1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * KVM paravirt_ops implementation
4 *
5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Copyright IBM Corporation, 2007
7 * Authors: Anthony Liguori <aliguori@us.ibm.com>
8 */
9
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <asm/timer.h>
31 #include <asm/cpu.h>
32 #include <asm/traps.h>
33 #include <asm/desc.h>
34 #include <asm/tlbflush.h>
35 #include <asm/apic.h>
36 #include <asm/apicdef.h>
37 #include <asm/hypervisor.h>
38 #include <asm/tlb.h>
39 #include <asm/cpuidle_haltpoll.h>
40 #include <asm/ptrace.h>
41 #include <asm/reboot.h>
42 #include <asm/svm.h>
43
44 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
45
46 static int kvmapf = 1;
47
parse_no_kvmapf(char * arg)48 static int __init parse_no_kvmapf(char *arg)
49 {
50 kvmapf = 0;
51 return 0;
52 }
53
54 early_param("no-kvmapf", parse_no_kvmapf);
55
56 static int steal_acc = 1;
parse_no_stealacc(char * arg)57 static int __init parse_no_stealacc(char *arg)
58 {
59 steal_acc = 0;
60 return 0;
61 }
62
63 early_param("no-steal-acc", parse_no_stealacc);
64
65 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
66 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
67 static int has_steal_clock = 0;
68
69 static int has_guest_poll = 0;
70 /*
71 * No need for any "IO delay" on KVM
72 */
kvm_io_delay(void)73 static void kvm_io_delay(void)
74 {
75 }
76
77 #define KVM_TASK_SLEEP_HASHBITS 8
78 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
79
80 struct kvm_task_sleep_node {
81 struct hlist_node link;
82 struct swait_queue_head wq;
83 u32 token;
84 int cpu;
85 };
86
87 static struct kvm_task_sleep_head {
88 raw_spinlock_t lock;
89 struct hlist_head list;
90 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
91
_find_apf_task(struct kvm_task_sleep_head * b,u32 token)92 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
93 u32 token)
94 {
95 struct hlist_node *p;
96
97 hlist_for_each(p, &b->list) {
98 struct kvm_task_sleep_node *n =
99 hlist_entry(p, typeof(*n), link);
100 if (n->token == token)
101 return n;
102 }
103
104 return NULL;
105 }
106
kvm_async_pf_queue_task(u32 token,struct kvm_task_sleep_node * n)107 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
108 {
109 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
110 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
111 struct kvm_task_sleep_node *e;
112
113 raw_spin_lock(&b->lock);
114 e = _find_apf_task(b, token);
115 if (e) {
116 /* dummy entry exist -> wake up was delivered ahead of PF */
117 hlist_del(&e->link);
118 raw_spin_unlock(&b->lock);
119 kfree(e);
120 return false;
121 }
122
123 n->token = token;
124 n->cpu = smp_processor_id();
125 init_swait_queue_head(&n->wq);
126 hlist_add_head(&n->link, &b->list);
127 raw_spin_unlock(&b->lock);
128 return true;
129 }
130
131 /*
132 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
133 * @token: Token to identify the sleep node entry
134 *
135 * Invoked from the async pagefault handling code or from the VM exit page
136 * fault handler. In both cases RCU is watching.
137 */
kvm_async_pf_task_wait_schedule(u32 token)138 void kvm_async_pf_task_wait_schedule(u32 token)
139 {
140 struct kvm_task_sleep_node n;
141 DECLARE_SWAITQUEUE(wait);
142
143 lockdep_assert_irqs_disabled();
144
145 if (!kvm_async_pf_queue_task(token, &n))
146 return;
147
148 for (;;) {
149 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
150 if (hlist_unhashed(&n.link))
151 break;
152
153 local_irq_enable();
154 schedule();
155 local_irq_disable();
156 }
157 finish_swait(&n.wq, &wait);
158 }
159 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
160
apf_task_wake_one(struct kvm_task_sleep_node * n)161 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
162 {
163 hlist_del_init(&n->link);
164 if (swq_has_sleeper(&n->wq))
165 swake_up_one(&n->wq);
166 }
167
apf_task_wake_all(void)168 static void apf_task_wake_all(void)
169 {
170 int i;
171
172 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
173 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
174 struct kvm_task_sleep_node *n;
175 struct hlist_node *p, *next;
176
177 raw_spin_lock(&b->lock);
178 hlist_for_each_safe(p, next, &b->list) {
179 n = hlist_entry(p, typeof(*n), link);
180 if (n->cpu == smp_processor_id())
181 apf_task_wake_one(n);
182 }
183 raw_spin_unlock(&b->lock);
184 }
185 }
186
kvm_async_pf_task_wake(u32 token)187 void kvm_async_pf_task_wake(u32 token)
188 {
189 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
190 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
191 struct kvm_task_sleep_node *n, *dummy = NULL;
192
193 if (token == ~0) {
194 apf_task_wake_all();
195 return;
196 }
197
198 again:
199 raw_spin_lock(&b->lock);
200 n = _find_apf_task(b, token);
201 if (!n) {
202 /*
203 * Async #PF not yet handled, add a dummy entry for the token.
204 * Allocating the token must be down outside of the raw lock
205 * as the allocator is preemptible on PREEMPT_RT kernels.
206 */
207 if (!dummy) {
208 raw_spin_unlock(&b->lock);
209 dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC);
210
211 /*
212 * Continue looping on allocation failure, eventually
213 * the async #PF will be handled and allocating a new
214 * node will be unnecessary.
215 */
216 if (!dummy)
217 cpu_relax();
218
219 /*
220 * Recheck for async #PF completion before enqueueing
221 * the dummy token to avoid duplicate list entries.
222 */
223 goto again;
224 }
225 dummy->token = token;
226 dummy->cpu = smp_processor_id();
227 init_swait_queue_head(&dummy->wq);
228 hlist_add_head(&dummy->link, &b->list);
229 dummy = NULL;
230 } else {
231 apf_task_wake_one(n);
232 }
233 raw_spin_unlock(&b->lock);
234
235 /* A dummy token might be allocated and ultimately not used. */
236 if (dummy)
237 kfree(dummy);
238 }
239 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
240
kvm_read_and_reset_apf_flags(void)241 noinstr u32 kvm_read_and_reset_apf_flags(void)
242 {
243 u32 flags = 0;
244
245 if (__this_cpu_read(apf_reason.enabled)) {
246 flags = __this_cpu_read(apf_reason.flags);
247 __this_cpu_write(apf_reason.flags, 0);
248 }
249
250 return flags;
251 }
252 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
253
__kvm_handle_async_pf(struct pt_regs * regs,u32 token)254 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
255 {
256 u32 flags = kvm_read_and_reset_apf_flags();
257 irqentry_state_t state;
258
259 if (!flags)
260 return false;
261
262 state = irqentry_enter(regs);
263 instrumentation_begin();
264
265 /*
266 * If the host managed to inject an async #PF into an interrupt
267 * disabled region, then die hard as this is not going to end well
268 * and the host side is seriously broken.
269 */
270 if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
271 panic("Host injected async #PF in interrupt disabled region\n");
272
273 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
274 if (unlikely(!(user_mode(regs))))
275 panic("Host injected async #PF in kernel mode\n");
276 /* Page is swapped out by the host. */
277 kvm_async_pf_task_wait_schedule(token);
278 } else {
279 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
280 }
281
282 instrumentation_end();
283 irqentry_exit(regs, state);
284 return true;
285 }
286
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)287 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
288 {
289 struct pt_regs *old_regs = set_irq_regs(regs);
290 u32 token;
291
292 ack_APIC_irq();
293
294 inc_irq_stat(irq_hv_callback_count);
295
296 if (__this_cpu_read(apf_reason.enabled)) {
297 token = __this_cpu_read(apf_reason.token);
298 kvm_async_pf_task_wake(token);
299 __this_cpu_write(apf_reason.token, 0);
300 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
301 }
302
303 set_irq_regs(old_regs);
304 }
305
paravirt_ops_setup(void)306 static void __init paravirt_ops_setup(void)
307 {
308 pv_info.name = "KVM";
309
310 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
311 pv_ops.cpu.io_delay = kvm_io_delay;
312
313 #ifdef CONFIG_X86_IO_APIC
314 no_timer_check = 1;
315 #endif
316 }
317
kvm_register_steal_time(void)318 static void kvm_register_steal_time(void)
319 {
320 int cpu = smp_processor_id();
321 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
322
323 if (!has_steal_clock)
324 return;
325
326 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
327 pr_info("stealtime: cpu %d, msr %llx\n", cpu,
328 (unsigned long long) slow_virt_to_phys(st));
329 }
330
331 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
332
kvm_guest_apic_eoi_write(u32 reg,u32 val)333 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
334 {
335 /**
336 * This relies on __test_and_clear_bit to modify the memory
337 * in a way that is atomic with respect to the local CPU.
338 * The hypervisor only accesses this memory from the local CPU so
339 * there's no need for lock or memory barriers.
340 * An optimization barrier is implied in apic write.
341 */
342 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
343 return;
344 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
345 }
346
kvm_guest_cpu_init(void)347 static void kvm_guest_cpu_init(void)
348 {
349 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
350 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
351
352 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
353
354 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
355 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
356
357 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
358 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
359
360 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
361
362 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
363 __this_cpu_write(apf_reason.enabled, 1);
364 pr_info("KVM setup async PF for cpu %d\n", smp_processor_id());
365 }
366
367 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
368 unsigned long pa;
369
370 /* Size alignment is implied but just to make it explicit. */
371 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
372 __this_cpu_write(kvm_apic_eoi, 0);
373 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
374 | KVM_MSR_ENABLED;
375 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
376 }
377
378 if (has_steal_clock)
379 kvm_register_steal_time();
380 }
381
kvm_pv_disable_apf(void)382 static void kvm_pv_disable_apf(void)
383 {
384 if (!__this_cpu_read(apf_reason.enabled))
385 return;
386
387 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
388 __this_cpu_write(apf_reason.enabled, 0);
389
390 pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id());
391 }
392
kvm_disable_steal_time(void)393 static void kvm_disable_steal_time(void)
394 {
395 if (!has_steal_clock)
396 return;
397
398 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
399 }
400
kvm_pv_guest_cpu_reboot(void * unused)401 static void kvm_pv_guest_cpu_reboot(void *unused)
402 {
403 /*
404 * We disable PV EOI before we load a new kernel by kexec,
405 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
406 * New kernel can re-enable when it boots.
407 */
408 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
409 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
410 kvm_pv_disable_apf();
411 kvm_disable_steal_time();
412 }
413
kvm_pv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)414 static int kvm_pv_reboot_notify(struct notifier_block *nb,
415 unsigned long code, void *unused)
416 {
417 if (code == SYS_RESTART)
418 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
419 return NOTIFY_DONE;
420 }
421
422 static struct notifier_block kvm_pv_reboot_nb = {
423 .notifier_call = kvm_pv_reboot_notify,
424 };
425
kvm_steal_clock(int cpu)426 static u64 kvm_steal_clock(int cpu)
427 {
428 u64 steal;
429 struct kvm_steal_time *src;
430 int version;
431
432 src = &per_cpu(steal_time, cpu);
433 do {
434 version = src->version;
435 virt_rmb();
436 steal = src->steal;
437 virt_rmb();
438 } while ((version & 1) || (version != src->version));
439
440 return steal;
441 }
442
__set_percpu_decrypted(void * ptr,unsigned long size)443 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
444 {
445 early_set_memory_decrypted((unsigned long) ptr, size);
446 }
447
448 /*
449 * Iterate through all possible CPUs and map the memory region pointed
450 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
451 *
452 * Note: we iterate through all possible CPUs to ensure that CPUs
453 * hotplugged will have their per-cpu variable already mapped as
454 * decrypted.
455 */
sev_map_percpu_data(void)456 static void __init sev_map_percpu_data(void)
457 {
458 int cpu;
459
460 if (!sev_active())
461 return;
462
463 for_each_possible_cpu(cpu) {
464 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
465 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
466 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
467 }
468 }
469
pv_tlb_flush_supported(void)470 static bool pv_tlb_flush_supported(void)
471 {
472 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
473 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
474 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
475 }
476
477 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
478
kvm_guest_cpu_offline(bool shutdown)479 static void kvm_guest_cpu_offline(bool shutdown)
480 {
481 kvm_disable_steal_time();
482 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
483 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
484 kvm_pv_disable_apf();
485 if (!shutdown)
486 apf_task_wake_all();
487 kvmclock_disable();
488 }
489
kvm_cpu_online(unsigned int cpu)490 static int kvm_cpu_online(unsigned int cpu)
491 {
492 unsigned long flags;
493
494 local_irq_save(flags);
495 kvm_guest_cpu_init();
496 local_irq_restore(flags);
497 return 0;
498 }
499
500 #ifdef CONFIG_SMP
501
pv_ipi_supported(void)502 static bool pv_ipi_supported(void)
503 {
504 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
505 }
506
pv_sched_yield_supported(void)507 static bool pv_sched_yield_supported(void)
508 {
509 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
510 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
511 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
512 }
513
514 #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG)
515
__send_ipi_mask(const struct cpumask * mask,int vector)516 static void __send_ipi_mask(const struct cpumask *mask, int vector)
517 {
518 unsigned long flags;
519 int cpu, apic_id, icr;
520 int min = 0, max = 0;
521 #ifdef CONFIG_X86_64
522 __uint128_t ipi_bitmap = 0;
523 #else
524 u64 ipi_bitmap = 0;
525 #endif
526 long ret;
527
528 if (cpumask_empty(mask))
529 return;
530
531 local_irq_save(flags);
532
533 switch (vector) {
534 default:
535 icr = APIC_DM_FIXED | vector;
536 break;
537 case NMI_VECTOR:
538 icr = APIC_DM_NMI;
539 break;
540 }
541
542 for_each_cpu(cpu, mask) {
543 apic_id = per_cpu(x86_cpu_to_apicid, cpu);
544 if (!ipi_bitmap) {
545 min = max = apic_id;
546 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
547 ipi_bitmap <<= min - apic_id;
548 min = apic_id;
549 } else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) {
550 max = apic_id < max ? max : apic_id;
551 } else {
552 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
553 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
554 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
555 ret);
556 min = max = apic_id;
557 ipi_bitmap = 0;
558 }
559 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
560 }
561
562 if (ipi_bitmap) {
563 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
564 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
565 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
566 ret);
567 }
568
569 local_irq_restore(flags);
570 }
571
kvm_send_ipi_mask(const struct cpumask * mask,int vector)572 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
573 {
574 __send_ipi_mask(mask, vector);
575 }
576
kvm_send_ipi_mask_allbutself(const struct cpumask * mask,int vector)577 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
578 {
579 unsigned int this_cpu = smp_processor_id();
580 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
581 const struct cpumask *local_mask;
582
583 cpumask_copy(new_mask, mask);
584 cpumask_clear_cpu(this_cpu, new_mask);
585 local_mask = new_mask;
586 __send_ipi_mask(local_mask, vector);
587 }
588
589 /*
590 * Set the IPI entry points
591 */
kvm_setup_pv_ipi(void)592 static void kvm_setup_pv_ipi(void)
593 {
594 apic->send_IPI_mask = kvm_send_ipi_mask;
595 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
596 pr_info("setup PV IPIs\n");
597 }
598
kvm_smp_send_call_func_ipi(const struct cpumask * mask)599 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
600 {
601 int cpu;
602
603 native_send_call_func_ipi(mask);
604
605 /* Make sure other vCPUs get a chance to run if they need to. */
606 for_each_cpu(cpu, mask) {
607 if (vcpu_is_preempted(cpu)) {
608 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
609 break;
610 }
611 }
612 }
613
kvm_smp_prepare_boot_cpu(void)614 static void __init kvm_smp_prepare_boot_cpu(void)
615 {
616 /*
617 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
618 * shares the guest physical address with the hypervisor.
619 */
620 sev_map_percpu_data();
621
622 kvm_guest_cpu_init();
623 native_smp_prepare_boot_cpu();
624 kvm_spinlock_init();
625 }
626
kvm_cpu_down_prepare(unsigned int cpu)627 static int kvm_cpu_down_prepare(unsigned int cpu)
628 {
629 unsigned long flags;
630
631 local_irq_save(flags);
632 kvm_guest_cpu_offline(false);
633 local_irq_restore(flags);
634 return 0;
635 }
636
637 #endif
638
kvm_suspend(void)639 static int kvm_suspend(void)
640 {
641 u64 val = 0;
642
643 kvm_guest_cpu_offline(false);
644
645 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
646 if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
647 rdmsrl(MSR_KVM_POLL_CONTROL, val);
648 has_guest_poll = !(val & 1);
649 #endif
650 return 0;
651 }
652
kvm_resume(void)653 static void kvm_resume(void)
654 {
655 kvm_cpu_online(raw_smp_processor_id());
656
657 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
658 if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll)
659 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
660 #endif
661 }
662
663 static struct syscore_ops kvm_syscore_ops = {
664 .suspend = kvm_suspend,
665 .resume = kvm_resume,
666 };
667
668 /*
669 * After a PV feature is registered, the host will keep writing to the
670 * registered memory location. If the guest happens to shutdown, this memory
671 * won't be valid. In cases like kexec, in which you install a new kernel, this
672 * means a random memory location will be kept being written.
673 */
674 #ifdef CONFIG_KEXEC_CORE
kvm_crash_shutdown(struct pt_regs * regs)675 static void kvm_crash_shutdown(struct pt_regs *regs)
676 {
677 kvm_guest_cpu_offline(true);
678 native_machine_crash_shutdown(regs);
679 }
680 #endif
681
kvm_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)682 static void kvm_flush_tlb_others(const struct cpumask *cpumask,
683 const struct flush_tlb_info *info)
684 {
685 u8 state;
686 int cpu;
687 struct kvm_steal_time *src;
688 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
689
690 cpumask_copy(flushmask, cpumask);
691 /*
692 * We have to call flush only on online vCPUs. And
693 * queue flush_on_enter for pre-empted vCPUs
694 */
695 for_each_cpu(cpu, flushmask) {
696 src = &per_cpu(steal_time, cpu);
697 state = READ_ONCE(src->preempted);
698 if ((state & KVM_VCPU_PREEMPTED)) {
699 if (try_cmpxchg(&src->preempted, &state,
700 state | KVM_VCPU_FLUSH_TLB))
701 __cpumask_clear_cpu(cpu, flushmask);
702 }
703 }
704
705 native_flush_tlb_others(flushmask, info);
706 }
707
kvm_guest_init(void)708 static void __init kvm_guest_init(void)
709 {
710 int i;
711
712 paravirt_ops_setup();
713 register_reboot_notifier(&kvm_pv_reboot_nb);
714 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
715 raw_spin_lock_init(&async_pf_sleepers[i].lock);
716
717 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
718 has_steal_clock = 1;
719 pv_ops.time.steal_clock = kvm_steal_clock;
720 }
721
722 if (pv_tlb_flush_supported()) {
723 pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others;
724 pv_ops.mmu.tlb_remove_table = tlb_remove_table;
725 pr_info("KVM setup pv remote TLB flush\n");
726 }
727
728 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
729 apic_set_eoi_write(kvm_guest_apic_eoi_write);
730
731 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
732 static_branch_enable(&kvm_async_pf_enabled);
733 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
734 }
735
736 #ifdef CONFIG_SMP
737 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
738 if (pv_sched_yield_supported()) {
739 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
740 pr_info("setup PV sched yield\n");
741 }
742 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
743 kvm_cpu_online, kvm_cpu_down_prepare) < 0)
744 pr_err("failed to install cpu hotplug callbacks\n");
745 #else
746 sev_map_percpu_data();
747 kvm_guest_cpu_init();
748 #endif
749
750 #ifdef CONFIG_KEXEC_CORE
751 machine_ops.crash_shutdown = kvm_crash_shutdown;
752 #endif
753
754 register_syscore_ops(&kvm_syscore_ops);
755
756 /*
757 * Hard lockup detection is enabled by default. Disable it, as guests
758 * can get false positives too easily, for example if the host is
759 * overcommitted.
760 */
761 hardlockup_detector_disable();
762 }
763
__kvm_cpuid_base(void)764 static noinline uint32_t __kvm_cpuid_base(void)
765 {
766 if (boot_cpu_data.cpuid_level < 0)
767 return 0; /* So we don't blow up on old processors */
768
769 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
770 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
771
772 return 0;
773 }
774
kvm_cpuid_base(void)775 static inline uint32_t kvm_cpuid_base(void)
776 {
777 static int kvm_cpuid_base = -1;
778
779 if (kvm_cpuid_base == -1)
780 kvm_cpuid_base = __kvm_cpuid_base();
781
782 return kvm_cpuid_base;
783 }
784
kvm_para_available(void)785 bool kvm_para_available(void)
786 {
787 return kvm_cpuid_base() != 0;
788 }
789 EXPORT_SYMBOL_GPL(kvm_para_available);
790
kvm_arch_para_features(void)791 unsigned int kvm_arch_para_features(void)
792 {
793 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
794 }
795
kvm_arch_para_hints(void)796 unsigned int kvm_arch_para_hints(void)
797 {
798 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
799 }
800 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
801
kvm_detect(void)802 static uint32_t __init kvm_detect(void)
803 {
804 return kvm_cpuid_base();
805 }
806
kvm_apic_init(void)807 static void __init kvm_apic_init(void)
808 {
809 #if defined(CONFIG_SMP)
810 if (pv_ipi_supported())
811 kvm_setup_pv_ipi();
812 #endif
813 }
814
kvm_init_platform(void)815 static void __init kvm_init_platform(void)
816 {
817 kvmclock_init();
818 x86_platform.apic_post_init = kvm_apic_init;
819 }
820
821 #if defined(CONFIG_AMD_MEM_ENCRYPT)
kvm_sev_es_hcall_prepare(struct ghcb * ghcb,struct pt_regs * regs)822 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
823 {
824 /* RAX and CPL are already in the GHCB */
825 ghcb_set_rbx(ghcb, regs->bx);
826 ghcb_set_rcx(ghcb, regs->cx);
827 ghcb_set_rdx(ghcb, regs->dx);
828 ghcb_set_rsi(ghcb, regs->si);
829 }
830
kvm_sev_es_hcall_finish(struct ghcb * ghcb,struct pt_regs * regs)831 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
832 {
833 /* No checking of the return state needed */
834 return true;
835 }
836 #endif
837
838 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
839 .name = "KVM",
840 .detect = kvm_detect,
841 .type = X86_HYPER_KVM,
842 .init.guest_late_init = kvm_guest_init,
843 .init.x2apic_available = kvm_para_available,
844 .init.init_platform = kvm_init_platform,
845 #if defined(CONFIG_AMD_MEM_ENCRYPT)
846 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare,
847 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish,
848 #endif
849 };
850
activate_jump_labels(void)851 static __init int activate_jump_labels(void)
852 {
853 if (has_steal_clock) {
854 static_key_slow_inc(¶virt_steal_enabled);
855 if (steal_acc)
856 static_key_slow_inc(¶virt_steal_rq_enabled);
857 }
858
859 return 0;
860 }
861 arch_initcall(activate_jump_labels);
862
kvm_alloc_cpumask(void)863 static __init int kvm_alloc_cpumask(void)
864 {
865 int cpu;
866 bool alloc = false;
867
868 if (!kvm_para_available() || nopv)
869 return 0;
870
871 if (pv_tlb_flush_supported())
872 alloc = true;
873
874 #if defined(CONFIG_SMP)
875 if (pv_ipi_supported())
876 alloc = true;
877 #endif
878
879 if (alloc)
880 for_each_possible_cpu(cpu) {
881 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
882 GFP_KERNEL, cpu_to_node(cpu));
883 }
884
885 return 0;
886 }
887 arch_initcall(kvm_alloc_cpumask);
888
889 #ifdef CONFIG_PARAVIRT_SPINLOCKS
890
891 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
kvm_kick_cpu(int cpu)892 static void kvm_kick_cpu(int cpu)
893 {
894 int apicid;
895 unsigned long flags = 0;
896
897 apicid = per_cpu(x86_cpu_to_apicid, cpu);
898 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
899 }
900
901 #include <asm/qspinlock.h>
902
kvm_wait(u8 * ptr,u8 val)903 static void kvm_wait(u8 *ptr, u8 val)
904 {
905 unsigned long flags;
906
907 if (in_nmi())
908 return;
909
910 local_irq_save(flags);
911
912 if (READ_ONCE(*ptr) != val)
913 goto out;
914
915 /*
916 * halt until it's our turn and kicked. Note that we do safe halt
917 * for irq enabled case to avoid hang when lock info is overwritten
918 * in irq spinlock slowpath and no spurious interrupt occur to save us.
919 */
920 if (arch_irqs_disabled_flags(flags))
921 halt();
922 else
923 safe_halt();
924
925 out:
926 local_irq_restore(flags);
927 }
928
929 #ifdef CONFIG_X86_32
__kvm_vcpu_is_preempted(long cpu)930 __visible bool __kvm_vcpu_is_preempted(long cpu)
931 {
932 struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
933
934 return !!(src->preempted & KVM_VCPU_PREEMPTED);
935 }
936 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
937
938 #else
939
940 #include <asm/asm-offsets.h>
941
942 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
943
944 /*
945 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
946 * restoring to/from the stack.
947 */
948 asm(
949 ".pushsection .text;"
950 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
951 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
952 "__raw_callee_save___kvm_vcpu_is_preempted:"
953 "movq __per_cpu_offset(,%rdi,8), %rax;"
954 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
955 "setne %al;"
956 ASM_RET
957 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
958 ".popsection");
959
960 #endif
961
962 /*
963 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
964 */
kvm_spinlock_init(void)965 void __init kvm_spinlock_init(void)
966 {
967 /*
968 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
969 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
970 * preferred over native qspinlock when vCPU is preempted.
971 */
972 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
973 pr_info("PV spinlocks disabled, no host support\n");
974 return;
975 }
976
977 /*
978 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
979 * are available.
980 */
981 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
982 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
983 goto out;
984 }
985
986 if (num_possible_cpus() == 1) {
987 pr_info("PV spinlocks disabled, single CPU\n");
988 goto out;
989 }
990
991 if (nopvspin) {
992 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
993 goto out;
994 }
995
996 pr_info("PV spinlocks enabled\n");
997
998 __pv_init_lock_hash();
999 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
1000 pv_ops.lock.queued_spin_unlock =
1001 PV_CALLEE_SAVE(__pv_queued_spin_unlock);
1002 pv_ops.lock.wait = kvm_wait;
1003 pv_ops.lock.kick = kvm_kick_cpu;
1004
1005 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
1006 pv_ops.lock.vcpu_is_preempted =
1007 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
1008 }
1009 /*
1010 * When PV spinlock is enabled which is preferred over
1011 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1012 * Just disable it anyway.
1013 */
1014 out:
1015 static_branch_disable(&virt_spin_lock_key);
1016 }
1017
1018 #endif /* CONFIG_PARAVIRT_SPINLOCKS */
1019
1020 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1021
kvm_disable_host_haltpoll(void * i)1022 static void kvm_disable_host_haltpoll(void *i)
1023 {
1024 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
1025 }
1026
kvm_enable_host_haltpoll(void * i)1027 static void kvm_enable_host_haltpoll(void *i)
1028 {
1029 wrmsrl(MSR_KVM_POLL_CONTROL, 1);
1030 }
1031
arch_haltpoll_enable(unsigned int cpu)1032 void arch_haltpoll_enable(unsigned int cpu)
1033 {
1034 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1035 pr_err_once("host does not support poll control\n");
1036 pr_err_once("host upgrade recommended\n");
1037 return;
1038 }
1039
1040 /* Enable guest halt poll disables host halt poll */
1041 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1042 }
1043 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1044
arch_haltpoll_disable(unsigned int cpu)1045 void arch_haltpoll_disable(unsigned int cpu)
1046 {
1047 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1048 return;
1049
1050 /* Disable guest halt poll enables host halt poll */
1051 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1052 }
1053 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1054 #endif
1055