1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32
33 static const struct vm_operations_struct xfs_file_vm_ops;
34
35 /*
36 * Decide if the given file range is aligned to the size of the fundamental
37 * allocation unit for the file.
38 */
39 static bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)40 xfs_is_falloc_aligned(
41 struct xfs_inode *ip,
42 loff_t pos,
43 long long int len)
44 {
45 struct xfs_mount *mp = ip->i_mount;
46 uint64_t mask;
47
48 if (XFS_IS_REALTIME_INODE(ip)) {
49 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
50 u64 rextbytes;
51 u32 mod;
52
53 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
54 div_u64_rem(pos, rextbytes, &mod);
55 if (mod)
56 return false;
57 div_u64_rem(len, rextbytes, &mod);
58 return mod == 0;
59 }
60 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
61 } else {
62 mask = mp->m_sb.sb_blocksize - 1;
63 }
64
65 return !((pos | len) & mask);
66 }
67
68 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)69 xfs_update_prealloc_flags(
70 struct xfs_inode *ip,
71 enum xfs_prealloc_flags flags)
72 {
73 struct xfs_trans *tp;
74 int error;
75
76 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
77 0, 0, 0, &tp);
78 if (error)
79 return error;
80
81 xfs_ilock(ip, XFS_ILOCK_EXCL);
82 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
83
84 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
85 VFS_I(ip)->i_mode &= ~S_ISUID;
86 if (VFS_I(ip)->i_mode & S_IXGRP)
87 VFS_I(ip)->i_mode &= ~S_ISGID;
88 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
89 }
90
91 if (flags & XFS_PREALLOC_SET)
92 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
93 if (flags & XFS_PREALLOC_CLEAR)
94 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
95
96 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
97 if (flags & XFS_PREALLOC_SYNC)
98 xfs_trans_set_sync(tp);
99 return xfs_trans_commit(tp);
100 }
101
102 /*
103 * Fsync operations on directories are much simpler than on regular files,
104 * as there is no file data to flush, and thus also no need for explicit
105 * cache flush operations, and there are no non-transaction metadata updates
106 * on directories either.
107 */
108 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)109 xfs_dir_fsync(
110 struct file *file,
111 loff_t start,
112 loff_t end,
113 int datasync)
114 {
115 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
116
117 trace_xfs_dir_fsync(ip);
118 return xfs_log_force_inode(ip);
119 }
120
121 static xfs_csn_t
xfs_fsync_seq(struct xfs_inode * ip,bool datasync)122 xfs_fsync_seq(
123 struct xfs_inode *ip,
124 bool datasync)
125 {
126 if (!xfs_ipincount(ip))
127 return 0;
128 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
129 return 0;
130 return ip->i_itemp->ili_commit_seq;
131 }
132
133 /*
134 * All metadata updates are logged, which means that we just have to flush the
135 * log up to the latest LSN that touched the inode.
136 *
137 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
138 * the log force before we clear the ili_fsync_fields field. This ensures that
139 * we don't get a racing sync operation that does not wait for the metadata to
140 * hit the journal before returning. If we race with clearing ili_fsync_fields,
141 * then all that will happen is the log force will do nothing as the lsn will
142 * already be on disk. We can't race with setting ili_fsync_fields because that
143 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
144 * shared until after the ili_fsync_fields is cleared.
145 */
146 static int
xfs_fsync_flush_log(struct xfs_inode * ip,bool datasync,int * log_flushed)147 xfs_fsync_flush_log(
148 struct xfs_inode *ip,
149 bool datasync,
150 int *log_flushed)
151 {
152 int error = 0;
153 xfs_csn_t seq;
154
155 xfs_ilock(ip, XFS_ILOCK_SHARED);
156 seq = xfs_fsync_seq(ip, datasync);
157 if (seq) {
158 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
159 log_flushed);
160
161 spin_lock(&ip->i_itemp->ili_lock);
162 ip->i_itemp->ili_fsync_fields = 0;
163 spin_unlock(&ip->i_itemp->ili_lock);
164 }
165 xfs_iunlock(ip, XFS_ILOCK_SHARED);
166 return error;
167 }
168
169 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)170 xfs_file_fsync(
171 struct file *file,
172 loff_t start,
173 loff_t end,
174 int datasync)
175 {
176 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
177 struct xfs_mount *mp = ip->i_mount;
178 int error = 0;
179 int log_flushed = 0;
180
181 trace_xfs_file_fsync(ip);
182
183 error = file_write_and_wait_range(file, start, end);
184 if (error)
185 return error;
186
187 if (XFS_FORCED_SHUTDOWN(mp))
188 return -EIO;
189
190 xfs_iflags_clear(ip, XFS_ITRUNCATED);
191
192 /*
193 * If we have an RT and/or log subvolume we need to make sure to flush
194 * the write cache the device used for file data first. This is to
195 * ensure newly written file data make it to disk before logging the new
196 * inode size in case of an extending write.
197 */
198 if (XFS_IS_REALTIME_INODE(ip))
199 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
200 else if (mp->m_logdev_targp != mp->m_ddev_targp)
201 xfs_blkdev_issue_flush(mp->m_ddev_targp);
202
203 error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
204
205 /*
206 * If we only have a single device, and the log force about was
207 * a no-op we might have to flush the data device cache here.
208 * This can only happen for fdatasync/O_DSYNC if we were overwriting
209 * an already allocated file and thus do not have any metadata to
210 * commit.
211 */
212 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
213 mp->m_logdev_targp == mp->m_ddev_targp)
214 xfs_blkdev_issue_flush(mp->m_ddev_targp);
215
216 return error;
217 }
218
219 STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)220 xfs_file_dio_aio_read(
221 struct kiocb *iocb,
222 struct iov_iter *to)
223 {
224 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
225 size_t count = iov_iter_count(to);
226 ssize_t ret;
227
228 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
229
230 if (!count)
231 return 0; /* skip atime */
232
233 file_accessed(iocb->ki_filp);
234
235 if (iocb->ki_flags & IOCB_NOWAIT) {
236 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
237 return -EAGAIN;
238 } else {
239 xfs_ilock(ip, XFS_IOLOCK_SHARED);
240 }
241 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
242 is_sync_kiocb(iocb));
243 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
244
245 return ret;
246 }
247
248 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)249 xfs_file_dax_read(
250 struct kiocb *iocb,
251 struct iov_iter *to)
252 {
253 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
254 size_t count = iov_iter_count(to);
255 ssize_t ret = 0;
256
257 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
258
259 if (!count)
260 return 0; /* skip atime */
261
262 if (iocb->ki_flags & IOCB_NOWAIT) {
263 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
264 return -EAGAIN;
265 } else {
266 xfs_ilock(ip, XFS_IOLOCK_SHARED);
267 }
268
269 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
270 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
271
272 file_accessed(iocb->ki_filp);
273 return ret;
274 }
275
276 STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)277 xfs_file_buffered_aio_read(
278 struct kiocb *iocb,
279 struct iov_iter *to)
280 {
281 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
282 ssize_t ret;
283
284 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
285
286 if (iocb->ki_flags & IOCB_NOWAIT) {
287 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
288 return -EAGAIN;
289 } else {
290 xfs_ilock(ip, XFS_IOLOCK_SHARED);
291 }
292 ret = generic_file_read_iter(iocb, to);
293 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
294
295 return ret;
296 }
297
298 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)299 xfs_file_read_iter(
300 struct kiocb *iocb,
301 struct iov_iter *to)
302 {
303 struct inode *inode = file_inode(iocb->ki_filp);
304 struct xfs_mount *mp = XFS_I(inode)->i_mount;
305 ssize_t ret = 0;
306
307 XFS_STATS_INC(mp, xs_read_calls);
308
309 if (XFS_FORCED_SHUTDOWN(mp))
310 return -EIO;
311
312 if (IS_DAX(inode))
313 ret = xfs_file_dax_read(iocb, to);
314 else if (iocb->ki_flags & IOCB_DIRECT)
315 ret = xfs_file_dio_aio_read(iocb, to);
316 else
317 ret = xfs_file_buffered_aio_read(iocb, to);
318
319 if (ret > 0)
320 XFS_STATS_ADD(mp, xs_read_bytes, ret);
321 return ret;
322 }
323
324 /*
325 * Common pre-write limit and setup checks.
326 *
327 * Called with the iolocked held either shared and exclusive according to
328 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
329 * if called for a direct write beyond i_size.
330 */
331 STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)332 xfs_file_aio_write_checks(
333 struct kiocb *iocb,
334 struct iov_iter *from,
335 int *iolock)
336 {
337 struct file *file = iocb->ki_filp;
338 struct inode *inode = file->f_mapping->host;
339 struct xfs_inode *ip = XFS_I(inode);
340 ssize_t error = 0;
341 size_t count = iov_iter_count(from);
342 bool drained_dio = false;
343 loff_t isize;
344
345 restart:
346 error = generic_write_checks(iocb, from);
347 if (error <= 0)
348 return error;
349
350 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
351 if (error)
352 return error;
353
354 /*
355 * For changing security info in file_remove_privs() we need i_rwsem
356 * exclusively.
357 */
358 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
359 xfs_iunlock(ip, *iolock);
360 *iolock = XFS_IOLOCK_EXCL;
361 xfs_ilock(ip, *iolock);
362 goto restart;
363 }
364 /*
365 * If the offset is beyond the size of the file, we need to zero any
366 * blocks that fall between the existing EOF and the start of this
367 * write. If zeroing is needed and we are currently holding the
368 * iolock shared, we need to update it to exclusive which implies
369 * having to redo all checks before.
370 *
371 * We need to serialise against EOF updates that occur in IO
372 * completions here. We want to make sure that nobody is changing the
373 * size while we do this check until we have placed an IO barrier (i.e.
374 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
375 * The spinlock effectively forms a memory barrier once we have the
376 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
377 * and hence be able to correctly determine if we need to run zeroing.
378 */
379 spin_lock(&ip->i_flags_lock);
380 isize = i_size_read(inode);
381 if (iocb->ki_pos > isize) {
382 spin_unlock(&ip->i_flags_lock);
383 if (!drained_dio) {
384 if (*iolock == XFS_IOLOCK_SHARED) {
385 xfs_iunlock(ip, *iolock);
386 *iolock = XFS_IOLOCK_EXCL;
387 xfs_ilock(ip, *iolock);
388 iov_iter_reexpand(from, count);
389 }
390 /*
391 * We now have an IO submission barrier in place, but
392 * AIO can do EOF updates during IO completion and hence
393 * we now need to wait for all of them to drain. Non-AIO
394 * DIO will have drained before we are given the
395 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
396 * no-op.
397 */
398 inode_dio_wait(inode);
399 drained_dio = true;
400 goto restart;
401 }
402
403 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
404 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
405 NULL, &xfs_buffered_write_iomap_ops);
406 if (error)
407 return error;
408 } else
409 spin_unlock(&ip->i_flags_lock);
410
411 /*
412 * Updating the timestamps will grab the ilock again from
413 * xfs_fs_dirty_inode, so we have to call it after dropping the
414 * lock above. Eventually we should look into a way to avoid
415 * the pointless lock roundtrip.
416 */
417 return file_modified(file);
418 }
419
420 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)421 xfs_dio_write_end_io(
422 struct kiocb *iocb,
423 ssize_t size,
424 int error,
425 unsigned flags)
426 {
427 struct inode *inode = file_inode(iocb->ki_filp);
428 struct xfs_inode *ip = XFS_I(inode);
429 loff_t offset = iocb->ki_pos;
430 unsigned int nofs_flag;
431
432 trace_xfs_end_io_direct_write(ip, offset, size);
433
434 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
435 return -EIO;
436
437 if (error)
438 return error;
439 if (!size)
440 return 0;
441
442 /*
443 * Capture amount written on completion as we can't reliably account
444 * for it on submission.
445 */
446 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
447
448 /*
449 * We can allocate memory here while doing writeback on behalf of
450 * memory reclaim. To avoid memory allocation deadlocks set the
451 * task-wide nofs context for the following operations.
452 */
453 nofs_flag = memalloc_nofs_save();
454
455 if (flags & IOMAP_DIO_COW) {
456 error = xfs_reflink_end_cow(ip, offset, size);
457 if (error)
458 goto out;
459 }
460
461 /*
462 * Unwritten conversion updates the in-core isize after extent
463 * conversion but before updating the on-disk size. Updating isize any
464 * earlier allows a racing dio read to find unwritten extents before
465 * they are converted.
466 */
467 if (flags & IOMAP_DIO_UNWRITTEN) {
468 error = xfs_iomap_write_unwritten(ip, offset, size, true);
469 goto out;
470 }
471
472 /*
473 * We need to update the in-core inode size here so that we don't end up
474 * with the on-disk inode size being outside the in-core inode size. We
475 * have no other method of updating EOF for AIO, so always do it here
476 * if necessary.
477 *
478 * We need to lock the test/set EOF update as we can be racing with
479 * other IO completions here to update the EOF. Failing to serialise
480 * here can result in EOF moving backwards and Bad Things Happen when
481 * that occurs.
482 */
483 spin_lock(&ip->i_flags_lock);
484 if (offset + size > i_size_read(inode)) {
485 i_size_write(inode, offset + size);
486 spin_unlock(&ip->i_flags_lock);
487 error = xfs_setfilesize(ip, offset, size);
488 } else {
489 spin_unlock(&ip->i_flags_lock);
490 }
491
492 out:
493 memalloc_nofs_restore(nofs_flag);
494 return error;
495 }
496
497 static const struct iomap_dio_ops xfs_dio_write_ops = {
498 .end_io = xfs_dio_write_end_io,
499 };
500
501 /*
502 * xfs_file_dio_aio_write - handle direct IO writes
503 *
504 * Lock the inode appropriately to prepare for and issue a direct IO write.
505 * By separating it from the buffered write path we remove all the tricky to
506 * follow locking changes and looping.
507 *
508 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
509 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
510 * pages are flushed out.
511 *
512 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
513 * allowing them to be done in parallel with reads and other direct IO writes.
514 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
515 * needs to do sub-block zeroing and that requires serialisation against other
516 * direct IOs to the same block. In this case we need to serialise the
517 * submission of the unaligned IOs so that we don't get racing block zeroing in
518 * the dio layer. To avoid the problem with aio, we also need to wait for
519 * outstanding IOs to complete so that unwritten extent conversion is completed
520 * before we try to map the overlapping block. This is currently implemented by
521 * hitting it with a big hammer (i.e. inode_dio_wait()).
522 *
523 * Returns with locks held indicated by @iolock and errors indicated by
524 * negative return values.
525 */
526 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)527 xfs_file_dio_aio_write(
528 struct kiocb *iocb,
529 struct iov_iter *from)
530 {
531 struct file *file = iocb->ki_filp;
532 struct address_space *mapping = file->f_mapping;
533 struct inode *inode = mapping->host;
534 struct xfs_inode *ip = XFS_I(inode);
535 struct xfs_mount *mp = ip->i_mount;
536 ssize_t ret = 0;
537 int unaligned_io = 0;
538 int iolock;
539 size_t count = iov_iter_count(from);
540 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
541
542 /* DIO must be aligned to device logical sector size */
543 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
544 return -EINVAL;
545
546 /*
547 * Don't take the exclusive iolock here unless the I/O is unaligned to
548 * the file system block size. We don't need to consider the EOF
549 * extension case here because xfs_file_aio_write_checks() will relock
550 * the inode as necessary for EOF zeroing cases and fill out the new
551 * inode size as appropriate.
552 */
553 if ((iocb->ki_pos & mp->m_blockmask) ||
554 ((iocb->ki_pos + count) & mp->m_blockmask)) {
555 unaligned_io = 1;
556
557 /*
558 * We can't properly handle unaligned direct I/O to reflink
559 * files yet, as we can't unshare a partial block.
560 */
561 if (xfs_is_cow_inode(ip)) {
562 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
563 return -ENOTBLK;
564 }
565 iolock = XFS_IOLOCK_EXCL;
566 } else {
567 iolock = XFS_IOLOCK_SHARED;
568 }
569
570 if (iocb->ki_flags & IOCB_NOWAIT) {
571 /* unaligned dio always waits, bail */
572 if (unaligned_io)
573 return -EAGAIN;
574 if (!xfs_ilock_nowait(ip, iolock))
575 return -EAGAIN;
576 } else {
577 xfs_ilock(ip, iolock);
578 }
579
580 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
581 if (ret)
582 goto out;
583 count = iov_iter_count(from);
584
585 /*
586 * If we are doing unaligned IO, we can't allow any other overlapping IO
587 * in-flight at the same time or we risk data corruption. Wait for all
588 * other IO to drain before we submit. If the IO is aligned, demote the
589 * iolock if we had to take the exclusive lock in
590 * xfs_file_aio_write_checks() for other reasons.
591 */
592 if (unaligned_io) {
593 inode_dio_wait(inode);
594 } else if (iolock == XFS_IOLOCK_EXCL) {
595 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
596 iolock = XFS_IOLOCK_SHARED;
597 }
598
599 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
600 /*
601 * If unaligned, this is the only IO in-flight. Wait on it before we
602 * release the iolock to prevent subsequent overlapping IO.
603 */
604 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
605 &xfs_dio_write_ops,
606 is_sync_kiocb(iocb) || unaligned_io);
607 out:
608 xfs_iunlock(ip, iolock);
609
610 /*
611 * No fallback to buffered IO after short writes for XFS, direct I/O
612 * will either complete fully or return an error.
613 */
614 ASSERT(ret < 0 || ret == count);
615 return ret;
616 }
617
618 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)619 xfs_file_dax_write(
620 struct kiocb *iocb,
621 struct iov_iter *from)
622 {
623 struct inode *inode = iocb->ki_filp->f_mapping->host;
624 struct xfs_inode *ip = XFS_I(inode);
625 int iolock = XFS_IOLOCK_EXCL;
626 ssize_t ret, error = 0;
627 size_t count;
628 loff_t pos;
629
630 if (iocb->ki_flags & IOCB_NOWAIT) {
631 if (!xfs_ilock_nowait(ip, iolock))
632 return -EAGAIN;
633 } else {
634 xfs_ilock(ip, iolock);
635 }
636
637 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
638 if (ret)
639 goto out;
640
641 pos = iocb->ki_pos;
642 count = iov_iter_count(from);
643
644 trace_xfs_file_dax_write(ip, count, pos);
645 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
646 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
647 i_size_write(inode, iocb->ki_pos);
648 error = xfs_setfilesize(ip, pos, ret);
649 }
650 out:
651 xfs_iunlock(ip, iolock);
652 if (error)
653 return error;
654
655 if (ret > 0) {
656 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
657
658 /* Handle various SYNC-type writes */
659 ret = generic_write_sync(iocb, ret);
660 }
661 return ret;
662 }
663
664 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)665 xfs_file_buffered_aio_write(
666 struct kiocb *iocb,
667 struct iov_iter *from)
668 {
669 struct file *file = iocb->ki_filp;
670 struct address_space *mapping = file->f_mapping;
671 struct inode *inode = mapping->host;
672 struct xfs_inode *ip = XFS_I(inode);
673 ssize_t ret;
674 int enospc = 0;
675 int iolock;
676
677 if (iocb->ki_flags & IOCB_NOWAIT)
678 return -EOPNOTSUPP;
679
680 write_retry:
681 iolock = XFS_IOLOCK_EXCL;
682 xfs_ilock(ip, iolock);
683
684 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
685 if (ret)
686 goto out;
687
688 /* We can write back this queue in page reclaim */
689 current->backing_dev_info = inode_to_bdi(inode);
690
691 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
692 ret = iomap_file_buffered_write(iocb, from,
693 &xfs_buffered_write_iomap_ops);
694 if (likely(ret >= 0))
695 iocb->ki_pos += ret;
696
697 /*
698 * If we hit a space limit, try to free up some lingering preallocated
699 * space before returning an error. In the case of ENOSPC, first try to
700 * write back all dirty inodes to free up some of the excess reserved
701 * metadata space. This reduces the chances that the eofblocks scan
702 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
703 * also behaves as a filter to prevent too many eofblocks scans from
704 * running at the same time.
705 */
706 if (ret == -EDQUOT && !enospc) {
707 xfs_iunlock(ip, iolock);
708 enospc = xfs_inode_free_quota_eofblocks(ip);
709 if (enospc)
710 goto write_retry;
711 enospc = xfs_inode_free_quota_cowblocks(ip);
712 if (enospc)
713 goto write_retry;
714 iolock = 0;
715 } else if (ret == -ENOSPC && !enospc) {
716 struct xfs_eofblocks eofb = {0};
717
718 enospc = 1;
719 xfs_flush_inodes(ip->i_mount);
720
721 xfs_iunlock(ip, iolock);
722 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
723 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
724 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
725 goto write_retry;
726 }
727
728 current->backing_dev_info = NULL;
729 out:
730 if (iolock)
731 xfs_iunlock(ip, iolock);
732
733 if (ret > 0) {
734 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
735 /* Handle various SYNC-type writes */
736 ret = generic_write_sync(iocb, ret);
737 }
738 return ret;
739 }
740
741 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)742 xfs_file_write_iter(
743 struct kiocb *iocb,
744 struct iov_iter *from)
745 {
746 struct file *file = iocb->ki_filp;
747 struct address_space *mapping = file->f_mapping;
748 struct inode *inode = mapping->host;
749 struct xfs_inode *ip = XFS_I(inode);
750 ssize_t ret;
751 size_t ocount = iov_iter_count(from);
752
753 XFS_STATS_INC(ip->i_mount, xs_write_calls);
754
755 if (ocount == 0)
756 return 0;
757
758 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
759 return -EIO;
760
761 if (IS_DAX(inode))
762 return xfs_file_dax_write(iocb, from);
763
764 if (iocb->ki_flags & IOCB_DIRECT) {
765 /*
766 * Allow a directio write to fall back to a buffered
767 * write *only* in the case that we're doing a reflink
768 * CoW. In all other directio scenarios we do not
769 * allow an operation to fall back to buffered mode.
770 */
771 ret = xfs_file_dio_aio_write(iocb, from);
772 if (ret != -ENOTBLK)
773 return ret;
774 }
775
776 return xfs_file_buffered_aio_write(iocb, from);
777 }
778
779 static void
xfs_wait_dax_page(struct inode * inode)780 xfs_wait_dax_page(
781 struct inode *inode)
782 {
783 struct xfs_inode *ip = XFS_I(inode);
784
785 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
786 schedule();
787 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
788 }
789
790 static int
xfs_break_dax_layouts(struct inode * inode,bool * retry)791 xfs_break_dax_layouts(
792 struct inode *inode,
793 bool *retry)
794 {
795 struct page *page;
796
797 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
798
799 page = dax_layout_busy_page(inode->i_mapping);
800 if (!page)
801 return 0;
802
803 *retry = true;
804 return ___wait_var_event(&page->_refcount,
805 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
806 0, 0, xfs_wait_dax_page(inode));
807 }
808
809 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)810 xfs_break_layouts(
811 struct inode *inode,
812 uint *iolock,
813 enum layout_break_reason reason)
814 {
815 bool retry;
816 int error;
817
818 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
819
820 do {
821 retry = false;
822 switch (reason) {
823 case BREAK_UNMAP:
824 error = xfs_break_dax_layouts(inode, &retry);
825 if (error || retry)
826 break;
827 /* fall through */
828 case BREAK_WRITE:
829 error = xfs_break_leased_layouts(inode, iolock, &retry);
830 break;
831 default:
832 WARN_ON_ONCE(1);
833 error = -EINVAL;
834 }
835 } while (error == 0 && retry);
836
837 return error;
838 }
839
840 #define XFS_FALLOC_FL_SUPPORTED \
841 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
842 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
843 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
844
845 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)846 xfs_file_fallocate(
847 struct file *file,
848 int mode,
849 loff_t offset,
850 loff_t len)
851 {
852 struct inode *inode = file_inode(file);
853 struct xfs_inode *ip = XFS_I(inode);
854 long error;
855 enum xfs_prealloc_flags flags = 0;
856 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
857 loff_t new_size = 0;
858 bool do_file_insert = false;
859
860 if (!S_ISREG(inode->i_mode))
861 return -EINVAL;
862 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
863 return -EOPNOTSUPP;
864
865 xfs_ilock(ip, iolock);
866 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
867 if (error)
868 goto out_unlock;
869
870 /*
871 * Must wait for all AIO to complete before we continue as AIO can
872 * change the file size on completion without holding any locks we
873 * currently hold. We must do this first because AIO can update both
874 * the on disk and in memory inode sizes, and the operations that follow
875 * require the in-memory size to be fully up-to-date.
876 */
877 inode_dio_wait(inode);
878
879 /*
880 * Now AIO and DIO has drained we flush and (if necessary) invalidate
881 * the cached range over the first operation we are about to run.
882 *
883 * We care about zero and collapse here because they both run a hole
884 * punch over the range first. Because that can zero data, and the range
885 * of invalidation for the shift operations is much larger, we still do
886 * the required flush for collapse in xfs_prepare_shift().
887 *
888 * Insert has the same range requirements as collapse, and we extend the
889 * file first which can zero data. Hence insert has the same
890 * flush/invalidate requirements as collapse and so they are both
891 * handled at the right time by xfs_prepare_shift().
892 */
893 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
894 FALLOC_FL_COLLAPSE_RANGE)) {
895 error = xfs_flush_unmap_range(ip, offset, len);
896 if (error)
897 goto out_unlock;
898 }
899
900 if (mode & FALLOC_FL_PUNCH_HOLE) {
901 error = xfs_free_file_space(ip, offset, len);
902 if (error)
903 goto out_unlock;
904 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
905 if (!xfs_is_falloc_aligned(ip, offset, len)) {
906 error = -EINVAL;
907 goto out_unlock;
908 }
909
910 /*
911 * There is no need to overlap collapse range with EOF,
912 * in which case it is effectively a truncate operation
913 */
914 if (offset + len >= i_size_read(inode)) {
915 error = -EINVAL;
916 goto out_unlock;
917 }
918
919 new_size = i_size_read(inode) - len;
920
921 error = xfs_collapse_file_space(ip, offset, len);
922 if (error)
923 goto out_unlock;
924 } else if (mode & FALLOC_FL_INSERT_RANGE) {
925 loff_t isize = i_size_read(inode);
926
927 if (!xfs_is_falloc_aligned(ip, offset, len)) {
928 error = -EINVAL;
929 goto out_unlock;
930 }
931
932 /*
933 * New inode size must not exceed ->s_maxbytes, accounting for
934 * possible signed overflow.
935 */
936 if (inode->i_sb->s_maxbytes - isize < len) {
937 error = -EFBIG;
938 goto out_unlock;
939 }
940 new_size = isize + len;
941
942 /* Offset should be less than i_size */
943 if (offset >= isize) {
944 error = -EINVAL;
945 goto out_unlock;
946 }
947 do_file_insert = true;
948 } else {
949 flags |= XFS_PREALLOC_SET;
950
951 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
952 offset + len > i_size_read(inode)) {
953 new_size = offset + len;
954 error = inode_newsize_ok(inode, new_size);
955 if (error)
956 goto out_unlock;
957 }
958
959 if (mode & FALLOC_FL_ZERO_RANGE) {
960 /*
961 * Punch a hole and prealloc the range. We use a hole
962 * punch rather than unwritten extent conversion for two
963 * reasons:
964 *
965 * 1.) Hole punch handles partial block zeroing for us.
966 * 2.) If prealloc returns ENOSPC, the file range is
967 * still zero-valued by virtue of the hole punch.
968 */
969 unsigned int blksize = i_blocksize(inode);
970
971 trace_xfs_zero_file_space(ip);
972
973 error = xfs_free_file_space(ip, offset, len);
974 if (error)
975 goto out_unlock;
976
977 len = round_up(offset + len, blksize) -
978 round_down(offset, blksize);
979 offset = round_down(offset, blksize);
980 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
981 error = xfs_reflink_unshare(ip, offset, len);
982 if (error)
983 goto out_unlock;
984 } else {
985 /*
986 * If always_cow mode we can't use preallocations and
987 * thus should not create them.
988 */
989 if (xfs_is_always_cow_inode(ip)) {
990 error = -EOPNOTSUPP;
991 goto out_unlock;
992 }
993 }
994
995 if (!xfs_is_always_cow_inode(ip)) {
996 error = xfs_alloc_file_space(ip, offset, len,
997 XFS_BMAPI_PREALLOC);
998 if (error)
999 goto out_unlock;
1000 }
1001 }
1002
1003 if (file->f_flags & O_DSYNC)
1004 flags |= XFS_PREALLOC_SYNC;
1005
1006 error = xfs_update_prealloc_flags(ip, flags);
1007 if (error)
1008 goto out_unlock;
1009
1010 /* Change file size if needed */
1011 if (new_size) {
1012 struct iattr iattr;
1013
1014 iattr.ia_valid = ATTR_SIZE;
1015 iattr.ia_size = new_size;
1016 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
1017 if (error)
1018 goto out_unlock;
1019 }
1020
1021 /*
1022 * Perform hole insertion now that the file size has been
1023 * updated so that if we crash during the operation we don't
1024 * leave shifted extents past EOF and hence losing access to
1025 * the data that is contained within them.
1026 */
1027 if (do_file_insert)
1028 error = xfs_insert_file_space(ip, offset, len);
1029
1030 out_unlock:
1031 xfs_iunlock(ip, iolock);
1032 return error;
1033 }
1034
1035 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1036 xfs_file_fadvise(
1037 struct file *file,
1038 loff_t start,
1039 loff_t end,
1040 int advice)
1041 {
1042 struct xfs_inode *ip = XFS_I(file_inode(file));
1043 int ret;
1044 int lockflags = 0;
1045
1046 /*
1047 * Operations creating pages in page cache need protection from hole
1048 * punching and similar ops
1049 */
1050 if (advice == POSIX_FADV_WILLNEED) {
1051 lockflags = XFS_IOLOCK_SHARED;
1052 xfs_ilock(ip, lockflags);
1053 }
1054 ret = generic_fadvise(file, start, end, advice);
1055 if (lockflags)
1056 xfs_iunlock(ip, lockflags);
1057 return ret;
1058 }
1059
1060 /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)1061 static inline bool xfs_file_sync_writes(struct file *filp)
1062 {
1063 struct xfs_inode *ip = XFS_I(file_inode(filp));
1064
1065 if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1066 return true;
1067 if (filp->f_flags & (__O_SYNC | O_DSYNC))
1068 return true;
1069 if (IS_SYNC(file_inode(filp)))
1070 return true;
1071
1072 return false;
1073 }
1074
1075 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1076 xfs_file_remap_range(
1077 struct file *file_in,
1078 loff_t pos_in,
1079 struct file *file_out,
1080 loff_t pos_out,
1081 loff_t len,
1082 unsigned int remap_flags)
1083 {
1084 struct inode *inode_in = file_inode(file_in);
1085 struct xfs_inode *src = XFS_I(inode_in);
1086 struct inode *inode_out = file_inode(file_out);
1087 struct xfs_inode *dest = XFS_I(inode_out);
1088 struct xfs_mount *mp = src->i_mount;
1089 loff_t remapped = 0;
1090 xfs_extlen_t cowextsize;
1091 int ret;
1092
1093 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1094 return -EINVAL;
1095
1096 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1097 return -EOPNOTSUPP;
1098
1099 if (XFS_FORCED_SHUTDOWN(mp))
1100 return -EIO;
1101
1102 /* Prepare and then clone file data. */
1103 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1104 &len, remap_flags);
1105 if (ret || len == 0)
1106 return ret;
1107
1108 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1109
1110 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1111 &remapped);
1112 if (ret)
1113 goto out_unlock;
1114
1115 /*
1116 * Carry the cowextsize hint from src to dest if we're sharing the
1117 * entire source file to the entire destination file, the source file
1118 * has a cowextsize hint, and the destination file does not.
1119 */
1120 cowextsize = 0;
1121 if (pos_in == 0 && len == i_size_read(inode_in) &&
1122 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1123 pos_out == 0 && len >= i_size_read(inode_out) &&
1124 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1125 cowextsize = src->i_d.di_cowextsize;
1126
1127 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1128 remap_flags);
1129 if (ret)
1130 goto out_unlock;
1131
1132 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1133 xfs_log_force_inode(dest);
1134 out_unlock:
1135 xfs_iunlock2_io_mmap(src, dest);
1136 if (ret)
1137 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1138 return remapped > 0 ? remapped : ret;
1139 }
1140
1141 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1142 xfs_file_open(
1143 struct inode *inode,
1144 struct file *file)
1145 {
1146 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1147 return -EFBIG;
1148 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1149 return -EIO;
1150 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1151 return 0;
1152 }
1153
1154 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1155 xfs_dir_open(
1156 struct inode *inode,
1157 struct file *file)
1158 {
1159 struct xfs_inode *ip = XFS_I(inode);
1160 int mode;
1161 int error;
1162
1163 error = xfs_file_open(inode, file);
1164 if (error)
1165 return error;
1166
1167 /*
1168 * If there are any blocks, read-ahead block 0 as we're almost
1169 * certain to have the next operation be a read there.
1170 */
1171 mode = xfs_ilock_data_map_shared(ip);
1172 if (ip->i_df.if_nextents > 0)
1173 error = xfs_dir3_data_readahead(ip, 0, 0);
1174 xfs_iunlock(ip, mode);
1175 return error;
1176 }
1177
1178 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1179 xfs_file_release(
1180 struct inode *inode,
1181 struct file *filp)
1182 {
1183 return xfs_release(XFS_I(inode));
1184 }
1185
1186 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1187 xfs_file_readdir(
1188 struct file *file,
1189 struct dir_context *ctx)
1190 {
1191 struct inode *inode = file_inode(file);
1192 xfs_inode_t *ip = XFS_I(inode);
1193 size_t bufsize;
1194
1195 /*
1196 * The Linux API doesn't pass down the total size of the buffer
1197 * we read into down to the filesystem. With the filldir concept
1198 * it's not needed for correct information, but the XFS dir2 leaf
1199 * code wants an estimate of the buffer size to calculate it's
1200 * readahead window and size the buffers used for mapping to
1201 * physical blocks.
1202 *
1203 * Try to give it an estimate that's good enough, maybe at some
1204 * point we can change the ->readdir prototype to include the
1205 * buffer size. For now we use the current glibc buffer size.
1206 */
1207 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1208
1209 return xfs_readdir(NULL, ip, ctx, bufsize);
1210 }
1211
1212 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1213 xfs_file_llseek(
1214 struct file *file,
1215 loff_t offset,
1216 int whence)
1217 {
1218 struct inode *inode = file->f_mapping->host;
1219
1220 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1221 return -EIO;
1222
1223 switch (whence) {
1224 default:
1225 return generic_file_llseek(file, offset, whence);
1226 case SEEK_HOLE:
1227 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1228 break;
1229 case SEEK_DATA:
1230 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1231 break;
1232 }
1233
1234 if (offset < 0)
1235 return offset;
1236 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1237 }
1238
1239 /*
1240 * Locking for serialisation of IO during page faults. This results in a lock
1241 * ordering of:
1242 *
1243 * mmap_lock (MM)
1244 * sb_start_pagefault(vfs, freeze)
1245 * i_mmaplock (XFS - truncate serialisation)
1246 * page_lock (MM)
1247 * i_lock (XFS - extent map serialisation)
1248 */
1249 static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1250 __xfs_filemap_fault(
1251 struct vm_fault *vmf,
1252 enum page_entry_size pe_size,
1253 bool write_fault)
1254 {
1255 struct inode *inode = file_inode(vmf->vma->vm_file);
1256 struct xfs_inode *ip = XFS_I(inode);
1257 vm_fault_t ret;
1258
1259 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1260
1261 if (write_fault) {
1262 sb_start_pagefault(inode->i_sb);
1263 file_update_time(vmf->vma->vm_file);
1264 }
1265
1266 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1267 if (IS_DAX(inode)) {
1268 pfn_t pfn;
1269
1270 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1271 (write_fault && !vmf->cow_page) ?
1272 &xfs_direct_write_iomap_ops :
1273 &xfs_read_iomap_ops);
1274 if (ret & VM_FAULT_NEEDDSYNC)
1275 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1276 } else {
1277 if (write_fault)
1278 ret = iomap_page_mkwrite(vmf,
1279 &xfs_buffered_write_iomap_ops);
1280 else
1281 ret = filemap_fault(vmf);
1282 }
1283 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1284
1285 if (write_fault)
1286 sb_end_pagefault(inode->i_sb);
1287 return ret;
1288 }
1289
1290 static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1291 xfs_is_write_fault(
1292 struct vm_fault *vmf)
1293 {
1294 return (vmf->flags & FAULT_FLAG_WRITE) &&
1295 (vmf->vma->vm_flags & VM_SHARED);
1296 }
1297
1298 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1299 xfs_filemap_fault(
1300 struct vm_fault *vmf)
1301 {
1302 /* DAX can shortcut the normal fault path on write faults! */
1303 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1304 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1305 xfs_is_write_fault(vmf));
1306 }
1307
1308 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1309 xfs_filemap_huge_fault(
1310 struct vm_fault *vmf,
1311 enum page_entry_size pe_size)
1312 {
1313 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1314 return VM_FAULT_FALLBACK;
1315
1316 /* DAX can shortcut the normal fault path on write faults! */
1317 return __xfs_filemap_fault(vmf, pe_size,
1318 xfs_is_write_fault(vmf));
1319 }
1320
1321 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1322 xfs_filemap_page_mkwrite(
1323 struct vm_fault *vmf)
1324 {
1325 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1326 }
1327
1328 /*
1329 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1330 * on write faults. In reality, it needs to serialise against truncate and
1331 * prepare memory for writing so handle is as standard write fault.
1332 */
1333 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1334 xfs_filemap_pfn_mkwrite(
1335 struct vm_fault *vmf)
1336 {
1337
1338 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1339 }
1340
1341 static void
xfs_filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1342 xfs_filemap_map_pages(
1343 struct vm_fault *vmf,
1344 pgoff_t start_pgoff,
1345 pgoff_t end_pgoff)
1346 {
1347 struct inode *inode = file_inode(vmf->vma->vm_file);
1348
1349 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1350 filemap_map_pages(vmf, start_pgoff, end_pgoff);
1351 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1352 }
1353
1354 static const struct vm_operations_struct xfs_file_vm_ops = {
1355 .fault = xfs_filemap_fault,
1356 .huge_fault = xfs_filemap_huge_fault,
1357 .map_pages = xfs_filemap_map_pages,
1358 .page_mkwrite = xfs_filemap_page_mkwrite,
1359 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1360 };
1361
1362 STATIC int
xfs_file_mmap(struct file * file,struct vm_area_struct * vma)1363 xfs_file_mmap(
1364 struct file *file,
1365 struct vm_area_struct *vma)
1366 {
1367 struct inode *inode = file_inode(file);
1368 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1369
1370 /*
1371 * We don't support synchronous mappings for non-DAX files and
1372 * for DAX files if underneath dax_device is not synchronous.
1373 */
1374 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1375 return -EOPNOTSUPP;
1376
1377 file_accessed(file);
1378 vma->vm_ops = &xfs_file_vm_ops;
1379 if (IS_DAX(inode))
1380 vma->vm_flags |= VM_HUGEPAGE;
1381 return 0;
1382 }
1383
1384 const struct file_operations xfs_file_operations = {
1385 .llseek = xfs_file_llseek,
1386 .read_iter = xfs_file_read_iter,
1387 .write_iter = xfs_file_write_iter,
1388 .splice_read = generic_file_splice_read,
1389 .splice_write = iter_file_splice_write,
1390 .iopoll = iomap_dio_iopoll,
1391 .unlocked_ioctl = xfs_file_ioctl,
1392 #ifdef CONFIG_COMPAT
1393 .compat_ioctl = xfs_file_compat_ioctl,
1394 #endif
1395 .mmap = xfs_file_mmap,
1396 .mmap_supported_flags = MAP_SYNC,
1397 .open = xfs_file_open,
1398 .release = xfs_file_release,
1399 .fsync = xfs_file_fsync,
1400 .get_unmapped_area = thp_get_unmapped_area,
1401 .fallocate = xfs_file_fallocate,
1402 .fadvise = xfs_file_fadvise,
1403 .remap_file_range = xfs_file_remap_range,
1404 };
1405
1406 const struct file_operations xfs_dir_file_operations = {
1407 .open = xfs_dir_open,
1408 .read = generic_read_dir,
1409 .iterate_shared = xfs_file_readdir,
1410 .llseek = generic_file_llseek,
1411 .unlocked_ioctl = xfs_file_ioctl,
1412 #ifdef CONFIG_COMPAT
1413 .compat_ioctl = xfs_file_compat_ioctl,
1414 #endif
1415 .fsync = xfs_dir_fsync,
1416 };
1417