• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include "ufshcd.h"
20 #include "ufs_quirks.h"
21 #include "unipro.h"
22 #include "ufs-sysfs.h"
23 #include "ufs_bsg.h"
24 #include "ufshcd-crypto.h"
25 #include <asm/unaligned.h>
26 #include <linux/blkdev.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/ufs.h>
30 
31 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
32 				 UTP_TASK_REQ_COMPL |\
33 				 UFSHCD_ERROR_MASK)
34 /* UIC command timeout, unit: ms */
35 #define UIC_CMD_TIMEOUT	500
36 
37 /* NOP OUT retries waiting for NOP IN response */
38 #define NOP_OUT_RETRIES    10
39 /* Timeout after 50 msecs if NOP OUT hangs without response */
40 #define NOP_OUT_TIMEOUT    50 /* msecs */
41 
42 /* Query request retries */
43 #define QUERY_REQ_RETRIES 3
44 /* Query request timeout */
45 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
46 
47 /* Task management command timeout */
48 #define TM_CMD_TIMEOUT	100 /* msecs */
49 
50 /* maximum number of retries for a general UIC command  */
51 #define UFS_UIC_COMMAND_RETRIES 3
52 
53 /* maximum number of link-startup retries */
54 #define DME_LINKSTARTUP_RETRIES 3
55 
56 /* Maximum retries for Hibern8 enter */
57 #define UIC_HIBERN8_ENTER_RETRIES 3
58 
59 /* maximum number of reset retries before giving up */
60 #define MAX_HOST_RESET_RETRIES 5
61 
62 /* Expose the flag value from utp_upiu_query.value */
63 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
64 
65 /* Interrupt aggregation default timeout, unit: 40us */
66 #define INT_AGGR_DEF_TO	0x02
67 
68 /* default delay of autosuspend: 2000 ms */
69 #define RPM_AUTOSUSPEND_DELAY_MS 2000
70 
71 /* Default delay of RPM device flush delayed work */
72 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
73 
74 /* Default value of wait time before gating device ref clock */
75 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
76 
77 /* Polling time to wait for fDeviceInit */
78 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
79 
80 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
81 	({                                                              \
82 		int _ret;                                               \
83 		if (_on)                                                \
84 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
85 		else                                                    \
86 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
87 		_ret;                                                   \
88 	})
89 
90 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
91 	size_t __len = (len);                                            \
92 	print_hex_dump(KERN_ERR, prefix_str,                             \
93 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
94 		       16, 4, buf, __len, false);                        \
95 } while (0)
96 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)97 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
98 		     const char *prefix)
99 {
100 	u32 *regs;
101 	size_t pos;
102 
103 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
104 		return -EINVAL;
105 
106 	regs = kzalloc(len, GFP_ATOMIC);
107 	if (!regs)
108 		return -ENOMEM;
109 
110 	for (pos = 0; pos < len; pos += 4) {
111 		if (offset == 0 &&
112 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
113 		    pos <= REG_UIC_ERROR_CODE_DME)
114 			continue;
115 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
116 	}
117 
118 	ufshcd_hex_dump(prefix, regs, len);
119 	kfree(regs);
120 
121 	return 0;
122 }
123 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
124 
125 enum {
126 	UFSHCD_MAX_CHANNEL	= 0,
127 	UFSHCD_MAX_ID		= 1,
128 	UFSHCD_CMD_PER_LUN	= 32,
129 	UFSHCD_CAN_QUEUE	= 32,
130 };
131 
132 /* UFSHCD states */
133 enum {
134 	UFSHCD_STATE_RESET,
135 	UFSHCD_STATE_ERROR,
136 	UFSHCD_STATE_OPERATIONAL,
137 	UFSHCD_STATE_EH_SCHEDULED_FATAL,
138 	UFSHCD_STATE_EH_SCHEDULED_NON_FATAL,
139 };
140 
141 /* UFSHCD error handling flags */
142 enum {
143 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
144 };
145 
146 /* UFSHCD UIC layer error flags */
147 enum {
148 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
149 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
150 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
151 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
152 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
153 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
154 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
155 };
156 
157 #define ufshcd_set_eh_in_progress(h) \
158 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
159 #define ufshcd_eh_in_progress(h) \
160 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
161 #define ufshcd_clear_eh_in_progress(h) \
162 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
163 
164 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
165 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
166 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
167 	{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
168 	{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
169 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
170 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
171 };
172 
173 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)174 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
175 {
176 	return ufs_pm_lvl_states[lvl].dev_state;
177 }
178 
179 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)180 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
181 {
182 	return ufs_pm_lvl_states[lvl].link_state;
183 }
184 
185 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)186 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
187 					enum uic_link_state link_state)
188 {
189 	enum ufs_pm_level lvl;
190 
191 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
192 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
193 			(ufs_pm_lvl_states[lvl].link_state == link_state))
194 			return lvl;
195 	}
196 
197 	/* if no match found, return the level 0 */
198 	return UFS_PM_LVL_0;
199 }
200 
201 static struct ufs_dev_fix ufs_fixups[] = {
202 	/* UFS cards deviations table */
203 	UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
204 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
205 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
206 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
207 		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
208 		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
209 	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
210 		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
211 	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
212 		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
213 	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
214 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
215 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
216 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
217 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
218 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
219 	END_FIX
220 };
221 
222 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
223 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
224 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
225 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
226 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
227 static void ufshcd_hba_exit(struct ufs_hba *hba);
228 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async);
229 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
230 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba);
231 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
232 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
233 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
234 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
235 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
236 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
237 static irqreturn_t ufshcd_intr(int irq, void *__hba);
238 static int ufshcd_change_power_mode(struct ufs_hba *hba,
239 			     struct ufs_pa_layer_attr *pwr_mode);
240 static void ufshcd_schedule_eh_work(struct ufs_hba *hba);
241 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
242 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
243 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
244 					 struct ufs_vreg *vreg);
245 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
246 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba);
247 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba);
248 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable);
249 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
250 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
251 
ufshcd_valid_tag(struct ufs_hba * hba,int tag)252 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
253 {
254 	return tag >= 0 && tag < hba->nutrs;
255 }
256 
ufshcd_enable_irq(struct ufs_hba * hba)257 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
258 {
259 	if (!hba->is_irq_enabled) {
260 		enable_irq(hba->irq);
261 		hba->is_irq_enabled = true;
262 	}
263 }
264 
ufshcd_disable_irq(struct ufs_hba * hba)265 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
266 {
267 	if (hba->is_irq_enabled) {
268 		disable_irq(hba->irq);
269 		hba->is_irq_enabled = false;
270 	}
271 }
272 
ufshcd_wb_config(struct ufs_hba * hba)273 static inline void ufshcd_wb_config(struct ufs_hba *hba)
274 {
275 	int ret;
276 
277 	if (!ufshcd_is_wb_allowed(hba))
278 		return;
279 
280 	ret = ufshcd_wb_ctrl(hba, true);
281 	if (ret)
282 		dev_err(hba->dev, "%s: Enable WB failed: %d\n", __func__, ret);
283 	else
284 		dev_info(hba->dev, "%s: Write Booster Configured\n", __func__);
285 	ret = ufshcd_wb_toggle_flush_during_h8(hba, true);
286 	if (ret)
287 		dev_err(hba->dev, "%s: En WB flush during H8: failed: %d\n",
288 			__func__, ret);
289 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
290 		ufshcd_wb_toggle_flush(hba, true);
291 }
292 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)293 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
294 {
295 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
296 		scsi_unblock_requests(hba->host);
297 }
298 
ufshcd_scsi_block_requests(struct ufs_hba * hba)299 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
300 {
301 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
302 		scsi_block_requests(hba->host);
303 }
304 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)305 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
306 		const char *str)
307 {
308 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
309 
310 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
311 }
312 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)313 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
314 		const char *str)
315 {
316 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
317 
318 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
319 }
320 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)321 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
322 		const char *str)
323 {
324 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
325 
326 	trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
327 			&descp->input_param1);
328 }
329 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,const char * str)330 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
331 					 struct uic_command *ucmd,
332 					 const char *str)
333 {
334 	u32 cmd;
335 
336 	if (!trace_ufshcd_uic_command_enabled())
337 		return;
338 
339 	if (!strcmp(str, "send"))
340 		cmd = ucmd->command;
341 	else
342 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
343 
344 	trace_ufshcd_uic_command(dev_name(hba->dev), str, cmd,
345 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
346 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
347 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
348 }
349 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)350 static void ufshcd_add_command_trace(struct ufs_hba *hba,
351 		unsigned int tag, const char *str)
352 {
353 	sector_t lba = -1;
354 	u8 opcode = 0;
355 	u32 intr, doorbell;
356 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
357 	struct scsi_cmnd *cmd = lrbp->cmd;
358 	int transfer_len = -1;
359 
360 	if (!trace_ufshcd_command_enabled()) {
361 		/* trace UPIU W/O tracing command */
362 		if (cmd)
363 			ufshcd_add_cmd_upiu_trace(hba, tag, str);
364 		return;
365 	}
366 
367 	if (cmd) { /* data phase exists */
368 		/* trace UPIU also */
369 		ufshcd_add_cmd_upiu_trace(hba, tag, str);
370 		opcode = cmd->cmnd[0];
371 		if ((opcode == READ_10) || (opcode == WRITE_10)) {
372 			/*
373 			 * Currently we only fully trace read(10) and write(10)
374 			 * commands
375 			 */
376 			if (cmd->request && cmd->request->bio)
377 				lba = cmd->request->bio->bi_iter.bi_sector;
378 			transfer_len = be32_to_cpu(
379 				lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
380 		}
381 	}
382 
383 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
384 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
385 	trace_ufshcd_command(dev_name(hba->dev), str, tag,
386 				doorbell, transfer_len, intr, lba, opcode);
387 }
388 
ufshcd_print_clk_freqs(struct ufs_hba * hba)389 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
390 {
391 	struct ufs_clk_info *clki;
392 	struct list_head *head = &hba->clk_list_head;
393 
394 	if (list_empty(head))
395 		return;
396 
397 	list_for_each_entry(clki, head, list) {
398 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
399 				clki->max_freq)
400 			dev_err(hba->dev, "clk: %s, rate: %u\n",
401 					clki->name, clki->curr_freq);
402 	}
403 }
404 
ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)405 static void ufshcd_print_err_hist(struct ufs_hba *hba,
406 				  struct ufs_err_reg_hist *err_hist,
407 				  char *err_name)
408 {
409 	int i;
410 	bool found = false;
411 
412 	for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) {
413 		int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH;
414 
415 		if (err_hist->tstamp[p] == 0)
416 			continue;
417 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
418 			err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
419 		found = true;
420 	}
421 
422 	if (!found)
423 		dev_err(hba->dev, "No record of %s\n", err_name);
424 }
425 
ufshcd_print_host_regs(struct ufs_hba * hba)426 static void ufshcd_print_host_regs(struct ufs_hba *hba)
427 {
428 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
429 
430 	ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
431 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
432 	ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
433 	ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
434 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
435 	ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err,
436 			      "auto_hibern8_err");
437 	ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err");
438 	ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err,
439 			      "link_startup_fail");
440 	ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail");
441 	ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err,
442 			      "suspend_fail");
443 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset");
444 	ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset");
445 	ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort");
446 
447 	ufshcd_vops_dbg_register_dump(hba);
448 }
449 
450 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)451 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
452 {
453 	struct ufshcd_lrb *lrbp;
454 	int prdt_length;
455 	int tag;
456 
457 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
458 		lrbp = &hba->lrb[tag];
459 
460 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
461 				tag, ktime_to_us(lrbp->issue_time_stamp));
462 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
463 				tag, ktime_to_us(lrbp->compl_time_stamp));
464 		dev_err(hba->dev,
465 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
466 			tag, (u64)lrbp->utrd_dma_addr);
467 
468 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
469 				sizeof(struct utp_transfer_req_desc));
470 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
471 			(u64)lrbp->ucd_req_dma_addr);
472 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
473 				sizeof(struct utp_upiu_req));
474 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
475 			(u64)lrbp->ucd_rsp_dma_addr);
476 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
477 				sizeof(struct utp_upiu_rsp));
478 
479 		prdt_length = le16_to_cpu(
480 			lrbp->utr_descriptor_ptr->prd_table_length);
481 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
482 			prdt_length /= sizeof(struct ufshcd_sg_entry);
483 
484 		dev_err(hba->dev,
485 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
486 			tag, prdt_length,
487 			(u64)lrbp->ucd_prdt_dma_addr);
488 
489 		if (pr_prdt)
490 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
491 				sizeof(struct ufshcd_sg_entry) * prdt_length);
492 	}
493 }
494 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)495 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
496 {
497 	int tag;
498 
499 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
500 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
501 
502 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
503 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
504 	}
505 }
506 
ufshcd_print_host_state(struct ufs_hba * hba)507 static void ufshcd_print_host_state(struct ufs_hba *hba)
508 {
509 	struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
510 
511 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
512 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
513 		hba->outstanding_reqs, hba->outstanding_tasks);
514 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
515 		hba->saved_err, hba->saved_uic_err);
516 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
517 		hba->curr_dev_pwr_mode, hba->uic_link_state);
518 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
519 		hba->pm_op_in_progress, hba->is_sys_suspended);
520 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
521 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
522 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
523 	dev_err(hba->dev,
524 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
525 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
526 		hba->ufs_stats.hibern8_exit_cnt);
527 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
528 		ktime_to_us(hba->ufs_stats.last_intr_ts),
529 		hba->ufs_stats.last_intr_status);
530 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
531 		hba->eh_flags, hba->req_abort_count);
532 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
533 		hba->ufs_version, hba->capabilities, hba->caps);
534 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
535 		hba->dev_quirks);
536 	if (sdev_ufs)
537 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
538 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
539 
540 	ufshcd_print_clk_freqs(hba);
541 }
542 
543 /**
544  * ufshcd_print_pwr_info - print power params as saved in hba
545  * power info
546  * @hba: per-adapter instance
547  */
ufshcd_print_pwr_info(struct ufs_hba * hba)548 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
549 {
550 	static const char * const names[] = {
551 		"INVALID MODE",
552 		"FAST MODE",
553 		"SLOW_MODE",
554 		"INVALID MODE",
555 		"FASTAUTO_MODE",
556 		"SLOWAUTO_MODE",
557 		"INVALID MODE",
558 	};
559 
560 	dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
561 		 __func__,
562 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
563 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
564 		 names[hba->pwr_info.pwr_rx],
565 		 names[hba->pwr_info.pwr_tx],
566 		 hba->pwr_info.hs_rate);
567 }
568 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)569 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
570 {
571 	if (!us)
572 		return;
573 
574 	if (us < 10)
575 		udelay(us);
576 	else
577 		usleep_range(us, us + tolerance);
578 }
579 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
580 
581 /**
582  * ufshcd_wait_for_register - wait for register value to change
583  * @hba: per-adapter interface
584  * @reg: mmio register offset
585  * @mask: mask to apply to the read register value
586  * @val: value to wait for
587  * @interval_us: polling interval in microseconds
588  * @timeout_ms: timeout in milliseconds
589  *
590  * Return:
591  * -ETIMEDOUT on error, zero on success.
592  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)593 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
594 				u32 val, unsigned long interval_us,
595 				unsigned long timeout_ms)
596 {
597 	int err = 0;
598 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
599 
600 	/* ignore bits that we don't intend to wait on */
601 	val = val & mask;
602 
603 	while ((ufshcd_readl(hba, reg) & mask) != val) {
604 		usleep_range(interval_us, interval_us + 50);
605 		if (time_after(jiffies, timeout)) {
606 			if ((ufshcd_readl(hba, reg) & mask) != val)
607 				err = -ETIMEDOUT;
608 			break;
609 		}
610 	}
611 
612 	return err;
613 }
614 
615 /**
616  * ufshcd_get_intr_mask - Get the interrupt bit mask
617  * @hba: Pointer to adapter instance
618  *
619  * Returns interrupt bit mask per version
620  */
ufshcd_get_intr_mask(struct ufs_hba * hba)621 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
622 {
623 	u32 intr_mask = 0;
624 
625 	switch (hba->ufs_version) {
626 	case UFSHCI_VERSION_10:
627 		intr_mask = INTERRUPT_MASK_ALL_VER_10;
628 		break;
629 	case UFSHCI_VERSION_11:
630 	case UFSHCI_VERSION_20:
631 		intr_mask = INTERRUPT_MASK_ALL_VER_11;
632 		break;
633 	case UFSHCI_VERSION_21:
634 	default:
635 		intr_mask = INTERRUPT_MASK_ALL_VER_21;
636 		break;
637 	}
638 
639 	return intr_mask;
640 }
641 
642 /**
643  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
644  * @hba: Pointer to adapter instance
645  *
646  * Returns UFSHCI version supported by the controller
647  */
ufshcd_get_ufs_version(struct ufs_hba * hba)648 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
649 {
650 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
651 		return ufshcd_vops_get_ufs_hci_version(hba);
652 
653 	return ufshcd_readl(hba, REG_UFS_VERSION);
654 }
655 
656 /**
657  * ufshcd_is_device_present - Check if any device connected to
658  *			      the host controller
659  * @hba: pointer to adapter instance
660  *
661  * Returns true if device present, false if no device detected
662  */
ufshcd_is_device_present(struct ufs_hba * hba)663 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
664 {
665 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
666 						DEVICE_PRESENT) ? true : false;
667 }
668 
669 /**
670  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
671  * @lrbp: pointer to local command reference block
672  *
673  * This function is used to get the OCS field from UTRD
674  * Returns the OCS field in the UTRD
675  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)676 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
677 {
678 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
679 }
680 
681 /**
682  * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
683  * @hba: per adapter instance
684  * @pos: position of the bit to be cleared
685  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)686 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
687 {
688 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
689 		ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
690 	else
691 		ufshcd_writel(hba, ~(1 << pos),
692 				REG_UTP_TRANSFER_REQ_LIST_CLEAR);
693 }
694 
695 /**
696  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
697  * @hba: per adapter instance
698  * @pos: position of the bit to be cleared
699  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)700 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
701 {
702 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
703 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
704 	else
705 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
706 }
707 
708 /**
709  * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
710  * @hba: per adapter instance
711  * @tag: position of the bit to be cleared
712  */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)713 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
714 {
715 	__clear_bit(tag, &hba->outstanding_reqs);
716 }
717 
718 /**
719  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
720  * @reg: Register value of host controller status
721  *
722  * Returns integer, 0 on Success and positive value if failed
723  */
ufshcd_get_lists_status(u32 reg)724 static inline int ufshcd_get_lists_status(u32 reg)
725 {
726 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
727 }
728 
729 /**
730  * ufshcd_get_uic_cmd_result - Get the UIC command result
731  * @hba: Pointer to adapter instance
732  *
733  * This function gets the result of UIC command completion
734  * Returns 0 on success, non zero value on error
735  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)736 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
737 {
738 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
739 	       MASK_UIC_COMMAND_RESULT;
740 }
741 
742 /**
743  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
744  * @hba: Pointer to adapter instance
745  *
746  * This function gets UIC command argument3
747  * Returns 0 on success, non zero value on error
748  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)749 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
750 {
751 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
752 }
753 
754 /**
755  * ufshcd_get_req_rsp - returns the TR response transaction type
756  * @ucd_rsp_ptr: pointer to response UPIU
757  */
758 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)759 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
760 {
761 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
762 }
763 
764 /**
765  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
766  * @ucd_rsp_ptr: pointer to response UPIU
767  *
768  * This function gets the response status and scsi_status from response UPIU
769  * Returns the response result code.
770  */
771 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)772 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
773 {
774 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
775 }
776 
777 /*
778  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
779  *				from response UPIU
780  * @ucd_rsp_ptr: pointer to response UPIU
781  *
782  * Return the data segment length.
783  */
784 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)785 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
786 {
787 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
788 		MASK_RSP_UPIU_DATA_SEG_LEN;
789 }
790 
791 /**
792  * ufshcd_is_exception_event - Check if the device raised an exception event
793  * @ucd_rsp_ptr: pointer to response UPIU
794  *
795  * The function checks if the device raised an exception event indicated in
796  * the Device Information field of response UPIU.
797  *
798  * Returns true if exception is raised, false otherwise.
799  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)800 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
801 {
802 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
803 			MASK_RSP_EXCEPTION_EVENT ? true : false;
804 }
805 
806 /**
807  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
808  * @hba: per adapter instance
809  */
810 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)811 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
812 {
813 	ufshcd_writel(hba, INT_AGGR_ENABLE |
814 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
815 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
816 }
817 
818 /**
819  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
820  * @hba: per adapter instance
821  * @cnt: Interrupt aggregation counter threshold
822  * @tmout: Interrupt aggregation timeout value
823  */
824 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)825 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
826 {
827 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
828 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
829 		      INT_AGGR_TIMEOUT_VAL(tmout),
830 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
831 }
832 
833 /**
834  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
835  * @hba: per adapter instance
836  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)837 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
838 {
839 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
840 }
841 
842 /**
843  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
844  *			When run-stop registers are set to 1, it indicates the
845  *			host controller that it can process the requests
846  * @hba: per adapter instance
847  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)848 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
849 {
850 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
851 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
852 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
853 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
854 }
855 
856 /**
857  * ufshcd_hba_start - Start controller initialization sequence
858  * @hba: per adapter instance
859  */
ufshcd_hba_start(struct ufs_hba * hba)860 static inline void ufshcd_hba_start(struct ufs_hba *hba)
861 {
862 	u32 val = CONTROLLER_ENABLE;
863 
864 	if (ufshcd_crypto_enable(hba))
865 		val |= CRYPTO_GENERAL_ENABLE;
866 
867 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
868 }
869 
870 /**
871  * ufshcd_is_hba_active - Get controller state
872  * @hba: per adapter instance
873  *
874  * Returns false if controller is active, true otherwise
875  */
ufshcd_is_hba_active(struct ufs_hba * hba)876 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
877 {
878 	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
879 		? false : true;
880 }
881 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)882 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
883 {
884 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
885 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
886 	    (hba->ufs_version == UFSHCI_VERSION_11))
887 		return UFS_UNIPRO_VER_1_41;
888 	else
889 		return UFS_UNIPRO_VER_1_6;
890 }
891 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
892 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)893 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
894 {
895 	/*
896 	 * If both host and device support UniPro ver1.6 or later, PA layer
897 	 * parameters tuning happens during link startup itself.
898 	 *
899 	 * We can manually tune PA layer parameters if either host or device
900 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
901 	 * logic simple, we will only do manual tuning if local unipro version
902 	 * doesn't support ver1.6 or later.
903 	 */
904 	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
905 		return true;
906 	else
907 		return false;
908 }
909 
910 /**
911  * ufshcd_set_clk_freq - set UFS controller clock frequencies
912  * @hba: per adapter instance
913  * @scale_up: If True, set max possible frequency othewise set low frequency
914  *
915  * Returns 0 if successful
916  * Returns < 0 for any other errors
917  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)918 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
919 {
920 	int ret = 0;
921 	struct ufs_clk_info *clki;
922 	struct list_head *head = &hba->clk_list_head;
923 
924 	if (list_empty(head))
925 		goto out;
926 
927 	list_for_each_entry(clki, head, list) {
928 		if (!IS_ERR_OR_NULL(clki->clk)) {
929 			if (scale_up && clki->max_freq) {
930 				if (clki->curr_freq == clki->max_freq)
931 					continue;
932 
933 				ret = clk_set_rate(clki->clk, clki->max_freq);
934 				if (ret) {
935 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
936 						__func__, clki->name,
937 						clki->max_freq, ret);
938 					break;
939 				}
940 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
941 						"scaled up", clki->name,
942 						clki->curr_freq,
943 						clki->max_freq);
944 
945 				clki->curr_freq = clki->max_freq;
946 
947 			} else if (!scale_up && clki->min_freq) {
948 				if (clki->curr_freq == clki->min_freq)
949 					continue;
950 
951 				ret = clk_set_rate(clki->clk, clki->min_freq);
952 				if (ret) {
953 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
954 						__func__, clki->name,
955 						clki->min_freq, ret);
956 					break;
957 				}
958 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
959 						"scaled down", clki->name,
960 						clki->curr_freq,
961 						clki->min_freq);
962 				clki->curr_freq = clki->min_freq;
963 			}
964 		}
965 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
966 				clki->name, clk_get_rate(clki->clk));
967 	}
968 
969 out:
970 	return ret;
971 }
972 
973 /**
974  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
975  * @hba: per adapter instance
976  * @scale_up: True if scaling up and false if scaling down
977  *
978  * Returns 0 if successful
979  * Returns < 0 for any other errors
980  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)981 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
982 {
983 	int ret = 0;
984 	ktime_t start = ktime_get();
985 
986 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
987 	if (ret)
988 		goto out;
989 
990 	ret = ufshcd_set_clk_freq(hba, scale_up);
991 	if (ret)
992 		goto out;
993 
994 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
995 	if (ret)
996 		ufshcd_set_clk_freq(hba, !scale_up);
997 
998 out:
999 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1000 			(scale_up ? "up" : "down"),
1001 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1002 	return ret;
1003 }
1004 
1005 /**
1006  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1007  * @hba: per adapter instance
1008  * @scale_up: True if scaling up and false if scaling down
1009  *
1010  * Returns true if scaling is required, false otherwise.
1011  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1012 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1013 					       bool scale_up)
1014 {
1015 	struct ufs_clk_info *clki;
1016 	struct list_head *head = &hba->clk_list_head;
1017 
1018 	if (list_empty(head))
1019 		return false;
1020 
1021 	list_for_each_entry(clki, head, list) {
1022 		if (!IS_ERR_OR_NULL(clki->clk)) {
1023 			if (scale_up && clki->max_freq) {
1024 				if (clki->curr_freq == clki->max_freq)
1025 					continue;
1026 				return true;
1027 			} else if (!scale_up && clki->min_freq) {
1028 				if (clki->curr_freq == clki->min_freq)
1029 					continue;
1030 				return true;
1031 			}
1032 		}
1033 	}
1034 
1035 	return false;
1036 }
1037 
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1038 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1039 					u64 wait_timeout_us)
1040 {
1041 	unsigned long flags;
1042 	int ret = 0;
1043 	u32 tm_doorbell;
1044 	u32 tr_doorbell;
1045 	bool timeout = false, do_last_check = false;
1046 	ktime_t start;
1047 
1048 	ufshcd_hold(hba, false);
1049 	spin_lock_irqsave(hba->host->host_lock, flags);
1050 	/*
1051 	 * Wait for all the outstanding tasks/transfer requests.
1052 	 * Verify by checking the doorbell registers are clear.
1053 	 */
1054 	start = ktime_get();
1055 	do {
1056 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1057 			ret = -EBUSY;
1058 			goto out;
1059 		}
1060 
1061 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1062 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1063 		if (!tm_doorbell && !tr_doorbell) {
1064 			timeout = false;
1065 			break;
1066 		} else if (do_last_check) {
1067 			break;
1068 		}
1069 
1070 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1071 		schedule();
1072 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1073 		    wait_timeout_us) {
1074 			timeout = true;
1075 			/*
1076 			 * We might have scheduled out for long time so make
1077 			 * sure to check if doorbells are cleared by this time
1078 			 * or not.
1079 			 */
1080 			do_last_check = true;
1081 		}
1082 		spin_lock_irqsave(hba->host->host_lock, flags);
1083 	} while (tm_doorbell || tr_doorbell);
1084 
1085 	if (timeout) {
1086 		dev_err(hba->dev,
1087 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1088 			__func__, tm_doorbell, tr_doorbell);
1089 		ret = -EBUSY;
1090 	}
1091 out:
1092 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1093 	ufshcd_release(hba);
1094 	return ret;
1095 }
1096 
1097 /**
1098  * ufshcd_scale_gear - scale up/down UFS gear
1099  * @hba: per adapter instance
1100  * @scale_up: True for scaling up gear and false for scaling down
1101  *
1102  * Returns 0 for success,
1103  * Returns -EBUSY if scaling can't happen at this time
1104  * Returns non-zero for any other errors
1105  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1106 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1107 {
1108 	#define UFS_MIN_GEAR_TO_SCALE_DOWN	UFS_HS_G1
1109 	int ret = 0;
1110 	struct ufs_pa_layer_attr new_pwr_info;
1111 
1112 	if (scale_up) {
1113 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1114 		       sizeof(struct ufs_pa_layer_attr));
1115 	} else {
1116 		memcpy(&new_pwr_info, &hba->pwr_info,
1117 		       sizeof(struct ufs_pa_layer_attr));
1118 
1119 		if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN
1120 		    || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) {
1121 			/* save the current power mode */
1122 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1123 				&hba->pwr_info,
1124 				sizeof(struct ufs_pa_layer_attr));
1125 
1126 			/* scale down gear */
1127 			new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1128 			new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1129 		}
1130 	}
1131 
1132 	/* check if the power mode needs to be changed or not? */
1133 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1134 	if (ret)
1135 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1136 			__func__, ret,
1137 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1138 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1139 
1140 	return ret;
1141 }
1142 
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1143 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1144 {
1145 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1146 	int ret = 0;
1147 	/*
1148 	 * make sure that there are no outstanding requests when
1149 	 * clock scaling is in progress
1150 	 */
1151 	ufshcd_scsi_block_requests(hba);
1152 	down_write(&hba->clk_scaling_lock);
1153 	if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1154 		ret = -EBUSY;
1155 		up_write(&hba->clk_scaling_lock);
1156 		ufshcd_scsi_unblock_requests(hba);
1157 	}
1158 
1159 	return ret;
1160 }
1161 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1162 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
1163 {
1164 	up_write(&hba->clk_scaling_lock);
1165 	ufshcd_scsi_unblock_requests(hba);
1166 }
1167 
1168 /**
1169  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1170  * @hba: per adapter instance
1171  * @scale_up: True for scaling up and false for scalin down
1172  *
1173  * Returns 0 for success,
1174  * Returns -EBUSY if scaling can't happen at this time
1175  * Returns non-zero for any other errors
1176  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1177 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1178 {
1179 	int ret = 0;
1180 
1181 	/* let's not get into low power until clock scaling is completed */
1182 	ufshcd_hold(hba, false);
1183 
1184 	ret = ufshcd_clock_scaling_prepare(hba);
1185 	if (ret)
1186 		goto out;
1187 
1188 	/* scale down the gear before scaling down clocks */
1189 	if (!scale_up) {
1190 		ret = ufshcd_scale_gear(hba, false);
1191 		if (ret)
1192 			goto out_unprepare;
1193 	}
1194 
1195 	ret = ufshcd_scale_clks(hba, scale_up);
1196 	if (ret) {
1197 		if (!scale_up)
1198 			ufshcd_scale_gear(hba, true);
1199 		goto out_unprepare;
1200 	}
1201 
1202 	/* scale up the gear after scaling up clocks */
1203 	if (scale_up) {
1204 		ret = ufshcd_scale_gear(hba, true);
1205 		if (ret) {
1206 			ufshcd_scale_clks(hba, false);
1207 			goto out_unprepare;
1208 		}
1209 	}
1210 
1211 	/* Enable Write Booster if we have scaled up else disable it */
1212 	up_write(&hba->clk_scaling_lock);
1213 	ufshcd_wb_ctrl(hba, scale_up);
1214 	down_write(&hba->clk_scaling_lock);
1215 
1216 out_unprepare:
1217 	ufshcd_clock_scaling_unprepare(hba);
1218 out:
1219 	ufshcd_release(hba);
1220 	return ret;
1221 }
1222 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1223 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1224 {
1225 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1226 					   clk_scaling.suspend_work);
1227 	unsigned long irq_flags;
1228 
1229 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1230 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1231 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1232 		return;
1233 	}
1234 	hba->clk_scaling.is_suspended = true;
1235 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1236 
1237 	__ufshcd_suspend_clkscaling(hba);
1238 }
1239 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1240 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1241 {
1242 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1243 					   clk_scaling.resume_work);
1244 	unsigned long irq_flags;
1245 
1246 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1247 	if (!hba->clk_scaling.is_suspended) {
1248 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1249 		return;
1250 	}
1251 	hba->clk_scaling.is_suspended = false;
1252 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1253 
1254 	devfreq_resume_device(hba->devfreq);
1255 }
1256 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1257 static int ufshcd_devfreq_target(struct device *dev,
1258 				unsigned long *freq, u32 flags)
1259 {
1260 	int ret = 0;
1261 	struct ufs_hba *hba = dev_get_drvdata(dev);
1262 	ktime_t start;
1263 	bool scale_up, sched_clk_scaling_suspend_work = false;
1264 	struct list_head *clk_list = &hba->clk_list_head;
1265 	struct ufs_clk_info *clki;
1266 	unsigned long irq_flags;
1267 
1268 	if (!ufshcd_is_clkscaling_supported(hba))
1269 		return -EINVAL;
1270 
1271 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1272 	/* Override with the closest supported frequency */
1273 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1274 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1275 	if (ufshcd_eh_in_progress(hba)) {
1276 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1277 		return 0;
1278 	}
1279 
1280 	if (!hba->clk_scaling.active_reqs)
1281 		sched_clk_scaling_suspend_work = true;
1282 
1283 	if (list_empty(clk_list)) {
1284 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1285 		goto out;
1286 	}
1287 
1288 	/* Decide based on the rounded-off frequency and update */
1289 	scale_up = (*freq == clki->max_freq) ? true : false;
1290 	if (!scale_up)
1291 		*freq = clki->min_freq;
1292 	/* Update the frequency */
1293 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1294 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1295 		ret = 0;
1296 		goto out; /* no state change required */
1297 	}
1298 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1299 
1300 	pm_runtime_get_noresume(hba->dev);
1301 	if (!pm_runtime_active(hba->dev)) {
1302 		pm_runtime_put_noidle(hba->dev);
1303 		ret = -EAGAIN;
1304 		goto out;
1305 	}
1306 	start = ktime_get();
1307 	ret = ufshcd_devfreq_scale(hba, scale_up);
1308 	pm_runtime_put(hba->dev);
1309 
1310 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1311 		(scale_up ? "up" : "down"),
1312 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1313 
1314 out:
1315 	if (sched_clk_scaling_suspend_work)
1316 		queue_work(hba->clk_scaling.workq,
1317 			   &hba->clk_scaling.suspend_work);
1318 
1319 	return ret;
1320 }
1321 
ufshcd_is_busy(struct request * req,void * priv,bool reserved)1322 static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
1323 {
1324 	int *busy = priv;
1325 
1326 	WARN_ON_ONCE(reserved);
1327 	(*busy)++;
1328 	return false;
1329 }
1330 
1331 /* Whether or not any tag is in use by a request that is in progress. */
ufshcd_any_tag_in_use(struct ufs_hba * hba)1332 static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
1333 {
1334 	struct request_queue *q = hba->cmd_queue;
1335 	int busy = 0;
1336 
1337 	blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
1338 	return busy;
1339 }
1340 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1341 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1342 		struct devfreq_dev_status *stat)
1343 {
1344 	struct ufs_hba *hba = dev_get_drvdata(dev);
1345 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1346 	unsigned long flags;
1347 	struct list_head *clk_list = &hba->clk_list_head;
1348 	struct ufs_clk_info *clki;
1349 	ktime_t curr_t;
1350 
1351 	if (!ufshcd_is_clkscaling_supported(hba))
1352 		return -EINVAL;
1353 
1354 	memset(stat, 0, sizeof(*stat));
1355 
1356 	spin_lock_irqsave(hba->host->host_lock, flags);
1357 	curr_t = ktime_get();
1358 	if (!scaling->window_start_t)
1359 		goto start_window;
1360 
1361 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1362 	/*
1363 	 * If current frequency is 0, then the ondemand governor considers
1364 	 * there's no initial frequency set. And it always requests to set
1365 	 * to max. frequency.
1366 	 */
1367 	stat->current_frequency = clki->curr_freq;
1368 	if (scaling->is_busy_started)
1369 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1370 				scaling->busy_start_t);
1371 
1372 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1373 	stat->busy_time = scaling->tot_busy_t;
1374 start_window:
1375 	scaling->window_start_t = curr_t;
1376 	scaling->tot_busy_t = 0;
1377 
1378 	if (hba->outstanding_reqs) {
1379 		scaling->busy_start_t = curr_t;
1380 		scaling->is_busy_started = true;
1381 	} else {
1382 		scaling->busy_start_t = 0;
1383 		scaling->is_busy_started = false;
1384 	}
1385 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1386 	return 0;
1387 }
1388 
ufshcd_devfreq_init(struct ufs_hba * hba)1389 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1390 {
1391 	struct list_head *clk_list = &hba->clk_list_head;
1392 	struct ufs_clk_info *clki;
1393 	struct devfreq *devfreq;
1394 	int ret;
1395 
1396 	/* Skip devfreq if we don't have any clocks in the list */
1397 	if (list_empty(clk_list))
1398 		return 0;
1399 
1400 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1401 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1402 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1403 
1404 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1405 					 &hba->vps->ondemand_data);
1406 	devfreq = devfreq_add_device(hba->dev,
1407 			&hba->vps->devfreq_profile,
1408 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1409 			&hba->vps->ondemand_data);
1410 	if (IS_ERR(devfreq)) {
1411 		ret = PTR_ERR(devfreq);
1412 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1413 
1414 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1415 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1416 		return ret;
1417 	}
1418 
1419 	hba->devfreq = devfreq;
1420 
1421 	return 0;
1422 }
1423 
ufshcd_devfreq_remove(struct ufs_hba * hba)1424 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1425 {
1426 	struct list_head *clk_list = &hba->clk_list_head;
1427 	struct ufs_clk_info *clki;
1428 
1429 	if (!hba->devfreq)
1430 		return;
1431 
1432 	devfreq_remove_device(hba->devfreq);
1433 	hba->devfreq = NULL;
1434 
1435 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1436 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1437 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1438 }
1439 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1440 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1441 {
1442 	unsigned long flags;
1443 
1444 	devfreq_suspend_device(hba->devfreq);
1445 	spin_lock_irqsave(hba->host->host_lock, flags);
1446 	hba->clk_scaling.window_start_t = 0;
1447 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1448 }
1449 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1450 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1451 {
1452 	unsigned long flags;
1453 	bool suspend = false;
1454 
1455 	if (!ufshcd_is_clkscaling_supported(hba))
1456 		return;
1457 
1458 	spin_lock_irqsave(hba->host->host_lock, flags);
1459 	if (!hba->clk_scaling.is_suspended) {
1460 		suspend = true;
1461 		hba->clk_scaling.is_suspended = true;
1462 	}
1463 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1464 
1465 	if (suspend)
1466 		__ufshcd_suspend_clkscaling(hba);
1467 }
1468 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1469 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1470 {
1471 	unsigned long flags;
1472 	bool resume = false;
1473 
1474 	if (!ufshcd_is_clkscaling_supported(hba))
1475 		return;
1476 
1477 	spin_lock_irqsave(hba->host->host_lock, flags);
1478 	if (hba->clk_scaling.is_suspended) {
1479 		resume = true;
1480 		hba->clk_scaling.is_suspended = false;
1481 	}
1482 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1483 
1484 	if (resume)
1485 		devfreq_resume_device(hba->devfreq);
1486 }
1487 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1488 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1489 		struct device_attribute *attr, char *buf)
1490 {
1491 	struct ufs_hba *hba = dev_get_drvdata(dev);
1492 
1493 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
1494 }
1495 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1496 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1497 		struct device_attribute *attr, const char *buf, size_t count)
1498 {
1499 	struct ufs_hba *hba = dev_get_drvdata(dev);
1500 	u32 value;
1501 	int err;
1502 
1503 	if (kstrtou32(buf, 0, &value))
1504 		return -EINVAL;
1505 
1506 	value = !!value;
1507 	if (value == hba->clk_scaling.is_allowed)
1508 		goto out;
1509 
1510 	pm_runtime_get_sync(hba->dev);
1511 	ufshcd_hold(hba, false);
1512 
1513 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1514 	cancel_work_sync(&hba->clk_scaling.resume_work);
1515 
1516 	hba->clk_scaling.is_allowed = value;
1517 
1518 	if (value) {
1519 		ufshcd_resume_clkscaling(hba);
1520 	} else {
1521 		ufshcd_suspend_clkscaling(hba);
1522 		err = ufshcd_devfreq_scale(hba, true);
1523 		if (err)
1524 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1525 					__func__, err);
1526 	}
1527 
1528 	ufshcd_release(hba);
1529 	pm_runtime_put_sync(hba->dev);
1530 out:
1531 	return count;
1532 }
1533 
ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1534 static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
1535 {
1536 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1537 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1538 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1539 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1540 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1541 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1542 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1543 }
1544 
ufshcd_ungate_work(struct work_struct * work)1545 static void ufshcd_ungate_work(struct work_struct *work)
1546 {
1547 	int ret;
1548 	unsigned long flags;
1549 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1550 			clk_gating.ungate_work);
1551 
1552 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1553 
1554 	spin_lock_irqsave(hba->host->host_lock, flags);
1555 	if (hba->clk_gating.state == CLKS_ON) {
1556 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1557 		goto unblock_reqs;
1558 	}
1559 
1560 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1561 	ufshcd_setup_clocks(hba, true);
1562 
1563 	ufshcd_enable_irq(hba);
1564 
1565 	/* Exit from hibern8 */
1566 	if (ufshcd_can_hibern8_during_gating(hba)) {
1567 		/* Prevent gating in this path */
1568 		hba->clk_gating.is_suspended = true;
1569 		if (ufshcd_is_link_hibern8(hba)) {
1570 			ret = ufshcd_uic_hibern8_exit(hba);
1571 			if (ret)
1572 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1573 					__func__, ret);
1574 			else
1575 				ufshcd_set_link_active(hba);
1576 		}
1577 		hba->clk_gating.is_suspended = false;
1578 	}
1579 unblock_reqs:
1580 	ufshcd_scsi_unblock_requests(hba);
1581 }
1582 
1583 /**
1584  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1585  * Also, exit from hibern8 mode and set the link as active.
1586  * @hba: per adapter instance
1587  * @async: This indicates whether caller should ungate clocks asynchronously.
1588  */
ufshcd_hold(struct ufs_hba * hba,bool async)1589 int ufshcd_hold(struct ufs_hba *hba, bool async)
1590 {
1591 	int rc = 0;
1592 	bool flush_result;
1593 	unsigned long flags;
1594 
1595 	if (!ufshcd_is_clkgating_allowed(hba))
1596 		goto out;
1597 	spin_lock_irqsave(hba->host->host_lock, flags);
1598 	hba->clk_gating.active_reqs++;
1599 
1600 start:
1601 	switch (hba->clk_gating.state) {
1602 	case CLKS_ON:
1603 		/*
1604 		 * Wait for the ungate work to complete if in progress.
1605 		 * Though the clocks may be in ON state, the link could
1606 		 * still be in hibner8 state if hibern8 is allowed
1607 		 * during clock gating.
1608 		 * Make sure we exit hibern8 state also in addition to
1609 		 * clocks being ON.
1610 		 */
1611 		if (ufshcd_can_hibern8_during_gating(hba) &&
1612 		    ufshcd_is_link_hibern8(hba)) {
1613 			if (async) {
1614 				rc = -EAGAIN;
1615 				hba->clk_gating.active_reqs--;
1616 				break;
1617 			}
1618 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1619 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1620 			if (hba->clk_gating.is_suspended && !flush_result)
1621 				goto out;
1622 			spin_lock_irqsave(hba->host->host_lock, flags);
1623 			goto start;
1624 		}
1625 		break;
1626 	case REQ_CLKS_OFF:
1627 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1628 			hba->clk_gating.state = CLKS_ON;
1629 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1630 						hba->clk_gating.state);
1631 			break;
1632 		}
1633 		/*
1634 		 * If we are here, it means gating work is either done or
1635 		 * currently running. Hence, fall through to cancel gating
1636 		 * work and to enable clocks.
1637 		 */
1638 		fallthrough;
1639 	case CLKS_OFF:
1640 		hba->clk_gating.state = REQ_CLKS_ON;
1641 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1642 					hba->clk_gating.state);
1643 		if (queue_work(hba->clk_gating.clk_gating_workq,
1644 			       &hba->clk_gating.ungate_work))
1645 			ufshcd_scsi_block_requests(hba);
1646 		/*
1647 		 * fall through to check if we should wait for this
1648 		 * work to be done or not.
1649 		 */
1650 		fallthrough;
1651 	case REQ_CLKS_ON:
1652 		if (async) {
1653 			rc = -EAGAIN;
1654 			hba->clk_gating.active_reqs--;
1655 			break;
1656 		}
1657 
1658 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1659 		flush_work(&hba->clk_gating.ungate_work);
1660 		/* Make sure state is CLKS_ON before returning */
1661 		spin_lock_irqsave(hba->host->host_lock, flags);
1662 		goto start;
1663 	default:
1664 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1665 				__func__, hba->clk_gating.state);
1666 		break;
1667 	}
1668 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1669 out:
1670 	return rc;
1671 }
1672 EXPORT_SYMBOL_GPL(ufshcd_hold);
1673 
ufshcd_gate_work(struct work_struct * work)1674 static void ufshcd_gate_work(struct work_struct *work)
1675 {
1676 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1677 			clk_gating.gate_work.work);
1678 	unsigned long flags;
1679 	int ret;
1680 
1681 	spin_lock_irqsave(hba->host->host_lock, flags);
1682 	/*
1683 	 * In case you are here to cancel this work the gating state
1684 	 * would be marked as REQ_CLKS_ON. In this case save time by
1685 	 * skipping the gating work and exit after changing the clock
1686 	 * state to CLKS_ON.
1687 	 */
1688 	if (hba->clk_gating.is_suspended ||
1689 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1690 		hba->clk_gating.state = CLKS_ON;
1691 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1692 					hba->clk_gating.state);
1693 		goto rel_lock;
1694 	}
1695 
1696 	if (hba->clk_gating.active_reqs
1697 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1698 		|| ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
1699 		|| hba->active_uic_cmd || hba->uic_async_done)
1700 		goto rel_lock;
1701 
1702 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1703 
1704 	/* put the link into hibern8 mode before turning off clocks */
1705 	if (ufshcd_can_hibern8_during_gating(hba)) {
1706 		ret = ufshcd_uic_hibern8_enter(hba);
1707 		if (ret) {
1708 			hba->clk_gating.state = CLKS_ON;
1709 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1710 					__func__, ret);
1711 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1712 						hba->clk_gating.state);
1713 			goto out;
1714 		}
1715 		ufshcd_set_link_hibern8(hba);
1716 	}
1717 
1718 	ufshcd_disable_irq(hba);
1719 
1720 	ufshcd_setup_clocks(hba, false);
1721 
1722 	/*
1723 	 * In case you are here to cancel this work the gating state
1724 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1725 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1726 	 * and a request to turn them on is pending. By doing this way,
1727 	 * we keep the state machine in tact and this would ultimately
1728 	 * prevent from doing cancel work multiple times when there are
1729 	 * new requests arriving before the current cancel work is done.
1730 	 */
1731 	spin_lock_irqsave(hba->host->host_lock, flags);
1732 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1733 		hba->clk_gating.state = CLKS_OFF;
1734 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1735 					hba->clk_gating.state);
1736 	}
1737 rel_lock:
1738 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1739 out:
1740 	return;
1741 }
1742 
1743 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1744 static void __ufshcd_release(struct ufs_hba *hba)
1745 {
1746 	if (!ufshcd_is_clkgating_allowed(hba))
1747 		return;
1748 
1749 	hba->clk_gating.active_reqs--;
1750 
1751 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1752 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1753 	    hba->outstanding_tasks ||
1754 	    hba->active_uic_cmd || hba->uic_async_done ||
1755 	    hba->clk_gating.state == CLKS_OFF)
1756 		return;
1757 
1758 	hba->clk_gating.state = REQ_CLKS_OFF;
1759 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1760 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1761 			   &hba->clk_gating.gate_work,
1762 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1763 }
1764 
ufshcd_release(struct ufs_hba * hba)1765 void ufshcd_release(struct ufs_hba *hba)
1766 {
1767 	unsigned long flags;
1768 
1769 	spin_lock_irqsave(hba->host->host_lock, flags);
1770 	__ufshcd_release(hba);
1771 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1772 }
1773 EXPORT_SYMBOL_GPL(ufshcd_release);
1774 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1775 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1776 		struct device_attribute *attr, char *buf)
1777 {
1778 	struct ufs_hba *hba = dev_get_drvdata(dev);
1779 
1780 	return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1781 }
1782 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1783 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1784 		struct device_attribute *attr, const char *buf, size_t count)
1785 {
1786 	struct ufs_hba *hba = dev_get_drvdata(dev);
1787 	unsigned long flags, value;
1788 
1789 	if (kstrtoul(buf, 0, &value))
1790 		return -EINVAL;
1791 
1792 	spin_lock_irqsave(hba->host->host_lock, flags);
1793 	hba->clk_gating.delay_ms = value;
1794 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1795 	return count;
1796 }
1797 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1798 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1799 		struct device_attribute *attr, char *buf)
1800 {
1801 	struct ufs_hba *hba = dev_get_drvdata(dev);
1802 
1803 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1804 }
1805 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1806 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1807 		struct device_attribute *attr, const char *buf, size_t count)
1808 {
1809 	struct ufs_hba *hba = dev_get_drvdata(dev);
1810 	unsigned long flags;
1811 	u32 value;
1812 
1813 	if (kstrtou32(buf, 0, &value))
1814 		return -EINVAL;
1815 
1816 	value = !!value;
1817 	if (value == hba->clk_gating.is_enabled)
1818 		goto out;
1819 
1820 	if (value) {
1821 		ufshcd_release(hba);
1822 	} else {
1823 		spin_lock_irqsave(hba->host->host_lock, flags);
1824 		hba->clk_gating.active_reqs++;
1825 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 	}
1827 
1828 	hba->clk_gating.is_enabled = value;
1829 out:
1830 	return count;
1831 }
1832 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1833 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1834 {
1835 	char wq_name[sizeof("ufs_clkscaling_00")];
1836 
1837 	if (!ufshcd_is_clkscaling_supported(hba))
1838 		return;
1839 
1840 	INIT_WORK(&hba->clk_scaling.suspend_work,
1841 		  ufshcd_clk_scaling_suspend_work);
1842 	INIT_WORK(&hba->clk_scaling.resume_work,
1843 		  ufshcd_clk_scaling_resume_work);
1844 
1845 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1846 		 hba->host->host_no);
1847 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1848 
1849 	ufshcd_clkscaling_init_sysfs(hba);
1850 }
1851 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1852 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1853 {
1854 	if (!ufshcd_is_clkscaling_supported(hba))
1855 		return;
1856 
1857 	destroy_workqueue(hba->clk_scaling.workq);
1858 	ufshcd_devfreq_remove(hba);
1859 }
1860 
ufshcd_init_clk_gating(struct ufs_hba * hba)1861 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1862 {
1863 	char wq_name[sizeof("ufs_clk_gating_00")];
1864 
1865 	if (!ufshcd_is_clkgating_allowed(hba))
1866 		return;
1867 
1868 	hba->clk_gating.state = CLKS_ON;
1869 
1870 	hba->clk_gating.delay_ms = 150;
1871 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1872 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1873 
1874 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1875 		 hba->host->host_no);
1876 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1877 							   WQ_MEM_RECLAIM);
1878 
1879 	hba->clk_gating.is_enabled = true;
1880 
1881 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1882 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1883 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1884 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1885 	hba->clk_gating.delay_attr.attr.mode = 0644;
1886 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1887 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1888 
1889 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1890 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1891 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1892 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1893 	hba->clk_gating.enable_attr.attr.mode = 0644;
1894 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1895 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1896 }
1897 
ufshcd_exit_clk_gating(struct ufs_hba * hba)1898 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1899 {
1900 	if (!ufshcd_is_clkgating_allowed(hba))
1901 		return;
1902 	device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1903 	device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1904 	cancel_work_sync(&hba->clk_gating.ungate_work);
1905 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1906 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
1907 }
1908 
1909 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1910 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1911 {
1912 	bool queue_resume_work = false;
1913 	ktime_t curr_t = ktime_get();
1914 
1915 	if (!ufshcd_is_clkscaling_supported(hba))
1916 		return;
1917 
1918 	if (!hba->clk_scaling.active_reqs++)
1919 		queue_resume_work = true;
1920 
1921 	if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
1922 		return;
1923 
1924 	if (queue_resume_work)
1925 		queue_work(hba->clk_scaling.workq,
1926 			   &hba->clk_scaling.resume_work);
1927 
1928 	if (!hba->clk_scaling.window_start_t) {
1929 		hba->clk_scaling.window_start_t = curr_t;
1930 		hba->clk_scaling.tot_busy_t = 0;
1931 		hba->clk_scaling.is_busy_started = false;
1932 	}
1933 
1934 	if (!hba->clk_scaling.is_busy_started) {
1935 		hba->clk_scaling.busy_start_t = curr_t;
1936 		hba->clk_scaling.is_busy_started = true;
1937 	}
1938 }
1939 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1940 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1941 {
1942 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1943 
1944 	if (!ufshcd_is_clkscaling_supported(hba))
1945 		return;
1946 
1947 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
1948 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1949 					scaling->busy_start_t));
1950 		scaling->busy_start_t = 0;
1951 		scaling->is_busy_started = false;
1952 	}
1953 }
1954 /**
1955  * ufshcd_send_command - Send SCSI or device management commands
1956  * @hba: per adapter instance
1957  * @task_tag: Task tag of the command
1958  */
1959 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1960 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
1961 {
1962 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
1963 
1964 	lrbp->issue_time_stamp = ktime_get();
1965 	lrbp->compl_time_stamp = ktime_set(0, 0);
1966 	ufshcd_vops_setup_xfer_req(hba, task_tag, (lrbp->cmd ? true : false));
1967 	ufshcd_add_command_trace(hba, task_tag, "send");
1968 	ufshcd_clk_scaling_start_busy(hba);
1969 	__set_bit(task_tag, &hba->outstanding_reqs);
1970 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1971 	/* Make sure that doorbell is committed immediately */
1972 	wmb();
1973 }
1974 
1975 /**
1976  * ufshcd_copy_sense_data - Copy sense data in case of check condition
1977  * @lrbp: pointer to local reference block
1978  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1979 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
1980 {
1981 	int len;
1982 	if (lrbp->sense_buffer &&
1983 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
1984 		int len_to_copy;
1985 
1986 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
1987 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
1988 
1989 		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
1990 		       len_to_copy);
1991 	}
1992 }
1993 
1994 /**
1995  * ufshcd_copy_query_response() - Copy the Query Response and the data
1996  * descriptor
1997  * @hba: per adapter instance
1998  * @lrbp: pointer to local reference block
1999  */
2000 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2001 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2002 {
2003 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2004 
2005 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2006 
2007 	/* Get the descriptor */
2008 	if (hba->dev_cmd.query.descriptor &&
2009 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2010 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2011 				GENERAL_UPIU_REQUEST_SIZE;
2012 		u16 resp_len;
2013 		u16 buf_len;
2014 
2015 		/* data segment length */
2016 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2017 						MASK_QUERY_DATA_SEG_LEN;
2018 		buf_len = be16_to_cpu(
2019 				hba->dev_cmd.query.request.upiu_req.length);
2020 		if (likely(buf_len >= resp_len)) {
2021 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2022 		} else {
2023 			dev_warn(hba->dev,
2024 				 "%s: rsp size %d is bigger than buffer size %d",
2025 				 __func__, resp_len, buf_len);
2026 			return -EINVAL;
2027 		}
2028 	}
2029 
2030 	return 0;
2031 }
2032 
2033 /**
2034  * ufshcd_hba_capabilities - Read controller capabilities
2035  * @hba: per adapter instance
2036  *
2037  * Return: 0 on success, negative on error.
2038  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2039 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2040 {
2041 	int err;
2042 
2043 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2044 
2045 	/* nutrs and nutmrs are 0 based values */
2046 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2047 	hba->nutmrs =
2048 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2049 
2050 	/* Read crypto capabilities */
2051 	err = ufshcd_hba_init_crypto_capabilities(hba);
2052 	if (err)
2053 		dev_err(hba->dev, "crypto setup failed\n");
2054 
2055 	return err;
2056 }
2057 
2058 /**
2059  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2060  *                            to accept UIC commands
2061  * @hba: per adapter instance
2062  * Return true on success, else false
2063  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2064 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2065 {
2066 	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2067 		return true;
2068 	else
2069 		return false;
2070 }
2071 
2072 /**
2073  * ufshcd_get_upmcrs - Get the power mode change request status
2074  * @hba: Pointer to adapter instance
2075  *
2076  * This function gets the UPMCRS field of HCS register
2077  * Returns value of UPMCRS field
2078  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2079 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2080 {
2081 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2082 }
2083 
2084 /**
2085  * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2086  * @hba: per adapter instance
2087  * @uic_cmd: UIC command
2088  *
2089  * Mutex must be held.
2090  */
2091 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2092 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2093 {
2094 	WARN_ON(hba->active_uic_cmd);
2095 
2096 	hba->active_uic_cmd = uic_cmd;
2097 
2098 	/* Write Args */
2099 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2100 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2101 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2102 
2103 	ufshcd_add_uic_command_trace(hba, uic_cmd, "send");
2104 
2105 	/* Write UIC Cmd */
2106 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2107 		      REG_UIC_COMMAND);
2108 }
2109 
2110 /**
2111  * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2112  * @hba: per adapter instance
2113  * @uic_cmd: UIC command
2114  *
2115  * Must be called with mutex held.
2116  * Returns 0 only if success.
2117  */
2118 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2119 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2120 {
2121 	int ret;
2122 	unsigned long flags;
2123 
2124 	if (wait_for_completion_timeout(&uic_cmd->done,
2125 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2126 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2127 	} else {
2128 		ret = -ETIMEDOUT;
2129 		dev_err(hba->dev,
2130 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2131 			uic_cmd->command, uic_cmd->argument3);
2132 
2133 		if (!uic_cmd->cmd_active) {
2134 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2135 				__func__);
2136 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2137 		}
2138 	}
2139 
2140 	spin_lock_irqsave(hba->host->host_lock, flags);
2141 	hba->active_uic_cmd = NULL;
2142 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2143 
2144 	return ret;
2145 }
2146 
2147 /**
2148  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2149  * @hba: per adapter instance
2150  * @uic_cmd: UIC command
2151  * @completion: initialize the completion only if this is set to true
2152  *
2153  * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2154  * with mutex held and host_lock locked.
2155  * Returns 0 only if success.
2156  */
2157 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2158 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2159 		      bool completion)
2160 {
2161 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2162 		dev_err(hba->dev,
2163 			"Controller not ready to accept UIC commands\n");
2164 		return -EIO;
2165 	}
2166 
2167 	if (completion)
2168 		init_completion(&uic_cmd->done);
2169 
2170 	uic_cmd->cmd_active = 1;
2171 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2172 
2173 	return 0;
2174 }
2175 
2176 /**
2177  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2178  * @hba: per adapter instance
2179  * @uic_cmd: UIC command
2180  *
2181  * Returns 0 only if success.
2182  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2183 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2184 {
2185 	int ret;
2186 	unsigned long flags;
2187 
2188 	ufshcd_hold(hba, false);
2189 	mutex_lock(&hba->uic_cmd_mutex);
2190 	ufshcd_add_delay_before_dme_cmd(hba);
2191 
2192 	spin_lock_irqsave(hba->host->host_lock, flags);
2193 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2194 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2195 	if (!ret)
2196 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2197 
2198 	mutex_unlock(&hba->uic_cmd_mutex);
2199 
2200 	ufshcd_release(hba);
2201 	return ret;
2202 }
2203 
2204 /**
2205  * ufshcd_map_sg - Map scatter-gather list to prdt
2206  * @hba: per adapter instance
2207  * @lrbp: pointer to local reference block
2208  *
2209  * Returns 0 in case of success, non-zero value in case of failure
2210  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2211 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2212 {
2213 	struct ufshcd_sg_entry *prd_table;
2214 	struct scatterlist *sg;
2215 	struct scsi_cmnd *cmd;
2216 	int sg_segments;
2217 	int i;
2218 
2219 	cmd = lrbp->cmd;
2220 	sg_segments = scsi_dma_map(cmd);
2221 	if (sg_segments < 0)
2222 		return sg_segments;
2223 
2224 	if (sg_segments) {
2225 
2226 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2227 			lrbp->utr_descriptor_ptr->prd_table_length =
2228 				cpu_to_le16((sg_segments *
2229 					sizeof(struct ufshcd_sg_entry)));
2230 		else
2231 			lrbp->utr_descriptor_ptr->prd_table_length =
2232 				cpu_to_le16((u16) (sg_segments));
2233 
2234 		prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2235 
2236 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2237 			prd_table[i].size  =
2238 				cpu_to_le32(((u32) sg_dma_len(sg))-1);
2239 			prd_table[i].base_addr =
2240 				cpu_to_le32(lower_32_bits(sg->dma_address));
2241 			prd_table[i].upper_addr =
2242 				cpu_to_le32(upper_32_bits(sg->dma_address));
2243 			prd_table[i].reserved = 0;
2244 		}
2245 	} else {
2246 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 /**
2253  * ufshcd_enable_intr - enable interrupts
2254  * @hba: per adapter instance
2255  * @intrs: interrupt bits
2256  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2257 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2258 {
2259 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2260 
2261 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2262 		u32 rw;
2263 		rw = set & INTERRUPT_MASK_RW_VER_10;
2264 		set = rw | ((set ^ intrs) & intrs);
2265 	} else {
2266 		set |= intrs;
2267 	}
2268 
2269 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2270 }
2271 
2272 /**
2273  * ufshcd_disable_intr - disable interrupts
2274  * @hba: per adapter instance
2275  * @intrs: interrupt bits
2276  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2277 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2278 {
2279 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2280 
2281 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2282 		u32 rw;
2283 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2284 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2285 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2286 
2287 	} else {
2288 		set &= ~intrs;
2289 	}
2290 
2291 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2292 }
2293 
2294 /**
2295  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2296  * descriptor according to request
2297  * @lrbp: pointer to local reference block
2298  * @upiu_flags: flags required in the header
2299  * @cmd_dir: requests data direction
2300  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2301 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2302 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2303 {
2304 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2305 	u32 data_direction;
2306 	u32 dword_0;
2307 	u32 dword_1 = 0;
2308 	u32 dword_3 = 0;
2309 
2310 	if (cmd_dir == DMA_FROM_DEVICE) {
2311 		data_direction = UTP_DEVICE_TO_HOST;
2312 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2313 	} else if (cmd_dir == DMA_TO_DEVICE) {
2314 		data_direction = UTP_HOST_TO_DEVICE;
2315 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2316 	} else {
2317 		data_direction = UTP_NO_DATA_TRANSFER;
2318 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2319 	}
2320 
2321 	dword_0 = data_direction | (lrbp->command_type
2322 				<< UPIU_COMMAND_TYPE_OFFSET);
2323 	if (lrbp->intr_cmd)
2324 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2325 
2326 	/* Prepare crypto related dwords */
2327 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2328 
2329 	/* Transfer request descriptor header fields */
2330 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2331 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2332 	/*
2333 	 * assigning invalid value for command status. Controller
2334 	 * updates OCS on command completion, with the command
2335 	 * status
2336 	 */
2337 	req_desc->header.dword_2 =
2338 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2339 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2340 
2341 	req_desc->prd_table_length = 0;
2342 }
2343 
2344 /**
2345  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2346  * for scsi commands
2347  * @lrbp: local reference block pointer
2348  * @upiu_flags: flags
2349  */
2350 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2351 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2352 {
2353 	struct scsi_cmnd *cmd = lrbp->cmd;
2354 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2355 	unsigned short cdb_len;
2356 
2357 	/* command descriptor fields */
2358 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2359 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2360 				lrbp->lun, lrbp->task_tag);
2361 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2362 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2363 
2364 	/* Total EHS length and Data segment length will be zero */
2365 	ucd_req_ptr->header.dword_2 = 0;
2366 
2367 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2368 
2369 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2370 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2371 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2372 
2373 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2374 }
2375 
2376 /**
2377  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2378  * for query requsts
2379  * @hba: UFS hba
2380  * @lrbp: local reference block pointer
2381  * @upiu_flags: flags
2382  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2383 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2384 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2385 {
2386 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2387 	struct ufs_query *query = &hba->dev_cmd.query;
2388 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2389 
2390 	/* Query request header */
2391 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2392 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2393 			lrbp->lun, lrbp->task_tag);
2394 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2395 			0, query->request.query_func, 0, 0);
2396 
2397 	/* Data segment length only need for WRITE_DESC */
2398 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2399 		ucd_req_ptr->header.dword_2 =
2400 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2401 	else
2402 		ucd_req_ptr->header.dword_2 = 0;
2403 
2404 	/* Copy the Query Request buffer as is */
2405 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2406 			QUERY_OSF_SIZE);
2407 
2408 	/* Copy the Descriptor */
2409 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2410 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2411 
2412 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2413 }
2414 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2415 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2416 {
2417 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2418 
2419 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2420 
2421 	/* command descriptor fields */
2422 	ucd_req_ptr->header.dword_0 =
2423 		UPIU_HEADER_DWORD(
2424 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2425 	/* clear rest of the fields of basic header */
2426 	ucd_req_ptr->header.dword_1 = 0;
2427 	ucd_req_ptr->header.dword_2 = 0;
2428 
2429 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2430 }
2431 
2432 /**
2433  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2434  *			     for Device Management Purposes
2435  * @hba: per adapter instance
2436  * @lrbp: pointer to local reference block
2437  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2438 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2439 				      struct ufshcd_lrb *lrbp)
2440 {
2441 	u8 upiu_flags;
2442 	int ret = 0;
2443 
2444 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2445 	    (hba->ufs_version == UFSHCI_VERSION_11))
2446 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2447 	else
2448 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2449 
2450 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2451 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2452 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2453 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2454 		ufshcd_prepare_utp_nop_upiu(lrbp);
2455 	else
2456 		ret = -EINVAL;
2457 
2458 	return ret;
2459 }
2460 
2461 /**
2462  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2463  *			   for SCSI Purposes
2464  * @hba: per adapter instance
2465  * @lrbp: pointer to local reference block
2466  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2467 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2468 {
2469 	u8 upiu_flags;
2470 	int ret = 0;
2471 
2472 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2473 	    (hba->ufs_version == UFSHCI_VERSION_11))
2474 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2475 	else
2476 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2477 
2478 	if (likely(lrbp->cmd)) {
2479 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2480 						lrbp->cmd->sc_data_direction);
2481 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2482 	} else {
2483 		ret = -EINVAL;
2484 	}
2485 
2486 	return ret;
2487 }
2488 
2489 /**
2490  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2491  * @upiu_wlun_id: UPIU W-LUN id
2492  *
2493  * Returns SCSI W-LUN id
2494  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2495 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2496 {
2497 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2498 }
2499 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2500 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2501 {
2502 	struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2503 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2504 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2505 		i * sizeof(struct utp_transfer_cmd_desc);
2506 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2507 				       response_upiu);
2508 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2509 
2510 	lrb->utr_descriptor_ptr = utrdlp + i;
2511 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2512 		i * sizeof(struct utp_transfer_req_desc);
2513 	lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2514 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2515 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2516 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2517 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
2518 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2519 }
2520 
2521 /**
2522  * ufshcd_queuecommand - main entry point for SCSI requests
2523  * @host: SCSI host pointer
2524  * @cmd: command from SCSI Midlayer
2525  *
2526  * Returns 0 for success, non-zero in case of failure
2527  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2528 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2529 {
2530 	struct ufshcd_lrb *lrbp;
2531 	struct ufs_hba *hba;
2532 	unsigned long flags;
2533 	int tag;
2534 	int err = 0;
2535 
2536 	hba = shost_priv(host);
2537 
2538 	tag = cmd->request->tag;
2539 	if (!ufshcd_valid_tag(hba, tag)) {
2540 		dev_err(hba->dev,
2541 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2542 			__func__, tag, cmd, cmd->request);
2543 		BUG();
2544 	}
2545 
2546 	if (!down_read_trylock(&hba->clk_scaling_lock))
2547 		return SCSI_MLQUEUE_HOST_BUSY;
2548 
2549 	hba->req_abort_count = 0;
2550 
2551 	err = ufshcd_hold(hba, true);
2552 	if (err) {
2553 		err = SCSI_MLQUEUE_HOST_BUSY;
2554 		goto out;
2555 	}
2556 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2557 		(hba->clk_gating.state != CLKS_ON));
2558 
2559 	lrbp = &hba->lrb[tag];
2560 
2561 	WARN_ON(lrbp->cmd);
2562 	lrbp->cmd = cmd;
2563 	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2564 	lrbp->sense_buffer = cmd->sense_buffer;
2565 	lrbp->task_tag = tag;
2566 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2567 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2568 
2569 	ufshcd_prepare_lrbp_crypto(cmd->request, lrbp);
2570 
2571 	lrbp->req_abort_skip = false;
2572 
2573 	ufshcd_comp_scsi_upiu(hba, lrbp);
2574 
2575 	err = ufshcd_map_sg(hba, lrbp);
2576 	if (err) {
2577 		lrbp->cmd = NULL;
2578 		ufshcd_release(hba);
2579 		goto out;
2580 	}
2581 	/* Make sure descriptors are ready before ringing the doorbell */
2582 	wmb();
2583 
2584 	spin_lock_irqsave(hba->host->host_lock, flags);
2585 	switch (hba->ufshcd_state) {
2586 	case UFSHCD_STATE_OPERATIONAL:
2587 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2588 		break;
2589 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2590 		/*
2591 		 * pm_runtime_get_sync() is used at error handling preparation
2592 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2593 		 * PM ops, it can never be finished if we let SCSI layer keep
2594 		 * retrying it, which gets err handler stuck forever. Neither
2595 		 * can we let the scsi cmd pass through, because UFS is in bad
2596 		 * state, the scsi cmd may eventually time out, which will get
2597 		 * err handler blocked for too long. So, just fail the scsi cmd
2598 		 * sent from PM ops, err handler can recover PM error anyways.
2599 		 */
2600 		if (hba->pm_op_in_progress) {
2601 			hba->force_reset = true;
2602 			set_host_byte(cmd, DID_BAD_TARGET);
2603 			goto out_compl_cmd;
2604 		}
2605 		fallthrough;
2606 	case UFSHCD_STATE_RESET:
2607 		err = SCSI_MLQUEUE_HOST_BUSY;
2608 		goto out_compl_cmd;
2609 	case UFSHCD_STATE_ERROR:
2610 		set_host_byte(cmd, DID_ERROR);
2611 		goto out_compl_cmd;
2612 	default:
2613 		dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2614 				__func__, hba->ufshcd_state);
2615 		set_host_byte(cmd, DID_BAD_TARGET);
2616 		goto out_compl_cmd;
2617 	}
2618 	ufshcd_send_command(hba, tag);
2619 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2620 	goto out;
2621 
2622 out_compl_cmd:
2623 	scsi_dma_unmap(lrbp->cmd);
2624 	lrbp->cmd = NULL;
2625 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2626 	ufshcd_release(hba);
2627 	if (!err)
2628 		cmd->scsi_done(cmd);
2629 out:
2630 	up_read(&hba->clk_scaling_lock);
2631 	return err;
2632 }
2633 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2634 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2635 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2636 {
2637 	lrbp->cmd = NULL;
2638 	lrbp->sense_bufflen = 0;
2639 	lrbp->sense_buffer = NULL;
2640 	lrbp->task_tag = tag;
2641 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2642 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2643 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2644 	hba->dev_cmd.type = cmd_type;
2645 
2646 	return ufshcd_compose_devman_upiu(hba, lrbp);
2647 }
2648 
2649 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2650 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2651 {
2652 	int err = 0;
2653 	unsigned long flags;
2654 	u32 mask = 1 << tag;
2655 
2656 	/* clear outstanding transaction before retry */
2657 	spin_lock_irqsave(hba->host->host_lock, flags);
2658 	ufshcd_utrl_clear(hba, tag);
2659 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2660 
2661 	/*
2662 	 * wait for for h/w to clear corresponding bit in door-bell.
2663 	 * max. wait is 1 sec.
2664 	 */
2665 	err = ufshcd_wait_for_register(hba,
2666 			REG_UTP_TRANSFER_REQ_DOOR_BELL,
2667 			mask, ~mask, 1000, 1000);
2668 
2669 	return err;
2670 }
2671 
2672 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2673 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2674 {
2675 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2676 
2677 	/* Get the UPIU response */
2678 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2679 				UPIU_RSP_CODE_OFFSET;
2680 	return query_res->response;
2681 }
2682 
2683 /**
2684  * ufshcd_dev_cmd_completion() - handles device management command responses
2685  * @hba: per adapter instance
2686  * @lrbp: pointer to local reference block
2687  */
2688 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2689 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2690 {
2691 	int resp;
2692 	int err = 0;
2693 
2694 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2695 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2696 
2697 	switch (resp) {
2698 	case UPIU_TRANSACTION_NOP_IN:
2699 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2700 			err = -EINVAL;
2701 			dev_err(hba->dev, "%s: unexpected response %x\n",
2702 					__func__, resp);
2703 		}
2704 		break;
2705 	case UPIU_TRANSACTION_QUERY_RSP:
2706 		err = ufshcd_check_query_response(hba, lrbp);
2707 		if (!err)
2708 			err = ufshcd_copy_query_response(hba, lrbp);
2709 		break;
2710 	case UPIU_TRANSACTION_REJECT_UPIU:
2711 		/* TODO: handle Reject UPIU Response */
2712 		err = -EPERM;
2713 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2714 				__func__);
2715 		break;
2716 	default:
2717 		err = -EINVAL;
2718 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2719 				__func__, resp);
2720 		break;
2721 	}
2722 
2723 	return err;
2724 }
2725 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2726 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2727 		struct ufshcd_lrb *lrbp, int max_timeout)
2728 {
2729 	int err = 0;
2730 	unsigned long time_left;
2731 	unsigned long flags;
2732 
2733 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2734 			msecs_to_jiffies(max_timeout));
2735 
2736 	/* Make sure descriptors are ready before ringing the doorbell */
2737 	wmb();
2738 	spin_lock_irqsave(hba->host->host_lock, flags);
2739 	hba->dev_cmd.complete = NULL;
2740 	if (likely(time_left)) {
2741 		err = ufshcd_get_tr_ocs(lrbp);
2742 		if (!err)
2743 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2744 	}
2745 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2746 
2747 	if (!time_left) {
2748 		err = -ETIMEDOUT;
2749 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2750 			__func__, lrbp->task_tag);
2751 		if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2752 			/* successfully cleared the command, retry if needed */
2753 			err = -EAGAIN;
2754 		/*
2755 		 * in case of an error, after clearing the doorbell,
2756 		 * we also need to clear the outstanding_request
2757 		 * field in hba
2758 		 */
2759 		ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2760 	}
2761 
2762 	return err;
2763 }
2764 
2765 /**
2766  * ufshcd_exec_dev_cmd - API for sending device management requests
2767  * @hba: UFS hba
2768  * @cmd_type: specifies the type (NOP, Query...)
2769  * @timeout: timeout in milliseconds
2770  *
2771  * NOTE: Since there is only one available tag for device management commands,
2772  * it is expected you hold the hba->dev_cmd.lock mutex.
2773  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2774 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2775 		enum dev_cmd_type cmd_type, int timeout)
2776 {
2777 	struct request_queue *q = hba->cmd_queue;
2778 	struct request *req;
2779 	struct ufshcd_lrb *lrbp;
2780 	int err;
2781 	int tag;
2782 	struct completion wait;
2783 	unsigned long flags;
2784 
2785 	down_read(&hba->clk_scaling_lock);
2786 
2787 	/*
2788 	 * Get free slot, sleep if slots are unavailable.
2789 	 * Even though we use wait_event() which sleeps indefinitely,
2790 	 * the maximum wait time is bounded by SCSI request timeout.
2791 	 */
2792 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
2793 	if (IS_ERR(req)) {
2794 		err = PTR_ERR(req);
2795 		goto out_unlock;
2796 	}
2797 	tag = req->tag;
2798 	WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
2799 	/* Set the timeout such that the SCSI error handler is not activated. */
2800 	req->timeout = msecs_to_jiffies(2 * timeout);
2801 	blk_mq_start_request(req);
2802 
2803 	init_completion(&wait);
2804 	lrbp = &hba->lrb[tag];
2805 	WARN_ON(lrbp->cmd);
2806 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2807 	if (unlikely(err))
2808 		goto out_put_tag;
2809 
2810 	hba->dev_cmd.complete = &wait;
2811 
2812 	ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2813 	/* Make sure descriptors are ready before ringing the doorbell */
2814 	wmb();
2815 	spin_lock_irqsave(hba->host->host_lock, flags);
2816 	ufshcd_send_command(hba, tag);
2817 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2818 
2819 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2820 
2821 	ufshcd_add_query_upiu_trace(hba, tag,
2822 			err ? "query_complete_err" : "query_complete");
2823 
2824 out_put_tag:
2825 	blk_put_request(req);
2826 out_unlock:
2827 	up_read(&hba->clk_scaling_lock);
2828 	return err;
2829 }
2830 
2831 /**
2832  * ufshcd_init_query() - init the query response and request parameters
2833  * @hba: per-adapter instance
2834  * @request: address of the request pointer to be initialized
2835  * @response: address of the response pointer to be initialized
2836  * @opcode: operation to perform
2837  * @idn: flag idn to access
2838  * @index: LU number to access
2839  * @selector: query/flag/descriptor further identification
2840  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2841 static inline void ufshcd_init_query(struct ufs_hba *hba,
2842 		struct ufs_query_req **request, struct ufs_query_res **response,
2843 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2844 {
2845 	*request = &hba->dev_cmd.query.request;
2846 	*response = &hba->dev_cmd.query.response;
2847 	memset(*request, 0, sizeof(struct ufs_query_req));
2848 	memset(*response, 0, sizeof(struct ufs_query_res));
2849 	(*request)->upiu_req.opcode = opcode;
2850 	(*request)->upiu_req.idn = idn;
2851 	(*request)->upiu_req.index = index;
2852 	(*request)->upiu_req.selector = selector;
2853 }
2854 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2855 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
2856 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
2857 {
2858 	int ret;
2859 	int retries;
2860 
2861 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2862 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
2863 		if (ret)
2864 			dev_dbg(hba->dev,
2865 				"%s: failed with error %d, retries %d\n",
2866 				__func__, ret, retries);
2867 		else
2868 			break;
2869 	}
2870 
2871 	if (ret)
2872 		dev_err(hba->dev,
2873 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
2874 			__func__, opcode, idn, ret, retries);
2875 	return ret;
2876 }
2877 
2878 /**
2879  * ufshcd_query_flag() - API function for sending flag query requests
2880  * @hba: per-adapter instance
2881  * @opcode: flag query to perform
2882  * @idn: flag idn to access
2883  * @index: flag index to access
2884  * @flag_res: the flag value after the query request completes
2885  *
2886  * Returns 0 for success, non-zero in case of failure
2887  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2888 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
2889 			enum flag_idn idn, u8 index, bool *flag_res)
2890 {
2891 	struct ufs_query_req *request = NULL;
2892 	struct ufs_query_res *response = NULL;
2893 	int err, selector = 0;
2894 	int timeout = QUERY_REQ_TIMEOUT;
2895 
2896 	BUG_ON(!hba);
2897 
2898 	ufshcd_hold(hba, false);
2899 	mutex_lock(&hba->dev_cmd.lock);
2900 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2901 			selector);
2902 
2903 	switch (opcode) {
2904 	case UPIU_QUERY_OPCODE_SET_FLAG:
2905 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
2906 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
2907 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2908 		break;
2909 	case UPIU_QUERY_OPCODE_READ_FLAG:
2910 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2911 		if (!flag_res) {
2912 			/* No dummy reads */
2913 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
2914 					__func__);
2915 			err = -EINVAL;
2916 			goto out_unlock;
2917 		}
2918 		break;
2919 	default:
2920 		dev_err(hba->dev,
2921 			"%s: Expected query flag opcode but got = %d\n",
2922 			__func__, opcode);
2923 		err = -EINVAL;
2924 		goto out_unlock;
2925 	}
2926 
2927 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
2928 
2929 	if (err) {
2930 		dev_err(hba->dev,
2931 			"%s: Sending flag query for idn %d failed, err = %d\n",
2932 			__func__, idn, err);
2933 		goto out_unlock;
2934 	}
2935 
2936 	if (flag_res)
2937 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
2938 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
2939 
2940 out_unlock:
2941 	mutex_unlock(&hba->dev_cmd.lock);
2942 	ufshcd_release(hba);
2943 	return err;
2944 }
2945 
2946 /**
2947  * ufshcd_query_attr - API function for sending attribute requests
2948  * @hba: per-adapter instance
2949  * @opcode: attribute opcode
2950  * @idn: attribute idn to access
2951  * @index: index field
2952  * @selector: selector field
2953  * @attr_val: the attribute value after the query request completes
2954  *
2955  * Returns 0 for success, non-zero in case of failure
2956 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2957 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
2958 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
2959 {
2960 	struct ufs_query_req *request = NULL;
2961 	struct ufs_query_res *response = NULL;
2962 	int err;
2963 
2964 	BUG_ON(!hba);
2965 
2966 	ufshcd_hold(hba, false);
2967 	if (!attr_val) {
2968 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
2969 				__func__, opcode);
2970 		err = -EINVAL;
2971 		goto out;
2972 	}
2973 
2974 	mutex_lock(&hba->dev_cmd.lock);
2975 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2976 			selector);
2977 
2978 	switch (opcode) {
2979 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
2980 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2981 		request->upiu_req.value = cpu_to_be32(*attr_val);
2982 		break;
2983 	case UPIU_QUERY_OPCODE_READ_ATTR:
2984 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2985 		break;
2986 	default:
2987 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
2988 				__func__, opcode);
2989 		err = -EINVAL;
2990 		goto out_unlock;
2991 	}
2992 
2993 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2994 
2995 	if (err) {
2996 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2997 				__func__, opcode, idn, index, err);
2998 		goto out_unlock;
2999 	}
3000 
3001 	*attr_val = be32_to_cpu(response->upiu_res.value);
3002 
3003 out_unlock:
3004 	mutex_unlock(&hba->dev_cmd.lock);
3005 out:
3006 	ufshcd_release(hba);
3007 	return err;
3008 }
3009 
3010 /**
3011  * ufshcd_query_attr_retry() - API function for sending query
3012  * attribute with retries
3013  * @hba: per-adapter instance
3014  * @opcode: attribute opcode
3015  * @idn: attribute idn to access
3016  * @index: index field
3017  * @selector: selector field
3018  * @attr_val: the attribute value after the query request
3019  * completes
3020  *
3021  * Returns 0 for success, non-zero in case of failure
3022 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3023 static int ufshcd_query_attr_retry(struct ufs_hba *hba,
3024 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3025 	u32 *attr_val)
3026 {
3027 	int ret = 0;
3028 	u32 retries;
3029 
3030 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3031 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3032 						selector, attr_val);
3033 		if (ret)
3034 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3035 				__func__, ret, retries);
3036 		else
3037 			break;
3038 	}
3039 
3040 	if (ret)
3041 		dev_err(hba->dev,
3042 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
3043 			__func__, idn, ret, QUERY_REQ_RETRIES);
3044 	return ret;
3045 }
3046 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3047 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3048 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3049 			u8 selector, u8 *desc_buf, int *buf_len)
3050 {
3051 	struct ufs_query_req *request = NULL;
3052 	struct ufs_query_res *response = NULL;
3053 	int err;
3054 
3055 	BUG_ON(!hba);
3056 
3057 	ufshcd_hold(hba, false);
3058 	if (!desc_buf) {
3059 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3060 				__func__, opcode);
3061 		err = -EINVAL;
3062 		goto out;
3063 	}
3064 
3065 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3066 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3067 				__func__, *buf_len);
3068 		err = -EINVAL;
3069 		goto out;
3070 	}
3071 
3072 	mutex_lock(&hba->dev_cmd.lock);
3073 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3074 			selector);
3075 	hba->dev_cmd.query.descriptor = desc_buf;
3076 	request->upiu_req.length = cpu_to_be16(*buf_len);
3077 
3078 	switch (opcode) {
3079 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3080 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3081 		break;
3082 	case UPIU_QUERY_OPCODE_READ_DESC:
3083 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3084 		break;
3085 	default:
3086 		dev_err(hba->dev,
3087 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3088 				__func__, opcode);
3089 		err = -EINVAL;
3090 		goto out_unlock;
3091 	}
3092 
3093 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3094 
3095 	if (err) {
3096 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3097 				__func__, opcode, idn, index, err);
3098 		goto out_unlock;
3099 	}
3100 
3101 	*buf_len = be16_to_cpu(response->upiu_res.length);
3102 
3103 out_unlock:
3104 	hba->dev_cmd.query.descriptor = NULL;
3105 	mutex_unlock(&hba->dev_cmd.lock);
3106 out:
3107 	ufshcd_release(hba);
3108 	return err;
3109 }
3110 
3111 /**
3112  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3113  * @hba: per-adapter instance
3114  * @opcode: attribute opcode
3115  * @idn: attribute idn to access
3116  * @index: index field
3117  * @selector: selector field
3118  * @desc_buf: the buffer that contains the descriptor
3119  * @buf_len: length parameter passed to the device
3120  *
3121  * Returns 0 for success, non-zero in case of failure.
3122  * The buf_len parameter will contain, on return, the length parameter
3123  * received on the response.
3124  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3125 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3126 				  enum query_opcode opcode,
3127 				  enum desc_idn idn, u8 index,
3128 				  u8 selector,
3129 				  u8 *desc_buf, int *buf_len)
3130 {
3131 	int err;
3132 	int retries;
3133 
3134 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3135 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3136 						selector, desc_buf, buf_len);
3137 		if (!err || err == -EINVAL)
3138 			break;
3139 	}
3140 
3141 	return err;
3142 }
3143 
3144 /**
3145  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3146  * @hba: Pointer to adapter instance
3147  * @desc_id: descriptor idn value
3148  * @desc_len: mapped desc length (out)
3149  */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3150 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3151 				  int *desc_len)
3152 {
3153 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3154 	    desc_id == QUERY_DESC_IDN_RFU_1)
3155 		*desc_len = 0;
3156 	else
3157 		*desc_len = hba->desc_size[desc_id];
3158 }
3159 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3160 
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3161 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3162 				      enum desc_idn desc_id, int desc_index,
3163 				      unsigned char desc_len)
3164 {
3165 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3166 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3167 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3168 		 * than the RPMB unit, however, both descriptors share the same
3169 		 * desc_idn, to cover both unit descriptors with one length, we
3170 		 * choose the normal unit descriptor length by desc_index.
3171 		 */
3172 		hba->desc_size[desc_id] = desc_len;
3173 }
3174 
3175 /**
3176  * ufshcd_read_desc_param - read the specified descriptor parameter
3177  * @hba: Pointer to adapter instance
3178  * @desc_id: descriptor idn value
3179  * @desc_index: descriptor index
3180  * @param_offset: offset of the parameter to read
3181  * @param_read_buf: pointer to buffer where parameter would be read
3182  * @param_size: sizeof(param_read_buf)
3183  *
3184  * Return 0 in case of success, non-zero otherwise
3185  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3186 int ufshcd_read_desc_param(struct ufs_hba *hba,
3187 			   enum desc_idn desc_id,
3188 			   int desc_index,
3189 			   u8 param_offset,
3190 			   u8 *param_read_buf,
3191 			   u8 param_size)
3192 {
3193 	int ret;
3194 	u8 *desc_buf;
3195 	int buff_len;
3196 	bool is_kmalloc = true;
3197 
3198 	/* Safety check */
3199 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3200 		return -EINVAL;
3201 
3202 	/* Get the length of descriptor */
3203 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3204 	if (!buff_len) {
3205 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3206 		return -EINVAL;
3207 	}
3208 
3209 	if (param_offset >= buff_len) {
3210 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3211 			__func__, param_offset, desc_id, buff_len);
3212 		return -EINVAL;
3213 	}
3214 
3215 	/* Check whether we need temp memory */
3216 	if (param_offset != 0 || param_size < buff_len) {
3217 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3218 		if (!desc_buf)
3219 			return -ENOMEM;
3220 	} else {
3221 		desc_buf = param_read_buf;
3222 		is_kmalloc = false;
3223 	}
3224 
3225 	/* Request for full descriptor */
3226 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3227 					desc_id, desc_index, 0,
3228 					desc_buf, &buff_len);
3229 
3230 	if (ret) {
3231 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3232 			__func__, desc_id, desc_index, param_offset, ret);
3233 		goto out;
3234 	}
3235 
3236 	/* Sanity check */
3237 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3238 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3239 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3240 		ret = -EINVAL;
3241 		goto out;
3242 	}
3243 
3244 	/* Update descriptor length */
3245 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3246 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3247 
3248 	if (is_kmalloc) {
3249 		/* Make sure we don't copy more data than available */
3250 		if (param_offset >= buff_len)
3251 			ret = -EINVAL;
3252 		else
3253 			memcpy(param_read_buf, &desc_buf[param_offset],
3254 			       min_t(u32, param_size, buff_len - param_offset));
3255 	}
3256 out:
3257 	if (is_kmalloc)
3258 		kfree(desc_buf);
3259 	return ret;
3260 }
3261 
3262 /**
3263  * struct uc_string_id - unicode string
3264  *
3265  * @len: size of this descriptor inclusive
3266  * @type: descriptor type
3267  * @uc: unicode string character
3268  */
3269 struct uc_string_id {
3270 	u8 len;
3271 	u8 type;
3272 	wchar_t uc[];
3273 } __packed;
3274 
3275 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3276 static inline char ufshcd_remove_non_printable(u8 ch)
3277 {
3278 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3279 }
3280 
3281 /**
3282  * ufshcd_read_string_desc - read string descriptor
3283  * @hba: pointer to adapter instance
3284  * @desc_index: descriptor index
3285  * @buf: pointer to buffer where descriptor would be read,
3286  *       the caller should free the memory.
3287  * @ascii: if true convert from unicode to ascii characters
3288  *         null terminated string.
3289  *
3290  * Return:
3291  * *      string size on success.
3292  * *      -ENOMEM: on allocation failure
3293  * *      -EINVAL: on a wrong parameter
3294  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3295 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3296 			    u8 **buf, bool ascii)
3297 {
3298 	struct uc_string_id *uc_str;
3299 	u8 *str;
3300 	int ret;
3301 
3302 	if (!buf)
3303 		return -EINVAL;
3304 
3305 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3306 	if (!uc_str)
3307 		return -ENOMEM;
3308 
3309 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3310 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3311 	if (ret < 0) {
3312 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3313 			QUERY_REQ_RETRIES, ret);
3314 		str = NULL;
3315 		goto out;
3316 	}
3317 
3318 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3319 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3320 		str = NULL;
3321 		ret = 0;
3322 		goto out;
3323 	}
3324 
3325 	if (ascii) {
3326 		ssize_t ascii_len;
3327 		int i;
3328 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3329 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3330 		str = kzalloc(ascii_len, GFP_KERNEL);
3331 		if (!str) {
3332 			ret = -ENOMEM;
3333 			goto out;
3334 		}
3335 
3336 		/*
3337 		 * the descriptor contains string in UTF16 format
3338 		 * we need to convert to utf-8 so it can be displayed
3339 		 */
3340 		ret = utf16s_to_utf8s(uc_str->uc,
3341 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3342 				      UTF16_BIG_ENDIAN, str, ascii_len);
3343 
3344 		/* replace non-printable or non-ASCII characters with spaces */
3345 		for (i = 0; i < ret; i++)
3346 			str[i] = ufshcd_remove_non_printable(str[i]);
3347 
3348 		str[ret++] = '\0';
3349 
3350 	} else {
3351 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3352 		if (!str) {
3353 			ret = -ENOMEM;
3354 			goto out;
3355 		}
3356 		ret = uc_str->len;
3357 	}
3358 out:
3359 	*buf = str;
3360 	kfree(uc_str);
3361 	return ret;
3362 }
3363 
3364 /**
3365  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3366  * @hba: Pointer to adapter instance
3367  * @lun: lun id
3368  * @param_offset: offset of the parameter to read
3369  * @param_read_buf: pointer to buffer where parameter would be read
3370  * @param_size: sizeof(param_read_buf)
3371  *
3372  * Return 0 in case of success, non-zero otherwise
3373  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3374 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3375 					      int lun,
3376 					      enum unit_desc_param param_offset,
3377 					      u8 *param_read_buf,
3378 					      u32 param_size)
3379 {
3380 	/*
3381 	 * Unit descriptors are only available for general purpose LUs (LUN id
3382 	 * from 0 to 7) and RPMB Well known LU.
3383 	 */
3384 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3385 		return -EOPNOTSUPP;
3386 
3387 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3388 				      param_offset, param_read_buf, param_size);
3389 }
3390 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3391 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3392 {
3393 	int err = 0;
3394 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3395 
3396 	if (hba->dev_info.wspecversion >= 0x300) {
3397 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3398 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3399 				&gating_wait);
3400 		if (err)
3401 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3402 					 err, gating_wait);
3403 
3404 		if (gating_wait == 0) {
3405 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3406 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3407 					 gating_wait);
3408 		}
3409 
3410 		hba->dev_info.clk_gating_wait_us = gating_wait;
3411 	}
3412 
3413 	return err;
3414 }
3415 
3416 /**
3417  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3418  * @hba: per adapter instance
3419  *
3420  * 1. Allocate DMA memory for Command Descriptor array
3421  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3422  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3423  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3424  *	(UTMRDL)
3425  * 4. Allocate memory for local reference block(lrb).
3426  *
3427  * Returns 0 for success, non-zero in case of failure
3428  */
ufshcd_memory_alloc(struct ufs_hba * hba)3429 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3430 {
3431 	size_t utmrdl_size, utrdl_size, ucdl_size;
3432 
3433 	/* Allocate memory for UTP command descriptors */
3434 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3435 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3436 						  ucdl_size,
3437 						  &hba->ucdl_dma_addr,
3438 						  GFP_KERNEL);
3439 
3440 	/*
3441 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3442 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3443 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3444 	 * be aligned to 128 bytes as well
3445 	 */
3446 	if (!hba->ucdl_base_addr ||
3447 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3448 		dev_err(hba->dev,
3449 			"Command Descriptor Memory allocation failed\n");
3450 		goto out;
3451 	}
3452 
3453 	/*
3454 	 * Allocate memory for UTP Transfer descriptors
3455 	 * UFSHCI requires 1024 byte alignment of UTRD
3456 	 */
3457 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3458 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3459 						   utrdl_size,
3460 						   &hba->utrdl_dma_addr,
3461 						   GFP_KERNEL);
3462 	if (!hba->utrdl_base_addr ||
3463 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3464 		dev_err(hba->dev,
3465 			"Transfer Descriptor Memory allocation failed\n");
3466 		goto out;
3467 	}
3468 
3469 	/*
3470 	 * Allocate memory for UTP Task Management descriptors
3471 	 * UFSHCI requires 1024 byte alignment of UTMRD
3472 	 */
3473 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3474 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3475 						    utmrdl_size,
3476 						    &hba->utmrdl_dma_addr,
3477 						    GFP_KERNEL);
3478 	if (!hba->utmrdl_base_addr ||
3479 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3480 		dev_err(hba->dev,
3481 		"Task Management Descriptor Memory allocation failed\n");
3482 		goto out;
3483 	}
3484 
3485 	/* Allocate memory for local reference block */
3486 	hba->lrb = devm_kcalloc(hba->dev,
3487 				hba->nutrs, sizeof(struct ufshcd_lrb),
3488 				GFP_KERNEL);
3489 	if (!hba->lrb) {
3490 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3491 		goto out;
3492 	}
3493 	return 0;
3494 out:
3495 	return -ENOMEM;
3496 }
3497 
3498 /**
3499  * ufshcd_host_memory_configure - configure local reference block with
3500  *				memory offsets
3501  * @hba: per adapter instance
3502  *
3503  * Configure Host memory space
3504  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3505  * address.
3506  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3507  * and PRDT offset.
3508  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3509  * into local reference block.
3510  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3511 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3512 {
3513 	struct utp_transfer_req_desc *utrdlp;
3514 	dma_addr_t cmd_desc_dma_addr;
3515 	dma_addr_t cmd_desc_element_addr;
3516 	u16 response_offset;
3517 	u16 prdt_offset;
3518 	int cmd_desc_size;
3519 	int i;
3520 
3521 	utrdlp = hba->utrdl_base_addr;
3522 
3523 	response_offset =
3524 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3525 	prdt_offset =
3526 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3527 
3528 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3529 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3530 
3531 	for (i = 0; i < hba->nutrs; i++) {
3532 		/* Configure UTRD with command descriptor base address */
3533 		cmd_desc_element_addr =
3534 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3535 		utrdlp[i].command_desc_base_addr_lo =
3536 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3537 		utrdlp[i].command_desc_base_addr_hi =
3538 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3539 
3540 		/* Response upiu and prdt offset should be in double words */
3541 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3542 			utrdlp[i].response_upiu_offset =
3543 				cpu_to_le16(response_offset);
3544 			utrdlp[i].prd_table_offset =
3545 				cpu_to_le16(prdt_offset);
3546 			utrdlp[i].response_upiu_length =
3547 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3548 		} else {
3549 			utrdlp[i].response_upiu_offset =
3550 				cpu_to_le16(response_offset >> 2);
3551 			utrdlp[i].prd_table_offset =
3552 				cpu_to_le16(prdt_offset >> 2);
3553 			utrdlp[i].response_upiu_length =
3554 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3555 		}
3556 
3557 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3558 	}
3559 }
3560 
3561 /**
3562  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3563  * @hba: per adapter instance
3564  *
3565  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3566  * in order to initialize the Unipro link startup procedure.
3567  * Once the Unipro links are up, the device connected to the controller
3568  * is detected.
3569  *
3570  * Returns 0 on success, non-zero value on failure
3571  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3572 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3573 {
3574 	struct uic_command uic_cmd = {0};
3575 	int ret;
3576 
3577 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3578 
3579 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3580 	if (ret)
3581 		dev_dbg(hba->dev,
3582 			"dme-link-startup: error code %d\n", ret);
3583 	return ret;
3584 }
3585 /**
3586  * ufshcd_dme_reset - UIC command for DME_RESET
3587  * @hba: per adapter instance
3588  *
3589  * DME_RESET command is issued in order to reset UniPro stack.
3590  * This function now deals with cold reset.
3591  *
3592  * Returns 0 on success, non-zero value on failure
3593  */
ufshcd_dme_reset(struct ufs_hba * hba)3594 static int ufshcd_dme_reset(struct ufs_hba *hba)
3595 {
3596 	struct uic_command uic_cmd = {0};
3597 	int ret;
3598 
3599 	uic_cmd.command = UIC_CMD_DME_RESET;
3600 
3601 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3602 	if (ret)
3603 		dev_err(hba->dev,
3604 			"dme-reset: error code %d\n", ret);
3605 
3606 	return ret;
3607 }
3608 
3609 /**
3610  * ufshcd_dme_enable - UIC command for DME_ENABLE
3611  * @hba: per adapter instance
3612  *
3613  * DME_ENABLE command is issued in order to enable UniPro stack.
3614  *
3615  * Returns 0 on success, non-zero value on failure
3616  */
ufshcd_dme_enable(struct ufs_hba * hba)3617 static int ufshcd_dme_enable(struct ufs_hba *hba)
3618 {
3619 	struct uic_command uic_cmd = {0};
3620 	int ret;
3621 
3622 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3623 
3624 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3625 	if (ret)
3626 		dev_err(hba->dev,
3627 			"dme-enable: error code %d\n", ret);
3628 
3629 	return ret;
3630 }
3631 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3632 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3633 {
3634 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3635 	unsigned long min_sleep_time_us;
3636 
3637 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3638 		return;
3639 
3640 	/*
3641 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3642 	 * this function
3643 	 */
3644 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3645 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3646 	} else {
3647 		unsigned long delta =
3648 			(unsigned long) ktime_to_us(
3649 				ktime_sub(ktime_get(),
3650 				hba->last_dme_cmd_tstamp));
3651 
3652 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3653 			min_sleep_time_us =
3654 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3655 		else
3656 			return; /* no more delay required */
3657 	}
3658 
3659 	/* allow sleep for extra 50us if needed */
3660 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3661 }
3662 
3663 /**
3664  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3665  * @hba: per adapter instance
3666  * @attr_sel: uic command argument1
3667  * @attr_set: attribute set type as uic command argument2
3668  * @mib_val: setting value as uic command argument3
3669  * @peer: indicate whether peer or local
3670  *
3671  * Returns 0 on success, non-zero value on failure
3672  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3673 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3674 			u8 attr_set, u32 mib_val, u8 peer)
3675 {
3676 	struct uic_command uic_cmd = {0};
3677 	static const char *const action[] = {
3678 		"dme-set",
3679 		"dme-peer-set"
3680 	};
3681 	const char *set = action[!!peer];
3682 	int ret;
3683 	int retries = UFS_UIC_COMMAND_RETRIES;
3684 
3685 	uic_cmd.command = peer ?
3686 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3687 	uic_cmd.argument1 = attr_sel;
3688 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3689 	uic_cmd.argument3 = mib_val;
3690 
3691 	do {
3692 		/* for peer attributes we retry upon failure */
3693 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3694 		if (ret)
3695 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3696 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3697 	} while (ret && peer && --retries);
3698 
3699 	if (ret)
3700 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3701 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3702 			UFS_UIC_COMMAND_RETRIES - retries);
3703 
3704 	return ret;
3705 }
3706 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3707 
3708 /**
3709  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3710  * @hba: per adapter instance
3711  * @attr_sel: uic command argument1
3712  * @mib_val: the value of the attribute as returned by the UIC command
3713  * @peer: indicate whether peer or local
3714  *
3715  * Returns 0 on success, non-zero value on failure
3716  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3717 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3718 			u32 *mib_val, u8 peer)
3719 {
3720 	struct uic_command uic_cmd = {0};
3721 	static const char *const action[] = {
3722 		"dme-get",
3723 		"dme-peer-get"
3724 	};
3725 	const char *get = action[!!peer];
3726 	int ret;
3727 	int retries = UFS_UIC_COMMAND_RETRIES;
3728 	struct ufs_pa_layer_attr orig_pwr_info;
3729 	struct ufs_pa_layer_attr temp_pwr_info;
3730 	bool pwr_mode_change = false;
3731 
3732 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3733 		orig_pwr_info = hba->pwr_info;
3734 		temp_pwr_info = orig_pwr_info;
3735 
3736 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3737 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3738 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3739 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3740 			pwr_mode_change = true;
3741 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3742 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3743 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3744 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3745 			pwr_mode_change = true;
3746 		}
3747 		if (pwr_mode_change) {
3748 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3749 			if (ret)
3750 				goto out;
3751 		}
3752 	}
3753 
3754 	uic_cmd.command = peer ?
3755 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3756 	uic_cmd.argument1 = attr_sel;
3757 
3758 	do {
3759 		/* for peer attributes we retry upon failure */
3760 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3761 		if (ret)
3762 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3763 				get, UIC_GET_ATTR_ID(attr_sel), ret);
3764 	} while (ret && peer && --retries);
3765 
3766 	if (ret)
3767 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3768 			get, UIC_GET_ATTR_ID(attr_sel),
3769 			UFS_UIC_COMMAND_RETRIES - retries);
3770 
3771 	if (mib_val && !ret)
3772 		*mib_val = uic_cmd.argument3;
3773 
3774 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3775 	    && pwr_mode_change)
3776 		ufshcd_change_power_mode(hba, &orig_pwr_info);
3777 out:
3778 	return ret;
3779 }
3780 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3781 
3782 /**
3783  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3784  * state) and waits for it to take effect.
3785  *
3786  * @hba: per adapter instance
3787  * @cmd: UIC command to execute
3788  *
3789  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3790  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3791  * and device UniPro link and hence it's final completion would be indicated by
3792  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3793  * addition to normal UIC command completion Status (UCCS). This function only
3794  * returns after the relevant status bits indicate the completion.
3795  *
3796  * Returns 0 on success, non-zero value on failure
3797  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3798 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3799 {
3800 	struct completion uic_async_done;
3801 	unsigned long flags;
3802 	u8 status;
3803 	int ret;
3804 	bool reenable_intr = false;
3805 
3806 	mutex_lock(&hba->uic_cmd_mutex);
3807 	init_completion(&uic_async_done);
3808 	ufshcd_add_delay_before_dme_cmd(hba);
3809 
3810 	spin_lock_irqsave(hba->host->host_lock, flags);
3811 	if (ufshcd_is_link_broken(hba)) {
3812 		ret = -ENOLINK;
3813 		goto out_unlock;
3814 	}
3815 	hba->uic_async_done = &uic_async_done;
3816 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3817 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3818 		/*
3819 		 * Make sure UIC command completion interrupt is disabled before
3820 		 * issuing UIC command.
3821 		 */
3822 		wmb();
3823 		reenable_intr = true;
3824 	}
3825 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3826 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3827 	if (ret) {
3828 		dev_err(hba->dev,
3829 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3830 			cmd->command, cmd->argument3, ret);
3831 		goto out;
3832 	}
3833 
3834 	if (!wait_for_completion_timeout(hba->uic_async_done,
3835 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3836 		dev_err(hba->dev,
3837 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3838 			cmd->command, cmd->argument3);
3839 
3840 		if (!cmd->cmd_active) {
3841 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
3842 				__func__);
3843 			goto check_upmcrs;
3844 		}
3845 
3846 		ret = -ETIMEDOUT;
3847 		goto out;
3848 	}
3849 
3850 check_upmcrs:
3851 	status = ufshcd_get_upmcrs(hba);
3852 	if (status != PWR_LOCAL) {
3853 		dev_err(hba->dev,
3854 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3855 			cmd->command, status);
3856 		ret = (status != PWR_OK) ? status : -1;
3857 	}
3858 out:
3859 	if (ret) {
3860 		ufshcd_print_host_state(hba);
3861 		ufshcd_print_pwr_info(hba);
3862 		ufshcd_print_host_regs(hba);
3863 	}
3864 
3865 	spin_lock_irqsave(hba->host->host_lock, flags);
3866 	hba->active_uic_cmd = NULL;
3867 	hba->uic_async_done = NULL;
3868 	if (reenable_intr)
3869 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
3870 	if (ret) {
3871 		ufshcd_set_link_broken(hba);
3872 		ufshcd_schedule_eh_work(hba);
3873 	}
3874 out_unlock:
3875 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3876 	mutex_unlock(&hba->uic_cmd_mutex);
3877 
3878 	return ret;
3879 }
3880 
3881 /**
3882  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
3883  *				using DME_SET primitives.
3884  * @hba: per adapter instance
3885  * @mode: powr mode value
3886  *
3887  * Returns 0 on success, non-zero value on failure
3888  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3889 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
3890 {
3891 	struct uic_command uic_cmd = {0};
3892 	int ret;
3893 
3894 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
3895 		ret = ufshcd_dme_set(hba,
3896 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
3897 		if (ret) {
3898 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
3899 						__func__, ret);
3900 			goto out;
3901 		}
3902 	}
3903 
3904 	uic_cmd.command = UIC_CMD_DME_SET;
3905 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
3906 	uic_cmd.argument3 = mode;
3907 	ufshcd_hold(hba, false);
3908 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3909 	ufshcd_release(hba);
3910 
3911 out:
3912 	return ret;
3913 }
3914 
ufshcd_link_recovery(struct ufs_hba * hba)3915 int ufshcd_link_recovery(struct ufs_hba *hba)
3916 {
3917 	int ret;
3918 	unsigned long flags;
3919 
3920 	spin_lock_irqsave(hba->host->host_lock, flags);
3921 	hba->ufshcd_state = UFSHCD_STATE_RESET;
3922 	ufshcd_set_eh_in_progress(hba);
3923 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3924 
3925 	/* Reset the attached device */
3926 	ufshcd_vops_device_reset(hba);
3927 
3928 	ret = ufshcd_host_reset_and_restore(hba);
3929 
3930 	spin_lock_irqsave(hba->host->host_lock, flags);
3931 	if (ret)
3932 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
3933 	ufshcd_clear_eh_in_progress(hba);
3934 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3935 
3936 	if (ret)
3937 		dev_err(hba->dev, "%s: link recovery failed, err %d",
3938 			__func__, ret);
3939 
3940 	return ret;
3941 }
3942 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
3943 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3944 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3945 {
3946 	int ret;
3947 	struct uic_command uic_cmd = {0};
3948 	ktime_t start = ktime_get();
3949 
3950 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
3951 
3952 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
3953 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3954 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
3955 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3956 
3957 	if (ret)
3958 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
3959 			__func__, ret);
3960 	else
3961 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
3962 								POST_CHANGE);
3963 
3964 	return ret;
3965 }
3966 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)3967 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
3968 {
3969 	struct uic_command uic_cmd = {0};
3970 	int ret;
3971 	ktime_t start = ktime_get();
3972 
3973 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
3974 
3975 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
3976 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3977 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
3978 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3979 
3980 	if (ret) {
3981 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
3982 			__func__, ret);
3983 	} else {
3984 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
3985 								POST_CHANGE);
3986 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
3987 		hba->ufs_stats.hibern8_exit_cnt++;
3988 	}
3989 
3990 	return ret;
3991 }
3992 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
3993 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)3994 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
3995 {
3996 	unsigned long flags;
3997 	bool update = false;
3998 
3999 	if (!ufshcd_is_auto_hibern8_supported(hba))
4000 		return;
4001 
4002 	spin_lock_irqsave(hba->host->host_lock, flags);
4003 	if (hba->ahit != ahit) {
4004 		hba->ahit = ahit;
4005 		update = true;
4006 	}
4007 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4008 
4009 	if (update && !pm_runtime_suspended(hba->dev)) {
4010 		pm_runtime_get_sync(hba->dev);
4011 		ufshcd_hold(hba, false);
4012 		ufshcd_auto_hibern8_enable(hba);
4013 		ufshcd_release(hba);
4014 		pm_runtime_put(hba->dev);
4015 	}
4016 }
4017 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4018 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4019 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4020 {
4021 	unsigned long flags;
4022 
4023 	if (!ufshcd_is_auto_hibern8_supported(hba))
4024 		return;
4025 
4026 	spin_lock_irqsave(hba->host->host_lock, flags);
4027 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4028 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4029 }
4030 
4031  /**
4032  * ufshcd_init_pwr_info - setting the POR (power on reset)
4033  * values in hba power info
4034  * @hba: per-adapter instance
4035  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4036 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4037 {
4038 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4039 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4040 	hba->pwr_info.lane_rx = 1;
4041 	hba->pwr_info.lane_tx = 1;
4042 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4043 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4044 	hba->pwr_info.hs_rate = 0;
4045 }
4046 
4047 /**
4048  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4049  * @hba: per-adapter instance
4050  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4051 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4052 {
4053 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4054 
4055 	if (hba->max_pwr_info.is_valid)
4056 		return 0;
4057 
4058 	pwr_info->pwr_tx = FAST_MODE;
4059 	pwr_info->pwr_rx = FAST_MODE;
4060 	pwr_info->hs_rate = PA_HS_MODE_B;
4061 
4062 	/* Get the connected lane count */
4063 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4064 			&pwr_info->lane_rx);
4065 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4066 			&pwr_info->lane_tx);
4067 
4068 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4069 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4070 				__func__,
4071 				pwr_info->lane_rx,
4072 				pwr_info->lane_tx);
4073 		return -EINVAL;
4074 	}
4075 
4076 	/*
4077 	 * First, get the maximum gears of HS speed.
4078 	 * If a zero value, it means there is no HSGEAR capability.
4079 	 * Then, get the maximum gears of PWM speed.
4080 	 */
4081 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4082 	if (!pwr_info->gear_rx) {
4083 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4084 				&pwr_info->gear_rx);
4085 		if (!pwr_info->gear_rx) {
4086 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4087 				__func__, pwr_info->gear_rx);
4088 			return -EINVAL;
4089 		}
4090 		pwr_info->pwr_rx = SLOW_MODE;
4091 	}
4092 
4093 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4094 			&pwr_info->gear_tx);
4095 	if (!pwr_info->gear_tx) {
4096 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4097 				&pwr_info->gear_tx);
4098 		if (!pwr_info->gear_tx) {
4099 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4100 				__func__, pwr_info->gear_tx);
4101 			return -EINVAL;
4102 		}
4103 		pwr_info->pwr_tx = SLOW_MODE;
4104 	}
4105 
4106 	hba->max_pwr_info.is_valid = true;
4107 	return 0;
4108 }
4109 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4110 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4111 			     struct ufs_pa_layer_attr *pwr_mode)
4112 {
4113 	int ret;
4114 
4115 	/* if already configured to the requested pwr_mode */
4116 	if (!hba->force_pmc &&
4117 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4118 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4119 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4120 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4121 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4122 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4123 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4124 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4125 		return 0;
4126 	}
4127 
4128 	/*
4129 	 * Configure attributes for power mode change with below.
4130 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4131 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4132 	 * - PA_HSSERIES
4133 	 */
4134 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4135 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4136 			pwr_mode->lane_rx);
4137 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4138 			pwr_mode->pwr_rx == FAST_MODE)
4139 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4140 	else
4141 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4142 
4143 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4144 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4145 			pwr_mode->lane_tx);
4146 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4147 			pwr_mode->pwr_tx == FAST_MODE)
4148 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4149 	else
4150 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4151 
4152 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4153 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4154 	    pwr_mode->pwr_rx == FAST_MODE ||
4155 	    pwr_mode->pwr_tx == FAST_MODE)
4156 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4157 						pwr_mode->hs_rate);
4158 
4159 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4160 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4161 				DL_FC0ProtectionTimeOutVal_Default);
4162 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4163 				DL_TC0ReplayTimeOutVal_Default);
4164 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4165 				DL_AFC0ReqTimeOutVal_Default);
4166 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4167 				DL_FC1ProtectionTimeOutVal_Default);
4168 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4169 				DL_TC1ReplayTimeOutVal_Default);
4170 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4171 				DL_AFC1ReqTimeOutVal_Default);
4172 
4173 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4174 				DL_FC0ProtectionTimeOutVal_Default);
4175 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4176 				DL_TC0ReplayTimeOutVal_Default);
4177 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4178 				DL_AFC0ReqTimeOutVal_Default);
4179 	}
4180 
4181 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4182 			| pwr_mode->pwr_tx);
4183 
4184 	if (ret) {
4185 		dev_err(hba->dev,
4186 			"%s: power mode change failed %d\n", __func__, ret);
4187 	} else {
4188 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4189 								pwr_mode);
4190 
4191 		memcpy(&hba->pwr_info, pwr_mode,
4192 			sizeof(struct ufs_pa_layer_attr));
4193 	}
4194 
4195 	return ret;
4196 }
4197 
4198 /**
4199  * ufshcd_config_pwr_mode - configure a new power mode
4200  * @hba: per-adapter instance
4201  * @desired_pwr_mode: desired power configuration
4202  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4203 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4204 		struct ufs_pa_layer_attr *desired_pwr_mode)
4205 {
4206 	struct ufs_pa_layer_attr final_params = { 0 };
4207 	int ret;
4208 
4209 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4210 					desired_pwr_mode, &final_params);
4211 
4212 	if (ret)
4213 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4214 
4215 	ret = ufshcd_change_power_mode(hba, &final_params);
4216 
4217 	return ret;
4218 }
4219 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4220 
4221 /**
4222  * ufshcd_complete_dev_init() - checks device readiness
4223  * @hba: per-adapter instance
4224  *
4225  * Set fDeviceInit flag and poll until device toggles it.
4226  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4227 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4228 {
4229 	int err;
4230 	bool flag_res = true;
4231 	ktime_t timeout;
4232 
4233 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4234 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4235 	if (err) {
4236 		dev_err(hba->dev,
4237 			"%s setting fDeviceInit flag failed with error %d\n",
4238 			__func__, err);
4239 		goto out;
4240 	}
4241 
4242 	/* Poll fDeviceInit flag to be cleared */
4243 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4244 	do {
4245 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4246 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4247 		if (!flag_res)
4248 			break;
4249 		usleep_range(5000, 10000);
4250 	} while (ktime_before(ktime_get(), timeout));
4251 
4252 	if (err) {
4253 		dev_err(hba->dev,
4254 				"%s reading fDeviceInit flag failed with error %d\n",
4255 				__func__, err);
4256 	} else if (flag_res) {
4257 		dev_err(hba->dev,
4258 				"%s fDeviceInit was not cleared by the device\n",
4259 				__func__);
4260 		err = -EBUSY;
4261 	}
4262 out:
4263 	return err;
4264 }
4265 
4266 /**
4267  * ufshcd_make_hba_operational - Make UFS controller operational
4268  * @hba: per adapter instance
4269  *
4270  * To bring UFS host controller to operational state,
4271  * 1. Enable required interrupts
4272  * 2. Configure interrupt aggregation
4273  * 3. Program UTRL and UTMRL base address
4274  * 4. Configure run-stop-registers
4275  *
4276  * Returns 0 on success, non-zero value on failure
4277  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4278 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4279 {
4280 	int err = 0;
4281 	u32 reg;
4282 
4283 	/* Enable required interrupts */
4284 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4285 
4286 	/* Configure interrupt aggregation */
4287 	if (ufshcd_is_intr_aggr_allowed(hba))
4288 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4289 	else
4290 		ufshcd_disable_intr_aggr(hba);
4291 
4292 	/* Configure UTRL and UTMRL base address registers */
4293 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4294 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4295 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4296 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4297 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4298 			REG_UTP_TASK_REQ_LIST_BASE_L);
4299 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4300 			REG_UTP_TASK_REQ_LIST_BASE_H);
4301 
4302 	/*
4303 	 * Make sure base address and interrupt setup are updated before
4304 	 * enabling the run/stop registers below.
4305 	 */
4306 	wmb();
4307 
4308 	/*
4309 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4310 	 */
4311 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4312 	if (!(ufshcd_get_lists_status(reg))) {
4313 		ufshcd_enable_run_stop_reg(hba);
4314 	} else {
4315 		dev_err(hba->dev,
4316 			"Host controller not ready to process requests");
4317 		err = -EIO;
4318 	}
4319 
4320 	return err;
4321 }
4322 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4323 
4324 /**
4325  * ufshcd_hba_stop - Send controller to reset state
4326  * @hba: per adapter instance
4327  */
ufshcd_hba_stop(struct ufs_hba * hba)4328 static inline void ufshcd_hba_stop(struct ufs_hba *hba)
4329 {
4330 	unsigned long flags;
4331 	int err;
4332 
4333 	/*
4334 	 * Obtain the host lock to prevent that the controller is disabled
4335 	 * while the UFS interrupt handler is active on another CPU.
4336 	 */
4337 	spin_lock_irqsave(hba->host->host_lock, flags);
4338 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4339 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4340 
4341 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4342 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4343 					10, 1);
4344 	if (err)
4345 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4346 }
4347 
4348 /**
4349  * ufshcd_hba_execute_hce - initialize the controller
4350  * @hba: per adapter instance
4351  *
4352  * The controller resets itself and controller firmware initialization
4353  * sequence kicks off. When controller is ready it will set
4354  * the Host Controller Enable bit to 1.
4355  *
4356  * Returns 0 on success, non-zero value on failure
4357  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4358 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4359 {
4360 	int retry;
4361 
4362 	if (!ufshcd_is_hba_active(hba))
4363 		/* change controller state to "reset state" */
4364 		ufshcd_hba_stop(hba);
4365 
4366 	/* UniPro link is disabled at this point */
4367 	ufshcd_set_link_off(hba);
4368 
4369 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4370 
4371 	/* start controller initialization sequence */
4372 	ufshcd_hba_start(hba);
4373 
4374 	/*
4375 	 * To initialize a UFS host controller HCE bit must be set to 1.
4376 	 * During initialization the HCE bit value changes from 1->0->1.
4377 	 * When the host controller completes initialization sequence
4378 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4379 	 * to check if the controller has completed initialization sequence.
4380 	 * So without this delay the value HCE = 1, set in the previous
4381 	 * instruction might be read back.
4382 	 * This delay can be changed based on the controller.
4383 	 */
4384 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4385 
4386 	/* wait for the host controller to complete initialization */
4387 	retry = 50;
4388 	while (ufshcd_is_hba_active(hba)) {
4389 		if (retry) {
4390 			retry--;
4391 		} else {
4392 			dev_err(hba->dev,
4393 				"Controller enable failed\n");
4394 			return -EIO;
4395 		}
4396 		usleep_range(1000, 1100);
4397 	}
4398 
4399 	/* enable UIC related interrupts */
4400 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4401 
4402 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4403 
4404 	return 0;
4405 }
4406 
ufshcd_hba_enable(struct ufs_hba * hba)4407 int ufshcd_hba_enable(struct ufs_hba *hba)
4408 {
4409 	int ret;
4410 
4411 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4412 		ufshcd_set_link_off(hba);
4413 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4414 
4415 		/* enable UIC related interrupts */
4416 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4417 		ret = ufshcd_dme_reset(hba);
4418 		if (!ret) {
4419 			ret = ufshcd_dme_enable(hba);
4420 			if (!ret)
4421 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4422 			if (ret)
4423 				dev_err(hba->dev,
4424 					"Host controller enable failed with non-hce\n");
4425 		}
4426 	} else {
4427 		ret = ufshcd_hba_execute_hce(hba);
4428 	}
4429 
4430 	return ret;
4431 }
4432 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4433 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4434 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4435 {
4436 	int tx_lanes = 0, i, err = 0;
4437 
4438 	if (!peer)
4439 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4440 			       &tx_lanes);
4441 	else
4442 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4443 				    &tx_lanes);
4444 	for (i = 0; i < tx_lanes; i++) {
4445 		if (!peer)
4446 			err = ufshcd_dme_set(hba,
4447 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4448 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4449 					0);
4450 		else
4451 			err = ufshcd_dme_peer_set(hba,
4452 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4453 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4454 					0);
4455 		if (err) {
4456 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4457 				__func__, peer, i, err);
4458 			break;
4459 		}
4460 	}
4461 
4462 	return err;
4463 }
4464 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4465 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4466 {
4467 	return ufshcd_disable_tx_lcc(hba, true);
4468 }
4469 
ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4470 void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
4471 			    u32 reg)
4472 {
4473 	reg_hist->reg[reg_hist->pos] = reg;
4474 	reg_hist->tstamp[reg_hist->pos] = ktime_get();
4475 	reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH;
4476 }
4477 EXPORT_SYMBOL_GPL(ufshcd_update_reg_hist);
4478 
4479 /**
4480  * ufshcd_link_startup - Initialize unipro link startup
4481  * @hba: per adapter instance
4482  *
4483  * Returns 0 for success, non-zero in case of failure
4484  */
ufshcd_link_startup(struct ufs_hba * hba)4485 static int ufshcd_link_startup(struct ufs_hba *hba)
4486 {
4487 	int ret;
4488 	int retries = DME_LINKSTARTUP_RETRIES;
4489 	bool link_startup_again = false;
4490 
4491 	/*
4492 	 * If UFS device isn't active then we will have to issue link startup
4493 	 * 2 times to make sure the device state move to active.
4494 	 */
4495 	if (!ufshcd_is_ufs_dev_active(hba))
4496 		link_startup_again = true;
4497 
4498 link_startup:
4499 	do {
4500 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4501 
4502 		ret = ufshcd_dme_link_startup(hba);
4503 
4504 		/* check if device is detected by inter-connect layer */
4505 		if (!ret && !ufshcd_is_device_present(hba)) {
4506 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4507 					       0);
4508 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4509 			ret = -ENXIO;
4510 			goto out;
4511 		}
4512 
4513 		/*
4514 		 * DME link lost indication is only received when link is up,
4515 		 * but we can't be sure if the link is up until link startup
4516 		 * succeeds. So reset the local Uni-Pro and try again.
4517 		 */
4518 		if (ret && ufshcd_hba_enable(hba)) {
4519 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4520 					       (u32)ret);
4521 			goto out;
4522 		}
4523 	} while (ret && retries--);
4524 
4525 	if (ret) {
4526 		/* failed to get the link up... retire */
4527 		ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4528 				       (u32)ret);
4529 		goto out;
4530 	}
4531 
4532 	if (link_startup_again) {
4533 		link_startup_again = false;
4534 		retries = DME_LINKSTARTUP_RETRIES;
4535 		goto link_startup;
4536 	}
4537 
4538 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4539 	ufshcd_init_pwr_info(hba);
4540 	ufshcd_print_pwr_info(hba);
4541 
4542 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4543 		ret = ufshcd_disable_device_tx_lcc(hba);
4544 		if (ret)
4545 			goto out;
4546 	}
4547 
4548 	/* Include any host controller configuration via UIC commands */
4549 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4550 	if (ret)
4551 		goto out;
4552 
4553 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4554 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4555 	ret = ufshcd_make_hba_operational(hba);
4556 out:
4557 	if (ret) {
4558 		dev_err(hba->dev, "link startup failed %d\n", ret);
4559 		ufshcd_print_host_state(hba);
4560 		ufshcd_print_pwr_info(hba);
4561 		ufshcd_print_host_regs(hba);
4562 	}
4563 	return ret;
4564 }
4565 
4566 /**
4567  * ufshcd_verify_dev_init() - Verify device initialization
4568  * @hba: per-adapter instance
4569  *
4570  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4571  * device Transport Protocol (UTP) layer is ready after a reset.
4572  * If the UTP layer at the device side is not initialized, it may
4573  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4574  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4575  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4576 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4577 {
4578 	int err = 0;
4579 	int retries;
4580 
4581 	ufshcd_hold(hba, false);
4582 	mutex_lock(&hba->dev_cmd.lock);
4583 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4584 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4585 					       NOP_OUT_TIMEOUT);
4586 
4587 		if (!err || err == -ETIMEDOUT)
4588 			break;
4589 
4590 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4591 	}
4592 	mutex_unlock(&hba->dev_cmd.lock);
4593 	ufshcd_release(hba);
4594 
4595 	if (err)
4596 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4597 	return err;
4598 }
4599 
4600 /**
4601  * ufshcd_set_queue_depth - set lun queue depth
4602  * @sdev: pointer to SCSI device
4603  *
4604  * Read bLUQueueDepth value and activate scsi tagged command
4605  * queueing. For WLUN, queue depth is set to 1. For best-effort
4606  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4607  * value that host can queue.
4608  */
ufshcd_set_queue_depth(struct scsi_device * sdev)4609 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4610 {
4611 	int ret = 0;
4612 	u8 lun_qdepth;
4613 	struct ufs_hba *hba;
4614 
4615 	hba = shost_priv(sdev->host);
4616 
4617 	lun_qdepth = hba->nutrs;
4618 	ret = ufshcd_read_unit_desc_param(hba,
4619 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4620 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4621 					  &lun_qdepth,
4622 					  sizeof(lun_qdepth));
4623 
4624 	/* Some WLUN doesn't support unit descriptor */
4625 	if (ret == -EOPNOTSUPP)
4626 		lun_qdepth = 1;
4627 	else if (!lun_qdepth)
4628 		/* eventually, we can figure out the real queue depth */
4629 		lun_qdepth = hba->nutrs;
4630 	else
4631 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4632 
4633 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4634 			__func__, lun_qdepth);
4635 	scsi_change_queue_depth(sdev, lun_qdepth);
4636 }
4637 
4638 /*
4639  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4640  * @hba: per-adapter instance
4641  * @lun: UFS device lun id
4642  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4643  *
4644  * Returns 0 in case of success and b_lu_write_protect status would be returned
4645  * @b_lu_write_protect parameter.
4646  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4647  * Returns -EINVAL in case of invalid parameters passed to this function.
4648  */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4649 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4650 			    u8 lun,
4651 			    u8 *b_lu_write_protect)
4652 {
4653 	int ret;
4654 
4655 	if (!b_lu_write_protect)
4656 		ret = -EINVAL;
4657 	/*
4658 	 * According to UFS device spec, RPMB LU can't be write
4659 	 * protected so skip reading bLUWriteProtect parameter for
4660 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4661 	 */
4662 	else if (lun >= hba->dev_info.max_lu_supported)
4663 		ret = -ENOTSUPP;
4664 	else
4665 		ret = ufshcd_read_unit_desc_param(hba,
4666 					  lun,
4667 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4668 					  b_lu_write_protect,
4669 					  sizeof(*b_lu_write_protect));
4670 	return ret;
4671 }
4672 
4673 /**
4674  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4675  * status
4676  * @hba: per-adapter instance
4677  * @sdev: pointer to SCSI device
4678  *
4679  */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4680 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4681 						    struct scsi_device *sdev)
4682 {
4683 	if (hba->dev_info.f_power_on_wp_en &&
4684 	    !hba->dev_info.is_lu_power_on_wp) {
4685 		u8 b_lu_write_protect;
4686 
4687 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4688 				      &b_lu_write_protect) &&
4689 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4690 			hba->dev_info.is_lu_power_on_wp = true;
4691 	}
4692 }
4693 
4694 /**
4695  * ufshcd_slave_alloc - handle initial SCSI device configurations
4696  * @sdev: pointer to SCSI device
4697  *
4698  * Returns success
4699  */
ufshcd_slave_alloc(struct scsi_device * sdev)4700 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4701 {
4702 	struct ufs_hba *hba;
4703 
4704 	hba = shost_priv(sdev->host);
4705 
4706 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4707 	sdev->use_10_for_ms = 1;
4708 
4709 	/* DBD field should be set to 1 in mode sense(10) */
4710 	sdev->set_dbd_for_ms = 1;
4711 
4712 	/* allow SCSI layer to restart the device in case of errors */
4713 	sdev->allow_restart = 1;
4714 
4715 	/* REPORT SUPPORTED OPERATION CODES is not supported */
4716 	sdev->no_report_opcodes = 1;
4717 
4718 	/* WRITE_SAME command is not supported */
4719 	sdev->no_write_same = 1;
4720 
4721 	ufshcd_set_queue_depth(sdev);
4722 
4723 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
4724 
4725 	return 0;
4726 }
4727 
4728 /**
4729  * ufshcd_change_queue_depth - change queue depth
4730  * @sdev: pointer to SCSI device
4731  * @depth: required depth to set
4732  *
4733  * Change queue depth and make sure the max. limits are not crossed.
4734  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4735 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4736 {
4737 	struct ufs_hba *hba = shost_priv(sdev->host);
4738 
4739 	if (depth > hba->nutrs)
4740 		depth = hba->nutrs;
4741 	return scsi_change_queue_depth(sdev, depth);
4742 }
4743 
4744 /**
4745  * ufshcd_slave_configure - adjust SCSI device configurations
4746  * @sdev: pointer to SCSI device
4747  */
ufshcd_slave_configure(struct scsi_device * sdev)4748 static int ufshcd_slave_configure(struct scsi_device *sdev)
4749 {
4750 	struct ufs_hba *hba = shost_priv(sdev->host);
4751 	struct request_queue *q = sdev->request_queue;
4752 
4753 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4754 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
4755 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
4756 
4757 	if (ufshcd_is_rpm_autosuspend_allowed(hba))
4758 		sdev->rpm_autosuspend = 1;
4759 
4760 	ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4761 
4762 	return 0;
4763 }
4764 
4765 /**
4766  * ufshcd_slave_destroy - remove SCSI device configurations
4767  * @sdev: pointer to SCSI device
4768  */
ufshcd_slave_destroy(struct scsi_device * sdev)4769 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4770 {
4771 	struct ufs_hba *hba;
4772 
4773 	hba = shost_priv(sdev->host);
4774 	/* Drop the reference as it won't be needed anymore */
4775 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4776 		unsigned long flags;
4777 
4778 		spin_lock_irqsave(hba->host->host_lock, flags);
4779 		hba->sdev_ufs_device = NULL;
4780 		spin_unlock_irqrestore(hba->host->host_lock, flags);
4781 	}
4782 }
4783 
4784 /**
4785  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4786  * @lrbp: pointer to local reference block of completed command
4787  * @scsi_status: SCSI command status
4788  *
4789  * Returns value base on SCSI command status
4790  */
4791 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4792 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4793 {
4794 	int result = 0;
4795 
4796 	switch (scsi_status) {
4797 	case SAM_STAT_CHECK_CONDITION:
4798 		ufshcd_copy_sense_data(lrbp);
4799 		fallthrough;
4800 	case SAM_STAT_GOOD:
4801 		result |= DID_OK << 16 |
4802 			  COMMAND_COMPLETE << 8 |
4803 			  scsi_status;
4804 		break;
4805 	case SAM_STAT_TASK_SET_FULL:
4806 	case SAM_STAT_BUSY:
4807 	case SAM_STAT_TASK_ABORTED:
4808 		ufshcd_copy_sense_data(lrbp);
4809 		result |= scsi_status;
4810 		break;
4811 	default:
4812 		result |= DID_ERROR << 16;
4813 		break;
4814 	} /* end of switch */
4815 
4816 	return result;
4817 }
4818 
4819 /**
4820  * ufshcd_transfer_rsp_status - Get overall status of the response
4821  * @hba: per adapter instance
4822  * @lrbp: pointer to local reference block of completed command
4823  *
4824  * Returns result of the command to notify SCSI midlayer
4825  */
4826 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4827 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
4828 {
4829 	int result = 0;
4830 	int scsi_status;
4831 	int ocs;
4832 
4833 	/* overall command status of utrd */
4834 	ocs = ufshcd_get_tr_ocs(lrbp);
4835 
4836 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
4837 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
4838 					MASK_RSP_UPIU_RESULT)
4839 			ocs = OCS_SUCCESS;
4840 	}
4841 
4842 	switch (ocs) {
4843 	case OCS_SUCCESS:
4844 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
4845 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
4846 		switch (result) {
4847 		case UPIU_TRANSACTION_RESPONSE:
4848 			/*
4849 			 * get the response UPIU result to extract
4850 			 * the SCSI command status
4851 			 */
4852 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
4853 
4854 			/*
4855 			 * get the result based on SCSI status response
4856 			 * to notify the SCSI midlayer of the command status
4857 			 */
4858 			scsi_status = result & MASK_SCSI_STATUS;
4859 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
4860 
4861 			/*
4862 			 * Currently we are only supporting BKOPs exception
4863 			 * events hence we can ignore BKOPs exception event
4864 			 * during power management callbacks. BKOPs exception
4865 			 * event is not expected to be raised in runtime suspend
4866 			 * callback as it allows the urgent bkops.
4867 			 * During system suspend, we are anyway forcefully
4868 			 * disabling the bkops and if urgent bkops is needed
4869 			 * it will be enabled on system resume. Long term
4870 			 * solution could be to abort the system suspend if
4871 			 * UFS device needs urgent BKOPs.
4872 			 */
4873 			if (!hba->pm_op_in_progress &&
4874 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) &&
4875 			    schedule_work(&hba->eeh_work)) {
4876 				/*
4877 				 * Prevent suspend once eeh_work is scheduled
4878 				 * to avoid deadlock between ufshcd_suspend
4879 				 * and exception event handler.
4880 				 */
4881 				pm_runtime_get_noresume(hba->dev);
4882 			}
4883 			break;
4884 		case UPIU_TRANSACTION_REJECT_UPIU:
4885 			/* TODO: handle Reject UPIU Response */
4886 			result = DID_ERROR << 16;
4887 			dev_err(hba->dev,
4888 				"Reject UPIU not fully implemented\n");
4889 			break;
4890 		default:
4891 			dev_err(hba->dev,
4892 				"Unexpected request response code = %x\n",
4893 				result);
4894 			result = DID_ERROR << 16;
4895 			break;
4896 		}
4897 		break;
4898 	case OCS_ABORTED:
4899 		result |= DID_ABORT << 16;
4900 		break;
4901 	case OCS_INVALID_COMMAND_STATUS:
4902 		result |= DID_REQUEUE << 16;
4903 		break;
4904 	case OCS_INVALID_CMD_TABLE_ATTR:
4905 	case OCS_INVALID_PRDT_ATTR:
4906 	case OCS_MISMATCH_DATA_BUF_SIZE:
4907 	case OCS_MISMATCH_RESP_UPIU_SIZE:
4908 	case OCS_PEER_COMM_FAILURE:
4909 	case OCS_FATAL_ERROR:
4910 	case OCS_DEVICE_FATAL_ERROR:
4911 	case OCS_INVALID_CRYPTO_CONFIG:
4912 	case OCS_GENERAL_CRYPTO_ERROR:
4913 	default:
4914 		result |= DID_ERROR << 16;
4915 		dev_err(hba->dev,
4916 				"OCS error from controller = %x for tag %d\n",
4917 				ocs, lrbp->task_tag);
4918 		ufshcd_print_host_regs(hba);
4919 		ufshcd_print_host_state(hba);
4920 		break;
4921 	} /* end of switch */
4922 
4923 	if ((host_byte(result) != DID_OK) &&
4924 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
4925 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
4926 	return result;
4927 }
4928 
4929 /**
4930  * ufshcd_uic_cmd_compl - handle completion of uic command
4931  * @hba: per adapter instance
4932  * @intr_status: interrupt status generated by the controller
4933  *
4934  * Returns
4935  *  IRQ_HANDLED - If interrupt is valid
4936  *  IRQ_NONE    - If invalid interrupt
4937  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4938 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
4939 {
4940 	irqreturn_t retval = IRQ_NONE;
4941 
4942 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
4943 		hba->active_uic_cmd->argument2 |=
4944 			ufshcd_get_uic_cmd_result(hba);
4945 		hba->active_uic_cmd->argument3 =
4946 			ufshcd_get_dme_attr_val(hba);
4947 		if (!hba->uic_async_done)
4948 			hba->active_uic_cmd->cmd_active = 0;
4949 		complete(&hba->active_uic_cmd->done);
4950 		retval = IRQ_HANDLED;
4951 	}
4952 
4953 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
4954 		hba->active_uic_cmd->cmd_active = 0;
4955 		complete(hba->uic_async_done);
4956 		retval = IRQ_HANDLED;
4957 	}
4958 
4959 	if (retval == IRQ_HANDLED)
4960 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
4961 					     "complete");
4962 	return retval;
4963 }
4964 
4965 /**
4966  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
4967  * @hba: per adapter instance
4968  * @completed_reqs: requests to complete
4969  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4970 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
4971 					unsigned long completed_reqs)
4972 {
4973 	struct ufshcd_lrb *lrbp;
4974 	struct scsi_cmnd *cmd;
4975 	int result;
4976 	int index;
4977 
4978 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
4979 		lrbp = &hba->lrb[index];
4980 		lrbp->compl_time_stamp = ktime_get();
4981 		cmd = lrbp->cmd;
4982 		if (cmd) {
4983 			ufshcd_add_command_trace(hba, index, "complete");
4984 			result = ufshcd_transfer_rsp_status(hba, lrbp);
4985 			scsi_dma_unmap(cmd);
4986 			cmd->result = result;
4987 			/* Mark completed command as NULL in LRB */
4988 			lrbp->cmd = NULL;
4989 			/* Do not touch lrbp after scsi done */
4990 			cmd->scsi_done(cmd);
4991 			__ufshcd_release(hba);
4992 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
4993 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
4994 			if (hba->dev_cmd.complete) {
4995 				ufshcd_add_command_trace(hba, index,
4996 						"dev_complete");
4997 				complete(hba->dev_cmd.complete);
4998 			}
4999 		}
5000 		if (ufshcd_is_clkscaling_supported(hba))
5001 			hba->clk_scaling.active_reqs--;
5002 	}
5003 
5004 	/* clear corresponding bits of completed commands */
5005 	hba->outstanding_reqs ^= completed_reqs;
5006 
5007 	ufshcd_clk_scaling_update_busy(hba);
5008 }
5009 
5010 /**
5011  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5012  * @hba: per adapter instance
5013  *
5014  * Returns
5015  *  IRQ_HANDLED - If interrupt is valid
5016  *  IRQ_NONE    - If invalid interrupt
5017  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5018 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5019 {
5020 	unsigned long completed_reqs;
5021 	u32 tr_doorbell;
5022 
5023 	/* Resetting interrupt aggregation counters first and reading the
5024 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5025 	 * In order to prevent other interrupts starvation the DB is read once
5026 	 * after reset. The down side of this solution is the possibility of
5027 	 * false interrupt if device completes another request after resetting
5028 	 * aggregation and before reading the DB.
5029 	 */
5030 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5031 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5032 		ufshcd_reset_intr_aggr(hba);
5033 
5034 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5035 	completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5036 
5037 	if (completed_reqs) {
5038 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5039 		return IRQ_HANDLED;
5040 	} else {
5041 		return IRQ_NONE;
5042 	}
5043 }
5044 
5045 /**
5046  * ufshcd_disable_ee - disable exception event
5047  * @hba: per-adapter instance
5048  * @mask: exception event to disable
5049  *
5050  * Disables exception event in the device so that the EVENT_ALERT
5051  * bit is not set.
5052  *
5053  * Returns zero on success, non-zero error value on failure.
5054  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5055 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5056 {
5057 	int err = 0;
5058 	u32 val;
5059 
5060 	if (!(hba->ee_ctrl_mask & mask))
5061 		goto out;
5062 
5063 	val = hba->ee_ctrl_mask & ~mask;
5064 	val &= MASK_EE_STATUS;
5065 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5066 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5067 	if (!err)
5068 		hba->ee_ctrl_mask &= ~mask;
5069 out:
5070 	return err;
5071 }
5072 
5073 /**
5074  * ufshcd_enable_ee - enable exception event
5075  * @hba: per-adapter instance
5076  * @mask: exception event to enable
5077  *
5078  * Enable corresponding exception event in the device to allow
5079  * device to alert host in critical scenarios.
5080  *
5081  * Returns zero on success, non-zero error value on failure.
5082  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5083 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5084 {
5085 	int err = 0;
5086 	u32 val;
5087 
5088 	if (hba->ee_ctrl_mask & mask)
5089 		goto out;
5090 
5091 	val = hba->ee_ctrl_mask | mask;
5092 	val &= MASK_EE_STATUS;
5093 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5094 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5095 	if (!err)
5096 		hba->ee_ctrl_mask |= mask;
5097 out:
5098 	return err;
5099 }
5100 
5101 /**
5102  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5103  * @hba: per-adapter instance
5104  *
5105  * Allow device to manage background operations on its own. Enabling
5106  * this might lead to inconsistent latencies during normal data transfers
5107  * as the device is allowed to manage its own way of handling background
5108  * operations.
5109  *
5110  * Returns zero on success, non-zero on failure.
5111  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5112 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5113 {
5114 	int err = 0;
5115 
5116 	if (hba->auto_bkops_enabled)
5117 		goto out;
5118 
5119 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5120 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5121 	if (err) {
5122 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5123 				__func__, err);
5124 		goto out;
5125 	}
5126 
5127 	hba->auto_bkops_enabled = true;
5128 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5129 
5130 	/* No need of URGENT_BKOPS exception from the device */
5131 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5132 	if (err)
5133 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5134 				__func__, err);
5135 out:
5136 	return err;
5137 }
5138 
5139 /**
5140  * ufshcd_disable_auto_bkops - block device in doing background operations
5141  * @hba: per-adapter instance
5142  *
5143  * Disabling background operations improves command response latency but
5144  * has drawback of device moving into critical state where the device is
5145  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5146  * host is idle so that BKOPS are managed effectively without any negative
5147  * impacts.
5148  *
5149  * Returns zero on success, non-zero on failure.
5150  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5151 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5152 {
5153 	int err = 0;
5154 
5155 	if (!hba->auto_bkops_enabled)
5156 		goto out;
5157 
5158 	/*
5159 	 * If host assisted BKOPs is to be enabled, make sure
5160 	 * urgent bkops exception is allowed.
5161 	 */
5162 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5163 	if (err) {
5164 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5165 				__func__, err);
5166 		goto out;
5167 	}
5168 
5169 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5170 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5171 	if (err) {
5172 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5173 				__func__, err);
5174 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5175 		goto out;
5176 	}
5177 
5178 	hba->auto_bkops_enabled = false;
5179 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5180 	hba->is_urgent_bkops_lvl_checked = false;
5181 out:
5182 	return err;
5183 }
5184 
5185 /**
5186  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5187  * @hba: per adapter instance
5188  *
5189  * After a device reset the device may toggle the BKOPS_EN flag
5190  * to default value. The s/w tracking variables should be updated
5191  * as well. This function would change the auto-bkops state based on
5192  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5193  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5194 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5195 {
5196 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5197 		hba->auto_bkops_enabled = false;
5198 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5199 		ufshcd_enable_auto_bkops(hba);
5200 	} else {
5201 		hba->auto_bkops_enabled = true;
5202 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5203 		ufshcd_disable_auto_bkops(hba);
5204 	}
5205 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5206 	hba->is_urgent_bkops_lvl_checked = false;
5207 }
5208 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5209 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5210 {
5211 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5212 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5213 }
5214 
5215 /**
5216  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5217  * @hba: per-adapter instance
5218  * @status: bkops_status value
5219  *
5220  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5221  * flag in the device to permit background operations if the device
5222  * bkops_status is greater than or equal to "status" argument passed to
5223  * this function, disable otherwise.
5224  *
5225  * Returns 0 for success, non-zero in case of failure.
5226  *
5227  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5228  * to know whether auto bkops is enabled or disabled after this function
5229  * returns control to it.
5230  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5231 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5232 			     enum bkops_status status)
5233 {
5234 	int err;
5235 	u32 curr_status = 0;
5236 
5237 	err = ufshcd_get_bkops_status(hba, &curr_status);
5238 	if (err) {
5239 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5240 				__func__, err);
5241 		goto out;
5242 	} else if (curr_status > BKOPS_STATUS_MAX) {
5243 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5244 				__func__, curr_status);
5245 		err = -EINVAL;
5246 		goto out;
5247 	}
5248 
5249 	if (curr_status >= status)
5250 		err = ufshcd_enable_auto_bkops(hba);
5251 	else
5252 		err = ufshcd_disable_auto_bkops(hba);
5253 out:
5254 	return err;
5255 }
5256 
5257 /**
5258  * ufshcd_urgent_bkops - handle urgent bkops exception event
5259  * @hba: per-adapter instance
5260  *
5261  * Enable fBackgroundOpsEn flag in the device to permit background
5262  * operations.
5263  *
5264  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5265  * and negative error value for any other failure.
5266  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5267 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5268 {
5269 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5270 }
5271 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5272 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5273 {
5274 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5275 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5276 }
5277 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5278 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5279 {
5280 	int err;
5281 	u32 curr_status = 0;
5282 
5283 	if (hba->is_urgent_bkops_lvl_checked)
5284 		goto enable_auto_bkops;
5285 
5286 	err = ufshcd_get_bkops_status(hba, &curr_status);
5287 	if (err) {
5288 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5289 				__func__, err);
5290 		goto out;
5291 	}
5292 
5293 	/*
5294 	 * We are seeing that some devices are raising the urgent bkops
5295 	 * exception events even when BKOPS status doesn't indicate performace
5296 	 * impacted or critical. Handle these device by determining their urgent
5297 	 * bkops status at runtime.
5298 	 */
5299 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5300 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5301 				__func__, curr_status);
5302 		/* update the current status as the urgent bkops level */
5303 		hba->urgent_bkops_lvl = curr_status;
5304 		hba->is_urgent_bkops_lvl_checked = true;
5305 	}
5306 
5307 enable_auto_bkops:
5308 	err = ufshcd_enable_auto_bkops(hba);
5309 out:
5310 	if (err < 0)
5311 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5312 				__func__, err);
5313 }
5314 
ufshcd_wb_ctrl(struct ufs_hba * hba,bool enable)5315 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable)
5316 {
5317 	int ret;
5318 	u8 index;
5319 	enum query_opcode opcode;
5320 
5321 	if (!ufshcd_is_wb_allowed(hba))
5322 		return 0;
5323 
5324 	if (!(enable ^ hba->wb_enabled))
5325 		return 0;
5326 	if (enable)
5327 		opcode = UPIU_QUERY_OPCODE_SET_FLAG;
5328 	else
5329 		opcode = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5330 
5331 	index = ufshcd_wb_get_query_index(hba);
5332 	ret = ufshcd_query_flag_retry(hba, opcode,
5333 				      QUERY_FLAG_IDN_WB_EN, index, NULL);
5334 	if (ret) {
5335 		dev_err(hba->dev, "%s write booster %s failed %d\n",
5336 			__func__, enable ? "enable" : "disable", ret);
5337 		return ret;
5338 	}
5339 
5340 	hba->wb_enabled = enable;
5341 	dev_dbg(hba->dev, "%s write booster %s %d\n",
5342 			__func__, enable ? "enable" : "disable", ret);
5343 
5344 	return ret;
5345 }
5346 
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5347 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5348 {
5349 	int val;
5350 	u8 index;
5351 
5352 	if (set)
5353 		val =  UPIU_QUERY_OPCODE_SET_FLAG;
5354 	else
5355 		val = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5356 
5357 	index = ufshcd_wb_get_query_index(hba);
5358 	return ufshcd_query_flag_retry(hba, val,
5359 				QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8,
5360 				index, NULL);
5361 }
5362 
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5363 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5364 {
5365 	if (enable)
5366 		ufshcd_wb_buf_flush_enable(hba);
5367 	else
5368 		ufshcd_wb_buf_flush_disable(hba);
5369 
5370 }
5371 
ufshcd_wb_buf_flush_enable(struct ufs_hba * hba)5372 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba)
5373 {
5374 	int ret;
5375 	u8 index;
5376 
5377 	if (!ufshcd_is_wb_allowed(hba) || hba->wb_buf_flush_enabled)
5378 		return 0;
5379 
5380 	index = ufshcd_wb_get_query_index(hba);
5381 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5382 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5383 				      index, NULL);
5384 	if (ret)
5385 		dev_err(hba->dev, "%s WB - buf flush enable failed %d\n",
5386 			__func__, ret);
5387 	else
5388 		hba->wb_buf_flush_enabled = true;
5389 
5390 	dev_dbg(hba->dev, "WB - Flush enabled: %d\n", ret);
5391 	return ret;
5392 }
5393 
ufshcd_wb_buf_flush_disable(struct ufs_hba * hba)5394 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba)
5395 {
5396 	int ret;
5397 	u8 index;
5398 
5399 	if (!ufshcd_is_wb_allowed(hba) || !hba->wb_buf_flush_enabled)
5400 		return 0;
5401 
5402 	index = ufshcd_wb_get_query_index(hba);
5403 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5404 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5405 				      index, NULL);
5406 	if (ret) {
5407 		dev_warn(hba->dev, "%s: WB - buf flush disable failed %d\n",
5408 			 __func__, ret);
5409 	} else {
5410 		hba->wb_buf_flush_enabled = false;
5411 		dev_dbg(hba->dev, "WB - Flush disabled: %d\n", ret);
5412 	}
5413 
5414 	return ret;
5415 }
5416 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5417 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5418 						u32 avail_buf)
5419 {
5420 	u32 cur_buf;
5421 	int ret;
5422 	u8 index;
5423 
5424 	index = ufshcd_wb_get_query_index(hba);
5425 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5426 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5427 					      index, 0, &cur_buf);
5428 	if (ret) {
5429 		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5430 			__func__, ret);
5431 		return false;
5432 	}
5433 
5434 	if (!cur_buf) {
5435 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5436 			 cur_buf);
5437 		return false;
5438 	}
5439 	/* Let it continue to flush when available buffer exceeds threshold */
5440 	if (avail_buf < hba->vps->wb_flush_threshold)
5441 		return true;
5442 
5443 	return false;
5444 }
5445 
ufshcd_wb_need_flush(struct ufs_hba * hba)5446 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5447 {
5448 	int ret;
5449 	u32 avail_buf;
5450 	u8 index;
5451 
5452 	if (!ufshcd_is_wb_allowed(hba))
5453 		return false;
5454 	/*
5455 	 * The ufs device needs the vcc to be ON to flush.
5456 	 * With user-space reduction enabled, it's enough to enable flush
5457 	 * by checking only the available buffer. The threshold
5458 	 * defined here is > 90% full.
5459 	 * With user-space preserved enabled, the current-buffer
5460 	 * should be checked too because the wb buffer size can reduce
5461 	 * when disk tends to be full. This info is provided by current
5462 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5463 	 * keeping vcc on when current buffer is empty.
5464 	 */
5465 	index = ufshcd_wb_get_query_index(hba);
5466 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5467 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5468 				      index, 0, &avail_buf);
5469 	if (ret) {
5470 		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5471 			 __func__, ret);
5472 		return false;
5473 	}
5474 
5475 	if (!hba->dev_info.b_presrv_uspc_en) {
5476 		if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
5477 			return true;
5478 		return false;
5479 	}
5480 
5481 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5482 }
5483 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5484 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5485 {
5486 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5487 					   struct ufs_hba,
5488 					   rpm_dev_flush_recheck_work);
5489 	/*
5490 	 * To prevent unnecessary VCC power drain after device finishes
5491 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5492 	 * after a certain delay to recheck the threshold by next runtime
5493 	 * suspend.
5494 	 */
5495 	pm_runtime_get_sync(hba->dev);
5496 	pm_runtime_put_sync(hba->dev);
5497 }
5498 
5499 /**
5500  * ufshcd_exception_event_handler - handle exceptions raised by device
5501  * @work: pointer to work data
5502  *
5503  * Read bExceptionEventStatus attribute from the device and handle the
5504  * exception event accordingly.
5505  */
ufshcd_exception_event_handler(struct work_struct * work)5506 static void ufshcd_exception_event_handler(struct work_struct *work)
5507 {
5508 	struct ufs_hba *hba;
5509 	int err;
5510 	u32 status = 0;
5511 	hba = container_of(work, struct ufs_hba, eeh_work);
5512 
5513 	pm_runtime_get_sync(hba->dev);
5514 	ufshcd_scsi_block_requests(hba);
5515 	err = ufshcd_get_ee_status(hba, &status);
5516 	if (err) {
5517 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5518 				__func__, err);
5519 		goto out;
5520 	}
5521 
5522 	status &= hba->ee_ctrl_mask;
5523 
5524 	if (status & MASK_EE_URGENT_BKOPS)
5525 		ufshcd_bkops_exception_event_handler(hba);
5526 
5527 out:
5528 	ufshcd_scsi_unblock_requests(hba);
5529 	/*
5530 	 * pm_runtime_get_noresume is called while scheduling
5531 	 * eeh_work to avoid suspend racing with exception work.
5532 	 * Hence decrement usage counter using pm_runtime_put_noidle
5533 	 * to allow suspend on completion of exception event handler.
5534 	 */
5535 	pm_runtime_put_noidle(hba->dev);
5536 	pm_runtime_put(hba->dev);
5537 	return;
5538 }
5539 
5540 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5541 static void ufshcd_complete_requests(struct ufs_hba *hba)
5542 {
5543 	ufshcd_transfer_req_compl(hba);
5544 	ufshcd_tmc_handler(hba);
5545 }
5546 
5547 /**
5548  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5549  *				to recover from the DL NAC errors or not.
5550  * @hba: per-adapter instance
5551  *
5552  * Returns true if error handling is required, false otherwise
5553  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5554 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5555 {
5556 	unsigned long flags;
5557 	bool err_handling = true;
5558 
5559 	spin_lock_irqsave(hba->host->host_lock, flags);
5560 	/*
5561 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5562 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5563 	 */
5564 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5565 		goto out;
5566 
5567 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5568 	    ((hba->saved_err & UIC_ERROR) &&
5569 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5570 		goto out;
5571 
5572 	if ((hba->saved_err & UIC_ERROR) &&
5573 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5574 		int err;
5575 		/*
5576 		 * wait for 50ms to see if we can get any other errors or not.
5577 		 */
5578 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5579 		msleep(50);
5580 		spin_lock_irqsave(hba->host->host_lock, flags);
5581 
5582 		/*
5583 		 * now check if we have got any other severe errors other than
5584 		 * DL NAC error?
5585 		 */
5586 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
5587 		    ((hba->saved_err & UIC_ERROR) &&
5588 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5589 			goto out;
5590 
5591 		/*
5592 		 * As DL NAC is the only error received so far, send out NOP
5593 		 * command to confirm if link is still active or not.
5594 		 *   - If we don't get any response then do error recovery.
5595 		 *   - If we get response then clear the DL NAC error bit.
5596 		 */
5597 
5598 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5599 		err = ufshcd_verify_dev_init(hba);
5600 		spin_lock_irqsave(hba->host->host_lock, flags);
5601 
5602 		if (err)
5603 			goto out;
5604 
5605 		/* Link seems to be alive hence ignore the DL NAC errors */
5606 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5607 			hba->saved_err &= ~UIC_ERROR;
5608 		/* clear NAC error */
5609 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5610 		if (!hba->saved_uic_err)
5611 			err_handling = false;
5612 	}
5613 out:
5614 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5615 	return err_handling;
5616 }
5617 
5618 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)5619 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
5620 {
5621 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
5622 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
5623 }
5624 
5625 /* host lock must be held before calling this func */
ufshcd_schedule_eh_work(struct ufs_hba * hba)5626 static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba)
5627 {
5628 	/* handle fatal errors only when link is not in error state */
5629 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
5630 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5631 		    ufshcd_is_saved_err_fatal(hba))
5632 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
5633 		else
5634 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
5635 		queue_work(hba->eh_wq, &hba->eh_work);
5636 	}
5637 }
5638 
ufshcd_err_handling_prepare(struct ufs_hba * hba)5639 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
5640 {
5641 	pm_runtime_get_sync(hba->dev);
5642 	if (pm_runtime_suspended(hba->dev)) {
5643 		/*
5644 		 * Don't assume anything of pm_runtime_get_sync(), if
5645 		 * resume fails, irq and clocks can be OFF, and powers
5646 		 * can be OFF or in LPM.
5647 		 */
5648 		ufshcd_setup_hba_vreg(hba, true);
5649 		ufshcd_enable_irq(hba);
5650 		ufshcd_setup_vreg(hba, true);
5651 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
5652 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
5653 		ufshcd_hold(hba, false);
5654 		if (!ufshcd_is_clkgating_allowed(hba))
5655 			ufshcd_setup_clocks(hba, true);
5656 		ufshcd_release(hba);
5657 		ufshcd_vops_resume(hba, UFS_RUNTIME_PM);
5658 	} else {
5659 		ufshcd_hold(hba, false);
5660 		if (hba->clk_scaling.is_allowed) {
5661 			cancel_work_sync(&hba->clk_scaling.suspend_work);
5662 			cancel_work_sync(&hba->clk_scaling.resume_work);
5663 			ufshcd_suspend_clkscaling(hba);
5664 		}
5665 	}
5666 }
5667 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)5668 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
5669 {
5670 	ufshcd_release(hba);
5671 	if (hba->clk_scaling.is_allowed)
5672 		ufshcd_resume_clkscaling(hba);
5673 	pm_runtime_put(hba->dev);
5674 }
5675 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)5676 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
5677 {
5678 	return (hba->ufshcd_state == UFSHCD_STATE_ERROR ||
5679 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
5680 			ufshcd_is_link_broken(hba))));
5681 }
5682 
5683 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)5684 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
5685 {
5686 	struct Scsi_Host *shost = hba->host;
5687 	struct scsi_device *sdev;
5688 	struct request_queue *q;
5689 	int ret;
5690 
5691 	/*
5692 	 * Set RPM status of hba device to RPM_ACTIVE,
5693 	 * this also clears its runtime error.
5694 	 */
5695 	ret = pm_runtime_set_active(hba->dev);
5696 	/*
5697 	 * If hba device had runtime error, we also need to resume those
5698 	 * scsi devices under hba in case any of them has failed to be
5699 	 * resumed due to hba runtime resume failure. This is to unblock
5700 	 * blk_queue_enter in case there are bios waiting inside it.
5701 	 */
5702 	if (!ret) {
5703 		shost_for_each_device(sdev, shost) {
5704 			q = sdev->request_queue;
5705 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
5706 				       q->rpm_status == RPM_SUSPENDING))
5707 				pm_request_resume(q->dev);
5708 		}
5709 	}
5710 }
5711 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)5712 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
5713 {
5714 }
5715 #endif
5716 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)5717 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
5718 {
5719 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
5720 	u32 mode;
5721 
5722 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
5723 
5724 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
5725 		return true;
5726 
5727 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
5728 		return true;
5729 
5730 	return false;
5731 }
5732 
5733 /**
5734  * ufshcd_err_handler - handle UFS errors that require s/w attention
5735  * @work: pointer to work structure
5736  */
ufshcd_err_handler(struct work_struct * work)5737 static void ufshcd_err_handler(struct work_struct *work)
5738 {
5739 	struct ufs_hba *hba;
5740 	unsigned long flags;
5741 	bool err_xfer = false;
5742 	bool err_tm = false;
5743 	int err = 0, pmc_err;
5744 	int tag;
5745 	bool needs_reset = false, needs_restore = false;
5746 
5747 	hba = container_of(work, struct ufs_hba, eh_work);
5748 
5749 	spin_lock_irqsave(hba->host->host_lock, flags);
5750 	if (ufshcd_err_handling_should_stop(hba)) {
5751 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5752 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5753 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5754 		return;
5755 	}
5756 	ufshcd_set_eh_in_progress(hba);
5757 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5758 	ufshcd_err_handling_prepare(hba);
5759 	spin_lock_irqsave(hba->host->host_lock, flags);
5760 	ufshcd_scsi_block_requests(hba);
5761 	/*
5762 	 * A full reset and restore might have happened after preparation
5763 	 * is finished, double check whether we should stop.
5764 	 */
5765 	if (ufshcd_err_handling_should_stop(hba)) {
5766 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5767 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5768 		goto out;
5769 	}
5770 	hba->ufshcd_state = UFSHCD_STATE_RESET;
5771 
5772 	/* Complete requests that have door-bell cleared by h/w */
5773 	ufshcd_complete_requests(hba);
5774 
5775 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5776 		bool ret;
5777 
5778 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5779 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
5780 		ret = ufshcd_quirk_dl_nac_errors(hba);
5781 		spin_lock_irqsave(hba->host->host_lock, flags);
5782 		if (!ret && !hba->force_reset && ufshcd_is_link_active(hba))
5783 			goto skip_err_handling;
5784 	}
5785 
5786 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5787 	    ufshcd_is_saved_err_fatal(hba) ||
5788 	    ((hba->saved_err & UIC_ERROR) &&
5789 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
5790 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
5791 		needs_reset = true;
5792 
5793 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
5794 	    (hba->saved_uic_err &&
5795 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
5796 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
5797 
5798 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5799 		ufshcd_print_host_state(hba);
5800 		ufshcd_print_pwr_info(hba);
5801 		ufshcd_print_host_regs(hba);
5802 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
5803 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
5804 		spin_lock_irqsave(hba->host->host_lock, flags);
5805 	}
5806 
5807 	/*
5808 	 * if host reset is required then skip clearing the pending
5809 	 * transfers forcefully because they will get cleared during
5810 	 * host reset and restore
5811 	 */
5812 	if (needs_reset)
5813 		goto do_reset;
5814 
5815 	/*
5816 	 * If LINERESET was caught, UFS might have been put to PWM mode,
5817 	 * check if power mode restore is needed.
5818 	 */
5819 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
5820 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5821 		if (!hba->saved_uic_err)
5822 			hba->saved_err &= ~UIC_ERROR;
5823 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5824 		if (ufshcd_is_pwr_mode_restore_needed(hba))
5825 			needs_restore = true;
5826 		spin_lock_irqsave(hba->host->host_lock, flags);
5827 		if (!hba->saved_err && !needs_restore)
5828 			goto skip_err_handling;
5829 	}
5830 
5831 	hba->silence_err_logs = true;
5832 	/* release lock as clear command might sleep */
5833 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5834 	/* Clear pending transfer requests */
5835 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
5836 		if (ufshcd_try_to_abort_task(hba, tag)) {
5837 			err_xfer = true;
5838 			goto lock_skip_pending_xfer_clear;
5839 		}
5840 	}
5841 
5842 	/* Clear pending task management requests */
5843 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
5844 		if (ufshcd_clear_tm_cmd(hba, tag)) {
5845 			err_tm = true;
5846 			goto lock_skip_pending_xfer_clear;
5847 		}
5848 	}
5849 
5850 lock_skip_pending_xfer_clear:
5851 	spin_lock_irqsave(hba->host->host_lock, flags);
5852 
5853 	/* Complete the requests that are cleared by s/w */
5854 	ufshcd_complete_requests(hba);
5855 	hba->silence_err_logs = false;
5856 
5857 	if (err_xfer || err_tm) {
5858 		needs_reset = true;
5859 		goto do_reset;
5860 	}
5861 
5862 	/*
5863 	 * After all reqs and tasks are cleared from doorbell,
5864 	 * now it is safe to retore power mode.
5865 	 */
5866 	if (needs_restore) {
5867 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5868 		/*
5869 		 * Hold the scaling lock just in case dev cmds
5870 		 * are sent via bsg and/or sysfs.
5871 		 */
5872 		down_write(&hba->clk_scaling_lock);
5873 		hba->force_pmc = true;
5874 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
5875 		if (pmc_err) {
5876 			needs_reset = true;
5877 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
5878 					__func__, pmc_err);
5879 		}
5880 		hba->force_pmc = false;
5881 		ufshcd_print_pwr_info(hba);
5882 		up_write(&hba->clk_scaling_lock);
5883 		spin_lock_irqsave(hba->host->host_lock, flags);
5884 	}
5885 
5886 do_reset:
5887 	/* Fatal errors need reset */
5888 	if (needs_reset) {
5889 		unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
5890 
5891 		/*
5892 		 * ufshcd_reset_and_restore() does the link reinitialization
5893 		 * which will need atleast one empty doorbell slot to send the
5894 		 * device management commands (NOP and query commands).
5895 		 * If there is no slot empty at this moment then free up last
5896 		 * slot forcefully.
5897 		 */
5898 		if (hba->outstanding_reqs == max_doorbells)
5899 			__ufshcd_transfer_req_compl(hba,
5900 						    (1UL << (hba->nutrs - 1)));
5901 
5902 		hba->force_reset = false;
5903 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5904 		err = ufshcd_reset_and_restore(hba);
5905 		if (err)
5906 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
5907 					__func__, err);
5908 		else
5909 			ufshcd_recover_pm_error(hba);
5910 		spin_lock_irqsave(hba->host->host_lock, flags);
5911 	}
5912 
5913 skip_err_handling:
5914 	if (!needs_reset) {
5915 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
5916 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5917 		if (hba->saved_err || hba->saved_uic_err)
5918 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
5919 			    __func__, hba->saved_err, hba->saved_uic_err);
5920 	}
5921 
5922 out:
5923 	ufshcd_clear_eh_in_progress(hba);
5924 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5925 	ufshcd_scsi_unblock_requests(hba);
5926 	ufshcd_err_handling_unprepare(hba);
5927 }
5928 
5929 /**
5930  * ufshcd_update_uic_error - check and set fatal UIC error flags.
5931  * @hba: per-adapter instance
5932  *
5933  * Returns
5934  *  IRQ_HANDLED - If interrupt is valid
5935  *  IRQ_NONE    - If invalid interrupt
5936  */
ufshcd_update_uic_error(struct ufs_hba * hba)5937 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
5938 {
5939 	u32 reg;
5940 	irqreturn_t retval = IRQ_NONE;
5941 
5942 	/* PHY layer error */
5943 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5944 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
5945 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
5946 		ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg);
5947 		/*
5948 		 * To know whether this error is fatal or not, DB timeout
5949 		 * must be checked but this error is handled separately.
5950 		 */
5951 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
5952 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
5953 					__func__);
5954 
5955 		/* Got a LINERESET indication. */
5956 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
5957 			struct uic_command *cmd = NULL;
5958 
5959 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
5960 			if (hba->uic_async_done && hba->active_uic_cmd)
5961 				cmd = hba->active_uic_cmd;
5962 			/*
5963 			 * Ignore the LINERESET during power mode change
5964 			 * operation via DME_SET command.
5965 			 */
5966 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
5967 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5968 		}
5969 		retval |= IRQ_HANDLED;
5970 	}
5971 
5972 	/* PA_INIT_ERROR is fatal and needs UIC reset */
5973 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
5974 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
5975 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
5976 		ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg);
5977 
5978 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
5979 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
5980 		else if (hba->dev_quirks &
5981 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5982 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
5983 				hba->uic_error |=
5984 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5985 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
5986 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
5987 		}
5988 		retval |= IRQ_HANDLED;
5989 	}
5990 
5991 	/* UIC NL/TL/DME errors needs software retry */
5992 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
5993 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
5994 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
5995 		ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg);
5996 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
5997 		retval |= IRQ_HANDLED;
5998 	}
5999 
6000 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6001 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6002 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6003 		ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg);
6004 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6005 		retval |= IRQ_HANDLED;
6006 	}
6007 
6008 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6009 	if ((reg & UIC_DME_ERROR) &&
6010 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6011 		ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg);
6012 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6013 		retval |= IRQ_HANDLED;
6014 	}
6015 
6016 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6017 			__func__, hba->uic_error);
6018 	return retval;
6019 }
6020 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)6021 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
6022 					 u32 intr_mask)
6023 {
6024 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
6025 	    !ufshcd_is_auto_hibern8_enabled(hba))
6026 		return false;
6027 
6028 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
6029 		return false;
6030 
6031 	if (hba->active_uic_cmd &&
6032 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
6033 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
6034 		return false;
6035 
6036 	return true;
6037 }
6038 
6039 /**
6040  * ufshcd_check_errors - Check for errors that need s/w attention
6041  * @hba: per-adapter instance
6042  *
6043  * Returns
6044  *  IRQ_HANDLED - If interrupt is valid
6045  *  IRQ_NONE    - If invalid interrupt
6046  */
ufshcd_check_errors(struct ufs_hba * hba)6047 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba)
6048 {
6049 	bool queue_eh_work = false;
6050 	irqreturn_t retval = IRQ_NONE;
6051 
6052 	if (hba->errors & INT_FATAL_ERRORS) {
6053 		ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors);
6054 		queue_eh_work = true;
6055 	}
6056 
6057 	if (hba->errors & UIC_ERROR) {
6058 		hba->uic_error = 0;
6059 		retval = ufshcd_update_uic_error(hba);
6060 		if (hba->uic_error)
6061 			queue_eh_work = true;
6062 	}
6063 
6064 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6065 		dev_err(hba->dev,
6066 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6067 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6068 			"Enter" : "Exit",
6069 			hba->errors, ufshcd_get_upmcrs(hba));
6070 		ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err,
6071 				       hba->errors);
6072 		ufshcd_set_link_broken(hba);
6073 		queue_eh_work = true;
6074 	}
6075 
6076 	if (queue_eh_work) {
6077 		/*
6078 		 * update the transfer error masks to sticky bits, let's do this
6079 		 * irrespective of current ufshcd_state.
6080 		 */
6081 		hba->saved_err |= hba->errors;
6082 		hba->saved_uic_err |= hba->uic_error;
6083 
6084 		/* dump controller state before resetting */
6085 		if ((hba->saved_err & (INT_FATAL_ERRORS)) ||
6086 		    (hba->saved_uic_err &&
6087 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6088 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6089 					__func__, hba->saved_err,
6090 					hba->saved_uic_err);
6091 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6092 					 "host_regs: ");
6093 			ufshcd_print_pwr_info(hba);
6094 		}
6095 		ufshcd_schedule_eh_work(hba);
6096 		retval |= IRQ_HANDLED;
6097 	}
6098 	/*
6099 	 * if (!queue_eh_work) -
6100 	 * Other errors are either non-fatal where host recovers
6101 	 * itself without s/w intervention or errors that will be
6102 	 * handled by the SCSI core layer.
6103 	 */
6104 	return retval;
6105 }
6106 
6107 /**
6108  * ufshcd_tmc_handler - handle task management function completion
6109  * @hba: per adapter instance
6110  *
6111  * Returns
6112  *  IRQ_HANDLED - If interrupt is valid
6113  *  IRQ_NONE    - If invalid interrupt
6114  */
ufshcd_tmc_handler(struct ufs_hba * hba)6115 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6116 {
6117 	unsigned long pending, issued;
6118 	irqreturn_t ret = IRQ_NONE;
6119 	int tag;
6120 
6121 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6122 
6123 	issued = hba->outstanding_tasks & ~pending;
6124 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6125 		struct request *req = hba->tmf_rqs[tag];
6126 		struct completion *c = req->end_io_data;
6127 
6128 		complete(c);
6129 		ret = IRQ_HANDLED;
6130 	}
6131 
6132 	return ret;
6133 }
6134 
6135 /**
6136  * ufshcd_sl_intr - Interrupt service routine
6137  * @hba: per adapter instance
6138  * @intr_status: contains interrupts generated by the controller
6139  *
6140  * Returns
6141  *  IRQ_HANDLED - If interrupt is valid
6142  *  IRQ_NONE    - If invalid interrupt
6143  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6144 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6145 {
6146 	irqreturn_t retval = IRQ_NONE;
6147 
6148 	hba->errors = UFSHCD_ERROR_MASK & intr_status;
6149 
6150 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
6151 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
6152 
6153 	if (hba->errors)
6154 		retval |= ufshcd_check_errors(hba);
6155 
6156 	if (intr_status & UFSHCD_UIC_MASK)
6157 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6158 
6159 	if (intr_status & UTP_TASK_REQ_COMPL)
6160 		retval |= ufshcd_tmc_handler(hba);
6161 
6162 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6163 		retval |= ufshcd_transfer_req_compl(hba);
6164 
6165 	return retval;
6166 }
6167 
6168 /**
6169  * ufshcd_intr - Main interrupt service routine
6170  * @irq: irq number
6171  * @__hba: pointer to adapter instance
6172  *
6173  * Returns
6174  *  IRQ_HANDLED - If interrupt is valid
6175  *  IRQ_NONE    - If invalid interrupt
6176  */
ufshcd_intr(int irq,void * __hba)6177 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6178 {
6179 	u32 intr_status, enabled_intr_status = 0;
6180 	irqreturn_t retval = IRQ_NONE;
6181 	struct ufs_hba *hba = __hba;
6182 	int retries = hba->nutrs;
6183 
6184 	spin_lock(hba->host->host_lock);
6185 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6186 	hba->ufs_stats.last_intr_status = intr_status;
6187 	hba->ufs_stats.last_intr_ts = ktime_get();
6188 
6189 	/*
6190 	 * There could be max of hba->nutrs reqs in flight and in worst case
6191 	 * if the reqs get finished 1 by 1 after the interrupt status is
6192 	 * read, make sure we handle them by checking the interrupt status
6193 	 * again in a loop until we process all of the reqs before returning.
6194 	 */
6195 	while (intr_status && retries--) {
6196 		enabled_intr_status =
6197 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6198 		if (intr_status)
6199 			ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6200 		if (enabled_intr_status)
6201 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6202 
6203 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6204 	}
6205 
6206 	if (enabled_intr_status && retval == IRQ_NONE &&
6207 				!ufshcd_eh_in_progress(hba)) {
6208 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6209 					__func__,
6210 					intr_status,
6211 					hba->ufs_stats.last_intr_status,
6212 					enabled_intr_status);
6213 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6214 	}
6215 
6216 	spin_unlock(hba->host->host_lock);
6217 	return retval;
6218 }
6219 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6220 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6221 {
6222 	int err = 0;
6223 	u32 mask = 1 << tag;
6224 	unsigned long flags;
6225 
6226 	if (!test_bit(tag, &hba->outstanding_tasks))
6227 		goto out;
6228 
6229 	spin_lock_irqsave(hba->host->host_lock, flags);
6230 	ufshcd_utmrl_clear(hba, tag);
6231 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6232 
6233 	/* poll for max. 1 sec to clear door bell register by h/w */
6234 	err = ufshcd_wait_for_register(hba,
6235 			REG_UTP_TASK_REQ_DOOR_BELL,
6236 			mask, 0, 1000, 1000);
6237 out:
6238 	return err;
6239 }
6240 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6241 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6242 		struct utp_task_req_desc *treq, u8 tm_function)
6243 {
6244 	struct request_queue *q = hba->tmf_queue;
6245 	struct Scsi_Host *host = hba->host;
6246 	DECLARE_COMPLETION_ONSTACK(wait);
6247 	struct request *req;
6248 	unsigned long flags;
6249 	int task_tag, err;
6250 
6251 	/*
6252 	 * blk_get_request() is used here only to get a free tag.
6253 	 */
6254 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6255 	if (IS_ERR(req))
6256 		return PTR_ERR(req);
6257 
6258 	req->end_io_data = &wait;
6259 	ufshcd_hold(hba, false);
6260 
6261 	spin_lock_irqsave(host->host_lock, flags);
6262 
6263 	task_tag = req->tag;
6264 	hba->tmf_rqs[req->tag] = req;
6265 	treq->req_header.dword_0 |= cpu_to_be32(task_tag);
6266 
6267 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6268 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6269 
6270 	/* send command to the controller */
6271 	__set_bit(task_tag, &hba->outstanding_tasks);
6272 
6273 	/* Make sure descriptors are ready before ringing the task doorbell */
6274 	wmb();
6275 
6276 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6277 	/* Make sure that doorbell is committed immediately */
6278 	wmb();
6279 
6280 	spin_unlock_irqrestore(host->host_lock, flags);
6281 
6282 	ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
6283 
6284 	/* wait until the task management command is completed */
6285 	err = wait_for_completion_io_timeout(&wait,
6286 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6287 	if (!err) {
6288 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
6289 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6290 				__func__, tm_function);
6291 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6292 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6293 					__func__, task_tag);
6294 		err = -ETIMEDOUT;
6295 	} else {
6296 		err = 0;
6297 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6298 
6299 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
6300 	}
6301 
6302 	spin_lock_irqsave(hba->host->host_lock, flags);
6303 	hba->tmf_rqs[req->tag] = NULL;
6304 	__clear_bit(task_tag, &hba->outstanding_tasks);
6305 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6306 
6307 	ufshcd_release(hba);
6308 	blk_put_request(req);
6309 
6310 	return err;
6311 }
6312 
6313 /**
6314  * ufshcd_issue_tm_cmd - issues task management commands to controller
6315  * @hba: per adapter instance
6316  * @lun_id: LUN ID to which TM command is sent
6317  * @task_id: task ID to which the TM command is applicable
6318  * @tm_function: task management function opcode
6319  * @tm_response: task management service response return value
6320  *
6321  * Returns non-zero value on error, zero on success.
6322  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6323 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6324 		u8 tm_function, u8 *tm_response)
6325 {
6326 	struct utp_task_req_desc treq = { { 0 }, };
6327 	int ocs_value, err;
6328 
6329 	/* Configure task request descriptor */
6330 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6331 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6332 
6333 	/* Configure task request UPIU */
6334 	treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6335 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6336 	treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6337 
6338 	/*
6339 	 * The host shall provide the same value for LUN field in the basic
6340 	 * header and for Input Parameter.
6341 	 */
6342 	treq.input_param1 = cpu_to_be32(lun_id);
6343 	treq.input_param2 = cpu_to_be32(task_id);
6344 
6345 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6346 	if (err == -ETIMEDOUT)
6347 		return err;
6348 
6349 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6350 	if (ocs_value != OCS_SUCCESS)
6351 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6352 				__func__, ocs_value);
6353 	else if (tm_response)
6354 		*tm_response = be32_to_cpu(treq.output_param1) &
6355 				MASK_TM_SERVICE_RESP;
6356 	return err;
6357 }
6358 
6359 /**
6360  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6361  * @hba:	per-adapter instance
6362  * @req_upiu:	upiu request
6363  * @rsp_upiu:	upiu reply
6364  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6365  * @buff_len:	descriptor size, 0 if NA
6366  * @cmd_type:	specifies the type (NOP, Query...)
6367  * @desc_op:	descriptor operation
6368  *
6369  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6370  * Therefore, it "rides" the device management infrastructure: uses its tag and
6371  * tasks work queues.
6372  *
6373  * Since there is only one available tag for device management commands,
6374  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6375  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6376 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6377 					struct utp_upiu_req *req_upiu,
6378 					struct utp_upiu_req *rsp_upiu,
6379 					u8 *desc_buff, int *buff_len,
6380 					enum dev_cmd_type cmd_type,
6381 					enum query_opcode desc_op)
6382 {
6383 	struct request_queue *q = hba->cmd_queue;
6384 	struct request *req;
6385 	struct ufshcd_lrb *lrbp;
6386 	int err = 0;
6387 	int tag;
6388 	struct completion wait;
6389 	unsigned long flags;
6390 	u8 upiu_flags;
6391 
6392 	down_read(&hba->clk_scaling_lock);
6393 
6394 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6395 	if (IS_ERR(req)) {
6396 		err = PTR_ERR(req);
6397 		goto out_unlock;
6398 	}
6399 	tag = req->tag;
6400 	WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
6401 
6402 	init_completion(&wait);
6403 	lrbp = &hba->lrb[tag];
6404 	WARN_ON(lrbp->cmd);
6405 
6406 	lrbp->cmd = NULL;
6407 	lrbp->sense_bufflen = 0;
6408 	lrbp->sense_buffer = NULL;
6409 	lrbp->task_tag = tag;
6410 	lrbp->lun = 0;
6411 	lrbp->intr_cmd = true;
6412 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6413 	hba->dev_cmd.type = cmd_type;
6414 
6415 	switch (hba->ufs_version) {
6416 	case UFSHCI_VERSION_10:
6417 	case UFSHCI_VERSION_11:
6418 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6419 		break;
6420 	default:
6421 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6422 		break;
6423 	}
6424 
6425 	/* update the task tag in the request upiu */
6426 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6427 
6428 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6429 
6430 	/* just copy the upiu request as it is */
6431 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6432 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6433 		/* The Data Segment Area is optional depending upon the query
6434 		 * function value. for WRITE DESCRIPTOR, the data segment
6435 		 * follows right after the tsf.
6436 		 */
6437 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6438 		*buff_len = 0;
6439 	}
6440 
6441 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6442 
6443 	hba->dev_cmd.complete = &wait;
6444 
6445 	/* Make sure descriptors are ready before ringing the doorbell */
6446 	wmb();
6447 	spin_lock_irqsave(hba->host->host_lock, flags);
6448 	ufshcd_send_command(hba, tag);
6449 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6450 
6451 	/*
6452 	 * ignore the returning value here - ufshcd_check_query_response is
6453 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6454 	 * read the response directly ignoring all errors.
6455 	 */
6456 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6457 
6458 	/* just copy the upiu response as it is */
6459 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6460 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6461 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6462 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6463 			       MASK_QUERY_DATA_SEG_LEN;
6464 
6465 		if (*buff_len >= resp_len) {
6466 			memcpy(desc_buff, descp, resp_len);
6467 			*buff_len = resp_len;
6468 		} else {
6469 			dev_warn(hba->dev,
6470 				 "%s: rsp size %d is bigger than buffer size %d",
6471 				 __func__, resp_len, *buff_len);
6472 			*buff_len = 0;
6473 			err = -EINVAL;
6474 		}
6475 	}
6476 
6477 	blk_put_request(req);
6478 out_unlock:
6479 	up_read(&hba->clk_scaling_lock);
6480 	return err;
6481 }
6482 
6483 /**
6484  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6485  * @hba:	per-adapter instance
6486  * @req_upiu:	upiu request
6487  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6488  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6489  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6490  * @buff_len:	descriptor size, 0 if NA
6491  * @desc_op:	descriptor operation
6492  *
6493  * Supports UTP Transfer requests (nop and query), and UTP Task
6494  * Management requests.
6495  * It is up to the caller to fill the upiu conent properly, as it will
6496  * be copied without any further input validations.
6497  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6498 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6499 			     struct utp_upiu_req *req_upiu,
6500 			     struct utp_upiu_req *rsp_upiu,
6501 			     int msgcode,
6502 			     u8 *desc_buff, int *buff_len,
6503 			     enum query_opcode desc_op)
6504 {
6505 	int err;
6506 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6507 	struct utp_task_req_desc treq = { { 0 }, };
6508 	int ocs_value;
6509 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6510 
6511 	switch (msgcode) {
6512 	case UPIU_TRANSACTION_NOP_OUT:
6513 		cmd_type = DEV_CMD_TYPE_NOP;
6514 		fallthrough;
6515 	case UPIU_TRANSACTION_QUERY_REQ:
6516 		ufshcd_hold(hba, false);
6517 		mutex_lock(&hba->dev_cmd.lock);
6518 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6519 						   desc_buff, buff_len,
6520 						   cmd_type, desc_op);
6521 		mutex_unlock(&hba->dev_cmd.lock);
6522 		ufshcd_release(hba);
6523 
6524 		break;
6525 	case UPIU_TRANSACTION_TASK_REQ:
6526 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6527 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6528 
6529 		memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6530 
6531 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6532 		if (err == -ETIMEDOUT)
6533 			break;
6534 
6535 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6536 		if (ocs_value != OCS_SUCCESS) {
6537 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6538 				ocs_value);
6539 			break;
6540 		}
6541 
6542 		memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6543 
6544 		break;
6545 	default:
6546 		err = -EINVAL;
6547 
6548 		break;
6549 	}
6550 
6551 	return err;
6552 }
6553 
6554 /**
6555  * ufshcd_eh_device_reset_handler - device reset handler registered to
6556  *                                    scsi layer.
6557  * @cmd: SCSI command pointer
6558  *
6559  * Returns SUCCESS/FAILED
6560  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6561 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6562 {
6563 	struct Scsi_Host *host;
6564 	struct ufs_hba *hba;
6565 	u32 pos;
6566 	int err;
6567 	u8 resp = 0xF, lun;
6568 	unsigned long flags;
6569 
6570 	host = cmd->device->host;
6571 	hba = shost_priv(host);
6572 
6573 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
6574 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
6575 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6576 		if (!err)
6577 			err = resp;
6578 		goto out;
6579 	}
6580 
6581 	/* clear the commands that were pending for corresponding LUN */
6582 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6583 		if (hba->lrb[pos].lun == lun) {
6584 			err = ufshcd_clear_cmd(hba, pos);
6585 			if (err)
6586 				break;
6587 		}
6588 	}
6589 	spin_lock_irqsave(host->host_lock, flags);
6590 	ufshcd_transfer_req_compl(hba);
6591 	spin_unlock_irqrestore(host->host_lock, flags);
6592 
6593 out:
6594 	hba->req_abort_count = 0;
6595 	ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err);
6596 	if (!err) {
6597 		err = SUCCESS;
6598 	} else {
6599 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6600 		err = FAILED;
6601 	}
6602 	return err;
6603 }
6604 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6605 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6606 {
6607 	struct ufshcd_lrb *lrbp;
6608 	int tag;
6609 
6610 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
6611 		lrbp = &hba->lrb[tag];
6612 		lrbp->req_abort_skip = true;
6613 	}
6614 }
6615 
6616 /**
6617  * ufshcd_try_to_abort_task - abort a specific task
6618  * @cmd: SCSI command pointer
6619  *
6620  * Abort the pending command in device by sending UFS_ABORT_TASK task management
6621  * command, and in host controller by clearing the door-bell register. There can
6622  * be race between controller sending the command to the device while abort is
6623  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6624  * really issued and then try to abort it.
6625  *
6626  * Returns zero on success, non-zero on failure
6627  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)6628 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
6629 {
6630 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6631 	int err = 0;
6632 	int poll_cnt;
6633 	u8 resp = 0xF;
6634 	u32 reg;
6635 
6636 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6637 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6638 				UFS_QUERY_TASK, &resp);
6639 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6640 			/* cmd pending in the device */
6641 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6642 				__func__, tag);
6643 			break;
6644 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6645 			/*
6646 			 * cmd not pending in the device, check if it is
6647 			 * in transition.
6648 			 */
6649 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6650 				__func__, tag);
6651 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6652 			if (reg & (1 << tag)) {
6653 				/* sleep for max. 200us to stabilize */
6654 				usleep_range(100, 200);
6655 				continue;
6656 			}
6657 			/* command completed already */
6658 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6659 				__func__, tag);
6660 			goto out;
6661 		} else {
6662 			dev_err(hba->dev,
6663 				"%s: no response from device. tag = %d, err %d\n",
6664 				__func__, tag, err);
6665 			if (!err)
6666 				err = resp; /* service response error */
6667 			goto out;
6668 		}
6669 	}
6670 
6671 	if (!poll_cnt) {
6672 		err = -EBUSY;
6673 		goto out;
6674 	}
6675 
6676 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6677 			UFS_ABORT_TASK, &resp);
6678 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6679 		if (!err) {
6680 			err = resp; /* service response error */
6681 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6682 				__func__, tag, err);
6683 		}
6684 		goto out;
6685 	}
6686 
6687 	err = ufshcd_clear_cmd(hba, tag);
6688 	if (err)
6689 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6690 			__func__, tag, err);
6691 
6692 out:
6693 	return err;
6694 }
6695 
6696 /**
6697  * ufshcd_abort - scsi host template eh_abort_handler callback
6698  * @cmd: SCSI command pointer
6699  *
6700  * Returns SUCCESS/FAILED
6701  */
ufshcd_abort(struct scsi_cmnd * cmd)6702 static int ufshcd_abort(struct scsi_cmnd *cmd)
6703 {
6704 	struct Scsi_Host *host;
6705 	struct ufs_hba *hba;
6706 	unsigned long flags;
6707 	unsigned int tag;
6708 	int err = 0;
6709 	struct ufshcd_lrb *lrbp;
6710 	u32 reg;
6711 
6712 	host = cmd->device->host;
6713 	hba = shost_priv(host);
6714 	tag = cmd->request->tag;
6715 	lrbp = &hba->lrb[tag];
6716 	if (!ufshcd_valid_tag(hba, tag)) {
6717 		dev_err(hba->dev,
6718 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6719 			__func__, tag, cmd, cmd->request);
6720 		BUG();
6721 	}
6722 
6723 	/*
6724 	 * Task abort to the device W-LUN is illegal. When this command
6725 	 * will fail, due to spec violation, scsi err handling next step
6726 	 * will be to send LU reset which, again, is a spec violation.
6727 	 * To avoid these unnecessary/illegal step we skip to the last error
6728 	 * handling stage: reset and restore.
6729 	 */
6730 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN)
6731 		return ufshcd_eh_host_reset_handler(cmd);
6732 
6733 	ufshcd_hold(hba, false);
6734 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6735 	/* If command is already aborted/completed, return SUCCESS */
6736 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
6737 		dev_err(hba->dev,
6738 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6739 			__func__, tag, hba->outstanding_reqs, reg);
6740 		goto out;
6741 	}
6742 
6743 	/* Print Transfer Request of aborted task */
6744 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6745 
6746 	/*
6747 	 * Print detailed info about aborted request.
6748 	 * As more than one request might get aborted at the same time,
6749 	 * print full information only for the first aborted request in order
6750 	 * to reduce repeated printouts. For other aborted requests only print
6751 	 * basic details.
6752 	 */
6753 	scsi_print_command(hba->lrb[tag].cmd);
6754 	if (!hba->req_abort_count) {
6755 		ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0);
6756 		ufshcd_print_host_regs(hba);
6757 		ufshcd_print_host_state(hba);
6758 		ufshcd_print_pwr_info(hba);
6759 		ufshcd_print_trs(hba, 1 << tag, true);
6760 	} else {
6761 		ufshcd_print_trs(hba, 1 << tag, false);
6762 	}
6763 	hba->req_abort_count++;
6764 
6765 	if (!(reg & (1 << tag))) {
6766 		dev_err(hba->dev,
6767 		"%s: cmd was completed, but without a notifying intr, tag = %d",
6768 		__func__, tag);
6769 		goto cleanup;
6770 	}
6771 
6772 	/* Skip task abort in case previous aborts failed and report failure */
6773 	if (lrbp->req_abort_skip)
6774 		err = -EIO;
6775 	else
6776 		err = ufshcd_try_to_abort_task(hba, tag);
6777 
6778 	if (!err) {
6779 cleanup:
6780 		spin_lock_irqsave(host->host_lock, flags);
6781 		__ufshcd_transfer_req_compl(hba, (1UL << tag));
6782 		spin_unlock_irqrestore(host->host_lock, flags);
6783 out:
6784 		err = SUCCESS;
6785 	} else {
6786 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6787 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
6788 		err = FAILED;
6789 	}
6790 
6791 	/*
6792 	 * This ufshcd_release() corresponds to the original scsi cmd that got
6793 	 * aborted here (as we won't get any IRQ for it).
6794 	 */
6795 	ufshcd_release(hba);
6796 	return err;
6797 }
6798 
6799 /**
6800  * ufshcd_host_reset_and_restore - reset and restore host controller
6801  * @hba: per-adapter instance
6802  *
6803  * Note that host controller reset may issue DME_RESET to
6804  * local and remote (device) Uni-Pro stack and the attributes
6805  * are reset to default state.
6806  *
6807  * Returns zero on success, non-zero on failure
6808  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)6809 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
6810 {
6811 	int err;
6812 	unsigned long flags;
6813 
6814 	/*
6815 	 * Stop the host controller and complete the requests
6816 	 * cleared by h/w
6817 	 */
6818 	ufshcd_hba_stop(hba);
6819 
6820 	spin_lock_irqsave(hba->host->host_lock, flags);
6821 	hba->silence_err_logs = true;
6822 	ufshcd_complete_requests(hba);
6823 	hba->silence_err_logs = false;
6824 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6825 
6826 	/* scale up clocks to max frequency before full reinitialization */
6827 	ufshcd_set_clk_freq(hba, true);
6828 
6829 	err = ufshcd_hba_enable(hba);
6830 	if (err)
6831 		goto out;
6832 
6833 	/* Establish the link again and restore the device */
6834 	err = ufshcd_probe_hba(hba, false);
6835 
6836 out:
6837 	if (err)
6838 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
6839 	ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err);
6840 	return err;
6841 }
6842 
6843 /**
6844  * ufshcd_reset_and_restore - reset and re-initialize host/device
6845  * @hba: per-adapter instance
6846  *
6847  * Reset and recover device, host and re-establish link. This
6848  * is helpful to recover the communication in fatal error conditions.
6849  *
6850  * Returns zero on success, non-zero on failure
6851  */
ufshcd_reset_and_restore(struct ufs_hba * hba)6852 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
6853 {
6854 	u32 saved_err;
6855 	u32 saved_uic_err;
6856 	int err = 0;
6857 	unsigned long flags;
6858 	int retries = MAX_HOST_RESET_RETRIES;
6859 
6860 	/*
6861 	 * This is a fresh start, cache and clear saved error first,
6862 	 * in case new error generated during reset and restore.
6863 	 */
6864 	spin_lock_irqsave(hba->host->host_lock, flags);
6865 	saved_err = hba->saved_err;
6866 	saved_uic_err = hba->saved_uic_err;
6867 	hba->saved_err = 0;
6868 	hba->saved_uic_err = 0;
6869 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6870 
6871 	do {
6872 		/* Reset the attached device */
6873 		ufshcd_vops_device_reset(hba);
6874 
6875 		err = ufshcd_host_reset_and_restore(hba);
6876 	} while (err && --retries);
6877 
6878 	spin_lock_irqsave(hba->host->host_lock, flags);
6879 	/*
6880 	 * Inform scsi mid-layer that we did reset and allow to handle
6881 	 * Unit Attention properly.
6882 	 */
6883 	scsi_report_bus_reset(hba->host, 0);
6884 	if (err) {
6885 		hba->saved_err |= saved_err;
6886 		hba->saved_uic_err |= saved_uic_err;
6887 	}
6888 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6889 
6890 	return err;
6891 }
6892 
6893 /**
6894  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
6895  * @cmd: SCSI command pointer
6896  *
6897  * Returns SUCCESS/FAILED
6898  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6899 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
6900 {
6901 	int err = SUCCESS;
6902 	unsigned long flags;
6903 	struct ufs_hba *hba;
6904 
6905 	hba = shost_priv(cmd->device->host);
6906 
6907 	spin_lock_irqsave(hba->host->host_lock, flags);
6908 	hba->force_reset = true;
6909 	ufshcd_schedule_eh_work(hba);
6910 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
6911 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6912 
6913 	flush_work(&hba->eh_work);
6914 
6915 	spin_lock_irqsave(hba->host->host_lock, flags);
6916 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
6917 		err = FAILED;
6918 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6919 
6920 	return err;
6921 }
6922 
6923 /**
6924  * ufshcd_get_max_icc_level - calculate the ICC level
6925  * @sup_curr_uA: max. current supported by the regulator
6926  * @start_scan: row at the desc table to start scan from
6927  * @buff: power descriptor buffer
6928  *
6929  * Returns calculated max ICC level for specific regulator
6930  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6931 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
6932 {
6933 	int i;
6934 	int curr_uA;
6935 	u16 data;
6936 	u16 unit;
6937 
6938 	for (i = start_scan; i >= 0; i--) {
6939 		data = be16_to_cpup((__be16 *)&buff[2 * i]);
6940 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
6941 						ATTR_ICC_LVL_UNIT_OFFSET;
6942 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
6943 		switch (unit) {
6944 		case UFSHCD_NANO_AMP:
6945 			curr_uA = curr_uA / 1000;
6946 			break;
6947 		case UFSHCD_MILI_AMP:
6948 			curr_uA = curr_uA * 1000;
6949 			break;
6950 		case UFSHCD_AMP:
6951 			curr_uA = curr_uA * 1000 * 1000;
6952 			break;
6953 		case UFSHCD_MICRO_AMP:
6954 		default:
6955 			break;
6956 		}
6957 		if (sup_curr_uA >= curr_uA)
6958 			break;
6959 	}
6960 	if (i < 0) {
6961 		i = 0;
6962 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
6963 	}
6964 
6965 	return (u32)i;
6966 }
6967 
6968 /**
6969  * ufshcd_calc_icc_level - calculate the max ICC level
6970  * In case regulators are not initialized we'll return 0
6971  * @hba: per-adapter instance
6972  * @desc_buf: power descriptor buffer to extract ICC levels from.
6973  * @len: length of desc_buff
6974  *
6975  * Returns calculated ICC level
6976  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6977 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
6978 							u8 *desc_buf, int len)
6979 {
6980 	u32 icc_level = 0;
6981 
6982 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
6983 						!hba->vreg_info.vccq2) {
6984 		dev_err(hba->dev,
6985 			"%s: Regulator capability was not set, actvIccLevel=%d",
6986 							__func__, icc_level);
6987 		goto out;
6988 	}
6989 
6990 	if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
6991 		icc_level = ufshcd_get_max_icc_level(
6992 				hba->vreg_info.vcc->max_uA,
6993 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
6994 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
6995 
6996 	if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
6997 		icc_level = ufshcd_get_max_icc_level(
6998 				hba->vreg_info.vccq->max_uA,
6999 				icc_level,
7000 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7001 
7002 	if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
7003 		icc_level = ufshcd_get_max_icc_level(
7004 				hba->vreg_info.vccq2->max_uA,
7005 				icc_level,
7006 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7007 out:
7008 	return icc_level;
7009 }
7010 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7011 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7012 {
7013 	int ret;
7014 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7015 	u8 *desc_buf;
7016 	u32 icc_level;
7017 
7018 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7019 	if (!desc_buf)
7020 		return;
7021 
7022 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7023 				     desc_buf, buff_len);
7024 	if (ret) {
7025 		dev_err(hba->dev,
7026 			"%s: Failed reading power descriptor.len = %d ret = %d",
7027 			__func__, buff_len, ret);
7028 		goto out;
7029 	}
7030 
7031 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7032 							 buff_len);
7033 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7034 
7035 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7036 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7037 
7038 	if (ret)
7039 		dev_err(hba->dev,
7040 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7041 			__func__, icc_level, ret);
7042 
7043 out:
7044 	kfree(desc_buf);
7045 }
7046 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7047 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7048 {
7049 	scsi_autopm_get_device(sdev);
7050 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7051 	if (sdev->rpm_autosuspend)
7052 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7053 						 RPM_AUTOSUSPEND_DELAY_MS);
7054 	scsi_autopm_put_device(sdev);
7055 }
7056 
7057 /**
7058  * ufshcd_scsi_add_wlus - Adds required W-LUs
7059  * @hba: per-adapter instance
7060  *
7061  * UFS device specification requires the UFS devices to support 4 well known
7062  * logical units:
7063  *	"REPORT_LUNS" (address: 01h)
7064  *	"UFS Device" (address: 50h)
7065  *	"RPMB" (address: 44h)
7066  *	"BOOT" (address: 30h)
7067  * UFS device's power management needs to be controlled by "POWER CONDITION"
7068  * field of SSU (START STOP UNIT) command. But this "power condition" field
7069  * will take effect only when its sent to "UFS device" well known logical unit
7070  * hence we require the scsi_device instance to represent this logical unit in
7071  * order for the UFS host driver to send the SSU command for power management.
7072  *
7073  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7074  * Block) LU so user space process can control this LU. User space may also
7075  * want to have access to BOOT LU.
7076  *
7077  * This function adds scsi device instances for each of all well known LUs
7078  * (except "REPORT LUNS" LU).
7079  *
7080  * Returns zero on success (all required W-LUs are added successfully),
7081  * non-zero error value on failure (if failed to add any of the required W-LU).
7082  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7083 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7084 {
7085 	int ret = 0;
7086 	struct scsi_device *sdev_boot;
7087 
7088 	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7089 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7090 	if (IS_ERR(hba->sdev_ufs_device)) {
7091 		ret = PTR_ERR(hba->sdev_ufs_device);
7092 		hba->sdev_ufs_device = NULL;
7093 		goto out;
7094 	}
7095 	ufshcd_blk_pm_runtime_init(hba->sdev_ufs_device);
7096 	scsi_device_put(hba->sdev_ufs_device);
7097 
7098 	hba->sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7099 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7100 	if (IS_ERR(hba->sdev_rpmb)) {
7101 		ret = PTR_ERR(hba->sdev_rpmb);
7102 		goto remove_sdev_ufs_device;
7103 	}
7104 	ufshcd_blk_pm_runtime_init(hba->sdev_rpmb);
7105 	scsi_device_put(hba->sdev_rpmb);
7106 
7107 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7108 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7109 	if (IS_ERR(sdev_boot)) {
7110 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7111 	} else {
7112 		ufshcd_blk_pm_runtime_init(sdev_boot);
7113 		scsi_device_put(sdev_boot);
7114 	}
7115 	goto out;
7116 
7117 remove_sdev_ufs_device:
7118 	scsi_remove_device(hba->sdev_ufs_device);
7119 out:
7120 	return ret;
7121 }
7122 
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7123 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7124 {
7125 	struct ufs_dev_info *dev_info = &hba->dev_info;
7126 	u8 lun;
7127 	u32 d_lu_wb_buf_alloc;
7128 
7129 	if (!ufshcd_is_wb_allowed(hba))
7130 		return;
7131 	/*
7132 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7133 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7134 	 * enabled
7135 	 */
7136 	if (!(dev_info->wspecversion >= 0x310 ||
7137 	      dev_info->wspecversion == 0x220 ||
7138 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7139 		goto wb_disabled;
7140 
7141 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7142 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7143 		goto wb_disabled;
7144 
7145 	dev_info->d_ext_ufs_feature_sup =
7146 		get_unaligned_be32(desc_buf +
7147 				   DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7148 
7149 	if (!(dev_info->d_ext_ufs_feature_sup & UFS_DEV_WRITE_BOOSTER_SUP))
7150 		goto wb_disabled;
7151 
7152 	/*
7153 	 * WB may be supported but not configured while provisioning.
7154 	 * The spec says, in dedicated wb buffer mode,
7155 	 * a max of 1 lun would have wb buffer configured.
7156 	 * Now only shared buffer mode is supported.
7157 	 */
7158 	dev_info->b_wb_buffer_type =
7159 		desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7160 
7161 	dev_info->b_presrv_uspc_en =
7162 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7163 
7164 	if (dev_info->b_wb_buffer_type == WB_BUF_MODE_SHARED) {
7165 		dev_info->d_wb_alloc_units =
7166 		get_unaligned_be32(desc_buf +
7167 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS);
7168 		if (!dev_info->d_wb_alloc_units)
7169 			goto wb_disabled;
7170 	} else {
7171 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7172 			d_lu_wb_buf_alloc = 0;
7173 			ufshcd_read_unit_desc_param(hba,
7174 					lun,
7175 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7176 					(u8 *)&d_lu_wb_buf_alloc,
7177 					sizeof(d_lu_wb_buf_alloc));
7178 			if (d_lu_wb_buf_alloc) {
7179 				dev_info->wb_dedicated_lu = lun;
7180 				break;
7181 			}
7182 		}
7183 
7184 		if (!d_lu_wb_buf_alloc)
7185 			goto wb_disabled;
7186 	}
7187 	return;
7188 
7189 wb_disabled:
7190 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7191 }
7192 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7193 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7194 {
7195 	struct ufs_dev_fix *f;
7196 	struct ufs_dev_info *dev_info = &hba->dev_info;
7197 
7198 	if (!fixups)
7199 		return;
7200 
7201 	for (f = fixups; f->quirk; f++) {
7202 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7203 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7204 		     ((dev_info->model &&
7205 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7206 		      !strcmp(f->model, UFS_ANY_MODEL)))
7207 			hba->dev_quirks |= f->quirk;
7208 	}
7209 }
7210 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7211 
ufs_fixup_device_setup(struct ufs_hba * hba)7212 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7213 {
7214 	/* fix by general quirk table */
7215 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7216 
7217 	/* allow vendors to fix quirks */
7218 	ufshcd_vops_fixup_dev_quirks(hba);
7219 }
7220 
ufs_get_device_desc(struct ufs_hba * hba)7221 static int ufs_get_device_desc(struct ufs_hba *hba)
7222 {
7223 	int err;
7224 	u8 model_index;
7225 	u8 *desc_buf;
7226 	struct ufs_dev_info *dev_info = &hba->dev_info;
7227 
7228 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7229 	if (!desc_buf) {
7230 		err = -ENOMEM;
7231 		goto out;
7232 	}
7233 
7234 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7235 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7236 	if (err) {
7237 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7238 			__func__, err);
7239 		goto out;
7240 	}
7241 
7242 	/*
7243 	 * getting vendor (manufacturerID) and Bank Index in big endian
7244 	 * format
7245 	 */
7246 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7247 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7248 
7249 	/* getting Specification Version in big endian format */
7250 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7251 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7252 
7253 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7254 
7255 	err = ufshcd_read_string_desc(hba, model_index,
7256 				      &dev_info->model, SD_ASCII_STD);
7257 	if (err < 0) {
7258 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7259 			__func__, err);
7260 		goto out;
7261 	}
7262 
7263 	ufs_fixup_device_setup(hba);
7264 
7265 	ufshcd_wb_probe(hba, desc_buf);
7266 
7267 	/*
7268 	 * ufshcd_read_string_desc returns size of the string
7269 	 * reset the error value
7270 	 */
7271 	err = 0;
7272 
7273 out:
7274 	kfree(desc_buf);
7275 	return err;
7276 }
7277 
ufs_put_device_desc(struct ufs_hba * hba)7278 static void ufs_put_device_desc(struct ufs_hba *hba)
7279 {
7280 	struct ufs_dev_info *dev_info = &hba->dev_info;
7281 
7282 	kfree(dev_info->model);
7283 	dev_info->model = NULL;
7284 }
7285 
7286 /**
7287  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7288  * @hba: per-adapter instance
7289  *
7290  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7291  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7292  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7293  * the hibern8 exit latency.
7294  *
7295  * Returns zero on success, non-zero error value on failure.
7296  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7297 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7298 {
7299 	int ret = 0;
7300 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7301 
7302 	ret = ufshcd_dme_peer_get(hba,
7303 				  UIC_ARG_MIB_SEL(
7304 					RX_MIN_ACTIVATETIME_CAPABILITY,
7305 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7306 				  &peer_rx_min_activatetime);
7307 	if (ret)
7308 		goto out;
7309 
7310 	/* make sure proper unit conversion is applied */
7311 	tuned_pa_tactivate =
7312 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7313 		 / PA_TACTIVATE_TIME_UNIT_US);
7314 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7315 			     tuned_pa_tactivate);
7316 
7317 out:
7318 	return ret;
7319 }
7320 
7321 /**
7322  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7323  * @hba: per-adapter instance
7324  *
7325  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7326  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7327  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7328  * This optimal value can help reduce the hibern8 exit latency.
7329  *
7330  * Returns zero on success, non-zero error value on failure.
7331  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7332 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7333 {
7334 	int ret = 0;
7335 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7336 	u32 max_hibern8_time, tuned_pa_hibern8time;
7337 
7338 	ret = ufshcd_dme_get(hba,
7339 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7340 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7341 				  &local_tx_hibern8_time_cap);
7342 	if (ret)
7343 		goto out;
7344 
7345 	ret = ufshcd_dme_peer_get(hba,
7346 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7347 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7348 				  &peer_rx_hibern8_time_cap);
7349 	if (ret)
7350 		goto out;
7351 
7352 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7353 			       peer_rx_hibern8_time_cap);
7354 	/* make sure proper unit conversion is applied */
7355 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7356 				/ PA_HIBERN8_TIME_UNIT_US);
7357 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7358 			     tuned_pa_hibern8time);
7359 out:
7360 	return ret;
7361 }
7362 
7363 /**
7364  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7365  * less than device PA_TACTIVATE time.
7366  * @hba: per-adapter instance
7367  *
7368  * Some UFS devices require host PA_TACTIVATE to be lower than device
7369  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7370  * for such devices.
7371  *
7372  * Returns zero on success, non-zero error value on failure.
7373  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7374 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7375 {
7376 	int ret = 0;
7377 	u32 granularity, peer_granularity;
7378 	u32 pa_tactivate, peer_pa_tactivate;
7379 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7380 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7381 
7382 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7383 				  &granularity);
7384 	if (ret)
7385 		goto out;
7386 
7387 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7388 				  &peer_granularity);
7389 	if (ret)
7390 		goto out;
7391 
7392 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7393 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7394 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7395 			__func__, granularity);
7396 		return -EINVAL;
7397 	}
7398 
7399 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7400 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7401 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7402 			__func__, peer_granularity);
7403 		return -EINVAL;
7404 	}
7405 
7406 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7407 	if (ret)
7408 		goto out;
7409 
7410 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7411 				  &peer_pa_tactivate);
7412 	if (ret)
7413 		goto out;
7414 
7415 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7416 	peer_pa_tactivate_us = peer_pa_tactivate *
7417 			     gran_to_us_table[peer_granularity - 1];
7418 
7419 	if (pa_tactivate_us > peer_pa_tactivate_us) {
7420 		u32 new_peer_pa_tactivate;
7421 
7422 		new_peer_pa_tactivate = pa_tactivate_us /
7423 				      gran_to_us_table[peer_granularity - 1];
7424 		new_peer_pa_tactivate++;
7425 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7426 					  new_peer_pa_tactivate);
7427 	}
7428 
7429 out:
7430 	return ret;
7431 }
7432 
ufshcd_tune_unipro_params(struct ufs_hba * hba)7433 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7434 {
7435 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7436 		ufshcd_tune_pa_tactivate(hba);
7437 		ufshcd_tune_pa_hibern8time(hba);
7438 	}
7439 
7440 	ufshcd_vops_apply_dev_quirks(hba);
7441 
7442 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7443 		/* set 1ms timeout for PA_TACTIVATE */
7444 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7445 
7446 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7447 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7448 }
7449 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7450 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7451 {
7452 	hba->ufs_stats.hibern8_exit_cnt = 0;
7453 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7454 	hba->req_abort_count = 0;
7455 }
7456 
ufshcd_device_geo_params_init(struct ufs_hba * hba)7457 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7458 {
7459 	int err;
7460 	size_t buff_len;
7461 	u8 *desc_buf;
7462 
7463 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7464 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7465 	if (!desc_buf) {
7466 		err = -ENOMEM;
7467 		goto out;
7468 	}
7469 
7470 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7471 				     desc_buf, buff_len);
7472 	if (err) {
7473 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7474 				__func__, err);
7475 		goto out;
7476 	}
7477 
7478 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7479 		hba->dev_info.max_lu_supported = 32;
7480 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7481 		hba->dev_info.max_lu_supported = 8;
7482 
7483 out:
7484 	kfree(desc_buf);
7485 	return err;
7486 }
7487 
7488 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
7489 	{19200000, REF_CLK_FREQ_19_2_MHZ},
7490 	{26000000, REF_CLK_FREQ_26_MHZ},
7491 	{38400000, REF_CLK_FREQ_38_4_MHZ},
7492 	{52000000, REF_CLK_FREQ_52_MHZ},
7493 	{0, REF_CLK_FREQ_INVAL},
7494 };
7495 
7496 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)7497 ufs_get_bref_clk_from_hz(unsigned long freq)
7498 {
7499 	int i;
7500 
7501 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
7502 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
7503 			return ufs_ref_clk_freqs[i].val;
7504 
7505 	return REF_CLK_FREQ_INVAL;
7506 }
7507 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7508 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
7509 {
7510 	unsigned long freq;
7511 
7512 	freq = clk_get_rate(refclk);
7513 
7514 	hba->dev_ref_clk_freq =
7515 		ufs_get_bref_clk_from_hz(freq);
7516 
7517 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
7518 		dev_err(hba->dev,
7519 		"invalid ref_clk setting = %ld\n", freq);
7520 }
7521 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7522 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
7523 {
7524 	int err;
7525 	u32 ref_clk;
7526 	u32 freq = hba->dev_ref_clk_freq;
7527 
7528 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7529 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
7530 
7531 	if (err) {
7532 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
7533 			err);
7534 		goto out;
7535 	}
7536 
7537 	if (ref_clk == freq)
7538 		goto out; /* nothing to update */
7539 
7540 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7541 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
7542 
7543 	if (err) {
7544 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
7545 			ufs_ref_clk_freqs[freq].freq_hz);
7546 		goto out;
7547 	}
7548 
7549 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
7550 			ufs_ref_clk_freqs[freq].freq_hz);
7551 
7552 out:
7553 	return err;
7554 }
7555 
ufshcd_device_params_init(struct ufs_hba * hba)7556 static int ufshcd_device_params_init(struct ufs_hba *hba)
7557 {
7558 	bool flag;
7559 	int ret, i;
7560 
7561 	 /* Init device descriptor sizes */
7562 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
7563 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
7564 
7565 	/* Init UFS geometry descriptor related parameters */
7566 	ret = ufshcd_device_geo_params_init(hba);
7567 	if (ret)
7568 		goto out;
7569 
7570 	/* Check and apply UFS device quirks */
7571 	ret = ufs_get_device_desc(hba);
7572 	if (ret) {
7573 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7574 			__func__, ret);
7575 		goto out;
7576 	}
7577 
7578 	ufshcd_get_ref_clk_gating_wait(hba);
7579 
7580 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7581 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
7582 		hba->dev_info.f_power_on_wp_en = flag;
7583 
7584 	/* Probe maximum power mode co-supported by both UFS host and device */
7585 	if (ufshcd_get_max_pwr_mode(hba))
7586 		dev_err(hba->dev,
7587 			"%s: Failed getting max supported power mode\n",
7588 			__func__);
7589 out:
7590 	return ret;
7591 }
7592 
7593 /**
7594  * ufshcd_add_lus - probe and add UFS logical units
7595  * @hba: per-adapter instance
7596  */
ufshcd_add_lus(struct ufs_hba * hba)7597 static int ufshcd_add_lus(struct ufs_hba *hba)
7598 {
7599 	int ret;
7600 
7601 	/* Add required well known logical units to scsi mid layer */
7602 	ret = ufshcd_scsi_add_wlus(hba);
7603 	if (ret)
7604 		goto out;
7605 
7606 	/* Initialize devfreq after UFS device is detected */
7607 	if (ufshcd_is_clkscaling_supported(hba)) {
7608 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
7609 			&hba->pwr_info,
7610 			sizeof(struct ufs_pa_layer_attr));
7611 		hba->clk_scaling.saved_pwr_info.is_valid = true;
7612 		if (!hba->devfreq) {
7613 			ret = ufshcd_devfreq_init(hba);
7614 			if (ret)
7615 				goto out;
7616 		}
7617 
7618 		hba->clk_scaling.is_allowed = true;
7619 	}
7620 
7621 	ufs_bsg_probe(hba);
7622 	scsi_scan_host(hba->host);
7623 	pm_runtime_put_sync(hba->dev);
7624 
7625 out:
7626 	return ret;
7627 }
7628 
7629 static int
7630 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp);
7631 
ufshcd_clear_ua_wlun(struct ufs_hba * hba,u8 wlun)7632 static int ufshcd_clear_ua_wlun(struct ufs_hba *hba, u8 wlun)
7633 {
7634 	struct scsi_device *sdp;
7635 	unsigned long flags;
7636 	int ret = 0;
7637 
7638 	spin_lock_irqsave(hba->host->host_lock, flags);
7639 	if (wlun == UFS_UPIU_UFS_DEVICE_WLUN)
7640 		sdp = hba->sdev_ufs_device;
7641 	else if (wlun == UFS_UPIU_RPMB_WLUN)
7642 		sdp = hba->sdev_rpmb;
7643 	else
7644 		BUG();
7645 	if (sdp) {
7646 		ret = scsi_device_get(sdp);
7647 		if (!ret && !scsi_device_online(sdp)) {
7648 			ret = -ENODEV;
7649 			scsi_device_put(sdp);
7650 		}
7651 	} else {
7652 		ret = -ENODEV;
7653 	}
7654 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7655 	if (ret)
7656 		goto out_err;
7657 
7658 	ret = ufshcd_send_request_sense(hba, sdp);
7659 	scsi_device_put(sdp);
7660 out_err:
7661 	if (ret)
7662 		dev_err(hba->dev, "%s: UAC clear LU=%x ret = %d\n",
7663 				__func__, wlun, ret);
7664 	return ret;
7665 }
7666 
ufshcd_clear_ua_wluns(struct ufs_hba * hba)7667 static int ufshcd_clear_ua_wluns(struct ufs_hba *hba)
7668 {
7669 	int ret = 0;
7670 
7671 	if (!hba->wlun_dev_clr_ua)
7672 		goto out;
7673 
7674 	ret = ufshcd_clear_ua_wlun(hba, UFS_UPIU_UFS_DEVICE_WLUN);
7675 	if (!ret)
7676 		ret = ufshcd_clear_ua_wlun(hba, UFS_UPIU_RPMB_WLUN);
7677 	if (!ret)
7678 		hba->wlun_dev_clr_ua = false;
7679 out:
7680 	if (ret)
7681 		dev_err(hba->dev, "%s: Failed to clear UAC WLUNS ret = %d\n",
7682 				__func__, ret);
7683 	return ret;
7684 }
7685 
7686 /**
7687  * ufshcd_probe_hba - probe hba to detect device and initialize
7688  * @hba: per-adapter instance
7689  * @async: asynchronous execution or not
7690  *
7691  * Execute link-startup and verify device initialization
7692  */
ufshcd_probe_hba(struct ufs_hba * hba,bool async)7693 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async)
7694 {
7695 	int ret;
7696 	unsigned long flags;
7697 	ktime_t start = ktime_get();
7698 
7699 	ret = ufshcd_link_startup(hba);
7700 	if (ret)
7701 		goto out;
7702 
7703 	/* Debug counters initialization */
7704 	ufshcd_clear_dbg_ufs_stats(hba);
7705 
7706 	/* UniPro link is active now */
7707 	ufshcd_set_link_active(hba);
7708 
7709 	/* Verify device initialization by sending NOP OUT UPIU */
7710 	ret = ufshcd_verify_dev_init(hba);
7711 	if (ret)
7712 		goto out;
7713 
7714 	/* Initiate UFS initialization, and waiting until completion */
7715 	ret = ufshcd_complete_dev_init(hba);
7716 	if (ret)
7717 		goto out;
7718 
7719 	/*
7720 	 * Initialize UFS device parameters used by driver, these
7721 	 * parameters are associated with UFS descriptors.
7722 	 */
7723 	if (async) {
7724 		ret = ufshcd_device_params_init(hba);
7725 		if (ret)
7726 			goto out;
7727 	}
7728 
7729 	ufshcd_tune_unipro_params(hba);
7730 
7731 	/* UFS device is also active now */
7732 	ufshcd_set_ufs_dev_active(hba);
7733 	ufshcd_force_reset_auto_bkops(hba);
7734 	hba->wlun_dev_clr_ua = true;
7735 
7736 	/* Gear up to HS gear if supported */
7737 	if (hba->max_pwr_info.is_valid) {
7738 		/*
7739 		 * Set the right value to bRefClkFreq before attempting to
7740 		 * switch to HS gears.
7741 		 */
7742 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7743 			ufshcd_set_dev_ref_clk(hba);
7744 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7745 		if (ret) {
7746 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7747 					__func__, ret);
7748 			goto out;
7749 		}
7750 		ufshcd_print_pwr_info(hba);
7751 	}
7752 
7753 	/*
7754 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
7755 	 * and for removable UFS card as well, hence always set the parameter.
7756 	 * Note: Error handler may issue the device reset hence resetting
7757 	 * bActiveICCLevel as well so it is always safe to set this here.
7758 	 */
7759 	ufshcd_set_active_icc_lvl(hba);
7760 
7761 	ufshcd_wb_config(hba);
7762 	/* Enable Auto-Hibernate if configured */
7763 	ufshcd_auto_hibern8_enable(hba);
7764 
7765 out:
7766 	spin_lock_irqsave(hba->host->host_lock, flags);
7767 	if (ret)
7768 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7769 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7770 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7771 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7772 
7773 	trace_ufshcd_init(dev_name(hba->dev), ret,
7774 		ktime_to_us(ktime_sub(ktime_get(), start)),
7775 		hba->curr_dev_pwr_mode, hba->uic_link_state);
7776 	return ret;
7777 }
7778 
7779 /**
7780  * ufshcd_async_scan - asynchronous execution for probing hba
7781  * @data: data pointer to pass to this function
7782  * @cookie: cookie data
7783  */
ufshcd_async_scan(void * data,async_cookie_t cookie)7784 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7785 {
7786 	struct ufs_hba *hba = (struct ufs_hba *)data;
7787 	int ret;
7788 
7789 	/* Initialize hba, detect and initialize UFS device */
7790 	ret = ufshcd_probe_hba(hba, true);
7791 	if (ret)
7792 		goto out;
7793 
7794 	/* Probe and add UFS logical units  */
7795 	ret = ufshcd_add_lus(hba);
7796 out:
7797 	/*
7798 	 * If we failed to initialize the device or the device is not
7799 	 * present, turn off the power/clocks etc.
7800 	 */
7801 	if (ret) {
7802 		pm_runtime_put_sync(hba->dev);
7803 		ufshcd_exit_clk_scaling(hba);
7804 		ufshcd_hba_exit(hba);
7805 	} else {
7806 		ufshcd_clear_ua_wluns(hba);
7807 	}
7808 }
7809 
7810 static const struct attribute_group *ufshcd_driver_groups[] = {
7811 	&ufs_sysfs_unit_descriptor_group,
7812 	&ufs_sysfs_lun_attributes_group,
7813 	NULL,
7814 };
7815 
7816 static struct ufs_hba_variant_params ufs_hba_vps = {
7817 	.hba_enable_delay_us		= 1000,
7818 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
7819 	.devfreq_profile.polling_ms	= 100,
7820 	.devfreq_profile.target		= ufshcd_devfreq_target,
7821 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
7822 	.ondemand_data.upthreshold	= 70,
7823 	.ondemand_data.downdifferential	= 5,
7824 };
7825 
7826 static struct scsi_host_template ufshcd_driver_template = {
7827 	.module			= THIS_MODULE,
7828 	.name			= UFSHCD,
7829 	.proc_name		= UFSHCD,
7830 	.queuecommand		= ufshcd_queuecommand,
7831 	.slave_alloc		= ufshcd_slave_alloc,
7832 	.slave_configure	= ufshcd_slave_configure,
7833 	.slave_destroy		= ufshcd_slave_destroy,
7834 	.change_queue_depth	= ufshcd_change_queue_depth,
7835 	.eh_abort_handler	= ufshcd_abort,
7836 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
7837 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
7838 	.this_id		= -1,
7839 	.sg_tablesize		= SG_ALL,
7840 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
7841 	.can_queue		= UFSHCD_CAN_QUEUE,
7842 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
7843 	.max_host_blocked	= 1,
7844 	.track_queue_depth	= 1,
7845 	.sdev_groups		= ufshcd_driver_groups,
7846 	.dma_boundary		= PAGE_SIZE - 1,
7847 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
7848 };
7849 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7850 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
7851 				   int ua)
7852 {
7853 	int ret;
7854 
7855 	if (!vreg)
7856 		return 0;
7857 
7858 	/*
7859 	 * "set_load" operation shall be required on those regulators
7860 	 * which specifically configured current limitation. Otherwise
7861 	 * zero max_uA may cause unexpected behavior when regulator is
7862 	 * enabled or set as high power mode.
7863 	 */
7864 	if (!vreg->max_uA)
7865 		return 0;
7866 
7867 	ret = regulator_set_load(vreg->reg, ua);
7868 	if (ret < 0) {
7869 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
7870 				__func__, vreg->name, ua, ret);
7871 	}
7872 
7873 	return ret;
7874 }
7875 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7876 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
7877 					 struct ufs_vreg *vreg)
7878 {
7879 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
7880 }
7881 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7882 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
7883 					 struct ufs_vreg *vreg)
7884 {
7885 	if (!vreg)
7886 		return 0;
7887 
7888 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
7889 }
7890 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7891 static int ufshcd_config_vreg(struct device *dev,
7892 		struct ufs_vreg *vreg, bool on)
7893 {
7894 	int ret = 0;
7895 	struct regulator *reg;
7896 	const char *name;
7897 	int min_uV, uA_load;
7898 
7899 	BUG_ON(!vreg);
7900 
7901 	reg = vreg->reg;
7902 	name = vreg->name;
7903 
7904 	if (regulator_count_voltages(reg) > 0) {
7905 		uA_load = on ? vreg->max_uA : 0;
7906 		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
7907 		if (ret)
7908 			goto out;
7909 
7910 		if (vreg->min_uV && vreg->max_uV) {
7911 			min_uV = on ? vreg->min_uV : 0;
7912 			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
7913 			if (ret)
7914 				dev_err(dev,
7915 					"%s: %s set voltage failed, err=%d\n",
7916 					__func__, name, ret);
7917 		}
7918 	}
7919 out:
7920 	return ret;
7921 }
7922 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7923 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
7924 {
7925 	int ret = 0;
7926 
7927 	if (!vreg || vreg->enabled)
7928 		goto out;
7929 
7930 	ret = ufshcd_config_vreg(dev, vreg, true);
7931 	if (!ret)
7932 		ret = regulator_enable(vreg->reg);
7933 
7934 	if (!ret)
7935 		vreg->enabled = true;
7936 	else
7937 		dev_err(dev, "%s: %s enable failed, err=%d\n",
7938 				__func__, vreg->name, ret);
7939 out:
7940 	return ret;
7941 }
7942 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7943 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
7944 {
7945 	int ret = 0;
7946 
7947 	if (!vreg || !vreg->enabled)
7948 		goto out;
7949 
7950 	ret = regulator_disable(vreg->reg);
7951 
7952 	if (!ret) {
7953 		/* ignore errors on applying disable config */
7954 		ufshcd_config_vreg(dev, vreg, false);
7955 		vreg->enabled = false;
7956 	} else {
7957 		dev_err(dev, "%s: %s disable failed, err=%d\n",
7958 				__func__, vreg->name, ret);
7959 	}
7960 out:
7961 	return ret;
7962 }
7963 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7964 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
7965 {
7966 	int ret = 0;
7967 	struct device *dev = hba->dev;
7968 	struct ufs_vreg_info *info = &hba->vreg_info;
7969 
7970 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
7971 	if (ret)
7972 		goto out;
7973 
7974 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
7975 	if (ret)
7976 		goto out;
7977 
7978 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
7979 
7980 out:
7981 	if (ret) {
7982 		ufshcd_toggle_vreg(dev, info->vccq2, false);
7983 		ufshcd_toggle_vreg(dev, info->vccq, false);
7984 		ufshcd_toggle_vreg(dev, info->vcc, false);
7985 	}
7986 	return ret;
7987 }
7988 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)7989 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
7990 {
7991 	struct ufs_vreg_info *info = &hba->vreg_info;
7992 
7993 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
7994 }
7995 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)7996 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
7997 {
7998 	int ret = 0;
7999 
8000 	if (!vreg)
8001 		goto out;
8002 
8003 	vreg->reg = devm_regulator_get(dev, vreg->name);
8004 	if (IS_ERR(vreg->reg)) {
8005 		ret = PTR_ERR(vreg->reg);
8006 		dev_err(dev, "%s: %s get failed, err=%d\n",
8007 				__func__, vreg->name, ret);
8008 	}
8009 out:
8010 	return ret;
8011 }
8012 
ufshcd_init_vreg(struct ufs_hba * hba)8013 static int ufshcd_init_vreg(struct ufs_hba *hba)
8014 {
8015 	int ret = 0;
8016 	struct device *dev = hba->dev;
8017 	struct ufs_vreg_info *info = &hba->vreg_info;
8018 
8019 	ret = ufshcd_get_vreg(dev, info->vcc);
8020 	if (ret)
8021 		goto out;
8022 
8023 	ret = ufshcd_get_vreg(dev, info->vccq);
8024 	if (!ret)
8025 		ret = ufshcd_get_vreg(dev, info->vccq2);
8026 out:
8027 	return ret;
8028 }
8029 
ufshcd_init_hba_vreg(struct ufs_hba * hba)8030 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8031 {
8032 	struct ufs_vreg_info *info = &hba->vreg_info;
8033 
8034 	if (info)
8035 		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8036 
8037 	return 0;
8038 }
8039 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8040 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8041 {
8042 	int ret = 0;
8043 	struct ufs_clk_info *clki;
8044 	struct list_head *head = &hba->clk_list_head;
8045 	unsigned long flags;
8046 	ktime_t start = ktime_get();
8047 	bool clk_state_changed = false;
8048 
8049 	if (list_empty(head))
8050 		goto out;
8051 
8052 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8053 	if (ret)
8054 		return ret;
8055 
8056 	list_for_each_entry(clki, head, list) {
8057 		if (!IS_ERR_OR_NULL(clki->clk)) {
8058 			/*
8059 			 * Don't disable clocks which are needed
8060 			 * to keep the link active.
8061 			 */
8062 			if (ufshcd_is_link_active(hba) &&
8063 			    clki->keep_link_active)
8064 				continue;
8065 
8066 			clk_state_changed = on ^ clki->enabled;
8067 			if (on && !clki->enabled) {
8068 				ret = clk_prepare_enable(clki->clk);
8069 				if (ret) {
8070 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8071 						__func__, clki->name, ret);
8072 					goto out;
8073 				}
8074 			} else if (!on && clki->enabled) {
8075 				clk_disable_unprepare(clki->clk);
8076 			}
8077 			clki->enabled = on;
8078 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8079 					clki->name, on ? "en" : "dis");
8080 		}
8081 	}
8082 
8083 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8084 	if (ret)
8085 		return ret;
8086 
8087 out:
8088 	if (ret) {
8089 		list_for_each_entry(clki, head, list) {
8090 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8091 				clk_disable_unprepare(clki->clk);
8092 		}
8093 	} else if (!ret && on) {
8094 		spin_lock_irqsave(hba->host->host_lock, flags);
8095 		hba->clk_gating.state = CLKS_ON;
8096 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8097 					hba->clk_gating.state);
8098 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8099 	}
8100 
8101 	if (clk_state_changed)
8102 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8103 			(on ? "on" : "off"),
8104 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8105 	return ret;
8106 }
8107 
ufshcd_init_clocks(struct ufs_hba * hba)8108 static int ufshcd_init_clocks(struct ufs_hba *hba)
8109 {
8110 	int ret = 0;
8111 	struct ufs_clk_info *clki;
8112 	struct device *dev = hba->dev;
8113 	struct list_head *head = &hba->clk_list_head;
8114 
8115 	if (list_empty(head))
8116 		goto out;
8117 
8118 	list_for_each_entry(clki, head, list) {
8119 		if (!clki->name)
8120 			continue;
8121 
8122 		clki->clk = devm_clk_get(dev, clki->name);
8123 		if (IS_ERR(clki->clk)) {
8124 			ret = PTR_ERR(clki->clk);
8125 			dev_err(dev, "%s: %s clk get failed, %d\n",
8126 					__func__, clki->name, ret);
8127 			goto out;
8128 		}
8129 
8130 		/*
8131 		 * Parse device ref clk freq as per device tree "ref_clk".
8132 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8133 		 * in ufshcd_alloc_host().
8134 		 */
8135 		if (!strcmp(clki->name, "ref_clk"))
8136 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8137 
8138 		if (clki->max_freq) {
8139 			ret = clk_set_rate(clki->clk, clki->max_freq);
8140 			if (ret) {
8141 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8142 					__func__, clki->name,
8143 					clki->max_freq, ret);
8144 				goto out;
8145 			}
8146 			clki->curr_freq = clki->max_freq;
8147 		}
8148 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8149 				clki->name, clk_get_rate(clki->clk));
8150 	}
8151 out:
8152 	return ret;
8153 }
8154 
ufshcd_variant_hba_init(struct ufs_hba * hba)8155 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8156 {
8157 	int err = 0;
8158 
8159 	if (!hba->vops)
8160 		goto out;
8161 
8162 	err = ufshcd_vops_init(hba);
8163 	if (err)
8164 		goto out;
8165 
8166 	err = ufshcd_vops_setup_regulators(hba, true);
8167 	if (err)
8168 		ufshcd_vops_exit(hba);
8169 out:
8170 	if (err)
8171 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8172 			__func__, ufshcd_get_var_name(hba), err);
8173 	return err;
8174 }
8175 
ufshcd_variant_hba_exit(struct ufs_hba * hba)8176 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8177 {
8178 	if (!hba->vops)
8179 		return;
8180 
8181 	ufshcd_vops_setup_regulators(hba, false);
8182 
8183 	ufshcd_vops_exit(hba);
8184 }
8185 
ufshcd_hba_init(struct ufs_hba * hba)8186 static int ufshcd_hba_init(struct ufs_hba *hba)
8187 {
8188 	int err;
8189 
8190 	/*
8191 	 * Handle host controller power separately from the UFS device power
8192 	 * rails as it will help controlling the UFS host controller power
8193 	 * collapse easily which is different than UFS device power collapse.
8194 	 * Also, enable the host controller power before we go ahead with rest
8195 	 * of the initialization here.
8196 	 */
8197 	err = ufshcd_init_hba_vreg(hba);
8198 	if (err)
8199 		goto out;
8200 
8201 	err = ufshcd_setup_hba_vreg(hba, true);
8202 	if (err)
8203 		goto out;
8204 
8205 	err = ufshcd_init_clocks(hba);
8206 	if (err)
8207 		goto out_disable_hba_vreg;
8208 
8209 	err = ufshcd_setup_clocks(hba, true);
8210 	if (err)
8211 		goto out_disable_hba_vreg;
8212 
8213 	err = ufshcd_init_vreg(hba);
8214 	if (err)
8215 		goto out_disable_clks;
8216 
8217 	err = ufshcd_setup_vreg(hba, true);
8218 	if (err)
8219 		goto out_disable_clks;
8220 
8221 	err = ufshcd_variant_hba_init(hba);
8222 	if (err)
8223 		goto out_disable_vreg;
8224 
8225 	hba->is_powered = true;
8226 	goto out;
8227 
8228 out_disable_vreg:
8229 	ufshcd_setup_vreg(hba, false);
8230 out_disable_clks:
8231 	ufshcd_setup_clocks(hba, false);
8232 out_disable_hba_vreg:
8233 	ufshcd_setup_hba_vreg(hba, false);
8234 out:
8235 	return err;
8236 }
8237 
ufshcd_hba_exit(struct ufs_hba * hba)8238 static void ufshcd_hba_exit(struct ufs_hba *hba)
8239 {
8240 	if (hba->is_powered) {
8241 		ufshcd_variant_hba_exit(hba);
8242 		ufshcd_setup_vreg(hba, false);
8243 		ufshcd_suspend_clkscaling(hba);
8244 		if (ufshcd_is_clkscaling_supported(hba))
8245 			if (hba->devfreq)
8246 				ufshcd_suspend_clkscaling(hba);
8247 		ufshcd_setup_clocks(hba, false);
8248 		ufshcd_setup_hba_vreg(hba, false);
8249 		hba->is_powered = false;
8250 		ufs_put_device_desc(hba);
8251 	}
8252 }
8253 
8254 static int
ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)8255 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
8256 {
8257 	unsigned char cmd[6] = {REQUEST_SENSE,
8258 				0,
8259 				0,
8260 				0,
8261 				UFS_SENSE_SIZE,
8262 				0};
8263 	char *buffer;
8264 	int ret;
8265 
8266 	buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL);
8267 	if (!buffer) {
8268 		ret = -ENOMEM;
8269 		goto out;
8270 	}
8271 
8272 	ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
8273 			UFS_SENSE_SIZE, NULL, NULL,
8274 			msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
8275 	if (ret)
8276 		pr_err("%s: failed with err %d\n", __func__, ret);
8277 
8278 	kfree(buffer);
8279 out:
8280 	return ret;
8281 }
8282 
8283 /**
8284  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8285  *			     power mode
8286  * @hba: per adapter instance
8287  * @pwr_mode: device power mode to set
8288  *
8289  * Returns 0 if requested power mode is set successfully
8290  * Returns non-zero if failed to set the requested power mode
8291  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8292 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8293 				     enum ufs_dev_pwr_mode pwr_mode)
8294 {
8295 	unsigned char cmd[6] = { START_STOP };
8296 	struct scsi_sense_hdr sshdr;
8297 	struct scsi_device *sdp;
8298 	unsigned long flags;
8299 	int ret;
8300 
8301 	spin_lock_irqsave(hba->host->host_lock, flags);
8302 	sdp = hba->sdev_ufs_device;
8303 	if (sdp) {
8304 		ret = scsi_device_get(sdp);
8305 		if (!ret && !scsi_device_online(sdp)) {
8306 			ret = -ENODEV;
8307 			scsi_device_put(sdp);
8308 		}
8309 	} else {
8310 		ret = -ENODEV;
8311 	}
8312 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8313 
8314 	if (ret)
8315 		return ret;
8316 
8317 	/*
8318 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8319 	 * handling, which would wait for host to be resumed. Since we know
8320 	 * we are functional while we are here, skip host resume in error
8321 	 * handling context.
8322 	 */
8323 	hba->host->eh_noresume = 1;
8324 	if (hba->wlun_dev_clr_ua) {
8325 		ret = ufshcd_send_request_sense(hba, sdp);
8326 		if (ret)
8327 			goto out;
8328 		/* Unit attention condition is cleared now */
8329 		hba->wlun_dev_clr_ua = false;
8330 	}
8331 
8332 	cmd[4] = pwr_mode << 4;
8333 
8334 	/*
8335 	 * Current function would be generally called from the power management
8336 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8337 	 * already suspended childs.
8338 	 */
8339 	ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8340 			START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8341 	if (ret) {
8342 		sdev_printk(KERN_WARNING, sdp,
8343 			    "START_STOP failed for power mode: %d, result %x\n",
8344 			    pwr_mode, ret);
8345 		if (driver_byte(ret) == DRIVER_SENSE)
8346 			scsi_print_sense_hdr(sdp, NULL, &sshdr);
8347 	}
8348 
8349 	if (!ret)
8350 		hba->curr_dev_pwr_mode = pwr_mode;
8351 out:
8352 	scsi_device_put(sdp);
8353 	hba->host->eh_noresume = 0;
8354 	return ret;
8355 }
8356 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8357 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8358 					enum uic_link_state req_link_state,
8359 					int check_for_bkops)
8360 {
8361 	int ret = 0;
8362 
8363 	if (req_link_state == hba->uic_link_state)
8364 		return 0;
8365 
8366 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8367 		ret = ufshcd_uic_hibern8_enter(hba);
8368 		if (!ret) {
8369 			ufshcd_set_link_hibern8(hba);
8370 		} else {
8371 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8372 					__func__, ret);
8373 			goto out;
8374 		}
8375 	}
8376 	/*
8377 	 * If autobkops is enabled, link can't be turned off because
8378 	 * turning off the link would also turn off the device.
8379 	 */
8380 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8381 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8382 		/*
8383 		 * Let's make sure that link is in low power mode, we are doing
8384 		 * this currently by putting the link in Hibern8. Otherway to
8385 		 * put the link in low power mode is to send the DME end point
8386 		 * to device and then send the DME reset command to local
8387 		 * unipro. But putting the link in hibern8 is much faster.
8388 		 */
8389 		ret = ufshcd_uic_hibern8_enter(hba);
8390 		if (ret) {
8391 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8392 					__func__, ret);
8393 			goto out;
8394 		}
8395 		/*
8396 		 * Change controller state to "reset state" which
8397 		 * should also put the link in off/reset state
8398 		 */
8399 		ufshcd_hba_stop(hba);
8400 		/*
8401 		 * TODO: Check if we need any delay to make sure that
8402 		 * controller is reset
8403 		 */
8404 		ufshcd_set_link_off(hba);
8405 	}
8406 
8407 out:
8408 	return ret;
8409 }
8410 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8411 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8412 {
8413 	bool vcc_off = false;
8414 
8415 	/*
8416 	 * It seems some UFS devices may keep drawing more than sleep current
8417 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8418 	 * To avoid this situation, add 2ms delay before putting these UFS
8419 	 * rails in LPM mode.
8420 	 */
8421 	if (!ufshcd_is_link_active(hba) &&
8422 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8423 		usleep_range(2000, 2100);
8424 
8425 	/*
8426 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8427 	 * power.
8428 	 *
8429 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8430 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8431 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8432 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8433 	 *
8434 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8435 	 * in low power state which would save some power.
8436 	 *
8437 	 * If Write Booster is enabled and the device needs to flush the WB
8438 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8439 	 */
8440 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8441 	    !hba->dev_info.is_lu_power_on_wp) {
8442 		ufshcd_setup_vreg(hba, false);
8443 		vcc_off = true;
8444 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8445 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8446 		vcc_off = true;
8447 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8448 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8449 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8450 		}
8451 	}
8452 
8453 	/*
8454 	 * Some UFS devices require delay after VCC power rail is turned-off.
8455 	 */
8456 	if (vcc_off && hba->vreg_info.vcc &&
8457 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8458 		usleep_range(5000, 5100);
8459 }
8460 
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8461 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8462 {
8463 	int ret = 0;
8464 
8465 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8466 	    !hba->dev_info.is_lu_power_on_wp) {
8467 		ret = ufshcd_setup_vreg(hba, true);
8468 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8469 		if (!ufshcd_is_link_active(hba)) {
8470 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8471 			if (ret)
8472 				goto vcc_disable;
8473 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8474 			if (ret)
8475 				goto vccq_lpm;
8476 		}
8477 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8478 	}
8479 	goto out;
8480 
8481 vccq_lpm:
8482 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8483 vcc_disable:
8484 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8485 out:
8486 	return ret;
8487 }
8488 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8489 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8490 {
8491 	if (ufshcd_is_link_off(hba))
8492 		ufshcd_setup_hba_vreg(hba, false);
8493 }
8494 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8495 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8496 {
8497 	if (ufshcd_is_link_off(hba))
8498 		ufshcd_setup_hba_vreg(hba, true);
8499 }
8500 
8501 /**
8502  * ufshcd_suspend - helper function for suspend operations
8503  * @hba: per adapter instance
8504  * @pm_op: desired low power operation type
8505  *
8506  * This function will try to put the UFS device and link into low power
8507  * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
8508  * (System PM level).
8509  *
8510  * If this function is called during shutdown, it will make sure that
8511  * both UFS device and UFS link is powered off.
8512  *
8513  * NOTE: UFS device & link must be active before we enter in this function.
8514  *
8515  * Returns 0 for success and non-zero for failure
8516  */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8517 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8518 {
8519 	int ret = 0;
8520 	enum ufs_pm_level pm_lvl;
8521 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8522 	enum uic_link_state req_link_state;
8523 
8524 	hba->pm_op_in_progress = 1;
8525 	if (!ufshcd_is_shutdown_pm(pm_op)) {
8526 		pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
8527 			 hba->rpm_lvl : hba->spm_lvl;
8528 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8529 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8530 	} else {
8531 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8532 		req_link_state = UIC_LINK_OFF_STATE;
8533 	}
8534 
8535 	/*
8536 	 * If we can't transition into any of the low power modes
8537 	 * just gate the clocks.
8538 	 */
8539 	ufshcd_hold(hba, false);
8540 	hba->clk_gating.is_suspended = true;
8541 
8542 	if (hba->clk_scaling.is_allowed) {
8543 		cancel_work_sync(&hba->clk_scaling.suspend_work);
8544 		cancel_work_sync(&hba->clk_scaling.resume_work);
8545 		ufshcd_suspend_clkscaling(hba);
8546 	}
8547 
8548 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8549 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8550 		goto disable_clks;
8551 	}
8552 
8553 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8554 	    (req_link_state == hba->uic_link_state))
8555 		goto enable_gating;
8556 
8557 	/* UFS device & link must be active before we enter in this function */
8558 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8559 		ret = -EINVAL;
8560 		goto enable_gating;
8561 	}
8562 
8563 	if (ufshcd_is_runtime_pm(pm_op)) {
8564 		if (ufshcd_can_autobkops_during_suspend(hba)) {
8565 			/*
8566 			 * The device is idle with no requests in the queue,
8567 			 * allow background operations if bkops status shows
8568 			 * that performance might be impacted.
8569 			 */
8570 			ret = ufshcd_urgent_bkops(hba);
8571 			if (ret)
8572 				goto enable_gating;
8573 		} else {
8574 			/* make sure that auto bkops is disabled */
8575 			ufshcd_disable_auto_bkops(hba);
8576 		}
8577 		/*
8578 		 * If device needs to do BKOP or WB buffer flush during
8579 		 * Hibern8, keep device power mode as "active power mode"
8580 		 * and VCC supply.
8581 		 */
8582 		hba->dev_info.b_rpm_dev_flush_capable =
8583 			hba->auto_bkops_enabled ||
8584 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8585 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8586 			ufshcd_is_auto_hibern8_enabled(hba))) &&
8587 			ufshcd_wb_need_flush(hba));
8588 	}
8589 
8590 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
8591 		if ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
8592 		    !ufshcd_is_runtime_pm(pm_op)) {
8593 			/* ensure that bkops is disabled */
8594 			ufshcd_disable_auto_bkops(hba);
8595 		}
8596 
8597 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
8598 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
8599 			if (ret)
8600 				goto enable_gating;
8601 		}
8602 	}
8603 
8604 	flush_work(&hba->eeh_work);
8605 	ret = ufshcd_link_state_transition(hba, req_link_state, 1);
8606 	if (ret)
8607 		goto set_dev_active;
8608 
8609 	ufshcd_vreg_set_lpm(hba);
8610 
8611 disable_clks:
8612 	/*
8613 	 * Call vendor specific suspend callback. As these callbacks may access
8614 	 * vendor specific host controller register space call them before the
8615 	 * host clocks are ON.
8616 	 */
8617 	ret = ufshcd_vops_suspend(hba, pm_op);
8618 	if (ret)
8619 		goto set_link_active;
8620 	/*
8621 	 * Disable the host irq as host controller as there won't be any
8622 	 * host controller transaction expected till resume.
8623 	 */
8624 	ufshcd_disable_irq(hba);
8625 
8626 	ufshcd_setup_clocks(hba, false);
8627 
8628 	if (ufshcd_is_clkgating_allowed(hba)) {
8629 		hba->clk_gating.state = CLKS_OFF;
8630 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8631 					hba->clk_gating.state);
8632 	}
8633 
8634 	/* Put the host controller in low power mode if possible */
8635 	ufshcd_hba_vreg_set_lpm(hba);
8636 	goto out;
8637 
8638 set_link_active:
8639 	if (hba->clk_scaling.is_allowed)
8640 		ufshcd_resume_clkscaling(hba);
8641 	ufshcd_vreg_set_hpm(hba);
8642 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8643 		ufshcd_set_link_active(hba);
8644 	else if (ufshcd_is_link_off(hba))
8645 		ufshcd_host_reset_and_restore(hba);
8646 set_dev_active:
8647 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8648 		ufshcd_disable_auto_bkops(hba);
8649 enable_gating:
8650 	if (hba->clk_scaling.is_allowed)
8651 		ufshcd_resume_clkscaling(hba);
8652 	hba->clk_gating.is_suspended = false;
8653 	hba->dev_info.b_rpm_dev_flush_capable = false;
8654 	ufshcd_release(hba);
8655 out:
8656 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8657 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
8658 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
8659 	}
8660 
8661 	hba->pm_op_in_progress = 0;
8662 
8663 	if (ret)
8664 		ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret);
8665 	return ret;
8666 }
8667 
8668 /**
8669  * ufshcd_resume - helper function for resume operations
8670  * @hba: per adapter instance
8671  * @pm_op: runtime PM or system PM
8672  *
8673  * This function basically brings the UFS device, UniPro link and controller
8674  * to active state.
8675  *
8676  * Returns 0 for success and non-zero for failure
8677  */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8678 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8679 {
8680 	int ret;
8681 	enum uic_link_state old_link_state;
8682 
8683 	hba->pm_op_in_progress = 1;
8684 	old_link_state = hba->uic_link_state;
8685 
8686 	ufshcd_hba_vreg_set_hpm(hba);
8687 	/* Make sure clocks are enabled before accessing controller */
8688 	ret = ufshcd_setup_clocks(hba, true);
8689 	if (ret)
8690 		goto out;
8691 
8692 	/* enable the host irq as host controller would be active soon */
8693 	ufshcd_enable_irq(hba);
8694 
8695 	ret = ufshcd_vreg_set_hpm(hba);
8696 	if (ret)
8697 		goto disable_irq_and_vops_clks;
8698 
8699 	/*
8700 	 * Call vendor specific resume callback. As these callbacks may access
8701 	 * vendor specific host controller register space call them when the
8702 	 * host clocks are ON.
8703 	 */
8704 	ret = ufshcd_vops_resume(hba, pm_op);
8705 	if (ret)
8706 		goto disable_vreg;
8707 
8708 	if (ufshcd_is_link_hibern8(hba)) {
8709 		ret = ufshcd_uic_hibern8_exit(hba);
8710 		if (!ret) {
8711 			ufshcd_set_link_active(hba);
8712 		} else {
8713 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
8714 					__func__, ret);
8715 			goto vendor_suspend;
8716 		}
8717 	} else if (ufshcd_is_link_off(hba)) {
8718 		/*
8719 		 * A full initialization of the host and the device is
8720 		 * required since the link was put to off during suspend.
8721 		 */
8722 		ret = ufshcd_reset_and_restore(hba);
8723 		/*
8724 		 * ufshcd_reset_and_restore() should have already
8725 		 * set the link state as active
8726 		 */
8727 		if (ret || !ufshcd_is_link_active(hba))
8728 			goto vendor_suspend;
8729 	}
8730 
8731 	if (!ufshcd_is_ufs_dev_active(hba)) {
8732 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8733 		if (ret)
8734 			goto set_old_link_state;
8735 	}
8736 
8737 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8738 		ufshcd_enable_auto_bkops(hba);
8739 	else
8740 		/*
8741 		 * If BKOPs operations are urgently needed at this moment then
8742 		 * keep auto-bkops enabled or else disable it.
8743 		 */
8744 		ufshcd_urgent_bkops(hba);
8745 
8746 	hba->clk_gating.is_suspended = false;
8747 
8748 	if (hba->clk_scaling.is_allowed)
8749 		ufshcd_resume_clkscaling(hba);
8750 
8751 	/* Enable Auto-Hibernate if configured */
8752 	ufshcd_auto_hibern8_enable(hba);
8753 
8754 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8755 		hba->dev_info.b_rpm_dev_flush_capable = false;
8756 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
8757 	}
8758 
8759 	/* Schedule clock gating in case of no access to UFS device yet */
8760 	ufshcd_release(hba);
8761 
8762 	goto out;
8763 
8764 set_old_link_state:
8765 	ufshcd_link_state_transition(hba, old_link_state, 0);
8766 vendor_suspend:
8767 	ufshcd_vops_suspend(hba, pm_op);
8768 disable_vreg:
8769 	ufshcd_vreg_set_lpm(hba);
8770 disable_irq_and_vops_clks:
8771 	ufshcd_disable_irq(hba);
8772 	if (hba->clk_scaling.is_allowed)
8773 		ufshcd_suspend_clkscaling(hba);
8774 	ufshcd_setup_clocks(hba, false);
8775 	if (ufshcd_is_clkgating_allowed(hba)) {
8776 		hba->clk_gating.state = CLKS_OFF;
8777 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8778 					hba->clk_gating.state);
8779 	}
8780 out:
8781 	hba->pm_op_in_progress = 0;
8782 	if (ret)
8783 		ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret);
8784 	return ret;
8785 }
8786 
8787 /**
8788  * ufshcd_system_suspend - system suspend routine
8789  * @hba: per adapter instance
8790  *
8791  * Check the description of ufshcd_suspend() function for more details.
8792  *
8793  * Returns 0 for success and non-zero for failure
8794  */
ufshcd_system_suspend(struct ufs_hba * hba)8795 int ufshcd_system_suspend(struct ufs_hba *hba)
8796 {
8797 	int ret = 0;
8798 	ktime_t start = ktime_get();
8799 
8800 	if (!hba || !hba->is_powered)
8801 		return 0;
8802 
8803 	cancel_delayed_work_sync(&hba->rpm_dev_flush_recheck_work);
8804 
8805 	if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
8806 	     hba->curr_dev_pwr_mode) &&
8807 	    (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
8808 	     hba->uic_link_state) &&
8809 	     pm_runtime_suspended(hba->dev) &&
8810 	     !hba->dev_info.b_rpm_dev_flush_capable)
8811 		goto out;
8812 
8813 	if (pm_runtime_suspended(hba->dev)) {
8814 		/*
8815 		 * UFS device and/or UFS link low power states during runtime
8816 		 * suspend seems to be different than what is expected during
8817 		 * system suspend. Hence runtime resume the devic & link and
8818 		 * let the system suspend low power states to take effect.
8819 		 * TODO: If resume takes longer time, we might have optimize
8820 		 * it in future by not resuming everything if possible.
8821 		 */
8822 		ret = ufshcd_runtime_resume(hba);
8823 		if (ret)
8824 			goto out;
8825 	}
8826 
8827 	ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8828 out:
8829 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8830 		ktime_to_us(ktime_sub(ktime_get(), start)),
8831 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8832 	if (!ret)
8833 		hba->is_sys_suspended = true;
8834 	return ret;
8835 }
8836 EXPORT_SYMBOL(ufshcd_system_suspend);
8837 
8838 /**
8839  * ufshcd_system_resume - system resume routine
8840  * @hba: per adapter instance
8841  *
8842  * Returns 0 for success and non-zero for failure
8843  */
8844 
ufshcd_system_resume(struct ufs_hba * hba)8845 int ufshcd_system_resume(struct ufs_hba *hba)
8846 {
8847 	int ret = 0;
8848 	ktime_t start = ktime_get();
8849 
8850 	if (!hba)
8851 		return -EINVAL;
8852 
8853 	if (!hba->is_powered || pm_runtime_suspended(hba->dev))
8854 		/*
8855 		 * Let the runtime resume take care of resuming
8856 		 * if runtime suspended.
8857 		 */
8858 		goto out;
8859 	else
8860 		ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
8861 out:
8862 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
8863 		ktime_to_us(ktime_sub(ktime_get(), start)),
8864 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8865 	if (!ret)
8866 		hba->is_sys_suspended = false;
8867 	return ret;
8868 }
8869 EXPORT_SYMBOL(ufshcd_system_resume);
8870 
8871 /**
8872  * ufshcd_runtime_suspend - runtime suspend routine
8873  * @hba: per adapter instance
8874  *
8875  * Check the description of ufshcd_suspend() function for more details.
8876  *
8877  * Returns 0 for success and non-zero for failure
8878  */
ufshcd_runtime_suspend(struct ufs_hba * hba)8879 int ufshcd_runtime_suspend(struct ufs_hba *hba)
8880 {
8881 	int ret = 0;
8882 	ktime_t start = ktime_get();
8883 
8884 	if (!hba)
8885 		return -EINVAL;
8886 
8887 	if (!hba->is_powered)
8888 		goto out;
8889 	else
8890 		ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
8891 out:
8892 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
8893 		ktime_to_us(ktime_sub(ktime_get(), start)),
8894 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8895 	return ret;
8896 }
8897 EXPORT_SYMBOL(ufshcd_runtime_suspend);
8898 
8899 /**
8900  * ufshcd_runtime_resume - runtime resume routine
8901  * @hba: per adapter instance
8902  *
8903  * This function basically brings the UFS device, UniPro link and controller
8904  * to active state. Following operations are done in this function:
8905  *
8906  * 1. Turn on all the controller related clocks
8907  * 2. Bring the UniPro link out of Hibernate state
8908  * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
8909  *    to active state.
8910  * 4. If auto-bkops is enabled on the device, disable it.
8911  *
8912  * So following would be the possible power state after this function return
8913  * successfully:
8914  *	S1: UFS device in Active state with VCC rail ON
8915  *	    UniPro link in Active state
8916  *	    All the UFS/UniPro controller clocks are ON
8917  *
8918  * Returns 0 for success and non-zero for failure
8919  */
ufshcd_runtime_resume(struct ufs_hba * hba)8920 int ufshcd_runtime_resume(struct ufs_hba *hba)
8921 {
8922 	int ret = 0;
8923 	ktime_t start = ktime_get();
8924 
8925 	if (!hba)
8926 		return -EINVAL;
8927 
8928 	if (!hba->is_powered)
8929 		goto out;
8930 	else
8931 		ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
8932 out:
8933 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
8934 		ktime_to_us(ktime_sub(ktime_get(), start)),
8935 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8936 	return ret;
8937 }
8938 EXPORT_SYMBOL(ufshcd_runtime_resume);
8939 
ufshcd_runtime_idle(struct ufs_hba * hba)8940 int ufshcd_runtime_idle(struct ufs_hba *hba)
8941 {
8942 	return 0;
8943 }
8944 EXPORT_SYMBOL(ufshcd_runtime_idle);
8945 
8946 /**
8947  * ufshcd_shutdown - shutdown routine
8948  * @hba: per adapter instance
8949  *
8950  * This function would power off both UFS device and UFS link.
8951  *
8952  * Returns 0 always to allow force shutdown even in case of errors.
8953  */
ufshcd_shutdown(struct ufs_hba * hba)8954 int ufshcd_shutdown(struct ufs_hba *hba)
8955 {
8956 	int ret = 0;
8957 
8958 	if (!hba->is_powered)
8959 		goto out;
8960 
8961 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
8962 		goto out;
8963 
8964 	pm_runtime_get_sync(hba->dev);
8965 
8966 	ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
8967 out:
8968 	if (ret)
8969 		dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
8970 	/* allow force shutdown even in case of errors */
8971 	return 0;
8972 }
8973 EXPORT_SYMBOL(ufshcd_shutdown);
8974 
8975 /**
8976  * ufshcd_remove - de-allocate SCSI host and host memory space
8977  *		data structure memory
8978  * @hba: per adapter instance
8979  */
ufshcd_remove(struct ufs_hba * hba)8980 void ufshcd_remove(struct ufs_hba *hba)
8981 {
8982 	ufs_bsg_remove(hba);
8983 	ufs_sysfs_remove_nodes(hba->dev);
8984 	blk_cleanup_queue(hba->tmf_queue);
8985 	blk_mq_free_tag_set(&hba->tmf_tag_set);
8986 	blk_cleanup_queue(hba->cmd_queue);
8987 	scsi_remove_host(hba->host);
8988 	destroy_workqueue(hba->eh_wq);
8989 	/* disable interrupts */
8990 	ufshcd_disable_intr(hba, hba->intr_mask);
8991 	ufshcd_hba_stop(hba);
8992 
8993 	ufshcd_exit_clk_scaling(hba);
8994 	ufshcd_exit_clk_gating(hba);
8995 	if (ufshcd_is_clkscaling_supported(hba))
8996 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
8997 	ufshcd_hba_exit(hba);
8998 }
8999 EXPORT_SYMBOL_GPL(ufshcd_remove);
9000 
9001 /**
9002  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9003  * @hba: pointer to Host Bus Adapter (HBA)
9004  */
ufshcd_dealloc_host(struct ufs_hba * hba)9005 void ufshcd_dealloc_host(struct ufs_hba *hba)
9006 {
9007 	ufshcd_crypto_destroy_keyslot_manager(hba);
9008 	scsi_host_put(hba->host);
9009 }
9010 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9011 
9012 /**
9013  * ufshcd_set_dma_mask - Set dma mask based on the controller
9014  *			 addressing capability
9015  * @hba: per adapter instance
9016  *
9017  * Returns 0 for success, non-zero for failure
9018  */
ufshcd_set_dma_mask(struct ufs_hba * hba)9019 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9020 {
9021 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9022 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9023 			return 0;
9024 	}
9025 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9026 }
9027 
9028 /**
9029  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9030  * @dev: pointer to device handle
9031  * @hba_handle: driver private handle
9032  * Returns 0 on success, non-zero value on failure
9033  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9034 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9035 {
9036 	struct Scsi_Host *host;
9037 	struct ufs_hba *hba;
9038 	int err = 0;
9039 
9040 	if (!dev) {
9041 		dev_err(dev,
9042 		"Invalid memory reference for dev is NULL\n");
9043 		err = -ENODEV;
9044 		goto out_error;
9045 	}
9046 
9047 	host = scsi_host_alloc(&ufshcd_driver_template,
9048 				sizeof(struct ufs_hba));
9049 	if (!host) {
9050 		dev_err(dev, "scsi_host_alloc failed\n");
9051 		err = -ENOMEM;
9052 		goto out_error;
9053 	}
9054 	hba = shost_priv(host);
9055 	hba->host = host;
9056 	hba->dev = dev;
9057 	*hba_handle = hba;
9058 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9059 
9060 	INIT_LIST_HEAD(&hba->clk_list_head);
9061 
9062 out_error:
9063 	return err;
9064 }
9065 EXPORT_SYMBOL(ufshcd_alloc_host);
9066 
9067 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9068 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9069 				     const struct blk_mq_queue_data *qd)
9070 {
9071 	WARN_ON_ONCE(true);
9072 	return BLK_STS_NOTSUPP;
9073 }
9074 
9075 static const struct blk_mq_ops ufshcd_tmf_ops = {
9076 	.queue_rq = ufshcd_queue_tmf,
9077 };
9078 
9079 /**
9080  * ufshcd_init - Driver initialization routine
9081  * @hba: per-adapter instance
9082  * @mmio_base: base register address
9083  * @irq: Interrupt line of device
9084  * Returns 0 on success, non-zero value on failure
9085  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9086 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9087 {
9088 	int err;
9089 	struct Scsi_Host *host = hba->host;
9090 	struct device *dev = hba->dev;
9091 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9092 
9093 	/*
9094 	 * dev_set_drvdata() must be called before any callbacks are registered
9095 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9096 	 * sysfs).
9097 	 */
9098 	dev_set_drvdata(dev, hba);
9099 
9100 	if (!mmio_base) {
9101 		dev_err(hba->dev,
9102 		"Invalid memory reference for mmio_base is NULL\n");
9103 		err = -ENODEV;
9104 		goto out_error;
9105 	}
9106 
9107 	hba->mmio_base = mmio_base;
9108 	hba->irq = irq;
9109 	hba->vps = &ufs_hba_vps;
9110 
9111 	err = ufshcd_hba_init(hba);
9112 	if (err)
9113 		goto out_error;
9114 
9115 	/* Read capabilities registers */
9116 	err = ufshcd_hba_capabilities(hba);
9117 	if (err)
9118 		goto out_disable;
9119 
9120 	/* Get UFS version supported by the controller */
9121 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9122 
9123 	if ((hba->ufs_version != UFSHCI_VERSION_10) &&
9124 	    (hba->ufs_version != UFSHCI_VERSION_11) &&
9125 	    (hba->ufs_version != UFSHCI_VERSION_20) &&
9126 	    (hba->ufs_version != UFSHCI_VERSION_21))
9127 		dev_err(hba->dev, "invalid UFS version 0x%x\n",
9128 			hba->ufs_version);
9129 
9130 	/* Get Interrupt bit mask per version */
9131 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9132 
9133 	err = ufshcd_set_dma_mask(hba);
9134 	if (err) {
9135 		dev_err(hba->dev, "set dma mask failed\n");
9136 		goto out_disable;
9137 	}
9138 
9139 	/* Allocate memory for host memory space */
9140 	err = ufshcd_memory_alloc(hba);
9141 	if (err) {
9142 		dev_err(hba->dev, "Memory allocation failed\n");
9143 		goto out_disable;
9144 	}
9145 
9146 	/* Configure LRB */
9147 	ufshcd_host_memory_configure(hba);
9148 
9149 	host->can_queue = hba->nutrs;
9150 	host->cmd_per_lun = hba->nutrs;
9151 	host->max_id = UFSHCD_MAX_ID;
9152 	host->max_lun = UFS_MAX_LUNS;
9153 	host->max_channel = UFSHCD_MAX_CHANNEL;
9154 	host->unique_id = host->host_no;
9155 	host->max_cmd_len = UFS_CDB_SIZE;
9156 
9157 	hba->max_pwr_info.is_valid = false;
9158 
9159 	/* Initialize work queues */
9160 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9161 		 hba->host->host_no);
9162 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9163 	if (!hba->eh_wq) {
9164 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9165 				__func__);
9166 		err = -ENOMEM;
9167 		goto out_disable;
9168 	}
9169 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9170 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9171 
9172 	/* Initialize UIC command mutex */
9173 	mutex_init(&hba->uic_cmd_mutex);
9174 
9175 	/* Initialize mutex for device management commands */
9176 	mutex_init(&hba->dev_cmd.lock);
9177 
9178 	init_rwsem(&hba->clk_scaling_lock);
9179 
9180 	ufshcd_init_clk_gating(hba);
9181 
9182 	ufshcd_init_clk_scaling(hba);
9183 
9184 	/*
9185 	 * In order to avoid any spurious interrupt immediately after
9186 	 * registering UFS controller interrupt handler, clear any pending UFS
9187 	 * interrupt status and disable all the UFS interrupts.
9188 	 */
9189 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9190 		      REG_INTERRUPT_STATUS);
9191 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9192 	/*
9193 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9194 	 * status is cleared before registering UFS interrupt handler.
9195 	 */
9196 	mb();
9197 
9198 	/* IRQ registration */
9199 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9200 	if (err) {
9201 		dev_err(hba->dev, "request irq failed\n");
9202 		goto exit_gating;
9203 	} else {
9204 		hba->is_irq_enabled = true;
9205 	}
9206 
9207 	err = scsi_add_host(host, hba->dev);
9208 	if (err) {
9209 		dev_err(hba->dev, "scsi_add_host failed\n");
9210 		goto exit_gating;
9211 	}
9212 
9213 	hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set);
9214 	if (IS_ERR(hba->cmd_queue)) {
9215 		err = PTR_ERR(hba->cmd_queue);
9216 		goto out_remove_scsi_host;
9217 	}
9218 
9219 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9220 		.nr_hw_queues	= 1,
9221 		.queue_depth	= hba->nutmrs,
9222 		.ops		= &ufshcd_tmf_ops,
9223 		.flags		= BLK_MQ_F_NO_SCHED,
9224 	};
9225 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9226 	if (err < 0)
9227 		goto free_cmd_queue;
9228 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9229 	if (IS_ERR(hba->tmf_queue)) {
9230 		err = PTR_ERR(hba->tmf_queue);
9231 		goto free_tmf_tag_set;
9232 	}
9233 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9234 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
9235 	if (!hba->tmf_rqs) {
9236 		err = -ENOMEM;
9237 		goto free_tmf_queue;
9238 	}
9239 
9240 	/* Reset the attached device */
9241 	ufshcd_vops_device_reset(hba);
9242 
9243 	ufshcd_init_crypto(hba);
9244 
9245 	/* Host controller enable */
9246 	err = ufshcd_hba_enable(hba);
9247 	if (err) {
9248 		dev_err(hba->dev, "Host controller enable failed\n");
9249 		ufshcd_print_host_regs(hba);
9250 		ufshcd_print_host_state(hba);
9251 		goto free_tmf_queue;
9252 	}
9253 
9254 	/*
9255 	 * Set the default power management level for runtime and system PM.
9256 	 * Default power saving mode is to keep UFS link in Hibern8 state
9257 	 * and UFS device in sleep state.
9258 	 */
9259 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9260 						UFS_SLEEP_PWR_MODE,
9261 						UIC_LINK_HIBERN8_STATE);
9262 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9263 						UFS_SLEEP_PWR_MODE,
9264 						UIC_LINK_HIBERN8_STATE);
9265 
9266 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9267 			  ufshcd_rpm_dev_flush_recheck_work);
9268 
9269 	/* Set the default auto-hiberate idle timer value to 150 ms */
9270 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9271 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9272 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9273 	}
9274 
9275 	/* Hold auto suspend until async scan completes */
9276 	pm_runtime_get_sync(dev);
9277 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9278 	/*
9279 	 * We are assuming that device wasn't put in sleep/power-down
9280 	 * state exclusively during the boot stage before kernel.
9281 	 * This assumption helps avoid doing link startup twice during
9282 	 * ufshcd_probe_hba().
9283 	 */
9284 	ufshcd_set_ufs_dev_active(hba);
9285 
9286 	async_schedule(ufshcd_async_scan, hba);
9287 	ufs_sysfs_add_nodes(hba->dev);
9288 
9289 	return 0;
9290 
9291 free_tmf_queue:
9292 	blk_cleanup_queue(hba->tmf_queue);
9293 free_tmf_tag_set:
9294 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9295 free_cmd_queue:
9296 	blk_cleanup_queue(hba->cmd_queue);
9297 out_remove_scsi_host:
9298 	scsi_remove_host(hba->host);
9299 exit_gating:
9300 	ufshcd_exit_clk_scaling(hba);
9301 	ufshcd_exit_clk_gating(hba);
9302 	destroy_workqueue(hba->eh_wq);
9303 out_disable:
9304 	hba->is_irq_enabled = false;
9305 	ufshcd_hba_exit(hba);
9306 out_error:
9307 	return err;
9308 }
9309 EXPORT_SYMBOL_GPL(ufshcd_init);
9310 
9311 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9312 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9313 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9314 MODULE_LICENSE("GPL");
9315 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
9316