• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 1994 Linus Torvalds
4  *
5  * Pentium III FXSR, SSE support
6  * General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  * x86-64 work by Andi Kleen 2002
9  */
10 
11 #ifndef _ASM_X86_FPU_INTERNAL_H
12 #define _ASM_X86_FPU_INTERNAL_H
13 
14 #include <linux/compat.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 
19 #include <asm/user.h>
20 #include <asm/fpu/api.h>
21 #include <asm/fpu/xstate.h>
22 #include <asm/fpu/xcr.h>
23 #include <asm/cpufeature.h>
24 #include <asm/trace/fpu.h>
25 
26 /*
27  * High level FPU state handling functions:
28  */
29 extern void fpu__prepare_read(struct fpu *fpu);
30 extern void fpu__prepare_write(struct fpu *fpu);
31 extern void fpu__save(struct fpu *fpu);
32 extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
33 extern void fpu__drop(struct fpu *fpu);
34 extern int  fpu__copy(struct task_struct *dst, struct task_struct *src);
35 extern void fpu__clear_user_states(struct fpu *fpu);
36 extern void fpu__clear_all(struct fpu *fpu);
37 extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
38 
39 /*
40  * Boot time FPU initialization functions:
41  */
42 extern void fpu__init_cpu(void);
43 extern void fpu__init_system_xstate(void);
44 extern void fpu__init_cpu_xstate(void);
45 extern void fpu__init_system(struct cpuinfo_x86 *c);
46 extern void fpu__init_check_bugs(void);
47 extern void fpu__resume_cpu(void);
48 extern u64 fpu__get_supported_xfeatures_mask(void);
49 
50 /*
51  * Debugging facility:
52  */
53 #ifdef CONFIG_X86_DEBUG_FPU
54 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
55 #else
56 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
57 #endif
58 
59 /*
60  * FPU related CPU feature flag helper routines:
61  */
use_xsaveopt(void)62 static __always_inline __pure bool use_xsaveopt(void)
63 {
64 	return static_cpu_has(X86_FEATURE_XSAVEOPT);
65 }
66 
use_xsave(void)67 static __always_inline __pure bool use_xsave(void)
68 {
69 	return static_cpu_has(X86_FEATURE_XSAVE);
70 }
71 
use_fxsr(void)72 static __always_inline __pure bool use_fxsr(void)
73 {
74 	return static_cpu_has(X86_FEATURE_FXSR);
75 }
76 
77 /*
78  * fpstate handling functions:
79  */
80 
81 extern union fpregs_state init_fpstate;
82 
83 extern void fpstate_init(union fpregs_state *state);
84 #ifdef CONFIG_MATH_EMULATION
85 extern void fpstate_init_soft(struct swregs_state *soft);
86 #else
fpstate_init_soft(struct swregs_state * soft)87 static inline void fpstate_init_soft(struct swregs_state *soft) {}
88 #endif
89 
fpstate_init_xstate(struct xregs_state * xsave)90 static inline void fpstate_init_xstate(struct xregs_state *xsave)
91 {
92 	/*
93 	 * XRSTORS requires these bits set in xcomp_bv, or it will
94 	 * trigger #GP:
95 	 */
96 	xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all;
97 }
98 
fpstate_init_fxstate(struct fxregs_state * fx)99 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
100 {
101 	fx->cwd = 0x37f;
102 	fx->mxcsr = MXCSR_DEFAULT;
103 }
104 extern void fpstate_sanitize_xstate(struct fpu *fpu);
105 
106 /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */
107 #define user_insn(insn, output, input...)				\
108 ({									\
109 	int err;							\
110 									\
111 	might_fault();							\
112 									\
113 	asm volatile(ASM_STAC "\n"					\
114 		     "1: " #insn "\n"					\
115 		     "2: " ASM_CLAC "\n"				\
116 		     ".section .fixup,\"ax\"\n"				\
117 		     "3:  negl %%eax\n"					\
118 		     "    jmp  2b\n"					\
119 		     ".previous\n"					\
120 		     _ASM_EXTABLE_FAULT(1b, 3b)				\
121 		     : [err] "=a" (err), output				\
122 		     : "0"(0), input);					\
123 	err;								\
124 })
125 
126 #define kernel_insn_err(insn, output, input...)				\
127 ({									\
128 	int err;							\
129 	asm volatile("1:" #insn "\n\t"					\
130 		     "2:\n"						\
131 		     ".section .fixup,\"ax\"\n"				\
132 		     "3:  movl $-1,%[err]\n"				\
133 		     "    jmp  2b\n"					\
134 		     ".previous\n"					\
135 		     _ASM_EXTABLE(1b, 3b)				\
136 		     : [err] "=r" (err), output				\
137 		     : "0"(0), input);					\
138 	err;								\
139 })
140 
141 #define kernel_insn(insn, output, input...)				\
142 	asm volatile("1:" #insn "\n\t"					\
143 		     "2:\n"						\
144 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore)	\
145 		     : output : input)
146 
copy_fregs_to_user(struct fregs_state __user * fx)147 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
148 {
149 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
150 }
151 
copy_fxregs_to_user(struct fxregs_state __user * fx)152 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
153 {
154 	if (IS_ENABLED(CONFIG_X86_32))
155 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
156 	else
157 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
158 
159 }
160 
copy_kernel_to_fxregs(struct fxregs_state * fx)161 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
162 {
163 	if (IS_ENABLED(CONFIG_X86_32))
164 		kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
165 	else
166 		kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
167 }
168 
copy_kernel_to_fxregs_err(struct fxregs_state * fx)169 static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx)
170 {
171 	if (IS_ENABLED(CONFIG_X86_32))
172 		return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
173 	else
174 		return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
175 }
176 
copy_user_to_fxregs(struct fxregs_state __user * fx)177 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
178 {
179 	if (IS_ENABLED(CONFIG_X86_32))
180 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
181 	else
182 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
183 }
184 
copy_kernel_to_fregs(struct fregs_state * fx)185 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
186 {
187 	kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
188 }
189 
copy_kernel_to_fregs_err(struct fregs_state * fx)190 static inline int copy_kernel_to_fregs_err(struct fregs_state *fx)
191 {
192 	return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
193 }
194 
copy_user_to_fregs(struct fregs_state __user * fx)195 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
196 {
197 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
198 }
199 
copy_fxregs_to_kernel(struct fpu * fpu)200 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
201 {
202 	if (IS_ENABLED(CONFIG_X86_32))
203 		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
204 	else
205 		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
206 }
207 
fxsave(struct fxregs_state * fx)208 static inline void fxsave(struct fxregs_state *fx)
209 {
210 	if (IS_ENABLED(CONFIG_X86_32))
211 		asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx));
212 	else
213 		asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx));
214 }
215 
216 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
217 #define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
218 #define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
219 #define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
220 #define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
221 #define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"
222 
223 /*
224  * After this @err contains 0 on success or the negated trap number when
225  * the operation raises an exception. For faults this results in -EFAULT.
226  */
227 #define XSTATE_OP(op, st, lmask, hmask, err)				\
228 	asm volatile("1:" op "\n\t"					\
229 		     "xor %[err], %[err]\n"				\
230 		     "2:\n\t"						\
231 		     ".pushsection .fixup,\"ax\"\n\t"			\
232 		     "3: negl %%eax\n\t"				\
233 		     "jmp 2b\n\t"					\
234 		     ".popsection\n\t"					\
235 		     _ASM_EXTABLE_FAULT(1b, 3b)				\
236 		     : [err] "=a" (err)					\
237 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
238 		     : "memory")
239 
240 /*
241  * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
242  * format and supervisor states in addition to modified optimization in
243  * XSAVEOPT.
244  *
245  * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
246  * supports modified optimization which is not supported by XSAVE.
247  *
248  * We use XSAVE as a fallback.
249  *
250  * The 661 label is defined in the ALTERNATIVE* macros as the address of the
251  * original instruction which gets replaced. We need to use it here as the
252  * address of the instruction where we might get an exception at.
253  */
254 #define XSTATE_XSAVE(st, lmask, hmask, err)				\
255 	asm volatile(ALTERNATIVE_2(XSAVE,				\
256 				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
257 				   XSAVES,   X86_FEATURE_XSAVES)	\
258 		     "\n"						\
259 		     "xor %[err], %[err]\n"				\
260 		     "3:\n"						\
261 		     ".pushsection .fixup,\"ax\"\n"			\
262 		     "4: movl $-2, %[err]\n"				\
263 		     "jmp 3b\n"						\
264 		     ".popsection\n"					\
265 		     _ASM_EXTABLE(661b, 4b)				\
266 		     : [err] "=r" (err)					\
267 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
268 		     : "memory")
269 
270 /*
271  * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
272  * XSAVE area format.
273  */
274 #define XSTATE_XRESTORE(st, lmask, hmask)				\
275 	asm volatile(ALTERNATIVE(XRSTOR,				\
276 				 XRSTORS, X86_FEATURE_XSAVES)		\
277 		     "\n"						\
278 		     "3:\n"						\
279 		     _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\
280 		     :							\
281 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
282 		     : "memory")
283 
284 /*
285  * This function is called only during boot time when x86 caps are not set
286  * up and alternative can not be used yet.
287  */
copy_kernel_to_xregs_booting(struct xregs_state * xstate)288 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
289 {
290 	u64 mask = -1;
291 	u32 lmask = mask;
292 	u32 hmask = mask >> 32;
293 	int err;
294 
295 	WARN_ON(system_state != SYSTEM_BOOTING);
296 
297 	if (boot_cpu_has(X86_FEATURE_XSAVES))
298 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
299 	else
300 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
301 
302 	/*
303 	 * We should never fault when copying from a kernel buffer, and the FPU
304 	 * state we set at boot time should be valid.
305 	 */
306 	WARN_ON_FPU(err);
307 }
308 
309 /*
310  * Save processor xstate to xsave area.
311  */
copy_xregs_to_kernel(struct xregs_state * xstate)312 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
313 {
314 	u64 mask = xfeatures_mask_all;
315 	u32 lmask = mask;
316 	u32 hmask = mask >> 32;
317 	int err;
318 
319 	WARN_ON_FPU(!alternatives_patched);
320 
321 	XSTATE_XSAVE(xstate, lmask, hmask, err);
322 
323 	/* We should never fault when copying to a kernel buffer: */
324 	WARN_ON_FPU(err);
325 }
326 
327 /*
328  * Restore processor xstate from xsave area.
329  */
copy_kernel_to_xregs(struct xregs_state * xstate,u64 mask)330 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
331 {
332 	u32 lmask = mask;
333 	u32 hmask = mask >> 32;
334 
335 	XSTATE_XRESTORE(xstate, lmask, hmask);
336 }
337 
338 /*
339  * Save xstate to user space xsave area.
340  *
341  * We don't use modified optimization because xrstor/xrstors might track
342  * a different application.
343  *
344  * We don't use compacted format xsave area for
345  * backward compatibility for old applications which don't understand
346  * compacted format of xsave area.
347  */
copy_xregs_to_user(struct xregs_state __user * buf)348 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
349 {
350 	u64 mask = xfeatures_mask_user();
351 	u32 lmask = mask;
352 	u32 hmask = mask >> 32;
353 	int err;
354 
355 	/*
356 	 * Clear the xsave header first, so that reserved fields are
357 	 * initialized to zero.
358 	 */
359 	err = __clear_user(&buf->header, sizeof(buf->header));
360 	if (unlikely(err))
361 		return -EFAULT;
362 
363 	stac();
364 	XSTATE_OP(XSAVE, buf, lmask, hmask, err);
365 	clac();
366 
367 	return err;
368 }
369 
370 /*
371  * Restore xstate from user space xsave area.
372  */
copy_user_to_xregs(struct xregs_state __user * buf,u64 mask)373 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
374 {
375 	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
376 	u32 lmask = mask;
377 	u32 hmask = mask >> 32;
378 	int err;
379 
380 	stac();
381 	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
382 	clac();
383 
384 	return err;
385 }
386 
387 /*
388  * Restore xstate from kernel space xsave area, return an error code instead of
389  * an exception.
390  */
copy_kernel_to_xregs_err(struct xregs_state * xstate,u64 mask)391 static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask)
392 {
393 	u32 lmask = mask;
394 	u32 hmask = mask >> 32;
395 	int err;
396 
397 	if (static_cpu_has(X86_FEATURE_XSAVES))
398 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
399 	else
400 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
401 
402 	return err;
403 }
404 
405 extern int copy_fpregs_to_fpstate(struct fpu *fpu);
406 
__copy_kernel_to_fpregs(union fpregs_state * fpstate,u64 mask)407 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
408 {
409 	if (use_xsave()) {
410 		copy_kernel_to_xregs(&fpstate->xsave, mask);
411 	} else {
412 		if (use_fxsr())
413 			copy_kernel_to_fxregs(&fpstate->fxsave);
414 		else
415 			copy_kernel_to_fregs(&fpstate->fsave);
416 	}
417 }
418 
copy_kernel_to_fpregs(union fpregs_state * fpstate)419 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
420 {
421 	/*
422 	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
423 	 * pending. Clear the x87 state here by setting it to fixed values.
424 	 * "m" is a random variable that should be in L1.
425 	 */
426 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
427 		asm volatile(
428 			"fnclex\n\t"
429 			"emms\n\t"
430 			"fildl %P[addr]"	/* set F?P to defined value */
431 			: : [addr] "m" (fpstate));
432 	}
433 
434 	__copy_kernel_to_fpregs(fpstate, -1);
435 }
436 
437 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
438 
439 /*
440  * FPU context switch related helper methods:
441  */
442 
443 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
444 
445 /*
446  * The in-register FPU state for an FPU context on a CPU is assumed to be
447  * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
448  * matches the FPU.
449  *
450  * If the FPU register state is valid, the kernel can skip restoring the
451  * FPU state from memory.
452  *
453  * Any code that clobbers the FPU registers or updates the in-memory
454  * FPU state for a task MUST let the rest of the kernel know that the
455  * FPU registers are no longer valid for this task.
456  *
457  * Either one of these invalidation functions is enough. Invalidate
458  * a resource you control: CPU if using the CPU for something else
459  * (with preemption disabled), FPU for the current task, or a task that
460  * is prevented from running by the current task.
461  */
__cpu_invalidate_fpregs_state(void)462 static inline void __cpu_invalidate_fpregs_state(void)
463 {
464 	__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
465 }
466 
__fpu_invalidate_fpregs_state(struct fpu * fpu)467 static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
468 {
469 	fpu->last_cpu = -1;
470 }
471 
fpregs_state_valid(struct fpu * fpu,unsigned int cpu)472 static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
473 {
474 	return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
475 }
476 
477 /*
478  * These generally need preemption protection to work,
479  * do try to avoid using these on their own:
480  */
fpregs_deactivate(struct fpu * fpu)481 static inline void fpregs_deactivate(struct fpu *fpu)
482 {
483 	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
484 	trace_x86_fpu_regs_deactivated(fpu);
485 }
486 
fpregs_activate(struct fpu * fpu)487 static inline void fpregs_activate(struct fpu *fpu)
488 {
489 	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
490 	trace_x86_fpu_regs_activated(fpu);
491 }
492 
493 /*
494  * Internal helper, do not use directly. Use switch_fpu_return() instead.
495  */
__fpregs_load_activate(void)496 static inline void __fpregs_load_activate(void)
497 {
498 	struct fpu *fpu = &current->thread.fpu;
499 	int cpu = smp_processor_id();
500 
501 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
502 		return;
503 
504 	if (!fpregs_state_valid(fpu, cpu)) {
505 		copy_kernel_to_fpregs(&fpu->state);
506 		fpregs_activate(fpu);
507 		fpu->last_cpu = cpu;
508 	}
509 	clear_thread_flag(TIF_NEED_FPU_LOAD);
510 }
511 
512 /*
513  * FPU state switching for scheduling.
514  *
515  * This is a two-stage process:
516  *
517  *  - switch_fpu_prepare() saves the old state.
518  *    This is done within the context of the old process.
519  *
520  *  - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state
521  *    will get loaded on return to userspace, or when the kernel needs it.
522  *
523  * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers
524  * are saved in the current thread's FPU register state.
525  *
526  * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not
527  * hold current()'s FPU registers. It is required to load the
528  * registers before returning to userland or using the content
529  * otherwise.
530  *
531  * The FPU context is only stored/restored for a user task and
532  * PF_KTHREAD is used to distinguish between kernel and user threads.
533  */
switch_fpu_prepare(struct task_struct * prev,int cpu)534 static inline void switch_fpu_prepare(struct task_struct *prev, int cpu)
535 {
536 	struct fpu *old_fpu = &prev->thread.fpu;
537 
538 	if (static_cpu_has(X86_FEATURE_FPU) && !(prev->flags & PF_KTHREAD)) {
539 		if (!copy_fpregs_to_fpstate(old_fpu))
540 			old_fpu->last_cpu = -1;
541 		else
542 			old_fpu->last_cpu = cpu;
543 
544 		/* But leave fpu_fpregs_owner_ctx! */
545 		trace_x86_fpu_regs_deactivated(old_fpu);
546 	}
547 }
548 
549 /*
550  * Misc helper functions:
551  */
552 
553 /*
554  * Load PKRU from the FPU context if available. Delay loading of the
555  * complete FPU state until the return to userland.
556  */
switch_fpu_finish(struct task_struct * next)557 static inline void switch_fpu_finish(struct task_struct *next)
558 {
559 	u32 pkru_val = init_pkru_value;
560 	struct pkru_state *pk;
561 	struct fpu *next_fpu = &next->thread.fpu;
562 
563 	if (!static_cpu_has(X86_FEATURE_FPU))
564 		return;
565 
566 	set_thread_flag(TIF_NEED_FPU_LOAD);
567 
568 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
569 		return;
570 
571 	/*
572 	 * PKRU state is switched eagerly because it needs to be valid before we
573 	 * return to userland e.g. for a copy_to_user() operation.
574 	 */
575 	if (!(next->flags & PF_KTHREAD)) {
576 		/*
577 		 * If the PKRU bit in xsave.header.xfeatures is not set,
578 		 * then the PKRU component was in init state, which means
579 		 * XRSTOR will set PKRU to 0. If the bit is not set then
580 		 * get_xsave_addr() will return NULL because the PKRU value
581 		 * in memory is not valid. This means pkru_val has to be
582 		 * set to 0 and not to init_pkru_value.
583 		 */
584 		pk = get_xsave_addr(&next_fpu->state.xsave, XFEATURE_PKRU);
585 		pkru_val = pk ? pk->pkru : 0;
586 	}
587 	__write_pkru(pkru_val);
588 }
589 
590 #endif /* _ASM_X86_FPU_INTERNAL_H */
591