1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/kvm.h>
5 #include <linux/kvm_host.h>
6 #include <kvm/arm_vgic.h>
7 #include <asm/kvm_hyp.h>
8 #include <asm/kvm_mmu.h>
9 #include <asm/kvm_asm.h>
10
11 #include "vgic.h"
12
13 static bool group0_trap;
14 static bool group1_trap;
15 static bool common_trap;
16 static bool gicv4_enable;
17
vgic_v3_set_underflow(struct kvm_vcpu * vcpu)18 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
19 {
20 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
21
22 cpuif->vgic_hcr |= ICH_HCR_UIE;
23 }
24
lr_signals_eoi_mi(u64 lr_val)25 static bool lr_signals_eoi_mi(u64 lr_val)
26 {
27 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
28 !(lr_val & ICH_LR_HW);
29 }
30
vgic_v3_fold_lr_state(struct kvm_vcpu * vcpu)31 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
32 {
33 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
34 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
35 u32 model = vcpu->kvm->arch.vgic.vgic_model;
36 int lr;
37
38 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
39
40 cpuif->vgic_hcr &= ~ICH_HCR_UIE;
41
42 for (lr = 0; lr < cpuif->used_lrs; lr++) {
43 u64 val = cpuif->vgic_lr[lr];
44 u32 intid, cpuid;
45 struct vgic_irq *irq;
46 bool is_v2_sgi = false;
47
48 cpuid = val & GICH_LR_PHYSID_CPUID;
49 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
50
51 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
52 intid = val & ICH_LR_VIRTUAL_ID_MASK;
53 } else {
54 intid = val & GICH_LR_VIRTUALID;
55 is_v2_sgi = vgic_irq_is_sgi(intid);
56 }
57
58 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
59 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
60 kvm_notify_acked_irq(vcpu->kvm, 0,
61 intid - VGIC_NR_PRIVATE_IRQS);
62
63 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
64 if (!irq) /* An LPI could have been unmapped. */
65 continue;
66
67 raw_spin_lock(&irq->irq_lock);
68
69 /* Always preserve the active bit */
70 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
71
72 if (irq->active && is_v2_sgi)
73 irq->active_source = cpuid;
74
75 /* Edge is the only case where we preserve the pending bit */
76 if (irq->config == VGIC_CONFIG_EDGE &&
77 (val & ICH_LR_PENDING_BIT)) {
78 irq->pending_latch = true;
79
80 if (is_v2_sgi)
81 irq->source |= (1 << cpuid);
82 }
83
84 /*
85 * Clear soft pending state when level irqs have been acked.
86 */
87 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
88 irq->pending_latch = false;
89
90 /*
91 * Level-triggered mapped IRQs are special because we only
92 * observe rising edges as input to the VGIC.
93 *
94 * If the guest never acked the interrupt we have to sample
95 * the physical line and set the line level, because the
96 * device state could have changed or we simply need to
97 * process the still pending interrupt later.
98 *
99 * If this causes us to lower the level, we have to also clear
100 * the physical active state, since we will otherwise never be
101 * told when the interrupt becomes asserted again.
102 */
103 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
104 irq->line_level = vgic_get_phys_line_level(irq);
105
106 if (!irq->line_level)
107 vgic_irq_set_phys_active(irq, false);
108 }
109
110 raw_spin_unlock(&irq->irq_lock);
111 vgic_put_irq(vcpu->kvm, irq);
112 }
113
114 cpuif->used_lrs = 0;
115 }
116
117 /* Requires the irq to be locked already */
vgic_v3_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)118 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
119 {
120 u32 model = vcpu->kvm->arch.vgic.vgic_model;
121 u64 val = irq->intid;
122 bool allow_pending = true, is_v2_sgi;
123
124 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
125 model == KVM_DEV_TYPE_ARM_VGIC_V2);
126
127 if (irq->active) {
128 val |= ICH_LR_ACTIVE_BIT;
129 if (is_v2_sgi)
130 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
131 if (vgic_irq_is_multi_sgi(irq)) {
132 allow_pending = false;
133 val |= ICH_LR_EOI;
134 }
135 }
136
137 if (irq->hw) {
138 val |= ICH_LR_HW;
139 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
140 /*
141 * Never set pending+active on a HW interrupt, as the
142 * pending state is kept at the physical distributor
143 * level.
144 */
145 if (irq->active)
146 allow_pending = false;
147 } else {
148 if (irq->config == VGIC_CONFIG_LEVEL) {
149 val |= ICH_LR_EOI;
150
151 /*
152 * Software resampling doesn't work very well
153 * if we allow P+A, so let's not do that.
154 */
155 if (irq->active)
156 allow_pending = false;
157 }
158 }
159
160 if (allow_pending && irq_is_pending(irq)) {
161 val |= ICH_LR_PENDING_BIT;
162
163 if (irq->config == VGIC_CONFIG_EDGE)
164 irq->pending_latch = false;
165
166 if (vgic_irq_is_sgi(irq->intid) &&
167 model == KVM_DEV_TYPE_ARM_VGIC_V2) {
168 u32 src = ffs(irq->source);
169
170 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
171 irq->intid))
172 return;
173
174 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
175 irq->source &= ~(1 << (src - 1));
176 if (irq->source) {
177 irq->pending_latch = true;
178 val |= ICH_LR_EOI;
179 }
180 }
181 }
182
183 /*
184 * Level-triggered mapped IRQs are special because we only observe
185 * rising edges as input to the VGIC. We therefore lower the line
186 * level here, so that we can take new virtual IRQs. See
187 * vgic_v3_fold_lr_state for more info.
188 */
189 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
190 irq->line_level = false;
191
192 if (irq->group)
193 val |= ICH_LR_GROUP;
194
195 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
196
197 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
198 }
199
vgic_v3_clear_lr(struct kvm_vcpu * vcpu,int lr)200 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
201 {
202 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
203 }
204
vgic_v3_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)205 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
206 {
207 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
208 u32 model = vcpu->kvm->arch.vgic.vgic_model;
209 u32 vmcr;
210
211 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
212 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
213 ICH_VMCR_ACK_CTL_MASK;
214 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
215 ICH_VMCR_FIQ_EN_MASK;
216 } else {
217 /*
218 * When emulating GICv3 on GICv3 with SRE=1 on the
219 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
220 */
221 vmcr = ICH_VMCR_FIQ_EN_MASK;
222 }
223
224 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
225 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
226 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
227 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
228 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
229 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
230 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
231
232 cpu_if->vgic_vmcr = vmcr;
233 }
234
vgic_v3_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)235 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
236 {
237 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
238 u32 model = vcpu->kvm->arch.vgic.vgic_model;
239 u32 vmcr;
240
241 vmcr = cpu_if->vgic_vmcr;
242
243 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
244 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
245 ICH_VMCR_ACK_CTL_SHIFT;
246 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
247 ICH_VMCR_FIQ_EN_SHIFT;
248 } else {
249 /*
250 * When emulating GICv3 on GICv3 with SRE=1 on the
251 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
252 */
253 vmcrp->fiqen = 1;
254 vmcrp->ackctl = 0;
255 }
256
257 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
258 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
259 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
260 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
261 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
262 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
263 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
264 }
265
266 #define INITIAL_PENDBASER_VALUE \
267 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
268 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
269 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
270
vgic_v3_enable(struct kvm_vcpu * vcpu)271 void vgic_v3_enable(struct kvm_vcpu *vcpu)
272 {
273 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
274
275 /*
276 * By forcing VMCR to zero, the GIC will restore the binary
277 * points to their reset values. Anything else resets to zero
278 * anyway.
279 */
280 vgic_v3->vgic_vmcr = 0;
281
282 /*
283 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
284 * way, so we force SRE to 1 to demonstrate this to the guest.
285 * Also, we don't support any form of IRQ/FIQ bypass.
286 * This goes with the spec allowing the value to be RAO/WI.
287 */
288 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
289 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
290 ICC_SRE_EL1_DFB |
291 ICC_SRE_EL1_SRE);
292 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
293 } else {
294 vgic_v3->vgic_sre = 0;
295 }
296
297 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
298 ICH_VTR_ID_BITS_MASK) >>
299 ICH_VTR_ID_BITS_SHIFT;
300 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
301 ICH_VTR_PRI_BITS_MASK) >>
302 ICH_VTR_PRI_BITS_SHIFT) + 1;
303
304 /* Get the show on the road... */
305 vgic_v3->vgic_hcr = ICH_HCR_EN;
306 if (group0_trap)
307 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
308 if (group1_trap)
309 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
310 if (common_trap)
311 vgic_v3->vgic_hcr |= ICH_HCR_TC;
312 }
313
vgic_v3_lpi_sync_pending_status(struct kvm * kvm,struct vgic_irq * irq)314 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
315 {
316 struct kvm_vcpu *vcpu;
317 int byte_offset, bit_nr;
318 gpa_t pendbase, ptr;
319 bool status;
320 u8 val;
321 int ret;
322 unsigned long flags;
323
324 retry:
325 vcpu = irq->target_vcpu;
326 if (!vcpu)
327 return 0;
328
329 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
330
331 byte_offset = irq->intid / BITS_PER_BYTE;
332 bit_nr = irq->intid % BITS_PER_BYTE;
333 ptr = pendbase + byte_offset;
334
335 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
336 if (ret)
337 return ret;
338
339 status = val & (1 << bit_nr);
340
341 raw_spin_lock_irqsave(&irq->irq_lock, flags);
342 if (irq->target_vcpu != vcpu) {
343 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
344 goto retry;
345 }
346 irq->pending_latch = status;
347 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
348
349 if (status) {
350 /* clear consumed data */
351 val &= ~(1 << bit_nr);
352 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
353 if (ret)
354 return ret;
355 }
356 return 0;
357 }
358
359 /**
360 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
361 * kvm lock and all vcpu lock must be held
362 */
vgic_v3_save_pending_tables(struct kvm * kvm)363 int vgic_v3_save_pending_tables(struct kvm *kvm)
364 {
365 struct vgic_dist *dist = &kvm->arch.vgic;
366 struct vgic_irq *irq;
367 gpa_t last_ptr = ~(gpa_t)0;
368 int ret;
369 u8 val;
370
371 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
372 int byte_offset, bit_nr;
373 struct kvm_vcpu *vcpu;
374 gpa_t pendbase, ptr;
375 bool stored;
376
377 vcpu = irq->target_vcpu;
378 if (!vcpu)
379 continue;
380
381 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
382
383 byte_offset = irq->intid / BITS_PER_BYTE;
384 bit_nr = irq->intid % BITS_PER_BYTE;
385 ptr = pendbase + byte_offset;
386
387 if (ptr != last_ptr) {
388 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
389 if (ret)
390 return ret;
391 last_ptr = ptr;
392 }
393
394 stored = val & (1U << bit_nr);
395 if (stored == irq->pending_latch)
396 continue;
397
398 if (irq->pending_latch)
399 val |= 1 << bit_nr;
400 else
401 val &= ~(1 << bit_nr);
402
403 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
404 if (ret)
405 return ret;
406 }
407 return 0;
408 }
409
410 /**
411 * vgic_v3_rdist_overlap - check if a region overlaps with any
412 * existing redistributor region
413 *
414 * @kvm: kvm handle
415 * @base: base of the region
416 * @size: size of region
417 *
418 * Return: true if there is an overlap
419 */
vgic_v3_rdist_overlap(struct kvm * kvm,gpa_t base,size_t size)420 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
421 {
422 struct vgic_dist *d = &kvm->arch.vgic;
423 struct vgic_redist_region *rdreg;
424
425 list_for_each_entry(rdreg, &d->rd_regions, list) {
426 if ((base + size > rdreg->base) &&
427 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
428 return true;
429 }
430 return false;
431 }
432
433 /*
434 * Check for overlapping regions and for regions crossing the end of memory
435 * for base addresses which have already been set.
436 */
vgic_v3_check_base(struct kvm * kvm)437 bool vgic_v3_check_base(struct kvm *kvm)
438 {
439 struct vgic_dist *d = &kvm->arch.vgic;
440 struct vgic_redist_region *rdreg;
441
442 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
443 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
444 return false;
445
446 list_for_each_entry(rdreg, &d->rd_regions, list) {
447 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
448 rdreg->base)
449 return false;
450 }
451
452 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
453 return true;
454
455 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
456 KVM_VGIC_V3_DIST_SIZE);
457 }
458
459 /**
460 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
461 * which has free space to put a new rdist region.
462 *
463 * @rd_regions: redistributor region list head
464 *
465 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
466 * Stride between redistributors is 0 and regions are filled in the index order.
467 *
468 * Return: the redist region handle, if any, that has space to map a new rdist
469 * region.
470 */
vgic_v3_rdist_free_slot(struct list_head * rd_regions)471 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
472 {
473 struct vgic_redist_region *rdreg;
474
475 list_for_each_entry(rdreg, rd_regions, list) {
476 if (!vgic_v3_redist_region_full(rdreg))
477 return rdreg;
478 }
479 return NULL;
480 }
481
vgic_v3_rdist_region_from_index(struct kvm * kvm,u32 index)482 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
483 u32 index)
484 {
485 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
486 struct vgic_redist_region *rdreg;
487
488 list_for_each_entry(rdreg, rd_regions, list) {
489 if (rdreg->index == index)
490 return rdreg;
491 }
492 return NULL;
493 }
494
495
vgic_v3_map_resources(struct kvm * kvm)496 int vgic_v3_map_resources(struct kvm *kvm)
497 {
498 struct vgic_dist *dist = &kvm->arch.vgic;
499 struct kvm_vcpu *vcpu;
500 int ret = 0;
501 int c;
502
503 if (vgic_ready(kvm))
504 goto out;
505
506 kvm_for_each_vcpu(c, vcpu, kvm) {
507 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
508
509 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
510 kvm_debug("vcpu %d redistributor base not set\n", c);
511 ret = -ENXIO;
512 goto out;
513 }
514 }
515
516 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
517 kvm_err("Need to set vgic distributor addresses first\n");
518 ret = -ENXIO;
519 goto out;
520 }
521
522 if (!vgic_v3_check_base(kvm)) {
523 kvm_err("VGIC redist and dist frames overlap\n");
524 ret = -EINVAL;
525 goto out;
526 }
527
528 /*
529 * For a VGICv3 we require the userland to explicitly initialize
530 * the VGIC before we need to use it.
531 */
532 if (!vgic_initialized(kvm)) {
533 ret = -EBUSY;
534 goto out;
535 }
536
537 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
538 if (ret) {
539 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
540 goto out;
541 }
542
543 if (kvm_vgic_global_state.has_gicv4_1)
544 vgic_v4_configure_vsgis(kvm);
545 dist->ready = true;
546
547 out:
548 return ret;
549 }
550
551 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
552
early_group0_trap_cfg(char * buf)553 static int __init early_group0_trap_cfg(char *buf)
554 {
555 return strtobool(buf, &group0_trap);
556 }
557 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
558
early_group1_trap_cfg(char * buf)559 static int __init early_group1_trap_cfg(char *buf)
560 {
561 return strtobool(buf, &group1_trap);
562 }
563 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
564
early_common_trap_cfg(char * buf)565 static int __init early_common_trap_cfg(char *buf)
566 {
567 return strtobool(buf, &common_trap);
568 }
569 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
570
early_gicv4_enable(char * buf)571 static int __init early_gicv4_enable(char *buf)
572 {
573 return strtobool(buf, &gicv4_enable);
574 }
575 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
576
577 /**
578 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
579 * @info: pointer to the GIC description
580 *
581 * Returns 0 if the VGICv3 has been probed successfully, returns an error code
582 * otherwise
583 */
vgic_v3_probe(const struct gic_kvm_info * info)584 int vgic_v3_probe(const struct gic_kvm_info *info)
585 {
586 u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2);
587 int ret;
588
589 /*
590 * The ListRegs field is 5 bits, but there is an architectural
591 * maximum of 16 list registers. Just ignore bit 4...
592 */
593 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
594 kvm_vgic_global_state.can_emulate_gicv2 = false;
595 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
596
597 /* GICv4 support? */
598 if (info->has_v4) {
599 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
600 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
601 kvm_info("GICv4%s support %sabled\n",
602 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
603 gicv4_enable ? "en" : "dis");
604 }
605
606 if (!info->vcpu.start) {
607 kvm_info("GICv3: no GICV resource entry\n");
608 kvm_vgic_global_state.vcpu_base = 0;
609 } else if (!PAGE_ALIGNED(info->vcpu.start)) {
610 pr_warn("GICV physical address 0x%llx not page aligned\n",
611 (unsigned long long)info->vcpu.start);
612 kvm_vgic_global_state.vcpu_base = 0;
613 } else {
614 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
615 kvm_vgic_global_state.can_emulate_gicv2 = true;
616 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
617 if (ret) {
618 kvm_err("Cannot register GICv2 KVM device.\n");
619 return ret;
620 }
621 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
622 }
623 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
624 if (ret) {
625 kvm_err("Cannot register GICv3 KVM device.\n");
626 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
627 return ret;
628 }
629
630 if (kvm_vgic_global_state.vcpu_base == 0)
631 kvm_info("disabling GICv2 emulation\n");
632
633 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
634 group0_trap = true;
635 group1_trap = true;
636 }
637
638 if (group0_trap || group1_trap || common_trap) {
639 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
640 group0_trap ? "G0" : "",
641 group1_trap ? "G1" : "",
642 common_trap ? "C" : "");
643 static_branch_enable(&vgic_v3_cpuif_trap);
644 }
645
646 kvm_vgic_global_state.vctrl_base = NULL;
647 kvm_vgic_global_state.type = VGIC_V3;
648 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
649
650 return 0;
651 }
652
vgic_v3_load(struct kvm_vcpu * vcpu)653 void vgic_v3_load(struct kvm_vcpu *vcpu)
654 {
655 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
656
657 /*
658 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
659 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
660 * VMCR_EL2 save/restore in the world switch.
661 */
662 if (likely(cpu_if->vgic_sre))
663 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
664
665 kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
666
667 if (has_vhe())
668 __vgic_v3_activate_traps(cpu_if);
669
670 WARN_ON(vgic_v4_load(vcpu));
671 }
672
vgic_v3_vmcr_sync(struct kvm_vcpu * vcpu)673 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
674 {
675 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
676
677 if (likely(cpu_if->vgic_sre))
678 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
679 }
680
vgic_v3_put(struct kvm_vcpu * vcpu)681 void vgic_v3_put(struct kvm_vcpu *vcpu)
682 {
683 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
684
685 WARN_ON(vgic_v4_put(vcpu, false));
686
687 vgic_v3_vmcr_sync(vcpu);
688
689 kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
690
691 if (has_vhe())
692 __vgic_v3_deactivate_traps(cpu_if);
693 }
694