1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9
10 #include "test_util.h"
11 #include "kvm_util.h"
12 #include "../kvm_util_internal.h"
13 #include "processor.h"
14
15 #ifndef NUM_INTERRUPTS
16 #define NUM_INTERRUPTS 256
17 #endif
18
19 #define DEFAULT_CODE_SELECTOR 0x8
20 #define DEFAULT_DATA_SELECTOR 0x10
21
22 /* Minimum physical address used for virtual translation tables. */
23 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
24
25 vm_vaddr_t exception_handlers;
26
27 /* Virtual translation table structure declarations */
28 struct pageMapL4Entry {
29 uint64_t present:1;
30 uint64_t writable:1;
31 uint64_t user:1;
32 uint64_t write_through:1;
33 uint64_t cache_disable:1;
34 uint64_t accessed:1;
35 uint64_t ignored_06:1;
36 uint64_t page_size:1;
37 uint64_t ignored_11_08:4;
38 uint64_t address:40;
39 uint64_t ignored_62_52:11;
40 uint64_t execute_disable:1;
41 };
42
43 struct pageDirectoryPointerEntry {
44 uint64_t present:1;
45 uint64_t writable:1;
46 uint64_t user:1;
47 uint64_t write_through:1;
48 uint64_t cache_disable:1;
49 uint64_t accessed:1;
50 uint64_t ignored_06:1;
51 uint64_t page_size:1;
52 uint64_t ignored_11_08:4;
53 uint64_t address:40;
54 uint64_t ignored_62_52:11;
55 uint64_t execute_disable:1;
56 };
57
58 struct pageDirectoryEntry {
59 uint64_t present:1;
60 uint64_t writable:1;
61 uint64_t user:1;
62 uint64_t write_through:1;
63 uint64_t cache_disable:1;
64 uint64_t accessed:1;
65 uint64_t ignored_06:1;
66 uint64_t page_size:1;
67 uint64_t ignored_11_08:4;
68 uint64_t address:40;
69 uint64_t ignored_62_52:11;
70 uint64_t execute_disable:1;
71 };
72
73 struct pageTableEntry {
74 uint64_t present:1;
75 uint64_t writable:1;
76 uint64_t user:1;
77 uint64_t write_through:1;
78 uint64_t cache_disable:1;
79 uint64_t accessed:1;
80 uint64_t dirty:1;
81 uint64_t reserved_07:1;
82 uint64_t global:1;
83 uint64_t ignored_11_09:3;
84 uint64_t address:40;
85 uint64_t ignored_62_52:11;
86 uint64_t execute_disable:1;
87 };
88
regs_dump(FILE * stream,struct kvm_regs * regs,uint8_t indent)89 void regs_dump(FILE *stream, struct kvm_regs *regs,
90 uint8_t indent)
91 {
92 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
93 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
94 indent, "",
95 regs->rax, regs->rbx, regs->rcx, regs->rdx);
96 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
97 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
98 indent, "",
99 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
100 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
101 "r10: 0x%.16llx r11: 0x%.16llx\n",
102 indent, "",
103 regs->r8, regs->r9, regs->r10, regs->r11);
104 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
105 "r14: 0x%.16llx r15: 0x%.16llx\n",
106 indent, "",
107 regs->r12, regs->r13, regs->r14, regs->r15);
108 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
109 indent, "",
110 regs->rip, regs->rflags);
111 }
112
113 /*
114 * Segment Dump
115 *
116 * Input Args:
117 * stream - Output FILE stream
118 * segment - KVM segment
119 * indent - Left margin indent amount
120 *
121 * Output Args: None
122 *
123 * Return: None
124 *
125 * Dumps the state of the KVM segment given by @segment, to the FILE stream
126 * given by @stream.
127 */
segment_dump(FILE * stream,struct kvm_segment * segment,uint8_t indent)128 static void segment_dump(FILE *stream, struct kvm_segment *segment,
129 uint8_t indent)
130 {
131 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
132 "selector: 0x%.4x type: 0x%.2x\n",
133 indent, "", segment->base, segment->limit,
134 segment->selector, segment->type);
135 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
136 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
137 indent, "", segment->present, segment->dpl,
138 segment->db, segment->s, segment->l);
139 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
140 "unusable: 0x%.2x padding: 0x%.2x\n",
141 indent, "", segment->g, segment->avl,
142 segment->unusable, segment->padding);
143 }
144
145 /*
146 * dtable Dump
147 *
148 * Input Args:
149 * stream - Output FILE stream
150 * dtable - KVM dtable
151 * indent - Left margin indent amount
152 *
153 * Output Args: None
154 *
155 * Return: None
156 *
157 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
158 * given by @stream.
159 */
dtable_dump(FILE * stream,struct kvm_dtable * dtable,uint8_t indent)160 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
161 uint8_t indent)
162 {
163 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
164 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
165 indent, "", dtable->base, dtable->limit,
166 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
167 }
168
sregs_dump(FILE * stream,struct kvm_sregs * sregs,uint8_t indent)169 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
170 uint8_t indent)
171 {
172 unsigned int i;
173
174 fprintf(stream, "%*scs:\n", indent, "");
175 segment_dump(stream, &sregs->cs, indent + 2);
176 fprintf(stream, "%*sds:\n", indent, "");
177 segment_dump(stream, &sregs->ds, indent + 2);
178 fprintf(stream, "%*ses:\n", indent, "");
179 segment_dump(stream, &sregs->es, indent + 2);
180 fprintf(stream, "%*sfs:\n", indent, "");
181 segment_dump(stream, &sregs->fs, indent + 2);
182 fprintf(stream, "%*sgs:\n", indent, "");
183 segment_dump(stream, &sregs->gs, indent + 2);
184 fprintf(stream, "%*sss:\n", indent, "");
185 segment_dump(stream, &sregs->ss, indent + 2);
186 fprintf(stream, "%*str:\n", indent, "");
187 segment_dump(stream, &sregs->tr, indent + 2);
188 fprintf(stream, "%*sldt:\n", indent, "");
189 segment_dump(stream, &sregs->ldt, indent + 2);
190
191 fprintf(stream, "%*sgdt:\n", indent, "");
192 dtable_dump(stream, &sregs->gdt, indent + 2);
193 fprintf(stream, "%*sidt:\n", indent, "");
194 dtable_dump(stream, &sregs->idt, indent + 2);
195
196 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
197 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
198 indent, "",
199 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
200 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
201 "apic_base: 0x%.16llx\n",
202 indent, "",
203 sregs->cr8, sregs->efer, sregs->apic_base);
204
205 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
206 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
207 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
208 sregs->interrupt_bitmap[i]);
209 }
210 }
211
virt_pgd_alloc(struct kvm_vm * vm,uint32_t pgd_memslot)212 void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
213 {
214 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
215 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
216
217 /* If needed, create page map l4 table. */
218 if (!vm->pgd_created) {
219 vm_paddr_t paddr = vm_phy_page_alloc(vm,
220 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
221 vm->pgd = paddr;
222 vm->pgd_created = true;
223 }
224 }
225
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,uint32_t pgd_memslot)226 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
227 uint32_t pgd_memslot)
228 {
229 uint16_t index[4];
230 struct pageMapL4Entry *pml4e;
231
232 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
233 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
234
235 TEST_ASSERT((vaddr % vm->page_size) == 0,
236 "Virtual address not on page boundary,\n"
237 " vaddr: 0x%lx vm->page_size: 0x%x",
238 vaddr, vm->page_size);
239 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
240 (vaddr >> vm->page_shift)),
241 "Invalid virtual address, vaddr: 0x%lx",
242 vaddr);
243 TEST_ASSERT((paddr % vm->page_size) == 0,
244 "Physical address not on page boundary,\n"
245 " paddr: 0x%lx vm->page_size: 0x%x",
246 paddr, vm->page_size);
247 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
248 "Physical address beyond beyond maximum supported,\n"
249 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
250 paddr, vm->max_gfn, vm->page_size);
251
252 index[0] = (vaddr >> 12) & 0x1ffu;
253 index[1] = (vaddr >> 21) & 0x1ffu;
254 index[2] = (vaddr >> 30) & 0x1ffu;
255 index[3] = (vaddr >> 39) & 0x1ffu;
256
257 /* Allocate page directory pointer table if not present. */
258 pml4e = addr_gpa2hva(vm, vm->pgd);
259 if (!pml4e[index[3]].present) {
260 pml4e[index[3]].address = vm_phy_page_alloc(vm,
261 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
262 >> vm->page_shift;
263 pml4e[index[3]].writable = true;
264 pml4e[index[3]].present = true;
265 }
266
267 /* Allocate page directory table if not present. */
268 struct pageDirectoryPointerEntry *pdpe;
269 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
270 if (!pdpe[index[2]].present) {
271 pdpe[index[2]].address = vm_phy_page_alloc(vm,
272 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
273 >> vm->page_shift;
274 pdpe[index[2]].writable = true;
275 pdpe[index[2]].present = true;
276 }
277
278 /* Allocate page table if not present. */
279 struct pageDirectoryEntry *pde;
280 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
281 if (!pde[index[1]].present) {
282 pde[index[1]].address = vm_phy_page_alloc(vm,
283 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
284 >> vm->page_shift;
285 pde[index[1]].writable = true;
286 pde[index[1]].present = true;
287 }
288
289 /* Fill in page table entry. */
290 struct pageTableEntry *pte;
291 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
292 pte[index[0]].address = paddr >> vm->page_shift;
293 pte[index[0]].writable = true;
294 pte[index[0]].present = 1;
295 }
296
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)297 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
298 {
299 struct pageMapL4Entry *pml4e, *pml4e_start;
300 struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
301 struct pageDirectoryEntry *pde, *pde_start;
302 struct pageTableEntry *pte, *pte_start;
303
304 if (!vm->pgd_created)
305 return;
306
307 fprintf(stream, "%*s "
308 " no\n", indent, "");
309 fprintf(stream, "%*s index hvaddr gpaddr "
310 "addr w exec dirty\n",
311 indent, "");
312 pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
313 vm->pgd);
314 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
315 pml4e = &pml4e_start[n1];
316 if (!pml4e->present)
317 continue;
318 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
319 " %u\n",
320 indent, "",
321 pml4e - pml4e_start, pml4e,
322 addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address,
323 pml4e->writable, pml4e->execute_disable);
324
325 pdpe_start = addr_gpa2hva(vm, pml4e->address
326 * vm->page_size);
327 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
328 pdpe = &pdpe_start[n2];
329 if (!pdpe->present)
330 continue;
331 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx "
332 "%u %u\n",
333 indent, "",
334 pdpe - pdpe_start, pdpe,
335 addr_hva2gpa(vm, pdpe),
336 (uint64_t) pdpe->address, pdpe->writable,
337 pdpe->execute_disable);
338
339 pde_start = addr_gpa2hva(vm,
340 pdpe->address * vm->page_size);
341 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
342 pde = &pde_start[n3];
343 if (!pde->present)
344 continue;
345 fprintf(stream, "%*spde 0x%-3zx %p "
346 "0x%-12lx 0x%-10lx %u %u\n",
347 indent, "", pde - pde_start, pde,
348 addr_hva2gpa(vm, pde),
349 (uint64_t) pde->address, pde->writable,
350 pde->execute_disable);
351
352 pte_start = addr_gpa2hva(vm,
353 pde->address * vm->page_size);
354 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
355 pte = &pte_start[n4];
356 if (!pte->present)
357 continue;
358 fprintf(stream, "%*spte 0x%-3zx %p "
359 "0x%-12lx 0x%-10lx %u %u "
360 " %u 0x%-10lx\n",
361 indent, "",
362 pte - pte_start, pte,
363 addr_hva2gpa(vm, pte),
364 (uint64_t) pte->address,
365 pte->writable,
366 pte->execute_disable,
367 pte->dirty,
368 ((uint64_t) n1 << 27)
369 | ((uint64_t) n2 << 18)
370 | ((uint64_t) n3 << 9)
371 | ((uint64_t) n4));
372 }
373 }
374 }
375 }
376 }
377
378 /*
379 * Set Unusable Segment
380 *
381 * Input Args: None
382 *
383 * Output Args:
384 * segp - Pointer to segment register
385 *
386 * Return: None
387 *
388 * Sets the segment register pointed to by @segp to an unusable state.
389 */
kvm_seg_set_unusable(struct kvm_segment * segp)390 static void kvm_seg_set_unusable(struct kvm_segment *segp)
391 {
392 memset(segp, 0, sizeof(*segp));
393 segp->unusable = true;
394 }
395
kvm_seg_fill_gdt_64bit(struct kvm_vm * vm,struct kvm_segment * segp)396 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
397 {
398 void *gdt = addr_gva2hva(vm, vm->gdt);
399 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
400
401 desc->limit0 = segp->limit & 0xFFFF;
402 desc->base0 = segp->base & 0xFFFF;
403 desc->base1 = segp->base >> 16;
404 desc->type = segp->type;
405 desc->s = segp->s;
406 desc->dpl = segp->dpl;
407 desc->p = segp->present;
408 desc->limit1 = segp->limit >> 16;
409 desc->avl = segp->avl;
410 desc->l = segp->l;
411 desc->db = segp->db;
412 desc->g = segp->g;
413 desc->base2 = segp->base >> 24;
414 if (!segp->s)
415 desc->base3 = segp->base >> 32;
416 }
417
418
419 /*
420 * Set Long Mode Flat Kernel Code Segment
421 *
422 * Input Args:
423 * vm - VM whose GDT is being filled, or NULL to only write segp
424 * selector - selector value
425 *
426 * Output Args:
427 * segp - Pointer to KVM segment
428 *
429 * Return: None
430 *
431 * Sets up the KVM segment pointed to by @segp, to be a code segment
432 * with the selector value given by @selector.
433 */
kvm_seg_set_kernel_code_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)434 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
435 struct kvm_segment *segp)
436 {
437 memset(segp, 0, sizeof(*segp));
438 segp->selector = selector;
439 segp->limit = 0xFFFFFFFFu;
440 segp->s = 0x1; /* kTypeCodeData */
441 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
442 * | kFlagCodeReadable
443 */
444 segp->g = true;
445 segp->l = true;
446 segp->present = 1;
447 if (vm)
448 kvm_seg_fill_gdt_64bit(vm, segp);
449 }
450
451 /*
452 * Set Long Mode Flat Kernel Data Segment
453 *
454 * Input Args:
455 * vm - VM whose GDT is being filled, or NULL to only write segp
456 * selector - selector value
457 *
458 * Output Args:
459 * segp - Pointer to KVM segment
460 *
461 * Return: None
462 *
463 * Sets up the KVM segment pointed to by @segp, to be a data segment
464 * with the selector value given by @selector.
465 */
kvm_seg_set_kernel_data_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)466 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
467 struct kvm_segment *segp)
468 {
469 memset(segp, 0, sizeof(*segp));
470 segp->selector = selector;
471 segp->limit = 0xFFFFFFFFu;
472 segp->s = 0x1; /* kTypeCodeData */
473 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
474 * | kFlagDataWritable
475 */
476 segp->g = true;
477 segp->present = true;
478 if (vm)
479 kvm_seg_fill_gdt_64bit(vm, segp);
480 }
481
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)482 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
483 {
484 uint16_t index[4];
485 struct pageMapL4Entry *pml4e;
486 struct pageDirectoryPointerEntry *pdpe;
487 struct pageDirectoryEntry *pde;
488 struct pageTableEntry *pte;
489
490 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
491 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
492
493 index[0] = (gva >> 12) & 0x1ffu;
494 index[1] = (gva >> 21) & 0x1ffu;
495 index[2] = (gva >> 30) & 0x1ffu;
496 index[3] = (gva >> 39) & 0x1ffu;
497
498 if (!vm->pgd_created)
499 goto unmapped_gva;
500 pml4e = addr_gpa2hva(vm, vm->pgd);
501 if (!pml4e[index[3]].present)
502 goto unmapped_gva;
503
504 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
505 if (!pdpe[index[2]].present)
506 goto unmapped_gva;
507
508 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
509 if (!pde[index[1]].present)
510 goto unmapped_gva;
511
512 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
513 if (!pte[index[0]].present)
514 goto unmapped_gva;
515
516 return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu);
517
518 unmapped_gva:
519 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
520 exit(EXIT_FAILURE);
521 }
522
kvm_setup_gdt(struct kvm_vm * vm,struct kvm_dtable * dt,int gdt_memslot,int pgd_memslot)523 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot,
524 int pgd_memslot)
525 {
526 if (!vm->gdt)
527 vm->gdt = vm_vaddr_alloc(vm, getpagesize(),
528 KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
529
530 dt->base = vm->gdt;
531 dt->limit = getpagesize();
532 }
533
kvm_setup_tss_64bit(struct kvm_vm * vm,struct kvm_segment * segp,int selector,int gdt_memslot,int pgd_memslot)534 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
535 int selector, int gdt_memslot,
536 int pgd_memslot)
537 {
538 if (!vm->tss)
539 vm->tss = vm_vaddr_alloc(vm, getpagesize(),
540 KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
541
542 memset(segp, 0, sizeof(*segp));
543 segp->base = vm->tss;
544 segp->limit = 0x67;
545 segp->selector = selector;
546 segp->type = 0xb;
547 segp->present = 1;
548 kvm_seg_fill_gdt_64bit(vm, segp);
549 }
550
vcpu_setup(struct kvm_vm * vm,int vcpuid,int pgd_memslot,int gdt_memslot)551 static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
552 {
553 struct kvm_sregs sregs;
554
555 /* Set mode specific system register values. */
556 vcpu_sregs_get(vm, vcpuid, &sregs);
557
558 sregs.idt.limit = 0;
559
560 kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot);
561
562 switch (vm->mode) {
563 case VM_MODE_PXXV48_4K:
564 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
565 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
566 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
567
568 kvm_seg_set_unusable(&sregs.ldt);
569 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
570 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
571 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
572 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot);
573 break;
574
575 default:
576 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
577 }
578
579 sregs.cr3 = vm->pgd;
580 vcpu_sregs_set(vm, vcpuid, &sregs);
581 }
582
vm_vcpu_add_default(struct kvm_vm * vm,uint32_t vcpuid,void * guest_code)583 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
584 {
585 struct kvm_mp_state mp_state;
586 struct kvm_regs regs;
587 vm_vaddr_t stack_vaddr;
588 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
589 DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);
590
591 /* Create VCPU */
592 vm_vcpu_add(vm, vcpuid);
593 vcpu_setup(vm, vcpuid, 0, 0);
594
595 /* Setup guest general purpose registers */
596 vcpu_regs_get(vm, vcpuid, ®s);
597 regs.rflags = regs.rflags | 0x2;
598 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
599 regs.rip = (unsigned long) guest_code;
600 vcpu_regs_set(vm, vcpuid, ®s);
601
602 /* Setup the MP state */
603 mp_state.mp_state = 0;
604 vcpu_set_mp_state(vm, vcpuid, &mp_state);
605 }
606
607 /*
608 * Allocate an instance of struct kvm_cpuid2
609 *
610 * Input Args: None
611 *
612 * Output Args: None
613 *
614 * Return: A pointer to the allocated struct. The caller is responsible
615 * for freeing this struct.
616 *
617 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
618 * array to be decided at allocation time, allocation is slightly
619 * complicated. This function uses a reasonable default length for
620 * the array and performs the appropriate allocation.
621 */
allocate_kvm_cpuid2(void)622 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
623 {
624 struct kvm_cpuid2 *cpuid;
625 int nent = 100;
626 size_t size;
627
628 size = sizeof(*cpuid);
629 size += nent * sizeof(struct kvm_cpuid_entry2);
630 cpuid = malloc(size);
631 if (!cpuid) {
632 perror("malloc");
633 abort();
634 }
635
636 cpuid->nent = nent;
637
638 return cpuid;
639 }
640
641 /*
642 * KVM Supported CPUID Get
643 *
644 * Input Args: None
645 *
646 * Output Args:
647 *
648 * Return: The supported KVM CPUID
649 *
650 * Get the guest CPUID supported by KVM.
651 */
kvm_get_supported_cpuid(void)652 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
653 {
654 static struct kvm_cpuid2 *cpuid;
655 int ret;
656 int kvm_fd;
657
658 if (cpuid)
659 return cpuid;
660
661 cpuid = allocate_kvm_cpuid2();
662 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
663 if (kvm_fd < 0)
664 exit(KSFT_SKIP);
665
666 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
667 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
668 ret, errno);
669
670 close(kvm_fd);
671 return cpuid;
672 }
673
674 /*
675 * Locate a cpuid entry.
676 *
677 * Input Args:
678 * function: The function of the cpuid entry to find.
679 * index: The index of the cpuid entry.
680 *
681 * Output Args: None
682 *
683 * Return: A pointer to the cpuid entry. Never returns NULL.
684 */
685 struct kvm_cpuid_entry2 *
kvm_get_supported_cpuid_index(uint32_t function,uint32_t index)686 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
687 {
688 struct kvm_cpuid2 *cpuid;
689 struct kvm_cpuid_entry2 *entry = NULL;
690 int i;
691
692 cpuid = kvm_get_supported_cpuid();
693 for (i = 0; i < cpuid->nent; i++) {
694 if (cpuid->entries[i].function == function &&
695 cpuid->entries[i].index == index) {
696 entry = &cpuid->entries[i];
697 break;
698 }
699 }
700
701 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
702 function, index);
703 return entry;
704 }
705
706 /*
707 * VM VCPU CPUID Set
708 *
709 * Input Args:
710 * vm - Virtual Machine
711 * vcpuid - VCPU id
712 * cpuid - The CPUID values to set.
713 *
714 * Output Args: None
715 *
716 * Return: void
717 *
718 * Set the VCPU's CPUID.
719 */
vcpu_set_cpuid(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_cpuid2 * cpuid)720 void vcpu_set_cpuid(struct kvm_vm *vm,
721 uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
722 {
723 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
724 int rc;
725
726 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
727
728 rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
729 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
730 rc, errno);
731
732 }
733
vm_create_default(uint32_t vcpuid,uint64_t extra_mem_pages,void * guest_code)734 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
735 void *guest_code)
736 {
737 struct kvm_vm *vm;
738 /*
739 * For x86 the maximum page table size for a memory region
740 * will be when only 4K pages are used. In that case the
741 * total extra size for page tables (for extra N pages) will
742 * be: N/512+N/512^2+N/512^3+... which is definitely smaller
743 * than N/512*2.
744 */
745 uint64_t extra_pg_pages = extra_mem_pages / 512 * 2;
746
747 /* Create VM */
748 vm = vm_create(VM_MODE_DEFAULT,
749 DEFAULT_GUEST_PHY_PAGES + extra_pg_pages,
750 O_RDWR);
751
752 /* Setup guest code */
753 kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
754
755 /* Setup IRQ Chip */
756 vm_create_irqchip(vm);
757
758 /* Add the first vCPU. */
759 vm_vcpu_add_default(vm, vcpuid, guest_code);
760
761 return vm;
762 }
763
764 /*
765 * VCPU Get MSR
766 *
767 * Input Args:
768 * vm - Virtual Machine
769 * vcpuid - VCPU ID
770 * msr_index - Index of MSR
771 *
772 * Output Args: None
773 *
774 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
775 *
776 * Get value of MSR for VCPU.
777 */
vcpu_get_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index)778 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
779 {
780 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
781 struct {
782 struct kvm_msrs header;
783 struct kvm_msr_entry entry;
784 } buffer = {};
785 int r;
786
787 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
788 buffer.header.nmsrs = 1;
789 buffer.entry.index = msr_index;
790 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
791 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
792 " rc: %i errno: %i", r, errno);
793
794 return buffer.entry.data;
795 }
796
797 /*
798 * _VCPU Set MSR
799 *
800 * Input Args:
801 * vm - Virtual Machine
802 * vcpuid - VCPU ID
803 * msr_index - Index of MSR
804 * msr_value - New value of MSR
805 *
806 * Output Args: None
807 *
808 * Return: The result of KVM_SET_MSRS.
809 *
810 * Sets the value of an MSR for the given VCPU.
811 */
_vcpu_set_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index,uint64_t msr_value)812 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
813 uint64_t msr_value)
814 {
815 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
816 struct {
817 struct kvm_msrs header;
818 struct kvm_msr_entry entry;
819 } buffer = {};
820 int r;
821
822 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
823 memset(&buffer, 0, sizeof(buffer));
824 buffer.header.nmsrs = 1;
825 buffer.entry.index = msr_index;
826 buffer.entry.data = msr_value;
827 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
828 return r;
829 }
830
831 /*
832 * VCPU Set MSR
833 *
834 * Input Args:
835 * vm - Virtual Machine
836 * vcpuid - VCPU ID
837 * msr_index - Index of MSR
838 * msr_value - New value of MSR
839 *
840 * Output Args: None
841 *
842 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
843 *
844 * Set value of MSR for VCPU.
845 */
vcpu_set_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index,uint64_t msr_value)846 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
847 uint64_t msr_value)
848 {
849 int r;
850
851 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
852 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
853 " rc: %i errno: %i", r, errno);
854 }
855
vcpu_args_set(struct kvm_vm * vm,uint32_t vcpuid,unsigned int num,...)856 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
857 {
858 va_list ap;
859 struct kvm_regs regs;
860
861 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
862 " num: %u\n",
863 num);
864
865 va_start(ap, num);
866 vcpu_regs_get(vm, vcpuid, ®s);
867
868 if (num >= 1)
869 regs.rdi = va_arg(ap, uint64_t);
870
871 if (num >= 2)
872 regs.rsi = va_arg(ap, uint64_t);
873
874 if (num >= 3)
875 regs.rdx = va_arg(ap, uint64_t);
876
877 if (num >= 4)
878 regs.rcx = va_arg(ap, uint64_t);
879
880 if (num >= 5)
881 regs.r8 = va_arg(ap, uint64_t);
882
883 if (num >= 6)
884 regs.r9 = va_arg(ap, uint64_t);
885
886 vcpu_regs_set(vm, vcpuid, ®s);
887 va_end(ap);
888 }
889
vcpu_dump(FILE * stream,struct kvm_vm * vm,uint32_t vcpuid,uint8_t indent)890 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
891 {
892 struct kvm_regs regs;
893 struct kvm_sregs sregs;
894
895 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
896
897 fprintf(stream, "%*sregs:\n", indent + 2, "");
898 vcpu_regs_get(vm, vcpuid, ®s);
899 regs_dump(stream, ®s, indent + 4);
900
901 fprintf(stream, "%*ssregs:\n", indent + 2, "");
902 vcpu_sregs_get(vm, vcpuid, &sregs);
903 sregs_dump(stream, &sregs, indent + 4);
904 }
905
906 struct kvm_x86_state {
907 struct kvm_vcpu_events events;
908 struct kvm_mp_state mp_state;
909 struct kvm_regs regs;
910 struct kvm_xsave xsave;
911 struct kvm_xcrs xcrs;
912 struct kvm_sregs sregs;
913 struct kvm_debugregs debugregs;
914 union {
915 struct kvm_nested_state nested;
916 char nested_[16384];
917 };
918 struct kvm_msrs msrs;
919 };
920
kvm_get_num_msrs_fd(int kvm_fd)921 static int kvm_get_num_msrs_fd(int kvm_fd)
922 {
923 struct kvm_msr_list nmsrs;
924 int r;
925
926 nmsrs.nmsrs = 0;
927 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
928 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
929 r);
930
931 return nmsrs.nmsrs;
932 }
933
kvm_get_num_msrs(struct kvm_vm * vm)934 static int kvm_get_num_msrs(struct kvm_vm *vm)
935 {
936 return kvm_get_num_msrs_fd(vm->kvm_fd);
937 }
938
kvm_get_msr_index_list(void)939 struct kvm_msr_list *kvm_get_msr_index_list(void)
940 {
941 struct kvm_msr_list *list;
942 int nmsrs, r, kvm_fd;
943
944 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
945 if (kvm_fd < 0)
946 exit(KSFT_SKIP);
947
948 nmsrs = kvm_get_num_msrs_fd(kvm_fd);
949 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
950 list->nmsrs = nmsrs;
951 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
952 close(kvm_fd);
953
954 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
955 r);
956
957 return list;
958 }
959
vcpu_save_state(struct kvm_vm * vm,uint32_t vcpuid)960 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
961 {
962 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
963 struct kvm_msr_list *list;
964 struct kvm_x86_state *state;
965 int nmsrs, r, i;
966 static int nested_size = -1;
967
968 if (nested_size == -1) {
969 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
970 TEST_ASSERT(nested_size <= sizeof(state->nested_),
971 "Nested state size too big, %i > %zi",
972 nested_size, sizeof(state->nested_));
973 }
974
975 /*
976 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
977 * guest state is consistent only after userspace re-enters the
978 * kernel with KVM_RUN. Complete IO prior to migrating state
979 * to a new VM.
980 */
981 vcpu_run_complete_io(vm, vcpuid);
982
983 nmsrs = kvm_get_num_msrs(vm);
984 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
985 list->nmsrs = nmsrs;
986 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
987 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
988 r);
989
990 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
991 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
992 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
993 r);
994
995 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
996 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
997 r);
998
999 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1000 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1001 r);
1002
1003 r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1004 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1005 r);
1006
1007 if (kvm_check_cap(KVM_CAP_XCRS)) {
1008 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1009 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1010 r);
1011 }
1012
1013 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1014 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1015 r);
1016
1017 if (nested_size) {
1018 state->nested.size = sizeof(state->nested_);
1019 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1020 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1021 r);
1022 TEST_ASSERT(state->nested.size <= nested_size,
1023 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1024 state->nested.size, nested_size);
1025 } else
1026 state->nested.size = 0;
1027
1028 state->msrs.nmsrs = nmsrs;
1029 for (i = 0; i < nmsrs; i++)
1030 state->msrs.entries[i].index = list->indices[i];
1031 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1032 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1033 r, r == nmsrs ? -1 : list->indices[r]);
1034
1035 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1036 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1037 r);
1038
1039 free(list);
1040 return state;
1041 }
1042
vcpu_load_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_x86_state * state)1043 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1044 {
1045 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1046 int r;
1047
1048 r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1049 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1050 r);
1051
1052 if (kvm_check_cap(KVM_CAP_XCRS)) {
1053 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1054 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1055 r);
1056 }
1057
1058 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1059 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1060 r);
1061
1062 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1063 TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1064 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1065
1066 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1067 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1068 r);
1069
1070 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1071 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1072 r);
1073
1074 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1075 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1076 r);
1077
1078 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1079 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1080 r);
1081
1082 if (state->nested.size) {
1083 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1084 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1085 r);
1086 }
1087 }
1088
is_intel_cpu(void)1089 bool is_intel_cpu(void)
1090 {
1091 int eax, ebx, ecx, edx;
1092 const uint32_t *chunk;
1093 const int leaf = 0;
1094
1095 __asm__ __volatile__(
1096 "cpuid"
1097 : /* output */ "=a"(eax), "=b"(ebx),
1098 "=c"(ecx), "=d"(edx)
1099 : /* input */ "0"(leaf), "2"(0));
1100
1101 chunk = (const uint32_t *)("GenuineIntel");
1102 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1103 }
1104
kvm_get_cpuid_max_basic(void)1105 uint32_t kvm_get_cpuid_max_basic(void)
1106 {
1107 return kvm_get_supported_cpuid_entry(0)->eax;
1108 }
1109
kvm_get_cpuid_max_extended(void)1110 uint32_t kvm_get_cpuid_max_extended(void)
1111 {
1112 return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1113 }
1114
kvm_get_cpu_address_width(unsigned int * pa_bits,unsigned int * va_bits)1115 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1116 {
1117 struct kvm_cpuid_entry2 *entry;
1118 bool pae;
1119
1120 /* SDM 4.1.4 */
1121 if (kvm_get_cpuid_max_extended() < 0x80000008) {
1122 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1123 *pa_bits = pae ? 36 : 32;
1124 *va_bits = 32;
1125 } else {
1126 entry = kvm_get_supported_cpuid_entry(0x80000008);
1127 *pa_bits = entry->eax & 0xff;
1128 *va_bits = (entry->eax >> 8) & 0xff;
1129 }
1130 }
1131
1132 struct idt_entry {
1133 uint16_t offset0;
1134 uint16_t selector;
1135 uint16_t ist : 3;
1136 uint16_t : 5;
1137 uint16_t type : 4;
1138 uint16_t : 1;
1139 uint16_t dpl : 2;
1140 uint16_t p : 1;
1141 uint16_t offset1;
1142 uint32_t offset2; uint32_t reserved;
1143 };
1144
set_idt_entry(struct kvm_vm * vm,int vector,unsigned long addr,int dpl,unsigned short selector)1145 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1146 int dpl, unsigned short selector)
1147 {
1148 struct idt_entry *base =
1149 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1150 struct idt_entry *e = &base[vector];
1151
1152 memset(e, 0, sizeof(*e));
1153 e->offset0 = addr;
1154 e->selector = selector;
1155 e->ist = 0;
1156 e->type = 14;
1157 e->dpl = dpl;
1158 e->p = 1;
1159 e->offset1 = addr >> 16;
1160 e->offset2 = addr >> 32;
1161 }
1162
kvm_exit_unexpected_vector(uint32_t value)1163 void kvm_exit_unexpected_vector(uint32_t value)
1164 {
1165 outl(UNEXPECTED_VECTOR_PORT, value);
1166 }
1167
route_exception(struct ex_regs * regs)1168 void route_exception(struct ex_regs *regs)
1169 {
1170 typedef void(*handler)(struct ex_regs *);
1171 handler *handlers = (handler *)exception_handlers;
1172
1173 if (handlers && handlers[regs->vector]) {
1174 handlers[regs->vector](regs);
1175 return;
1176 }
1177
1178 kvm_exit_unexpected_vector(regs->vector);
1179 }
1180
vm_init_descriptor_tables(struct kvm_vm * vm)1181 void vm_init_descriptor_tables(struct kvm_vm *vm)
1182 {
1183 extern void *idt_handlers;
1184 int i;
1185
1186 vm->idt = vm_vaddr_alloc(vm, getpagesize(), 0x2000, 0, 0);
1187 vm->handlers = vm_vaddr_alloc(vm, 256 * sizeof(void *), 0x2000, 0, 0);
1188 /* Handlers have the same address in both address spaces.*/
1189 for (i = 0; i < NUM_INTERRUPTS; i++)
1190 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1191 DEFAULT_CODE_SELECTOR);
1192 }
1193
vcpu_init_descriptor_tables(struct kvm_vm * vm,uint32_t vcpuid)1194 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1195 {
1196 struct kvm_sregs sregs;
1197
1198 vcpu_sregs_get(vm, vcpuid, &sregs);
1199 sregs.idt.base = vm->idt;
1200 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1201 sregs.gdt.base = vm->gdt;
1202 sregs.gdt.limit = getpagesize() - 1;
1203 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1204 vcpu_sregs_set(vm, vcpuid, &sregs);
1205 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1206 }
1207
vm_handle_exception(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))1208 void vm_handle_exception(struct kvm_vm *vm, int vector,
1209 void (*handler)(struct ex_regs *))
1210 {
1211 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1212
1213 handlers[vector] = (vm_vaddr_t)handler;
1214 }
1215
assert_on_unhandled_exception(struct kvm_vm * vm,uint32_t vcpuid)1216 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1217 {
1218 if (vcpu_state(vm, vcpuid)->exit_reason == KVM_EXIT_IO
1219 && vcpu_state(vm, vcpuid)->io.port == UNEXPECTED_VECTOR_PORT
1220 && vcpu_state(vm, vcpuid)->io.size == 4) {
1221 /* Grab pointer to io data */
1222 uint32_t *data = (void *)vcpu_state(vm, vcpuid)
1223 + vcpu_state(vm, vcpuid)->io.data_offset;
1224
1225 TEST_ASSERT(false,
1226 "Unexpected vectored event in guest (vector:0x%x)",
1227 *data);
1228 }
1229 }
1230
set_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 * ent)1231 bool set_cpuid(struct kvm_cpuid2 *cpuid,
1232 struct kvm_cpuid_entry2 *ent)
1233 {
1234 int i;
1235
1236 for (i = 0; i < cpuid->nent; i++) {
1237 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1238
1239 if (cur->function != ent->function || cur->index != ent->index)
1240 continue;
1241
1242 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1243 return true;
1244 }
1245
1246 return false;
1247 }
1248
kvm_hypercall(uint64_t nr,uint64_t a0,uint64_t a1,uint64_t a2,uint64_t a3)1249 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1250 uint64_t a3)
1251 {
1252 uint64_t r;
1253
1254 asm volatile("vmcall"
1255 : "=a"(r)
1256 : "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1257 return r;
1258 }
1259