• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * KVM paravirt_ops implementation
4  *
5  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  * Copyright IBM Corporation, 2007
7  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11 
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <asm/timer.h>
31 #include <asm/cpu.h>
32 #include <asm/traps.h>
33 #include <asm/desc.h>
34 #include <asm/tlbflush.h>
35 #include <asm/apic.h>
36 #include <asm/apicdef.h>
37 #include <asm/hypervisor.h>
38 #include <asm/tlb.h>
39 #include <asm/cpuidle_haltpoll.h>
40 #include <asm/ptrace.h>
41 #include <asm/reboot.h>
42 #include <asm/svm.h>
43 
44 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
45 
46 static int kvmapf = 1;
47 
parse_no_kvmapf(char * arg)48 static int __init parse_no_kvmapf(char *arg)
49 {
50         kvmapf = 0;
51         return 0;
52 }
53 
54 early_param("no-kvmapf", parse_no_kvmapf);
55 
56 static int steal_acc = 1;
parse_no_stealacc(char * arg)57 static int __init parse_no_stealacc(char *arg)
58 {
59         steal_acc = 0;
60         return 0;
61 }
62 
63 early_param("no-steal-acc", parse_no_stealacc);
64 
65 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
66 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
67 static int has_steal_clock = 0;
68 
69 static int has_guest_poll = 0;
70 /*
71  * No need for any "IO delay" on KVM
72  */
kvm_io_delay(void)73 static void kvm_io_delay(void)
74 {
75 }
76 
77 #define KVM_TASK_SLEEP_HASHBITS 8
78 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
79 
80 struct kvm_task_sleep_node {
81 	struct hlist_node link;
82 	struct swait_queue_head wq;
83 	u32 token;
84 	int cpu;
85 };
86 
87 static struct kvm_task_sleep_head {
88 	raw_spinlock_t lock;
89 	struct hlist_head list;
90 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
91 
_find_apf_task(struct kvm_task_sleep_head * b,u32 token)92 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
93 						  u32 token)
94 {
95 	struct hlist_node *p;
96 
97 	hlist_for_each(p, &b->list) {
98 		struct kvm_task_sleep_node *n =
99 			hlist_entry(p, typeof(*n), link);
100 		if (n->token == token)
101 			return n;
102 	}
103 
104 	return NULL;
105 }
106 
kvm_async_pf_queue_task(u32 token,struct kvm_task_sleep_node * n)107 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
108 {
109 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
110 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
111 	struct kvm_task_sleep_node *e;
112 
113 	raw_spin_lock(&b->lock);
114 	e = _find_apf_task(b, token);
115 	if (e) {
116 		/* dummy entry exist -> wake up was delivered ahead of PF */
117 		hlist_del(&e->link);
118 		raw_spin_unlock(&b->lock);
119 		kfree(e);
120 		return false;
121 	}
122 
123 	n->token = token;
124 	n->cpu = smp_processor_id();
125 	init_swait_queue_head(&n->wq);
126 	hlist_add_head(&n->link, &b->list);
127 	raw_spin_unlock(&b->lock);
128 	return true;
129 }
130 
131 /*
132  * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
133  * @token:	Token to identify the sleep node entry
134  *
135  * Invoked from the async pagefault handling code or from the VM exit page
136  * fault handler. In both cases RCU is watching.
137  */
kvm_async_pf_task_wait_schedule(u32 token)138 void kvm_async_pf_task_wait_schedule(u32 token)
139 {
140 	struct kvm_task_sleep_node n;
141 	DECLARE_SWAITQUEUE(wait);
142 
143 	lockdep_assert_irqs_disabled();
144 
145 	if (!kvm_async_pf_queue_task(token, &n))
146 		return;
147 
148 	for (;;) {
149 		prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
150 		if (hlist_unhashed(&n.link))
151 			break;
152 
153 		local_irq_enable();
154 		schedule();
155 		local_irq_disable();
156 	}
157 	finish_swait(&n.wq, &wait);
158 }
159 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
160 
apf_task_wake_one(struct kvm_task_sleep_node * n)161 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
162 {
163 	hlist_del_init(&n->link);
164 	if (swq_has_sleeper(&n->wq))
165 		swake_up_one(&n->wq);
166 }
167 
apf_task_wake_all(void)168 static void apf_task_wake_all(void)
169 {
170 	int i;
171 
172 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
173 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
174 		struct kvm_task_sleep_node *n;
175 		struct hlist_node *p, *next;
176 
177 		raw_spin_lock(&b->lock);
178 		hlist_for_each_safe(p, next, &b->list) {
179 			n = hlist_entry(p, typeof(*n), link);
180 			if (n->cpu == smp_processor_id())
181 				apf_task_wake_one(n);
182 		}
183 		raw_spin_unlock(&b->lock);
184 	}
185 }
186 
kvm_async_pf_task_wake(u32 token)187 void kvm_async_pf_task_wake(u32 token)
188 {
189 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
190 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
191 	struct kvm_task_sleep_node *n, *dummy = NULL;
192 
193 	if (token == ~0) {
194 		apf_task_wake_all();
195 		return;
196 	}
197 
198 again:
199 	raw_spin_lock(&b->lock);
200 	n = _find_apf_task(b, token);
201 	if (!n) {
202 		/*
203 		 * Async #PF not yet handled, add a dummy entry for the token.
204 		 * Allocating the token must be down outside of the raw lock
205 		 * as the allocator is preemptible on PREEMPT_RT kernels.
206 		 */
207 		if (!dummy) {
208 			raw_spin_unlock(&b->lock);
209 			dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC);
210 
211 			/*
212 			 * Continue looping on allocation failure, eventually
213 			 * the async #PF will be handled and allocating a new
214 			 * node will be unnecessary.
215 			 */
216 			if (!dummy)
217 				cpu_relax();
218 
219 			/*
220 			 * Recheck for async #PF completion before enqueueing
221 			 * the dummy token to avoid duplicate list entries.
222 			 */
223 			goto again;
224 		}
225 		dummy->token = token;
226 		dummy->cpu = smp_processor_id();
227 		init_swait_queue_head(&dummy->wq);
228 		hlist_add_head(&dummy->link, &b->list);
229 		dummy = NULL;
230 	} else {
231 		apf_task_wake_one(n);
232 	}
233 	raw_spin_unlock(&b->lock);
234 
235 	/* A dummy token might be allocated and ultimately not used.  */
236 	if (dummy)
237 		kfree(dummy);
238 }
239 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
240 
kvm_read_and_reset_apf_flags(void)241 noinstr u32 kvm_read_and_reset_apf_flags(void)
242 {
243 	u32 flags = 0;
244 
245 	if (__this_cpu_read(apf_reason.enabled)) {
246 		flags = __this_cpu_read(apf_reason.flags);
247 		__this_cpu_write(apf_reason.flags, 0);
248 	}
249 
250 	return flags;
251 }
252 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
253 
__kvm_handle_async_pf(struct pt_regs * regs,u32 token)254 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
255 {
256 	u32 flags = kvm_read_and_reset_apf_flags();
257 	irqentry_state_t state;
258 
259 	if (!flags)
260 		return false;
261 
262 	state = irqentry_enter(regs);
263 	instrumentation_begin();
264 
265 	/*
266 	 * If the host managed to inject an async #PF into an interrupt
267 	 * disabled region, then die hard as this is not going to end well
268 	 * and the host side is seriously broken.
269 	 */
270 	if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
271 		panic("Host injected async #PF in interrupt disabled region\n");
272 
273 	if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
274 		if (unlikely(!(user_mode(regs))))
275 			panic("Host injected async #PF in kernel mode\n");
276 		/* Page is swapped out by the host. */
277 		kvm_async_pf_task_wait_schedule(token);
278 	} else {
279 		WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
280 	}
281 
282 	instrumentation_end();
283 	irqentry_exit(regs, state);
284 	return true;
285 }
286 
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)287 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
288 {
289 	struct pt_regs *old_regs = set_irq_regs(regs);
290 	u32 token;
291 
292 	ack_APIC_irq();
293 
294 	inc_irq_stat(irq_hv_callback_count);
295 
296 	if (__this_cpu_read(apf_reason.enabled)) {
297 		token = __this_cpu_read(apf_reason.token);
298 		kvm_async_pf_task_wake(token);
299 		__this_cpu_write(apf_reason.token, 0);
300 		wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
301 	}
302 
303 	set_irq_regs(old_regs);
304 }
305 
paravirt_ops_setup(void)306 static void __init paravirt_ops_setup(void)
307 {
308 	pv_info.name = "KVM";
309 
310 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
311 		pv_ops.cpu.io_delay = kvm_io_delay;
312 
313 #ifdef CONFIG_X86_IO_APIC
314 	no_timer_check = 1;
315 #endif
316 }
317 
kvm_register_steal_time(void)318 static void kvm_register_steal_time(void)
319 {
320 	int cpu = smp_processor_id();
321 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
322 
323 	if (!has_steal_clock)
324 		return;
325 
326 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
327 	pr_info("stealtime: cpu %d, msr %llx\n", cpu,
328 		(unsigned long long) slow_virt_to_phys(st));
329 }
330 
331 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
332 
kvm_guest_apic_eoi_write(u32 reg,u32 val)333 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
334 {
335 	/**
336 	 * This relies on __test_and_clear_bit to modify the memory
337 	 * in a way that is atomic with respect to the local CPU.
338 	 * The hypervisor only accesses this memory from the local CPU so
339 	 * there's no need for lock or memory barriers.
340 	 * An optimization barrier is implied in apic write.
341 	 */
342 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
343 		return;
344 	apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
345 }
346 
kvm_guest_cpu_init(void)347 static void kvm_guest_cpu_init(void)
348 {
349 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
350 		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
351 
352 		WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
353 
354 		pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
355 		pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
356 
357 		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
358 			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
359 
360 		wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
361 
362 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
363 		__this_cpu_write(apf_reason.enabled, 1);
364 		pr_info("KVM setup async PF for cpu %d\n", smp_processor_id());
365 	}
366 
367 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
368 		unsigned long pa;
369 
370 		/* Size alignment is implied but just to make it explicit. */
371 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
372 		__this_cpu_write(kvm_apic_eoi, 0);
373 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
374 			| KVM_MSR_ENABLED;
375 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
376 	}
377 
378 	if (has_steal_clock)
379 		kvm_register_steal_time();
380 }
381 
kvm_pv_disable_apf(void)382 static void kvm_pv_disable_apf(void)
383 {
384 	if (!__this_cpu_read(apf_reason.enabled))
385 		return;
386 
387 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
388 	__this_cpu_write(apf_reason.enabled, 0);
389 
390 	pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id());
391 }
392 
kvm_disable_steal_time(void)393 static void kvm_disable_steal_time(void)
394 {
395 	if (!has_steal_clock)
396 		return;
397 
398 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
399 }
400 
kvm_pv_guest_cpu_reboot(void * unused)401 static void kvm_pv_guest_cpu_reboot(void *unused)
402 {
403 	/*
404 	 * We disable PV EOI before we load a new kernel by kexec,
405 	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
406 	 * New kernel can re-enable when it boots.
407 	 */
408 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
409 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
410 	kvm_pv_disable_apf();
411 	kvm_disable_steal_time();
412 }
413 
kvm_pv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)414 static int kvm_pv_reboot_notify(struct notifier_block *nb,
415 				unsigned long code, void *unused)
416 {
417 	if (code == SYS_RESTART)
418 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
419 	return NOTIFY_DONE;
420 }
421 
422 static struct notifier_block kvm_pv_reboot_nb = {
423 	.notifier_call = kvm_pv_reboot_notify,
424 };
425 
kvm_steal_clock(int cpu)426 static u64 kvm_steal_clock(int cpu)
427 {
428 	u64 steal;
429 	struct kvm_steal_time *src;
430 	int version;
431 
432 	src = &per_cpu(steal_time, cpu);
433 	do {
434 		version = src->version;
435 		virt_rmb();
436 		steal = src->steal;
437 		virt_rmb();
438 	} while ((version & 1) || (version != src->version));
439 
440 	return steal;
441 }
442 
__set_percpu_decrypted(void * ptr,unsigned long size)443 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
444 {
445 	early_set_memory_decrypted((unsigned long) ptr, size);
446 }
447 
448 /*
449  * Iterate through all possible CPUs and map the memory region pointed
450  * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
451  *
452  * Note: we iterate through all possible CPUs to ensure that CPUs
453  * hotplugged will have their per-cpu variable already mapped as
454  * decrypted.
455  */
sev_map_percpu_data(void)456 static void __init sev_map_percpu_data(void)
457 {
458 	int cpu;
459 
460 	if (!sev_active())
461 		return;
462 
463 	for_each_possible_cpu(cpu) {
464 		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
465 		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
466 		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
467 	}
468 }
469 
pv_tlb_flush_supported(void)470 static bool pv_tlb_flush_supported(void)
471 {
472 	return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
473 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
474 		kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
475 }
476 
477 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
478 
kvm_guest_cpu_offline(bool shutdown)479 static void kvm_guest_cpu_offline(bool shutdown)
480 {
481 	kvm_disable_steal_time();
482 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
483 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
484 	kvm_pv_disable_apf();
485 	if (!shutdown)
486 		apf_task_wake_all();
487 	kvmclock_disable();
488 }
489 
kvm_cpu_online(unsigned int cpu)490 static int kvm_cpu_online(unsigned int cpu)
491 {
492 	unsigned long flags;
493 
494 	local_irq_save(flags);
495 	kvm_guest_cpu_init();
496 	local_irq_restore(flags);
497 	return 0;
498 }
499 
500 #ifdef CONFIG_SMP
501 
pv_ipi_supported(void)502 static bool pv_ipi_supported(void)
503 {
504 	return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
505 }
506 
pv_sched_yield_supported(void)507 static bool pv_sched_yield_supported(void)
508 {
509 	return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
510 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
511 	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
512 }
513 
514 #define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
515 
__send_ipi_mask(const struct cpumask * mask,int vector)516 static void __send_ipi_mask(const struct cpumask *mask, int vector)
517 {
518 	unsigned long flags;
519 	int cpu, apic_id, icr;
520 	int min = 0, max = 0;
521 #ifdef CONFIG_X86_64
522 	__uint128_t ipi_bitmap = 0;
523 #else
524 	u64 ipi_bitmap = 0;
525 #endif
526 	long ret;
527 
528 	if (cpumask_empty(mask))
529 		return;
530 
531 	local_irq_save(flags);
532 
533 	switch (vector) {
534 	default:
535 		icr = APIC_DM_FIXED | vector;
536 		break;
537 	case NMI_VECTOR:
538 		icr = APIC_DM_NMI;
539 		break;
540 	}
541 
542 	for_each_cpu(cpu, mask) {
543 		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
544 		if (!ipi_bitmap) {
545 			min = max = apic_id;
546 		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
547 			ipi_bitmap <<= min - apic_id;
548 			min = apic_id;
549 		} else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) {
550 			max = apic_id < max ? max : apic_id;
551 		} else {
552 			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
553 				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
554 			WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
555 				  ret);
556 			min = max = apic_id;
557 			ipi_bitmap = 0;
558 		}
559 		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
560 	}
561 
562 	if (ipi_bitmap) {
563 		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
564 			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
565 		WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
566 			  ret);
567 	}
568 
569 	local_irq_restore(flags);
570 }
571 
kvm_send_ipi_mask(const struct cpumask * mask,int vector)572 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
573 {
574 	__send_ipi_mask(mask, vector);
575 }
576 
kvm_send_ipi_mask_allbutself(const struct cpumask * mask,int vector)577 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
578 {
579 	unsigned int this_cpu = smp_processor_id();
580 	struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
581 	const struct cpumask *local_mask;
582 
583 	cpumask_copy(new_mask, mask);
584 	cpumask_clear_cpu(this_cpu, new_mask);
585 	local_mask = new_mask;
586 	__send_ipi_mask(local_mask, vector);
587 }
588 
589 /*
590  * Set the IPI entry points
591  */
kvm_setup_pv_ipi(void)592 static void kvm_setup_pv_ipi(void)
593 {
594 	apic->send_IPI_mask = kvm_send_ipi_mask;
595 	apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
596 	pr_info("setup PV IPIs\n");
597 }
598 
kvm_smp_send_call_func_ipi(const struct cpumask * mask)599 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
600 {
601 	int cpu;
602 
603 	native_send_call_func_ipi(mask);
604 
605 	/* Make sure other vCPUs get a chance to run if they need to. */
606 	for_each_cpu(cpu, mask) {
607 		if (vcpu_is_preempted(cpu)) {
608 			kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
609 			break;
610 		}
611 	}
612 }
613 
kvm_smp_prepare_boot_cpu(void)614 static void __init kvm_smp_prepare_boot_cpu(void)
615 {
616 	/*
617 	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
618 	 * shares the guest physical address with the hypervisor.
619 	 */
620 	sev_map_percpu_data();
621 
622 	kvm_guest_cpu_init();
623 	native_smp_prepare_boot_cpu();
624 	kvm_spinlock_init();
625 }
626 
kvm_cpu_down_prepare(unsigned int cpu)627 static int kvm_cpu_down_prepare(unsigned int cpu)
628 {
629 	unsigned long flags;
630 
631 	local_irq_save(flags);
632 	kvm_guest_cpu_offline(false);
633 	local_irq_restore(flags);
634 	return 0;
635 }
636 
637 #endif
638 
kvm_suspend(void)639 static int kvm_suspend(void)
640 {
641 	u64 val = 0;
642 
643 	kvm_guest_cpu_offline(false);
644 
645 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
646 	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
647 		rdmsrl(MSR_KVM_POLL_CONTROL, val);
648 	has_guest_poll = !(val & 1);
649 #endif
650 	return 0;
651 }
652 
kvm_resume(void)653 static void kvm_resume(void)
654 {
655 	kvm_cpu_online(raw_smp_processor_id());
656 
657 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
658 	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll)
659 		wrmsrl(MSR_KVM_POLL_CONTROL, 0);
660 #endif
661 }
662 
663 static struct syscore_ops kvm_syscore_ops = {
664 	.suspend	= kvm_suspend,
665 	.resume		= kvm_resume,
666 };
667 
668 /*
669  * After a PV feature is registered, the host will keep writing to the
670  * registered memory location. If the guest happens to shutdown, this memory
671  * won't be valid. In cases like kexec, in which you install a new kernel, this
672  * means a random memory location will be kept being written.
673  */
674 #ifdef CONFIG_KEXEC_CORE
kvm_crash_shutdown(struct pt_regs * regs)675 static void kvm_crash_shutdown(struct pt_regs *regs)
676 {
677 	kvm_guest_cpu_offline(true);
678 	native_machine_crash_shutdown(regs);
679 }
680 #endif
681 
kvm_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)682 static void kvm_flush_tlb_others(const struct cpumask *cpumask,
683 			const struct flush_tlb_info *info)
684 {
685 	u8 state;
686 	int cpu;
687 	struct kvm_steal_time *src;
688 	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
689 
690 	cpumask_copy(flushmask, cpumask);
691 	/*
692 	 * We have to call flush only on online vCPUs. And
693 	 * queue flush_on_enter for pre-empted vCPUs
694 	 */
695 	for_each_cpu(cpu, flushmask) {
696 		src = &per_cpu(steal_time, cpu);
697 		state = READ_ONCE(src->preempted);
698 		if ((state & KVM_VCPU_PREEMPTED)) {
699 			if (try_cmpxchg(&src->preempted, &state,
700 					state | KVM_VCPU_FLUSH_TLB))
701 				__cpumask_clear_cpu(cpu, flushmask);
702 		}
703 	}
704 
705 	native_flush_tlb_others(flushmask, info);
706 }
707 
kvm_guest_init(void)708 static void __init kvm_guest_init(void)
709 {
710 	int i;
711 
712 	paravirt_ops_setup();
713 	register_reboot_notifier(&kvm_pv_reboot_nb);
714 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
715 		raw_spin_lock_init(&async_pf_sleepers[i].lock);
716 
717 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
718 		has_steal_clock = 1;
719 		pv_ops.time.steal_clock = kvm_steal_clock;
720 	}
721 
722 	if (pv_tlb_flush_supported()) {
723 		pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others;
724 		pv_ops.mmu.tlb_remove_table = tlb_remove_table;
725 		pr_info("KVM setup pv remote TLB flush\n");
726 	}
727 
728 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
729 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
730 
731 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
732 		static_branch_enable(&kvm_async_pf_enabled);
733 		alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
734 	}
735 
736 #ifdef CONFIG_SMP
737 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
738 	if (pv_sched_yield_supported()) {
739 		smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
740 		pr_info("setup PV sched yield\n");
741 	}
742 	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
743 				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
744 		pr_err("failed to install cpu hotplug callbacks\n");
745 #else
746 	sev_map_percpu_data();
747 	kvm_guest_cpu_init();
748 #endif
749 
750 #ifdef CONFIG_KEXEC_CORE
751 	machine_ops.crash_shutdown = kvm_crash_shutdown;
752 #endif
753 
754 	register_syscore_ops(&kvm_syscore_ops);
755 
756 	/*
757 	 * Hard lockup detection is enabled by default. Disable it, as guests
758 	 * can get false positives too easily, for example if the host is
759 	 * overcommitted.
760 	 */
761 	hardlockup_detector_disable();
762 }
763 
__kvm_cpuid_base(void)764 static noinline uint32_t __kvm_cpuid_base(void)
765 {
766 	if (boot_cpu_data.cpuid_level < 0)
767 		return 0;	/* So we don't blow up on old processors */
768 
769 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
770 		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
771 
772 	return 0;
773 }
774 
kvm_cpuid_base(void)775 static inline uint32_t kvm_cpuid_base(void)
776 {
777 	static int kvm_cpuid_base = -1;
778 
779 	if (kvm_cpuid_base == -1)
780 		kvm_cpuid_base = __kvm_cpuid_base();
781 
782 	return kvm_cpuid_base;
783 }
784 
kvm_para_available(void)785 bool kvm_para_available(void)
786 {
787 	return kvm_cpuid_base() != 0;
788 }
789 EXPORT_SYMBOL_GPL(kvm_para_available);
790 
kvm_arch_para_features(void)791 unsigned int kvm_arch_para_features(void)
792 {
793 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
794 }
795 
kvm_arch_para_hints(void)796 unsigned int kvm_arch_para_hints(void)
797 {
798 	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
799 }
800 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
801 
kvm_detect(void)802 static uint32_t __init kvm_detect(void)
803 {
804 	return kvm_cpuid_base();
805 }
806 
kvm_apic_init(void)807 static void __init kvm_apic_init(void)
808 {
809 #if defined(CONFIG_SMP)
810 	if (pv_ipi_supported())
811 		kvm_setup_pv_ipi();
812 #endif
813 }
814 
kvm_init_platform(void)815 static void __init kvm_init_platform(void)
816 {
817 	kvmclock_init();
818 	x86_platform.apic_post_init = kvm_apic_init;
819 }
820 
821 #if defined(CONFIG_AMD_MEM_ENCRYPT)
kvm_sev_es_hcall_prepare(struct ghcb * ghcb,struct pt_regs * regs)822 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
823 {
824 	/* RAX and CPL are already in the GHCB */
825 	ghcb_set_rbx(ghcb, regs->bx);
826 	ghcb_set_rcx(ghcb, regs->cx);
827 	ghcb_set_rdx(ghcb, regs->dx);
828 	ghcb_set_rsi(ghcb, regs->si);
829 }
830 
kvm_sev_es_hcall_finish(struct ghcb * ghcb,struct pt_regs * regs)831 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
832 {
833 	/* No checking of the return state needed */
834 	return true;
835 }
836 #endif
837 
838 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
839 	.name				= "KVM",
840 	.detect				= kvm_detect,
841 	.type				= X86_HYPER_KVM,
842 	.init.guest_late_init		= kvm_guest_init,
843 	.init.x2apic_available		= kvm_para_available,
844 	.init.init_platform		= kvm_init_platform,
845 #if defined(CONFIG_AMD_MEM_ENCRYPT)
846 	.runtime.sev_es_hcall_prepare	= kvm_sev_es_hcall_prepare,
847 	.runtime.sev_es_hcall_finish	= kvm_sev_es_hcall_finish,
848 #endif
849 };
850 
activate_jump_labels(void)851 static __init int activate_jump_labels(void)
852 {
853 	if (has_steal_clock) {
854 		static_key_slow_inc(&paravirt_steal_enabled);
855 		if (steal_acc)
856 			static_key_slow_inc(&paravirt_steal_rq_enabled);
857 	}
858 
859 	return 0;
860 }
861 arch_initcall(activate_jump_labels);
862 
kvm_alloc_cpumask(void)863 static __init int kvm_alloc_cpumask(void)
864 {
865 	int cpu;
866 	bool alloc = false;
867 
868 	if (!kvm_para_available() || nopv)
869 		return 0;
870 
871 	if (pv_tlb_flush_supported())
872 		alloc = true;
873 
874 #if defined(CONFIG_SMP)
875 	if (pv_ipi_supported())
876 		alloc = true;
877 #endif
878 
879 	if (alloc)
880 		for_each_possible_cpu(cpu) {
881 			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
882 				GFP_KERNEL, cpu_to_node(cpu));
883 		}
884 
885 	return 0;
886 }
887 arch_initcall(kvm_alloc_cpumask);
888 
889 #ifdef CONFIG_PARAVIRT_SPINLOCKS
890 
891 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
kvm_kick_cpu(int cpu)892 static void kvm_kick_cpu(int cpu)
893 {
894 	int apicid;
895 	unsigned long flags = 0;
896 
897 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
898 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
899 }
900 
901 #include <asm/qspinlock.h>
902 
kvm_wait(u8 * ptr,u8 val)903 static void kvm_wait(u8 *ptr, u8 val)
904 {
905 	unsigned long flags;
906 
907 	if (in_nmi())
908 		return;
909 
910 	local_irq_save(flags);
911 
912 	if (READ_ONCE(*ptr) != val)
913 		goto out;
914 
915 	/*
916 	 * halt until it's our turn and kicked. Note that we do safe halt
917 	 * for irq enabled case to avoid hang when lock info is overwritten
918 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
919 	 */
920 	if (arch_irqs_disabled_flags(flags))
921 		halt();
922 	else
923 		safe_halt();
924 
925 out:
926 	local_irq_restore(flags);
927 }
928 
929 #ifdef CONFIG_X86_32
__kvm_vcpu_is_preempted(long cpu)930 __visible bool __kvm_vcpu_is_preempted(long cpu)
931 {
932 	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
933 
934 	return !!(src->preempted & KVM_VCPU_PREEMPTED);
935 }
936 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
937 
938 #else
939 
940 #include <asm/asm-offsets.h>
941 
942 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
943 
944 /*
945  * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
946  * restoring to/from the stack.
947  */
948 asm(
949 ".pushsection .text;"
950 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
951 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
952 "__raw_callee_save___kvm_vcpu_is_preempted:"
953 "movq	__per_cpu_offset(,%rdi,8), %rax;"
954 "cmpb	$0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
955 "setne	%al;"
956 ASM_RET
957 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
958 ".popsection");
959 
960 #endif
961 
962 /*
963  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
964  */
kvm_spinlock_init(void)965 void __init kvm_spinlock_init(void)
966 {
967 	/*
968 	 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
969 	 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
970 	 * preferred over native qspinlock when vCPU is preempted.
971 	 */
972 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
973 		pr_info("PV spinlocks disabled, no host support\n");
974 		return;
975 	}
976 
977 	/*
978 	 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
979 	 * are available.
980 	 */
981 	if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
982 		pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
983 		goto out;
984 	}
985 
986 	if (num_possible_cpus() == 1) {
987 		pr_info("PV spinlocks disabled, single CPU\n");
988 		goto out;
989 	}
990 
991 	if (nopvspin) {
992 		pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
993 		goto out;
994 	}
995 
996 	pr_info("PV spinlocks enabled\n");
997 
998 	__pv_init_lock_hash();
999 	pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
1000 	pv_ops.lock.queued_spin_unlock =
1001 		PV_CALLEE_SAVE(__pv_queued_spin_unlock);
1002 	pv_ops.lock.wait = kvm_wait;
1003 	pv_ops.lock.kick = kvm_kick_cpu;
1004 
1005 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
1006 		pv_ops.lock.vcpu_is_preempted =
1007 			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
1008 	}
1009 	/*
1010 	 * When PV spinlock is enabled which is preferred over
1011 	 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1012 	 * Just disable it anyway.
1013 	 */
1014 out:
1015 	static_branch_disable(&virt_spin_lock_key);
1016 }
1017 
1018 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
1019 
1020 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1021 
kvm_disable_host_haltpoll(void * i)1022 static void kvm_disable_host_haltpoll(void *i)
1023 {
1024 	wrmsrl(MSR_KVM_POLL_CONTROL, 0);
1025 }
1026 
kvm_enable_host_haltpoll(void * i)1027 static void kvm_enable_host_haltpoll(void *i)
1028 {
1029 	wrmsrl(MSR_KVM_POLL_CONTROL, 1);
1030 }
1031 
arch_haltpoll_enable(unsigned int cpu)1032 void arch_haltpoll_enable(unsigned int cpu)
1033 {
1034 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1035 		pr_err_once("host does not support poll control\n");
1036 		pr_err_once("host upgrade recommended\n");
1037 		return;
1038 	}
1039 
1040 	/* Enable guest halt poll disables host halt poll */
1041 	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1042 }
1043 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1044 
arch_haltpoll_disable(unsigned int cpu)1045 void arch_haltpoll_disable(unsigned int cpu)
1046 {
1047 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1048 		return;
1049 
1050 	/* Disable guest halt poll enables host halt poll */
1051 	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1052 }
1053 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1054 #endif
1055