1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
21
22 #include <linux/iversion.h>
23
24 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
25
INODE_ITEM(struct xfs_log_item * lip)26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27 {
28 return container_of(lip, struct xfs_inode_log_item, ili_item);
29 }
30
31 /*
32 * The logged size of an inode fork is always the current size of the inode
33 * fork. This means that when an inode fork is relogged, the size of the logged
34 * region is determined by the current state, not the combination of the
35 * previously logged state + the current state. This is different relogging
36 * behaviour to most other log items which will retain the size of the
37 * previously logged changes when smaller regions are relogged.
38 *
39 * Hence operations that remove data from the inode fork (e.g. shortform
40 * dir/attr remove, extent form extent removal, etc), the size of the relogged
41 * inode gets -smaller- rather than stays the same size as the previously logged
42 * size and this can result in the committing transaction reducing the amount of
43 * space being consumed by the CIL.
44 */
45 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)46 xfs_inode_item_data_fork_size(
47 struct xfs_inode_log_item *iip,
48 int *nvecs,
49 int *nbytes)
50 {
51 struct xfs_inode *ip = iip->ili_inode;
52
53 switch (ip->i_df.if_format) {
54 case XFS_DINODE_FMT_EXTENTS:
55 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
56 ip->i_df.if_nextents > 0 &&
57 ip->i_df.if_bytes > 0) {
58 /* worst case, doesn't subtract delalloc extents */
59 *nbytes += XFS_IFORK_DSIZE(ip);
60 *nvecs += 1;
61 }
62 break;
63 case XFS_DINODE_FMT_BTREE:
64 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
65 ip->i_df.if_broot_bytes > 0) {
66 *nbytes += ip->i_df.if_broot_bytes;
67 *nvecs += 1;
68 }
69 break;
70 case XFS_DINODE_FMT_LOCAL:
71 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
72 ip->i_df.if_bytes > 0) {
73 *nbytes += roundup(ip->i_df.if_bytes, 4);
74 *nvecs += 1;
75 }
76 break;
77
78 case XFS_DINODE_FMT_DEV:
79 break;
80 default:
81 ASSERT(0);
82 break;
83 }
84 }
85
86 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)87 xfs_inode_item_attr_fork_size(
88 struct xfs_inode_log_item *iip,
89 int *nvecs,
90 int *nbytes)
91 {
92 struct xfs_inode *ip = iip->ili_inode;
93
94 switch (ip->i_afp->if_format) {
95 case XFS_DINODE_FMT_EXTENTS:
96 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97 ip->i_afp->if_nextents > 0 &&
98 ip->i_afp->if_bytes > 0) {
99 /* worst case, doesn't subtract unused space */
100 *nbytes += XFS_IFORK_ASIZE(ip);
101 *nvecs += 1;
102 }
103 break;
104 case XFS_DINODE_FMT_BTREE:
105 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
106 ip->i_afp->if_broot_bytes > 0) {
107 *nbytes += ip->i_afp->if_broot_bytes;
108 *nvecs += 1;
109 }
110 break;
111 case XFS_DINODE_FMT_LOCAL:
112 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
113 ip->i_afp->if_bytes > 0) {
114 *nbytes += roundup(ip->i_afp->if_bytes, 4);
115 *nvecs += 1;
116 }
117 break;
118 default:
119 ASSERT(0);
120 break;
121 }
122 }
123
124 /*
125 * This returns the number of iovecs needed to log the given inode item.
126 *
127 * We need one iovec for the inode log format structure, one for the
128 * inode core, and possibly one for the inode data/extents/b-tree root
129 * and one for the inode attribute data/extents/b-tree root.
130 */
131 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)132 xfs_inode_item_size(
133 struct xfs_log_item *lip,
134 int *nvecs,
135 int *nbytes)
136 {
137 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
138 struct xfs_inode *ip = iip->ili_inode;
139
140 *nvecs += 2;
141 *nbytes += sizeof(struct xfs_inode_log_format) +
142 xfs_log_dinode_size(ip->i_mount);
143
144 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
145 if (XFS_IFORK_Q(ip))
146 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
147 }
148
149 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)150 xfs_inode_item_format_data_fork(
151 struct xfs_inode_log_item *iip,
152 struct xfs_inode_log_format *ilf,
153 struct xfs_log_vec *lv,
154 struct xfs_log_iovec **vecp)
155 {
156 struct xfs_inode *ip = iip->ili_inode;
157 size_t data_bytes;
158
159 switch (ip->i_df.if_format) {
160 case XFS_DINODE_FMT_EXTENTS:
161 iip->ili_fields &=
162 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
163
164 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
165 ip->i_df.if_nextents > 0 &&
166 ip->i_df.if_bytes > 0) {
167 struct xfs_bmbt_rec *p;
168
169 ASSERT(xfs_iext_count(&ip->i_df) > 0);
170
171 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
172 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
173 xlog_finish_iovec(lv, *vecp, data_bytes);
174
175 ASSERT(data_bytes <= ip->i_df.if_bytes);
176
177 ilf->ilf_dsize = data_bytes;
178 ilf->ilf_size++;
179 } else {
180 iip->ili_fields &= ~XFS_ILOG_DEXT;
181 }
182 break;
183 case XFS_DINODE_FMT_BTREE:
184 iip->ili_fields &=
185 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
186
187 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
188 ip->i_df.if_broot_bytes > 0) {
189 ASSERT(ip->i_df.if_broot != NULL);
190 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
191 ip->i_df.if_broot,
192 ip->i_df.if_broot_bytes);
193 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
194 ilf->ilf_size++;
195 } else {
196 ASSERT(!(iip->ili_fields &
197 XFS_ILOG_DBROOT));
198 iip->ili_fields &= ~XFS_ILOG_DBROOT;
199 }
200 break;
201 case XFS_DINODE_FMT_LOCAL:
202 iip->ili_fields &=
203 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
204 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205 ip->i_df.if_bytes > 0) {
206 /*
207 * Round i_bytes up to a word boundary.
208 * The underlying memory is guaranteed
209 * to be there by xfs_idata_realloc().
210 */
211 data_bytes = roundup(ip->i_df.if_bytes, 4);
212 ASSERT(ip->i_df.if_u1.if_data != NULL);
213 ASSERT(ip->i_d.di_size > 0);
214 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
215 ip->i_df.if_u1.if_data, data_bytes);
216 ilf->ilf_dsize = (unsigned)data_bytes;
217 ilf->ilf_size++;
218 } else {
219 iip->ili_fields &= ~XFS_ILOG_DDATA;
220 }
221 break;
222 case XFS_DINODE_FMT_DEV:
223 iip->ili_fields &=
224 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
225 if (iip->ili_fields & XFS_ILOG_DEV)
226 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
227 break;
228 default:
229 ASSERT(0);
230 break;
231 }
232 }
233
234 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)235 xfs_inode_item_format_attr_fork(
236 struct xfs_inode_log_item *iip,
237 struct xfs_inode_log_format *ilf,
238 struct xfs_log_vec *lv,
239 struct xfs_log_iovec **vecp)
240 {
241 struct xfs_inode *ip = iip->ili_inode;
242 size_t data_bytes;
243
244 switch (ip->i_afp->if_format) {
245 case XFS_DINODE_FMT_EXTENTS:
246 iip->ili_fields &=
247 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
248
249 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
250 ip->i_afp->if_nextents > 0 &&
251 ip->i_afp->if_bytes > 0) {
252 struct xfs_bmbt_rec *p;
253
254 ASSERT(xfs_iext_count(ip->i_afp) ==
255 ip->i_afp->if_nextents);
256
257 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
258 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
259 xlog_finish_iovec(lv, *vecp, data_bytes);
260
261 ilf->ilf_asize = data_bytes;
262 ilf->ilf_size++;
263 } else {
264 iip->ili_fields &= ~XFS_ILOG_AEXT;
265 }
266 break;
267 case XFS_DINODE_FMT_BTREE:
268 iip->ili_fields &=
269 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
270
271 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
272 ip->i_afp->if_broot_bytes > 0) {
273 ASSERT(ip->i_afp->if_broot != NULL);
274
275 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
276 ip->i_afp->if_broot,
277 ip->i_afp->if_broot_bytes);
278 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
279 ilf->ilf_size++;
280 } else {
281 iip->ili_fields &= ~XFS_ILOG_ABROOT;
282 }
283 break;
284 case XFS_DINODE_FMT_LOCAL:
285 iip->ili_fields &=
286 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
287
288 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
289 ip->i_afp->if_bytes > 0) {
290 /*
291 * Round i_bytes up to a word boundary.
292 * The underlying memory is guaranteed
293 * to be there by xfs_idata_realloc().
294 */
295 data_bytes = roundup(ip->i_afp->if_bytes, 4);
296 ASSERT(ip->i_afp->if_u1.if_data != NULL);
297 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
298 ip->i_afp->if_u1.if_data,
299 data_bytes);
300 ilf->ilf_asize = (unsigned)data_bytes;
301 ilf->ilf_size++;
302 } else {
303 iip->ili_fields &= ~XFS_ILOG_ADATA;
304 }
305 break;
306 default:
307 ASSERT(0);
308 break;
309 }
310 }
311
312 /*
313 * Convert an incore timestamp to a log timestamp. Note that the log format
314 * specifies host endian format!
315 */
316 static inline xfs_ictimestamp_t
xfs_inode_to_log_dinode_ts(struct xfs_inode * ip,const struct timespec64 tv)317 xfs_inode_to_log_dinode_ts(
318 struct xfs_inode *ip,
319 const struct timespec64 tv)
320 {
321 struct xfs_legacy_ictimestamp *lits;
322 xfs_ictimestamp_t its;
323
324 if (xfs_inode_has_bigtime(ip))
325 return xfs_inode_encode_bigtime(tv);
326
327 lits = (struct xfs_legacy_ictimestamp *)&its;
328 lits->t_sec = tv.tv_sec;
329 lits->t_nsec = tv.tv_nsec;
330
331 return its;
332 }
333
334 static void
xfs_inode_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to,xfs_lsn_t lsn)335 xfs_inode_to_log_dinode(
336 struct xfs_inode *ip,
337 struct xfs_log_dinode *to,
338 xfs_lsn_t lsn)
339 {
340 struct xfs_icdinode *from = &ip->i_d;
341 struct inode *inode = VFS_I(ip);
342
343 to->di_magic = XFS_DINODE_MAGIC;
344 to->di_format = xfs_ifork_format(&ip->i_df);
345 to->di_uid = i_uid_read(inode);
346 to->di_gid = i_gid_read(inode);
347 to->di_projid_lo = from->di_projid & 0xffff;
348 to->di_projid_hi = from->di_projid >> 16;
349
350 memset(to->di_pad, 0, sizeof(to->di_pad));
351 memset(to->di_pad3, 0, sizeof(to->di_pad3));
352 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
353 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
354 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
355 to->di_nlink = inode->i_nlink;
356 to->di_gen = inode->i_generation;
357 to->di_mode = inode->i_mode;
358
359 to->di_size = from->di_size;
360 to->di_nblocks = from->di_nblocks;
361 to->di_extsize = from->di_extsize;
362 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
363 to->di_anextents = xfs_ifork_nextents(ip->i_afp);
364 to->di_forkoff = from->di_forkoff;
365 to->di_aformat = xfs_ifork_format(ip->i_afp);
366 to->di_dmevmask = from->di_dmevmask;
367 to->di_dmstate = from->di_dmstate;
368 to->di_flags = from->di_flags;
369
370 /* log a dummy value to ensure log structure is fully initialised */
371 to->di_next_unlinked = NULLAGINO;
372
373 if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
374 to->di_version = 3;
375 to->di_changecount = inode_peek_iversion(inode);
376 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, from->di_crtime);
377 to->di_flags2 = from->di_flags2;
378 to->di_cowextsize = from->di_cowextsize;
379 to->di_ino = ip->i_ino;
380 to->di_lsn = lsn;
381 memset(to->di_pad2, 0, sizeof(to->di_pad2));
382 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
383 to->di_flushiter = 0;
384 } else {
385 to->di_version = 2;
386 to->di_flushiter = from->di_flushiter;
387 }
388 }
389
390 /*
391 * Format the inode core. Current timestamp data is only in the VFS inode
392 * fields, so we need to grab them from there. Hence rather than just copying
393 * the XFS inode core structure, format the fields directly into the iovec.
394 */
395 static void
xfs_inode_item_format_core(struct xfs_inode * ip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)396 xfs_inode_item_format_core(
397 struct xfs_inode *ip,
398 struct xfs_log_vec *lv,
399 struct xfs_log_iovec **vecp)
400 {
401 struct xfs_log_dinode *dic;
402
403 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
404 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
405 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
406 }
407
408 /*
409 * This is called to fill in the vector of log iovecs for the given inode
410 * log item. It fills the first item with an inode log format structure,
411 * the second with the on-disk inode structure, and a possible third and/or
412 * fourth with the inode data/extents/b-tree root and inode attributes
413 * data/extents/b-tree root.
414 *
415 * Note: Always use the 64 bit inode log format structure so we don't
416 * leave an uninitialised hole in the format item on 64 bit systems. Log
417 * recovery on 32 bit systems handles this just fine, so there's no reason
418 * for not using an initialising the properly padded structure all the time.
419 */
420 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)421 xfs_inode_item_format(
422 struct xfs_log_item *lip,
423 struct xfs_log_vec *lv)
424 {
425 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
426 struct xfs_inode *ip = iip->ili_inode;
427 struct xfs_log_iovec *vecp = NULL;
428 struct xfs_inode_log_format *ilf;
429
430 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
431 ilf->ilf_type = XFS_LI_INODE;
432 ilf->ilf_ino = ip->i_ino;
433 ilf->ilf_blkno = ip->i_imap.im_blkno;
434 ilf->ilf_len = ip->i_imap.im_len;
435 ilf->ilf_boffset = ip->i_imap.im_boffset;
436 ilf->ilf_fields = XFS_ILOG_CORE;
437 ilf->ilf_size = 2; /* format + core */
438
439 /*
440 * make sure we don't leak uninitialised data into the log in the case
441 * when we don't log every field in the inode.
442 */
443 ilf->ilf_dsize = 0;
444 ilf->ilf_asize = 0;
445 ilf->ilf_pad = 0;
446 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
447
448 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
449
450 xfs_inode_item_format_core(ip, lv, &vecp);
451 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
452 if (XFS_IFORK_Q(ip)) {
453 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
454 } else {
455 iip->ili_fields &=
456 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
457 }
458
459 /* update the format with the exact fields we actually logged */
460 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
461 }
462
463 /*
464 * This is called to pin the inode associated with the inode log
465 * item in memory so it cannot be written out.
466 */
467 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)468 xfs_inode_item_pin(
469 struct xfs_log_item *lip)
470 {
471 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
472
473 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
474 ASSERT(lip->li_buf);
475
476 trace_xfs_inode_pin(ip, _RET_IP_);
477 atomic_inc(&ip->i_pincount);
478 }
479
480
481 /*
482 * This is called to unpin the inode associated with the inode log
483 * item which was previously pinned with a call to xfs_inode_item_pin().
484 *
485 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
486 *
487 * Note that unpin can race with inode cluster buffer freeing marking the buffer
488 * stale. In that case, flush completions are run from the buffer unpin call,
489 * which may happen before the inode is unpinned. If we lose the race, there
490 * will be no buffer attached to the log item, but the inode will be marked
491 * XFS_ISTALE.
492 */
493 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)494 xfs_inode_item_unpin(
495 struct xfs_log_item *lip,
496 int remove)
497 {
498 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
499
500 trace_xfs_inode_unpin(ip, _RET_IP_);
501 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
502 ASSERT(atomic_read(&ip->i_pincount) > 0);
503 if (atomic_dec_and_test(&ip->i_pincount))
504 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
505 }
506
507 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)508 xfs_inode_item_push(
509 struct xfs_log_item *lip,
510 struct list_head *buffer_list)
511 __releases(&lip->li_ailp->ail_lock)
512 __acquires(&lip->li_ailp->ail_lock)
513 {
514 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
515 struct xfs_inode *ip = iip->ili_inode;
516 struct xfs_buf *bp = lip->li_buf;
517 uint rval = XFS_ITEM_SUCCESS;
518 int error;
519
520 ASSERT(iip->ili_item.li_buf);
521
522 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
523 (ip->i_flags & XFS_ISTALE))
524 return XFS_ITEM_PINNED;
525
526 if (xfs_iflags_test(ip, XFS_IFLUSHING))
527 return XFS_ITEM_FLUSHING;
528
529 if (!xfs_buf_trylock(bp))
530 return XFS_ITEM_LOCKED;
531
532 spin_unlock(&lip->li_ailp->ail_lock);
533
534 /*
535 * We need to hold a reference for flushing the cluster buffer as it may
536 * fail the buffer without IO submission. In which case, we better get a
537 * reference for that completion because otherwise we don't get a
538 * reference for IO until we queue the buffer for delwri submission.
539 */
540 xfs_buf_hold(bp);
541 error = xfs_iflush_cluster(bp);
542 if (!error) {
543 if (!xfs_buf_delwri_queue(bp, buffer_list))
544 rval = XFS_ITEM_FLUSHING;
545 xfs_buf_relse(bp);
546 } else {
547 /*
548 * Release the buffer if we were unable to flush anything. On
549 * any other error, the buffer has already been released.
550 */
551 if (error == -EAGAIN)
552 xfs_buf_relse(bp);
553 rval = XFS_ITEM_LOCKED;
554 }
555
556 spin_lock(&lip->li_ailp->ail_lock);
557 return rval;
558 }
559
560 /*
561 * Unlock the inode associated with the inode log item.
562 */
563 STATIC void
xfs_inode_item_release(struct xfs_log_item * lip)564 xfs_inode_item_release(
565 struct xfs_log_item *lip)
566 {
567 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
568 struct xfs_inode *ip = iip->ili_inode;
569 unsigned short lock_flags;
570
571 ASSERT(ip->i_itemp != NULL);
572 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
573
574 lock_flags = iip->ili_lock_flags;
575 iip->ili_lock_flags = 0;
576 if (lock_flags)
577 xfs_iunlock(ip, lock_flags);
578 }
579
580 /*
581 * This is called to find out where the oldest active copy of the inode log
582 * item in the on disk log resides now that the last log write of it completed
583 * at the given lsn. Since we always re-log all dirty data in an inode, the
584 * latest copy in the on disk log is the only one that matters. Therefore,
585 * simply return the given lsn.
586 *
587 * If the inode has been marked stale because the cluster is being freed, we
588 * don't want to (re-)insert this inode into the AIL. There is a race condition
589 * where the cluster buffer may be unpinned before the inode is inserted into
590 * the AIL during transaction committed processing. If the buffer is unpinned
591 * before the inode item has been committed and inserted, then it is possible
592 * for the buffer to be written and IO completes before the inode is inserted
593 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
594 * AIL which will never get removed. It will, however, get reclaimed which
595 * triggers an assert in xfs_inode_free() complaining about freein an inode
596 * still in the AIL.
597 *
598 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
599 * transaction committed code knows that it does not need to do any further
600 * processing on the item.
601 */
602 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)603 xfs_inode_item_committed(
604 struct xfs_log_item *lip,
605 xfs_lsn_t lsn)
606 {
607 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
608 struct xfs_inode *ip = iip->ili_inode;
609
610 if (xfs_iflags_test(ip, XFS_ISTALE)) {
611 xfs_inode_item_unpin(lip, 0);
612 return -1;
613 }
614 return lsn;
615 }
616
617 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)618 xfs_inode_item_committing(
619 struct xfs_log_item *lip,
620 xfs_csn_t seq)
621 {
622 INODE_ITEM(lip)->ili_commit_seq = seq;
623 return xfs_inode_item_release(lip);
624 }
625
626 static const struct xfs_item_ops xfs_inode_item_ops = {
627 .iop_size = xfs_inode_item_size,
628 .iop_format = xfs_inode_item_format,
629 .iop_pin = xfs_inode_item_pin,
630 .iop_unpin = xfs_inode_item_unpin,
631 .iop_release = xfs_inode_item_release,
632 .iop_committed = xfs_inode_item_committed,
633 .iop_push = xfs_inode_item_push,
634 .iop_committing = xfs_inode_item_committing,
635 };
636
637
638 /*
639 * Initialize the inode log item for a newly allocated (in-core) inode.
640 */
641 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)642 xfs_inode_item_init(
643 struct xfs_inode *ip,
644 struct xfs_mount *mp)
645 {
646 struct xfs_inode_log_item *iip;
647
648 ASSERT(ip->i_itemp == NULL);
649 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
650 GFP_KERNEL | __GFP_NOFAIL);
651
652 iip->ili_inode = ip;
653 spin_lock_init(&iip->ili_lock);
654 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
655 &xfs_inode_item_ops);
656 }
657
658 /*
659 * Free the inode log item and any memory hanging off of it.
660 */
661 void
xfs_inode_item_destroy(struct xfs_inode * ip)662 xfs_inode_item_destroy(
663 struct xfs_inode *ip)
664 {
665 struct xfs_inode_log_item *iip = ip->i_itemp;
666
667 ASSERT(iip->ili_item.li_buf == NULL);
668
669 ip->i_itemp = NULL;
670 kmem_free(iip->ili_item.li_lv_shadow);
671 kmem_cache_free(xfs_ili_zone, iip);
672 }
673
674
675 /*
676 * We only want to pull the item from the AIL if it is actually there
677 * and its location in the log has not changed since we started the
678 * flush. Thus, we only bother if the inode's lsn has not changed.
679 */
680 static void
xfs_iflush_ail_updates(struct xfs_ail * ailp,struct list_head * list)681 xfs_iflush_ail_updates(
682 struct xfs_ail *ailp,
683 struct list_head *list)
684 {
685 struct xfs_log_item *lip;
686 xfs_lsn_t tail_lsn = 0;
687
688 /* this is an opencoded batch version of xfs_trans_ail_delete */
689 spin_lock(&ailp->ail_lock);
690 list_for_each_entry(lip, list, li_bio_list) {
691 xfs_lsn_t lsn;
692
693 clear_bit(XFS_LI_FAILED, &lip->li_flags);
694 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
695 continue;
696
697 lsn = xfs_ail_delete_one(ailp, lip);
698 if (!tail_lsn && lsn)
699 tail_lsn = lsn;
700 }
701 xfs_ail_update_finish(ailp, tail_lsn);
702 }
703
704 /*
705 * Walk the list of inodes that have completed their IOs. If they are clean
706 * remove them from the list and dissociate them from the buffer. Buffers that
707 * are still dirty remain linked to the buffer and on the list. Caller must
708 * handle them appropriately.
709 */
710 static void
xfs_iflush_finish(struct xfs_buf * bp,struct list_head * list)711 xfs_iflush_finish(
712 struct xfs_buf *bp,
713 struct list_head *list)
714 {
715 struct xfs_log_item *lip, *n;
716
717 list_for_each_entry_safe(lip, n, list, li_bio_list) {
718 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
719 bool drop_buffer = false;
720
721 spin_lock(&iip->ili_lock);
722
723 /*
724 * Remove the reference to the cluster buffer if the inode is
725 * clean in memory and drop the buffer reference once we've
726 * dropped the locks we hold.
727 */
728 ASSERT(iip->ili_item.li_buf == bp);
729 if (!iip->ili_fields) {
730 iip->ili_item.li_buf = NULL;
731 list_del_init(&lip->li_bio_list);
732 drop_buffer = true;
733 }
734 iip->ili_last_fields = 0;
735 iip->ili_flush_lsn = 0;
736 spin_unlock(&iip->ili_lock);
737 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
738 if (drop_buffer)
739 xfs_buf_rele(bp);
740 }
741 }
742
743 /*
744 * Inode buffer IO completion routine. It is responsible for removing inodes
745 * attached to the buffer from the AIL if they have not been re-logged and
746 * completing the inode flush.
747 */
748 void
xfs_buf_inode_iodone(struct xfs_buf * bp)749 xfs_buf_inode_iodone(
750 struct xfs_buf *bp)
751 {
752 struct xfs_log_item *lip, *n;
753 LIST_HEAD(flushed_inodes);
754 LIST_HEAD(ail_updates);
755
756 /*
757 * Pull the attached inodes from the buffer one at a time and take the
758 * appropriate action on them.
759 */
760 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
761 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
762
763 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
764 xfs_iflush_abort(iip->ili_inode);
765 continue;
766 }
767 if (!iip->ili_last_fields)
768 continue;
769
770 /* Do an unlocked check for needing the AIL lock. */
771 if (iip->ili_flush_lsn == lip->li_lsn ||
772 test_bit(XFS_LI_FAILED, &lip->li_flags))
773 list_move_tail(&lip->li_bio_list, &ail_updates);
774 else
775 list_move_tail(&lip->li_bio_list, &flushed_inodes);
776 }
777
778 if (!list_empty(&ail_updates)) {
779 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
780 list_splice_tail(&ail_updates, &flushed_inodes);
781 }
782
783 xfs_iflush_finish(bp, &flushed_inodes);
784 if (!list_empty(&flushed_inodes))
785 list_splice_tail(&flushed_inodes, &bp->b_li_list);
786 }
787
788 void
xfs_buf_inode_io_fail(struct xfs_buf * bp)789 xfs_buf_inode_io_fail(
790 struct xfs_buf *bp)
791 {
792 struct xfs_log_item *lip;
793
794 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
795 set_bit(XFS_LI_FAILED, &lip->li_flags);
796 }
797
798 /*
799 * This is the inode flushing abort routine. It is called when
800 * the filesystem is shutting down to clean up the inode state. It is
801 * responsible for removing the inode item from the AIL if it has not been
802 * re-logged and clearing the inode's flush state.
803 */
804 void
xfs_iflush_abort(struct xfs_inode * ip)805 xfs_iflush_abort(
806 struct xfs_inode *ip)
807 {
808 struct xfs_inode_log_item *iip = ip->i_itemp;
809 struct xfs_buf *bp = NULL;
810
811 if (iip) {
812 /*
813 * Clear the failed bit before removing the item from the AIL so
814 * xfs_trans_ail_delete() doesn't try to clear and release the
815 * buffer attached to the log item before we are done with it.
816 */
817 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
818 xfs_trans_ail_delete(&iip->ili_item, 0);
819
820 /*
821 * Clear the inode logging fields so no more flushes are
822 * attempted.
823 */
824 spin_lock(&iip->ili_lock);
825 iip->ili_last_fields = 0;
826 iip->ili_fields = 0;
827 iip->ili_fsync_fields = 0;
828 iip->ili_flush_lsn = 0;
829 bp = iip->ili_item.li_buf;
830 iip->ili_item.li_buf = NULL;
831 list_del_init(&iip->ili_item.li_bio_list);
832 spin_unlock(&iip->ili_lock);
833 }
834 xfs_iflags_clear(ip, XFS_IFLUSHING);
835 if (bp)
836 xfs_buf_rele(bp);
837 }
838
839 /*
840 * convert an xfs_inode_log_format struct from the old 32 bit version
841 * (which can have different field alignments) to the native 64 bit version
842 */
843 int
xfs_inode_item_format_convert(struct xfs_log_iovec * buf,struct xfs_inode_log_format * in_f)844 xfs_inode_item_format_convert(
845 struct xfs_log_iovec *buf,
846 struct xfs_inode_log_format *in_f)
847 {
848 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
849
850 if (buf->i_len != sizeof(*in_f32)) {
851 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
852 return -EFSCORRUPTED;
853 }
854
855 in_f->ilf_type = in_f32->ilf_type;
856 in_f->ilf_size = in_f32->ilf_size;
857 in_f->ilf_fields = in_f32->ilf_fields;
858 in_f->ilf_asize = in_f32->ilf_asize;
859 in_f->ilf_dsize = in_f32->ilf_dsize;
860 in_f->ilf_ino = in_f32->ilf_ino;
861 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
862 in_f->ilf_blkno = in_f32->ilf_blkno;
863 in_f->ilf_len = in_f32->ilf_len;
864 in_f->ilf_boffset = in_f32->ilf_boffset;
865 return 0;
866 }
867