• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142 
143 /**** UTILS ****/
144 
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160 
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164 
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)				\
167 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)		\
169 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)				\
171 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179 
180 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 	struct sock *sk = sk_vsock(vsk);
184 	struct sockaddr_vm local_addr;
185 
186 	if (vsock_addr_bound(&vsk->local_addr))
187 		return 0;
188 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 	return __vsock_bind(sk, &local_addr);
190 }
191 
vsock_init_tables(void)192 static void vsock_init_tables(void)
193 {
194 	int i;
195 
196 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 		INIT_LIST_HEAD(&vsock_bind_table[i]);
198 
199 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 		INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
__vsock_remove_bound(struct vsock_sock * vsk)217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
__vsock_remove_connected(struct vsock_sock * vsk)223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
__vsock_find_bound_socket(struct sockaddr_vm * addr)229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 			return sk_vsock(vsk);
236 
237 		if (addr->svm_port == vsk->local_addr.svm_port &&
238 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 		     addr->svm_cid == VMADDR_CID_ANY))
240 			return sk_vsock(vsk);
241 	}
242 
243 	return NULL;
244 }
245 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 						  struct sockaddr_vm *dst)
248 {
249 	struct vsock_sock *vsk;
250 
251 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 			    connected_table) {
253 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 		    dst->svm_port == vsk->local_addr.svm_port) {
255 			return sk_vsock(vsk);
256 		}
257 	}
258 
259 	return NULL;
260 }
261 
vsock_insert_unbound(struct vsock_sock * vsk)262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 	spin_lock_bh(&vsock_table_lock);
265 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
266 	spin_unlock_bh(&vsock_table_lock);
267 }
268 
vsock_insert_connected(struct vsock_sock * vsk)269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 	struct list_head *list = vsock_connected_sockets(
272 		&vsk->remote_addr, &vsk->local_addr);
273 
274 	spin_lock_bh(&vsock_table_lock);
275 	__vsock_insert_connected(list, vsk);
276 	spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279 
vsock_remove_bound(struct vsock_sock * vsk)280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 	spin_lock_bh(&vsock_table_lock);
283 	if (__vsock_in_bound_table(vsk))
284 		__vsock_remove_bound(vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 
vsock_remove_connected(struct vsock_sock * vsk)289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_connected_table(vsk))
293 		__vsock_remove_connected(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297 
vsock_find_bound_socket(struct sockaddr_vm * addr)298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_bound_socket(addr);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 					 struct sockaddr_vm *dst)
315 {
316 	struct sock *sk;
317 
318 	spin_lock_bh(&vsock_table_lock);
319 	sk = __vsock_find_connected_socket(src, dst);
320 	if (sk)
321 		sock_hold(sk);
322 
323 	spin_unlock_bh(&vsock_table_lock);
324 
325 	return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328 
vsock_remove_sock(struct vsock_sock * vsk)329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 	vsock_remove_bound(vsk);
332 	vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335 
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))336 void vsock_for_each_connected_socket(struct vsock_transport *transport,
337 				     void (*fn)(struct sock *sk))
338 {
339 	int i;
340 
341 	spin_lock_bh(&vsock_table_lock);
342 
343 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
344 		struct vsock_sock *vsk;
345 		list_for_each_entry(vsk, &vsock_connected_table[i],
346 				    connected_table) {
347 			if (vsk->transport != transport)
348 				continue;
349 
350 			fn(sk_vsock(vsk));
351 		}
352 	}
353 
354 	spin_unlock_bh(&vsock_table_lock);
355 }
356 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
357 
vsock_add_pending(struct sock * listener,struct sock * pending)358 void vsock_add_pending(struct sock *listener, struct sock *pending)
359 {
360 	struct vsock_sock *vlistener;
361 	struct vsock_sock *vpending;
362 
363 	vlistener = vsock_sk(listener);
364 	vpending = vsock_sk(pending);
365 
366 	sock_hold(pending);
367 	sock_hold(listener);
368 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
369 }
370 EXPORT_SYMBOL_GPL(vsock_add_pending);
371 
vsock_remove_pending(struct sock * listener,struct sock * pending)372 void vsock_remove_pending(struct sock *listener, struct sock *pending)
373 {
374 	struct vsock_sock *vpending = vsock_sk(pending);
375 
376 	list_del_init(&vpending->pending_links);
377 	sock_put(listener);
378 	sock_put(pending);
379 }
380 EXPORT_SYMBOL_GPL(vsock_remove_pending);
381 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)382 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
383 {
384 	struct vsock_sock *vlistener;
385 	struct vsock_sock *vconnected;
386 
387 	vlistener = vsock_sk(listener);
388 	vconnected = vsock_sk(connected);
389 
390 	sock_hold(connected);
391 	sock_hold(listener);
392 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
393 }
394 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
395 
vsock_use_local_transport(unsigned int remote_cid)396 static bool vsock_use_local_transport(unsigned int remote_cid)
397 {
398 	if (!transport_local)
399 		return false;
400 
401 	if (remote_cid == VMADDR_CID_LOCAL)
402 		return true;
403 
404 	if (transport_g2h) {
405 		return remote_cid == transport_g2h->get_local_cid();
406 	} else {
407 		return remote_cid == VMADDR_CID_HOST;
408 	}
409 }
410 
vsock_deassign_transport(struct vsock_sock * vsk)411 static void vsock_deassign_transport(struct vsock_sock *vsk)
412 {
413 	if (!vsk->transport)
414 		return;
415 
416 	vsk->transport->destruct(vsk);
417 	module_put(vsk->transport->module);
418 	vsk->transport = NULL;
419 }
420 
421 /* Assign a transport to a socket and call the .init transport callback.
422  *
423  * Note: for stream socket this must be called when vsk->remote_addr is set
424  * (e.g. during the connect() or when a connection request on a listener
425  * socket is received).
426  * The vsk->remote_addr is used to decide which transport to use:
427  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
428  *    g2h is not loaded, will use local transport;
429  *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
430  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
431  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)432 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
433 {
434 	const struct vsock_transport *new_transport;
435 	struct sock *sk = sk_vsock(vsk);
436 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
437 	int ret;
438 
439 	switch (sk->sk_type) {
440 	case SOCK_DGRAM:
441 		new_transport = transport_dgram;
442 		break;
443 	case SOCK_STREAM:
444 		if (vsock_use_local_transport(remote_cid))
445 			new_transport = transport_local;
446 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
447 			new_transport = transport_g2h;
448 		else
449 			new_transport = transport_h2g;
450 		break;
451 	default:
452 		return -ESOCKTNOSUPPORT;
453 	}
454 
455 	if (vsk->transport) {
456 		if (vsk->transport == new_transport)
457 			return 0;
458 
459 		/* transport->release() must be called with sock lock acquired.
460 		 * This path can only be taken during vsock_stream_connect(),
461 		 * where we have already held the sock lock.
462 		 * In the other cases, this function is called on a new socket
463 		 * which is not assigned to any transport.
464 		 */
465 		vsk->transport->release(vsk);
466 		vsock_deassign_transport(vsk);
467 	}
468 
469 	/* We increase the module refcnt to prevent the transport unloading
470 	 * while there are open sockets assigned to it.
471 	 */
472 	if (!new_transport || !try_module_get(new_transport->module))
473 		return -ENODEV;
474 
475 	ret = new_transport->init(vsk, psk);
476 	if (ret) {
477 		module_put(new_transport->module);
478 		return ret;
479 	}
480 
481 	vsk->transport = new_transport;
482 
483 	return 0;
484 }
485 EXPORT_SYMBOL_GPL(vsock_assign_transport);
486 
vsock_find_cid(unsigned int cid)487 bool vsock_find_cid(unsigned int cid)
488 {
489 	if (transport_g2h && cid == transport_g2h->get_local_cid())
490 		return true;
491 
492 	if (transport_h2g && cid == VMADDR_CID_HOST)
493 		return true;
494 
495 	if (transport_local && cid == VMADDR_CID_LOCAL)
496 		return true;
497 
498 	return false;
499 }
500 EXPORT_SYMBOL_GPL(vsock_find_cid);
501 
vsock_dequeue_accept(struct sock * listener)502 static struct sock *vsock_dequeue_accept(struct sock *listener)
503 {
504 	struct vsock_sock *vlistener;
505 	struct vsock_sock *vconnected;
506 
507 	vlistener = vsock_sk(listener);
508 
509 	if (list_empty(&vlistener->accept_queue))
510 		return NULL;
511 
512 	vconnected = list_entry(vlistener->accept_queue.next,
513 				struct vsock_sock, accept_queue);
514 
515 	list_del_init(&vconnected->accept_queue);
516 	sock_put(listener);
517 	/* The caller will need a reference on the connected socket so we let
518 	 * it call sock_put().
519 	 */
520 
521 	return sk_vsock(vconnected);
522 }
523 
vsock_is_accept_queue_empty(struct sock * sk)524 static bool vsock_is_accept_queue_empty(struct sock *sk)
525 {
526 	struct vsock_sock *vsk = vsock_sk(sk);
527 	return list_empty(&vsk->accept_queue);
528 }
529 
vsock_is_pending(struct sock * sk)530 static bool vsock_is_pending(struct sock *sk)
531 {
532 	struct vsock_sock *vsk = vsock_sk(sk);
533 	return !list_empty(&vsk->pending_links);
534 }
535 
vsock_send_shutdown(struct sock * sk,int mode)536 static int vsock_send_shutdown(struct sock *sk, int mode)
537 {
538 	struct vsock_sock *vsk = vsock_sk(sk);
539 
540 	if (!vsk->transport)
541 		return -ENODEV;
542 
543 	return vsk->transport->shutdown(vsk, mode);
544 }
545 
vsock_pending_work(struct work_struct * work)546 static void vsock_pending_work(struct work_struct *work)
547 {
548 	struct sock *sk;
549 	struct sock *listener;
550 	struct vsock_sock *vsk;
551 	bool cleanup;
552 
553 	vsk = container_of(work, struct vsock_sock, pending_work.work);
554 	sk = sk_vsock(vsk);
555 	listener = vsk->listener;
556 	cleanup = true;
557 
558 	lock_sock(listener);
559 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
560 
561 	if (vsock_is_pending(sk)) {
562 		vsock_remove_pending(listener, sk);
563 
564 		sk_acceptq_removed(listener);
565 	} else if (!vsk->rejected) {
566 		/* We are not on the pending list and accept() did not reject
567 		 * us, so we must have been accepted by our user process.  We
568 		 * just need to drop our references to the sockets and be on
569 		 * our way.
570 		 */
571 		cleanup = false;
572 		goto out;
573 	}
574 
575 	/* We need to remove ourself from the global connected sockets list so
576 	 * incoming packets can't find this socket, and to reduce the reference
577 	 * count.
578 	 */
579 	vsock_remove_connected(vsk);
580 
581 	sk->sk_state = TCP_CLOSE;
582 
583 out:
584 	release_sock(sk);
585 	release_sock(listener);
586 	if (cleanup)
587 		sock_put(sk);
588 
589 	sock_put(sk);
590 	sock_put(listener);
591 }
592 
593 /**** SOCKET OPERATIONS ****/
594 
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)595 static int __vsock_bind_stream(struct vsock_sock *vsk,
596 			       struct sockaddr_vm *addr)
597 {
598 	static u32 port;
599 	struct sockaddr_vm new_addr;
600 
601 	if (!port)
602 		port = LAST_RESERVED_PORT + 1 +
603 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
604 
605 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
606 
607 	if (addr->svm_port == VMADDR_PORT_ANY) {
608 		bool found = false;
609 		unsigned int i;
610 
611 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
612 			if (port <= LAST_RESERVED_PORT)
613 				port = LAST_RESERVED_PORT + 1;
614 
615 			new_addr.svm_port = port++;
616 
617 			if (!__vsock_find_bound_socket(&new_addr)) {
618 				found = true;
619 				break;
620 			}
621 		}
622 
623 		if (!found)
624 			return -EADDRNOTAVAIL;
625 	} else {
626 		/* If port is in reserved range, ensure caller
627 		 * has necessary privileges.
628 		 */
629 		if (addr->svm_port <= LAST_RESERVED_PORT &&
630 		    !capable(CAP_NET_BIND_SERVICE)) {
631 			return -EACCES;
632 		}
633 
634 		if (__vsock_find_bound_socket(&new_addr))
635 			return -EADDRINUSE;
636 	}
637 
638 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
639 
640 	/* Remove stream sockets from the unbound list and add them to the hash
641 	 * table for easy lookup by its address.  The unbound list is simply an
642 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
643 	 */
644 	__vsock_remove_bound(vsk);
645 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
646 
647 	return 0;
648 }
649 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)650 static int __vsock_bind_dgram(struct vsock_sock *vsk,
651 			      struct sockaddr_vm *addr)
652 {
653 	return vsk->transport->dgram_bind(vsk, addr);
654 }
655 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)656 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
657 {
658 	struct vsock_sock *vsk = vsock_sk(sk);
659 	int retval;
660 
661 	/* First ensure this socket isn't already bound. */
662 	if (vsock_addr_bound(&vsk->local_addr))
663 		return -EINVAL;
664 
665 	/* Now bind to the provided address or select appropriate values if
666 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
667 	 * like AF_INET prevents binding to a non-local IP address (in most
668 	 * cases), we only allow binding to a local CID.
669 	 */
670 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
671 		return -EADDRNOTAVAIL;
672 
673 	switch (sk->sk_socket->type) {
674 	case SOCK_STREAM:
675 		spin_lock_bh(&vsock_table_lock);
676 		retval = __vsock_bind_stream(vsk, addr);
677 		spin_unlock_bh(&vsock_table_lock);
678 		break;
679 
680 	case SOCK_DGRAM:
681 		retval = __vsock_bind_dgram(vsk, addr);
682 		break;
683 
684 	default:
685 		retval = -EINVAL;
686 		break;
687 	}
688 
689 	return retval;
690 }
691 
692 static void vsock_connect_timeout(struct work_struct *work);
693 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)694 static struct sock *__vsock_create(struct net *net,
695 				   struct socket *sock,
696 				   struct sock *parent,
697 				   gfp_t priority,
698 				   unsigned short type,
699 				   int kern)
700 {
701 	struct sock *sk;
702 	struct vsock_sock *psk;
703 	struct vsock_sock *vsk;
704 
705 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
706 	if (!sk)
707 		return NULL;
708 
709 	sock_init_data(sock, sk);
710 
711 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
712 	 * non-NULL. We make sure that our sockets always have a type by
713 	 * setting it here if needed.
714 	 */
715 	if (!sock)
716 		sk->sk_type = type;
717 
718 	vsk = vsock_sk(sk);
719 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
720 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
721 
722 	sk->sk_destruct = vsock_sk_destruct;
723 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
724 	sock_reset_flag(sk, SOCK_DONE);
725 
726 	INIT_LIST_HEAD(&vsk->bound_table);
727 	INIT_LIST_HEAD(&vsk->connected_table);
728 	vsk->listener = NULL;
729 	INIT_LIST_HEAD(&vsk->pending_links);
730 	INIT_LIST_HEAD(&vsk->accept_queue);
731 	vsk->rejected = false;
732 	vsk->sent_request = false;
733 	vsk->ignore_connecting_rst = false;
734 	vsk->peer_shutdown = 0;
735 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
736 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
737 
738 	psk = parent ? vsock_sk(parent) : NULL;
739 	if (parent) {
740 		vsk->trusted = psk->trusted;
741 		vsk->owner = get_cred(psk->owner);
742 		vsk->connect_timeout = psk->connect_timeout;
743 		vsk->buffer_size = psk->buffer_size;
744 		vsk->buffer_min_size = psk->buffer_min_size;
745 		vsk->buffer_max_size = psk->buffer_max_size;
746 		security_sk_clone(parent, sk);
747 	} else {
748 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
749 		vsk->owner = get_current_cred();
750 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
751 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
752 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
753 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
754 	}
755 
756 	return sk;
757 }
758 
__vsock_release(struct sock * sk,int level)759 static void __vsock_release(struct sock *sk, int level)
760 {
761 	if (sk) {
762 		struct sock *pending;
763 		struct vsock_sock *vsk;
764 
765 		vsk = vsock_sk(sk);
766 		pending = NULL;	/* Compiler warning. */
767 
768 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
769 		 * version to avoid the warning "possible recursive locking
770 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
771 		 * is the same as lock_sock(sk).
772 		 */
773 		lock_sock_nested(sk, level);
774 
775 		if (vsk->transport)
776 			vsk->transport->release(vsk);
777 		else if (sk->sk_type == SOCK_STREAM)
778 			vsock_remove_sock(vsk);
779 
780 		sock_orphan(sk);
781 		sk->sk_shutdown = SHUTDOWN_MASK;
782 
783 		skb_queue_purge(&sk->sk_receive_queue);
784 
785 		/* Clean up any sockets that never were accepted. */
786 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
787 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
788 			sock_put(pending);
789 		}
790 
791 		release_sock(sk);
792 		sock_put(sk);
793 	}
794 }
795 
vsock_sk_destruct(struct sock * sk)796 static void vsock_sk_destruct(struct sock *sk)
797 {
798 	struct vsock_sock *vsk = vsock_sk(sk);
799 
800 	vsock_deassign_transport(vsk);
801 
802 	/* When clearing these addresses, there's no need to set the family and
803 	 * possibly register the address family with the kernel.
804 	 */
805 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
806 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
807 
808 	put_cred(vsk->owner);
809 }
810 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)811 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
812 {
813 	int err;
814 
815 	err = sock_queue_rcv_skb(sk, skb);
816 	if (err)
817 		kfree_skb(skb);
818 
819 	return err;
820 }
821 
vsock_create_connected(struct sock * parent)822 struct sock *vsock_create_connected(struct sock *parent)
823 {
824 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
825 			      parent->sk_type, 0);
826 }
827 EXPORT_SYMBOL_GPL(vsock_create_connected);
828 
vsock_stream_has_data(struct vsock_sock * vsk)829 s64 vsock_stream_has_data(struct vsock_sock *vsk)
830 {
831 	return vsk->transport->stream_has_data(vsk);
832 }
833 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
834 
vsock_stream_has_space(struct vsock_sock * vsk)835 s64 vsock_stream_has_space(struct vsock_sock *vsk)
836 {
837 	return vsk->transport->stream_has_space(vsk);
838 }
839 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
840 
vsock_release(struct socket * sock)841 static int vsock_release(struct socket *sock)
842 {
843 	__vsock_release(sock->sk, 0);
844 	sock->sk = NULL;
845 	sock->state = SS_FREE;
846 
847 	return 0;
848 }
849 
850 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)851 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
852 {
853 	int err;
854 	struct sock *sk;
855 	struct sockaddr_vm *vm_addr;
856 
857 	sk = sock->sk;
858 
859 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
860 		return -EINVAL;
861 
862 	lock_sock(sk);
863 	err = __vsock_bind(sk, vm_addr);
864 	release_sock(sk);
865 
866 	return err;
867 }
868 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)869 static int vsock_getname(struct socket *sock,
870 			 struct sockaddr *addr, int peer)
871 {
872 	int err;
873 	struct sock *sk;
874 	struct vsock_sock *vsk;
875 	struct sockaddr_vm *vm_addr;
876 
877 	sk = sock->sk;
878 	vsk = vsock_sk(sk);
879 	err = 0;
880 
881 	lock_sock(sk);
882 
883 	if (peer) {
884 		if (sock->state != SS_CONNECTED) {
885 			err = -ENOTCONN;
886 			goto out;
887 		}
888 		vm_addr = &vsk->remote_addr;
889 	} else {
890 		vm_addr = &vsk->local_addr;
891 	}
892 
893 	if (!vm_addr) {
894 		err = -EINVAL;
895 		goto out;
896 	}
897 
898 	/* sys_getsockname() and sys_getpeername() pass us a
899 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
900 	 * that macro is defined in socket.c instead of .h, so we hardcode its
901 	 * value here.
902 	 */
903 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
904 	memcpy(addr, vm_addr, sizeof(*vm_addr));
905 	err = sizeof(*vm_addr);
906 
907 out:
908 	release_sock(sk);
909 	return err;
910 }
911 
vsock_shutdown(struct socket * sock,int mode)912 static int vsock_shutdown(struct socket *sock, int mode)
913 {
914 	int err;
915 	struct sock *sk;
916 
917 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
918 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
919 	 * here like the other address families do.  Note also that the
920 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
921 	 * which is what we want.
922 	 */
923 	mode++;
924 
925 	if ((mode & ~SHUTDOWN_MASK) || !mode)
926 		return -EINVAL;
927 
928 	/* If this is a STREAM socket and it is not connected then bail out
929 	 * immediately.  If it is a DGRAM socket then we must first kick the
930 	 * socket so that it wakes up from any sleeping calls, for example
931 	 * recv(), and then afterwards return the error.
932 	 */
933 
934 	sk = sock->sk;
935 
936 	lock_sock(sk);
937 	if (sock->state == SS_UNCONNECTED) {
938 		err = -ENOTCONN;
939 		if (sk->sk_type == SOCK_STREAM)
940 			goto out;
941 	} else {
942 		sock->state = SS_DISCONNECTING;
943 		err = 0;
944 	}
945 
946 	/* Receive and send shutdowns are treated alike. */
947 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
948 	if (mode) {
949 		sk->sk_shutdown |= mode;
950 		sk->sk_state_change(sk);
951 
952 		if (sk->sk_type == SOCK_STREAM) {
953 			sock_reset_flag(sk, SOCK_DONE);
954 			vsock_send_shutdown(sk, mode);
955 		}
956 	}
957 
958 out:
959 	release_sock(sk);
960 	return err;
961 }
962 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)963 static __poll_t vsock_poll(struct file *file, struct socket *sock,
964 			       poll_table *wait)
965 {
966 	struct sock *sk;
967 	__poll_t mask;
968 	struct vsock_sock *vsk;
969 
970 	sk = sock->sk;
971 	vsk = vsock_sk(sk);
972 
973 	poll_wait(file, sk_sleep(sk), wait);
974 	mask = 0;
975 
976 	if (sk->sk_err)
977 		/* Signify that there has been an error on this socket. */
978 		mask |= EPOLLERR;
979 
980 	/* INET sockets treat local write shutdown and peer write shutdown as a
981 	 * case of EPOLLHUP set.
982 	 */
983 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
984 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
985 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
986 		mask |= EPOLLHUP;
987 	}
988 
989 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
990 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
991 		mask |= EPOLLRDHUP;
992 	}
993 
994 	if (sock->type == SOCK_DGRAM) {
995 		/* For datagram sockets we can read if there is something in
996 		 * the queue and write as long as the socket isn't shutdown for
997 		 * sending.
998 		 */
999 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1000 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1001 			mask |= EPOLLIN | EPOLLRDNORM;
1002 		}
1003 
1004 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1005 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1006 
1007 	} else if (sock->type == SOCK_STREAM) {
1008 		const struct vsock_transport *transport;
1009 
1010 		lock_sock(sk);
1011 
1012 		transport = vsk->transport;
1013 
1014 		/* Listening sockets that have connections in their accept
1015 		 * queue can be read.
1016 		 */
1017 		if (sk->sk_state == TCP_LISTEN
1018 		    && !vsock_is_accept_queue_empty(sk))
1019 			mask |= EPOLLIN | EPOLLRDNORM;
1020 
1021 		/* If there is something in the queue then we can read. */
1022 		if (transport && transport->stream_is_active(vsk) &&
1023 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1024 			bool data_ready_now = false;
1025 			int ret = transport->notify_poll_in(
1026 					vsk, 1, &data_ready_now);
1027 			if (ret < 0) {
1028 				mask |= EPOLLERR;
1029 			} else {
1030 				if (data_ready_now)
1031 					mask |= EPOLLIN | EPOLLRDNORM;
1032 
1033 			}
1034 		}
1035 
1036 		/* Sockets whose connections have been closed, reset, or
1037 		 * terminated should also be considered read, and we check the
1038 		 * shutdown flag for that.
1039 		 */
1040 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1041 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1042 			mask |= EPOLLIN | EPOLLRDNORM;
1043 		}
1044 
1045 		/* Connected sockets that can produce data can be written. */
1046 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1047 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1048 				bool space_avail_now = false;
1049 				int ret = transport->notify_poll_out(
1050 						vsk, 1, &space_avail_now);
1051 				if (ret < 0) {
1052 					mask |= EPOLLERR;
1053 				} else {
1054 					if (space_avail_now)
1055 						/* Remove EPOLLWRBAND since INET
1056 						 * sockets are not setting it.
1057 						 */
1058 						mask |= EPOLLOUT | EPOLLWRNORM;
1059 
1060 				}
1061 			}
1062 		}
1063 
1064 		/* Simulate INET socket poll behaviors, which sets
1065 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1066 		 * but local send is not shutdown.
1067 		 */
1068 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1069 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1070 				mask |= EPOLLOUT | EPOLLWRNORM;
1071 
1072 		}
1073 
1074 		release_sock(sk);
1075 	}
1076 
1077 	return mask;
1078 }
1079 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1080 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1081 			       size_t len)
1082 {
1083 	int err;
1084 	struct sock *sk;
1085 	struct vsock_sock *vsk;
1086 	struct sockaddr_vm *remote_addr;
1087 	const struct vsock_transport *transport;
1088 
1089 	if (msg->msg_flags & MSG_OOB)
1090 		return -EOPNOTSUPP;
1091 
1092 	/* For now, MSG_DONTWAIT is always assumed... */
1093 	err = 0;
1094 	sk = sock->sk;
1095 	vsk = vsock_sk(sk);
1096 
1097 	lock_sock(sk);
1098 
1099 	transport = vsk->transport;
1100 
1101 	err = vsock_auto_bind(vsk);
1102 	if (err)
1103 		goto out;
1104 
1105 
1106 	/* If the provided message contains an address, use that.  Otherwise
1107 	 * fall back on the socket's remote handle (if it has been connected).
1108 	 */
1109 	if (msg->msg_name &&
1110 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1111 			    &remote_addr) == 0) {
1112 		/* Ensure this address is of the right type and is a valid
1113 		 * destination.
1114 		 */
1115 
1116 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1117 			remote_addr->svm_cid = transport->get_local_cid();
1118 
1119 		if (!vsock_addr_bound(remote_addr)) {
1120 			err = -EINVAL;
1121 			goto out;
1122 		}
1123 	} else if (sock->state == SS_CONNECTED) {
1124 		remote_addr = &vsk->remote_addr;
1125 
1126 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1127 			remote_addr->svm_cid = transport->get_local_cid();
1128 
1129 		/* XXX Should connect() or this function ensure remote_addr is
1130 		 * bound?
1131 		 */
1132 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1133 			err = -EINVAL;
1134 			goto out;
1135 		}
1136 	} else {
1137 		err = -EINVAL;
1138 		goto out;
1139 	}
1140 
1141 	if (!transport->dgram_allow(remote_addr->svm_cid,
1142 				    remote_addr->svm_port)) {
1143 		err = -EINVAL;
1144 		goto out;
1145 	}
1146 
1147 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1148 
1149 out:
1150 	release_sock(sk);
1151 	return err;
1152 }
1153 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1154 static int vsock_dgram_connect(struct socket *sock,
1155 			       struct sockaddr *addr, int addr_len, int flags)
1156 {
1157 	int err;
1158 	struct sock *sk;
1159 	struct vsock_sock *vsk;
1160 	struct sockaddr_vm *remote_addr;
1161 
1162 	sk = sock->sk;
1163 	vsk = vsock_sk(sk);
1164 
1165 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1166 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1167 		lock_sock(sk);
1168 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1169 				VMADDR_PORT_ANY);
1170 		sock->state = SS_UNCONNECTED;
1171 		release_sock(sk);
1172 		return 0;
1173 	} else if (err != 0)
1174 		return -EINVAL;
1175 
1176 	lock_sock(sk);
1177 
1178 	err = vsock_auto_bind(vsk);
1179 	if (err)
1180 		goto out;
1181 
1182 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1183 					 remote_addr->svm_port)) {
1184 		err = -EINVAL;
1185 		goto out;
1186 	}
1187 
1188 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1189 	sock->state = SS_CONNECTED;
1190 
1191 out:
1192 	release_sock(sk);
1193 	return err;
1194 }
1195 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1196 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1197 			       size_t len, int flags)
1198 {
1199 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1200 
1201 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1202 }
1203 
1204 static const struct proto_ops vsock_dgram_ops = {
1205 	.family = PF_VSOCK,
1206 	.owner = THIS_MODULE,
1207 	.release = vsock_release,
1208 	.bind = vsock_bind,
1209 	.connect = vsock_dgram_connect,
1210 	.socketpair = sock_no_socketpair,
1211 	.accept = sock_no_accept,
1212 	.getname = vsock_getname,
1213 	.poll = vsock_poll,
1214 	.ioctl = sock_no_ioctl,
1215 	.listen = sock_no_listen,
1216 	.shutdown = vsock_shutdown,
1217 	.sendmsg = vsock_dgram_sendmsg,
1218 	.recvmsg = vsock_dgram_recvmsg,
1219 	.mmap = sock_no_mmap,
1220 	.sendpage = sock_no_sendpage,
1221 };
1222 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1223 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1224 {
1225 	const struct vsock_transport *transport = vsk->transport;
1226 
1227 	if (!transport || !transport->cancel_pkt)
1228 		return -EOPNOTSUPP;
1229 
1230 	return transport->cancel_pkt(vsk);
1231 }
1232 
vsock_connect_timeout(struct work_struct * work)1233 static void vsock_connect_timeout(struct work_struct *work)
1234 {
1235 	struct sock *sk;
1236 	struct vsock_sock *vsk;
1237 
1238 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1239 	sk = sk_vsock(vsk);
1240 
1241 	lock_sock(sk);
1242 	if (sk->sk_state == TCP_SYN_SENT &&
1243 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1244 		sk->sk_state = TCP_CLOSE;
1245 		sk->sk_socket->state = SS_UNCONNECTED;
1246 		sk->sk_err = ETIMEDOUT;
1247 		sk->sk_error_report(sk);
1248 		vsock_transport_cancel_pkt(vsk);
1249 	}
1250 	release_sock(sk);
1251 
1252 	sock_put(sk);
1253 }
1254 
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1255 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1256 				int addr_len, int flags)
1257 {
1258 	int err;
1259 	struct sock *sk;
1260 	struct vsock_sock *vsk;
1261 	const struct vsock_transport *transport;
1262 	struct sockaddr_vm *remote_addr;
1263 	long timeout;
1264 	DEFINE_WAIT(wait);
1265 
1266 	err = 0;
1267 	sk = sock->sk;
1268 	vsk = vsock_sk(sk);
1269 
1270 	lock_sock(sk);
1271 
1272 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1273 	switch (sock->state) {
1274 	case SS_CONNECTED:
1275 		err = -EISCONN;
1276 		goto out;
1277 	case SS_DISCONNECTING:
1278 		err = -EINVAL;
1279 		goto out;
1280 	case SS_CONNECTING:
1281 		/* This continues on so we can move sock into the SS_CONNECTED
1282 		 * state once the connection has completed (at which point err
1283 		 * will be set to zero also).  Otherwise, we will either wait
1284 		 * for the connection or return -EALREADY should this be a
1285 		 * non-blocking call.
1286 		 */
1287 		err = -EALREADY;
1288 		if (flags & O_NONBLOCK)
1289 			goto out;
1290 		break;
1291 	default:
1292 		if ((sk->sk_state == TCP_LISTEN) ||
1293 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1294 			err = -EINVAL;
1295 			goto out;
1296 		}
1297 
1298 		/* Set the remote address that we are connecting to. */
1299 		memcpy(&vsk->remote_addr, remote_addr,
1300 		       sizeof(vsk->remote_addr));
1301 
1302 		err = vsock_assign_transport(vsk, NULL);
1303 		if (err)
1304 			goto out;
1305 
1306 		transport = vsk->transport;
1307 
1308 		/* The hypervisor and well-known contexts do not have socket
1309 		 * endpoints.
1310 		 */
1311 		if (!transport ||
1312 		    !transport->stream_allow(remote_addr->svm_cid,
1313 					     remote_addr->svm_port)) {
1314 			err = -ENETUNREACH;
1315 			goto out;
1316 		}
1317 
1318 		err = vsock_auto_bind(vsk);
1319 		if (err)
1320 			goto out;
1321 
1322 		sk->sk_state = TCP_SYN_SENT;
1323 
1324 		err = transport->connect(vsk);
1325 		if (err < 0)
1326 			goto out;
1327 
1328 		/* Mark sock as connecting and set the error code to in
1329 		 * progress in case this is a non-blocking connect.
1330 		 */
1331 		sock->state = SS_CONNECTING;
1332 		err = -EINPROGRESS;
1333 	}
1334 
1335 	/* The receive path will handle all communication until we are able to
1336 	 * enter the connected state.  Here we wait for the connection to be
1337 	 * completed or a notification of an error.
1338 	 */
1339 	timeout = vsk->connect_timeout;
1340 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1341 
1342 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1343 		if (flags & O_NONBLOCK) {
1344 			/* If we're not going to block, we schedule a timeout
1345 			 * function to generate a timeout on the connection
1346 			 * attempt, in case the peer doesn't respond in a
1347 			 * timely manner. We hold on to the socket until the
1348 			 * timeout fires.
1349 			 */
1350 			sock_hold(sk);
1351 
1352 			/* If the timeout function is already scheduled,
1353 			 * reschedule it, then ungrab the socket refcount to
1354 			 * keep it balanced.
1355 			 */
1356 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1357 					     timeout))
1358 				sock_put(sk);
1359 
1360 			/* Skip ahead to preserve error code set above. */
1361 			goto out_wait;
1362 		}
1363 
1364 		release_sock(sk);
1365 		timeout = schedule_timeout(timeout);
1366 		lock_sock(sk);
1367 
1368 		if (signal_pending(current)) {
1369 			err = sock_intr_errno(timeout);
1370 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1371 			sock->state = SS_UNCONNECTED;
1372 			vsock_transport_cancel_pkt(vsk);
1373 			vsock_remove_connected(vsk);
1374 			goto out_wait;
1375 		} else if (timeout == 0) {
1376 			err = -ETIMEDOUT;
1377 			sk->sk_state = TCP_CLOSE;
1378 			sock->state = SS_UNCONNECTED;
1379 			vsock_transport_cancel_pkt(vsk);
1380 			goto out_wait;
1381 		}
1382 
1383 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1384 	}
1385 
1386 	if (sk->sk_err) {
1387 		err = -sk->sk_err;
1388 		sk->sk_state = TCP_CLOSE;
1389 		sock->state = SS_UNCONNECTED;
1390 	} else {
1391 		err = 0;
1392 	}
1393 
1394 out_wait:
1395 	finish_wait(sk_sleep(sk), &wait);
1396 out:
1397 	release_sock(sk);
1398 	return err;
1399 }
1400 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1401 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1402 			bool kern)
1403 {
1404 	struct sock *listener;
1405 	int err;
1406 	struct sock *connected;
1407 	struct vsock_sock *vconnected;
1408 	long timeout;
1409 	DEFINE_WAIT(wait);
1410 
1411 	err = 0;
1412 	listener = sock->sk;
1413 
1414 	lock_sock(listener);
1415 
1416 	if (sock->type != SOCK_STREAM) {
1417 		err = -EOPNOTSUPP;
1418 		goto out;
1419 	}
1420 
1421 	if (listener->sk_state != TCP_LISTEN) {
1422 		err = -EINVAL;
1423 		goto out;
1424 	}
1425 
1426 	/* Wait for children sockets to appear; these are the new sockets
1427 	 * created upon connection establishment.
1428 	 */
1429 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1430 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1431 
1432 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1433 	       listener->sk_err == 0) {
1434 		release_sock(listener);
1435 		timeout = schedule_timeout(timeout);
1436 		finish_wait(sk_sleep(listener), &wait);
1437 		lock_sock(listener);
1438 
1439 		if (signal_pending(current)) {
1440 			err = sock_intr_errno(timeout);
1441 			goto out;
1442 		} else if (timeout == 0) {
1443 			err = -EAGAIN;
1444 			goto out;
1445 		}
1446 
1447 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1448 	}
1449 	finish_wait(sk_sleep(listener), &wait);
1450 
1451 	if (listener->sk_err)
1452 		err = -listener->sk_err;
1453 
1454 	if (connected) {
1455 		sk_acceptq_removed(listener);
1456 
1457 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1458 		vconnected = vsock_sk(connected);
1459 
1460 		/* If the listener socket has received an error, then we should
1461 		 * reject this socket and return.  Note that we simply mark the
1462 		 * socket rejected, drop our reference, and let the cleanup
1463 		 * function handle the cleanup; the fact that we found it in
1464 		 * the listener's accept queue guarantees that the cleanup
1465 		 * function hasn't run yet.
1466 		 */
1467 		if (err) {
1468 			vconnected->rejected = true;
1469 		} else {
1470 			newsock->state = SS_CONNECTED;
1471 			sock_graft(connected, newsock);
1472 		}
1473 
1474 		release_sock(connected);
1475 		sock_put(connected);
1476 	}
1477 
1478 out:
1479 	release_sock(listener);
1480 	return err;
1481 }
1482 
vsock_listen(struct socket * sock,int backlog)1483 static int vsock_listen(struct socket *sock, int backlog)
1484 {
1485 	int err;
1486 	struct sock *sk;
1487 	struct vsock_sock *vsk;
1488 
1489 	sk = sock->sk;
1490 
1491 	lock_sock(sk);
1492 
1493 	if (sock->type != SOCK_STREAM) {
1494 		err = -EOPNOTSUPP;
1495 		goto out;
1496 	}
1497 
1498 	if (sock->state != SS_UNCONNECTED) {
1499 		err = -EINVAL;
1500 		goto out;
1501 	}
1502 
1503 	vsk = vsock_sk(sk);
1504 
1505 	if (!vsock_addr_bound(&vsk->local_addr)) {
1506 		err = -EINVAL;
1507 		goto out;
1508 	}
1509 
1510 	sk->sk_max_ack_backlog = backlog;
1511 	sk->sk_state = TCP_LISTEN;
1512 
1513 	err = 0;
1514 
1515 out:
1516 	release_sock(sk);
1517 	return err;
1518 }
1519 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1520 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1521 				     const struct vsock_transport *transport,
1522 				     u64 val)
1523 {
1524 	if (val > vsk->buffer_max_size)
1525 		val = vsk->buffer_max_size;
1526 
1527 	if (val < vsk->buffer_min_size)
1528 		val = vsk->buffer_min_size;
1529 
1530 	if (val != vsk->buffer_size &&
1531 	    transport && transport->notify_buffer_size)
1532 		transport->notify_buffer_size(vsk, &val);
1533 
1534 	vsk->buffer_size = val;
1535 }
1536 
vsock_stream_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1537 static int vsock_stream_setsockopt(struct socket *sock,
1538 				   int level,
1539 				   int optname,
1540 				   sockptr_t optval,
1541 				   unsigned int optlen)
1542 {
1543 	int err;
1544 	struct sock *sk;
1545 	struct vsock_sock *vsk;
1546 	const struct vsock_transport *transport;
1547 	u64 val;
1548 
1549 	if (level != AF_VSOCK)
1550 		return -ENOPROTOOPT;
1551 
1552 #define COPY_IN(_v)                                       \
1553 	do {						  \
1554 		if (optlen < sizeof(_v)) {		  \
1555 			err = -EINVAL;			  \
1556 			goto exit;			  \
1557 		}					  \
1558 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1559 			err = -EFAULT;					\
1560 			goto exit;					\
1561 		}							\
1562 	} while (0)
1563 
1564 	err = 0;
1565 	sk = sock->sk;
1566 	vsk = vsock_sk(sk);
1567 
1568 	lock_sock(sk);
1569 
1570 	transport = vsk->transport;
1571 
1572 	switch (optname) {
1573 	case SO_VM_SOCKETS_BUFFER_SIZE:
1574 		COPY_IN(val);
1575 		vsock_update_buffer_size(vsk, transport, val);
1576 		break;
1577 
1578 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1579 		COPY_IN(val);
1580 		vsk->buffer_max_size = val;
1581 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1582 		break;
1583 
1584 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1585 		COPY_IN(val);
1586 		vsk->buffer_min_size = val;
1587 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1588 		break;
1589 
1590 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1591 		struct __kernel_old_timeval tv;
1592 		COPY_IN(tv);
1593 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1594 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1595 			vsk->connect_timeout = tv.tv_sec * HZ +
1596 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1597 			if (vsk->connect_timeout == 0)
1598 				vsk->connect_timeout =
1599 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1600 
1601 		} else {
1602 			err = -ERANGE;
1603 		}
1604 		break;
1605 	}
1606 
1607 	default:
1608 		err = -ENOPROTOOPT;
1609 		break;
1610 	}
1611 
1612 #undef COPY_IN
1613 
1614 exit:
1615 	release_sock(sk);
1616 	return err;
1617 }
1618 
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1619 static int vsock_stream_getsockopt(struct socket *sock,
1620 				   int level, int optname,
1621 				   char __user *optval,
1622 				   int __user *optlen)
1623 {
1624 	int err;
1625 	int len;
1626 	struct sock *sk;
1627 	struct vsock_sock *vsk;
1628 	u64 val;
1629 
1630 	if (level != AF_VSOCK)
1631 		return -ENOPROTOOPT;
1632 
1633 	err = get_user(len, optlen);
1634 	if (err != 0)
1635 		return err;
1636 
1637 #define COPY_OUT(_v)                            \
1638 	do {					\
1639 		if (len < sizeof(_v))		\
1640 			return -EINVAL;		\
1641 						\
1642 		len = sizeof(_v);		\
1643 		if (copy_to_user(optval, &_v, len) != 0)	\
1644 			return -EFAULT;				\
1645 								\
1646 	} while (0)
1647 
1648 	err = 0;
1649 	sk = sock->sk;
1650 	vsk = vsock_sk(sk);
1651 
1652 	switch (optname) {
1653 	case SO_VM_SOCKETS_BUFFER_SIZE:
1654 		val = vsk->buffer_size;
1655 		COPY_OUT(val);
1656 		break;
1657 
1658 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1659 		val = vsk->buffer_max_size;
1660 		COPY_OUT(val);
1661 		break;
1662 
1663 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1664 		val = vsk->buffer_min_size;
1665 		COPY_OUT(val);
1666 		break;
1667 
1668 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1669 		struct __kernel_old_timeval tv;
1670 		tv.tv_sec = vsk->connect_timeout / HZ;
1671 		tv.tv_usec =
1672 		    (vsk->connect_timeout -
1673 		     tv.tv_sec * HZ) * (1000000 / HZ);
1674 		COPY_OUT(tv);
1675 		break;
1676 	}
1677 	default:
1678 		return -ENOPROTOOPT;
1679 	}
1680 
1681 	err = put_user(len, optlen);
1682 	if (err != 0)
1683 		return -EFAULT;
1684 
1685 #undef COPY_OUT
1686 
1687 	return 0;
1688 }
1689 
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1690 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1691 				size_t len)
1692 {
1693 	struct sock *sk;
1694 	struct vsock_sock *vsk;
1695 	const struct vsock_transport *transport;
1696 	ssize_t total_written;
1697 	long timeout;
1698 	int err;
1699 	struct vsock_transport_send_notify_data send_data;
1700 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1701 
1702 	sk = sock->sk;
1703 	vsk = vsock_sk(sk);
1704 	total_written = 0;
1705 	err = 0;
1706 
1707 	if (msg->msg_flags & MSG_OOB)
1708 		return -EOPNOTSUPP;
1709 
1710 	lock_sock(sk);
1711 
1712 	transport = vsk->transport;
1713 
1714 	/* Callers should not provide a destination with stream sockets. */
1715 	if (msg->msg_namelen) {
1716 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1717 		goto out;
1718 	}
1719 
1720 	/* Send data only if both sides are not shutdown in the direction. */
1721 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1722 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1723 		err = -EPIPE;
1724 		goto out;
1725 	}
1726 
1727 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1728 	    !vsock_addr_bound(&vsk->local_addr)) {
1729 		err = -ENOTCONN;
1730 		goto out;
1731 	}
1732 
1733 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1734 		err = -EDESTADDRREQ;
1735 		goto out;
1736 	}
1737 
1738 	/* Wait for room in the produce queue to enqueue our user's data. */
1739 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1740 
1741 	err = transport->notify_send_init(vsk, &send_data);
1742 	if (err < 0)
1743 		goto out;
1744 
1745 	while (total_written < len) {
1746 		ssize_t written;
1747 
1748 		add_wait_queue(sk_sleep(sk), &wait);
1749 		while (vsock_stream_has_space(vsk) == 0 &&
1750 		       sk->sk_err == 0 &&
1751 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1752 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1753 
1754 			/* Don't wait for non-blocking sockets. */
1755 			if (timeout == 0) {
1756 				err = -EAGAIN;
1757 				remove_wait_queue(sk_sleep(sk), &wait);
1758 				goto out_err;
1759 			}
1760 
1761 			err = transport->notify_send_pre_block(vsk, &send_data);
1762 			if (err < 0) {
1763 				remove_wait_queue(sk_sleep(sk), &wait);
1764 				goto out_err;
1765 			}
1766 
1767 			release_sock(sk);
1768 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1769 			lock_sock(sk);
1770 			if (signal_pending(current)) {
1771 				err = sock_intr_errno(timeout);
1772 				remove_wait_queue(sk_sleep(sk), &wait);
1773 				goto out_err;
1774 			} else if (timeout == 0) {
1775 				err = -EAGAIN;
1776 				remove_wait_queue(sk_sleep(sk), &wait);
1777 				goto out_err;
1778 			}
1779 		}
1780 		remove_wait_queue(sk_sleep(sk), &wait);
1781 
1782 		/* These checks occur both as part of and after the loop
1783 		 * conditional since we need to check before and after
1784 		 * sleeping.
1785 		 */
1786 		if (sk->sk_err) {
1787 			err = -sk->sk_err;
1788 			goto out_err;
1789 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1790 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1791 			err = -EPIPE;
1792 			goto out_err;
1793 		}
1794 
1795 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1796 		if (err < 0)
1797 			goto out_err;
1798 
1799 		/* Note that enqueue will only write as many bytes as are free
1800 		 * in the produce queue, so we don't need to ensure len is
1801 		 * smaller than the queue size.  It is the caller's
1802 		 * responsibility to check how many bytes we were able to send.
1803 		 */
1804 
1805 		written = transport->stream_enqueue(
1806 				vsk, msg,
1807 				len - total_written);
1808 		if (written < 0) {
1809 			err = -ENOMEM;
1810 			goto out_err;
1811 		}
1812 
1813 		total_written += written;
1814 
1815 		err = transport->notify_send_post_enqueue(
1816 				vsk, written, &send_data);
1817 		if (err < 0)
1818 			goto out_err;
1819 
1820 	}
1821 
1822 out_err:
1823 	if (total_written > 0)
1824 		err = total_written;
1825 out:
1826 	release_sock(sk);
1827 	return err;
1828 }
1829 
1830 
1831 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1832 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1833 		     int flags)
1834 {
1835 	struct sock *sk;
1836 	struct vsock_sock *vsk;
1837 	const struct vsock_transport *transport;
1838 	int err;
1839 	size_t target;
1840 	ssize_t copied;
1841 	long timeout;
1842 	struct vsock_transport_recv_notify_data recv_data;
1843 
1844 	DEFINE_WAIT(wait);
1845 
1846 	sk = sock->sk;
1847 	vsk = vsock_sk(sk);
1848 	err = 0;
1849 
1850 	lock_sock(sk);
1851 
1852 	transport = vsk->transport;
1853 
1854 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1855 		/* Recvmsg is supposed to return 0 if a peer performs an
1856 		 * orderly shutdown. Differentiate between that case and when a
1857 		 * peer has not connected or a local shutdown occured with the
1858 		 * SOCK_DONE flag.
1859 		 */
1860 		if (sock_flag(sk, SOCK_DONE))
1861 			err = 0;
1862 		else
1863 			err = -ENOTCONN;
1864 
1865 		goto out;
1866 	}
1867 
1868 	if (flags & MSG_OOB) {
1869 		err = -EOPNOTSUPP;
1870 		goto out;
1871 	}
1872 
1873 	/* We don't check peer_shutdown flag here since peer may actually shut
1874 	 * down, but there can be data in the queue that a local socket can
1875 	 * receive.
1876 	 */
1877 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1878 		err = 0;
1879 		goto out;
1880 	}
1881 
1882 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1883 	 * is not an error.  We may as well bail out now.
1884 	 */
1885 	if (!len) {
1886 		err = 0;
1887 		goto out;
1888 	}
1889 
1890 	/* We must not copy less than target bytes into the user's buffer
1891 	 * before returning successfully, so we wait for the consume queue to
1892 	 * have that much data to consume before dequeueing.  Note that this
1893 	 * makes it impossible to handle cases where target is greater than the
1894 	 * queue size.
1895 	 */
1896 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1897 	if (target >= transport->stream_rcvhiwat(vsk)) {
1898 		err = -ENOMEM;
1899 		goto out;
1900 	}
1901 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1902 	copied = 0;
1903 
1904 	err = transport->notify_recv_init(vsk, target, &recv_data);
1905 	if (err < 0)
1906 		goto out;
1907 
1908 
1909 	while (1) {
1910 		s64 ready;
1911 
1912 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1913 		ready = vsock_stream_has_data(vsk);
1914 
1915 		if (ready == 0) {
1916 			if (sk->sk_err != 0 ||
1917 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1918 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1919 				finish_wait(sk_sleep(sk), &wait);
1920 				break;
1921 			}
1922 			/* Don't wait for non-blocking sockets. */
1923 			if (timeout == 0) {
1924 				err = -EAGAIN;
1925 				finish_wait(sk_sleep(sk), &wait);
1926 				break;
1927 			}
1928 
1929 			err = transport->notify_recv_pre_block(
1930 					vsk, target, &recv_data);
1931 			if (err < 0) {
1932 				finish_wait(sk_sleep(sk), &wait);
1933 				break;
1934 			}
1935 			release_sock(sk);
1936 			timeout = schedule_timeout(timeout);
1937 			lock_sock(sk);
1938 
1939 			if (signal_pending(current)) {
1940 				err = sock_intr_errno(timeout);
1941 				finish_wait(sk_sleep(sk), &wait);
1942 				break;
1943 			} else if (timeout == 0) {
1944 				err = -EAGAIN;
1945 				finish_wait(sk_sleep(sk), &wait);
1946 				break;
1947 			}
1948 		} else {
1949 			ssize_t read;
1950 
1951 			finish_wait(sk_sleep(sk), &wait);
1952 
1953 			if (ready < 0) {
1954 				/* Invalid queue pair content. XXX This should
1955 				* be changed to a connection reset in a later
1956 				* change.
1957 				*/
1958 
1959 				err = -ENOMEM;
1960 				goto out;
1961 			}
1962 
1963 			err = transport->notify_recv_pre_dequeue(
1964 					vsk, target, &recv_data);
1965 			if (err < 0)
1966 				break;
1967 
1968 			read = transport->stream_dequeue(
1969 					vsk, msg,
1970 					len - copied, flags);
1971 			if (read < 0) {
1972 				err = -ENOMEM;
1973 				break;
1974 			}
1975 
1976 			copied += read;
1977 
1978 			err = transport->notify_recv_post_dequeue(
1979 					vsk, target, read,
1980 					!(flags & MSG_PEEK), &recv_data);
1981 			if (err < 0)
1982 				goto out;
1983 
1984 			if (read >= target || flags & MSG_PEEK)
1985 				break;
1986 
1987 			target -= read;
1988 		}
1989 	}
1990 
1991 	if (sk->sk_err)
1992 		err = -sk->sk_err;
1993 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1994 		err = 0;
1995 
1996 	if (copied > 0)
1997 		err = copied;
1998 
1999 out:
2000 	release_sock(sk);
2001 	return err;
2002 }
2003 
2004 static const struct proto_ops vsock_stream_ops = {
2005 	.family = PF_VSOCK,
2006 	.owner = THIS_MODULE,
2007 	.release = vsock_release,
2008 	.bind = vsock_bind,
2009 	.connect = vsock_stream_connect,
2010 	.socketpair = sock_no_socketpair,
2011 	.accept = vsock_accept,
2012 	.getname = vsock_getname,
2013 	.poll = vsock_poll,
2014 	.ioctl = sock_no_ioctl,
2015 	.listen = vsock_listen,
2016 	.shutdown = vsock_shutdown,
2017 	.setsockopt = vsock_stream_setsockopt,
2018 	.getsockopt = vsock_stream_getsockopt,
2019 	.sendmsg = vsock_stream_sendmsg,
2020 	.recvmsg = vsock_stream_recvmsg,
2021 	.mmap = sock_no_mmap,
2022 	.sendpage = sock_no_sendpage,
2023 };
2024 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2025 static int vsock_create(struct net *net, struct socket *sock,
2026 			int protocol, int kern)
2027 {
2028 	struct vsock_sock *vsk;
2029 	struct sock *sk;
2030 	int ret;
2031 
2032 	if (!sock)
2033 		return -EINVAL;
2034 
2035 	if (protocol && protocol != PF_VSOCK)
2036 		return -EPROTONOSUPPORT;
2037 
2038 	switch (sock->type) {
2039 	case SOCK_DGRAM:
2040 		sock->ops = &vsock_dgram_ops;
2041 		break;
2042 	case SOCK_STREAM:
2043 		sock->ops = &vsock_stream_ops;
2044 		break;
2045 	default:
2046 		return -ESOCKTNOSUPPORT;
2047 	}
2048 
2049 	sock->state = SS_UNCONNECTED;
2050 
2051 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2052 	if (!sk)
2053 		return -ENOMEM;
2054 
2055 	vsk = vsock_sk(sk);
2056 
2057 	if (sock->type == SOCK_DGRAM) {
2058 		ret = vsock_assign_transport(vsk, NULL);
2059 		if (ret < 0) {
2060 			sock_put(sk);
2061 			return ret;
2062 		}
2063 	}
2064 
2065 	vsock_insert_unbound(vsk);
2066 
2067 	return 0;
2068 }
2069 
2070 static const struct net_proto_family vsock_family_ops = {
2071 	.family = AF_VSOCK,
2072 	.create = vsock_create,
2073 	.owner = THIS_MODULE,
2074 };
2075 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2076 static long vsock_dev_do_ioctl(struct file *filp,
2077 			       unsigned int cmd, void __user *ptr)
2078 {
2079 	u32 __user *p = ptr;
2080 	u32 cid = VMADDR_CID_ANY;
2081 	int retval = 0;
2082 
2083 	switch (cmd) {
2084 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2085 		/* To be compatible with the VMCI behavior, we prioritize the
2086 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2087 		 */
2088 		if (transport_g2h)
2089 			cid = transport_g2h->get_local_cid();
2090 		else if (transport_h2g)
2091 			cid = transport_h2g->get_local_cid();
2092 
2093 		if (put_user(cid, p) != 0)
2094 			retval = -EFAULT;
2095 		break;
2096 
2097 	default:
2098 		pr_err("Unknown ioctl %d\n", cmd);
2099 		retval = -EINVAL;
2100 	}
2101 
2102 	return retval;
2103 }
2104 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2105 static long vsock_dev_ioctl(struct file *filp,
2106 			    unsigned int cmd, unsigned long arg)
2107 {
2108 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2109 }
2110 
2111 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2112 static long vsock_dev_compat_ioctl(struct file *filp,
2113 				   unsigned int cmd, unsigned long arg)
2114 {
2115 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2116 }
2117 #endif
2118 
2119 static const struct file_operations vsock_device_ops = {
2120 	.owner		= THIS_MODULE,
2121 	.unlocked_ioctl	= vsock_dev_ioctl,
2122 #ifdef CONFIG_COMPAT
2123 	.compat_ioctl	= vsock_dev_compat_ioctl,
2124 #endif
2125 	.open		= nonseekable_open,
2126 };
2127 
2128 static struct miscdevice vsock_device = {
2129 	.name		= "vsock",
2130 	.fops		= &vsock_device_ops,
2131 };
2132 
vsock_init(void)2133 static int __init vsock_init(void)
2134 {
2135 	int err = 0;
2136 
2137 	vsock_init_tables();
2138 
2139 	vsock_proto.owner = THIS_MODULE;
2140 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2141 	err = misc_register(&vsock_device);
2142 	if (err) {
2143 		pr_err("Failed to register misc device\n");
2144 		goto err_reset_transport;
2145 	}
2146 
2147 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2148 	if (err) {
2149 		pr_err("Cannot register vsock protocol\n");
2150 		goto err_deregister_misc;
2151 	}
2152 
2153 	err = sock_register(&vsock_family_ops);
2154 	if (err) {
2155 		pr_err("could not register af_vsock (%d) address family: %d\n",
2156 		       AF_VSOCK, err);
2157 		goto err_unregister_proto;
2158 	}
2159 
2160 	return 0;
2161 
2162 err_unregister_proto:
2163 	proto_unregister(&vsock_proto);
2164 err_deregister_misc:
2165 	misc_deregister(&vsock_device);
2166 err_reset_transport:
2167 	return err;
2168 }
2169 
vsock_exit(void)2170 static void __exit vsock_exit(void)
2171 {
2172 	misc_deregister(&vsock_device);
2173 	sock_unregister(AF_VSOCK);
2174 	proto_unregister(&vsock_proto);
2175 }
2176 
vsock_core_get_transport(struct vsock_sock * vsk)2177 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2178 {
2179 	return vsk->transport;
2180 }
2181 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2182 
vsock_core_register(const struct vsock_transport * t,int features)2183 int vsock_core_register(const struct vsock_transport *t, int features)
2184 {
2185 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2186 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2187 
2188 	if (err)
2189 		return err;
2190 
2191 	t_h2g = transport_h2g;
2192 	t_g2h = transport_g2h;
2193 	t_dgram = transport_dgram;
2194 	t_local = transport_local;
2195 
2196 	if (features & VSOCK_TRANSPORT_F_H2G) {
2197 		if (t_h2g) {
2198 			err = -EBUSY;
2199 			goto err_busy;
2200 		}
2201 		t_h2g = t;
2202 	}
2203 
2204 	if (features & VSOCK_TRANSPORT_F_G2H) {
2205 		if (t_g2h) {
2206 			err = -EBUSY;
2207 			goto err_busy;
2208 		}
2209 		t_g2h = t;
2210 	}
2211 
2212 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2213 		if (t_dgram) {
2214 			err = -EBUSY;
2215 			goto err_busy;
2216 		}
2217 		t_dgram = t;
2218 	}
2219 
2220 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2221 		if (t_local) {
2222 			err = -EBUSY;
2223 			goto err_busy;
2224 		}
2225 		t_local = t;
2226 	}
2227 
2228 	transport_h2g = t_h2g;
2229 	transport_g2h = t_g2h;
2230 	transport_dgram = t_dgram;
2231 	transport_local = t_local;
2232 
2233 err_busy:
2234 	mutex_unlock(&vsock_register_mutex);
2235 	return err;
2236 }
2237 EXPORT_SYMBOL_GPL(vsock_core_register);
2238 
vsock_core_unregister(const struct vsock_transport * t)2239 void vsock_core_unregister(const struct vsock_transport *t)
2240 {
2241 	mutex_lock(&vsock_register_mutex);
2242 
2243 	if (transport_h2g == t)
2244 		transport_h2g = NULL;
2245 
2246 	if (transport_g2h == t)
2247 		transport_g2h = NULL;
2248 
2249 	if (transport_dgram == t)
2250 		transport_dgram = NULL;
2251 
2252 	if (transport_local == t)
2253 		transport_local = NULL;
2254 
2255 	mutex_unlock(&vsock_register_mutex);
2256 }
2257 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2258 
2259 module_init(vsock_init);
2260 module_exit(vsock_exit);
2261 
2262 MODULE_AUTHOR("VMware, Inc.");
2263 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2264 MODULE_VERSION("1.0.2.0-k");
2265 MODULE_LICENSE("GPL v2");
2266