• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 			       const struct udp_hslot *hslot,
134 			       unsigned long *bitmap,
135 			       struct sock *sk, unsigned int log)
136 {
137 	struct sock *sk2;
138 	kuid_t uid = sock_i_uid(sk);
139 
140 	sk_for_each(sk2, &hslot->head) {
141 		if (net_eq(sock_net(sk2), net) &&
142 		    sk2 != sk &&
143 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
145 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 		    inet_rcv_saddr_equal(sk, sk2, true)) {
148 			if (sk2->sk_reuseport && sk->sk_reuseport &&
149 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 			    uid_eq(uid, sock_i_uid(sk2))) {
151 				if (!bitmap)
152 					return 0;
153 			} else {
154 				if (!bitmap)
155 					return 1;
156 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 					  bitmap);
158 			}
159 		}
160 	}
161 	return 0;
162 }
163 
164 /*
165  * Note: we still hold spinlock of primary hash chain, so no other writer
166  * can insert/delete a socket with local_port == num
167  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 				struct udp_hslot *hslot2,
170 				struct sock *sk)
171 {
172 	struct sock *sk2;
173 	kuid_t uid = sock_i_uid(sk);
174 	int res = 0;
175 
176 	spin_lock(&hslot2->lock);
177 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 		if (net_eq(sock_net(sk2), net) &&
179 		    sk2 != sk &&
180 		    (udp_sk(sk2)->udp_port_hash == num) &&
181 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
182 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 		    inet_rcv_saddr_equal(sk, sk2, true)) {
185 			if (sk2->sk_reuseport && sk->sk_reuseport &&
186 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 			    uid_eq(uid, sock_i_uid(sk2))) {
188 				res = 0;
189 			} else {
190 				res = 1;
191 			}
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 	struct net *net = sock_net(sk);
202 	kuid_t uid = sock_i_uid(sk);
203 	struct sock *sk2;
204 
205 	sk_for_each(sk2, &hslot->head) {
206 		if (net_eq(sock_net(sk2), net) &&
207 		    sk2 != sk &&
208 		    sk2->sk_family == sk->sk_family &&
209 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 		    inet_rcv_saddr_equal(sk, sk2, false)) {
214 			return reuseport_add_sock(sk, sk2,
215 						  inet_rcv_saddr_any(sk));
216 		}
217 	}
218 
219 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221 
222 /**
223  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
224  *
225  *  @sk:          socket struct in question
226  *  @snum:        port number to look up
227  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228  *                   with NULL address
229  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 		     unsigned int hash2_nulladdr)
232 {
233 	struct udp_hslot *hslot, *hslot2;
234 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 	int    error = 1;
236 	struct net *net = sock_net(sk);
237 
238 	if (!snum) {
239 		int low, high, remaining;
240 		unsigned int rand;
241 		unsigned short first, last;
242 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243 
244 		inet_get_local_port_range(net, &low, &high);
245 		remaining = (high - low) + 1;
246 
247 		rand = prandom_u32();
248 		first = reciprocal_scale(rand, remaining) + low;
249 		/*
250 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 		 */
252 		rand = (rand | 1) * (udptable->mask + 1);
253 		last = first + udptable->mask + 1;
254 		do {
255 			hslot = udp_hashslot(udptable, net, first);
256 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 			spin_lock_bh(&hslot->lock);
258 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 					    udptable->log);
260 
261 			snum = first;
262 			/*
263 			 * Iterate on all possible values of snum for this hash.
264 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 			 * give us randomization and full range coverage.
266 			 */
267 			do {
268 				if (low <= snum && snum <= high &&
269 				    !test_bit(snum >> udptable->log, bitmap) &&
270 				    !inet_is_local_reserved_port(net, snum))
271 					goto found;
272 				snum += rand;
273 			} while (snum != first);
274 			spin_unlock_bh(&hslot->lock);
275 			cond_resched();
276 		} while (++first != last);
277 		goto fail;
278 	} else {
279 		hslot = udp_hashslot(udptable, net, snum);
280 		spin_lock_bh(&hslot->lock);
281 		if (hslot->count > 10) {
282 			int exist;
283 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284 
285 			slot2          &= udptable->mask;
286 			hash2_nulladdr &= udptable->mask;
287 
288 			hslot2 = udp_hashslot2(udptable, slot2);
289 			if (hslot->count < hslot2->count)
290 				goto scan_primary_hash;
291 
292 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 			if (!exist && (hash2_nulladdr != slot2)) {
294 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 							     sk);
297 			}
298 			if (exist)
299 				goto fail_unlock;
300 			else
301 				goto found;
302 		}
303 scan_primary_hash:
304 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 			goto fail_unlock;
306 	}
307 found:
308 	inet_sk(sk)->inet_num = snum;
309 	udp_sk(sk)->udp_port_hash = snum;
310 	udp_sk(sk)->udp_portaddr_hash ^= snum;
311 	if (sk_unhashed(sk)) {
312 		if (sk->sk_reuseport &&
313 		    udp_reuseport_add_sock(sk, hslot)) {
314 			inet_sk(sk)->inet_num = 0;
315 			udp_sk(sk)->udp_port_hash = 0;
316 			udp_sk(sk)->udp_portaddr_hash ^= snum;
317 			goto fail_unlock;
318 		}
319 
320 		sk_add_node_rcu(sk, &hslot->head);
321 		hslot->count++;
322 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323 
324 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 		spin_lock(&hslot2->lock);
326 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 		    sk->sk_family == AF_INET6)
328 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 					   &hslot2->head);
330 		else
331 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 					   &hslot2->head);
333 		hslot2->count++;
334 		spin_unlock(&hslot2->lock);
335 	}
336 	sock_set_flag(sk, SOCK_RCU_FREE);
337 	error = 0;
338 fail_unlock:
339 	spin_unlock_bh(&hslot->lock);
340 fail:
341 	return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344 
udp_v4_get_port(struct sock * sk,unsigned short snum)345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 	unsigned int hash2_nulladdr =
348 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 	unsigned int hash2_partial =
350 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351 
352 	/* precompute partial secondary hash */
353 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)357 static int compute_score(struct sock *sk, struct net *net,
358 			 __be32 saddr, __be16 sport,
359 			 __be32 daddr, unsigned short hnum,
360 			 int dif, int sdif)
361 {
362 	int score;
363 	struct inet_sock *inet;
364 	bool dev_match;
365 
366 	if (!net_eq(sock_net(sk), net) ||
367 	    udp_sk(sk)->udp_port_hash != hnum ||
368 	    ipv6_only_sock(sk))
369 		return -1;
370 
371 	if (sk->sk_rcv_saddr != daddr)
372 		return -1;
373 
374 	score = (sk->sk_family == PF_INET) ? 2 : 1;
375 
376 	inet = inet_sk(sk);
377 	if (inet->inet_daddr) {
378 		if (inet->inet_daddr != saddr)
379 			return -1;
380 		score += 4;
381 	}
382 
383 	if (inet->inet_dport) {
384 		if (inet->inet_dport != sport)
385 			return -1;
386 		score += 4;
387 	}
388 
389 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 					dif, sdif);
391 	if (!dev_match)
392 		return -1;
393 	if (sk->sk_bound_dev_if)
394 		score += 4;
395 
396 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
397 		score++;
398 	return score;
399 }
400 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
402 		       const __u16 lport, const __be32 faddr,
403 		       const __be16 fport)
404 {
405 	static u32 udp_ehash_secret __read_mostly;
406 
407 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408 
409 	return __inet_ehashfn(laddr, lport, faddr, fport,
410 			      udp_ehash_secret + net_hash_mix(net));
411 }
412 
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
414 				     struct sk_buff *skb,
415 				     __be32 saddr, __be16 sport,
416 				     __be32 daddr, unsigned short hnum)
417 {
418 	struct sock *reuse_sk = NULL;
419 	u32 hash;
420 
421 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
422 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
423 		reuse_sk = reuseport_select_sock(sk, hash, skb,
424 						 sizeof(struct udphdr));
425 	}
426 	return reuse_sk;
427 }
428 
429 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)430 static struct sock *udp4_lib_lookup2(struct net *net,
431 				     __be32 saddr, __be16 sport,
432 				     __be32 daddr, unsigned int hnum,
433 				     int dif, int sdif,
434 				     struct udp_hslot *hslot2,
435 				     struct sk_buff *skb)
436 {
437 	struct sock *sk, *result;
438 	int score, badness;
439 
440 	result = NULL;
441 	badness = 0;
442 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 		score = compute_score(sk, net, saddr, sport,
444 				      daddr, hnum, dif, sdif);
445 		if (score > badness) {
446 			result = lookup_reuseport(net, sk, skb,
447 						  saddr, sport, daddr, hnum);
448 			/* Fall back to scoring if group has connections */
449 			if (result && !reuseport_has_conns(sk))
450 				return result;
451 
452 			result = result ? : sk;
453 			badness = score;
454 		}
455 	}
456 	return result;
457 }
458 
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)459 static struct sock *udp4_lookup_run_bpf(struct net *net,
460 					struct udp_table *udptable,
461 					struct sk_buff *skb,
462 					__be32 saddr, __be16 sport,
463 					__be32 daddr, u16 hnum)
464 {
465 	struct sock *sk, *reuse_sk;
466 	bool no_reuseport;
467 
468 	if (udptable != &udp_table)
469 		return NULL; /* only UDP is supported */
470 
471 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
472 					    saddr, sport, daddr, hnum, &sk);
473 	if (no_reuseport || IS_ERR_OR_NULL(sk))
474 		return sk;
475 
476 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
477 	if (reuse_sk)
478 		sk = reuse_sk;
479 	return sk;
480 }
481 
482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
483  * harder than this. -DaveM
484  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
486 		__be16 sport, __be32 daddr, __be16 dport, int dif,
487 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 {
489 	unsigned short hnum = ntohs(dport);
490 	unsigned int hash2, slot2;
491 	struct udp_hslot *hslot2;
492 	struct sock *result, *sk;
493 
494 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
495 	slot2 = hash2 & udptable->mask;
496 	hslot2 = &udptable->hash2[slot2];
497 
498 	/* Lookup connected or non-wildcard socket */
499 	result = udp4_lib_lookup2(net, saddr, sport,
500 				  daddr, hnum, dif, sdif,
501 				  hslot2, skb);
502 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
503 		goto done;
504 
505 	/* Lookup redirect from BPF */
506 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
507 		sk = udp4_lookup_run_bpf(net, udptable, skb,
508 					 saddr, sport, daddr, hnum);
509 		if (sk) {
510 			result = sk;
511 			goto done;
512 		}
513 	}
514 
515 	/* Got non-wildcard socket or error on first lookup */
516 	if (result)
517 		goto done;
518 
519 	/* Lookup wildcard sockets */
520 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521 	slot2 = hash2 & udptable->mask;
522 	hslot2 = &udptable->hash2[slot2];
523 
524 	result = udp4_lib_lookup2(net, saddr, sport,
525 				  htonl(INADDR_ANY), hnum, dif, sdif,
526 				  hslot2, skb);
527 done:
528 	if (IS_ERR(result))
529 		return NULL;
530 	return result;
531 }
532 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
533 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)534 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
535 						 __be16 sport, __be16 dport,
536 						 struct udp_table *udptable)
537 {
538 	const struct iphdr *iph = ip_hdr(skb);
539 
540 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
541 				 iph->daddr, dport, inet_iif(skb),
542 				 inet_sdif(skb), udptable, skb);
543 }
544 
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)545 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
546 				 __be16 sport, __be16 dport)
547 {
548 	const struct iphdr *iph = ip_hdr(skb);
549 
550 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
551 				 iph->daddr, dport, inet_iif(skb),
552 				 inet_sdif(skb), &udp_table, NULL);
553 }
554 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
555 
556 /* Must be called under rcu_read_lock().
557  * Does increment socket refcount.
558  */
559 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)560 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
561 			     __be32 daddr, __be16 dport, int dif)
562 {
563 	struct sock *sk;
564 
565 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
566 			       dif, 0, &udp_table, NULL);
567 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
568 		sk = NULL;
569 	return sk;
570 }
571 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
572 #endif
573 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)574 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
575 				       __be16 loc_port, __be32 loc_addr,
576 				       __be16 rmt_port, __be32 rmt_addr,
577 				       int dif, int sdif, unsigned short hnum)
578 {
579 	struct inet_sock *inet = inet_sk(sk);
580 
581 	if (!net_eq(sock_net(sk), net) ||
582 	    udp_sk(sk)->udp_port_hash != hnum ||
583 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
584 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
585 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
586 	    ipv6_only_sock(sk) ||
587 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
588 		return false;
589 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
590 		return false;
591 	return true;
592 }
593 
594 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)595 void udp_encap_enable(void)
596 {
597 	static_branch_inc(&udp_encap_needed_key);
598 }
599 EXPORT_SYMBOL(udp_encap_enable);
600 
udp_encap_disable(void)601 void udp_encap_disable(void)
602 {
603 	static_branch_dec(&udp_encap_needed_key);
604 }
605 EXPORT_SYMBOL(udp_encap_disable);
606 
607 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
608  * through error handlers in encapsulations looking for a match.
609  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)610 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
611 {
612 	int i;
613 
614 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
615 		int (*handler)(struct sk_buff *skb, u32 info);
616 		const struct ip_tunnel_encap_ops *encap;
617 
618 		encap = rcu_dereference(iptun_encaps[i]);
619 		if (!encap)
620 			continue;
621 		handler = encap->err_handler;
622 		if (handler && !handler(skb, info))
623 			return 0;
624 	}
625 
626 	return -ENOENT;
627 }
628 
629 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
630  * reversing source and destination port: this will match tunnels that force the
631  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
632  * lwtunnels might actually break this assumption by being configured with
633  * different destination ports on endpoints, in this case we won't be able to
634  * trace ICMP messages back to them.
635  *
636  * If this doesn't match any socket, probe tunnels with arbitrary destination
637  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
638  * we've sent packets to won't necessarily match the local destination port.
639  *
640  * Then ask the tunnel implementation to match the error against a valid
641  * association.
642  *
643  * Return an error if we can't find a match, the socket if we need further
644  * processing, zero otherwise.
645  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)646 static struct sock *__udp4_lib_err_encap(struct net *net,
647 					 const struct iphdr *iph,
648 					 struct udphdr *uh,
649 					 struct udp_table *udptable,
650 					 struct sk_buff *skb, u32 info)
651 {
652 	int network_offset, transport_offset;
653 	struct sock *sk;
654 
655 	network_offset = skb_network_offset(skb);
656 	transport_offset = skb_transport_offset(skb);
657 
658 	/* Network header needs to point to the outer IPv4 header inside ICMP */
659 	skb_reset_network_header(skb);
660 
661 	/* Transport header needs to point to the UDP header */
662 	skb_set_transport_header(skb, iph->ihl << 2);
663 
664 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
665 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
666 			       udptable, NULL);
667 	if (sk) {
668 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
669 		struct udp_sock *up = udp_sk(sk);
670 
671 		lookup = READ_ONCE(up->encap_err_lookup);
672 		if (!lookup || lookup(sk, skb))
673 			sk = NULL;
674 	}
675 
676 	if (!sk)
677 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
678 
679 	skb_set_transport_header(skb, transport_offset);
680 	skb_set_network_header(skb, network_offset);
681 
682 	return sk;
683 }
684 
685 /*
686  * This routine is called by the ICMP module when it gets some
687  * sort of error condition.  If err < 0 then the socket should
688  * be closed and the error returned to the user.  If err > 0
689  * it's just the icmp type << 8 | icmp code.
690  * Header points to the ip header of the error packet. We move
691  * on past this. Then (as it used to claim before adjustment)
692  * header points to the first 8 bytes of the udp header.  We need
693  * to find the appropriate port.
694  */
695 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)696 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
697 {
698 	struct inet_sock *inet;
699 	const struct iphdr *iph = (const struct iphdr *)skb->data;
700 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
701 	const int type = icmp_hdr(skb)->type;
702 	const int code = icmp_hdr(skb)->code;
703 	bool tunnel = false;
704 	struct sock *sk;
705 	int harderr;
706 	int err;
707 	struct net *net = dev_net(skb->dev);
708 
709 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
710 			       iph->saddr, uh->source, skb->dev->ifindex,
711 			       inet_sdif(skb), udptable, NULL);
712 	if (!sk) {
713 		/* No socket for error: try tunnels before discarding */
714 		sk = ERR_PTR(-ENOENT);
715 		if (static_branch_unlikely(&udp_encap_needed_key)) {
716 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
717 						  info);
718 			if (!sk)
719 				return 0;
720 		}
721 
722 		if (IS_ERR(sk)) {
723 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
724 			return PTR_ERR(sk);
725 		}
726 
727 		tunnel = true;
728 	}
729 
730 	err = 0;
731 	harderr = 0;
732 	inet = inet_sk(sk);
733 
734 	switch (type) {
735 	default:
736 	case ICMP_TIME_EXCEEDED:
737 		err = EHOSTUNREACH;
738 		break;
739 	case ICMP_SOURCE_QUENCH:
740 		goto out;
741 	case ICMP_PARAMETERPROB:
742 		err = EPROTO;
743 		harderr = 1;
744 		break;
745 	case ICMP_DEST_UNREACH:
746 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
747 			ipv4_sk_update_pmtu(skb, sk, info);
748 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
749 				err = EMSGSIZE;
750 				harderr = 1;
751 				break;
752 			}
753 			goto out;
754 		}
755 		err = EHOSTUNREACH;
756 		if (code <= NR_ICMP_UNREACH) {
757 			harderr = icmp_err_convert[code].fatal;
758 			err = icmp_err_convert[code].errno;
759 		}
760 		break;
761 	case ICMP_REDIRECT:
762 		ipv4_sk_redirect(skb, sk);
763 		goto out;
764 	}
765 
766 	/*
767 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
768 	 *	4.1.3.3.
769 	 */
770 	if (tunnel) {
771 		/* ...not for tunnels though: we don't have a sending socket */
772 		goto out;
773 	}
774 	if (!inet->recverr) {
775 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
776 			goto out;
777 	} else
778 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
779 
780 	sk->sk_err = err;
781 	sk->sk_error_report(sk);
782 out:
783 	return 0;
784 }
785 
udp_err(struct sk_buff * skb,u32 info)786 int udp_err(struct sk_buff *skb, u32 info)
787 {
788 	return __udp4_lib_err(skb, info, &udp_table);
789 }
790 
791 /*
792  * Throw away all pending data and cancel the corking. Socket is locked.
793  */
udp_flush_pending_frames(struct sock * sk)794 void udp_flush_pending_frames(struct sock *sk)
795 {
796 	struct udp_sock *up = udp_sk(sk);
797 
798 	if (up->pending) {
799 		up->len = 0;
800 		up->pending = 0;
801 		ip_flush_pending_frames(sk);
802 	}
803 }
804 EXPORT_SYMBOL(udp_flush_pending_frames);
805 
806 /**
807  * 	udp4_hwcsum  -  handle outgoing HW checksumming
808  * 	@skb: 	sk_buff containing the filled-in UDP header
809  * 	        (checksum field must be zeroed out)
810  *	@src:	source IP address
811  *	@dst:	destination IP address
812  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)813 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
814 {
815 	struct udphdr *uh = udp_hdr(skb);
816 	int offset = skb_transport_offset(skb);
817 	int len = skb->len - offset;
818 	int hlen = len;
819 	__wsum csum = 0;
820 
821 	if (!skb_has_frag_list(skb)) {
822 		/*
823 		 * Only one fragment on the socket.
824 		 */
825 		skb->csum_start = skb_transport_header(skb) - skb->head;
826 		skb->csum_offset = offsetof(struct udphdr, check);
827 		uh->check = ~csum_tcpudp_magic(src, dst, len,
828 					       IPPROTO_UDP, 0);
829 	} else {
830 		struct sk_buff *frags;
831 
832 		/*
833 		 * HW-checksum won't work as there are two or more
834 		 * fragments on the socket so that all csums of sk_buffs
835 		 * should be together
836 		 */
837 		skb_walk_frags(skb, frags) {
838 			csum = csum_add(csum, frags->csum);
839 			hlen -= frags->len;
840 		}
841 
842 		csum = skb_checksum(skb, offset, hlen, csum);
843 		skb->ip_summed = CHECKSUM_NONE;
844 
845 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
846 		if (uh->check == 0)
847 			uh->check = CSUM_MANGLED_0;
848 	}
849 }
850 EXPORT_SYMBOL_GPL(udp4_hwcsum);
851 
852 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
853  * for the simple case like when setting the checksum for a UDP tunnel.
854  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)855 void udp_set_csum(bool nocheck, struct sk_buff *skb,
856 		  __be32 saddr, __be32 daddr, int len)
857 {
858 	struct udphdr *uh = udp_hdr(skb);
859 
860 	if (nocheck) {
861 		uh->check = 0;
862 	} else if (skb_is_gso(skb)) {
863 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
864 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
865 		uh->check = 0;
866 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
867 		if (uh->check == 0)
868 			uh->check = CSUM_MANGLED_0;
869 	} else {
870 		skb->ip_summed = CHECKSUM_PARTIAL;
871 		skb->csum_start = skb_transport_header(skb) - skb->head;
872 		skb->csum_offset = offsetof(struct udphdr, check);
873 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
874 	}
875 }
876 EXPORT_SYMBOL(udp_set_csum);
877 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)878 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
879 			struct inet_cork *cork)
880 {
881 	struct sock *sk = skb->sk;
882 	struct inet_sock *inet = inet_sk(sk);
883 	struct udphdr *uh;
884 	int err = 0;
885 	int is_udplite = IS_UDPLITE(sk);
886 	int offset = skb_transport_offset(skb);
887 	int len = skb->len - offset;
888 	int datalen = len - sizeof(*uh);
889 	__wsum csum = 0;
890 
891 	/*
892 	 * Create a UDP header
893 	 */
894 	uh = udp_hdr(skb);
895 	uh->source = inet->inet_sport;
896 	uh->dest = fl4->fl4_dport;
897 	uh->len = htons(len);
898 	uh->check = 0;
899 
900 	if (cork->gso_size) {
901 		const int hlen = skb_network_header_len(skb) +
902 				 sizeof(struct udphdr);
903 
904 		if (hlen + cork->gso_size > cork->fragsize) {
905 			kfree_skb(skb);
906 			return -EINVAL;
907 		}
908 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
909 			kfree_skb(skb);
910 			return -EINVAL;
911 		}
912 		if (sk->sk_no_check_tx) {
913 			kfree_skb(skb);
914 			return -EINVAL;
915 		}
916 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
917 		    dst_xfrm(skb_dst(skb))) {
918 			kfree_skb(skb);
919 			return -EIO;
920 		}
921 
922 		if (datalen > cork->gso_size) {
923 			skb_shinfo(skb)->gso_size = cork->gso_size;
924 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
925 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
926 								 cork->gso_size);
927 		}
928 		goto csum_partial;
929 	}
930 
931 	if (is_udplite)  				 /*     UDP-Lite      */
932 		csum = udplite_csum(skb);
933 
934 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
935 
936 		skb->ip_summed = CHECKSUM_NONE;
937 		goto send;
938 
939 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
940 csum_partial:
941 
942 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
943 		goto send;
944 
945 	} else
946 		csum = udp_csum(skb);
947 
948 	/* add protocol-dependent pseudo-header */
949 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
950 				      sk->sk_protocol, csum);
951 	if (uh->check == 0)
952 		uh->check = CSUM_MANGLED_0;
953 
954 send:
955 	err = ip_send_skb(sock_net(sk), skb);
956 	if (err) {
957 		if (err == -ENOBUFS && !inet->recverr) {
958 			UDP_INC_STATS(sock_net(sk),
959 				      UDP_MIB_SNDBUFERRORS, is_udplite);
960 			err = 0;
961 		}
962 	} else
963 		UDP_INC_STATS(sock_net(sk),
964 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
965 	return err;
966 }
967 
968 /*
969  * Push out all pending data as one UDP datagram. Socket is locked.
970  */
udp_push_pending_frames(struct sock * sk)971 int udp_push_pending_frames(struct sock *sk)
972 {
973 	struct udp_sock  *up = udp_sk(sk);
974 	struct inet_sock *inet = inet_sk(sk);
975 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
976 	struct sk_buff *skb;
977 	int err = 0;
978 
979 	skb = ip_finish_skb(sk, fl4);
980 	if (!skb)
981 		goto out;
982 
983 	err = udp_send_skb(skb, fl4, &inet->cork.base);
984 
985 out:
986 	up->len = 0;
987 	up->pending = 0;
988 	return err;
989 }
990 EXPORT_SYMBOL(udp_push_pending_frames);
991 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)992 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
993 {
994 	switch (cmsg->cmsg_type) {
995 	case UDP_SEGMENT:
996 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
997 			return -EINVAL;
998 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
999 		return 0;
1000 	default:
1001 		return -EINVAL;
1002 	}
1003 }
1004 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1005 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1006 {
1007 	struct cmsghdr *cmsg;
1008 	bool need_ip = false;
1009 	int err;
1010 
1011 	for_each_cmsghdr(cmsg, msg) {
1012 		if (!CMSG_OK(msg, cmsg))
1013 			return -EINVAL;
1014 
1015 		if (cmsg->cmsg_level != SOL_UDP) {
1016 			need_ip = true;
1017 			continue;
1018 		}
1019 
1020 		err = __udp_cmsg_send(cmsg, gso_size);
1021 		if (err)
1022 			return err;
1023 	}
1024 
1025 	return need_ip;
1026 }
1027 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1028 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1029 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1030 {
1031 	struct inet_sock *inet = inet_sk(sk);
1032 	struct udp_sock *up = udp_sk(sk);
1033 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1034 	struct flowi4 fl4_stack;
1035 	struct flowi4 *fl4;
1036 	int ulen = len;
1037 	struct ipcm_cookie ipc;
1038 	struct rtable *rt = NULL;
1039 	int free = 0;
1040 	int connected = 0;
1041 	__be32 daddr, faddr, saddr;
1042 	__be16 dport;
1043 	u8  tos;
1044 	int err, is_udplite = IS_UDPLITE(sk);
1045 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1046 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1047 	struct sk_buff *skb;
1048 	struct ip_options_data opt_copy;
1049 
1050 	if (len > 0xFFFF)
1051 		return -EMSGSIZE;
1052 
1053 	/*
1054 	 *	Check the flags.
1055 	 */
1056 
1057 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1058 		return -EOPNOTSUPP;
1059 
1060 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1061 
1062 	fl4 = &inet->cork.fl.u.ip4;
1063 	if (up->pending) {
1064 		/*
1065 		 * There are pending frames.
1066 		 * The socket lock must be held while it's corked.
1067 		 */
1068 		lock_sock(sk);
1069 		if (likely(up->pending)) {
1070 			if (unlikely(up->pending != AF_INET)) {
1071 				release_sock(sk);
1072 				return -EINVAL;
1073 			}
1074 			goto do_append_data;
1075 		}
1076 		release_sock(sk);
1077 	}
1078 	ulen += sizeof(struct udphdr);
1079 
1080 	/*
1081 	 *	Get and verify the address.
1082 	 */
1083 	if (usin) {
1084 		if (msg->msg_namelen < sizeof(*usin))
1085 			return -EINVAL;
1086 		if (usin->sin_family != AF_INET) {
1087 			if (usin->sin_family != AF_UNSPEC)
1088 				return -EAFNOSUPPORT;
1089 		}
1090 
1091 		daddr = usin->sin_addr.s_addr;
1092 		dport = usin->sin_port;
1093 		if (dport == 0)
1094 			return -EINVAL;
1095 	} else {
1096 		if (sk->sk_state != TCP_ESTABLISHED)
1097 			return -EDESTADDRREQ;
1098 		daddr = inet->inet_daddr;
1099 		dport = inet->inet_dport;
1100 		/* Open fast path for connected socket.
1101 		   Route will not be used, if at least one option is set.
1102 		 */
1103 		connected = 1;
1104 	}
1105 
1106 	ipcm_init_sk(&ipc, inet);
1107 	ipc.gso_size = READ_ONCE(up->gso_size);
1108 
1109 	if (msg->msg_controllen) {
1110 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1111 		if (err > 0)
1112 			err = ip_cmsg_send(sk, msg, &ipc,
1113 					   sk->sk_family == AF_INET6);
1114 		if (unlikely(err < 0)) {
1115 			kfree(ipc.opt);
1116 			return err;
1117 		}
1118 		if (ipc.opt)
1119 			free = 1;
1120 		connected = 0;
1121 	}
1122 	if (!ipc.opt) {
1123 		struct ip_options_rcu *inet_opt;
1124 
1125 		rcu_read_lock();
1126 		inet_opt = rcu_dereference(inet->inet_opt);
1127 		if (inet_opt) {
1128 			memcpy(&opt_copy, inet_opt,
1129 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1130 			ipc.opt = &opt_copy.opt;
1131 		}
1132 		rcu_read_unlock();
1133 	}
1134 
1135 	if (cgroup_bpf_enabled && !connected) {
1136 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1137 					    (struct sockaddr *)usin, &ipc.addr);
1138 		if (err)
1139 			goto out_free;
1140 		if (usin) {
1141 			if (usin->sin_port == 0) {
1142 				/* BPF program set invalid port. Reject it. */
1143 				err = -EINVAL;
1144 				goto out_free;
1145 			}
1146 			daddr = usin->sin_addr.s_addr;
1147 			dport = usin->sin_port;
1148 		}
1149 	}
1150 
1151 	saddr = ipc.addr;
1152 	ipc.addr = faddr = daddr;
1153 
1154 	if (ipc.opt && ipc.opt->opt.srr) {
1155 		if (!daddr) {
1156 			err = -EINVAL;
1157 			goto out_free;
1158 		}
1159 		faddr = ipc.opt->opt.faddr;
1160 		connected = 0;
1161 	}
1162 	tos = get_rttos(&ipc, inet);
1163 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1164 	    (msg->msg_flags & MSG_DONTROUTE) ||
1165 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1166 		tos |= RTO_ONLINK;
1167 		connected = 0;
1168 	}
1169 
1170 	if (ipv4_is_multicast(daddr)) {
1171 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1172 			ipc.oif = inet->mc_index;
1173 		if (!saddr)
1174 			saddr = inet->mc_addr;
1175 		connected = 0;
1176 	} else if (!ipc.oif) {
1177 		ipc.oif = inet->uc_index;
1178 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1179 		/* oif is set, packet is to local broadcast and
1180 		 * uc_index is set. oif is most likely set
1181 		 * by sk_bound_dev_if. If uc_index != oif check if the
1182 		 * oif is an L3 master and uc_index is an L3 slave.
1183 		 * If so, we want to allow the send using the uc_index.
1184 		 */
1185 		if (ipc.oif != inet->uc_index &&
1186 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1187 							      inet->uc_index)) {
1188 			ipc.oif = inet->uc_index;
1189 		}
1190 	}
1191 
1192 	if (connected)
1193 		rt = (struct rtable *)sk_dst_check(sk, 0);
1194 
1195 	if (!rt) {
1196 		struct net *net = sock_net(sk);
1197 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1198 
1199 		fl4 = &fl4_stack;
1200 
1201 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1202 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1203 				   flow_flags,
1204 				   faddr, saddr, dport, inet->inet_sport,
1205 				   sk->sk_uid);
1206 
1207 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1208 		rt = ip_route_output_flow(net, fl4, sk);
1209 		if (IS_ERR(rt)) {
1210 			err = PTR_ERR(rt);
1211 			rt = NULL;
1212 			if (err == -ENETUNREACH)
1213 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1214 			goto out;
1215 		}
1216 
1217 		err = -EACCES;
1218 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1219 		    !sock_flag(sk, SOCK_BROADCAST))
1220 			goto out;
1221 		if (connected)
1222 			sk_dst_set(sk, dst_clone(&rt->dst));
1223 	}
1224 
1225 	if (msg->msg_flags&MSG_CONFIRM)
1226 		goto do_confirm;
1227 back_from_confirm:
1228 
1229 	saddr = fl4->saddr;
1230 	if (!ipc.addr)
1231 		daddr = ipc.addr = fl4->daddr;
1232 
1233 	/* Lockless fast path for the non-corking case. */
1234 	if (!corkreq) {
1235 		struct inet_cork cork;
1236 
1237 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1238 				  sizeof(struct udphdr), &ipc, &rt,
1239 				  &cork, msg->msg_flags);
1240 		err = PTR_ERR(skb);
1241 		if (!IS_ERR_OR_NULL(skb))
1242 			err = udp_send_skb(skb, fl4, &cork);
1243 		goto out;
1244 	}
1245 
1246 	lock_sock(sk);
1247 	if (unlikely(up->pending)) {
1248 		/* The socket is already corked while preparing it. */
1249 		/* ... which is an evident application bug. --ANK */
1250 		release_sock(sk);
1251 
1252 		net_dbg_ratelimited("socket already corked\n");
1253 		err = -EINVAL;
1254 		goto out;
1255 	}
1256 	/*
1257 	 *	Now cork the socket to pend data.
1258 	 */
1259 	fl4 = &inet->cork.fl.u.ip4;
1260 	fl4->daddr = daddr;
1261 	fl4->saddr = saddr;
1262 	fl4->fl4_dport = dport;
1263 	fl4->fl4_sport = inet->inet_sport;
1264 	up->pending = AF_INET;
1265 
1266 do_append_data:
1267 	up->len += ulen;
1268 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1269 			     sizeof(struct udphdr), &ipc, &rt,
1270 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1271 	if (err)
1272 		udp_flush_pending_frames(sk);
1273 	else if (!corkreq)
1274 		err = udp_push_pending_frames(sk);
1275 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1276 		up->pending = 0;
1277 	release_sock(sk);
1278 
1279 out:
1280 	ip_rt_put(rt);
1281 out_free:
1282 	if (free)
1283 		kfree(ipc.opt);
1284 	if (!err)
1285 		return len;
1286 	/*
1287 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1288 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1289 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1290 	 * things).  We could add another new stat but at least for now that
1291 	 * seems like overkill.
1292 	 */
1293 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1294 		UDP_INC_STATS(sock_net(sk),
1295 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1296 	}
1297 	return err;
1298 
1299 do_confirm:
1300 	if (msg->msg_flags & MSG_PROBE)
1301 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1302 	if (!(msg->msg_flags&MSG_PROBE) || len)
1303 		goto back_from_confirm;
1304 	err = 0;
1305 	goto out;
1306 }
1307 EXPORT_SYMBOL(udp_sendmsg);
1308 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1309 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1310 		 size_t size, int flags)
1311 {
1312 	struct inet_sock *inet = inet_sk(sk);
1313 	struct udp_sock *up = udp_sk(sk);
1314 	int ret;
1315 
1316 	if (flags & MSG_SENDPAGE_NOTLAST)
1317 		flags |= MSG_MORE;
1318 
1319 	if (!up->pending) {
1320 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1321 
1322 		/* Call udp_sendmsg to specify destination address which
1323 		 * sendpage interface can't pass.
1324 		 * This will succeed only when the socket is connected.
1325 		 */
1326 		ret = udp_sendmsg(sk, &msg, 0);
1327 		if (ret < 0)
1328 			return ret;
1329 	}
1330 
1331 	lock_sock(sk);
1332 
1333 	if (unlikely(!up->pending)) {
1334 		release_sock(sk);
1335 
1336 		net_dbg_ratelimited("cork failed\n");
1337 		return -EINVAL;
1338 	}
1339 
1340 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1341 			     page, offset, size, flags);
1342 	if (ret == -EOPNOTSUPP) {
1343 		release_sock(sk);
1344 		return sock_no_sendpage(sk->sk_socket, page, offset,
1345 					size, flags);
1346 	}
1347 	if (ret < 0) {
1348 		udp_flush_pending_frames(sk);
1349 		goto out;
1350 	}
1351 
1352 	up->len += size;
1353 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1354 		ret = udp_push_pending_frames(sk);
1355 	if (!ret)
1356 		ret = size;
1357 out:
1358 	release_sock(sk);
1359 	return ret;
1360 }
1361 
1362 #define UDP_SKB_IS_STATELESS 0x80000000
1363 
1364 /* all head states (dst, sk, nf conntrack) except skb extensions are
1365  * cleared by udp_rcv().
1366  *
1367  * We need to preserve secpath, if present, to eventually process
1368  * IP_CMSG_PASSSEC at recvmsg() time.
1369  *
1370  * Other extensions can be cleared.
1371  */
udp_try_make_stateless(struct sk_buff * skb)1372 static bool udp_try_make_stateless(struct sk_buff *skb)
1373 {
1374 	if (!skb_has_extensions(skb))
1375 		return true;
1376 
1377 	if (!secpath_exists(skb)) {
1378 		skb_ext_reset(skb);
1379 		return true;
1380 	}
1381 
1382 	return false;
1383 }
1384 
udp_set_dev_scratch(struct sk_buff * skb)1385 static void udp_set_dev_scratch(struct sk_buff *skb)
1386 {
1387 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1388 
1389 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1390 	scratch->_tsize_state = skb->truesize;
1391 #if BITS_PER_LONG == 64
1392 	scratch->len = skb->len;
1393 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1394 	scratch->is_linear = !skb_is_nonlinear(skb);
1395 #endif
1396 	if (udp_try_make_stateless(skb))
1397 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1398 }
1399 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1400 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1401 {
1402 	/* We come here after udp_lib_checksum_complete() returned 0.
1403 	 * This means that __skb_checksum_complete() might have
1404 	 * set skb->csum_valid to 1.
1405 	 * On 64bit platforms, we can set csum_unnecessary
1406 	 * to true, but only if the skb is not shared.
1407 	 */
1408 #if BITS_PER_LONG == 64
1409 	if (!skb_shared(skb))
1410 		udp_skb_scratch(skb)->csum_unnecessary = true;
1411 #endif
1412 }
1413 
udp_skb_truesize(struct sk_buff * skb)1414 static int udp_skb_truesize(struct sk_buff *skb)
1415 {
1416 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1417 }
1418 
udp_skb_has_head_state(struct sk_buff * skb)1419 static bool udp_skb_has_head_state(struct sk_buff *skb)
1420 {
1421 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1422 }
1423 
1424 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1425 static void udp_rmem_release(struct sock *sk, int size, int partial,
1426 			     bool rx_queue_lock_held)
1427 {
1428 	struct udp_sock *up = udp_sk(sk);
1429 	struct sk_buff_head *sk_queue;
1430 	int amt;
1431 
1432 	if (likely(partial)) {
1433 		up->forward_deficit += size;
1434 		size = up->forward_deficit;
1435 		if (size < (sk->sk_rcvbuf >> 2) &&
1436 		    !skb_queue_empty(&up->reader_queue))
1437 			return;
1438 	} else {
1439 		size += up->forward_deficit;
1440 	}
1441 	up->forward_deficit = 0;
1442 
1443 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1444 	 * if the called don't held it already
1445 	 */
1446 	sk_queue = &sk->sk_receive_queue;
1447 	if (!rx_queue_lock_held)
1448 		spin_lock(&sk_queue->lock);
1449 
1450 
1451 	sk->sk_forward_alloc += size;
1452 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1453 	sk->sk_forward_alloc -= amt;
1454 
1455 	if (amt)
1456 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1457 
1458 	atomic_sub(size, &sk->sk_rmem_alloc);
1459 
1460 	/* this can save us from acquiring the rx queue lock on next receive */
1461 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1462 
1463 	if (!rx_queue_lock_held)
1464 		spin_unlock(&sk_queue->lock);
1465 }
1466 
1467 /* Note: called with reader_queue.lock held.
1468  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1469  * This avoids a cache line miss while receive_queue lock is held.
1470  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1471  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1472 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1473 {
1474 	prefetch(&skb->data);
1475 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1476 }
1477 EXPORT_SYMBOL(udp_skb_destructor);
1478 
1479 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1480 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1481 {
1482 	prefetch(&skb->data);
1483 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1484 }
1485 
1486 /* Idea of busylocks is to let producers grab an extra spinlock
1487  * to relieve pressure on the receive_queue spinlock shared by consumer.
1488  * Under flood, this means that only one producer can be in line
1489  * trying to acquire the receive_queue spinlock.
1490  * These busylock can be allocated on a per cpu manner, instead of a
1491  * per socket one (that would consume a cache line per socket)
1492  */
1493 static int udp_busylocks_log __read_mostly;
1494 static spinlock_t *udp_busylocks __read_mostly;
1495 
busylock_acquire(void * ptr)1496 static spinlock_t *busylock_acquire(void *ptr)
1497 {
1498 	spinlock_t *busy;
1499 
1500 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1501 	spin_lock(busy);
1502 	return busy;
1503 }
1504 
busylock_release(spinlock_t * busy)1505 static void busylock_release(spinlock_t *busy)
1506 {
1507 	if (busy)
1508 		spin_unlock(busy);
1509 }
1510 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1511 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1512 {
1513 	struct sk_buff_head *list = &sk->sk_receive_queue;
1514 	int rmem, delta, amt, err = -ENOMEM;
1515 	spinlock_t *busy = NULL;
1516 	int size;
1517 
1518 	/* try to avoid the costly atomic add/sub pair when the receive
1519 	 * queue is full; always allow at least a packet
1520 	 */
1521 	rmem = atomic_read(&sk->sk_rmem_alloc);
1522 	if (rmem > sk->sk_rcvbuf)
1523 		goto drop;
1524 
1525 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1526 	 * having linear skbs :
1527 	 * - Reduce memory overhead and thus increase receive queue capacity
1528 	 * - Less cache line misses at copyout() time
1529 	 * - Less work at consume_skb() (less alien page frag freeing)
1530 	 */
1531 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1532 		skb_condense(skb);
1533 
1534 		busy = busylock_acquire(sk);
1535 	}
1536 	size = skb->truesize;
1537 	udp_set_dev_scratch(skb);
1538 
1539 	/* we drop only if the receive buf is full and the receive
1540 	 * queue contains some other skb
1541 	 */
1542 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1543 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1544 		goto uncharge_drop;
1545 
1546 	spin_lock(&list->lock);
1547 	if (size >= sk->sk_forward_alloc) {
1548 		amt = sk_mem_pages(size);
1549 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1550 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1551 			err = -ENOBUFS;
1552 			spin_unlock(&list->lock);
1553 			goto uncharge_drop;
1554 		}
1555 
1556 		sk->sk_forward_alloc += delta;
1557 	}
1558 
1559 	sk->sk_forward_alloc -= size;
1560 
1561 	/* no need to setup a destructor, we will explicitly release the
1562 	 * forward allocated memory on dequeue
1563 	 */
1564 	sock_skb_set_dropcount(sk, skb);
1565 
1566 	__skb_queue_tail(list, skb);
1567 	spin_unlock(&list->lock);
1568 
1569 	if (!sock_flag(sk, SOCK_DEAD))
1570 		sk->sk_data_ready(sk);
1571 
1572 	busylock_release(busy);
1573 	return 0;
1574 
1575 uncharge_drop:
1576 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1577 
1578 drop:
1579 	atomic_inc(&sk->sk_drops);
1580 	busylock_release(busy);
1581 	return err;
1582 }
1583 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1584 
udp_destruct_sock(struct sock * sk)1585 void udp_destruct_sock(struct sock *sk)
1586 {
1587 	/* reclaim completely the forward allocated memory */
1588 	struct udp_sock *up = udp_sk(sk);
1589 	unsigned int total = 0;
1590 	struct sk_buff *skb;
1591 
1592 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1593 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1594 		total += skb->truesize;
1595 		kfree_skb(skb);
1596 	}
1597 	udp_rmem_release(sk, total, 0, true);
1598 
1599 	inet_sock_destruct(sk);
1600 }
1601 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1602 
udp_init_sock(struct sock * sk)1603 int udp_init_sock(struct sock *sk)
1604 {
1605 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1606 	sk->sk_destruct = udp_destruct_sock;
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(udp_init_sock);
1610 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1611 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1612 {
1613 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1614 		bool slow = lock_sock_fast(sk);
1615 
1616 		sk_peek_offset_bwd(sk, len);
1617 		unlock_sock_fast(sk, slow);
1618 	}
1619 
1620 	if (!skb_unref(skb))
1621 		return;
1622 
1623 	/* In the more common cases we cleared the head states previously,
1624 	 * see __udp_queue_rcv_skb().
1625 	 */
1626 	if (unlikely(udp_skb_has_head_state(skb)))
1627 		skb_release_head_state(skb);
1628 	__consume_stateless_skb(skb);
1629 }
1630 EXPORT_SYMBOL_GPL(skb_consume_udp);
1631 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1632 static struct sk_buff *__first_packet_length(struct sock *sk,
1633 					     struct sk_buff_head *rcvq,
1634 					     int *total)
1635 {
1636 	struct sk_buff *skb;
1637 
1638 	while ((skb = skb_peek(rcvq)) != NULL) {
1639 		if (udp_lib_checksum_complete(skb)) {
1640 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1641 					IS_UDPLITE(sk));
1642 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1643 					IS_UDPLITE(sk));
1644 			atomic_inc(&sk->sk_drops);
1645 			__skb_unlink(skb, rcvq);
1646 			*total += skb->truesize;
1647 			kfree_skb(skb);
1648 		} else {
1649 			udp_skb_csum_unnecessary_set(skb);
1650 			break;
1651 		}
1652 	}
1653 	return skb;
1654 }
1655 
1656 /**
1657  *	first_packet_length	- return length of first packet in receive queue
1658  *	@sk: socket
1659  *
1660  *	Drops all bad checksum frames, until a valid one is found.
1661  *	Returns the length of found skb, or -1 if none is found.
1662  */
first_packet_length(struct sock * sk)1663 static int first_packet_length(struct sock *sk)
1664 {
1665 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1666 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1667 	struct sk_buff *skb;
1668 	int total = 0;
1669 	int res;
1670 
1671 	spin_lock_bh(&rcvq->lock);
1672 	skb = __first_packet_length(sk, rcvq, &total);
1673 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1674 		spin_lock(&sk_queue->lock);
1675 		skb_queue_splice_tail_init(sk_queue, rcvq);
1676 		spin_unlock(&sk_queue->lock);
1677 
1678 		skb = __first_packet_length(sk, rcvq, &total);
1679 	}
1680 	res = skb ? skb->len : -1;
1681 	if (total)
1682 		udp_rmem_release(sk, total, 1, false);
1683 	spin_unlock_bh(&rcvq->lock);
1684 	return res;
1685 }
1686 
1687 /*
1688  *	IOCTL requests applicable to the UDP protocol
1689  */
1690 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1691 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1692 {
1693 	switch (cmd) {
1694 	case SIOCOUTQ:
1695 	{
1696 		int amount = sk_wmem_alloc_get(sk);
1697 
1698 		return put_user(amount, (int __user *)arg);
1699 	}
1700 
1701 	case SIOCINQ:
1702 	{
1703 		int amount = max_t(int, 0, first_packet_length(sk));
1704 
1705 		return put_user(amount, (int __user *)arg);
1706 	}
1707 
1708 	default:
1709 		return -ENOIOCTLCMD;
1710 	}
1711 
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL(udp_ioctl);
1715 
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1716 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1717 			       int noblock, int *off, int *err)
1718 {
1719 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1720 	struct sk_buff_head *queue;
1721 	struct sk_buff *last;
1722 	long timeo;
1723 	int error;
1724 
1725 	queue = &udp_sk(sk)->reader_queue;
1726 	flags |= noblock ? MSG_DONTWAIT : 0;
1727 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1728 	do {
1729 		struct sk_buff *skb;
1730 
1731 		error = sock_error(sk);
1732 		if (error)
1733 			break;
1734 
1735 		error = -EAGAIN;
1736 		do {
1737 			spin_lock_bh(&queue->lock);
1738 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1739 							err, &last);
1740 			if (skb) {
1741 				if (!(flags & MSG_PEEK))
1742 					udp_skb_destructor(sk, skb);
1743 				spin_unlock_bh(&queue->lock);
1744 				return skb;
1745 			}
1746 
1747 			if (skb_queue_empty_lockless(sk_queue)) {
1748 				spin_unlock_bh(&queue->lock);
1749 				goto busy_check;
1750 			}
1751 
1752 			/* refill the reader queue and walk it again
1753 			 * keep both queues locked to avoid re-acquiring
1754 			 * the sk_receive_queue lock if fwd memory scheduling
1755 			 * is needed.
1756 			 */
1757 			spin_lock(&sk_queue->lock);
1758 			skb_queue_splice_tail_init(sk_queue, queue);
1759 
1760 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1761 							err, &last);
1762 			if (skb && !(flags & MSG_PEEK))
1763 				udp_skb_dtor_locked(sk, skb);
1764 			spin_unlock(&sk_queue->lock);
1765 			spin_unlock_bh(&queue->lock);
1766 			if (skb)
1767 				return skb;
1768 
1769 busy_check:
1770 			if (!sk_can_busy_loop(sk))
1771 				break;
1772 
1773 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1774 		} while (!skb_queue_empty_lockless(sk_queue));
1775 
1776 		/* sk_queue is empty, reader_queue may contain peeked packets */
1777 	} while (timeo &&
1778 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1779 					      &error, &timeo,
1780 					      (struct sk_buff *)sk_queue));
1781 
1782 	*err = error;
1783 	return NULL;
1784 }
1785 EXPORT_SYMBOL(__skb_recv_udp);
1786 
1787 /*
1788  * 	This should be easy, if there is something there we
1789  * 	return it, otherwise we block.
1790  */
1791 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1792 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1793 		int flags, int *addr_len)
1794 {
1795 	struct inet_sock *inet = inet_sk(sk);
1796 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1797 	struct sk_buff *skb;
1798 	unsigned int ulen, copied;
1799 	int off, err, peeking = flags & MSG_PEEK;
1800 	int is_udplite = IS_UDPLITE(sk);
1801 	bool checksum_valid = false;
1802 
1803 	if (flags & MSG_ERRQUEUE)
1804 		return ip_recv_error(sk, msg, len, addr_len);
1805 
1806 try_again:
1807 	off = sk_peek_offset(sk, flags);
1808 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1809 	if (!skb)
1810 		return err;
1811 
1812 	ulen = udp_skb_len(skb);
1813 	copied = len;
1814 	if (copied > ulen - off)
1815 		copied = ulen - off;
1816 	else if (copied < ulen)
1817 		msg->msg_flags |= MSG_TRUNC;
1818 
1819 	/*
1820 	 * If checksum is needed at all, try to do it while copying the
1821 	 * data.  If the data is truncated, or if we only want a partial
1822 	 * coverage checksum (UDP-Lite), do it before the copy.
1823 	 */
1824 
1825 	if (copied < ulen || peeking ||
1826 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1827 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1828 				!__udp_lib_checksum_complete(skb);
1829 		if (!checksum_valid)
1830 			goto csum_copy_err;
1831 	}
1832 
1833 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1834 		if (udp_skb_is_linear(skb))
1835 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1836 		else
1837 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1838 	} else {
1839 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1840 
1841 		if (err == -EINVAL)
1842 			goto csum_copy_err;
1843 	}
1844 
1845 	if (unlikely(err)) {
1846 		if (!peeking) {
1847 			atomic_inc(&sk->sk_drops);
1848 			UDP_INC_STATS(sock_net(sk),
1849 				      UDP_MIB_INERRORS, is_udplite);
1850 		}
1851 		kfree_skb(skb);
1852 		return err;
1853 	}
1854 
1855 	if (!peeking)
1856 		UDP_INC_STATS(sock_net(sk),
1857 			      UDP_MIB_INDATAGRAMS, is_udplite);
1858 
1859 	sock_recv_ts_and_drops(msg, sk, skb);
1860 
1861 	/* Copy the address. */
1862 	if (sin) {
1863 		sin->sin_family = AF_INET;
1864 		sin->sin_port = udp_hdr(skb)->source;
1865 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1866 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1867 		*addr_len = sizeof(*sin);
1868 
1869 		if (cgroup_bpf_enabled)
1870 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1871 							(struct sockaddr *)sin);
1872 	}
1873 
1874 	if (udp_sk(sk)->gro_enabled)
1875 		udp_cmsg_recv(msg, sk, skb);
1876 
1877 	if (inet->cmsg_flags)
1878 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1879 
1880 	err = copied;
1881 	if (flags & MSG_TRUNC)
1882 		err = ulen;
1883 
1884 	skb_consume_udp(sk, skb, peeking ? -err : err);
1885 	return err;
1886 
1887 csum_copy_err:
1888 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1889 				 udp_skb_destructor)) {
1890 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1891 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1892 	}
1893 	kfree_skb(skb);
1894 
1895 	/* starting over for a new packet, but check if we need to yield */
1896 	cond_resched();
1897 	msg->msg_flags &= ~MSG_TRUNC;
1898 	goto try_again;
1899 }
1900 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1901 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1902 {
1903 	/* This check is replicated from __ip4_datagram_connect() and
1904 	 * intended to prevent BPF program called below from accessing bytes
1905 	 * that are out of the bound specified by user in addr_len.
1906 	 */
1907 	if (addr_len < sizeof(struct sockaddr_in))
1908 		return -EINVAL;
1909 
1910 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1911 }
1912 EXPORT_SYMBOL(udp_pre_connect);
1913 
__udp_disconnect(struct sock * sk,int flags)1914 int __udp_disconnect(struct sock *sk, int flags)
1915 {
1916 	struct inet_sock *inet = inet_sk(sk);
1917 	/*
1918 	 *	1003.1g - break association.
1919 	 */
1920 
1921 	sk->sk_state = TCP_CLOSE;
1922 	inet->inet_daddr = 0;
1923 	inet->inet_dport = 0;
1924 	sock_rps_reset_rxhash(sk);
1925 	sk->sk_bound_dev_if = 0;
1926 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1927 		inet_reset_saddr(sk);
1928 		if (sk->sk_prot->rehash &&
1929 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1930 			sk->sk_prot->rehash(sk);
1931 	}
1932 
1933 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1934 		sk->sk_prot->unhash(sk);
1935 		inet->inet_sport = 0;
1936 	}
1937 	sk_dst_reset(sk);
1938 	return 0;
1939 }
1940 EXPORT_SYMBOL(__udp_disconnect);
1941 
udp_disconnect(struct sock * sk,int flags)1942 int udp_disconnect(struct sock *sk, int flags)
1943 {
1944 	lock_sock(sk);
1945 	__udp_disconnect(sk, flags);
1946 	release_sock(sk);
1947 	return 0;
1948 }
1949 EXPORT_SYMBOL(udp_disconnect);
1950 
udp_lib_unhash(struct sock * sk)1951 void udp_lib_unhash(struct sock *sk)
1952 {
1953 	if (sk_hashed(sk)) {
1954 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1955 		struct udp_hslot *hslot, *hslot2;
1956 
1957 		hslot  = udp_hashslot(udptable, sock_net(sk),
1958 				      udp_sk(sk)->udp_port_hash);
1959 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1960 
1961 		spin_lock_bh(&hslot->lock);
1962 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1963 			reuseport_detach_sock(sk);
1964 		if (sk_del_node_init_rcu(sk)) {
1965 			hslot->count--;
1966 			inet_sk(sk)->inet_num = 0;
1967 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1968 
1969 			spin_lock(&hslot2->lock);
1970 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1971 			hslot2->count--;
1972 			spin_unlock(&hslot2->lock);
1973 		}
1974 		spin_unlock_bh(&hslot->lock);
1975 	}
1976 }
1977 EXPORT_SYMBOL(udp_lib_unhash);
1978 
1979 /*
1980  * inet_rcv_saddr was changed, we must rehash secondary hash
1981  */
udp_lib_rehash(struct sock * sk,u16 newhash)1982 void udp_lib_rehash(struct sock *sk, u16 newhash)
1983 {
1984 	if (sk_hashed(sk)) {
1985 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1986 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1987 
1988 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1989 		nhslot2 = udp_hashslot2(udptable, newhash);
1990 		udp_sk(sk)->udp_portaddr_hash = newhash;
1991 
1992 		if (hslot2 != nhslot2 ||
1993 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1994 			hslot = udp_hashslot(udptable, sock_net(sk),
1995 					     udp_sk(sk)->udp_port_hash);
1996 			/* we must lock primary chain too */
1997 			spin_lock_bh(&hslot->lock);
1998 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1999 				reuseport_detach_sock(sk);
2000 
2001 			if (hslot2 != nhslot2) {
2002 				spin_lock(&hslot2->lock);
2003 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2004 				hslot2->count--;
2005 				spin_unlock(&hslot2->lock);
2006 
2007 				spin_lock(&nhslot2->lock);
2008 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2009 							 &nhslot2->head);
2010 				nhslot2->count++;
2011 				spin_unlock(&nhslot2->lock);
2012 			}
2013 
2014 			spin_unlock_bh(&hslot->lock);
2015 		}
2016 	}
2017 }
2018 EXPORT_SYMBOL(udp_lib_rehash);
2019 
udp_v4_rehash(struct sock * sk)2020 void udp_v4_rehash(struct sock *sk)
2021 {
2022 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2023 					  inet_sk(sk)->inet_rcv_saddr,
2024 					  inet_sk(sk)->inet_num);
2025 	udp_lib_rehash(sk, new_hash);
2026 }
2027 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2028 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2029 {
2030 	int rc;
2031 
2032 	if (inet_sk(sk)->inet_daddr) {
2033 		sock_rps_save_rxhash(sk, skb);
2034 		sk_mark_napi_id(sk, skb);
2035 		sk_incoming_cpu_update(sk);
2036 	} else {
2037 		sk_mark_napi_id_once(sk, skb);
2038 	}
2039 
2040 	rc = __udp_enqueue_schedule_skb(sk, skb);
2041 	if (rc < 0) {
2042 		int is_udplite = IS_UDPLITE(sk);
2043 
2044 		/* Note that an ENOMEM error is charged twice */
2045 		if (rc == -ENOMEM)
2046 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2047 					is_udplite);
2048 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2049 		kfree_skb(skb);
2050 		trace_udp_fail_queue_rcv_skb(rc, sk);
2051 		return -1;
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 /* returns:
2058  *  -1: error
2059  *   0: success
2060  *  >0: "udp encap" protocol resubmission
2061  *
2062  * Note that in the success and error cases, the skb is assumed to
2063  * have either been requeued or freed.
2064  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2065 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2066 {
2067 	struct udp_sock *up = udp_sk(sk);
2068 	int is_udplite = IS_UDPLITE(sk);
2069 
2070 	/*
2071 	 *	Charge it to the socket, dropping if the queue is full.
2072 	 */
2073 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2074 		goto drop;
2075 	nf_reset_ct(skb);
2076 
2077 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2078 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2079 
2080 		/*
2081 		 * This is an encapsulation socket so pass the skb to
2082 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2083 		 * fall through and pass this up the UDP socket.
2084 		 * up->encap_rcv() returns the following value:
2085 		 * =0 if skb was successfully passed to the encap
2086 		 *    handler or was discarded by it.
2087 		 * >0 if skb should be passed on to UDP.
2088 		 * <0 if skb should be resubmitted as proto -N
2089 		 */
2090 
2091 		/* if we're overly short, let UDP handle it */
2092 		encap_rcv = READ_ONCE(up->encap_rcv);
2093 		if (encap_rcv) {
2094 			int ret;
2095 
2096 			/* Verify checksum before giving to encap */
2097 			if (udp_lib_checksum_complete(skb))
2098 				goto csum_error;
2099 
2100 			ret = encap_rcv(sk, skb);
2101 			if (ret <= 0) {
2102 				__UDP_INC_STATS(sock_net(sk),
2103 						UDP_MIB_INDATAGRAMS,
2104 						is_udplite);
2105 				return -ret;
2106 			}
2107 		}
2108 
2109 		/* FALLTHROUGH -- it's a UDP Packet */
2110 	}
2111 
2112 	/*
2113 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2114 	 */
2115 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2116 
2117 		/*
2118 		 * MIB statistics other than incrementing the error count are
2119 		 * disabled for the following two types of errors: these depend
2120 		 * on the application settings, not on the functioning of the
2121 		 * protocol stack as such.
2122 		 *
2123 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2124 		 * way ... to ... at least let the receiving application block
2125 		 * delivery of packets with coverage values less than a value
2126 		 * provided by the application."
2127 		 */
2128 		if (up->pcrlen == 0) {          /* full coverage was set  */
2129 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2130 					    UDP_SKB_CB(skb)->cscov, skb->len);
2131 			goto drop;
2132 		}
2133 		/* The next case involves violating the min. coverage requested
2134 		 * by the receiver. This is subtle: if receiver wants x and x is
2135 		 * greater than the buffersize/MTU then receiver will complain
2136 		 * that it wants x while sender emits packets of smaller size y.
2137 		 * Therefore the above ...()->partial_cov statement is essential.
2138 		 */
2139 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2140 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2141 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2142 			goto drop;
2143 		}
2144 	}
2145 
2146 	prefetch(&sk->sk_rmem_alloc);
2147 	if (rcu_access_pointer(sk->sk_filter) &&
2148 	    udp_lib_checksum_complete(skb))
2149 			goto csum_error;
2150 
2151 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2152 		goto drop;
2153 
2154 	udp_csum_pull_header(skb);
2155 
2156 	ipv4_pktinfo_prepare(sk, skb);
2157 	return __udp_queue_rcv_skb(sk, skb);
2158 
2159 csum_error:
2160 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2161 drop:
2162 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2163 	atomic_inc(&sk->sk_drops);
2164 	kfree_skb(skb);
2165 	return -1;
2166 }
2167 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2168 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2169 {
2170 	struct sk_buff *next, *segs;
2171 	int ret;
2172 
2173 	if (likely(!udp_unexpected_gso(sk, skb)))
2174 		return udp_queue_rcv_one_skb(sk, skb);
2175 
2176 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2177 	__skb_push(skb, -skb_mac_offset(skb));
2178 	segs = udp_rcv_segment(sk, skb, true);
2179 	skb_list_walk_safe(segs, skb, next) {
2180 		__skb_pull(skb, skb_transport_offset(skb));
2181 		ret = udp_queue_rcv_one_skb(sk, skb);
2182 		if (ret > 0)
2183 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2184 	}
2185 	return 0;
2186 }
2187 
2188 /* For TCP sockets, sk_rx_dst is protected by socket lock
2189  * For UDP, we use xchg() to guard against concurrent changes.
2190  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2191 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2192 {
2193 	struct dst_entry *old;
2194 
2195 	if (dst_hold_safe(dst)) {
2196 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2197 		dst_release(old);
2198 		return old != dst;
2199 	}
2200 	return false;
2201 }
2202 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2203 
2204 /*
2205  *	Multicasts and broadcasts go to each listener.
2206  *
2207  *	Note: called only from the BH handler context.
2208  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2209 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2210 				    struct udphdr  *uh,
2211 				    __be32 saddr, __be32 daddr,
2212 				    struct udp_table *udptable,
2213 				    int proto)
2214 {
2215 	struct sock *sk, *first = NULL;
2216 	unsigned short hnum = ntohs(uh->dest);
2217 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2218 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2219 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2220 	int dif = skb->dev->ifindex;
2221 	int sdif = inet_sdif(skb);
2222 	struct hlist_node *node;
2223 	struct sk_buff *nskb;
2224 
2225 	if (use_hash2) {
2226 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2227 			    udptable->mask;
2228 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2229 start_lookup:
2230 		hslot = &udptable->hash2[hash2];
2231 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2232 	}
2233 
2234 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2235 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2236 					 uh->source, saddr, dif, sdif, hnum))
2237 			continue;
2238 
2239 		if (!first) {
2240 			first = sk;
2241 			continue;
2242 		}
2243 		nskb = skb_clone(skb, GFP_ATOMIC);
2244 
2245 		if (unlikely(!nskb)) {
2246 			atomic_inc(&sk->sk_drops);
2247 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2248 					IS_UDPLITE(sk));
2249 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2250 					IS_UDPLITE(sk));
2251 			continue;
2252 		}
2253 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2254 			consume_skb(nskb);
2255 	}
2256 
2257 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2258 	if (use_hash2 && hash2 != hash2_any) {
2259 		hash2 = hash2_any;
2260 		goto start_lookup;
2261 	}
2262 
2263 	if (first) {
2264 		if (udp_queue_rcv_skb(first, skb) > 0)
2265 			consume_skb(skb);
2266 	} else {
2267 		kfree_skb(skb);
2268 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2269 				proto == IPPROTO_UDPLITE);
2270 	}
2271 	return 0;
2272 }
2273 
2274 /* Initialize UDP checksum. If exited with zero value (success),
2275  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2276  * Otherwise, csum completion requires checksumming packet body,
2277  * including udp header and folding it to skb->csum.
2278  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2279 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2280 				 int proto)
2281 {
2282 	int err;
2283 
2284 	UDP_SKB_CB(skb)->partial_cov = 0;
2285 	UDP_SKB_CB(skb)->cscov = skb->len;
2286 
2287 	if (proto == IPPROTO_UDPLITE) {
2288 		err = udplite_checksum_init(skb, uh);
2289 		if (err)
2290 			return err;
2291 
2292 		if (UDP_SKB_CB(skb)->partial_cov) {
2293 			skb->csum = inet_compute_pseudo(skb, proto);
2294 			return 0;
2295 		}
2296 	}
2297 
2298 	/* Note, we are only interested in != 0 or == 0, thus the
2299 	 * force to int.
2300 	 */
2301 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2302 							inet_compute_pseudo);
2303 	if (err)
2304 		return err;
2305 
2306 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2307 		/* If SW calculated the value, we know it's bad */
2308 		if (skb->csum_complete_sw)
2309 			return 1;
2310 
2311 		/* HW says the value is bad. Let's validate that.
2312 		 * skb->csum is no longer the full packet checksum,
2313 		 * so don't treat it as such.
2314 		 */
2315 		skb_checksum_complete_unset(skb);
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2322  * return code conversion for ip layer consumption
2323  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2324 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2325 			       struct udphdr *uh)
2326 {
2327 	int ret;
2328 
2329 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2330 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2331 
2332 	ret = udp_queue_rcv_skb(sk, skb);
2333 
2334 	/* a return value > 0 means to resubmit the input, but
2335 	 * it wants the return to be -protocol, or 0
2336 	 */
2337 	if (ret > 0)
2338 		return -ret;
2339 	return 0;
2340 }
2341 
2342 /*
2343  *	All we need to do is get the socket, and then do a checksum.
2344  */
2345 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2346 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2347 		   int proto)
2348 {
2349 	struct sock *sk;
2350 	struct udphdr *uh;
2351 	unsigned short ulen;
2352 	struct rtable *rt = skb_rtable(skb);
2353 	__be32 saddr, daddr;
2354 	struct net *net = dev_net(skb->dev);
2355 	bool refcounted;
2356 
2357 	/*
2358 	 *  Validate the packet.
2359 	 */
2360 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2361 		goto drop;		/* No space for header. */
2362 
2363 	uh   = udp_hdr(skb);
2364 	ulen = ntohs(uh->len);
2365 	saddr = ip_hdr(skb)->saddr;
2366 	daddr = ip_hdr(skb)->daddr;
2367 
2368 	if (ulen > skb->len)
2369 		goto short_packet;
2370 
2371 	if (proto == IPPROTO_UDP) {
2372 		/* UDP validates ulen. */
2373 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2374 			goto short_packet;
2375 		uh = udp_hdr(skb);
2376 	}
2377 
2378 	if (udp4_csum_init(skb, uh, proto))
2379 		goto csum_error;
2380 
2381 	sk = skb_steal_sock(skb, &refcounted);
2382 	if (sk) {
2383 		struct dst_entry *dst = skb_dst(skb);
2384 		int ret;
2385 
2386 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2387 			udp_sk_rx_dst_set(sk, dst);
2388 
2389 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2390 		if (refcounted)
2391 			sock_put(sk);
2392 		return ret;
2393 	}
2394 
2395 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2396 		return __udp4_lib_mcast_deliver(net, skb, uh,
2397 						saddr, daddr, udptable, proto);
2398 
2399 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2400 	if (sk)
2401 		return udp_unicast_rcv_skb(sk, skb, uh);
2402 
2403 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2404 		goto drop;
2405 	nf_reset_ct(skb);
2406 
2407 	/* No socket. Drop packet silently, if checksum is wrong */
2408 	if (udp_lib_checksum_complete(skb))
2409 		goto csum_error;
2410 
2411 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2412 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2413 
2414 	/*
2415 	 * Hmm.  We got an UDP packet to a port to which we
2416 	 * don't wanna listen.  Ignore it.
2417 	 */
2418 	kfree_skb(skb);
2419 	return 0;
2420 
2421 short_packet:
2422 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2423 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2424 			    &saddr, ntohs(uh->source),
2425 			    ulen, skb->len,
2426 			    &daddr, ntohs(uh->dest));
2427 	goto drop;
2428 
2429 csum_error:
2430 	/*
2431 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2432 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2433 	 */
2434 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2435 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2436 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2437 			    ulen);
2438 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2439 drop:
2440 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2441 	kfree_skb(skb);
2442 	return 0;
2443 }
2444 
2445 /* We can only early demux multicast if there is a single matching socket.
2446  * If more than one socket found returns NULL
2447  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2448 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2449 						  __be16 loc_port, __be32 loc_addr,
2450 						  __be16 rmt_port, __be32 rmt_addr,
2451 						  int dif, int sdif)
2452 {
2453 	struct sock *sk, *result;
2454 	unsigned short hnum = ntohs(loc_port);
2455 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2456 	struct udp_hslot *hslot = &udp_table.hash[slot];
2457 
2458 	/* Do not bother scanning a too big list */
2459 	if (hslot->count > 10)
2460 		return NULL;
2461 
2462 	result = NULL;
2463 	sk_for_each_rcu(sk, &hslot->head) {
2464 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2465 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2466 			if (result)
2467 				return NULL;
2468 			result = sk;
2469 		}
2470 	}
2471 
2472 	return result;
2473 }
2474 
2475 /* For unicast we should only early demux connected sockets or we can
2476  * break forwarding setups.  The chains here can be long so only check
2477  * if the first socket is an exact match and if not move on.
2478  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2479 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2480 					    __be16 loc_port, __be32 loc_addr,
2481 					    __be16 rmt_port, __be32 rmt_addr,
2482 					    int dif, int sdif)
2483 {
2484 	unsigned short hnum = ntohs(loc_port);
2485 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2486 	unsigned int slot2 = hash2 & udp_table.mask;
2487 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2488 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2489 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2490 	struct sock *sk;
2491 
2492 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2493 		if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2494 			return sk;
2495 		/* Only check first socket in chain */
2496 		break;
2497 	}
2498 	return NULL;
2499 }
2500 
udp_v4_early_demux(struct sk_buff * skb)2501 int udp_v4_early_demux(struct sk_buff *skb)
2502 {
2503 	struct net *net = dev_net(skb->dev);
2504 	struct in_device *in_dev = NULL;
2505 	const struct iphdr *iph;
2506 	const struct udphdr *uh;
2507 	struct sock *sk = NULL;
2508 	struct dst_entry *dst;
2509 	int dif = skb->dev->ifindex;
2510 	int sdif = inet_sdif(skb);
2511 	int ours;
2512 
2513 	/* validate the packet */
2514 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2515 		return 0;
2516 
2517 	iph = ip_hdr(skb);
2518 	uh = udp_hdr(skb);
2519 
2520 	if (skb->pkt_type == PACKET_MULTICAST) {
2521 		in_dev = __in_dev_get_rcu(skb->dev);
2522 
2523 		if (!in_dev)
2524 			return 0;
2525 
2526 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2527 				       iph->protocol);
2528 		if (!ours)
2529 			return 0;
2530 
2531 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2532 						   uh->source, iph->saddr,
2533 						   dif, sdif);
2534 	} else if (skb->pkt_type == PACKET_HOST) {
2535 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2536 					     uh->source, iph->saddr, dif, sdif);
2537 	}
2538 
2539 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2540 		return 0;
2541 
2542 	skb->sk = sk;
2543 	skb->destructor = sock_efree;
2544 	dst = rcu_dereference(sk->sk_rx_dst);
2545 
2546 	if (dst)
2547 		dst = dst_check(dst, 0);
2548 	if (dst) {
2549 		u32 itag = 0;
2550 
2551 		/* set noref for now.
2552 		 * any place which wants to hold dst has to call
2553 		 * dst_hold_safe()
2554 		 */
2555 		skb_dst_set_noref(skb, dst);
2556 
2557 		/* for unconnected multicast sockets we need to validate
2558 		 * the source on each packet
2559 		 */
2560 		if (!inet_sk(sk)->inet_daddr && in_dev)
2561 			return ip_mc_validate_source(skb, iph->daddr,
2562 						     iph->saddr,
2563 						     iph->tos & IPTOS_RT_MASK,
2564 						     skb->dev, in_dev, &itag);
2565 	}
2566 	return 0;
2567 }
2568 
udp_rcv(struct sk_buff * skb)2569 int udp_rcv(struct sk_buff *skb)
2570 {
2571 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2572 }
2573 
udp_destroy_sock(struct sock * sk)2574 void udp_destroy_sock(struct sock *sk)
2575 {
2576 	struct udp_sock *up = udp_sk(sk);
2577 	bool slow = lock_sock_fast(sk);
2578 
2579 	/* protects from races with udp_abort() */
2580 	sock_set_flag(sk, SOCK_DEAD);
2581 	udp_flush_pending_frames(sk);
2582 	unlock_sock_fast(sk, slow);
2583 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2584 		if (up->encap_type) {
2585 			void (*encap_destroy)(struct sock *sk);
2586 			encap_destroy = READ_ONCE(up->encap_destroy);
2587 			if (encap_destroy)
2588 				encap_destroy(sk);
2589 		}
2590 		if (up->encap_enabled)
2591 			static_branch_dec(&udp_encap_needed_key);
2592 	}
2593 }
2594 
2595 /*
2596  *	Socket option code for UDP
2597  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2598 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2599 		       sockptr_t optval, unsigned int optlen,
2600 		       int (*push_pending_frames)(struct sock *))
2601 {
2602 	struct udp_sock *up = udp_sk(sk);
2603 	int val, valbool;
2604 	int err = 0;
2605 	int is_udplite = IS_UDPLITE(sk);
2606 
2607 	if (optlen < sizeof(int))
2608 		return -EINVAL;
2609 
2610 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2611 		return -EFAULT;
2612 
2613 	valbool = val ? 1 : 0;
2614 
2615 	switch (optname) {
2616 	case UDP_CORK:
2617 		if (val != 0) {
2618 			WRITE_ONCE(up->corkflag, 1);
2619 		} else {
2620 			WRITE_ONCE(up->corkflag, 0);
2621 			lock_sock(sk);
2622 			push_pending_frames(sk);
2623 			release_sock(sk);
2624 		}
2625 		break;
2626 
2627 	case UDP_ENCAP:
2628 		switch (val) {
2629 		case 0:
2630 #ifdef CONFIG_XFRM
2631 		case UDP_ENCAP_ESPINUDP:
2632 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2633 #if IS_ENABLED(CONFIG_IPV6)
2634 			if (sk->sk_family == AF_INET6)
2635 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2636 			else
2637 #endif
2638 				up->encap_rcv = xfrm4_udp_encap_rcv;
2639 #endif
2640 			fallthrough;
2641 		case UDP_ENCAP_L2TPINUDP:
2642 			up->encap_type = val;
2643 			lock_sock(sk);
2644 			udp_tunnel_encap_enable(sk->sk_socket);
2645 			release_sock(sk);
2646 			break;
2647 		default:
2648 			err = -ENOPROTOOPT;
2649 			break;
2650 		}
2651 		break;
2652 
2653 	case UDP_NO_CHECK6_TX:
2654 		up->no_check6_tx = valbool;
2655 		break;
2656 
2657 	case UDP_NO_CHECK6_RX:
2658 		up->no_check6_rx = valbool;
2659 		break;
2660 
2661 	case UDP_SEGMENT:
2662 		if (val < 0 || val > USHRT_MAX)
2663 			return -EINVAL;
2664 		WRITE_ONCE(up->gso_size, val);
2665 		break;
2666 
2667 	case UDP_GRO:
2668 		lock_sock(sk);
2669 
2670 		/* when enabling GRO, accept the related GSO packet type */
2671 		if (valbool)
2672 			udp_tunnel_encap_enable(sk->sk_socket);
2673 		up->gro_enabled = valbool;
2674 		up->accept_udp_l4 = valbool;
2675 		release_sock(sk);
2676 		break;
2677 
2678 	/*
2679 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2680 	 */
2681 	/* The sender sets actual checksum coverage length via this option.
2682 	 * The case coverage > packet length is handled by send module. */
2683 	case UDPLITE_SEND_CSCOV:
2684 		if (!is_udplite)         /* Disable the option on UDP sockets */
2685 			return -ENOPROTOOPT;
2686 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2687 			val = 8;
2688 		else if (val > USHRT_MAX)
2689 			val = USHRT_MAX;
2690 		up->pcslen = val;
2691 		up->pcflag |= UDPLITE_SEND_CC;
2692 		break;
2693 
2694 	/* The receiver specifies a minimum checksum coverage value. To make
2695 	 * sense, this should be set to at least 8 (as done below). If zero is
2696 	 * used, this again means full checksum coverage.                     */
2697 	case UDPLITE_RECV_CSCOV:
2698 		if (!is_udplite)         /* Disable the option on UDP sockets */
2699 			return -ENOPROTOOPT;
2700 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2701 			val = 8;
2702 		else if (val > USHRT_MAX)
2703 			val = USHRT_MAX;
2704 		up->pcrlen = val;
2705 		up->pcflag |= UDPLITE_RECV_CC;
2706 		break;
2707 
2708 	default:
2709 		err = -ENOPROTOOPT;
2710 		break;
2711 	}
2712 
2713 	return err;
2714 }
2715 EXPORT_SYMBOL(udp_lib_setsockopt);
2716 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2717 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2718 		   unsigned int optlen)
2719 {
2720 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2721 		return udp_lib_setsockopt(sk, level, optname,
2722 					  optval, optlen,
2723 					  udp_push_pending_frames);
2724 	return ip_setsockopt(sk, level, optname, optval, optlen);
2725 }
2726 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2727 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2728 		       char __user *optval, int __user *optlen)
2729 {
2730 	struct udp_sock *up = udp_sk(sk);
2731 	int val, len;
2732 
2733 	if (get_user(len, optlen))
2734 		return -EFAULT;
2735 
2736 	len = min_t(unsigned int, len, sizeof(int));
2737 
2738 	if (len < 0)
2739 		return -EINVAL;
2740 
2741 	switch (optname) {
2742 	case UDP_CORK:
2743 		val = READ_ONCE(up->corkflag);
2744 		break;
2745 
2746 	case UDP_ENCAP:
2747 		val = up->encap_type;
2748 		break;
2749 
2750 	case UDP_NO_CHECK6_TX:
2751 		val = up->no_check6_tx;
2752 		break;
2753 
2754 	case UDP_NO_CHECK6_RX:
2755 		val = up->no_check6_rx;
2756 		break;
2757 
2758 	case UDP_SEGMENT:
2759 		val = READ_ONCE(up->gso_size);
2760 		break;
2761 
2762 	case UDP_GRO:
2763 		val = up->gro_enabled;
2764 		break;
2765 
2766 	/* The following two cannot be changed on UDP sockets, the return is
2767 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2768 	case UDPLITE_SEND_CSCOV:
2769 		val = up->pcslen;
2770 		break;
2771 
2772 	case UDPLITE_RECV_CSCOV:
2773 		val = up->pcrlen;
2774 		break;
2775 
2776 	default:
2777 		return -ENOPROTOOPT;
2778 	}
2779 
2780 	if (put_user(len, optlen))
2781 		return -EFAULT;
2782 	if (copy_to_user(optval, &val, len))
2783 		return -EFAULT;
2784 	return 0;
2785 }
2786 EXPORT_SYMBOL(udp_lib_getsockopt);
2787 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2788 int udp_getsockopt(struct sock *sk, int level, int optname,
2789 		   char __user *optval, int __user *optlen)
2790 {
2791 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2792 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2793 	return ip_getsockopt(sk, level, optname, optval, optlen);
2794 }
2795 
2796 /**
2797  * 	udp_poll - wait for a UDP event.
2798  *	@file: - file struct
2799  *	@sock: - socket
2800  *	@wait: - poll table
2801  *
2802  *	This is same as datagram poll, except for the special case of
2803  *	blocking sockets. If application is using a blocking fd
2804  *	and a packet with checksum error is in the queue;
2805  *	then it could get return from select indicating data available
2806  *	but then block when reading it. Add special case code
2807  *	to work around these arguably broken applications.
2808  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2809 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2810 {
2811 	__poll_t mask = datagram_poll(file, sock, wait);
2812 	struct sock *sk = sock->sk;
2813 
2814 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2815 		mask |= EPOLLIN | EPOLLRDNORM;
2816 
2817 	/* Check for false positives due to checksum errors */
2818 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2819 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2820 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2821 
2822 	return mask;
2823 
2824 }
2825 EXPORT_SYMBOL(udp_poll);
2826 
udp_abort(struct sock * sk,int err)2827 int udp_abort(struct sock *sk, int err)
2828 {
2829 	lock_sock(sk);
2830 
2831 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2832 	 * with close()
2833 	 */
2834 	if (sock_flag(sk, SOCK_DEAD))
2835 		goto out;
2836 
2837 	sk->sk_err = err;
2838 	sk->sk_error_report(sk);
2839 	__udp_disconnect(sk, 0);
2840 
2841 out:
2842 	release_sock(sk);
2843 
2844 	return 0;
2845 }
2846 EXPORT_SYMBOL_GPL(udp_abort);
2847 
2848 struct proto udp_prot = {
2849 	.name			= "UDP",
2850 	.owner			= THIS_MODULE,
2851 	.close			= udp_lib_close,
2852 	.pre_connect		= udp_pre_connect,
2853 	.connect		= ip4_datagram_connect,
2854 	.disconnect		= udp_disconnect,
2855 	.ioctl			= udp_ioctl,
2856 	.init			= udp_init_sock,
2857 	.destroy		= udp_destroy_sock,
2858 	.setsockopt		= udp_setsockopt,
2859 	.getsockopt		= udp_getsockopt,
2860 	.sendmsg		= udp_sendmsg,
2861 	.recvmsg		= udp_recvmsg,
2862 	.sendpage		= udp_sendpage,
2863 	.release_cb		= ip4_datagram_release_cb,
2864 	.hash			= udp_lib_hash,
2865 	.unhash			= udp_lib_unhash,
2866 	.rehash			= udp_v4_rehash,
2867 	.get_port		= udp_v4_get_port,
2868 	.memory_allocated	= &udp_memory_allocated,
2869 	.sysctl_mem		= sysctl_udp_mem,
2870 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2871 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2872 	.obj_size		= sizeof(struct udp_sock),
2873 	.h.udp_table		= &udp_table,
2874 	.diag_destroy		= udp_abort,
2875 };
2876 EXPORT_SYMBOL(udp_prot);
2877 
2878 /* ------------------------------------------------------------------------ */
2879 #ifdef CONFIG_PROC_FS
2880 
udp_get_first(struct seq_file * seq,int start)2881 static struct sock *udp_get_first(struct seq_file *seq, int start)
2882 {
2883 	struct sock *sk;
2884 	struct udp_seq_afinfo *afinfo;
2885 	struct udp_iter_state *state = seq->private;
2886 	struct net *net = seq_file_net(seq);
2887 
2888 	if (state->bpf_seq_afinfo)
2889 		afinfo = state->bpf_seq_afinfo;
2890 	else
2891 		afinfo = PDE_DATA(file_inode(seq->file));
2892 
2893 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2894 	     ++state->bucket) {
2895 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2896 
2897 		if (hlist_empty(&hslot->head))
2898 			continue;
2899 
2900 		spin_lock_bh(&hslot->lock);
2901 		sk_for_each(sk, &hslot->head) {
2902 			if (!net_eq(sock_net(sk), net))
2903 				continue;
2904 			if (afinfo->family == AF_UNSPEC ||
2905 			    sk->sk_family == afinfo->family)
2906 				goto found;
2907 		}
2908 		spin_unlock_bh(&hslot->lock);
2909 	}
2910 	sk = NULL;
2911 found:
2912 	return sk;
2913 }
2914 
udp_get_next(struct seq_file * seq,struct sock * sk)2915 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2916 {
2917 	struct udp_seq_afinfo *afinfo;
2918 	struct udp_iter_state *state = seq->private;
2919 	struct net *net = seq_file_net(seq);
2920 
2921 	if (state->bpf_seq_afinfo)
2922 		afinfo = state->bpf_seq_afinfo;
2923 	else
2924 		afinfo = PDE_DATA(file_inode(seq->file));
2925 
2926 	do {
2927 		sk = sk_next(sk);
2928 	} while (sk && (!net_eq(sock_net(sk), net) ||
2929 			(afinfo->family != AF_UNSPEC &&
2930 			 sk->sk_family != afinfo->family)));
2931 
2932 	if (!sk) {
2933 		if (state->bucket <= afinfo->udp_table->mask)
2934 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2935 		return udp_get_first(seq, state->bucket + 1);
2936 	}
2937 	return sk;
2938 }
2939 
udp_get_idx(struct seq_file * seq,loff_t pos)2940 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2941 {
2942 	struct sock *sk = udp_get_first(seq, 0);
2943 
2944 	if (sk)
2945 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2946 			--pos;
2947 	return pos ? NULL : sk;
2948 }
2949 
udp_seq_start(struct seq_file * seq,loff_t * pos)2950 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2951 {
2952 	struct udp_iter_state *state = seq->private;
2953 	state->bucket = MAX_UDP_PORTS;
2954 
2955 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2956 }
2957 EXPORT_SYMBOL(udp_seq_start);
2958 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2959 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2960 {
2961 	struct sock *sk;
2962 
2963 	if (v == SEQ_START_TOKEN)
2964 		sk = udp_get_idx(seq, 0);
2965 	else
2966 		sk = udp_get_next(seq, v);
2967 
2968 	++*pos;
2969 	return sk;
2970 }
2971 EXPORT_SYMBOL(udp_seq_next);
2972 
udp_seq_stop(struct seq_file * seq,void * v)2973 void udp_seq_stop(struct seq_file *seq, void *v)
2974 {
2975 	struct udp_seq_afinfo *afinfo;
2976 	struct udp_iter_state *state = seq->private;
2977 
2978 	if (state->bpf_seq_afinfo)
2979 		afinfo = state->bpf_seq_afinfo;
2980 	else
2981 		afinfo = PDE_DATA(file_inode(seq->file));
2982 
2983 	if (state->bucket <= afinfo->udp_table->mask)
2984 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2985 }
2986 EXPORT_SYMBOL(udp_seq_stop);
2987 
2988 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2989 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2990 		int bucket)
2991 {
2992 	struct inet_sock *inet = inet_sk(sp);
2993 	__be32 dest = inet->inet_daddr;
2994 	__be32 src  = inet->inet_rcv_saddr;
2995 	__u16 destp	  = ntohs(inet->inet_dport);
2996 	__u16 srcp	  = ntohs(inet->inet_sport);
2997 
2998 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2999 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3000 		bucket, src, srcp, dest, destp, sp->sk_state,
3001 		sk_wmem_alloc_get(sp),
3002 		udp_rqueue_get(sp),
3003 		0, 0L, 0,
3004 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3005 		0, sock_i_ino(sp),
3006 		refcount_read(&sp->sk_refcnt), sp,
3007 		atomic_read(&sp->sk_drops));
3008 }
3009 
udp4_seq_show(struct seq_file * seq,void * v)3010 int udp4_seq_show(struct seq_file *seq, void *v)
3011 {
3012 	seq_setwidth(seq, 127);
3013 	if (v == SEQ_START_TOKEN)
3014 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3015 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3016 			   "inode ref pointer drops");
3017 	else {
3018 		struct udp_iter_state *state = seq->private;
3019 
3020 		udp4_format_sock(v, seq, state->bucket);
3021 	}
3022 	seq_pad(seq, '\n');
3023 	return 0;
3024 }
3025 
3026 #ifdef CONFIG_BPF_SYSCALL
3027 struct bpf_iter__udp {
3028 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3029 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3030 	uid_t uid __aligned(8);
3031 	int bucket __aligned(8);
3032 };
3033 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3034 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3035 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3036 {
3037 	struct bpf_iter__udp ctx;
3038 
3039 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3040 	ctx.meta = meta;
3041 	ctx.udp_sk = udp_sk;
3042 	ctx.uid = uid;
3043 	ctx.bucket = bucket;
3044 	return bpf_iter_run_prog(prog, &ctx);
3045 }
3046 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3047 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3048 {
3049 	struct udp_iter_state *state = seq->private;
3050 	struct bpf_iter_meta meta;
3051 	struct bpf_prog *prog;
3052 	struct sock *sk = v;
3053 	uid_t uid;
3054 
3055 	if (v == SEQ_START_TOKEN)
3056 		return 0;
3057 
3058 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3059 	meta.seq = seq;
3060 	prog = bpf_iter_get_info(&meta, false);
3061 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3062 }
3063 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3064 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3065 {
3066 	struct bpf_iter_meta meta;
3067 	struct bpf_prog *prog;
3068 
3069 	if (!v) {
3070 		meta.seq = seq;
3071 		prog = bpf_iter_get_info(&meta, true);
3072 		if (prog)
3073 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3074 	}
3075 
3076 	udp_seq_stop(seq, v);
3077 }
3078 
3079 static const struct seq_operations bpf_iter_udp_seq_ops = {
3080 	.start		= udp_seq_start,
3081 	.next		= udp_seq_next,
3082 	.stop		= bpf_iter_udp_seq_stop,
3083 	.show		= bpf_iter_udp_seq_show,
3084 };
3085 #endif
3086 
3087 const struct seq_operations udp_seq_ops = {
3088 	.start		= udp_seq_start,
3089 	.next		= udp_seq_next,
3090 	.stop		= udp_seq_stop,
3091 	.show		= udp4_seq_show,
3092 };
3093 EXPORT_SYMBOL(udp_seq_ops);
3094 
3095 static struct udp_seq_afinfo udp4_seq_afinfo = {
3096 	.family		= AF_INET,
3097 	.udp_table	= &udp_table,
3098 };
3099 
udp4_proc_init_net(struct net * net)3100 static int __net_init udp4_proc_init_net(struct net *net)
3101 {
3102 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3103 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3104 		return -ENOMEM;
3105 	return 0;
3106 }
3107 
udp4_proc_exit_net(struct net * net)3108 static void __net_exit udp4_proc_exit_net(struct net *net)
3109 {
3110 	remove_proc_entry("udp", net->proc_net);
3111 }
3112 
3113 static struct pernet_operations udp4_net_ops = {
3114 	.init = udp4_proc_init_net,
3115 	.exit = udp4_proc_exit_net,
3116 };
3117 
udp4_proc_init(void)3118 int __init udp4_proc_init(void)
3119 {
3120 	return register_pernet_subsys(&udp4_net_ops);
3121 }
3122 
udp4_proc_exit(void)3123 void udp4_proc_exit(void)
3124 {
3125 	unregister_pernet_subsys(&udp4_net_ops);
3126 }
3127 #endif /* CONFIG_PROC_FS */
3128 
3129 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3130 static int __init set_uhash_entries(char *str)
3131 {
3132 	ssize_t ret;
3133 
3134 	if (!str)
3135 		return 0;
3136 
3137 	ret = kstrtoul(str, 0, &uhash_entries);
3138 	if (ret)
3139 		return 0;
3140 
3141 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3142 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3143 	return 1;
3144 }
3145 __setup("uhash_entries=", set_uhash_entries);
3146 
udp_table_init(struct udp_table * table,const char * name)3147 void __init udp_table_init(struct udp_table *table, const char *name)
3148 {
3149 	unsigned int i;
3150 
3151 	table->hash = alloc_large_system_hash(name,
3152 					      2 * sizeof(struct udp_hslot),
3153 					      uhash_entries,
3154 					      21, /* one slot per 2 MB */
3155 					      0,
3156 					      &table->log,
3157 					      &table->mask,
3158 					      UDP_HTABLE_SIZE_MIN,
3159 					      64 * 1024);
3160 
3161 	table->hash2 = table->hash + (table->mask + 1);
3162 	for (i = 0; i <= table->mask; i++) {
3163 		INIT_HLIST_HEAD(&table->hash[i].head);
3164 		table->hash[i].count = 0;
3165 		spin_lock_init(&table->hash[i].lock);
3166 	}
3167 	for (i = 0; i <= table->mask; i++) {
3168 		INIT_HLIST_HEAD(&table->hash2[i].head);
3169 		table->hash2[i].count = 0;
3170 		spin_lock_init(&table->hash2[i].lock);
3171 	}
3172 }
3173 
udp_flow_hashrnd(void)3174 u32 udp_flow_hashrnd(void)
3175 {
3176 	static u32 hashrnd __read_mostly;
3177 
3178 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3179 
3180 	return hashrnd;
3181 }
3182 EXPORT_SYMBOL(udp_flow_hashrnd);
3183 
__udp_sysctl_init(struct net * net)3184 static void __udp_sysctl_init(struct net *net)
3185 {
3186 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3187 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3188 
3189 #ifdef CONFIG_NET_L3_MASTER_DEV
3190 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3191 #endif
3192 }
3193 
udp_sysctl_init(struct net * net)3194 static int __net_init udp_sysctl_init(struct net *net)
3195 {
3196 	__udp_sysctl_init(net);
3197 	return 0;
3198 }
3199 
3200 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3201 	.init	= udp_sysctl_init,
3202 };
3203 
3204 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3205 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3206 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3207 
3208 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3209 {
3210 	struct udp_iter_state *st = priv_data;
3211 	struct udp_seq_afinfo *afinfo;
3212 	int ret;
3213 
3214 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3215 	if (!afinfo)
3216 		return -ENOMEM;
3217 
3218 	afinfo->family = AF_UNSPEC;
3219 	afinfo->udp_table = &udp_table;
3220 	st->bpf_seq_afinfo = afinfo;
3221 	ret = bpf_iter_init_seq_net(priv_data, aux);
3222 	if (ret)
3223 		kfree(afinfo);
3224 	return ret;
3225 }
3226 
bpf_iter_fini_udp(void * priv_data)3227 static void bpf_iter_fini_udp(void *priv_data)
3228 {
3229 	struct udp_iter_state *st = priv_data;
3230 
3231 	kfree(st->bpf_seq_afinfo);
3232 	bpf_iter_fini_seq_net(priv_data);
3233 }
3234 
3235 static const struct bpf_iter_seq_info udp_seq_info = {
3236 	.seq_ops		= &bpf_iter_udp_seq_ops,
3237 	.init_seq_private	= bpf_iter_init_udp,
3238 	.fini_seq_private	= bpf_iter_fini_udp,
3239 	.seq_priv_size		= sizeof(struct udp_iter_state),
3240 };
3241 
3242 static struct bpf_iter_reg udp_reg_info = {
3243 	.target			= "udp",
3244 	.ctx_arg_info_size	= 1,
3245 	.ctx_arg_info		= {
3246 		{ offsetof(struct bpf_iter__udp, udp_sk),
3247 		  PTR_TO_BTF_ID_OR_NULL },
3248 	},
3249 	.seq_info		= &udp_seq_info,
3250 };
3251 
bpf_iter_register(void)3252 static void __init bpf_iter_register(void)
3253 {
3254 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3255 	if (bpf_iter_reg_target(&udp_reg_info))
3256 		pr_warn("Warning: could not register bpf iterator udp\n");
3257 }
3258 #endif
3259 
udp_init(void)3260 void __init udp_init(void)
3261 {
3262 	unsigned long limit;
3263 	unsigned int i;
3264 
3265 	udp_table_init(&udp_table, "UDP");
3266 	limit = nr_free_buffer_pages() / 8;
3267 	limit = max(limit, 128UL);
3268 	sysctl_udp_mem[0] = limit / 4 * 3;
3269 	sysctl_udp_mem[1] = limit;
3270 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3271 
3272 	__udp_sysctl_init(&init_net);
3273 
3274 	/* 16 spinlocks per cpu */
3275 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3276 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3277 				GFP_KERNEL);
3278 	if (!udp_busylocks)
3279 		panic("UDP: failed to alloc udp_busylocks\n");
3280 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3281 		spin_lock_init(udp_busylocks + i);
3282 
3283 	if (register_pernet_subsys(&udp_sysctl_ops))
3284 		panic("UDP: failed to init sysctl parameters.\n");
3285 
3286 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3287 	bpf_iter_register();
3288 #endif
3289 }
3290