• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
21 
22 #include <linux/iversion.h>
23 
24 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
25 
INODE_ITEM(struct xfs_log_item * lip)26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27 {
28 	return container_of(lip, struct xfs_inode_log_item, ili_item);
29 }
30 
31 /*
32  * The logged size of an inode fork is always the current size of the inode
33  * fork. This means that when an inode fork is relogged, the size of the logged
34  * region is determined by the current state, not the combination of the
35  * previously logged state + the current state. This is different relogging
36  * behaviour to most other log items which will retain the size of the
37  * previously logged changes when smaller regions are relogged.
38  *
39  * Hence operations that remove data from the inode fork (e.g. shortform
40  * dir/attr remove, extent form extent removal, etc), the size of the relogged
41  * inode gets -smaller- rather than stays the same size as the previously logged
42  * size and this can result in the committing transaction reducing the amount of
43  * space being consumed by the CIL.
44  */
45 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)46 xfs_inode_item_data_fork_size(
47 	struct xfs_inode_log_item *iip,
48 	int			*nvecs,
49 	int			*nbytes)
50 {
51 	struct xfs_inode	*ip = iip->ili_inode;
52 
53 	switch (ip->i_df.if_format) {
54 	case XFS_DINODE_FMT_EXTENTS:
55 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
56 		    ip->i_df.if_nextents > 0 &&
57 		    ip->i_df.if_bytes > 0) {
58 			/* worst case, doesn't subtract delalloc extents */
59 			*nbytes += XFS_IFORK_DSIZE(ip);
60 			*nvecs += 1;
61 		}
62 		break;
63 	case XFS_DINODE_FMT_BTREE:
64 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
65 		    ip->i_df.if_broot_bytes > 0) {
66 			*nbytes += ip->i_df.if_broot_bytes;
67 			*nvecs += 1;
68 		}
69 		break;
70 	case XFS_DINODE_FMT_LOCAL:
71 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
72 		    ip->i_df.if_bytes > 0) {
73 			*nbytes += roundup(ip->i_df.if_bytes, 4);
74 			*nvecs += 1;
75 		}
76 		break;
77 
78 	case XFS_DINODE_FMT_DEV:
79 		break;
80 	default:
81 		ASSERT(0);
82 		break;
83 	}
84 }
85 
86 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)87 xfs_inode_item_attr_fork_size(
88 	struct xfs_inode_log_item *iip,
89 	int			*nvecs,
90 	int			*nbytes)
91 {
92 	struct xfs_inode	*ip = iip->ili_inode;
93 
94 	switch (ip->i_afp->if_format) {
95 	case XFS_DINODE_FMT_EXTENTS:
96 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97 		    ip->i_afp->if_nextents > 0 &&
98 		    ip->i_afp->if_bytes > 0) {
99 			/* worst case, doesn't subtract unused space */
100 			*nbytes += XFS_IFORK_ASIZE(ip);
101 			*nvecs += 1;
102 		}
103 		break;
104 	case XFS_DINODE_FMT_BTREE:
105 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
106 		    ip->i_afp->if_broot_bytes > 0) {
107 			*nbytes += ip->i_afp->if_broot_bytes;
108 			*nvecs += 1;
109 		}
110 		break;
111 	case XFS_DINODE_FMT_LOCAL:
112 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
113 		    ip->i_afp->if_bytes > 0) {
114 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
115 			*nvecs += 1;
116 		}
117 		break;
118 	default:
119 		ASSERT(0);
120 		break;
121 	}
122 }
123 
124 /*
125  * This returns the number of iovecs needed to log the given inode item.
126  *
127  * We need one iovec for the inode log format structure, one for the
128  * inode core, and possibly one for the inode data/extents/b-tree root
129  * and one for the inode attribute data/extents/b-tree root.
130  */
131 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)132 xfs_inode_item_size(
133 	struct xfs_log_item	*lip,
134 	int			*nvecs,
135 	int			*nbytes)
136 {
137 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
138 	struct xfs_inode	*ip = iip->ili_inode;
139 
140 	*nvecs += 2;
141 	*nbytes += sizeof(struct xfs_inode_log_format) +
142 		   xfs_log_dinode_size(ip->i_mount);
143 
144 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
145 	if (XFS_IFORK_Q(ip))
146 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
147 }
148 
149 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)150 xfs_inode_item_format_data_fork(
151 	struct xfs_inode_log_item *iip,
152 	struct xfs_inode_log_format *ilf,
153 	struct xfs_log_vec	*lv,
154 	struct xfs_log_iovec	**vecp)
155 {
156 	struct xfs_inode	*ip = iip->ili_inode;
157 	size_t			data_bytes;
158 
159 	switch (ip->i_df.if_format) {
160 	case XFS_DINODE_FMT_EXTENTS:
161 		iip->ili_fields &=
162 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
163 
164 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
165 		    ip->i_df.if_nextents > 0 &&
166 		    ip->i_df.if_bytes > 0) {
167 			struct xfs_bmbt_rec *p;
168 
169 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
170 
171 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
172 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
173 			xlog_finish_iovec(lv, *vecp, data_bytes);
174 
175 			ASSERT(data_bytes <= ip->i_df.if_bytes);
176 
177 			ilf->ilf_dsize = data_bytes;
178 			ilf->ilf_size++;
179 		} else {
180 			iip->ili_fields &= ~XFS_ILOG_DEXT;
181 		}
182 		break;
183 	case XFS_DINODE_FMT_BTREE:
184 		iip->ili_fields &=
185 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
186 
187 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
188 		    ip->i_df.if_broot_bytes > 0) {
189 			ASSERT(ip->i_df.if_broot != NULL);
190 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
191 					ip->i_df.if_broot,
192 					ip->i_df.if_broot_bytes);
193 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
194 			ilf->ilf_size++;
195 		} else {
196 			ASSERT(!(iip->ili_fields &
197 				 XFS_ILOG_DBROOT));
198 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
199 		}
200 		break;
201 	case XFS_DINODE_FMT_LOCAL:
202 		iip->ili_fields &=
203 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
204 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205 		    ip->i_df.if_bytes > 0) {
206 			/*
207 			 * Round i_bytes up to a word boundary.
208 			 * The underlying memory is guaranteed
209 			 * to be there by xfs_idata_realloc().
210 			 */
211 			data_bytes = roundup(ip->i_df.if_bytes, 4);
212 			ASSERT(ip->i_df.if_u1.if_data != NULL);
213 			ASSERT(ip->i_d.di_size > 0);
214 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
215 					ip->i_df.if_u1.if_data, data_bytes);
216 			ilf->ilf_dsize = (unsigned)data_bytes;
217 			ilf->ilf_size++;
218 		} else {
219 			iip->ili_fields &= ~XFS_ILOG_DDATA;
220 		}
221 		break;
222 	case XFS_DINODE_FMT_DEV:
223 		iip->ili_fields &=
224 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
225 		if (iip->ili_fields & XFS_ILOG_DEV)
226 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
227 		break;
228 	default:
229 		ASSERT(0);
230 		break;
231 	}
232 }
233 
234 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)235 xfs_inode_item_format_attr_fork(
236 	struct xfs_inode_log_item *iip,
237 	struct xfs_inode_log_format *ilf,
238 	struct xfs_log_vec	*lv,
239 	struct xfs_log_iovec	**vecp)
240 {
241 	struct xfs_inode	*ip = iip->ili_inode;
242 	size_t			data_bytes;
243 
244 	switch (ip->i_afp->if_format) {
245 	case XFS_DINODE_FMT_EXTENTS:
246 		iip->ili_fields &=
247 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
248 
249 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
250 		    ip->i_afp->if_nextents > 0 &&
251 		    ip->i_afp->if_bytes > 0) {
252 			struct xfs_bmbt_rec *p;
253 
254 			ASSERT(xfs_iext_count(ip->i_afp) ==
255 				ip->i_afp->if_nextents);
256 
257 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
258 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
259 			xlog_finish_iovec(lv, *vecp, data_bytes);
260 
261 			ilf->ilf_asize = data_bytes;
262 			ilf->ilf_size++;
263 		} else {
264 			iip->ili_fields &= ~XFS_ILOG_AEXT;
265 		}
266 		break;
267 	case XFS_DINODE_FMT_BTREE:
268 		iip->ili_fields &=
269 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
270 
271 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
272 		    ip->i_afp->if_broot_bytes > 0) {
273 			ASSERT(ip->i_afp->if_broot != NULL);
274 
275 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
276 					ip->i_afp->if_broot,
277 					ip->i_afp->if_broot_bytes);
278 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
279 			ilf->ilf_size++;
280 		} else {
281 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
282 		}
283 		break;
284 	case XFS_DINODE_FMT_LOCAL:
285 		iip->ili_fields &=
286 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
287 
288 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
289 		    ip->i_afp->if_bytes > 0) {
290 			/*
291 			 * Round i_bytes up to a word boundary.
292 			 * The underlying memory is guaranteed
293 			 * to be there by xfs_idata_realloc().
294 			 */
295 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
296 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
297 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
298 					ip->i_afp->if_u1.if_data,
299 					data_bytes);
300 			ilf->ilf_asize = (unsigned)data_bytes;
301 			ilf->ilf_size++;
302 		} else {
303 			iip->ili_fields &= ~XFS_ILOG_ADATA;
304 		}
305 		break;
306 	default:
307 		ASSERT(0);
308 		break;
309 	}
310 }
311 
312 /*
313  * Convert an incore timestamp to a log timestamp.  Note that the log format
314  * specifies host endian format!
315  */
316 static inline xfs_ictimestamp_t
xfs_inode_to_log_dinode_ts(struct xfs_inode * ip,const struct timespec64 tv)317 xfs_inode_to_log_dinode_ts(
318 	struct xfs_inode		*ip,
319 	const struct timespec64		tv)
320 {
321 	struct xfs_legacy_ictimestamp	*lits;
322 	xfs_ictimestamp_t		its;
323 
324 	if (xfs_inode_has_bigtime(ip))
325 		return xfs_inode_encode_bigtime(tv);
326 
327 	lits = (struct xfs_legacy_ictimestamp *)&its;
328 	lits->t_sec = tv.tv_sec;
329 	lits->t_nsec = tv.tv_nsec;
330 
331 	return its;
332 }
333 
334 static void
xfs_inode_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to,xfs_lsn_t lsn)335 xfs_inode_to_log_dinode(
336 	struct xfs_inode	*ip,
337 	struct xfs_log_dinode	*to,
338 	xfs_lsn_t		lsn)
339 {
340 	struct xfs_icdinode	*from = &ip->i_d;
341 	struct inode		*inode = VFS_I(ip);
342 
343 	to->di_magic = XFS_DINODE_MAGIC;
344 	to->di_format = xfs_ifork_format(&ip->i_df);
345 	to->di_uid = i_uid_read(inode);
346 	to->di_gid = i_gid_read(inode);
347 	to->di_projid_lo = from->di_projid & 0xffff;
348 	to->di_projid_hi = from->di_projid >> 16;
349 
350 	memset(to->di_pad, 0, sizeof(to->di_pad));
351 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
352 	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
353 	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
354 	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
355 	to->di_nlink = inode->i_nlink;
356 	to->di_gen = inode->i_generation;
357 	to->di_mode = inode->i_mode;
358 
359 	to->di_size = from->di_size;
360 	to->di_nblocks = from->di_nblocks;
361 	to->di_extsize = from->di_extsize;
362 	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
363 	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
364 	to->di_forkoff = from->di_forkoff;
365 	to->di_aformat = xfs_ifork_format(ip->i_afp);
366 	to->di_dmevmask = from->di_dmevmask;
367 	to->di_dmstate = from->di_dmstate;
368 	to->di_flags = from->di_flags;
369 
370 	/* log a dummy value to ensure log structure is fully initialised */
371 	to->di_next_unlinked = NULLAGINO;
372 
373 	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
374 		to->di_version = 3;
375 		to->di_changecount = inode_peek_iversion(inode);
376 		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, from->di_crtime);
377 		to->di_flags2 = from->di_flags2;
378 		to->di_cowextsize = from->di_cowextsize;
379 		to->di_ino = ip->i_ino;
380 		to->di_lsn = lsn;
381 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
382 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
383 		to->di_flushiter = 0;
384 	} else {
385 		to->di_version = 2;
386 		to->di_flushiter = from->di_flushiter;
387 	}
388 }
389 
390 /*
391  * Format the inode core. Current timestamp data is only in the VFS inode
392  * fields, so we need to grab them from there. Hence rather than just copying
393  * the XFS inode core structure, format the fields directly into the iovec.
394  */
395 static void
xfs_inode_item_format_core(struct xfs_inode * ip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)396 xfs_inode_item_format_core(
397 	struct xfs_inode	*ip,
398 	struct xfs_log_vec	*lv,
399 	struct xfs_log_iovec	**vecp)
400 {
401 	struct xfs_log_dinode	*dic;
402 
403 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
404 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
405 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
406 }
407 
408 /*
409  * This is called to fill in the vector of log iovecs for the given inode
410  * log item.  It fills the first item with an inode log format structure,
411  * the second with the on-disk inode structure, and a possible third and/or
412  * fourth with the inode data/extents/b-tree root and inode attributes
413  * data/extents/b-tree root.
414  *
415  * Note: Always use the 64 bit inode log format structure so we don't
416  * leave an uninitialised hole in the format item on 64 bit systems. Log
417  * recovery on 32 bit systems handles this just fine, so there's no reason
418  * for not using an initialising the properly padded structure all the time.
419  */
420 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)421 xfs_inode_item_format(
422 	struct xfs_log_item	*lip,
423 	struct xfs_log_vec	*lv)
424 {
425 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
426 	struct xfs_inode	*ip = iip->ili_inode;
427 	struct xfs_log_iovec	*vecp = NULL;
428 	struct xfs_inode_log_format *ilf;
429 
430 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
431 	ilf->ilf_type = XFS_LI_INODE;
432 	ilf->ilf_ino = ip->i_ino;
433 	ilf->ilf_blkno = ip->i_imap.im_blkno;
434 	ilf->ilf_len = ip->i_imap.im_len;
435 	ilf->ilf_boffset = ip->i_imap.im_boffset;
436 	ilf->ilf_fields = XFS_ILOG_CORE;
437 	ilf->ilf_size = 2; /* format + core */
438 
439 	/*
440 	 * make sure we don't leak uninitialised data into the log in the case
441 	 * when we don't log every field in the inode.
442 	 */
443 	ilf->ilf_dsize = 0;
444 	ilf->ilf_asize = 0;
445 	ilf->ilf_pad = 0;
446 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
447 
448 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
449 
450 	xfs_inode_item_format_core(ip, lv, &vecp);
451 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
452 	if (XFS_IFORK_Q(ip)) {
453 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
454 	} else {
455 		iip->ili_fields &=
456 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
457 	}
458 
459 	/* update the format with the exact fields we actually logged */
460 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
461 }
462 
463 /*
464  * This is called to pin the inode associated with the inode log
465  * item in memory so it cannot be written out.
466  */
467 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)468 xfs_inode_item_pin(
469 	struct xfs_log_item	*lip)
470 {
471 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
472 
473 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
474 	ASSERT(lip->li_buf);
475 
476 	trace_xfs_inode_pin(ip, _RET_IP_);
477 	atomic_inc(&ip->i_pincount);
478 }
479 
480 
481 /*
482  * This is called to unpin the inode associated with the inode log
483  * item which was previously pinned with a call to xfs_inode_item_pin().
484  *
485  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
486  *
487  * Note that unpin can race with inode cluster buffer freeing marking the buffer
488  * stale. In that case, flush completions are run from the buffer unpin call,
489  * which may happen before the inode is unpinned. If we lose the race, there
490  * will be no buffer attached to the log item, but the inode will be marked
491  * XFS_ISTALE.
492  */
493 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)494 xfs_inode_item_unpin(
495 	struct xfs_log_item	*lip,
496 	int			remove)
497 {
498 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
499 
500 	trace_xfs_inode_unpin(ip, _RET_IP_);
501 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
502 	ASSERT(atomic_read(&ip->i_pincount) > 0);
503 	if (atomic_dec_and_test(&ip->i_pincount))
504 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
505 }
506 
507 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)508 xfs_inode_item_push(
509 	struct xfs_log_item	*lip,
510 	struct list_head	*buffer_list)
511 		__releases(&lip->li_ailp->ail_lock)
512 		__acquires(&lip->li_ailp->ail_lock)
513 {
514 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
515 	struct xfs_inode	*ip = iip->ili_inode;
516 	struct xfs_buf		*bp = lip->li_buf;
517 	uint			rval = XFS_ITEM_SUCCESS;
518 	int			error;
519 
520 	ASSERT(iip->ili_item.li_buf);
521 
522 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
523 	    (ip->i_flags & XFS_ISTALE))
524 		return XFS_ITEM_PINNED;
525 
526 	if (xfs_iflags_test(ip, XFS_IFLUSHING))
527 		return XFS_ITEM_FLUSHING;
528 
529 	if (!xfs_buf_trylock(bp))
530 		return XFS_ITEM_LOCKED;
531 
532 	spin_unlock(&lip->li_ailp->ail_lock);
533 
534 	/*
535 	 * We need to hold a reference for flushing the cluster buffer as it may
536 	 * fail the buffer without IO submission. In which case, we better get a
537 	 * reference for that completion because otherwise we don't get a
538 	 * reference for IO until we queue the buffer for delwri submission.
539 	 */
540 	xfs_buf_hold(bp);
541 	error = xfs_iflush_cluster(bp);
542 	if (!error) {
543 		if (!xfs_buf_delwri_queue(bp, buffer_list))
544 			rval = XFS_ITEM_FLUSHING;
545 		xfs_buf_relse(bp);
546 	} else {
547 		/*
548 		 * Release the buffer if we were unable to flush anything. On
549 		 * any other error, the buffer has already been released.
550 		 */
551 		if (error == -EAGAIN)
552 			xfs_buf_relse(bp);
553 		rval = XFS_ITEM_LOCKED;
554 	}
555 
556 	spin_lock(&lip->li_ailp->ail_lock);
557 	return rval;
558 }
559 
560 /*
561  * Unlock the inode associated with the inode log item.
562  */
563 STATIC void
xfs_inode_item_release(struct xfs_log_item * lip)564 xfs_inode_item_release(
565 	struct xfs_log_item	*lip)
566 {
567 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
568 	struct xfs_inode	*ip = iip->ili_inode;
569 	unsigned short		lock_flags;
570 
571 	ASSERT(ip->i_itemp != NULL);
572 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
573 
574 	lock_flags = iip->ili_lock_flags;
575 	iip->ili_lock_flags = 0;
576 	if (lock_flags)
577 		xfs_iunlock(ip, lock_flags);
578 }
579 
580 /*
581  * This is called to find out where the oldest active copy of the inode log
582  * item in the on disk log resides now that the last log write of it completed
583  * at the given lsn.  Since we always re-log all dirty data in an inode, the
584  * latest copy in the on disk log is the only one that matters.  Therefore,
585  * simply return the given lsn.
586  *
587  * If the inode has been marked stale because the cluster is being freed, we
588  * don't want to (re-)insert this inode into the AIL. There is a race condition
589  * where the cluster buffer may be unpinned before the inode is inserted into
590  * the AIL during transaction committed processing. If the buffer is unpinned
591  * before the inode item has been committed and inserted, then it is possible
592  * for the buffer to be written and IO completes before the inode is inserted
593  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
594  * AIL which will never get removed. It will, however, get reclaimed which
595  * triggers an assert in xfs_inode_free() complaining about freein an inode
596  * still in the AIL.
597  *
598  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
599  * transaction committed code knows that it does not need to do any further
600  * processing on the item.
601  */
602 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)603 xfs_inode_item_committed(
604 	struct xfs_log_item	*lip,
605 	xfs_lsn_t		lsn)
606 {
607 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
608 	struct xfs_inode	*ip = iip->ili_inode;
609 
610 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
611 		xfs_inode_item_unpin(lip, 0);
612 		return -1;
613 	}
614 	return lsn;
615 }
616 
617 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)618 xfs_inode_item_committing(
619 	struct xfs_log_item	*lip,
620 	xfs_csn_t		seq)
621 {
622 	INODE_ITEM(lip)->ili_commit_seq = seq;
623 	return xfs_inode_item_release(lip);
624 }
625 
626 static const struct xfs_item_ops xfs_inode_item_ops = {
627 	.iop_size	= xfs_inode_item_size,
628 	.iop_format	= xfs_inode_item_format,
629 	.iop_pin	= xfs_inode_item_pin,
630 	.iop_unpin	= xfs_inode_item_unpin,
631 	.iop_release	= xfs_inode_item_release,
632 	.iop_committed	= xfs_inode_item_committed,
633 	.iop_push	= xfs_inode_item_push,
634 	.iop_committing	= xfs_inode_item_committing,
635 };
636 
637 
638 /*
639  * Initialize the inode log item for a newly allocated (in-core) inode.
640  */
641 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)642 xfs_inode_item_init(
643 	struct xfs_inode	*ip,
644 	struct xfs_mount	*mp)
645 {
646 	struct xfs_inode_log_item *iip;
647 
648 	ASSERT(ip->i_itemp == NULL);
649 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
650 					      GFP_KERNEL | __GFP_NOFAIL);
651 
652 	iip->ili_inode = ip;
653 	spin_lock_init(&iip->ili_lock);
654 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
655 						&xfs_inode_item_ops);
656 }
657 
658 /*
659  * Free the inode log item and any memory hanging off of it.
660  */
661 void
xfs_inode_item_destroy(struct xfs_inode * ip)662 xfs_inode_item_destroy(
663 	struct xfs_inode	*ip)
664 {
665 	struct xfs_inode_log_item *iip = ip->i_itemp;
666 
667 	ASSERT(iip->ili_item.li_buf == NULL);
668 
669 	ip->i_itemp = NULL;
670 	kmem_free(iip->ili_item.li_lv_shadow);
671 	kmem_cache_free(xfs_ili_zone, iip);
672 }
673 
674 
675 /*
676  * We only want to pull the item from the AIL if it is actually there
677  * and its location in the log has not changed since we started the
678  * flush.  Thus, we only bother if the inode's lsn has not changed.
679  */
680 static void
xfs_iflush_ail_updates(struct xfs_ail * ailp,struct list_head * list)681 xfs_iflush_ail_updates(
682 	struct xfs_ail		*ailp,
683 	struct list_head	*list)
684 {
685 	struct xfs_log_item	*lip;
686 	xfs_lsn_t		tail_lsn = 0;
687 
688 	/* this is an opencoded batch version of xfs_trans_ail_delete */
689 	spin_lock(&ailp->ail_lock);
690 	list_for_each_entry(lip, list, li_bio_list) {
691 		xfs_lsn_t	lsn;
692 
693 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
694 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
695 			continue;
696 
697 		lsn = xfs_ail_delete_one(ailp, lip);
698 		if (!tail_lsn && lsn)
699 			tail_lsn = lsn;
700 	}
701 	xfs_ail_update_finish(ailp, tail_lsn);
702 }
703 
704 /*
705  * Walk the list of inodes that have completed their IOs. If they are clean
706  * remove them from the list and dissociate them from the buffer. Buffers that
707  * are still dirty remain linked to the buffer and on the list. Caller must
708  * handle them appropriately.
709  */
710 static void
xfs_iflush_finish(struct xfs_buf * bp,struct list_head * list)711 xfs_iflush_finish(
712 	struct xfs_buf		*bp,
713 	struct list_head	*list)
714 {
715 	struct xfs_log_item	*lip, *n;
716 
717 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
718 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
719 		bool	drop_buffer = false;
720 
721 		spin_lock(&iip->ili_lock);
722 
723 		/*
724 		 * Remove the reference to the cluster buffer if the inode is
725 		 * clean in memory and drop the buffer reference once we've
726 		 * dropped the locks we hold.
727 		 */
728 		ASSERT(iip->ili_item.li_buf == bp);
729 		if (!iip->ili_fields) {
730 			iip->ili_item.li_buf = NULL;
731 			list_del_init(&lip->li_bio_list);
732 			drop_buffer = true;
733 		}
734 		iip->ili_last_fields = 0;
735 		iip->ili_flush_lsn = 0;
736 		spin_unlock(&iip->ili_lock);
737 		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
738 		if (drop_buffer)
739 			xfs_buf_rele(bp);
740 	}
741 }
742 
743 /*
744  * Inode buffer IO completion routine.  It is responsible for removing inodes
745  * attached to the buffer from the AIL if they have not been re-logged and
746  * completing the inode flush.
747  */
748 void
xfs_buf_inode_iodone(struct xfs_buf * bp)749 xfs_buf_inode_iodone(
750 	struct xfs_buf		*bp)
751 {
752 	struct xfs_log_item	*lip, *n;
753 	LIST_HEAD(flushed_inodes);
754 	LIST_HEAD(ail_updates);
755 
756 	/*
757 	 * Pull the attached inodes from the buffer one at a time and take the
758 	 * appropriate action on them.
759 	 */
760 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
761 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
762 
763 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
764 			xfs_iflush_abort(iip->ili_inode);
765 			continue;
766 		}
767 		if (!iip->ili_last_fields)
768 			continue;
769 
770 		/* Do an unlocked check for needing the AIL lock. */
771 		if (iip->ili_flush_lsn == lip->li_lsn ||
772 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
773 			list_move_tail(&lip->li_bio_list, &ail_updates);
774 		else
775 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
776 	}
777 
778 	if (!list_empty(&ail_updates)) {
779 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
780 		list_splice_tail(&ail_updates, &flushed_inodes);
781 	}
782 
783 	xfs_iflush_finish(bp, &flushed_inodes);
784 	if (!list_empty(&flushed_inodes))
785 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
786 }
787 
788 void
xfs_buf_inode_io_fail(struct xfs_buf * bp)789 xfs_buf_inode_io_fail(
790 	struct xfs_buf		*bp)
791 {
792 	struct xfs_log_item	*lip;
793 
794 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
795 		set_bit(XFS_LI_FAILED, &lip->li_flags);
796 }
797 
798 /*
799  * This is the inode flushing abort routine.  It is called when
800  * the filesystem is shutting down to clean up the inode state.  It is
801  * responsible for removing the inode item from the AIL if it has not been
802  * re-logged and clearing the inode's flush state.
803  */
804 void
xfs_iflush_abort(struct xfs_inode * ip)805 xfs_iflush_abort(
806 	struct xfs_inode	*ip)
807 {
808 	struct xfs_inode_log_item *iip = ip->i_itemp;
809 	struct xfs_buf		*bp = NULL;
810 
811 	if (iip) {
812 		/*
813 		 * Clear the failed bit before removing the item from the AIL so
814 		 * xfs_trans_ail_delete() doesn't try to clear and release the
815 		 * buffer attached to the log item before we are done with it.
816 		 */
817 		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
818 		xfs_trans_ail_delete(&iip->ili_item, 0);
819 
820 		/*
821 		 * Clear the inode logging fields so no more flushes are
822 		 * attempted.
823 		 */
824 		spin_lock(&iip->ili_lock);
825 		iip->ili_last_fields = 0;
826 		iip->ili_fields = 0;
827 		iip->ili_fsync_fields = 0;
828 		iip->ili_flush_lsn = 0;
829 		bp = iip->ili_item.li_buf;
830 		iip->ili_item.li_buf = NULL;
831 		list_del_init(&iip->ili_item.li_bio_list);
832 		spin_unlock(&iip->ili_lock);
833 	}
834 	xfs_iflags_clear(ip, XFS_IFLUSHING);
835 	if (bp)
836 		xfs_buf_rele(bp);
837 }
838 
839 /*
840  * convert an xfs_inode_log_format struct from the old 32 bit version
841  * (which can have different field alignments) to the native 64 bit version
842  */
843 int
xfs_inode_item_format_convert(struct xfs_log_iovec * buf,struct xfs_inode_log_format * in_f)844 xfs_inode_item_format_convert(
845 	struct xfs_log_iovec		*buf,
846 	struct xfs_inode_log_format	*in_f)
847 {
848 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
849 
850 	if (buf->i_len != sizeof(*in_f32)) {
851 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
852 		return -EFSCORRUPTED;
853 	}
854 
855 	in_f->ilf_type = in_f32->ilf_type;
856 	in_f->ilf_size = in_f32->ilf_size;
857 	in_f->ilf_fields = in_f32->ilf_fields;
858 	in_f->ilf_asize = in_f32->ilf_asize;
859 	in_f->ilf_dsize = in_f32->ilf_dsize;
860 	in_f->ilf_ino = in_f32->ilf_ino;
861 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
862 	in_f->ilf_blkno = in_f32->ilf_blkno;
863 	in_f->ilf_len = in_f32->ilf_len;
864 	in_f->ilf_boffset = in_f32->ilf_boffset;
865 	return 0;
866 }
867