• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 
45 #include "perf_event.h"
46 
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49 
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 	.enabled = 1,
52 	.pmu = &pmu,
53 };
54 
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 
58 /*
59  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
60  * from just a typename, as opposed to an actual function.
61  */
62 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
63 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
67 
68 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
71 
72 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
75 
76 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
79 
80 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
82 
83 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
85 
86 u64 __read_mostly hw_cache_event_ids
87 				[PERF_COUNT_HW_CACHE_MAX]
88 				[PERF_COUNT_HW_CACHE_OP_MAX]
89 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
90 u64 __read_mostly hw_cache_extra_regs
91 				[PERF_COUNT_HW_CACHE_MAX]
92 				[PERF_COUNT_HW_CACHE_OP_MAX]
93 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
94 
95 /*
96  * Propagate event elapsed time into the generic event.
97  * Can only be executed on the CPU where the event is active.
98  * Returns the delta events processed.
99  */
x86_perf_event_update(struct perf_event * event)100 u64 x86_perf_event_update(struct perf_event *event)
101 {
102 	struct hw_perf_event *hwc = &event->hw;
103 	int shift = 64 - x86_pmu.cntval_bits;
104 	u64 prev_raw_count, new_raw_count;
105 	u64 delta;
106 
107 	if (unlikely(!hwc->event_base))
108 		return 0;
109 
110 	if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
111 		return x86_pmu.update_topdown_event(event);
112 
113 	/*
114 	 * Careful: an NMI might modify the previous event value.
115 	 *
116 	 * Our tactic to handle this is to first atomically read and
117 	 * exchange a new raw count - then add that new-prev delta
118 	 * count to the generic event atomically:
119 	 */
120 again:
121 	prev_raw_count = local64_read(&hwc->prev_count);
122 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
123 
124 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
125 					new_raw_count) != prev_raw_count)
126 		goto again;
127 
128 	/*
129 	 * Now we have the new raw value and have updated the prev
130 	 * timestamp already. We can now calculate the elapsed delta
131 	 * (event-)time and add that to the generic event.
132 	 *
133 	 * Careful, not all hw sign-extends above the physical width
134 	 * of the count.
135 	 */
136 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
137 	delta >>= shift;
138 
139 	local64_add(delta, &event->count);
140 	local64_sub(delta, &hwc->period_left);
141 
142 	return new_raw_count;
143 }
144 
145 /*
146  * Find and validate any extra registers to set up.
147  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)148 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
149 {
150 	struct hw_perf_event_extra *reg;
151 	struct extra_reg *er;
152 
153 	reg = &event->hw.extra_reg;
154 
155 	if (!x86_pmu.extra_regs)
156 		return 0;
157 
158 	for (er = x86_pmu.extra_regs; er->msr; er++) {
159 		if (er->event != (config & er->config_mask))
160 			continue;
161 		if (event->attr.config1 & ~er->valid_mask)
162 			return -EINVAL;
163 		/* Check if the extra msrs can be safely accessed*/
164 		if (!er->extra_msr_access)
165 			return -ENXIO;
166 
167 		reg->idx = er->idx;
168 		reg->config = event->attr.config1;
169 		reg->reg = er->msr;
170 		break;
171 	}
172 	return 0;
173 }
174 
175 static atomic_t active_events;
176 static atomic_t pmc_refcount;
177 static DEFINE_MUTEX(pmc_reserve_mutex);
178 
179 #ifdef CONFIG_X86_LOCAL_APIC
180 
reserve_pmc_hardware(void)181 static bool reserve_pmc_hardware(void)
182 {
183 	int i;
184 
185 	for (i = 0; i < x86_pmu.num_counters; i++) {
186 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
187 			goto perfctr_fail;
188 	}
189 
190 	for (i = 0; i < x86_pmu.num_counters; i++) {
191 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
192 			goto eventsel_fail;
193 	}
194 
195 	return true;
196 
197 eventsel_fail:
198 	for (i--; i >= 0; i--)
199 		release_evntsel_nmi(x86_pmu_config_addr(i));
200 
201 	i = x86_pmu.num_counters;
202 
203 perfctr_fail:
204 	for (i--; i >= 0; i--)
205 		release_perfctr_nmi(x86_pmu_event_addr(i));
206 
207 	return false;
208 }
209 
release_pmc_hardware(void)210 static void release_pmc_hardware(void)
211 {
212 	int i;
213 
214 	for (i = 0; i < x86_pmu.num_counters; i++) {
215 		release_perfctr_nmi(x86_pmu_event_addr(i));
216 		release_evntsel_nmi(x86_pmu_config_addr(i));
217 	}
218 }
219 
220 #else
221 
reserve_pmc_hardware(void)222 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)223 static void release_pmc_hardware(void) {}
224 
225 #endif
226 
check_hw_exists(void)227 static bool check_hw_exists(void)
228 {
229 	u64 val, val_fail = -1, val_new= ~0;
230 	int i, reg, reg_fail = -1, ret = 0;
231 	int bios_fail = 0;
232 	int reg_safe = -1;
233 
234 	/*
235 	 * Check to see if the BIOS enabled any of the counters, if so
236 	 * complain and bail.
237 	 */
238 	for (i = 0; i < x86_pmu.num_counters; i++) {
239 		reg = x86_pmu_config_addr(i);
240 		ret = rdmsrl_safe(reg, &val);
241 		if (ret)
242 			goto msr_fail;
243 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
244 			bios_fail = 1;
245 			val_fail = val;
246 			reg_fail = reg;
247 		} else {
248 			reg_safe = i;
249 		}
250 	}
251 
252 	if (x86_pmu.num_counters_fixed) {
253 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
254 		ret = rdmsrl_safe(reg, &val);
255 		if (ret)
256 			goto msr_fail;
257 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
258 			if (val & (0x03 << i*4)) {
259 				bios_fail = 1;
260 				val_fail = val;
261 				reg_fail = reg;
262 			}
263 		}
264 	}
265 
266 	/*
267 	 * If all the counters are enabled, the below test will always
268 	 * fail.  The tools will also become useless in this scenario.
269 	 * Just fail and disable the hardware counters.
270 	 */
271 
272 	if (reg_safe == -1) {
273 		reg = reg_safe;
274 		goto msr_fail;
275 	}
276 
277 	/*
278 	 * Read the current value, change it and read it back to see if it
279 	 * matches, this is needed to detect certain hardware emulators
280 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
281 	 */
282 	reg = x86_pmu_event_addr(reg_safe);
283 	if (rdmsrl_safe(reg, &val))
284 		goto msr_fail;
285 	val ^= 0xffffUL;
286 	ret = wrmsrl_safe(reg, val);
287 	ret |= rdmsrl_safe(reg, &val_new);
288 	if (ret || val != val_new)
289 		goto msr_fail;
290 
291 	/*
292 	 * We still allow the PMU driver to operate:
293 	 */
294 	if (bios_fail) {
295 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
296 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
297 			      reg_fail, val_fail);
298 	}
299 
300 	return true;
301 
302 msr_fail:
303 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
304 		pr_cont("PMU not available due to virtualization, using software events only.\n");
305 	} else {
306 		pr_cont("Broken PMU hardware detected, using software events only.\n");
307 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
308 		       reg, val_new);
309 	}
310 
311 	return false;
312 }
313 
hw_perf_event_destroy(struct perf_event * event)314 static void hw_perf_event_destroy(struct perf_event *event)
315 {
316 	x86_release_hardware();
317 	atomic_dec(&active_events);
318 }
319 
hw_perf_lbr_event_destroy(struct perf_event * event)320 void hw_perf_lbr_event_destroy(struct perf_event *event)
321 {
322 	hw_perf_event_destroy(event);
323 
324 	/* undo the lbr/bts event accounting */
325 	x86_del_exclusive(x86_lbr_exclusive_lbr);
326 }
327 
x86_pmu_initialized(void)328 static inline int x86_pmu_initialized(void)
329 {
330 	return x86_pmu.handle_irq != NULL;
331 }
332 
333 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)334 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
335 {
336 	struct perf_event_attr *attr = &event->attr;
337 	unsigned int cache_type, cache_op, cache_result;
338 	u64 config, val;
339 
340 	config = attr->config;
341 
342 	cache_type = (config >> 0) & 0xff;
343 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
344 		return -EINVAL;
345 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
346 
347 	cache_op = (config >>  8) & 0xff;
348 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
349 		return -EINVAL;
350 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
351 
352 	cache_result = (config >> 16) & 0xff;
353 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
354 		return -EINVAL;
355 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
356 
357 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
358 
359 	if (val == 0)
360 		return -ENOENT;
361 
362 	if (val == -1)
363 		return -EINVAL;
364 
365 	hwc->config |= val;
366 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
367 	return x86_pmu_extra_regs(val, event);
368 }
369 
x86_reserve_hardware(void)370 int x86_reserve_hardware(void)
371 {
372 	int err = 0;
373 
374 	if (!atomic_inc_not_zero(&pmc_refcount)) {
375 		mutex_lock(&pmc_reserve_mutex);
376 		if (atomic_read(&pmc_refcount) == 0) {
377 			if (!reserve_pmc_hardware()) {
378 				err = -EBUSY;
379 			} else {
380 				reserve_ds_buffers();
381 				reserve_lbr_buffers();
382 			}
383 		}
384 		if (!err)
385 			atomic_inc(&pmc_refcount);
386 		mutex_unlock(&pmc_reserve_mutex);
387 	}
388 
389 	return err;
390 }
391 
x86_release_hardware(void)392 void x86_release_hardware(void)
393 {
394 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
395 		release_pmc_hardware();
396 		release_ds_buffers();
397 		release_lbr_buffers();
398 		mutex_unlock(&pmc_reserve_mutex);
399 	}
400 }
401 
402 /*
403  * Check if we can create event of a certain type (that no conflicting events
404  * are present).
405  */
x86_add_exclusive(unsigned int what)406 int x86_add_exclusive(unsigned int what)
407 {
408 	int i;
409 
410 	/*
411 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
412 	 * LBR and BTS are still mutually exclusive.
413 	 */
414 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
415 		goto out;
416 
417 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
418 		mutex_lock(&pmc_reserve_mutex);
419 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
420 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
421 				goto fail_unlock;
422 		}
423 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
424 		mutex_unlock(&pmc_reserve_mutex);
425 	}
426 
427 out:
428 	atomic_inc(&active_events);
429 	return 0;
430 
431 fail_unlock:
432 	mutex_unlock(&pmc_reserve_mutex);
433 	return -EBUSY;
434 }
435 
x86_del_exclusive(unsigned int what)436 void x86_del_exclusive(unsigned int what)
437 {
438 	atomic_dec(&active_events);
439 
440 	/*
441 	 * See the comment in x86_add_exclusive().
442 	 */
443 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
444 		return;
445 
446 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
447 }
448 
x86_setup_perfctr(struct perf_event * event)449 int x86_setup_perfctr(struct perf_event *event)
450 {
451 	struct perf_event_attr *attr = &event->attr;
452 	struct hw_perf_event *hwc = &event->hw;
453 	u64 config;
454 
455 	if (!is_sampling_event(event)) {
456 		hwc->sample_period = x86_pmu.max_period;
457 		hwc->last_period = hwc->sample_period;
458 		local64_set(&hwc->period_left, hwc->sample_period);
459 	}
460 
461 	if (attr->type == PERF_TYPE_RAW)
462 		return x86_pmu_extra_regs(event->attr.config, event);
463 
464 	if (attr->type == PERF_TYPE_HW_CACHE)
465 		return set_ext_hw_attr(hwc, event);
466 
467 	if (attr->config >= x86_pmu.max_events)
468 		return -EINVAL;
469 
470 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
471 
472 	/*
473 	 * The generic map:
474 	 */
475 	config = x86_pmu.event_map(attr->config);
476 
477 	if (config == 0)
478 		return -ENOENT;
479 
480 	if (config == -1LL)
481 		return -EINVAL;
482 
483 	hwc->config |= config;
484 
485 	return 0;
486 }
487 
488 /*
489  * check that branch_sample_type is compatible with
490  * settings needed for precise_ip > 1 which implies
491  * using the LBR to capture ALL taken branches at the
492  * priv levels of the measurement
493  */
precise_br_compat(struct perf_event * event)494 static inline int precise_br_compat(struct perf_event *event)
495 {
496 	u64 m = event->attr.branch_sample_type;
497 	u64 b = 0;
498 
499 	/* must capture all branches */
500 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
501 		return 0;
502 
503 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
504 
505 	if (!event->attr.exclude_user)
506 		b |= PERF_SAMPLE_BRANCH_USER;
507 
508 	if (!event->attr.exclude_kernel)
509 		b |= PERF_SAMPLE_BRANCH_KERNEL;
510 
511 	/*
512 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
513 	 */
514 
515 	return m == b;
516 }
517 
x86_pmu_max_precise(void)518 int x86_pmu_max_precise(void)
519 {
520 	int precise = 0;
521 
522 	/* Support for constant skid */
523 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
524 		precise++;
525 
526 		/* Support for IP fixup */
527 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
528 			precise++;
529 
530 		if (x86_pmu.pebs_prec_dist)
531 			precise++;
532 	}
533 	return precise;
534 }
535 
x86_pmu_hw_config(struct perf_event * event)536 int x86_pmu_hw_config(struct perf_event *event)
537 {
538 	if (event->attr.precise_ip) {
539 		int precise = x86_pmu_max_precise();
540 
541 		if (event->attr.precise_ip > precise)
542 			return -EOPNOTSUPP;
543 
544 		/* There's no sense in having PEBS for non sampling events: */
545 		if (!is_sampling_event(event))
546 			return -EINVAL;
547 	}
548 	/*
549 	 * check that PEBS LBR correction does not conflict with
550 	 * whatever the user is asking with attr->branch_sample_type
551 	 */
552 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
553 		u64 *br_type = &event->attr.branch_sample_type;
554 
555 		if (has_branch_stack(event)) {
556 			if (!precise_br_compat(event))
557 				return -EOPNOTSUPP;
558 
559 			/* branch_sample_type is compatible */
560 
561 		} else {
562 			/*
563 			 * user did not specify  branch_sample_type
564 			 *
565 			 * For PEBS fixups, we capture all
566 			 * the branches at the priv level of the
567 			 * event.
568 			 */
569 			*br_type = PERF_SAMPLE_BRANCH_ANY;
570 
571 			if (!event->attr.exclude_user)
572 				*br_type |= PERF_SAMPLE_BRANCH_USER;
573 
574 			if (!event->attr.exclude_kernel)
575 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
576 		}
577 	}
578 
579 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
580 		event->attach_state |= PERF_ATTACH_TASK_DATA;
581 
582 	/*
583 	 * Generate PMC IRQs:
584 	 * (keep 'enabled' bit clear for now)
585 	 */
586 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
587 
588 	/*
589 	 * Count user and OS events unless requested not to
590 	 */
591 	if (!event->attr.exclude_user)
592 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
593 	if (!event->attr.exclude_kernel)
594 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
595 
596 	if (event->attr.type == PERF_TYPE_RAW)
597 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
598 
599 	if (event->attr.sample_period && x86_pmu.limit_period) {
600 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
601 				event->attr.sample_period)
602 			return -EINVAL;
603 	}
604 
605 	/* sample_regs_user never support XMM registers */
606 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
607 		return -EINVAL;
608 	/*
609 	 * Besides the general purpose registers, XMM registers may
610 	 * be collected in PEBS on some platforms, e.g. Icelake
611 	 */
612 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
613 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
614 			return -EINVAL;
615 
616 		if (!event->attr.precise_ip)
617 			return -EINVAL;
618 	}
619 
620 	return x86_setup_perfctr(event);
621 }
622 
623 /*
624  * Setup the hardware configuration for a given attr_type
625  */
__x86_pmu_event_init(struct perf_event * event)626 static int __x86_pmu_event_init(struct perf_event *event)
627 {
628 	int err;
629 
630 	if (!x86_pmu_initialized())
631 		return -ENODEV;
632 
633 	err = x86_reserve_hardware();
634 	if (err)
635 		return err;
636 
637 	atomic_inc(&active_events);
638 	event->destroy = hw_perf_event_destroy;
639 
640 	event->hw.idx = -1;
641 	event->hw.last_cpu = -1;
642 	event->hw.last_tag = ~0ULL;
643 
644 	/* mark unused */
645 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
646 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
647 
648 	return x86_pmu.hw_config(event);
649 }
650 
x86_pmu_disable_all(void)651 void x86_pmu_disable_all(void)
652 {
653 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
654 	int idx;
655 
656 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
657 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
658 		u64 val;
659 
660 		if (!test_bit(idx, cpuc->active_mask))
661 			continue;
662 		rdmsrl(x86_pmu_config_addr(idx), val);
663 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
664 			continue;
665 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
666 		wrmsrl(x86_pmu_config_addr(idx), val);
667 		if (is_counter_pair(hwc))
668 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
669 	}
670 }
671 
672 /*
673  * There may be PMI landing after enabled=0. The PMI hitting could be before or
674  * after disable_all.
675  *
676  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
677  * It will not be re-enabled in the NMI handler again, because enabled=0. After
678  * handling the NMI, disable_all will be called, which will not change the
679  * state either. If PMI hits after disable_all, the PMU is already disabled
680  * before entering NMI handler. The NMI handler will not change the state
681  * either.
682  *
683  * So either situation is harmless.
684  */
x86_pmu_disable(struct pmu * pmu)685 static void x86_pmu_disable(struct pmu *pmu)
686 {
687 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
688 
689 	if (!x86_pmu_initialized())
690 		return;
691 
692 	if (!cpuc->enabled)
693 		return;
694 
695 	cpuc->n_added = 0;
696 	cpuc->enabled = 0;
697 	barrier();
698 
699 	static_call(x86_pmu_disable_all)();
700 }
701 
x86_pmu_enable_all(int added)702 void x86_pmu_enable_all(int added)
703 {
704 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
705 	int idx;
706 
707 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
708 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
709 
710 		if (!test_bit(idx, cpuc->active_mask))
711 			continue;
712 
713 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
714 	}
715 }
716 
is_x86_event(struct perf_event * event)717 static inline int is_x86_event(struct perf_event *event)
718 {
719 	return event->pmu == &pmu;
720 }
721 
x86_get_pmu(unsigned int cpu)722 struct pmu *x86_get_pmu(unsigned int cpu)
723 {
724 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
725 
726 	/*
727 	 * All CPUs of the hybrid type have been offline.
728 	 * The x86_get_pmu() should not be invoked.
729 	 */
730 	if (WARN_ON_ONCE(!cpuc->pmu))
731 		return &pmu;
732 
733 	return cpuc->pmu;
734 }
735 /*
736  * Event scheduler state:
737  *
738  * Assign events iterating over all events and counters, beginning
739  * with events with least weights first. Keep the current iterator
740  * state in struct sched_state.
741  */
742 struct sched_state {
743 	int	weight;
744 	int	event;		/* event index */
745 	int	counter;	/* counter index */
746 	int	unassigned;	/* number of events to be assigned left */
747 	int	nr_gp;		/* number of GP counters used */
748 	u64	used;
749 };
750 
751 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
752 #define	SCHED_STATES_MAX	2
753 
754 struct perf_sched {
755 	int			max_weight;
756 	int			max_events;
757 	int			max_gp;
758 	int			saved_states;
759 	struct event_constraint	**constraints;
760 	struct sched_state	state;
761 	struct sched_state	saved[SCHED_STATES_MAX];
762 };
763 
764 /*
765  * Initialize interator that runs through all events and counters.
766  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)767 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
768 			    int num, int wmin, int wmax, int gpmax)
769 {
770 	int idx;
771 
772 	memset(sched, 0, sizeof(*sched));
773 	sched->max_events	= num;
774 	sched->max_weight	= wmax;
775 	sched->max_gp		= gpmax;
776 	sched->constraints	= constraints;
777 
778 	for (idx = 0; idx < num; idx++) {
779 		if (constraints[idx]->weight == wmin)
780 			break;
781 	}
782 
783 	sched->state.event	= idx;		/* start with min weight */
784 	sched->state.weight	= wmin;
785 	sched->state.unassigned	= num;
786 }
787 
perf_sched_save_state(struct perf_sched * sched)788 static void perf_sched_save_state(struct perf_sched *sched)
789 {
790 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
791 		return;
792 
793 	sched->saved[sched->saved_states] = sched->state;
794 	sched->saved_states++;
795 }
796 
perf_sched_restore_state(struct perf_sched * sched)797 static bool perf_sched_restore_state(struct perf_sched *sched)
798 {
799 	if (!sched->saved_states)
800 		return false;
801 
802 	sched->saved_states--;
803 	sched->state = sched->saved[sched->saved_states];
804 
805 	/* this assignment didn't work out */
806 	/* XXX broken vs EVENT_PAIR */
807 	sched->state.used &= ~BIT_ULL(sched->state.counter);
808 
809 	/* try the next one */
810 	sched->state.counter++;
811 
812 	return true;
813 }
814 
815 /*
816  * Select a counter for the current event to schedule. Return true on
817  * success.
818  */
__perf_sched_find_counter(struct perf_sched * sched)819 static bool __perf_sched_find_counter(struct perf_sched *sched)
820 {
821 	struct event_constraint *c;
822 	int idx;
823 
824 	if (!sched->state.unassigned)
825 		return false;
826 
827 	if (sched->state.event >= sched->max_events)
828 		return false;
829 
830 	c = sched->constraints[sched->state.event];
831 	/* Prefer fixed purpose counters */
832 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
833 		idx = INTEL_PMC_IDX_FIXED;
834 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
835 			u64 mask = BIT_ULL(idx);
836 
837 			if (sched->state.used & mask)
838 				continue;
839 
840 			sched->state.used |= mask;
841 			goto done;
842 		}
843 	}
844 
845 	/* Grab the first unused counter starting with idx */
846 	idx = sched->state.counter;
847 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
848 		u64 mask = BIT_ULL(idx);
849 
850 		if (c->flags & PERF_X86_EVENT_PAIR)
851 			mask |= mask << 1;
852 
853 		if (sched->state.used & mask)
854 			continue;
855 
856 		if (sched->state.nr_gp++ >= sched->max_gp)
857 			return false;
858 
859 		sched->state.used |= mask;
860 		goto done;
861 	}
862 
863 	return false;
864 
865 done:
866 	sched->state.counter = idx;
867 
868 	if (c->overlap)
869 		perf_sched_save_state(sched);
870 
871 	return true;
872 }
873 
perf_sched_find_counter(struct perf_sched * sched)874 static bool perf_sched_find_counter(struct perf_sched *sched)
875 {
876 	while (!__perf_sched_find_counter(sched)) {
877 		if (!perf_sched_restore_state(sched))
878 			return false;
879 	}
880 
881 	return true;
882 }
883 
884 /*
885  * Go through all unassigned events and find the next one to schedule.
886  * Take events with the least weight first. Return true on success.
887  */
perf_sched_next_event(struct perf_sched * sched)888 static bool perf_sched_next_event(struct perf_sched *sched)
889 {
890 	struct event_constraint *c;
891 
892 	if (!sched->state.unassigned || !--sched->state.unassigned)
893 		return false;
894 
895 	do {
896 		/* next event */
897 		sched->state.event++;
898 		if (sched->state.event >= sched->max_events) {
899 			/* next weight */
900 			sched->state.event = 0;
901 			sched->state.weight++;
902 			if (sched->state.weight > sched->max_weight)
903 				return false;
904 		}
905 		c = sched->constraints[sched->state.event];
906 	} while (c->weight != sched->state.weight);
907 
908 	sched->state.counter = 0;	/* start with first counter */
909 
910 	return true;
911 }
912 
913 /*
914  * Assign a counter for each event.
915  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)916 int perf_assign_events(struct event_constraint **constraints, int n,
917 			int wmin, int wmax, int gpmax, int *assign)
918 {
919 	struct perf_sched sched;
920 
921 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
922 
923 	do {
924 		if (!perf_sched_find_counter(&sched))
925 			break;	/* failed */
926 		if (assign)
927 			assign[sched.state.event] = sched.state.counter;
928 	} while (perf_sched_next_event(&sched));
929 
930 	return sched.state.unassigned;
931 }
932 EXPORT_SYMBOL_GPL(perf_assign_events);
933 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)934 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
935 {
936 	struct event_constraint *c;
937 	struct perf_event *e;
938 	int n0, i, wmin, wmax, unsched = 0;
939 	struct hw_perf_event *hwc;
940 	u64 used_mask = 0;
941 
942 	/*
943 	 * Compute the number of events already present; see x86_pmu_add(),
944 	 * validate_group() and x86_pmu_commit_txn(). For the former two
945 	 * cpuc->n_events hasn't been updated yet, while for the latter
946 	 * cpuc->n_txn contains the number of events added in the current
947 	 * transaction.
948 	 */
949 	n0 = cpuc->n_events;
950 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
951 		n0 -= cpuc->n_txn;
952 
953 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
954 
955 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
956 		c = cpuc->event_constraint[i];
957 
958 		/*
959 		 * Previously scheduled events should have a cached constraint,
960 		 * while new events should not have one.
961 		 */
962 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
963 
964 		/*
965 		 * Request constraints for new events; or for those events that
966 		 * have a dynamic constraint -- for those the constraint can
967 		 * change due to external factors (sibling state, allow_tfa).
968 		 */
969 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
970 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
971 			cpuc->event_constraint[i] = c;
972 		}
973 
974 		wmin = min(wmin, c->weight);
975 		wmax = max(wmax, c->weight);
976 	}
977 
978 	/*
979 	 * fastpath, try to reuse previous register
980 	 */
981 	for (i = 0; i < n; i++) {
982 		u64 mask;
983 
984 		hwc = &cpuc->event_list[i]->hw;
985 		c = cpuc->event_constraint[i];
986 
987 		/* never assigned */
988 		if (hwc->idx == -1)
989 			break;
990 
991 		/* constraint still honored */
992 		if (!test_bit(hwc->idx, c->idxmsk))
993 			break;
994 
995 		mask = BIT_ULL(hwc->idx);
996 		if (is_counter_pair(hwc))
997 			mask |= mask << 1;
998 
999 		/* not already used */
1000 		if (used_mask & mask)
1001 			break;
1002 
1003 		used_mask |= mask;
1004 
1005 		if (assign)
1006 			assign[i] = hwc->idx;
1007 	}
1008 
1009 	/* slow path */
1010 	if (i != n) {
1011 		int gpmax = x86_pmu.num_counters;
1012 
1013 		/*
1014 		 * Do not allow scheduling of more than half the available
1015 		 * generic counters.
1016 		 *
1017 		 * This helps avoid counter starvation of sibling thread by
1018 		 * ensuring at most half the counters cannot be in exclusive
1019 		 * mode. There is no designated counters for the limits. Any
1020 		 * N/2 counters can be used. This helps with events with
1021 		 * specific counter constraints.
1022 		 */
1023 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1024 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1025 			gpmax /= 2;
1026 
1027 		/*
1028 		 * Reduce the amount of available counters to allow fitting
1029 		 * the extra Merge events needed by large increment events.
1030 		 */
1031 		if (x86_pmu.flags & PMU_FL_PAIR) {
1032 			gpmax = x86_pmu.num_counters - cpuc->n_pair;
1033 			WARN_ON(gpmax <= 0);
1034 		}
1035 
1036 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1037 					     wmax, gpmax, assign);
1038 	}
1039 
1040 	/*
1041 	 * In case of success (unsched = 0), mark events as committed,
1042 	 * so we do not put_constraint() in case new events are added
1043 	 * and fail to be scheduled
1044 	 *
1045 	 * We invoke the lower level commit callback to lock the resource
1046 	 *
1047 	 * We do not need to do all of this in case we are called to
1048 	 * validate an event group (assign == NULL)
1049 	 */
1050 	if (!unsched && assign) {
1051 		for (i = 0; i < n; i++) {
1052 			e = cpuc->event_list[i];
1053 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1054 		}
1055 	} else {
1056 		for (i = n0; i < n; i++) {
1057 			e = cpuc->event_list[i];
1058 
1059 			/*
1060 			 * release events that failed scheduling
1061 			 */
1062 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1063 
1064 			cpuc->event_constraint[i] = NULL;
1065 		}
1066 	}
1067 
1068 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1069 
1070 	return unsched ? -EINVAL : 0;
1071 }
1072 
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1073 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1074 			       struct perf_event *event)
1075 {
1076 	if (is_metric_event(event)) {
1077 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1078 			return -EINVAL;
1079 		cpuc->n_metric++;
1080 		cpuc->n_txn_metric++;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1086 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1087 				struct perf_event *event)
1088 {
1089 	if (is_metric_event(event))
1090 		cpuc->n_metric--;
1091 }
1092 
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1093 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1094 			 int max_count, int n)
1095 {
1096 
1097 	if (x86_pmu.intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1098 		return -EINVAL;
1099 
1100 	if (n >= max_count + cpuc->n_metric)
1101 		return -EINVAL;
1102 
1103 	cpuc->event_list[n] = event;
1104 	if (is_counter_pair(&event->hw)) {
1105 		cpuc->n_pair++;
1106 		cpuc->n_txn_pair++;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * dogrp: true if must collect siblings events (group)
1114  * returns total number of events and error code
1115  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1116 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1117 {
1118 	struct perf_event *event;
1119 	int n, max_count;
1120 
1121 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1122 
1123 	/* current number of events already accepted */
1124 	n = cpuc->n_events;
1125 	if (!cpuc->n_events)
1126 		cpuc->pebs_output = 0;
1127 
1128 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1129 		/*
1130 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1131 		 * away, the group was broken down and this singleton event
1132 		 * can't schedule any more.
1133 		 */
1134 		if (is_pebs_pt(leader) && !leader->aux_event)
1135 			return -EINVAL;
1136 
1137 		/*
1138 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1139 		 */
1140 		if (cpuc->pebs_output &&
1141 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1142 			return -EINVAL;
1143 
1144 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1145 	}
1146 
1147 	if (is_x86_event(leader)) {
1148 		if (collect_event(cpuc, leader, max_count, n))
1149 			return -EINVAL;
1150 		n++;
1151 	}
1152 
1153 	if (!dogrp)
1154 		return n;
1155 
1156 	for_each_sibling_event(event, leader) {
1157 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1158 			continue;
1159 
1160 		if (collect_event(cpuc, event, max_count, n))
1161 			return -EINVAL;
1162 
1163 		n++;
1164 	}
1165 	return n;
1166 }
1167 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1168 static inline void x86_assign_hw_event(struct perf_event *event,
1169 				struct cpu_hw_events *cpuc, int i)
1170 {
1171 	struct hw_perf_event *hwc = &event->hw;
1172 	int idx;
1173 
1174 	idx = hwc->idx = cpuc->assign[i];
1175 	hwc->last_cpu = smp_processor_id();
1176 	hwc->last_tag = ++cpuc->tags[i];
1177 
1178 	switch (hwc->idx) {
1179 	case INTEL_PMC_IDX_FIXED_BTS:
1180 	case INTEL_PMC_IDX_FIXED_VLBR:
1181 		hwc->config_base = 0;
1182 		hwc->event_base	= 0;
1183 		break;
1184 
1185 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1186 		/* All the metric events are mapped onto the fixed counter 3. */
1187 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1188 		/* fall through */
1189 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1190 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1191 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1192 				(idx - INTEL_PMC_IDX_FIXED);
1193 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1194 					INTEL_PMC_FIXED_RDPMC_BASE;
1195 		break;
1196 
1197 	default:
1198 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1199 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1200 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1201 		break;
1202 	}
1203 }
1204 
1205 /**
1206  * x86_perf_rdpmc_index - Return PMC counter used for event
1207  * @event: the perf_event to which the PMC counter was assigned
1208  *
1209  * The counter assigned to this performance event may change if interrupts
1210  * are enabled. This counter should thus never be used while interrupts are
1211  * enabled. Before this function is used to obtain the assigned counter the
1212  * event should be checked for validity using, for example,
1213  * perf_event_read_local(), within the same interrupt disabled section in
1214  * which this counter is planned to be used.
1215  *
1216  * Return: The index of the performance monitoring counter assigned to
1217  * @perf_event.
1218  */
x86_perf_rdpmc_index(struct perf_event * event)1219 int x86_perf_rdpmc_index(struct perf_event *event)
1220 {
1221 	lockdep_assert_irqs_disabled();
1222 
1223 	return event->hw.event_base_rdpmc;
1224 }
1225 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1226 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1227 					struct cpu_hw_events *cpuc,
1228 					int i)
1229 {
1230 	return hwc->idx == cpuc->assign[i] &&
1231 		hwc->last_cpu == smp_processor_id() &&
1232 		hwc->last_tag == cpuc->tags[i];
1233 }
1234 
1235 static void x86_pmu_start(struct perf_event *event, int flags);
1236 
x86_pmu_enable(struct pmu * pmu)1237 static void x86_pmu_enable(struct pmu *pmu)
1238 {
1239 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1240 	struct perf_event *event;
1241 	struct hw_perf_event *hwc;
1242 	int i, added = cpuc->n_added;
1243 
1244 	if (!x86_pmu_initialized())
1245 		return;
1246 
1247 	if (cpuc->enabled)
1248 		return;
1249 
1250 	if (cpuc->n_added) {
1251 		int n_running = cpuc->n_events - cpuc->n_added;
1252 		/*
1253 		 * apply assignment obtained either from
1254 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1255 		 *
1256 		 * step1: save events moving to new counters
1257 		 */
1258 		for (i = 0; i < n_running; i++) {
1259 			event = cpuc->event_list[i];
1260 			hwc = &event->hw;
1261 
1262 			/*
1263 			 * we can avoid reprogramming counter if:
1264 			 * - assigned same counter as last time
1265 			 * - running on same CPU as last time
1266 			 * - no other event has used the counter since
1267 			 */
1268 			if (hwc->idx == -1 ||
1269 			    match_prev_assignment(hwc, cpuc, i))
1270 				continue;
1271 
1272 			/*
1273 			 * Ensure we don't accidentally enable a stopped
1274 			 * counter simply because we rescheduled.
1275 			 */
1276 			if (hwc->state & PERF_HES_STOPPED)
1277 				hwc->state |= PERF_HES_ARCH;
1278 
1279 			x86_pmu_stop(event, PERF_EF_UPDATE);
1280 		}
1281 
1282 		/*
1283 		 * step2: reprogram moved events into new counters
1284 		 */
1285 		for (i = 0; i < cpuc->n_events; i++) {
1286 			event = cpuc->event_list[i];
1287 			hwc = &event->hw;
1288 
1289 			if (!match_prev_assignment(hwc, cpuc, i))
1290 				x86_assign_hw_event(event, cpuc, i);
1291 			else if (i < n_running)
1292 				continue;
1293 
1294 			if (hwc->state & PERF_HES_ARCH)
1295 				continue;
1296 
1297 			x86_pmu_start(event, PERF_EF_RELOAD);
1298 		}
1299 		cpuc->n_added = 0;
1300 		perf_events_lapic_init();
1301 	}
1302 
1303 	cpuc->enabled = 1;
1304 	barrier();
1305 
1306 	static_call(x86_pmu_enable_all)(added);
1307 }
1308 
1309 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1310 
1311 /*
1312  * Set the next IRQ period, based on the hwc->period_left value.
1313  * To be called with the event disabled in hw:
1314  */
x86_perf_event_set_period(struct perf_event * event)1315 int x86_perf_event_set_period(struct perf_event *event)
1316 {
1317 	struct hw_perf_event *hwc = &event->hw;
1318 	s64 left = local64_read(&hwc->period_left);
1319 	s64 period = hwc->sample_period;
1320 	int ret = 0, idx = hwc->idx;
1321 
1322 	if (unlikely(!hwc->event_base))
1323 		return 0;
1324 
1325 	if (unlikely(is_topdown_count(event)) &&
1326 	    x86_pmu.set_topdown_event_period)
1327 		return x86_pmu.set_topdown_event_period(event);
1328 
1329 	/*
1330 	 * If we are way outside a reasonable range then just skip forward:
1331 	 */
1332 	if (unlikely(left <= -period)) {
1333 		left = period;
1334 		local64_set(&hwc->period_left, left);
1335 		hwc->last_period = period;
1336 		ret = 1;
1337 	}
1338 
1339 	if (unlikely(left <= 0)) {
1340 		left += period;
1341 		local64_set(&hwc->period_left, left);
1342 		hwc->last_period = period;
1343 		ret = 1;
1344 	}
1345 	/*
1346 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1347 	 */
1348 	if (unlikely(left < 2))
1349 		left = 2;
1350 
1351 	if (left > x86_pmu.max_period)
1352 		left = x86_pmu.max_period;
1353 
1354 	if (x86_pmu.limit_period)
1355 		left = x86_pmu.limit_period(event, left);
1356 
1357 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1358 
1359 	/*
1360 	 * The hw event starts counting from this event offset,
1361 	 * mark it to be able to extra future deltas:
1362 	 */
1363 	local64_set(&hwc->prev_count, (u64)-left);
1364 
1365 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1366 
1367 	/*
1368 	 * Sign extend the Merge event counter's upper 16 bits since
1369 	 * we currently declare a 48-bit counter width
1370 	 */
1371 	if (is_counter_pair(hwc))
1372 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1373 
1374 	/*
1375 	 * Due to erratum on certan cpu we need
1376 	 * a second write to be sure the register
1377 	 * is updated properly
1378 	 */
1379 	if (x86_pmu.perfctr_second_write) {
1380 		wrmsrl(hwc->event_base,
1381 			(u64)(-left) & x86_pmu.cntval_mask);
1382 	}
1383 
1384 	perf_event_update_userpage(event);
1385 
1386 	return ret;
1387 }
1388 
x86_pmu_enable_event(struct perf_event * event)1389 void x86_pmu_enable_event(struct perf_event *event)
1390 {
1391 	if (__this_cpu_read(cpu_hw_events.enabled))
1392 		__x86_pmu_enable_event(&event->hw,
1393 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1394 }
1395 
1396 /*
1397  * Add a single event to the PMU.
1398  *
1399  * The event is added to the group of enabled events
1400  * but only if it can be scheduled with existing events.
1401  */
x86_pmu_add(struct perf_event * event,int flags)1402 static int x86_pmu_add(struct perf_event *event, int flags)
1403 {
1404 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1405 	struct hw_perf_event *hwc;
1406 	int assign[X86_PMC_IDX_MAX];
1407 	int n, n0, ret;
1408 
1409 	hwc = &event->hw;
1410 
1411 	n0 = cpuc->n_events;
1412 	ret = n = collect_events(cpuc, event, false);
1413 	if (ret < 0)
1414 		goto out;
1415 
1416 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1417 	if (!(flags & PERF_EF_START))
1418 		hwc->state |= PERF_HES_ARCH;
1419 
1420 	/*
1421 	 * If group events scheduling transaction was started,
1422 	 * skip the schedulability test here, it will be performed
1423 	 * at commit time (->commit_txn) as a whole.
1424 	 *
1425 	 * If commit fails, we'll call ->del() on all events
1426 	 * for which ->add() was called.
1427 	 */
1428 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1429 		goto done_collect;
1430 
1431 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1432 	if (ret)
1433 		goto out;
1434 	/*
1435 	 * copy new assignment, now we know it is possible
1436 	 * will be used by hw_perf_enable()
1437 	 */
1438 	memcpy(cpuc->assign, assign, n*sizeof(int));
1439 
1440 done_collect:
1441 	/*
1442 	 * Commit the collect_events() state. See x86_pmu_del() and
1443 	 * x86_pmu_*_txn().
1444 	 */
1445 	cpuc->n_events = n;
1446 	cpuc->n_added += n - n0;
1447 	cpuc->n_txn += n - n0;
1448 
1449 	/*
1450 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1451 	 * so we enable LBRs before an event needs them etc..
1452 	 */
1453 	static_call_cond(x86_pmu_add)(event);
1454 
1455 	ret = 0;
1456 out:
1457 	return ret;
1458 }
1459 
x86_pmu_start(struct perf_event * event,int flags)1460 static void x86_pmu_start(struct perf_event *event, int flags)
1461 {
1462 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1463 	int idx = event->hw.idx;
1464 
1465 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1466 		return;
1467 
1468 	if (WARN_ON_ONCE(idx == -1))
1469 		return;
1470 
1471 	if (flags & PERF_EF_RELOAD) {
1472 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1473 		x86_perf_event_set_period(event);
1474 	}
1475 
1476 	event->hw.state = 0;
1477 
1478 	cpuc->events[idx] = event;
1479 	__set_bit(idx, cpuc->active_mask);
1480 	__set_bit(idx, cpuc->running);
1481 	static_call(x86_pmu_enable)(event);
1482 	perf_event_update_userpage(event);
1483 }
1484 
perf_event_print_debug(void)1485 void perf_event_print_debug(void)
1486 {
1487 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1488 	u64 pebs, debugctl;
1489 	struct cpu_hw_events *cpuc;
1490 	unsigned long flags;
1491 	int cpu, idx;
1492 
1493 	if (!x86_pmu.num_counters)
1494 		return;
1495 
1496 	local_irq_save(flags);
1497 
1498 	cpu = smp_processor_id();
1499 	cpuc = &per_cpu(cpu_hw_events, cpu);
1500 
1501 	if (x86_pmu.version >= 2) {
1502 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1503 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1504 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1505 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1506 
1507 		pr_info("\n");
1508 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1509 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1510 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1511 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1512 		if (x86_pmu.pebs_constraints) {
1513 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1514 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1515 		}
1516 		if (x86_pmu.lbr_nr) {
1517 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1518 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1519 		}
1520 	}
1521 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1522 
1523 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1524 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1525 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1526 
1527 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1528 
1529 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1530 			cpu, idx, pmc_ctrl);
1531 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1532 			cpu, idx, pmc_count);
1533 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1534 			cpu, idx, prev_left);
1535 	}
1536 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1537 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1538 
1539 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1540 			cpu, idx, pmc_count);
1541 	}
1542 	local_irq_restore(flags);
1543 }
1544 
x86_pmu_stop(struct perf_event * event,int flags)1545 void x86_pmu_stop(struct perf_event *event, int flags)
1546 {
1547 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1548 	struct hw_perf_event *hwc = &event->hw;
1549 
1550 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1551 		static_call(x86_pmu_disable)(event);
1552 		__clear_bit(hwc->idx, cpuc->active_mask);
1553 		cpuc->events[hwc->idx] = NULL;
1554 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1555 		hwc->state |= PERF_HES_STOPPED;
1556 	}
1557 
1558 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1559 		/*
1560 		 * Drain the remaining delta count out of a event
1561 		 * that we are disabling:
1562 		 */
1563 		x86_perf_event_update(event);
1564 		hwc->state |= PERF_HES_UPTODATE;
1565 	}
1566 }
1567 
x86_pmu_del(struct perf_event * event,int flags)1568 static void x86_pmu_del(struct perf_event *event, int flags)
1569 {
1570 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1571 	int i;
1572 
1573 	/*
1574 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1575 	 * The events never got scheduled and ->cancel_txn will truncate
1576 	 * the event_list.
1577 	 *
1578 	 * XXX assumes any ->del() called during a TXN will only be on
1579 	 * an event added during that same TXN.
1580 	 */
1581 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1582 		goto do_del;
1583 
1584 	/*
1585 	 * Not a TXN, therefore cleanup properly.
1586 	 */
1587 	x86_pmu_stop(event, PERF_EF_UPDATE);
1588 
1589 	for (i = 0; i < cpuc->n_events; i++) {
1590 		if (event == cpuc->event_list[i])
1591 			break;
1592 	}
1593 
1594 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1595 		return;
1596 
1597 	/* If we have a newly added event; make sure to decrease n_added. */
1598 	if (i >= cpuc->n_events - cpuc->n_added)
1599 		--cpuc->n_added;
1600 
1601 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1602 
1603 	/* Delete the array entry. */
1604 	while (++i < cpuc->n_events) {
1605 		cpuc->event_list[i-1] = cpuc->event_list[i];
1606 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1607 	}
1608 	cpuc->event_constraint[i-1] = NULL;
1609 	--cpuc->n_events;
1610 	if (x86_pmu.intel_cap.perf_metrics)
1611 		del_nr_metric_event(cpuc, event);
1612 
1613 	perf_event_update_userpage(event);
1614 
1615 do_del:
1616 
1617 	/*
1618 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1619 	 * event can need them etc..
1620 	 */
1621 	static_call_cond(x86_pmu_del)(event);
1622 }
1623 
x86_pmu_handle_irq(struct pt_regs * regs)1624 int x86_pmu_handle_irq(struct pt_regs *regs)
1625 {
1626 	struct perf_sample_data data;
1627 	struct cpu_hw_events *cpuc;
1628 	struct perf_event *event;
1629 	int idx, handled = 0;
1630 	u64 val;
1631 
1632 	cpuc = this_cpu_ptr(&cpu_hw_events);
1633 
1634 	/*
1635 	 * Some chipsets need to unmask the LVTPC in a particular spot
1636 	 * inside the nmi handler.  As a result, the unmasking was pushed
1637 	 * into all the nmi handlers.
1638 	 *
1639 	 * This generic handler doesn't seem to have any issues where the
1640 	 * unmasking occurs so it was left at the top.
1641 	 */
1642 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1643 
1644 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1645 		if (!test_bit(idx, cpuc->active_mask))
1646 			continue;
1647 
1648 		event = cpuc->events[idx];
1649 
1650 		val = x86_perf_event_update(event);
1651 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1652 			continue;
1653 
1654 		/*
1655 		 * event overflow
1656 		 */
1657 		handled++;
1658 		perf_sample_data_init(&data, 0, event->hw.last_period);
1659 
1660 		if (!x86_perf_event_set_period(event))
1661 			continue;
1662 
1663 		if (perf_event_overflow(event, &data, regs))
1664 			x86_pmu_stop(event, 0);
1665 	}
1666 
1667 	if (handled)
1668 		inc_irq_stat(apic_perf_irqs);
1669 
1670 	return handled;
1671 }
1672 
perf_events_lapic_init(void)1673 void perf_events_lapic_init(void)
1674 {
1675 	if (!x86_pmu.apic || !x86_pmu_initialized())
1676 		return;
1677 
1678 	/*
1679 	 * Always use NMI for PMU
1680 	 */
1681 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1682 }
1683 
1684 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1685 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1686 {
1687 	u64 start_clock;
1688 	u64 finish_clock;
1689 	int ret;
1690 
1691 	/*
1692 	 * All PMUs/events that share this PMI handler should make sure to
1693 	 * increment active_events for their events.
1694 	 */
1695 	if (!atomic_read(&active_events))
1696 		return NMI_DONE;
1697 
1698 	start_clock = sched_clock();
1699 	ret = static_call(x86_pmu_handle_irq)(regs);
1700 	finish_clock = sched_clock();
1701 
1702 	perf_sample_event_took(finish_clock - start_clock);
1703 
1704 	return ret;
1705 }
1706 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1707 
1708 struct event_constraint emptyconstraint;
1709 struct event_constraint unconstrained;
1710 
x86_pmu_prepare_cpu(unsigned int cpu)1711 static int x86_pmu_prepare_cpu(unsigned int cpu)
1712 {
1713 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1714 	int i;
1715 
1716 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1717 		cpuc->kfree_on_online[i] = NULL;
1718 	if (x86_pmu.cpu_prepare)
1719 		return x86_pmu.cpu_prepare(cpu);
1720 	return 0;
1721 }
1722 
x86_pmu_dead_cpu(unsigned int cpu)1723 static int x86_pmu_dead_cpu(unsigned int cpu)
1724 {
1725 	if (x86_pmu.cpu_dead)
1726 		x86_pmu.cpu_dead(cpu);
1727 	return 0;
1728 }
1729 
x86_pmu_online_cpu(unsigned int cpu)1730 static int x86_pmu_online_cpu(unsigned int cpu)
1731 {
1732 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1733 	int i;
1734 
1735 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1736 		kfree(cpuc->kfree_on_online[i]);
1737 		cpuc->kfree_on_online[i] = NULL;
1738 	}
1739 	return 0;
1740 }
1741 
x86_pmu_starting_cpu(unsigned int cpu)1742 static int x86_pmu_starting_cpu(unsigned int cpu)
1743 {
1744 	if (x86_pmu.cpu_starting)
1745 		x86_pmu.cpu_starting(cpu);
1746 	return 0;
1747 }
1748 
x86_pmu_dying_cpu(unsigned int cpu)1749 static int x86_pmu_dying_cpu(unsigned int cpu)
1750 {
1751 	if (x86_pmu.cpu_dying)
1752 		x86_pmu.cpu_dying(cpu);
1753 	return 0;
1754 }
1755 
pmu_check_apic(void)1756 static void __init pmu_check_apic(void)
1757 {
1758 	if (boot_cpu_has(X86_FEATURE_APIC))
1759 		return;
1760 
1761 	x86_pmu.apic = 0;
1762 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1763 	pr_info("no hardware sampling interrupt available.\n");
1764 
1765 	/*
1766 	 * If we have a PMU initialized but no APIC
1767 	 * interrupts, we cannot sample hardware
1768 	 * events (user-space has to fall back and
1769 	 * sample via a hrtimer based software event):
1770 	 */
1771 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1772 
1773 }
1774 
1775 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1776 	.name = "format",
1777 	.attrs = NULL,
1778 };
1779 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1780 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1781 {
1782 	struct perf_pmu_events_attr *pmu_attr =
1783 		container_of(attr, struct perf_pmu_events_attr, attr);
1784 	u64 config = 0;
1785 
1786 	if (pmu_attr->id < x86_pmu.max_events)
1787 		config = x86_pmu.event_map(pmu_attr->id);
1788 
1789 	/* string trumps id */
1790 	if (pmu_attr->event_str)
1791 		return sprintf(page, "%s", pmu_attr->event_str);
1792 
1793 	return x86_pmu.events_sysfs_show(page, config);
1794 }
1795 EXPORT_SYMBOL_GPL(events_sysfs_show);
1796 
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1797 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1798 			  char *page)
1799 {
1800 	struct perf_pmu_events_ht_attr *pmu_attr =
1801 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1802 
1803 	/*
1804 	 * Report conditional events depending on Hyper-Threading.
1805 	 *
1806 	 * This is overly conservative as usually the HT special
1807 	 * handling is not needed if the other CPU thread is idle.
1808 	 *
1809 	 * Note this does not (and cannot) handle the case when thread
1810 	 * siblings are invisible, for example with virtualization
1811 	 * if they are owned by some other guest.  The user tool
1812 	 * has to re-read when a thread sibling gets onlined later.
1813 	 */
1814 	return sprintf(page, "%s",
1815 			topology_max_smt_threads() > 1 ?
1816 			pmu_attr->event_str_ht :
1817 			pmu_attr->event_str_noht);
1818 }
1819 
1820 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1821 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1822 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1823 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1824 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1825 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1826 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1827 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1828 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1829 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1830 
1831 static struct attribute *empty_attrs;
1832 
1833 static struct attribute *events_attr[] = {
1834 	EVENT_PTR(CPU_CYCLES),
1835 	EVENT_PTR(INSTRUCTIONS),
1836 	EVENT_PTR(CACHE_REFERENCES),
1837 	EVENT_PTR(CACHE_MISSES),
1838 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1839 	EVENT_PTR(BRANCH_MISSES),
1840 	EVENT_PTR(BUS_CYCLES),
1841 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1842 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1843 	EVENT_PTR(REF_CPU_CYCLES),
1844 	NULL,
1845 };
1846 
1847 /*
1848  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1849  * out of events_attr attributes.
1850  */
1851 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1852 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1853 {
1854 	struct perf_pmu_events_attr *pmu_attr;
1855 
1856 	if (idx >= x86_pmu.max_events)
1857 		return 0;
1858 
1859 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1860 	/* str trumps id */
1861 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1862 }
1863 
1864 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1865 	.name = "events",
1866 	.attrs = events_attr,
1867 	.is_visible = is_visible,
1868 };
1869 
x86_event_sysfs_show(char * page,u64 config,u64 event)1870 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1871 {
1872 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1873 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1874 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1875 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1876 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1877 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1878 	ssize_t ret;
1879 
1880 	/*
1881 	* We have whole page size to spend and just little data
1882 	* to write, so we can safely use sprintf.
1883 	*/
1884 	ret = sprintf(page, "event=0x%02llx", event);
1885 
1886 	if (umask)
1887 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1888 
1889 	if (edge)
1890 		ret += sprintf(page + ret, ",edge");
1891 
1892 	if (pc)
1893 		ret += sprintf(page + ret, ",pc");
1894 
1895 	if (any)
1896 		ret += sprintf(page + ret, ",any");
1897 
1898 	if (inv)
1899 		ret += sprintf(page + ret, ",inv");
1900 
1901 	if (cmask)
1902 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1903 
1904 	ret += sprintf(page + ret, "\n");
1905 
1906 	return ret;
1907 }
1908 
1909 static struct attribute_group x86_pmu_attr_group;
1910 static struct attribute_group x86_pmu_caps_group;
1911 
x86_pmu_static_call_update(void)1912 static void x86_pmu_static_call_update(void)
1913 {
1914 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
1915 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
1916 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
1917 	static_call_update(x86_pmu_enable, x86_pmu.enable);
1918 	static_call_update(x86_pmu_disable, x86_pmu.disable);
1919 
1920 	static_call_update(x86_pmu_add, x86_pmu.add);
1921 	static_call_update(x86_pmu_del, x86_pmu.del);
1922 	static_call_update(x86_pmu_read, x86_pmu.read);
1923 
1924 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
1925 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
1926 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
1927 
1928 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
1929 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
1930 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
1931 
1932 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
1933 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
1934 
1935 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
1936 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
1937 }
1938 
_x86_pmu_read(struct perf_event * event)1939 static void _x86_pmu_read(struct perf_event *event)
1940 {
1941 	x86_perf_event_update(event);
1942 }
1943 
init_hw_perf_events(void)1944 static int __init init_hw_perf_events(void)
1945 {
1946 	struct x86_pmu_quirk *quirk;
1947 	int err;
1948 
1949 	pr_info("Performance Events: ");
1950 
1951 	switch (boot_cpu_data.x86_vendor) {
1952 	case X86_VENDOR_INTEL:
1953 		err = intel_pmu_init();
1954 		break;
1955 	case X86_VENDOR_AMD:
1956 		err = amd_pmu_init();
1957 		break;
1958 	case X86_VENDOR_HYGON:
1959 		err = amd_pmu_init();
1960 		x86_pmu.name = "HYGON";
1961 		break;
1962 	case X86_VENDOR_ZHAOXIN:
1963 	case X86_VENDOR_CENTAUR:
1964 		err = zhaoxin_pmu_init();
1965 		break;
1966 	default:
1967 		err = -ENOTSUPP;
1968 	}
1969 	if (err != 0) {
1970 		pr_cont("no PMU driver, software events only.\n");
1971 		return 0;
1972 	}
1973 
1974 	pmu_check_apic();
1975 
1976 	/* sanity check that the hardware exists or is emulated */
1977 	if (!check_hw_exists())
1978 		return 0;
1979 
1980 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1981 
1982 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1983 
1984 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1985 		quirk->func();
1986 
1987 	if (!x86_pmu.intel_ctrl)
1988 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1989 
1990 	perf_events_lapic_init();
1991 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1992 
1993 	unconstrained = (struct event_constraint)
1994 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1995 				   0, x86_pmu.num_counters, 0, 0);
1996 
1997 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1998 
1999 	if (!x86_pmu.events_sysfs_show)
2000 		x86_pmu_events_group.attrs = &empty_attrs;
2001 
2002 	pmu.attr_update = x86_pmu.attr_update;
2003 
2004 	pr_info("... version:                %d\n",     x86_pmu.version);
2005 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2006 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
2007 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2008 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2009 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
2010 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
2011 
2012 	if (!x86_pmu.read)
2013 		x86_pmu.read = _x86_pmu_read;
2014 
2015 	x86_pmu_static_call_update();
2016 
2017 	/*
2018 	 * Install callbacks. Core will call them for each online
2019 	 * cpu.
2020 	 */
2021 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2022 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2023 	if (err)
2024 		return err;
2025 
2026 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2027 				"perf/x86:starting", x86_pmu_starting_cpu,
2028 				x86_pmu_dying_cpu);
2029 	if (err)
2030 		goto out;
2031 
2032 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2033 				x86_pmu_online_cpu, NULL);
2034 	if (err)
2035 		goto out1;
2036 
2037 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2038 	if (err)
2039 		goto out2;
2040 
2041 	return 0;
2042 
2043 out2:
2044 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2045 out1:
2046 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2047 out:
2048 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2049 	return err;
2050 }
2051 early_initcall(init_hw_perf_events);
2052 
x86_pmu_read(struct perf_event * event)2053 static void x86_pmu_read(struct perf_event *event)
2054 {
2055 	static_call(x86_pmu_read)(event);
2056 }
2057 
2058 /*
2059  * Start group events scheduling transaction
2060  * Set the flag to make pmu::enable() not perform the
2061  * schedulability test, it will be performed at commit time
2062  *
2063  * We only support PERF_PMU_TXN_ADD transactions. Save the
2064  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2065  * transactions.
2066  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2067 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2068 {
2069 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2070 
2071 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2072 
2073 	cpuc->txn_flags = txn_flags;
2074 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2075 		return;
2076 
2077 	perf_pmu_disable(pmu);
2078 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2079 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2080 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2081 }
2082 
2083 /*
2084  * Stop group events scheduling transaction
2085  * Clear the flag and pmu::enable() will perform the
2086  * schedulability test.
2087  */
x86_pmu_cancel_txn(struct pmu * pmu)2088 static void x86_pmu_cancel_txn(struct pmu *pmu)
2089 {
2090 	unsigned int txn_flags;
2091 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2092 
2093 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2094 
2095 	txn_flags = cpuc->txn_flags;
2096 	cpuc->txn_flags = 0;
2097 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2098 		return;
2099 
2100 	/*
2101 	 * Truncate collected array by the number of events added in this
2102 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2103 	 */
2104 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2105 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2106 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2107 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2108 	perf_pmu_enable(pmu);
2109 }
2110 
2111 /*
2112  * Commit group events scheduling transaction
2113  * Perform the group schedulability test as a whole
2114  * Return 0 if success
2115  *
2116  * Does not cancel the transaction on failure; expects the caller to do this.
2117  */
x86_pmu_commit_txn(struct pmu * pmu)2118 static int x86_pmu_commit_txn(struct pmu *pmu)
2119 {
2120 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2121 	int assign[X86_PMC_IDX_MAX];
2122 	int n, ret;
2123 
2124 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2125 
2126 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2127 		cpuc->txn_flags = 0;
2128 		return 0;
2129 	}
2130 
2131 	n = cpuc->n_events;
2132 
2133 	if (!x86_pmu_initialized())
2134 		return -EAGAIN;
2135 
2136 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2137 	if (ret)
2138 		return ret;
2139 
2140 	/*
2141 	 * copy new assignment, now we know it is possible
2142 	 * will be used by hw_perf_enable()
2143 	 */
2144 	memcpy(cpuc->assign, assign, n*sizeof(int));
2145 
2146 	cpuc->txn_flags = 0;
2147 	perf_pmu_enable(pmu);
2148 	return 0;
2149 }
2150 /*
2151  * a fake_cpuc is used to validate event groups. Due to
2152  * the extra reg logic, we need to also allocate a fake
2153  * per_core and per_cpu structure. Otherwise, group events
2154  * using extra reg may conflict without the kernel being
2155  * able to catch this when the last event gets added to
2156  * the group.
2157  */
free_fake_cpuc(struct cpu_hw_events * cpuc)2158 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2159 {
2160 	intel_cpuc_finish(cpuc);
2161 	kfree(cpuc);
2162 }
2163 
allocate_fake_cpuc(void)2164 static struct cpu_hw_events *allocate_fake_cpuc(void)
2165 {
2166 	struct cpu_hw_events *cpuc;
2167 	int cpu = raw_smp_processor_id();
2168 
2169 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2170 	if (!cpuc)
2171 		return ERR_PTR(-ENOMEM);
2172 	cpuc->is_fake = 1;
2173 
2174 	if (intel_cpuc_prepare(cpuc, cpu))
2175 		goto error;
2176 
2177 	return cpuc;
2178 error:
2179 	free_fake_cpuc(cpuc);
2180 	return ERR_PTR(-ENOMEM);
2181 }
2182 
2183 /*
2184  * validate that we can schedule this event
2185  */
validate_event(struct perf_event * event)2186 static int validate_event(struct perf_event *event)
2187 {
2188 	struct cpu_hw_events *fake_cpuc;
2189 	struct event_constraint *c;
2190 	int ret = 0;
2191 
2192 	fake_cpuc = allocate_fake_cpuc();
2193 	if (IS_ERR(fake_cpuc))
2194 		return PTR_ERR(fake_cpuc);
2195 
2196 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2197 
2198 	if (!c || !c->weight)
2199 		ret = -EINVAL;
2200 
2201 	if (x86_pmu.put_event_constraints)
2202 		x86_pmu.put_event_constraints(fake_cpuc, event);
2203 
2204 	free_fake_cpuc(fake_cpuc);
2205 
2206 	return ret;
2207 }
2208 
2209 /*
2210  * validate a single event group
2211  *
2212  * validation include:
2213  *	- check events are compatible which each other
2214  *	- events do not compete for the same counter
2215  *	- number of events <= number of counters
2216  *
2217  * validation ensures the group can be loaded onto the
2218  * PMU if it was the only group available.
2219  */
validate_group(struct perf_event * event)2220 static int validate_group(struct perf_event *event)
2221 {
2222 	struct perf_event *leader = event->group_leader;
2223 	struct cpu_hw_events *fake_cpuc;
2224 	int ret = -EINVAL, n;
2225 
2226 	fake_cpuc = allocate_fake_cpuc();
2227 	if (IS_ERR(fake_cpuc))
2228 		return PTR_ERR(fake_cpuc);
2229 	/*
2230 	 * the event is not yet connected with its
2231 	 * siblings therefore we must first collect
2232 	 * existing siblings, then add the new event
2233 	 * before we can simulate the scheduling
2234 	 */
2235 	n = collect_events(fake_cpuc, leader, true);
2236 	if (n < 0)
2237 		goto out;
2238 
2239 	fake_cpuc->n_events = n;
2240 	n = collect_events(fake_cpuc, event, false);
2241 	if (n < 0)
2242 		goto out;
2243 
2244 	fake_cpuc->n_events = 0;
2245 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2246 
2247 out:
2248 	free_fake_cpuc(fake_cpuc);
2249 	return ret;
2250 }
2251 
x86_pmu_event_init(struct perf_event * event)2252 static int x86_pmu_event_init(struct perf_event *event)
2253 {
2254 	struct pmu *tmp;
2255 	int err;
2256 
2257 	switch (event->attr.type) {
2258 	case PERF_TYPE_RAW:
2259 	case PERF_TYPE_HARDWARE:
2260 	case PERF_TYPE_HW_CACHE:
2261 		break;
2262 
2263 	default:
2264 		return -ENOENT;
2265 	}
2266 
2267 	err = __x86_pmu_event_init(event);
2268 	if (!err) {
2269 		/*
2270 		 * we temporarily connect event to its pmu
2271 		 * such that validate_group() can classify
2272 		 * it as an x86 event using is_x86_event()
2273 		 */
2274 		tmp = event->pmu;
2275 		event->pmu = &pmu;
2276 
2277 		if (event->group_leader != event)
2278 			err = validate_group(event);
2279 		else
2280 			err = validate_event(event);
2281 
2282 		event->pmu = tmp;
2283 	}
2284 	if (err) {
2285 		if (event->destroy)
2286 			event->destroy(event);
2287 		event->destroy = NULL;
2288 	}
2289 
2290 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2291 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2292 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2293 
2294 	return err;
2295 }
2296 
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2297 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2298 {
2299 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2300 		return;
2301 
2302 	/*
2303 	 * This function relies on not being called concurrently in two
2304 	 * tasks in the same mm.  Otherwise one task could observe
2305 	 * perf_rdpmc_allowed > 1 and return all the way back to
2306 	 * userspace with CR4.PCE clear while another task is still
2307 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2308 	 *
2309 	 * For now, this can't happen because all callers hold mmap_lock
2310 	 * for write.  If this changes, we'll need a different solution.
2311 	 */
2312 	mmap_assert_write_locked(mm);
2313 
2314 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2315 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2316 }
2317 
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2318 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2319 {
2320 
2321 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2322 		return;
2323 
2324 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2325 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2326 }
2327 
x86_pmu_event_idx(struct perf_event * event)2328 static int x86_pmu_event_idx(struct perf_event *event)
2329 {
2330 	struct hw_perf_event *hwc = &event->hw;
2331 
2332 	if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2333 		return 0;
2334 
2335 	if (is_metric_idx(hwc->idx))
2336 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2337 	else
2338 		return hwc->event_base_rdpmc + 1;
2339 }
2340 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2341 static ssize_t get_attr_rdpmc(struct device *cdev,
2342 			      struct device_attribute *attr,
2343 			      char *buf)
2344 {
2345 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2346 }
2347 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2348 static ssize_t set_attr_rdpmc(struct device *cdev,
2349 			      struct device_attribute *attr,
2350 			      const char *buf, size_t count)
2351 {
2352 	unsigned long val;
2353 	ssize_t ret;
2354 
2355 	ret = kstrtoul(buf, 0, &val);
2356 	if (ret)
2357 		return ret;
2358 
2359 	if (val > 2)
2360 		return -EINVAL;
2361 
2362 	if (x86_pmu.attr_rdpmc_broken)
2363 		return -ENOTSUPP;
2364 
2365 	if (val != x86_pmu.attr_rdpmc) {
2366 		/*
2367 		 * Changing into or out of never available or always available,
2368 		 * aka perf-event-bypassing mode. This path is extremely slow,
2369 		 * but only root can trigger it, so it's okay.
2370 		 */
2371 		if (val == 0)
2372 			static_branch_inc(&rdpmc_never_available_key);
2373 		else if (x86_pmu.attr_rdpmc == 0)
2374 			static_branch_dec(&rdpmc_never_available_key);
2375 
2376 		if (val == 2)
2377 			static_branch_inc(&rdpmc_always_available_key);
2378 		else if (x86_pmu.attr_rdpmc == 2)
2379 			static_branch_dec(&rdpmc_always_available_key);
2380 
2381 		on_each_cpu(cr4_update_pce, NULL, 1);
2382 		x86_pmu.attr_rdpmc = val;
2383 	}
2384 
2385 	return count;
2386 }
2387 
2388 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2389 
2390 static struct attribute *x86_pmu_attrs[] = {
2391 	&dev_attr_rdpmc.attr,
2392 	NULL,
2393 };
2394 
2395 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2396 	.attrs = x86_pmu_attrs,
2397 };
2398 
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2399 static ssize_t max_precise_show(struct device *cdev,
2400 				  struct device_attribute *attr,
2401 				  char *buf)
2402 {
2403 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2404 }
2405 
2406 static DEVICE_ATTR_RO(max_precise);
2407 
2408 static struct attribute *x86_pmu_caps_attrs[] = {
2409 	&dev_attr_max_precise.attr,
2410 	NULL
2411 };
2412 
2413 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2414 	.name = "caps",
2415 	.attrs = x86_pmu_caps_attrs,
2416 };
2417 
2418 static const struct attribute_group *x86_pmu_attr_groups[] = {
2419 	&x86_pmu_attr_group,
2420 	&x86_pmu_format_group,
2421 	&x86_pmu_events_group,
2422 	&x86_pmu_caps_group,
2423 	NULL,
2424 };
2425 
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2426 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2427 {
2428 	static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2429 }
2430 
x86_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)2431 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2432 				  struct perf_event_context *next)
2433 {
2434 	static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2435 }
2436 
perf_check_microcode(void)2437 void perf_check_microcode(void)
2438 {
2439 	if (x86_pmu.check_microcode)
2440 		x86_pmu.check_microcode();
2441 }
2442 
x86_pmu_check_period(struct perf_event * event,u64 value)2443 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2444 {
2445 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2446 		return -EINVAL;
2447 
2448 	if (value && x86_pmu.limit_period) {
2449 		if (x86_pmu.limit_period(event, value) > value)
2450 			return -EINVAL;
2451 	}
2452 
2453 	return 0;
2454 }
2455 
x86_pmu_aux_output_match(struct perf_event * event)2456 static int x86_pmu_aux_output_match(struct perf_event *event)
2457 {
2458 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2459 		return 0;
2460 
2461 	if (x86_pmu.aux_output_match)
2462 		return x86_pmu.aux_output_match(event);
2463 
2464 	return 0;
2465 }
2466 
2467 static struct pmu pmu = {
2468 	.pmu_enable		= x86_pmu_enable,
2469 	.pmu_disable		= x86_pmu_disable,
2470 
2471 	.attr_groups		= x86_pmu_attr_groups,
2472 
2473 	.event_init		= x86_pmu_event_init,
2474 
2475 	.event_mapped		= x86_pmu_event_mapped,
2476 	.event_unmapped		= x86_pmu_event_unmapped,
2477 
2478 	.add			= x86_pmu_add,
2479 	.del			= x86_pmu_del,
2480 	.start			= x86_pmu_start,
2481 	.stop			= x86_pmu_stop,
2482 	.read			= x86_pmu_read,
2483 
2484 	.start_txn		= x86_pmu_start_txn,
2485 	.cancel_txn		= x86_pmu_cancel_txn,
2486 	.commit_txn		= x86_pmu_commit_txn,
2487 
2488 	.event_idx		= x86_pmu_event_idx,
2489 	.sched_task		= x86_pmu_sched_task,
2490 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2491 	.check_period		= x86_pmu_check_period,
2492 
2493 	.aux_output_match	= x86_pmu_aux_output_match,
2494 };
2495 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2496 void arch_perf_update_userpage(struct perf_event *event,
2497 			       struct perf_event_mmap_page *userpg, u64 now)
2498 {
2499 	struct cyc2ns_data data;
2500 	u64 offset;
2501 
2502 	userpg->cap_user_time = 0;
2503 	userpg->cap_user_time_zero = 0;
2504 	userpg->cap_user_rdpmc =
2505 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2506 	userpg->pmc_width = x86_pmu.cntval_bits;
2507 
2508 	if (!using_native_sched_clock() || !sched_clock_stable())
2509 		return;
2510 
2511 	cyc2ns_read_begin(&data);
2512 
2513 	offset = data.cyc2ns_offset + __sched_clock_offset;
2514 
2515 	/*
2516 	 * Internal timekeeping for enabled/running/stopped times
2517 	 * is always in the local_clock domain.
2518 	 */
2519 	userpg->cap_user_time = 1;
2520 	userpg->time_mult = data.cyc2ns_mul;
2521 	userpg->time_shift = data.cyc2ns_shift;
2522 	userpg->time_offset = offset - now;
2523 
2524 	/*
2525 	 * cap_user_time_zero doesn't make sense when we're using a different
2526 	 * time base for the records.
2527 	 */
2528 	if (!event->attr.use_clockid) {
2529 		userpg->cap_user_time_zero = 1;
2530 		userpg->time_zero = offset;
2531 	}
2532 
2533 	cyc2ns_read_end();
2534 }
2535 
2536 /*
2537  * Determine whether the regs were taken from an irq/exception handler rather
2538  * than from perf_arch_fetch_caller_regs().
2539  */
perf_hw_regs(struct pt_regs * regs)2540 static bool perf_hw_regs(struct pt_regs *regs)
2541 {
2542 	return regs->flags & X86_EFLAGS_FIXED;
2543 }
2544 
2545 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2546 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2547 {
2548 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2549 	struct unwind_state state;
2550 	unsigned long addr;
2551 
2552 	if (guest_cbs && guest_cbs->is_in_guest()) {
2553 		/* TODO: We don't support guest os callchain now */
2554 		return;
2555 	}
2556 
2557 	if (perf_callchain_store(entry, regs->ip))
2558 		return;
2559 
2560 	if (perf_hw_regs(regs))
2561 		unwind_start(&state, current, regs, NULL);
2562 	else
2563 		unwind_start(&state, current, NULL, (void *)regs->sp);
2564 
2565 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2566 		addr = unwind_get_return_address(&state);
2567 		if (!addr || perf_callchain_store(entry, addr))
2568 			return;
2569 	}
2570 }
2571 
2572 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2573 valid_user_frame(const void __user *fp, unsigned long size)
2574 {
2575 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2576 }
2577 
get_segment_base(unsigned int segment)2578 static unsigned long get_segment_base(unsigned int segment)
2579 {
2580 	struct desc_struct *desc;
2581 	unsigned int idx = segment >> 3;
2582 
2583 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2584 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2585 		struct ldt_struct *ldt;
2586 
2587 		/* IRQs are off, so this synchronizes with smp_store_release */
2588 		ldt = READ_ONCE(current->active_mm->context.ldt);
2589 		if (!ldt || idx >= ldt->nr_entries)
2590 			return 0;
2591 
2592 		desc = &ldt->entries[idx];
2593 #else
2594 		return 0;
2595 #endif
2596 	} else {
2597 		if (idx >= GDT_ENTRIES)
2598 			return 0;
2599 
2600 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2601 	}
2602 
2603 	return get_desc_base(desc);
2604 }
2605 
2606 #ifdef CONFIG_IA32_EMULATION
2607 
2608 #include <linux/compat.h>
2609 
2610 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2611 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2612 {
2613 	/* 32-bit process in 64-bit kernel. */
2614 	unsigned long ss_base, cs_base;
2615 	struct stack_frame_ia32 frame;
2616 	const struct stack_frame_ia32 __user *fp;
2617 
2618 	if (!test_thread_flag(TIF_IA32))
2619 		return 0;
2620 
2621 	cs_base = get_segment_base(regs->cs);
2622 	ss_base = get_segment_base(regs->ss);
2623 
2624 	fp = compat_ptr(ss_base + regs->bp);
2625 	pagefault_disable();
2626 	while (entry->nr < entry->max_stack) {
2627 		if (!valid_user_frame(fp, sizeof(frame)))
2628 			break;
2629 
2630 		if (__get_user(frame.next_frame, &fp->next_frame))
2631 			break;
2632 		if (__get_user(frame.return_address, &fp->return_address))
2633 			break;
2634 
2635 		perf_callchain_store(entry, cs_base + frame.return_address);
2636 		fp = compat_ptr(ss_base + frame.next_frame);
2637 	}
2638 	pagefault_enable();
2639 	return 1;
2640 }
2641 #else
2642 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2643 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2644 {
2645     return 0;
2646 }
2647 #endif
2648 
2649 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2650 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2651 {
2652 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2653 	struct stack_frame frame;
2654 	const struct stack_frame __user *fp;
2655 
2656 	if (guest_cbs && guest_cbs->is_in_guest()) {
2657 		/* TODO: We don't support guest os callchain now */
2658 		return;
2659 	}
2660 
2661 	/*
2662 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2663 	 */
2664 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2665 		return;
2666 
2667 	fp = (void __user *)regs->bp;
2668 
2669 	perf_callchain_store(entry, regs->ip);
2670 
2671 	if (!nmi_uaccess_okay())
2672 		return;
2673 
2674 	if (perf_callchain_user32(regs, entry))
2675 		return;
2676 
2677 	pagefault_disable();
2678 	while (entry->nr < entry->max_stack) {
2679 		if (!valid_user_frame(fp, sizeof(frame)))
2680 			break;
2681 
2682 		if (__get_user(frame.next_frame, &fp->next_frame))
2683 			break;
2684 		if (__get_user(frame.return_address, &fp->return_address))
2685 			break;
2686 
2687 		perf_callchain_store(entry, frame.return_address);
2688 		fp = (void __user *)frame.next_frame;
2689 	}
2690 	pagefault_enable();
2691 }
2692 
2693 /*
2694  * Deal with code segment offsets for the various execution modes:
2695  *
2696  *   VM86 - the good olde 16 bit days, where the linear address is
2697  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2698  *
2699  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2700  *          to figure out what the 32bit base address is.
2701  *
2702  *    X32 - has TIF_X32 set, but is running in x86_64
2703  *
2704  * X86_64 - CS,DS,SS,ES are all zero based.
2705  */
code_segment_base(struct pt_regs * regs)2706 static unsigned long code_segment_base(struct pt_regs *regs)
2707 {
2708 	/*
2709 	 * For IA32 we look at the GDT/LDT segment base to convert the
2710 	 * effective IP to a linear address.
2711 	 */
2712 
2713 #ifdef CONFIG_X86_32
2714 	/*
2715 	 * If we are in VM86 mode, add the segment offset to convert to a
2716 	 * linear address.
2717 	 */
2718 	if (regs->flags & X86_VM_MASK)
2719 		return 0x10 * regs->cs;
2720 
2721 	if (user_mode(regs) && regs->cs != __USER_CS)
2722 		return get_segment_base(regs->cs);
2723 #else
2724 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2725 	    regs->cs != __USER32_CS)
2726 		return get_segment_base(regs->cs);
2727 #endif
2728 	return 0;
2729 }
2730 
perf_instruction_pointer(struct pt_regs * regs)2731 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2732 {
2733 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2734 
2735 	if (guest_cbs && guest_cbs->is_in_guest())
2736 		return guest_cbs->get_guest_ip();
2737 
2738 	return regs->ip + code_segment_base(regs);
2739 }
2740 
perf_misc_flags(struct pt_regs * regs)2741 unsigned long perf_misc_flags(struct pt_regs *regs)
2742 {
2743 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2744 	int misc = 0;
2745 
2746 	if (guest_cbs && guest_cbs->is_in_guest()) {
2747 		if (guest_cbs->is_user_mode())
2748 			misc |= PERF_RECORD_MISC_GUEST_USER;
2749 		else
2750 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2751 	} else {
2752 		if (user_mode(regs))
2753 			misc |= PERF_RECORD_MISC_USER;
2754 		else
2755 			misc |= PERF_RECORD_MISC_KERNEL;
2756 	}
2757 
2758 	if (regs->flags & PERF_EFLAGS_EXACT)
2759 		misc |= PERF_RECORD_MISC_EXACT_IP;
2760 
2761 	return misc;
2762 }
2763 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2764 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2765 {
2766 	cap->version		= x86_pmu.version;
2767 	cap->num_counters_gp	= x86_pmu.num_counters;
2768 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2769 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2770 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2771 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2772 	cap->events_mask_len	= x86_pmu.events_mask_len;
2773 }
2774 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2775