d", move, keep);
2190
2191 /* Move zbranch */
2192 for (i = 0; i < move; i++) {
2193 zn->zbranch[i] = znode->zbranch[keep + i];
2194 /* Re-parent */
2195 if (zn->level != 0)
2196 if (zn->zbranch[i].znode) {
2197 zn->zbranch[i].znode->parent = zn;
2198 zn->zbranch[i].znode->iip = i;
2199 }
2200 }
2201
2202 /* Insert new key and branch */
2203 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2204
2205 insert_zbranch(c, zi, zbr, n);
2206
2207 /* Insert new znode (produced by spitting) into the parent */
2208 if (zp) {
2209 if (n == 0 && zi == znode && znode->iip == 0)
2210 correct_parent_keys(c, znode);
2211
2212 /* Locate insertion point */
2213 n = znode->iip + 1;
2214
2215 /* Tail recursion */
2216 zbr->key = zn->zbranch[0].key;
2217 zbr->znode = zn;
2218 zbr->lnum = 0;
2219 zbr->offs = 0;
2220 zbr->len = 0;
2221 znode = zp;
2222
2223 goto again;
2224 }
2225
2226 /* We have to split root znode */
2227 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2228
2229 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2230 if (!zi)
2231 return -ENOMEM;
2232
2233 zi->child_cnt = 2;
2234 zi->level = znode->level + 1;
2235
2236 __set_bit(DIRTY_ZNODE, &zi->flags);
2237 atomic_long_inc(&c->dirty_zn_cnt);
2238
2239 zi->zbranch[0].key = znode->zbranch[0].key;
2240 zi->zbranch[0].znode = znode;
2241 zi->zbranch[0].lnum = c->zroot.lnum;
2242 zi->zbranch[0].offs = c->zroot.offs;
2243 zi->zbranch[0].len = c->zroot.len;
2244 zi->zbranch[1].key = zn->zbranch[0].key;
2245 zi->zbranch[1].znode = zn;
2246
2247 c->zroot.lnum = 0;
2248 c->zroot.offs = 0;
2249 c->zroot.len = 0;
2250 c->zroot.znode = zi;
2251
2252 zn->parent = zi;
2253 zn->iip = 1;
2254 znode->parent = zi;
2255 znode->iip = 0;
2256
2257 return 0;
2258 }
2259
2260 /**
2261 * ubifs_tnc_add - add a node to TNC.
2262 * @c: UBIFS file-system description object
2263 * @key: key to add
2264 * @lnum: LEB number of node
2265 * @offs: node offset
2266 * @len: node length
2267 * @hash: The hash over the node
2268 *
2269 * This function adds a node with key @key to TNC. The node may be new or it may
2270 * obsolete some existing one. Returns %0 on success or negative error code on
2271 * failure.
2272 */
ubifs_tnc_add(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len,const u8 * hash)2273 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2274 int offs, int len, const u8 *hash)
2275 {
2276 int found, n, err = 0;
2277 struct ubifs_znode *znode;
2278
2279 mutex_lock(&c->tnc_mutex);
2280 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2281 found = lookup_level0_dirty(c, key, &znode, &n);
2282 if (!found) {
2283 struct ubifs_zbranch zbr;
2284
2285 zbr.znode = NULL;
2286 zbr.lnum = lnum;
2287 zbr.offs = offs;
2288 zbr.len = len;
2289 ubifs_copy_hash(c, hash, zbr.hash);
2290 key_copy(c, key, &zbr.key);
2291 err = tnc_insert(c, znode, &zbr, n + 1);
2292 } else if (found == 1) {
2293 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2294
2295 lnc_free(zbr);
2296 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2297 zbr->lnum = lnum;
2298 zbr->offs = offs;
2299 zbr->len = len;
2300 ubifs_copy_hash(c, hash, zbr->hash);
2301 } else
2302 err = found;
2303 if (!err)
2304 err = dbg_check_tnc(c, 0);
2305 mutex_unlock(&c->tnc_mutex);
2306
2307 return err;
2308 }
2309
2310 /**
2311 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2312 * @c: UBIFS file-system description object
2313 * @key: key to add
2314 * @old_lnum: LEB number of old node
2315 * @old_offs: old node offset
2316 * @lnum: LEB number of node
2317 * @offs: node offset
2318 * @len: node length
2319 *
2320 * This function replaces a node with key @key in the TNC only if the old node
2321 * is found. This function is called by garbage collection when node are moved.
2322 * Returns %0 on success or negative error code on failure.
2323 */
ubifs_tnc_replace(struct ubifs_info * c,const union ubifs_key * key,int old_lnum,int old_offs,int lnum,int offs,int len)2324 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2325 int old_lnum, int old_offs, int lnum, int offs, int len)
2326 {
2327 int found, n, err = 0;
2328 struct ubifs_znode *znode;
2329
2330 mutex_lock(&c->tnc_mutex);
2331 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2332 old_offs, lnum, offs, len);
2333 found = lookup_level0_dirty(c, key, &znode, &n);
2334 if (found < 0) {
2335 err = found;
2336 goto out_unlock;
2337 }
2338
2339 if (found == 1) {
2340 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2341
2342 found = 0;
2343 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2344 lnc_free(zbr);
2345 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2346 if (err)
2347 goto out_unlock;
2348 zbr->lnum = lnum;
2349 zbr->offs = offs;
2350 zbr->len = len;
2351 found = 1;
2352 } else if (is_hash_key(c, key)) {
2353 found = resolve_collision_directly(c, key, &znode, &n,
2354 old_lnum, old_offs);
2355 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2356 found, znode, n, old_lnum, old_offs);
2357 if (found < 0) {
2358 err = found;
2359 goto out_unlock;
2360 }
2361
2362 if (found) {
2363 /* Ensure the znode is dirtied */
2364 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2365 znode = dirty_cow_bottom_up(c, znode);
2366 if (IS_ERR(znode)) {
2367 err = PTR_ERR(znode);
2368 goto out_unlock;
2369 }
2370 }
2371 zbr = &znode->zbranch[n];
2372 lnc_free(zbr);
2373 err = ubifs_add_dirt(c, zbr->lnum,
2374 zbr->len);
2375 if (err)
2376 goto out_unlock;
2377 zbr->lnum = lnum;
2378 zbr->offs = offs;
2379 zbr->len = len;
2380 }
2381 }
2382 }
2383
2384 if (!found)
2385 err = ubifs_add_dirt(c, lnum, len);
2386
2387 if (!err)
2388 err = dbg_check_tnc(c, 0);
2389
2390 out_unlock:
2391 mutex_unlock(&c->tnc_mutex);
2392 return err;
2393 }
2394
2395 /**
2396 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2397 * @c: UBIFS file-system description object
2398 * @key: key to add
2399 * @lnum: LEB number of node
2400 * @offs: node offset
2401 * @len: node length
2402 * @hash: The hash over the node
2403 * @nm: node name
2404 *
2405 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2406 * may have collisions, like directory entry keys.
2407 */
ubifs_tnc_add_nm(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len,const u8 * hash,const struct fscrypt_name * nm)2408 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2409 int lnum, int offs, int len, const u8 *hash,
2410 const struct fscrypt_name *nm)
2411 {
2412 int found, n, err = 0;
2413 struct ubifs_znode *znode;
2414
2415 mutex_lock(&c->tnc_mutex);
2416 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2417 found = lookup_level0_dirty(c, key, &znode, &n);
2418 if (found < 0) {
2419 err = found;
2420 goto out_unlock;
2421 }
2422
2423 if (found == 1) {
2424 if (c->replaying)
2425 found = fallible_resolve_collision(c, key, &znode, &n,
2426 nm, 1);
2427 else
2428 found = resolve_collision(c, key, &znode, &n, nm);
2429 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2430 if (found < 0) {
2431 err = found;
2432 goto out_unlock;
2433 }
2434
2435 /* Ensure the znode is dirtied */
2436 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2437 znode = dirty_cow_bottom_up(c, znode);
2438 if (IS_ERR(znode)) {
2439 err = PTR_ERR(znode);
2440 goto out_unlock;
2441 }
2442 }
2443
2444 if (found == 1) {
2445 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2446
2447 lnc_free(zbr);
2448 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2449 zbr->lnum = lnum;
2450 zbr->offs = offs;
2451 zbr->len = len;
2452 ubifs_copy_hash(c, hash, zbr->hash);
2453 goto out_unlock;
2454 }
2455 }
2456
2457 if (!found) {
2458 struct ubifs_zbranch zbr;
2459
2460 zbr.znode = NULL;
2461 zbr.lnum = lnum;
2462 zbr.offs = offs;
2463 zbr.len = len;
2464 ubifs_copy_hash(c, hash, zbr.hash);
2465 key_copy(c, key, &zbr.key);
2466 err = tnc_insert(c, znode, &zbr, n + 1);
2467 if (err)
2468 goto out_unlock;
2469 if (c->replaying) {
2470 /*
2471 * We did not find it in the index so there may be a
2472 * dangling branch still in the index. So we remove it
2473 * by passing 'ubifs_tnc_remove_nm()' the same key but
2474 * an unmatchable name.
2475 */
2476 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2477
2478 err = dbg_check_tnc(c, 0);
2479 mutex_unlock(&c->tnc_mutex);
2480 if (err)
2481 return err;
2482 return ubifs_tnc_remove_nm(c, key, &noname);
2483 }
2484 }
2485
2486 out_unlock:
2487 if (!err)
2488 err = dbg_check_tnc(c, 0);
2489 mutex_unlock(&c->tnc_mutex);
2490 return err;
2491 }
2492
2493 /**
2494 * tnc_delete - delete a znode form TNC.
2495 * @c: UBIFS file-system description object
2496 * @znode: znode to delete from
2497 * @n: zbranch slot number to delete
2498 *
2499 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2500 * case of success and a negative error code in case of failure.
2501 */
tnc_delete(struct ubifs_info * c,struct ubifs_znode * znode,int n)2502 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2503 {
2504 struct ubifs_zbranch *zbr;
2505 struct ubifs_znode *zp;
2506 int i, err;
2507
2508 /* Delete without merge for now */
2509 ubifs_assert(c, znode->level == 0);
2510 ubifs_assert(c, n >= 0 && n < c->fanout);
2511 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2512
2513 zbr = &znode->zbranch[n];
2514 lnc_free(zbr);
2515
2516 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2517 if (err) {
2518 ubifs_dump_znode(c, znode);
2519 return err;
2520 }
2521
2522 /* We do not "gap" zbranch slots */
2523 for (i = n; i < znode->child_cnt - 1; i++)
2524 znode->zbranch[i] = znode->zbranch[i + 1];
2525 znode->child_cnt -= 1;
2526
2527 if (znode->child_cnt > 0)
2528 return 0;
2529
2530 /*
2531 * This was the last zbranch, we have to delete this znode from the
2532 * parent.
2533 */
2534
2535 do {
2536 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2537 ubifs_assert(c, ubifs_zn_dirty(znode));
2538
2539 zp = znode->parent;
2540 n = znode->iip;
2541
2542 atomic_long_dec(&c->dirty_zn_cnt);
2543
2544 err = insert_old_idx_znode(c, znode);
2545 if (err)
2546 return err;
2547
2548 if (znode->cnext) {
2549 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2550 atomic_long_inc(&c->clean_zn_cnt);
2551 atomic_long_inc(&ubifs_clean_zn_cnt);
2552 } else
2553 kfree(znode);
2554 znode = zp;
2555 } while (znode->child_cnt == 1); /* while removing last child */
2556
2557 /* Remove from znode, entry n - 1 */
2558 znode->child_cnt -= 1;
2559 ubifs_assert(c, znode->level != 0);
2560 for (i = n; i < znode->child_cnt; i++) {
2561 znode->zbranch[i] = znode->zbranch[i + 1];
2562 if (znode->zbranch[i].znode)
2563 znode->zbranch[i].znode->iip = i;
2564 }
2565
2566 /*
2567 * If this is the root and it has only 1 child then
2568 * collapse the tree.
2569 */
2570 if (!znode->parent) {
2571 while (znode->child_cnt == 1 && znode->level != 0) {
2572 zp = znode;
2573 zbr = &znode->zbranch[0];
2574 znode = get_znode(c, znode, 0);
2575 if (IS_ERR(znode))
2576 return PTR_ERR(znode);
2577 znode = dirty_cow_znode(c, zbr);
2578 if (IS_ERR(znode))
2579 return PTR_ERR(znode);
2580 znode->parent = NULL;
2581 znode->iip = 0;
2582 if (c->zroot.len) {
2583 err = insert_old_idx(c, c->zroot.lnum,
2584 c->zroot.offs);
2585 if (err)
2586 return err;
2587 }
2588 c->zroot.lnum = zbr->lnum;
2589 c->zroot.offs = zbr->offs;
2590 c->zroot.len = zbr->len;
2591 c->zroot.znode = znode;
2592 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2593 ubifs_assert(c, ubifs_zn_dirty(zp));
2594 atomic_long_dec(&c->dirty_zn_cnt);
2595
2596 if (zp->cnext) {
2597 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2598 atomic_long_inc(&c->clean_zn_cnt);
2599 atomic_long_inc(&ubifs_clean_zn_cnt);
2600 } else
2601 kfree(zp);
2602 }
2603 }
2604
2605 return 0;
2606 }
2607
2608 /**
2609 * ubifs_tnc_remove - remove an index entry of a node.
2610 * @c: UBIFS file-system description object
2611 * @key: key of node
2612 *
2613 * Returns %0 on success or negative error code on failure.
2614 */
ubifs_tnc_remove(struct ubifs_info * c,const union ubifs_key * key)2615 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2616 {
2617 int found, n, err = 0;
2618 struct ubifs_znode *znode;
2619
2620 mutex_lock(&c->tnc_mutex);
2621 dbg_tnck(key, "key ");
2622 found = lookup_level0_dirty(c, key, &znode, &n);
2623 if (found < 0) {
2624 err = found;
2625 goto out_unlock;
2626 }
2627 if (found == 1)
2628 err = tnc_delete(c, znode, n);
2629 if (!err)
2630 err = dbg_check_tnc(c, 0);
2631
2632 out_unlock:
2633 mutex_unlock(&c->tnc_mutex);
2634 return err;
2635 }
2636
2637 /**
2638 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2639 * @c: UBIFS file-system description object
2640 * @key: key of node
2641 * @nm: directory entry name
2642 *
2643 * Returns %0 on success or negative error code on failure.
2644 */
ubifs_tnc_remove_nm(struct ubifs_info * c,const union ubifs_key * key,const struct fscrypt_name * nm)2645 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2646 const struct fscrypt_name *nm)
2647 {
2648 int n, err;
2649 struct ubifs_znode *znode;
2650
2651 mutex_lock(&c->tnc_mutex);
2652 dbg_tnck(key, "key ");
2653 err = lookup_level0_dirty(c, key, &znode, &n);
2654 if (err < 0)
2655 goto out_unlock;
2656
2657 if (err) {
2658 if (c->replaying)
2659 err = fallible_resolve_collision(c, key, &znode, &n,
2660 nm, 0);
2661 else
2662 err = resolve_collision(c, key, &znode, &n, nm);
2663 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2664 if (err < 0)
2665 goto out_unlock;
2666 if (err) {
2667 /* Ensure the znode is dirtied */
2668 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2669 znode = dirty_cow_bottom_up(c, znode);
2670 if (IS_ERR(znode)) {
2671 err = PTR_ERR(znode);
2672 goto out_unlock;
2673 }
2674 }
2675 err = tnc_delete(c, znode, n);
2676 }
2677 }
2678
2679 out_unlock:
2680 if (!err)
2681 err = dbg_check_tnc(c, 0);
2682 mutex_unlock(&c->tnc_mutex);
2683 return err;
2684 }
2685
2686 /**
2687 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2688 * @c: UBIFS file-system description object
2689 * @key: key of node
2690 * @cookie: node cookie for collision resolution
2691 *
2692 * Returns %0 on success or negative error code on failure.
2693 */
ubifs_tnc_remove_dh(struct ubifs_info * c,const union ubifs_key * key,uint32_t cookie)2694 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2695 uint32_t cookie)
2696 {
2697 int n, err;
2698 struct ubifs_znode *znode;
2699 struct ubifs_dent_node *dent;
2700 struct ubifs_zbranch *zbr;
2701
2702 if (!c->double_hash)
2703 return -EOPNOTSUPP;
2704
2705 mutex_lock(&c->tnc_mutex);
2706 err = lookup_level0_dirty(c, key, &znode, &n);
2707 if (err <= 0)
2708 goto out_unlock;
2709
2710 zbr = &znode->zbranch[n];
2711 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2712 if (!dent) {
2713 err = -ENOMEM;
2714 goto out_unlock;
2715 }
2716
2717 err = tnc_read_hashed_node(c, zbr, dent);
2718 if (err)
2719 goto out_free;
2720
2721 /* If the cookie does not match, we're facing a hash collision. */
2722 if (le32_to_cpu(dent->cookie) != cookie) {
2723 union ubifs_key start_key;
2724
2725 lowest_dent_key(c, &start_key, key_inum(c, key));
2726
2727 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2728 if (unlikely(err < 0))
2729 goto out_free;
2730
2731 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2732 if (err)
2733 goto out_free;
2734 }
2735
2736 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2737 znode = dirty_cow_bottom_up(c, znode);
2738 if (IS_ERR(znode)) {
2739 err = PTR_ERR(znode);
2740 goto out_free;
2741 }
2742 }
2743 err = tnc_delete(c, znode, n);
2744
2745 out_free:
2746 kfree(dent);
2747 out_unlock:
2748 if (!err)
2749 err = dbg_check_tnc(c, 0);
2750 mutex_unlock(&c->tnc_mutex);
2751 return err;
2752 }
2753
2754 /**
2755 * key_in_range - determine if a key falls within a range of keys.
2756 * @c: UBIFS file-system description object
2757 * @key: key to check
2758 * @from_key: lowest key in range
2759 * @to_key: highest key in range
2760 *
2761 * This function returns %1 if the key is in range and %0 otherwise.
2762 */
key_in_range(struct ubifs_info * c,union ubifs_key * key,union ubifs_key * from_key,union ubifs_key * to_key)2763 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2764 union ubifs_key *from_key, union ubifs_key *to_key)
2765 {
2766 if (keys_cmp(c, key, from_key) < 0)
2767 return 0;
2768 if (keys_cmp(c, key, to_key) > 0)
2769 return 0;
2770 return 1;
2771 }
2772
2773 /**
2774 * ubifs_tnc_remove_range - remove index entries in range.
2775 * @c: UBIFS file-system description object
2776 * @from_key: lowest key to remove
2777 * @to_key: highest key to remove
2778 *
2779 * This function removes index entries starting at @from_key and ending at
2780 * @to_key. This function returns zero in case of success and a negative error
2781 * code in case of failure.
2782 */
ubifs_tnc_remove_range(struct ubifs_info * c,union ubifs_key * from_key,union ubifs_key * to_key)2783 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2784 union ubifs_key *to_key)
2785 {
2786 int i, n, k, err = 0;
2787 struct ubifs_znode *znode;
2788 union ubifs_key *key;
2789
2790 mutex_lock(&c->tnc_mutex);
2791 while (1) {
2792 /* Find first level 0 znode that contains keys to remove */
2793 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2794 if (err < 0)
2795 goto out_unlock;
2796
2797 if (err)
2798 key = from_key;
2799 else {
2800 err = tnc_next(c, &znode, &n);
2801 if (err == -ENOENT) {
2802 err = 0;
2803 goto out_unlock;
2804 }
2805 if (err < 0)
2806 goto out_unlock;
2807 key = &znode->zbranch[n].key;
2808 if (!key_in_range(c, key, from_key, to_key)) {
2809 err = 0;
2810 goto out_unlock;
2811 }
2812 }
2813
2814 /* Ensure the znode is dirtied */
2815 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2816 znode = dirty_cow_bottom_up(c, znode);
2817 if (IS_ERR(znode)) {
2818 err = PTR_ERR(znode);
2819 goto out_unlock;
2820 }
2821 }
2822
2823 /* Remove all keys in range except the first */
2824 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2825 key = &znode->zbranch[i].key;
2826 if (!key_in_range(c, key, from_key, to_key))
2827 break;
2828 lnc_free(&znode->zbranch[i]);
2829 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2830 znode->zbranch[i].len);
2831 if (err) {
2832 ubifs_dump_znode(c, znode);
2833 goto out_unlock;
2834 }
2835 dbg_tnck(key, "removing key ");
2836 }
2837 if (k) {
2838 for (i = n + 1 + k; i < znode->child_cnt; i++)
2839 znode->zbranch[i - k] = znode->zbranch[i];
2840 znode->child_cnt -= k;
2841 }
2842
2843 /* Now delete the first */
2844 err = tnc_delete(c, znode, n);
2845 if (err)
2846 goto out_unlock;
2847 }
2848
2849 out_unlock:
2850 if (!err)
2851 err = dbg_check_tnc(c, 0);
2852 mutex_unlock(&c->tnc_mutex);
2853 return err;
2854 }
2855
2856 /**
2857 * ubifs_tnc_remove_ino - remove an inode from TNC.
2858 * @c: UBIFS file-system description object
2859 * @inum: inode number to remove
2860 *
2861 * This function remove inode @inum and all the extended attributes associated
2862 * with the anode from TNC and returns zero in case of success or a negative
2863 * error code in case of failure.
2864 */
ubifs_tnc_remove_ino(struct ubifs_info * c,ino_t inum)2865 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2866 {
2867 union ubifs_key key1, key2;
2868 struct ubifs_dent_node *xent, *pxent = NULL;
2869 struct fscrypt_name nm = {0};
2870
2871 dbg_tnc("ino %lu", (unsigned long)inum);
2872
2873 /*
2874 * Walk all extended attribute entries and remove them together with
2875 * corresponding extended attribute inodes.
2876 */
2877 lowest_xent_key(c, &key1, inum);
2878 while (1) {
2879 ino_t xattr_inum;
2880 int err;
2881
2882 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2883 if (IS_ERR(xent)) {
2884 err = PTR_ERR(xent);
2885 if (err == -ENOENT)
2886 break;
2887 kfree(pxent);
2888 return err;
2889 }
2890
2891 xattr_inum = le64_to_cpu(xent->inum);
2892 dbg_tnc("xent '%s', ino %lu", xent->name,
2893 (unsigned long)xattr_inum);
2894
2895 ubifs_evict_xattr_inode(c, xattr_inum);
2896
2897 fname_name(&nm) = xent->name;
2898 fname_len(&nm) = le16_to_cpu(xent->nlen);
2899 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2900 if (err) {
2901 kfree(pxent);
2902 kfree(xent);
2903 return err;
2904 }
2905
2906 lowest_ino_key(c, &key1, xattr_inum);
2907 highest_ino_key(c, &key2, xattr_inum);
2908 err = ubifs_tnc_remove_range(c, &key1, &key2);
2909 if (err) {
2910 kfree(pxent);
2911 kfree(xent);
2912 return err;
2913 }
2914
2915 kfree(pxent);
2916 pxent = xent;
2917 key_read(c, &xent->key, &key1);
2918 }
2919
2920 kfree(pxent);
2921 lowest_ino_key(c, &key1, inum);
2922 highest_ino_key(c, &key2, inum);
2923
2924 return ubifs_tnc_remove_range(c, &key1, &key2);
2925 }
2926
2927 /**
2928 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2929 * @c: UBIFS file-system description object
2930 * @key: key of last entry
2931 * @nm: name of last entry found or %NULL
2932 *
2933 * This function finds and reads the next directory or extended attribute entry
2934 * after the given key (@key) if there is one. @nm is used to resolve
2935 * collisions.
2936 *
2937 * If the name of the current entry is not known and only the key is known,
2938 * @nm->name has to be %NULL. In this case the semantics of this function is a
2939 * little bit different and it returns the entry corresponding to this key, not
2940 * the next one. If the key was not found, the closest "right" entry is
2941 * returned.
2942 *
2943 * If the fist entry has to be found, @key has to contain the lowest possible
2944 * key value for this inode and @name has to be %NULL.
2945 *
2946 * This function returns the found directory or extended attribute entry node
2947 * in case of success, %-ENOENT is returned if no entry was found, and a
2948 * negative error code is returned in case of failure.
2949 */
ubifs_tnc_next_ent(struct ubifs_info * c,union ubifs_key * key,const struct fscrypt_name * nm)2950 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2951 union ubifs_key *key,
2952 const struct fscrypt_name *nm)
2953 {
2954 int n, err, type = key_type(c, key);
2955 struct ubifs_znode *znode;
2956 struct ubifs_dent_node *dent;
2957 struct ubifs_zbranch *zbr;
2958 union ubifs_key *dkey;
2959
2960 dbg_tnck(key, "key ");
2961 ubifs_assert(c, is_hash_key(c, key));
2962
2963 mutex_lock(&c->tnc_mutex);
2964 err = ubifs_lookup_level0(c, key, &znode, &n);
2965 if (unlikely(err < 0))
2966 goto out_unlock;
2967
2968 if (fname_len(nm) > 0) {
2969 if (err) {
2970 /* Handle collisions */
2971 if (c->replaying)
2972 err = fallible_resolve_collision(c, key, &znode, &n,
2973 nm, 0);
2974 else
2975 err = resolve_collision(c, key, &znode, &n, nm);
2976 dbg_tnc("rc returned %d, znode %p, n %d",
2977 err, znode, n);
2978 if (unlikely(err < 0))
2979 goto out_unlock;
2980 }
2981
2982 /* Now find next entry */
2983 err = tnc_next(c, &znode, &n);
2984 if (unlikely(err))
2985 goto out_unlock;
2986 } else {
2987 /*
2988 * The full name of the entry was not given, in which case the
2989 * behavior of this function is a little different and it
2990 * returns current entry, not the next one.
2991 */
2992 if (!err) {
2993 /*
2994 * However, the given key does not exist in the TNC
2995 * tree and @znode/@n variables contain the closest
2996 * "preceding" element. Switch to the next one.
2997 */
2998 err = tnc_next(c, &znode, &n);
2999 if (err)
3000 goto out_unlock;
3001 }
3002 }
3003
3004 zbr = &znode->zbranch[n];
3005 dent = kmalloc(zbr->len, GFP_NOFS);
3006 if (unlikely(!dent)) {
3007 err = -ENOMEM;
3008 goto out_unlock;
3009 }
3010
3011 /*
3012 * The above 'tnc_next()' call could lead us to the next inode, check
3013 * this.
3014 */
3015 dkey = &zbr->key;
3016 if (key_inum(c, dkey) != key_inum(c, key) ||
3017 key_type(c, dkey) != type) {
3018 err = -ENOENT;
3019 goto out_free;
3020 }
3021
3022 err = tnc_read_hashed_node(c, zbr, dent);
3023 if (unlikely(err))
3024 goto out_free;
3025
3026 mutex_unlock(&c->tnc_mutex);
3027 return dent;
3028
3029 out_free:
3030 kfree(dent);
3031 out_unlock:
3032 mutex_unlock(&c->tnc_mutex);
3033 return ERR_PTR(err);
3034 }
3035
3036 /**
3037 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3038 * @c: UBIFS file-system description object
3039 *
3040 * Destroy left-over obsolete znodes from a failed commit.
3041 */
tnc_destroy_cnext(struct ubifs_info * c)3042 static void tnc_destroy_cnext(struct ubifs_info *c)
3043 {
3044 struct ubifs_znode *cnext;
3045
3046 if (!c->cnext)
3047 return;
3048 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3049 cnext = c->cnext;
3050 do {
3051 struct ubifs_znode *znode = cnext;
3052
3053 cnext = cnext->cnext;
3054 if (ubifs_zn_obsolete(znode))
3055 kfree(znode);
3056 } while (cnext && cnext != c->cnext);
3057 }
3058
3059 /**
3060 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3061 * @c: UBIFS file-system description object
3062 */
ubifs_tnc_close(struct ubifs_info * c)3063 void ubifs_tnc_close(struct ubifs_info *c)
3064 {
3065 tnc_destroy_cnext(c);
3066 if (c->zroot.znode) {
3067 long n, freed;
3068
3069 n = atomic_long_read(&c->clean_zn_cnt);
3070 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3071 ubifs_assert(c, freed == n);
3072 atomic_long_sub(n, &ubifs_clean_zn_cnt);
3073 }
3074 kfree(c->gap_lebs);
3075 kfree(c->ilebs);
3076 destroy_old_idx(c);
3077 }
3078
3079 /**
3080 * left_znode - get the znode to the left.
3081 * @c: UBIFS file-system description object
3082 * @znode: znode
3083 *
3084 * This function returns a pointer to the znode to the left of @znode or NULL if
3085 * there is not one. A negative error code is returned on failure.
3086 */
left_znode(struct ubifs_info * c,struct ubifs_znode * znode)3087 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3088 struct ubifs_znode *znode)
3089 {
3090 int level = znode->level;
3091
3092 while (1) {
3093 int n = znode->iip - 1;
3094
3095 /* Go up until we can go left */
3096 znode = znode->parent;
3097 if (!znode)
3098 return NULL;
3099 if (n >= 0) {
3100 /* Now go down the rightmost branch to 'level' */
3101 znode = get_znode(c, znode, n);
3102 if (IS_ERR(znode))
3103 return znode;
3104 while (znode->level != level) {
3105 n = znode->child_cnt - 1;
3106 znode = get_znode(c, znode, n);
3107 if (IS_ERR(znode))
3108 return znode;
3109 }
3110 break;
3111 }
3112 }
3113 return znode;
3114 }
3115
3116 /**
3117 * right_znode - get the znode to the right.
3118 * @c: UBIFS file-system description object
3119 * @znode: znode
3120 *
3121 * This function returns a pointer to the znode to the right of @znode or NULL
3122 * if there is not one. A negative error code is returned on failure.
3123 */
right_znode(struct ubifs_info * c,struct ubifs_znode * znode)3124 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3125 struct ubifs_znode *znode)
3126 {
3127 int level = znode->level;
3128
3129 while (1) {
3130 int n = znode->iip + 1;
3131
3132 /* Go up until we can go right */
3133 znode = znode->parent;
3134 if (!znode)
3135 return NULL;
3136 if (n < znode->child_cnt) {
3137 /* Now go down the leftmost branch to 'level' */
3138 znode = get_znode(c, znode, n);
3139 if (IS_ERR(znode))
3140 return znode;
3141 while (znode->level != level) {
3142 znode = get_znode(c, znode, 0);
3143 if (IS_ERR(znode))
3144 return znode;
3145 }
3146 break;
3147 }
3148 }
3149 return znode;
3150 }
3151
3152 /**
3153 * lookup_znode - find a particular indexing node from TNC.
3154 * @c: UBIFS file-system description object
3155 * @key: index node key to lookup
3156 * @level: index node level
3157 * @lnum: index node LEB number
3158 * @offs: index node offset
3159 *
3160 * This function searches an indexing node by its first key @key and its
3161 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3162 * nodes it traverses to TNC. This function is called for indexing nodes which
3163 * were found on the media by scanning, for example when garbage-collecting or
3164 * when doing in-the-gaps commit. This means that the indexing node which is
3165 * looked for does not have to have exactly the same leftmost key @key, because
3166 * the leftmost key may have been changed, in which case TNC will contain a
3167 * dirty znode which still refers the same @lnum:@offs. This function is clever
3168 * enough to recognize such indexing nodes.
3169 *
3170 * Note, if a znode was deleted or changed too much, then this function will
3171 * not find it. For situations like this UBIFS has the old index RB-tree
3172 * (indexed by @lnum:@offs).
3173 *
3174 * This function returns a pointer to the znode found or %NULL if it is not
3175 * found. A negative error code is returned on failure.
3176 */
lookup_znode(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3177 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3178 union ubifs_key *key, int level,
3179 int lnum, int offs)
3180 {
3181 struct ubifs_znode *znode, *zn;
3182 int n, nn;
3183
3184 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3185
3186 /*
3187 * The arguments have probably been read off flash, so don't assume
3188 * they are valid.
3189 */
3190 if (level < 0)
3191 return ERR_PTR(-EINVAL);
3192
3193 /* Get the root znode */
3194 znode = c->zroot.znode;
3195 if (!znode) {
3196 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3197 if (IS_ERR(znode))
3198 return znode;
3199 }
3200 /* Check if it is the one we are looking for */
3201 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3202 return znode;
3203 /* Descend to the parent level i.e. (level + 1) */
3204 if (level >= znode->level)
3205 return NULL;
3206 while (1) {
3207 ubifs_search_zbranch(c, znode, key, &n);
3208 if (n < 0) {
3209 /*
3210 * We reached a znode where the leftmost key is greater
3211 * than the key we are searching for. This is the same
3212 * situation as the one described in a huge comment at
3213 * the end of the 'ubifs_lookup_level0()' function. And
3214 * for exactly the same reasons we have to try to look
3215 * left before giving up.
3216 */
3217 znode = left_znode(c, znode);
3218 if (!znode)
3219 return NULL;
3220 if (IS_ERR(znode))
3221 return znode;
3222 ubifs_search_zbranch(c, znode, key, &n);
3223 ubifs_assert(c, n >= 0);
3224 }
3225 if (znode->level == level + 1)
3226 break;
3227 znode = get_znode(c, znode, n);
3228 if (IS_ERR(znode))
3229 return znode;
3230 }
3231 /* Check if the child is the one we are looking for */
3232 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3233 return get_znode(c, znode, n);
3234 /* If the key is unique, there is nowhere else to look */
3235 if (!is_hash_key(c, key))
3236 return NULL;
3237 /*
3238 * The key is not unique and so may be also in the znodes to either
3239 * side.
3240 */
3241 zn = znode;
3242 nn = n;
3243 /* Look left */
3244 while (1) {
3245 /* Move one branch to the left */
3246 if (n)
3247 n -= 1;
3248 else {
3249 znode = left_znode(c, znode);
3250 if (!znode)
3251 break;
3252 if (IS_ERR(znode))
3253 return znode;
3254 n = znode->child_cnt - 1;
3255 }
3256 /* Check it */
3257 if (znode->zbranch[n].lnum == lnum &&
3258 znode->zbranch[n].offs == offs)
3259 return get_znode(c, znode, n);
3260 /* Stop if the key is less than the one we are looking for */
3261 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3262 break;
3263 }
3264 /* Back to the middle */
3265 znode = zn;
3266 n = nn;
3267 /* Look right */
3268 while (1) {
3269 /* Move one branch to the right */
3270 if (++n >= znode->child_cnt) {
3271 znode = right_znode(c, znode);
3272 if (!znode)
3273 break;
3274 if (IS_ERR(znode))
3275 return znode;
3276 n = 0;
3277 }
3278 /* Check it */
3279 if (znode->zbranch[n].lnum == lnum &&
3280 znode->zbranch[n].offs == offs)
3281 return get_znode(c, znode, n);
3282 /* Stop if the key is greater than the one we are looking for */
3283 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3284 break;
3285 }
3286 return NULL;
3287 }
3288
3289 /**
3290 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3291 * @c: UBIFS file-system description object
3292 * @key: key of index node
3293 * @level: index node level
3294 * @lnum: LEB number of index node
3295 * @offs: offset of index node
3296 *
3297 * This function returns %0 if the index node is not referred to in the TNC, %1
3298 * if the index node is referred to in the TNC and the corresponding znode is
3299 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3300 * znode is clean, and a negative error code in case of failure.
3301 *
3302 * Note, the @key argument has to be the key of the first child. Also note,
3303 * this function relies on the fact that 0:0 is never a valid LEB number and
3304 * offset for a main-area node.
3305 */
is_idx_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3306 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3307 int lnum, int offs)
3308 {
3309 struct ubifs_znode *znode;
3310
3311 znode = lookup_znode(c, key, level, lnum, offs);
3312 if (!znode)
3313 return 0;
3314 if (IS_ERR(znode))
3315 return PTR_ERR(znode);
3316
3317 return ubifs_zn_dirty(znode) ? 1 : 2;
3318 }
3319
3320 /**
3321 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3322 * @c: UBIFS file-system description object
3323 * @key: node key
3324 * @lnum: node LEB number
3325 * @offs: node offset
3326 *
3327 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3328 * not, and a negative error code in case of failure.
3329 *
3330 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3331 * and offset for a main-area node.
3332 */
is_leaf_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int lnum,int offs)3333 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3334 int lnum, int offs)
3335 {
3336 struct ubifs_zbranch *zbr;
3337 struct ubifs_znode *znode, *zn;
3338 int n, found, err, nn;
3339 const int unique = !is_hash_key(c, key);
3340
3341 found = ubifs_lookup_level0(c, key, &znode, &n);
3342 if (found < 0)
3343 return found; /* Error code */
3344 if (!found)
3345 return 0;
3346 zbr = &znode->zbranch[n];
3347 if (lnum == zbr->lnum && offs == zbr->offs)
3348 return 1; /* Found it */
3349 if (unique)
3350 return 0;
3351 /*
3352 * Because the key is not unique, we have to look left
3353 * and right as well
3354 */
3355 zn = znode;
3356 nn = n;
3357 /* Look left */
3358 while (1) {
3359 err = tnc_prev(c, &znode, &n);
3360 if (err == -ENOENT)
3361 break;
3362 if (err)
3363 return err;
3364 if (keys_cmp(c, key, &znode->zbranch[n].key))
3365 break;
3366 zbr = &znode->zbranch[n];
3367 if (lnum == zbr->lnum && offs == zbr->offs)
3368 return 1; /* Found it */
3369 }
3370 /* Look right */
3371 znode = zn;
3372 n = nn;
3373 while (1) {
3374 err = tnc_next(c, &znode, &n);
3375 if (err) {
3376 if (err == -ENOENT)
3377 return 0;
3378 return err;
3379 }
3380 if (keys_cmp(c, key, &znode->zbranch[n].key))
3381 break;
3382 zbr = &znode->zbranch[n];
3383 if (lnum == zbr->lnum && offs == zbr->offs)
3384 return 1; /* Found it */
3385 }
3386 return 0;
3387 }
3388
3389 /**
3390 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3391 * @c: UBIFS file-system description object
3392 * @key: node key
3393 * @level: index node level (if it is an index node)
3394 * @lnum: node LEB number
3395 * @offs: node offset
3396 * @is_idx: non-zero if the node is an index node
3397 *
3398 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3399 * negative error code in case of failure. For index nodes, @key has to be the
3400 * key of the first child. An index node is considered to be in the TNC only if
3401 * the corresponding znode is clean or has not been loaded.
3402 */
ubifs_tnc_has_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs,int is_idx)3403 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3404 int lnum, int offs, int is_idx)
3405 {
3406 int err;
3407
3408 mutex_lock(&c->tnc_mutex);
3409 if (is_idx) {
3410 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3411 if (err < 0)
3412 goto out_unlock;
3413 if (err == 1)
3414 /* The index node was found but it was dirty */
3415 err = 0;
3416 else if (err == 2)
3417 /* The index node was found and it was clean */
3418 err = 1;
3419 else
3420 BUG_ON(err != 0);
3421 } else
3422 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3423
3424 out_unlock:
3425 mutex_unlock(&c->tnc_mutex);
3426 return err;
3427 }
3428
3429 /**
3430 * ubifs_dirty_idx_node - dirty an index node.
3431 * @c: UBIFS file-system description object
3432 * @key: index node key
3433 * @level: index node level
3434 * @lnum: index node LEB number
3435 * @offs: index node offset
3436 *
3437 * This function loads and dirties an index node so that it can be garbage
3438 * collected. The @key argument has to be the key of the first child. This
3439 * function relies on the fact that 0:0 is never a valid LEB number and offset
3440 * for a main-area node. Returns %0 on success and a negative error code on
3441 * failure.
3442 */
ubifs_dirty_idx_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3443 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3444 int lnum, int offs)
3445 {
3446 struct ubifs_znode *znode;
3447 int err = 0;
3448
3449 mutex_lock(&c->tnc_mutex);
3450 znode = lookup_znode(c, key, level, lnum, offs);
3451 if (!znode)
3452 goto out_unlock;
3453 if (IS_ERR(znode)) {
3454 err = PTR_ERR(znode);
3455 goto out_unlock;
3456 }
3457 znode = dirty_cow_bottom_up(c, znode);
3458 if (IS_ERR(znode)) {
3459 err = PTR_ERR(znode);
3460 goto out_unlock;
3461 }
3462
3463 out_unlock:
3464 mutex_unlock(&c->tnc_mutex);
3465 return err;
3466 }
3467
3468 /**
3469 * dbg_check_inode_size - check if inode size is correct.
3470 * @c: UBIFS file-system description object
3471 * @inode: inode to check
3472 * @size: inode size
3473 *
3474 * This function makes sure that the inode size (@size) is correct and it does
3475 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3476 * if it has a data page beyond @size, and other negative error code in case of
3477 * other errors.
3478 */
dbg_check_inode_size(struct ubifs_info * c,const struct inode * inode,loff_t size)3479 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3480 loff_t size)
3481 {
3482 int err, n;
3483 union ubifs_key from_key, to_key, *key;
3484 struct ubifs_znode *znode;
3485 unsigned int block;
3486
3487 if (!S_ISREG(inode->i_mode))
3488 return 0;
3489 if (!dbg_is_chk_gen(c))
3490 return 0;
3491
3492 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3493 data_key_init(c, &from_key, inode->i_ino, block);
3494 highest_data_key(c, &to_key, inode->i_ino);
3495
3496 mutex_lock(&c->tnc_mutex);
3497 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3498 if (err < 0)
3499 goto out_unlock;
3500
3501 if (err) {
3502 key = &from_key;
3503 goto out_dump;
3504 }
3505
3506 err = tnc_next(c, &znode, &n);
3507 if (err == -ENOENT) {
3508 err = 0;
3509 goto out_unlock;
3510 }
3511 if (err < 0)
3512 goto out_unlock;
3513
3514 ubifs_assert(c, err == 0);
3515 key = &znode->zbranch[n].key;
3516 if (!key_in_range(c, key, &from_key, &to_key))
3517 goto out_unlock;
3518
3519 out_dump:
3520 block = key_block(c, key);
3521 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3522 (unsigned long)inode->i_ino, size,
3523 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3524 mutex_unlock(&c->tnc_mutex);
3525 ubifs_dump_inode(c, inode);
3526 dump_stack();
3527 return -EINVAL;
3528
3529 out_unlock:
3530 mutex_unlock(&c->tnc_mutex);
3531 return err;
3532 }
3533