1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,gfp_t flags)28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32 {
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66 }
67
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg->bounce_buf);
75 kfree(seg);
76 }
77
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
80 {
81 struct xhci_segment *seg;
82
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
88 }
89 xhci_segment_free(xhci, first);
90 }
91
92 /*
93 * Make the prev segment point to the next segment.
94 *
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)99 static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
102 {
103 u32 val;
104
105 if (!prev || !next)
106 return;
107 prev->next = next;
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
111
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
116 if (chain_links)
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120 }
121
122 /*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129 {
130 struct xhci_segment *next;
131 bool chain_links;
132
133 if (!ring || !first || !last)
134 return;
135
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
153 }
154 }
155
156 /*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
186 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
190 gfp_t mem_flags)
191 {
192 unsigned long key;
193 int ret;
194
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
198 return 0;
199
200 ret = radix_tree_maybe_preload(mem_flags);
201 if (ret)
202 return ret;
203 ret = radix_tree_insert(trb_address_map,
204 key, ring);
205 radix_tree_preload_end();
206 return ret;
207 }
208
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
211 {
212 unsigned long key;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
217 }
218
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)219 static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
224 gfp_t mem_flags)
225 {
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
228 int ret;
229
230 if (WARN_ON_ONCE(trb_address_map == NULL))
231 return 0;
232
233 seg = first_seg;
234 do {
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
237 if (ret)
238 goto remove_streams;
239 if (seg == last_seg)
240 return 0;
241 seg = seg->next;
242 } while (seg != first_seg);
243
244 return 0;
245
246 remove_streams:
247 failed_seg = seg;
248 seg = first_seg;
249 do {
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
252 return ret;
253 seg = seg->next;
254 } while (seg != first_seg);
255
256 return ret;
257 }
258
xhci_remove_stream_mapping(struct xhci_ring * ring)259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 struct xhci_segment *seg;
262
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 return;
265
266 seg = ring->first_seg;
267 do {
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 seg = seg->next;
270 } while (seg != ring->first_seg);
271 }
272
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 if (!ring)
283 return;
284
285 trace_xhci_ring_free(ring);
286
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
291 }
292
293 kfree(ring);
294 }
295
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
298 {
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 *
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
310 */
311 ring->cycle_state = cycle_state;
312
313 /*
314 * Each segment has a link TRB, and leave an extra TRB for SW
315 * accounting purpose
316 */
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326 struct xhci_segment *prev;
327 bool chain_links;
328
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
338
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
342
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
350 }
351 return -ENOMEM;
352 }
353 xhci_link_segments(prev, next, type, chain_links);
354
355 prev = next;
356 num_segs--;
357 }
358 xhci_link_segments(prev, *first, type, chain_links);
359 *last = prev;
360
361 return 0;
362 }
363
364 /*
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 struct xhci_ring *ring;
376 int ret;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 if (!ring)
381 return NULL;
382
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
389
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
395
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
401 }
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
404 return ring;
405
406 fail:
407 kfree(ring);
408 return NULL;
409 }
410
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
414 {
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
422 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
425 {
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
430 int ret;
431
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
434
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = ring->num_segs > num_segs_needed ?
437 ring->num_segs : num_segs_needed;
438
439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 num_segs, ring->cycle_state, ring->type,
441 ring->bounce_buf_len, flags);
442 if (ret)
443 return -ENOMEM;
444
445 if (ring->type == TYPE_STREAM)
446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 ring, first, last, flags);
448 if (ret) {
449 struct xhci_segment *next;
450 do {
451 next = first->next;
452 xhci_segment_free(xhci, first);
453 if (first == last)
454 break;
455 first = next;
456 } while (true);
457 return ret;
458 }
459
460 xhci_link_rings(xhci, ring, first, last, num_segs);
461 trace_xhci_ring_expansion(ring);
462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 "ring expansion succeed, now has %d segments",
464 ring->num_segs);
465
466 return 0;
467 }
468
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 int type, gfp_t flags)
471 {
472 struct xhci_container_ctx *ctx;
473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 return NULL;
477
478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479 if (!ctx)
480 return NULL;
481
482 ctx->type = type;
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 if (!ctx->bytes) {
489 kfree(ctx);
490 return NULL;
491 }
492 return ctx;
493 }
494
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
497 {
498 if (!ctx)
499 return;
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 kfree(ctx);
502 }
503
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
506 {
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 return NULL;
509
510 return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
515 {
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
518
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
526 {
527 /* increment ep index by offset of start of ep ctx array */
528 ep_index++;
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 ep_index++;
531
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535
536
537 /***************** Streams structures manipulation *************************/
538
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
548 stream_ctx, dma);
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
551 stream_ctx, dma);
552 else
553 return dma_pool_free(xhci->medium_streams_pool,
554 stream_ctx, dma);
555 }
556
557 /*
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
563 *
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
566 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 gfp_t mem_flags)
570 {
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
576 dma, mem_flags);
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
579 mem_flags, dma);
580 else
581 return dma_pool_alloc(xhci->medium_streams_pool,
582 mem_flags, dma);
583 }
584
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
587 u64 address)
588 {
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
592 return ep->ring;
593 }
594
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)595 struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
599 {
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602 if (stream_id == 0)
603 return ep->ring;
604 if (!ep->stream_info)
605 return NULL;
606
607 if (stream_id >= ep->stream_info->num_streams)
608 return NULL;
609 return ep->stream_info->stream_rings[stream_id];
610 }
611
612 /*
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
616 *
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
620 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
625 {
626 struct xhci_stream_info *stream_info;
627 u32 cur_stream;
628 struct xhci_ring *cur_ring;
629 u64 addr;
630 int ret;
631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633 xhci_dbg(xhci, "Allocating %u streams and %u "
634 "stream context array entries.\n",
635 num_streams, num_stream_ctxs);
636 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638 return NULL;
639 }
640 xhci->cmd_ring_reserved_trbs++;
641
642 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643 dev_to_node(dev));
644 if (!stream_info)
645 goto cleanup_trbs;
646
647 stream_info->num_streams = num_streams;
648 stream_info->num_stream_ctxs = num_stream_ctxs;
649
650 /* Initialize the array of virtual pointers to stream rings. */
651 stream_info->stream_rings = kcalloc_node(
652 num_streams, sizeof(struct xhci_ring *), mem_flags,
653 dev_to_node(dev));
654 if (!stream_info->stream_rings)
655 goto cleanup_info;
656
657 /* Initialize the array of DMA addresses for stream rings for the HW. */
658 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 num_stream_ctxs, &stream_info->ctx_array_dma,
660 mem_flags);
661 if (!stream_info->stream_ctx_array)
662 goto cleanup_ring_array;
663 memset(stream_info->stream_ctx_array, 0,
664 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666 /* Allocate everything needed to free the stream rings later */
667 stream_info->free_streams_command =
668 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 if (!stream_info->free_streams_command)
670 goto cleanup_ctx;
671
672 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674 /* Allocate rings for all the streams that the driver will use,
675 * and add their segment DMA addresses to the radix tree.
676 * Stream 0 is reserved.
677 */
678
679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 stream_info->stream_rings[cur_stream] =
681 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682 mem_flags);
683 cur_ring = stream_info->stream_rings[cur_stream];
684 if (!cur_ring)
685 goto cleanup_rings;
686 cur_ring->stream_id = cur_stream;
687 cur_ring->trb_address_map = &stream_info->trb_address_map;
688 /* Set deq ptr, cycle bit, and stream context type */
689 addr = cur_ring->first_seg->dma |
690 SCT_FOR_CTX(SCT_PRI_TR) |
691 cur_ring->cycle_state;
692 stream_info->stream_ctx_array[cur_stream].stream_ring =
693 cpu_to_le64(addr);
694 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 cur_stream, (unsigned long long) addr);
696
697 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698 if (ret) {
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
701 goto cleanup_rings;
702 }
703 }
704 /* Leave the other unused stream ring pointers in the stream context
705 * array initialized to zero. This will cause the xHC to give us an
706 * error if the device asks for a stream ID we don't have setup (if it
707 * was any other way, the host controller would assume the ring is
708 * "empty" and wait forever for data to be queued to that stream ID).
709 */
710
711 return stream_info;
712
713 cleanup_rings:
714 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 cur_ring = stream_info->stream_rings[cur_stream];
716 if (cur_ring) {
717 xhci_ring_free(xhci, cur_ring);
718 stream_info->stream_rings[cur_stream] = NULL;
719 }
720 }
721 xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723 xhci_free_stream_ctx(xhci,
724 stream_info->num_stream_ctxs,
725 stream_info->stream_ctx_array,
726 stream_info->ctx_array_dma);
727 cleanup_ring_array:
728 kfree(stream_info->stream_rings);
729 cleanup_info:
730 kfree(stream_info);
731 cleanup_trbs:
732 xhci->cmd_ring_reserved_trbs--;
733 return NULL;
734 }
735 /*
736 * Sets the MaxPStreams field and the Linear Stream Array field.
737 * Sets the dequeue pointer to the stream context array.
738 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)739 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
740 struct xhci_ep_ctx *ep_ctx,
741 struct xhci_stream_info *stream_info)
742 {
743 u32 max_primary_streams;
744 /* MaxPStreams is the number of stream context array entries, not the
745 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
746 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
747 */
748 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
749 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
750 "Setting number of stream ctx array entries to %u",
751 1 << (max_primary_streams + 1));
752 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
753 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
754 | EP_HAS_LSA);
755 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
756 }
757
758 /*
759 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
760 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
761 * not at the beginning of the ring).
762 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)763 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
764 struct xhci_virt_ep *ep)
765 {
766 dma_addr_t addr;
767 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
768 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
769 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
770 }
771
772 /* Frees all stream contexts associated with the endpoint,
773 *
774 * Caller should fix the endpoint context streams fields.
775 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)776 void xhci_free_stream_info(struct xhci_hcd *xhci,
777 struct xhci_stream_info *stream_info)
778 {
779 int cur_stream;
780 struct xhci_ring *cur_ring;
781
782 if (!stream_info)
783 return;
784
785 for (cur_stream = 1; cur_stream < stream_info->num_streams;
786 cur_stream++) {
787 cur_ring = stream_info->stream_rings[cur_stream];
788 if (cur_ring) {
789 xhci_ring_free(xhci, cur_ring);
790 stream_info->stream_rings[cur_stream] = NULL;
791 }
792 }
793 xhci_free_command(xhci, stream_info->free_streams_command);
794 xhci->cmd_ring_reserved_trbs--;
795 if (stream_info->stream_ctx_array)
796 xhci_free_stream_ctx(xhci,
797 stream_info->num_stream_ctxs,
798 stream_info->stream_ctx_array,
799 stream_info->ctx_array_dma);
800
801 kfree(stream_info->stream_rings);
802 kfree(stream_info);
803 }
804
805
806 /***************** Device context manipulation *************************/
807
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)808 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
809 struct xhci_virt_ep *ep)
810 {
811 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
812 0);
813 ep->xhci = xhci;
814 }
815
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)816 static void xhci_free_tt_info(struct xhci_hcd *xhci,
817 struct xhci_virt_device *virt_dev,
818 int slot_id)
819 {
820 struct list_head *tt_list_head;
821 struct xhci_tt_bw_info *tt_info, *next;
822 bool slot_found = false;
823
824 /* If the device never made it past the Set Address stage,
825 * it may not have the real_port set correctly.
826 */
827 if (virt_dev->real_port == 0 ||
828 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
829 xhci_dbg(xhci, "Bad real port.\n");
830 return;
831 }
832
833 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
834 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
835 /* Multi-TT hubs will have more than one entry */
836 if (tt_info->slot_id == slot_id) {
837 slot_found = true;
838 list_del(&tt_info->tt_list);
839 kfree(tt_info);
840 } else if (slot_found) {
841 break;
842 }
843 }
844 }
845
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)846 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
847 struct xhci_virt_device *virt_dev,
848 struct usb_device *hdev,
849 struct usb_tt *tt, gfp_t mem_flags)
850 {
851 struct xhci_tt_bw_info *tt_info;
852 unsigned int num_ports;
853 int i, j;
854 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
855
856 if (!tt->multi)
857 num_ports = 1;
858 else
859 num_ports = hdev->maxchild;
860
861 for (i = 0; i < num_ports; i++, tt_info++) {
862 struct xhci_interval_bw_table *bw_table;
863
864 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
865 dev_to_node(dev));
866 if (!tt_info)
867 goto free_tts;
868 INIT_LIST_HEAD(&tt_info->tt_list);
869 list_add(&tt_info->tt_list,
870 &xhci->rh_bw[virt_dev->real_port - 1].tts);
871 tt_info->slot_id = virt_dev->udev->slot_id;
872 if (tt->multi)
873 tt_info->ttport = i+1;
874 bw_table = &tt_info->bw_table;
875 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
876 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
877 }
878 return 0;
879
880 free_tts:
881 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
882 return -ENOMEM;
883 }
884
885
886 /* All the xhci_tds in the ring's TD list should be freed at this point.
887 * Should be called with xhci->lock held if there is any chance the TT lists
888 * will be manipulated by the configure endpoint, allocate device, or update
889 * hub functions while this function is removing the TT entries from the list.
890 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)891 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
892 {
893 struct xhci_virt_device *dev;
894 int i;
895 int old_active_eps = 0;
896
897 /* Slot ID 0 is reserved */
898 if (slot_id == 0 || !xhci->devs[slot_id])
899 return;
900
901 dev = xhci->devs[slot_id];
902
903 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
904 if (!dev)
905 return;
906
907 trace_xhci_free_virt_device(dev);
908
909 if (dev->tt_info)
910 old_active_eps = dev->tt_info->active_eps;
911
912 for (i = 0; i < 31; i++) {
913 if (dev->eps[i].ring)
914 xhci_ring_free(xhci, dev->eps[i].ring);
915 if (dev->eps[i].stream_info)
916 xhci_free_stream_info(xhci,
917 dev->eps[i].stream_info);
918 /*
919 * Endpoints are normally deleted from the bandwidth list when
920 * endpoints are dropped, before device is freed.
921 * If host is dying or being removed then endpoints aren't
922 * dropped cleanly, so delete the endpoint from list here.
923 * Only applicable for hosts with software bandwidth checking.
924 */
925
926 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
927 list_del_init(&dev->eps[i].bw_endpoint_list);
928 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
929 slot_id, i);
930 }
931 }
932 /* If this is a hub, free the TT(s) from the TT list */
933 xhci_free_tt_info(xhci, dev, slot_id);
934 /* If necessary, update the number of active TTs on this root port */
935 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
936
937 if (dev->in_ctx)
938 xhci_free_container_ctx(xhci, dev->in_ctx);
939 if (dev->out_ctx)
940 xhci_free_container_ctx(xhci, dev->out_ctx);
941
942 if (dev->udev && dev->udev->slot_id)
943 dev->udev->slot_id = 0;
944 kfree(xhci->devs[slot_id]);
945 xhci->devs[slot_id] = NULL;
946 }
947
948 /*
949 * Free a virt_device structure.
950 * If the virt_device added a tt_info (a hub) and has children pointing to
951 * that tt_info, then free the child first. Recursive.
952 * We can't rely on udev at this point to find child-parent relationships.
953 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)954 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
955 {
956 struct xhci_virt_device *vdev;
957 struct list_head *tt_list_head;
958 struct xhci_tt_bw_info *tt_info, *next;
959 int i;
960
961 vdev = xhci->devs[slot_id];
962 if (!vdev)
963 return;
964
965 if (vdev->real_port == 0 ||
966 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
967 xhci_dbg(xhci, "Bad vdev->real_port.\n");
968 goto out;
969 }
970
971 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
972 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
973 /* is this a hub device that added a tt_info to the tts list */
974 if (tt_info->slot_id == slot_id) {
975 /* are any devices using this tt_info? */
976 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
977 vdev = xhci->devs[i];
978 if (vdev && (vdev->tt_info == tt_info))
979 xhci_free_virt_devices_depth_first(
980 xhci, i);
981 }
982 }
983 }
984 out:
985 /* we are now at a leaf device */
986 xhci_debugfs_remove_slot(xhci, slot_id);
987 xhci_free_virt_device(xhci, slot_id);
988 }
989
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)990 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
991 struct usb_device *udev, gfp_t flags)
992 {
993 struct xhci_virt_device *dev;
994 int i;
995
996 /* Slot ID 0 is reserved */
997 if (slot_id == 0 || xhci->devs[slot_id]) {
998 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
999 return 0;
1000 }
1001
1002 dev = kzalloc(sizeof(*dev), flags);
1003 if (!dev)
1004 return 0;
1005
1006 dev->slot_id = slot_id;
1007
1008 /* Allocate the (output) device context that will be used in the HC. */
1009 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1010 if (!dev->out_ctx)
1011 goto fail;
1012
1013 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1014 (unsigned long long)dev->out_ctx->dma);
1015
1016 /* Allocate the (input) device context for address device command */
1017 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1018 if (!dev->in_ctx)
1019 goto fail;
1020
1021 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1022 (unsigned long long)dev->in_ctx->dma);
1023
1024 /* Initialize the cancellation list and watchdog timers for each ep */
1025 for (i = 0; i < 31; i++) {
1026 dev->eps[i].ep_index = i;
1027 dev->eps[i].vdev = dev;
1028 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1029 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1030 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1031 }
1032
1033 /* Allocate endpoint 0 ring */
1034 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1035 if (!dev->eps[0].ring)
1036 goto fail;
1037
1038 dev->udev = udev;
1039
1040 /* Point to output device context in dcbaa. */
1041 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1042 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1043 slot_id,
1044 &xhci->dcbaa->dev_context_ptrs[slot_id],
1045 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1046
1047 trace_xhci_alloc_virt_device(dev);
1048
1049 xhci->devs[slot_id] = dev;
1050
1051 return 1;
1052 fail:
1053
1054 if (dev->in_ctx)
1055 xhci_free_container_ctx(xhci, dev->in_ctx);
1056 if (dev->out_ctx)
1057 xhci_free_container_ctx(xhci, dev->out_ctx);
1058 kfree(dev);
1059
1060 return 0;
1061 }
1062
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1063 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1064 struct usb_device *udev)
1065 {
1066 struct xhci_virt_device *virt_dev;
1067 struct xhci_ep_ctx *ep0_ctx;
1068 struct xhci_ring *ep_ring;
1069
1070 virt_dev = xhci->devs[udev->slot_id];
1071 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1072 ep_ring = virt_dev->eps[0].ring;
1073 /*
1074 * FIXME we don't keep track of the dequeue pointer very well after a
1075 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1076 * host to our enqueue pointer. This should only be called after a
1077 * configured device has reset, so all control transfers should have
1078 * been completed or cancelled before the reset.
1079 */
1080 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1081 ep_ring->enqueue)
1082 | ep_ring->cycle_state);
1083 }
1084
1085 /*
1086 * The xHCI roothub may have ports of differing speeds in any order in the port
1087 * status registers.
1088 *
1089 * The xHCI hardware wants to know the roothub port number that the USB device
1090 * is attached to (or the roothub port its ancestor hub is attached to). All we
1091 * know is the index of that port under either the USB 2.0 or the USB 3.0
1092 * roothub, but that doesn't give us the real index into the HW port status
1093 * registers. Call xhci_find_raw_port_number() to get real index.
1094 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1095 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1096 struct usb_device *udev)
1097 {
1098 struct usb_device *top_dev;
1099 struct usb_hcd *hcd;
1100
1101 if (udev->speed >= USB_SPEED_SUPER)
1102 hcd = xhci->shared_hcd;
1103 else
1104 hcd = xhci->main_hcd;
1105
1106 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1107 top_dev = top_dev->parent)
1108 /* Found device below root hub */;
1109
1110 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1111 }
1112
1113 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1114 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1115 {
1116 struct xhci_virt_device *dev;
1117 struct xhci_ep_ctx *ep0_ctx;
1118 struct xhci_slot_ctx *slot_ctx;
1119 u32 port_num;
1120 u32 max_packets;
1121 struct usb_device *top_dev;
1122
1123 dev = xhci->devs[udev->slot_id];
1124 /* Slot ID 0 is reserved */
1125 if (udev->slot_id == 0 || !dev) {
1126 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1127 udev->slot_id);
1128 return -EINVAL;
1129 }
1130 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1131 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1132
1133 /* 3) Only the control endpoint is valid - one endpoint context */
1134 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1135 switch (udev->speed) {
1136 case USB_SPEED_SUPER_PLUS:
1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1138 max_packets = MAX_PACKET(512);
1139 break;
1140 case USB_SPEED_SUPER:
1141 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1142 max_packets = MAX_PACKET(512);
1143 break;
1144 case USB_SPEED_HIGH:
1145 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1146 max_packets = MAX_PACKET(64);
1147 break;
1148 /* USB core guesses at a 64-byte max packet first for FS devices */
1149 case USB_SPEED_FULL:
1150 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1151 max_packets = MAX_PACKET(64);
1152 break;
1153 case USB_SPEED_LOW:
1154 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1155 max_packets = MAX_PACKET(8);
1156 break;
1157 case USB_SPEED_WIRELESS:
1158 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1159 return -EINVAL;
1160 break;
1161 default:
1162 /* Speed was set earlier, this shouldn't happen. */
1163 return -EINVAL;
1164 }
1165 /* Find the root hub port this device is under */
1166 port_num = xhci_find_real_port_number(xhci, udev);
1167 if (!port_num)
1168 return -EINVAL;
1169 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1170 /* Set the port number in the virtual_device to the faked port number */
1171 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1172 top_dev = top_dev->parent)
1173 /* Found device below root hub */;
1174 dev->fake_port = top_dev->portnum;
1175 dev->real_port = port_num;
1176 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1177 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1178
1179 /* Find the right bandwidth table that this device will be a part of.
1180 * If this is a full speed device attached directly to a root port (or a
1181 * decendent of one), it counts as a primary bandwidth domain, not a
1182 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1183 * will never be created for the HS root hub.
1184 */
1185 if (!udev->tt || !udev->tt->hub->parent) {
1186 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1187 } else {
1188 struct xhci_root_port_bw_info *rh_bw;
1189 struct xhci_tt_bw_info *tt_bw;
1190
1191 rh_bw = &xhci->rh_bw[port_num - 1];
1192 /* Find the right TT. */
1193 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1194 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1195 continue;
1196
1197 if (!dev->udev->tt->multi ||
1198 (udev->tt->multi &&
1199 tt_bw->ttport == dev->udev->ttport)) {
1200 dev->bw_table = &tt_bw->bw_table;
1201 dev->tt_info = tt_bw;
1202 break;
1203 }
1204 }
1205 if (!dev->tt_info)
1206 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1207 }
1208
1209 /* Is this a LS/FS device under an external HS hub? */
1210 if (udev->tt && udev->tt->hub->parent) {
1211 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1212 (udev->ttport << 8));
1213 if (udev->tt->multi)
1214 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1215 }
1216 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1217 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1218
1219 /* Step 4 - ring already allocated */
1220 /* Step 5 */
1221 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1222
1223 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1224 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1225 max_packets);
1226
1227 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1228 dev->eps[0].ring->cycle_state);
1229
1230 trace_xhci_setup_addressable_virt_device(dev);
1231
1232 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * Convert interval expressed as 2^(bInterval - 1) == interval into
1239 * straight exponent value 2^n == interval.
1240 *
1241 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1242 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1243 struct usb_host_endpoint *ep)
1244 {
1245 unsigned int interval;
1246
1247 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1248 if (interval != ep->desc.bInterval - 1)
1249 dev_warn(&udev->dev,
1250 "ep %#x - rounding interval to %d %sframes\n",
1251 ep->desc.bEndpointAddress,
1252 1 << interval,
1253 udev->speed == USB_SPEED_FULL ? "" : "micro");
1254
1255 if (udev->speed == USB_SPEED_FULL) {
1256 /*
1257 * Full speed isoc endpoints specify interval in frames,
1258 * not microframes. We are using microframes everywhere,
1259 * so adjust accordingly.
1260 */
1261 interval += 3; /* 1 frame = 2^3 uframes */
1262 }
1263
1264 return interval;
1265 }
1266
1267 /*
1268 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1269 * microframes, rounded down to nearest power of 2.
1270 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1271 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1272 struct usb_host_endpoint *ep, unsigned int desc_interval,
1273 unsigned int min_exponent, unsigned int max_exponent)
1274 {
1275 unsigned int interval;
1276
1277 interval = fls(desc_interval) - 1;
1278 interval = clamp_val(interval, min_exponent, max_exponent);
1279 if ((1 << interval) != desc_interval)
1280 dev_dbg(&udev->dev,
1281 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1282 ep->desc.bEndpointAddress,
1283 1 << interval,
1284 desc_interval);
1285
1286 return interval;
1287 }
1288
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1289 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1290 struct usb_host_endpoint *ep)
1291 {
1292 if (ep->desc.bInterval == 0)
1293 return 0;
1294 return xhci_microframes_to_exponent(udev, ep,
1295 ep->desc.bInterval, 0, 15);
1296 }
1297
1298
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1299 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1300 struct usb_host_endpoint *ep)
1301 {
1302 return xhci_microframes_to_exponent(udev, ep,
1303 ep->desc.bInterval * 8, 3, 10);
1304 }
1305
1306 /* Return the polling or NAK interval.
1307 *
1308 * The polling interval is expressed in "microframes". If xHCI's Interval field
1309 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1310 *
1311 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1312 * is set to 0.
1313 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1314 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1315 struct usb_host_endpoint *ep)
1316 {
1317 unsigned int interval = 0;
1318
1319 switch (udev->speed) {
1320 case USB_SPEED_HIGH:
1321 /* Max NAK rate */
1322 if (usb_endpoint_xfer_control(&ep->desc) ||
1323 usb_endpoint_xfer_bulk(&ep->desc)) {
1324 interval = xhci_parse_microframe_interval(udev, ep);
1325 break;
1326 }
1327 fallthrough; /* SS and HS isoc/int have same decoding */
1328
1329 case USB_SPEED_SUPER_PLUS:
1330 case USB_SPEED_SUPER:
1331 if (usb_endpoint_xfer_int(&ep->desc) ||
1332 usb_endpoint_xfer_isoc(&ep->desc)) {
1333 interval = xhci_parse_exponent_interval(udev, ep);
1334 }
1335 break;
1336
1337 case USB_SPEED_FULL:
1338 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1339 interval = xhci_parse_exponent_interval(udev, ep);
1340 break;
1341 }
1342 /*
1343 * Fall through for interrupt endpoint interval decoding
1344 * since it uses the same rules as low speed interrupt
1345 * endpoints.
1346 */
1347 fallthrough;
1348
1349 case USB_SPEED_LOW:
1350 if (usb_endpoint_xfer_int(&ep->desc) ||
1351 usb_endpoint_xfer_isoc(&ep->desc)) {
1352
1353 interval = xhci_parse_frame_interval(udev, ep);
1354 }
1355 break;
1356
1357 default:
1358 BUG();
1359 }
1360 return interval;
1361 }
1362
1363 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1364 * High speed endpoint descriptors can define "the number of additional
1365 * transaction opportunities per microframe", but that goes in the Max Burst
1366 * endpoint context field.
1367 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1368 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1369 struct usb_host_endpoint *ep)
1370 {
1371 if (udev->speed < USB_SPEED_SUPER ||
1372 !usb_endpoint_xfer_isoc(&ep->desc))
1373 return 0;
1374 return ep->ss_ep_comp.bmAttributes;
1375 }
1376
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1377 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1378 struct usb_host_endpoint *ep)
1379 {
1380 /* Super speed and Plus have max burst in ep companion desc */
1381 if (udev->speed >= USB_SPEED_SUPER)
1382 return ep->ss_ep_comp.bMaxBurst;
1383
1384 if (udev->speed == USB_SPEED_HIGH &&
1385 (usb_endpoint_xfer_isoc(&ep->desc) ||
1386 usb_endpoint_xfer_int(&ep->desc)))
1387 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1388
1389 return 0;
1390 }
1391
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1392 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1393 {
1394 int in;
1395
1396 in = usb_endpoint_dir_in(&ep->desc);
1397
1398 switch (usb_endpoint_type(&ep->desc)) {
1399 case USB_ENDPOINT_XFER_CONTROL:
1400 return CTRL_EP;
1401 case USB_ENDPOINT_XFER_BULK:
1402 return in ? BULK_IN_EP : BULK_OUT_EP;
1403 case USB_ENDPOINT_XFER_ISOC:
1404 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1405 case USB_ENDPOINT_XFER_INT:
1406 return in ? INT_IN_EP : INT_OUT_EP;
1407 }
1408 return 0;
1409 }
1410
1411 /* Return the maximum endpoint service interval time (ESIT) payload.
1412 * Basically, this is the maxpacket size, multiplied by the burst size
1413 * and mult size.
1414 */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1415 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1416 struct usb_host_endpoint *ep)
1417 {
1418 int max_burst;
1419 int max_packet;
1420
1421 /* Only applies for interrupt or isochronous endpoints */
1422 if (usb_endpoint_xfer_control(&ep->desc) ||
1423 usb_endpoint_xfer_bulk(&ep->desc))
1424 return 0;
1425
1426 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1427 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1428 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1429 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1430 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1431 else if (udev->speed >= USB_SPEED_SUPER)
1432 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1433
1434 max_packet = usb_endpoint_maxp(&ep->desc);
1435 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1436 /* A 0 in max burst means 1 transfer per ESIT */
1437 return max_packet * max_burst;
1438 }
1439
1440 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1441 * Drivers will have to call usb_alloc_streams() to do that.
1442 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1443 int xhci_endpoint_init(struct xhci_hcd *xhci,
1444 struct xhci_virt_device *virt_dev,
1445 struct usb_device *udev,
1446 struct usb_host_endpoint *ep,
1447 gfp_t mem_flags)
1448 {
1449 unsigned int ep_index;
1450 struct xhci_ep_ctx *ep_ctx;
1451 struct xhci_ring *ep_ring;
1452 unsigned int max_packet;
1453 enum xhci_ring_type ring_type;
1454 u32 max_esit_payload;
1455 u32 endpoint_type;
1456 unsigned int max_burst;
1457 unsigned int interval;
1458 unsigned int mult;
1459 unsigned int avg_trb_len;
1460 unsigned int err_count = 0;
1461
1462 ep_index = xhci_get_endpoint_index(&ep->desc);
1463 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1464
1465 endpoint_type = xhci_get_endpoint_type(ep);
1466 if (!endpoint_type)
1467 return -EINVAL;
1468
1469 ring_type = usb_endpoint_type(&ep->desc);
1470
1471 /*
1472 * Get values to fill the endpoint context, mostly from ep descriptor.
1473 * The average TRB buffer lengt for bulk endpoints is unclear as we
1474 * have no clue on scatter gather list entry size. For Isoc and Int,
1475 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1476 */
1477 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1478 interval = xhci_get_endpoint_interval(udev, ep);
1479
1480 /* Periodic endpoint bInterval limit quirk */
1481 if (usb_endpoint_xfer_int(&ep->desc) ||
1482 usb_endpoint_xfer_isoc(&ep->desc)) {
1483 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1484 udev->speed >= USB_SPEED_HIGH &&
1485 interval >= 7) {
1486 interval = 6;
1487 }
1488 }
1489
1490 mult = xhci_get_endpoint_mult(udev, ep);
1491 max_packet = usb_endpoint_maxp(&ep->desc);
1492 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1493 avg_trb_len = max_esit_payload;
1494
1495 /* FIXME dig Mult and streams info out of ep companion desc */
1496
1497 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1498 if (!usb_endpoint_xfer_isoc(&ep->desc))
1499 err_count = 3;
1500 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1501 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1502 if (udev->speed == USB_SPEED_HIGH)
1503 max_packet = 512;
1504 if (udev->speed == USB_SPEED_FULL) {
1505 max_packet = rounddown_pow_of_two(max_packet);
1506 max_packet = clamp_val(max_packet, 8, 64);
1507 }
1508 }
1509 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511 avg_trb_len = 8;
1512 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1513 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1514 mult = 0;
1515
1516 /* Set up the endpoint ring */
1517 virt_dev->eps[ep_index].new_ring =
1518 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1519 if (!virt_dev->eps[ep_index].new_ring)
1520 return -ENOMEM;
1521
1522 virt_dev->eps[ep_index].skip = false;
1523 ep_ring = virt_dev->eps[ep_index].new_ring;
1524
1525 /* Fill the endpoint context */
1526 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1527 EP_INTERVAL(interval) |
1528 EP_MULT(mult));
1529 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1530 MAX_PACKET(max_packet) |
1531 MAX_BURST(max_burst) |
1532 ERROR_COUNT(err_count));
1533 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1534 ep_ring->cycle_state);
1535
1536 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1537 EP_AVG_TRB_LENGTH(avg_trb_len));
1538
1539 return 0;
1540 }
1541
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1542 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1543 struct xhci_virt_device *virt_dev,
1544 struct usb_host_endpoint *ep)
1545 {
1546 unsigned int ep_index;
1547 struct xhci_ep_ctx *ep_ctx;
1548
1549 ep_index = xhci_get_endpoint_index(&ep->desc);
1550 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1551
1552 ep_ctx->ep_info = 0;
1553 ep_ctx->ep_info2 = 0;
1554 ep_ctx->deq = 0;
1555 ep_ctx->tx_info = 0;
1556 /* Don't free the endpoint ring until the set interface or configuration
1557 * request succeeds.
1558 */
1559 }
1560
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1561 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1562 {
1563 bw_info->ep_interval = 0;
1564 bw_info->mult = 0;
1565 bw_info->num_packets = 0;
1566 bw_info->max_packet_size = 0;
1567 bw_info->type = 0;
1568 bw_info->max_esit_payload = 0;
1569 }
1570
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1571 void xhci_update_bw_info(struct xhci_hcd *xhci,
1572 struct xhci_container_ctx *in_ctx,
1573 struct xhci_input_control_ctx *ctrl_ctx,
1574 struct xhci_virt_device *virt_dev)
1575 {
1576 struct xhci_bw_info *bw_info;
1577 struct xhci_ep_ctx *ep_ctx;
1578 unsigned int ep_type;
1579 int i;
1580
1581 for (i = 1; i < 31; i++) {
1582 bw_info = &virt_dev->eps[i].bw_info;
1583
1584 /* We can't tell what endpoint type is being dropped, but
1585 * unconditionally clearing the bandwidth info for non-periodic
1586 * endpoints should be harmless because the info will never be
1587 * set in the first place.
1588 */
1589 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1590 /* Dropped endpoint */
1591 xhci_clear_endpoint_bw_info(bw_info);
1592 continue;
1593 }
1594
1595 if (EP_IS_ADDED(ctrl_ctx, i)) {
1596 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1597 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1598
1599 /* Ignore non-periodic endpoints */
1600 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1601 ep_type != ISOC_IN_EP &&
1602 ep_type != INT_IN_EP)
1603 continue;
1604
1605 /* Added or changed endpoint */
1606 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1607 le32_to_cpu(ep_ctx->ep_info));
1608 /* Number of packets and mult are zero-based in the
1609 * input context, but we want one-based for the
1610 * interval table.
1611 */
1612 bw_info->mult = CTX_TO_EP_MULT(
1613 le32_to_cpu(ep_ctx->ep_info)) + 1;
1614 bw_info->num_packets = CTX_TO_MAX_BURST(
1615 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1616 bw_info->max_packet_size = MAX_PACKET_DECODED(
1617 le32_to_cpu(ep_ctx->ep_info2));
1618 bw_info->type = ep_type;
1619 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1620 le32_to_cpu(ep_ctx->tx_info));
1621 }
1622 }
1623 }
1624
1625 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1626 * Useful when you want to change one particular aspect of the endpoint and then
1627 * issue a configure endpoint command.
1628 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1629 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1630 struct xhci_container_ctx *in_ctx,
1631 struct xhci_container_ctx *out_ctx,
1632 unsigned int ep_index)
1633 {
1634 struct xhci_ep_ctx *out_ep_ctx;
1635 struct xhci_ep_ctx *in_ep_ctx;
1636
1637 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1638 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1639
1640 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1641 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1642 in_ep_ctx->deq = out_ep_ctx->deq;
1643 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1644 if (xhci->quirks & XHCI_MTK_HOST) {
1645 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1646 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1647 }
1648 }
1649
1650 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1651 * Useful when you want to change one particular aspect of the endpoint and then
1652 * issue a configure endpoint command. Only the context entries field matters,
1653 * but we'll copy the whole thing anyway.
1654 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1655 void xhci_slot_copy(struct xhci_hcd *xhci,
1656 struct xhci_container_ctx *in_ctx,
1657 struct xhci_container_ctx *out_ctx)
1658 {
1659 struct xhci_slot_ctx *in_slot_ctx;
1660 struct xhci_slot_ctx *out_slot_ctx;
1661
1662 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1663 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1664
1665 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1666 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1667 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1668 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1669 }
1670
1671 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1672 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1673 {
1674 int i;
1675 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1676 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1677
1678 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1679 "Allocating %d scratchpad buffers", num_sp);
1680
1681 if (!num_sp)
1682 return 0;
1683
1684 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1685 dev_to_node(dev));
1686 if (!xhci->scratchpad)
1687 goto fail_sp;
1688
1689 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1690 num_sp * sizeof(u64),
1691 &xhci->scratchpad->sp_dma, flags);
1692 if (!xhci->scratchpad->sp_array)
1693 goto fail_sp2;
1694
1695 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1696 flags, dev_to_node(dev));
1697 if (!xhci->scratchpad->sp_buffers)
1698 goto fail_sp3;
1699
1700 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1701 for (i = 0; i < num_sp; i++) {
1702 dma_addr_t dma;
1703 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1704 flags);
1705 if (!buf)
1706 goto fail_sp4;
1707
1708 xhci->scratchpad->sp_array[i] = dma;
1709 xhci->scratchpad->sp_buffers[i] = buf;
1710 }
1711
1712 return 0;
1713
1714 fail_sp4:
1715 for (i = i - 1; i >= 0; i--) {
1716 dma_free_coherent(dev, xhci->page_size,
1717 xhci->scratchpad->sp_buffers[i],
1718 xhci->scratchpad->sp_array[i]);
1719 }
1720
1721 kfree(xhci->scratchpad->sp_buffers);
1722
1723 fail_sp3:
1724 dma_free_coherent(dev, num_sp * sizeof(u64),
1725 xhci->scratchpad->sp_array,
1726 xhci->scratchpad->sp_dma);
1727
1728 fail_sp2:
1729 kfree(xhci->scratchpad);
1730 xhci->scratchpad = NULL;
1731
1732 fail_sp:
1733 return -ENOMEM;
1734 }
1735
scratchpad_free(struct xhci_hcd * xhci)1736 static void scratchpad_free(struct xhci_hcd *xhci)
1737 {
1738 int num_sp;
1739 int i;
1740 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1741
1742 if (!xhci->scratchpad)
1743 return;
1744
1745 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1746
1747 for (i = 0; i < num_sp; i++) {
1748 dma_free_coherent(dev, xhci->page_size,
1749 xhci->scratchpad->sp_buffers[i],
1750 xhci->scratchpad->sp_array[i]);
1751 }
1752 kfree(xhci->scratchpad->sp_buffers);
1753 dma_free_coherent(dev, num_sp * sizeof(u64),
1754 xhci->scratchpad->sp_array,
1755 xhci->scratchpad->sp_dma);
1756 kfree(xhci->scratchpad);
1757 xhci->scratchpad = NULL;
1758 }
1759
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1760 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1761 bool allocate_completion, gfp_t mem_flags)
1762 {
1763 struct xhci_command *command;
1764 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1765
1766 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1767 if (!command)
1768 return NULL;
1769
1770 if (allocate_completion) {
1771 command->completion =
1772 kzalloc_node(sizeof(struct completion), mem_flags,
1773 dev_to_node(dev));
1774 if (!command->completion) {
1775 kfree(command);
1776 return NULL;
1777 }
1778 init_completion(command->completion);
1779 }
1780
1781 command->status = 0;
1782 INIT_LIST_HEAD(&command->cmd_list);
1783 return command;
1784 }
1785
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1786 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1787 bool allocate_completion, gfp_t mem_flags)
1788 {
1789 struct xhci_command *command;
1790
1791 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1792 if (!command)
1793 return NULL;
1794
1795 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1796 mem_flags);
1797 if (!command->in_ctx) {
1798 kfree(command->completion);
1799 kfree(command);
1800 return NULL;
1801 }
1802 return command;
1803 }
1804
xhci_urb_free_priv(struct urb_priv * urb_priv)1805 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1806 {
1807 kfree(urb_priv);
1808 }
1809
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1810 void xhci_free_command(struct xhci_hcd *xhci,
1811 struct xhci_command *command)
1812 {
1813 xhci_free_container_ctx(xhci,
1814 command->in_ctx);
1815 kfree(command->completion);
1816 kfree(command);
1817 }
1818
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1819 int xhci_alloc_erst(struct xhci_hcd *xhci,
1820 struct xhci_ring *evt_ring,
1821 struct xhci_erst *erst,
1822 gfp_t flags)
1823 {
1824 size_t size;
1825 unsigned int val;
1826 struct xhci_segment *seg;
1827 struct xhci_erst_entry *entry;
1828
1829 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1830 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1831 size, &erst->erst_dma_addr, flags);
1832 if (!erst->entries)
1833 return -ENOMEM;
1834
1835 erst->num_entries = evt_ring->num_segs;
1836
1837 seg = evt_ring->first_seg;
1838 for (val = 0; val < evt_ring->num_segs; val++) {
1839 entry = &erst->entries[val];
1840 entry->seg_addr = cpu_to_le64(seg->dma);
1841 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1842 entry->rsvd = 0;
1843 seg = seg->next;
1844 }
1845
1846 return 0;
1847 }
1848
xhci_free_erst(struct xhci_hcd * xhci,struct xhci_erst * erst)1849 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1850 {
1851 size_t size;
1852 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1853
1854 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1855 if (erst->entries)
1856 dma_free_coherent(dev, size,
1857 erst->entries,
1858 erst->erst_dma_addr);
1859 erst->entries = NULL;
1860 }
1861
xhci_mem_cleanup(struct xhci_hcd * xhci)1862 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863 {
1864 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1865 int i, j, num_ports;
1866
1867 cancel_delayed_work_sync(&xhci->cmd_timer);
1868
1869 xhci_free_erst(xhci, &xhci->erst);
1870
1871 if (xhci->event_ring)
1872 xhci_ring_free(xhci, xhci->event_ring);
1873 xhci->event_ring = NULL;
1874 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1875
1876 if (xhci->lpm_command)
1877 xhci_free_command(xhci, xhci->lpm_command);
1878 xhci->lpm_command = NULL;
1879 if (xhci->cmd_ring)
1880 xhci_ring_free(xhci, xhci->cmd_ring);
1881 xhci->cmd_ring = NULL;
1882 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1883 xhci_cleanup_command_queue(xhci);
1884
1885 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1886 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1887 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1888 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1889 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1890 while (!list_empty(ep))
1891 list_del_init(ep->next);
1892 }
1893 }
1894
1895 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1896 xhci_free_virt_devices_depth_first(xhci, i);
1897
1898 dma_pool_destroy(xhci->segment_pool);
1899 xhci->segment_pool = NULL;
1900 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1901
1902 dma_pool_destroy(xhci->device_pool);
1903 xhci->device_pool = NULL;
1904 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1905
1906 dma_pool_destroy(xhci->small_streams_pool);
1907 xhci->small_streams_pool = NULL;
1908 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1909 "Freed small stream array pool");
1910
1911 dma_pool_destroy(xhci->medium_streams_pool);
1912 xhci->medium_streams_pool = NULL;
1913 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1914 "Freed medium stream array pool");
1915
1916 if (xhci->dcbaa)
1917 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1918 xhci->dcbaa, xhci->dcbaa->dma);
1919 xhci->dcbaa = NULL;
1920
1921 scratchpad_free(xhci);
1922
1923 if (!xhci->rh_bw)
1924 goto no_bw;
1925
1926 for (i = 0; i < num_ports; i++) {
1927 struct xhci_tt_bw_info *tt, *n;
1928 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1929 list_del(&tt->tt_list);
1930 kfree(tt);
1931 }
1932 }
1933
1934 no_bw:
1935 xhci->cmd_ring_reserved_trbs = 0;
1936 xhci->usb2_rhub.num_ports = 0;
1937 xhci->usb3_rhub.num_ports = 0;
1938 xhci->num_active_eps = 0;
1939 kfree(xhci->usb2_rhub.ports);
1940 kfree(xhci->usb3_rhub.ports);
1941 kfree(xhci->hw_ports);
1942 kfree(xhci->rh_bw);
1943 kfree(xhci->ext_caps);
1944 for (i = 0; i < xhci->num_port_caps; i++)
1945 kfree(xhci->port_caps[i].psi);
1946 kfree(xhci->port_caps);
1947 xhci->num_port_caps = 0;
1948
1949 xhci->usb2_rhub.ports = NULL;
1950 xhci->usb3_rhub.ports = NULL;
1951 xhci->hw_ports = NULL;
1952 xhci->rh_bw = NULL;
1953 xhci->ext_caps = NULL;
1954 xhci->port_caps = NULL;
1955
1956 xhci->page_size = 0;
1957 xhci->page_shift = 0;
1958 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1959 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1960 }
1961
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1962 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1963 struct xhci_segment *input_seg,
1964 union xhci_trb *start_trb,
1965 union xhci_trb *end_trb,
1966 dma_addr_t input_dma,
1967 struct xhci_segment *result_seg,
1968 char *test_name, int test_number)
1969 {
1970 unsigned long long start_dma;
1971 unsigned long long end_dma;
1972 struct xhci_segment *seg;
1973
1974 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1975 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1976
1977 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1978 if (seg != result_seg) {
1979 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1980 test_name, test_number);
1981 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1982 "input DMA 0x%llx\n",
1983 input_seg,
1984 (unsigned long long) input_dma);
1985 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1986 "ending TRB %p (0x%llx DMA)\n",
1987 start_trb, start_dma,
1988 end_trb, end_dma);
1989 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1990 result_seg, seg);
1991 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1992 true);
1993 return -1;
1994 }
1995 return 0;
1996 }
1997
1998 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)1999 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2000 {
2001 struct {
2002 dma_addr_t input_dma;
2003 struct xhci_segment *result_seg;
2004 } simple_test_vector [] = {
2005 /* A zeroed DMA field should fail */
2006 { 0, NULL },
2007 /* One TRB before the ring start should fail */
2008 { xhci->event_ring->first_seg->dma - 16, NULL },
2009 /* One byte before the ring start should fail */
2010 { xhci->event_ring->first_seg->dma - 1, NULL },
2011 /* Starting TRB should succeed */
2012 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2013 /* Ending TRB should succeed */
2014 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2015 xhci->event_ring->first_seg },
2016 /* One byte after the ring end should fail */
2017 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2018 /* One TRB after the ring end should fail */
2019 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2020 /* An address of all ones should fail */
2021 { (dma_addr_t) (~0), NULL },
2022 };
2023 struct {
2024 struct xhci_segment *input_seg;
2025 union xhci_trb *start_trb;
2026 union xhci_trb *end_trb;
2027 dma_addr_t input_dma;
2028 struct xhci_segment *result_seg;
2029 } complex_test_vector [] = {
2030 /* Test feeding a valid DMA address from a different ring */
2031 { .input_seg = xhci->event_ring->first_seg,
2032 .start_trb = xhci->event_ring->first_seg->trbs,
2033 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034 .input_dma = xhci->cmd_ring->first_seg->dma,
2035 .result_seg = NULL,
2036 },
2037 /* Test feeding a valid end TRB from a different ring */
2038 { .input_seg = xhci->event_ring->first_seg,
2039 .start_trb = xhci->event_ring->first_seg->trbs,
2040 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2041 .input_dma = xhci->cmd_ring->first_seg->dma,
2042 .result_seg = NULL,
2043 },
2044 /* Test feeding a valid start and end TRB from a different ring */
2045 { .input_seg = xhci->event_ring->first_seg,
2046 .start_trb = xhci->cmd_ring->first_seg->trbs,
2047 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2048 .input_dma = xhci->cmd_ring->first_seg->dma,
2049 .result_seg = NULL,
2050 },
2051 /* TRB in this ring, but after this TD */
2052 { .input_seg = xhci->event_ring->first_seg,
2053 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2054 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2055 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2056 .result_seg = NULL,
2057 },
2058 /* TRB in this ring, but before this TD */
2059 { .input_seg = xhci->event_ring->first_seg,
2060 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2061 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2062 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2063 .result_seg = NULL,
2064 },
2065 /* TRB in this ring, but after this wrapped TD */
2066 { .input_seg = xhci->event_ring->first_seg,
2067 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2070 .result_seg = NULL,
2071 },
2072 /* TRB in this ring, but before this wrapped TD */
2073 { .input_seg = xhci->event_ring->first_seg,
2074 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2075 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2076 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2077 .result_seg = NULL,
2078 },
2079 /* TRB not in this ring, and we have a wrapped TD */
2080 { .input_seg = xhci->event_ring->first_seg,
2081 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2082 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2083 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2084 .result_seg = NULL,
2085 },
2086 };
2087
2088 unsigned int num_tests;
2089 int i, ret;
2090
2091 num_tests = ARRAY_SIZE(simple_test_vector);
2092 for (i = 0; i < num_tests; i++) {
2093 ret = xhci_test_trb_in_td(xhci,
2094 xhci->event_ring->first_seg,
2095 xhci->event_ring->first_seg->trbs,
2096 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2097 simple_test_vector[i].input_dma,
2098 simple_test_vector[i].result_seg,
2099 "Simple", i);
2100 if (ret < 0)
2101 return ret;
2102 }
2103
2104 num_tests = ARRAY_SIZE(complex_test_vector);
2105 for (i = 0; i < num_tests; i++) {
2106 ret = xhci_test_trb_in_td(xhci,
2107 complex_test_vector[i].input_seg,
2108 complex_test_vector[i].start_trb,
2109 complex_test_vector[i].end_trb,
2110 complex_test_vector[i].input_dma,
2111 complex_test_vector[i].result_seg,
2112 "Complex", i);
2113 if (ret < 0)
2114 return ret;
2115 }
2116 xhci_dbg(xhci, "TRB math tests passed.\n");
2117 return 0;
2118 }
2119
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2120 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2121 {
2122 u64 temp;
2123 dma_addr_t deq;
2124
2125 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2126 xhci->event_ring->dequeue);
2127 if (deq == 0 && !in_interrupt())
2128 xhci_warn(xhci, "WARN something wrong with SW event ring "
2129 "dequeue ptr.\n");
2130 /* Update HC event ring dequeue pointer */
2131 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2132 temp &= ERST_PTR_MASK;
2133 /* Don't clear the EHB bit (which is RW1C) because
2134 * there might be more events to service.
2135 */
2136 temp &= ~ERST_EHB;
2137 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2138 "// Write event ring dequeue pointer, "
2139 "preserving EHB bit");
2140 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2141 &xhci->ir_set->erst_dequeue);
2142 }
2143
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2144 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2145 __le32 __iomem *addr, int max_caps)
2146 {
2147 u32 temp, port_offset, port_count;
2148 int i;
2149 u8 major_revision, minor_revision;
2150 struct xhci_hub *rhub;
2151 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2152 struct xhci_port_cap *port_cap;
2153
2154 temp = readl(addr);
2155 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2156 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2157
2158 if (major_revision == 0x03) {
2159 rhub = &xhci->usb3_rhub;
2160 /*
2161 * Some hosts incorrectly use sub-minor version for minor
2162 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2163 * for bcdUSB 0x310). Since there is no USB release with sub
2164 * minor version 0x301 to 0x309, we can assume that they are
2165 * incorrect and fix it here.
2166 */
2167 if (minor_revision > 0x00 && minor_revision < 0x10)
2168 minor_revision <<= 4;
2169 } else if (major_revision <= 0x02) {
2170 rhub = &xhci->usb2_rhub;
2171 } else {
2172 xhci_warn(xhci, "Ignoring unknown port speed, "
2173 "Ext Cap %p, revision = 0x%x\n",
2174 addr, major_revision);
2175 /* Ignoring port protocol we can't understand. FIXME */
2176 return;
2177 }
2178 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2179
2180 if (rhub->min_rev < minor_revision)
2181 rhub->min_rev = minor_revision;
2182
2183 /* Port offset and count in the third dword, see section 7.2 */
2184 temp = readl(addr + 2);
2185 port_offset = XHCI_EXT_PORT_OFF(temp);
2186 port_count = XHCI_EXT_PORT_COUNT(temp);
2187 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2188 "Ext Cap %p, port offset = %u, "
2189 "count = %u, revision = 0x%x",
2190 addr, port_offset, port_count, major_revision);
2191 /* Port count includes the current port offset */
2192 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2193 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2194 return;
2195
2196 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2197 if (xhci->num_port_caps > max_caps)
2198 return;
2199
2200 port_cap->maj_rev = major_revision;
2201 port_cap->min_rev = minor_revision;
2202 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2203
2204 if (port_cap->psi_count) {
2205 port_cap->psi = kcalloc_node(port_cap->psi_count,
2206 sizeof(*port_cap->psi),
2207 GFP_KERNEL, dev_to_node(dev));
2208 if (!port_cap->psi)
2209 port_cap->psi_count = 0;
2210
2211 port_cap->psi_uid_count++;
2212 for (i = 0; i < port_cap->psi_count; i++) {
2213 port_cap->psi[i] = readl(addr + 4 + i);
2214
2215 /* count unique ID values, two consecutive entries can
2216 * have the same ID if link is assymetric
2217 */
2218 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2219 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2220 port_cap->psi_uid_count++;
2221
2222 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2223 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2224 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2225 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2226 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2227 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2228 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2229 }
2230 }
2231 /* cache usb2 port capabilities */
2232 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2233 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2234
2235 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2236 (temp & XHCI_HLC)) {
2237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2238 "xHCI 1.0: support USB2 hardware lpm");
2239 xhci->hw_lpm_support = 1;
2240 }
2241
2242 port_offset--;
2243 for (i = port_offset; i < (port_offset + port_count); i++) {
2244 struct xhci_port *hw_port = &xhci->hw_ports[i];
2245 /* Duplicate entry. Ignore the port if the revisions differ. */
2246 if (hw_port->rhub) {
2247 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2248 " port %u\n", addr, i);
2249 xhci_warn(xhci, "Port was marked as USB %u, "
2250 "duplicated as USB %u\n",
2251 hw_port->rhub->maj_rev, major_revision);
2252 /* Only adjust the roothub port counts if we haven't
2253 * found a similar duplicate.
2254 */
2255 if (hw_port->rhub != rhub &&
2256 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2257 hw_port->rhub->num_ports--;
2258 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2259 }
2260 continue;
2261 }
2262 hw_port->rhub = rhub;
2263 hw_port->port_cap = port_cap;
2264 rhub->num_ports++;
2265 }
2266 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2267 }
2268
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2269 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2270 struct xhci_hub *rhub, gfp_t flags)
2271 {
2272 int port_index = 0;
2273 int i;
2274 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2275
2276 if (!rhub->num_ports)
2277 return;
2278 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2279 flags, dev_to_node(dev));
2280 if (!rhub->ports)
2281 return;
2282
2283 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2284 if (xhci->hw_ports[i].rhub != rhub ||
2285 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2286 continue;
2287 xhci->hw_ports[i].hcd_portnum = port_index;
2288 rhub->ports[port_index] = &xhci->hw_ports[i];
2289 port_index++;
2290 if (port_index == rhub->num_ports)
2291 break;
2292 }
2293 }
2294
2295 /*
2296 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2297 * specify what speeds each port is supposed to be. We can't count on the port
2298 * speed bits in the PORTSC register being correct until a device is connected,
2299 * but we need to set up the two fake roothubs with the correct number of USB
2300 * 3.0 and USB 2.0 ports at host controller initialization time.
2301 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2302 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2303 {
2304 void __iomem *base;
2305 u32 offset;
2306 unsigned int num_ports;
2307 int i, j;
2308 int cap_count = 0;
2309 u32 cap_start;
2310 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2311
2312 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2313 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2314 flags, dev_to_node(dev));
2315 if (!xhci->hw_ports)
2316 return -ENOMEM;
2317
2318 for (i = 0; i < num_ports; i++) {
2319 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2320 NUM_PORT_REGS * i;
2321 xhci->hw_ports[i].hw_portnum = i;
2322 }
2323
2324 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2325 dev_to_node(dev));
2326 if (!xhci->rh_bw)
2327 return -ENOMEM;
2328 for (i = 0; i < num_ports; i++) {
2329 struct xhci_interval_bw_table *bw_table;
2330
2331 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2332 bw_table = &xhci->rh_bw[i].bw_table;
2333 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2334 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2335 }
2336 base = &xhci->cap_regs->hc_capbase;
2337
2338 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2339 if (!cap_start) {
2340 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2341 return -ENODEV;
2342 }
2343
2344 offset = cap_start;
2345 /* count extended protocol capability entries for later caching */
2346 while (offset) {
2347 cap_count++;
2348 offset = xhci_find_next_ext_cap(base, offset,
2349 XHCI_EXT_CAPS_PROTOCOL);
2350 }
2351
2352 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2353 flags, dev_to_node(dev));
2354 if (!xhci->ext_caps)
2355 return -ENOMEM;
2356
2357 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2358 flags, dev_to_node(dev));
2359 if (!xhci->port_caps)
2360 return -ENOMEM;
2361
2362 offset = cap_start;
2363
2364 while (offset) {
2365 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2366 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2367 num_ports)
2368 break;
2369 offset = xhci_find_next_ext_cap(base, offset,
2370 XHCI_EXT_CAPS_PROTOCOL);
2371 }
2372 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2373 xhci_warn(xhci, "No ports on the roothubs?\n");
2374 return -ENODEV;
2375 }
2376 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2377 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2378 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2379
2380 /* Place limits on the number of roothub ports so that the hub
2381 * descriptors aren't longer than the USB core will allocate.
2382 */
2383 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2384 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2385 "Limiting USB 3.0 roothub ports to %u.",
2386 USB_SS_MAXPORTS);
2387 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2388 }
2389 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2390 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2391 "Limiting USB 2.0 roothub ports to %u.",
2392 USB_MAXCHILDREN);
2393 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2394 }
2395
2396 /*
2397 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2398 * Not sure how the USB core will handle a hub with no ports...
2399 */
2400
2401 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2402 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2403
2404 return 0;
2405 }
2406
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2407 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2408 {
2409 dma_addr_t dma;
2410 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2411 unsigned int val, val2;
2412 u64 val_64;
2413 u32 page_size, temp;
2414 int i, ret;
2415
2416 INIT_LIST_HEAD(&xhci->cmd_list);
2417
2418 /* init command timeout work */
2419 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2420 init_completion(&xhci->cmd_ring_stop_completion);
2421
2422 page_size = readl(&xhci->op_regs->page_size);
2423 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424 "Supported page size register = 0x%x", page_size);
2425 for (i = 0; i < 16; i++) {
2426 if ((0x1 & page_size) != 0)
2427 break;
2428 page_size = page_size >> 1;
2429 }
2430 if (i < 16)
2431 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2432 "Supported page size of %iK", (1 << (i+12)) / 1024);
2433 else
2434 xhci_warn(xhci, "WARN: no supported page size\n");
2435 /* Use 4K pages, since that's common and the minimum the HC supports */
2436 xhci->page_shift = 12;
2437 xhci->page_size = 1 << xhci->page_shift;
2438 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439 "HCD page size set to %iK", xhci->page_size / 1024);
2440
2441 /*
2442 * Program the Number of Device Slots Enabled field in the CONFIG
2443 * register with the max value of slots the HC can handle.
2444 */
2445 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2446 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2447 "// xHC can handle at most %d device slots.", val);
2448 val2 = readl(&xhci->op_regs->config_reg);
2449 val |= (val2 & ~HCS_SLOTS_MASK);
2450 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2451 "// Setting Max device slots reg = 0x%x.", val);
2452 writel(val, &xhci->op_regs->config_reg);
2453
2454 /*
2455 * xHCI section 5.4.6 - doorbell array must be
2456 * "physically contiguous and 64-byte (cache line) aligned".
2457 */
2458 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2459 flags);
2460 if (!xhci->dcbaa)
2461 goto fail;
2462 xhci->dcbaa->dma = dma;
2463 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2464 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2465 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2466 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2467
2468 /*
2469 * Initialize the ring segment pool. The ring must be a contiguous
2470 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2471 * however, the command ring segment needs 64-byte aligned segments
2472 * and our use of dma addresses in the trb_address_map radix tree needs
2473 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2474 */
2475 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2476 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2477
2478 /* See Table 46 and Note on Figure 55 */
2479 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2480 2112, 64, xhci->page_size);
2481 if (!xhci->segment_pool || !xhci->device_pool)
2482 goto fail;
2483
2484 /* Linear stream context arrays don't have any boundary restrictions,
2485 * and only need to be 16-byte aligned.
2486 */
2487 xhci->small_streams_pool =
2488 dma_pool_create("xHCI 256 byte stream ctx arrays",
2489 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2490 xhci->medium_streams_pool =
2491 dma_pool_create("xHCI 1KB stream ctx arrays",
2492 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2493 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2494 * will be allocated with dma_alloc_coherent()
2495 */
2496
2497 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2498 goto fail;
2499
2500 /* Set up the command ring to have one segments for now. */
2501 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2502 if (!xhci->cmd_ring)
2503 goto fail;
2504 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505 "Allocated command ring at %p", xhci->cmd_ring);
2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2507 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2508
2509 /* Set the address in the Command Ring Control register */
2510 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2511 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2512 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2513 xhci->cmd_ring->cycle_state;
2514 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515 "// Setting command ring address to 0x%016llx", val_64);
2516 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2517
2518 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2519 if (!xhci->lpm_command)
2520 goto fail;
2521
2522 /* Reserve one command ring TRB for disabling LPM.
2523 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2524 * disabling LPM, we only need to reserve one TRB for all devices.
2525 */
2526 xhci->cmd_ring_reserved_trbs++;
2527
2528 val = readl(&xhci->cap_regs->db_off);
2529 val &= DBOFF_MASK;
2530 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531 "// Doorbell array is located at offset 0x%x"
2532 " from cap regs base addr", val);
2533 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2534 /* Set ir_set to interrupt register set 0 */
2535 xhci->ir_set = &xhci->run_regs->ir_set[0];
2536
2537 /*
2538 * Event ring setup: Allocate a normal ring, but also setup
2539 * the event ring segment table (ERST). Section 4.9.3.
2540 */
2541 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2542 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2543 0, flags);
2544 if (!xhci->event_ring)
2545 goto fail;
2546 if (xhci_check_trb_in_td_math(xhci) < 0)
2547 goto fail;
2548
2549 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2550 if (ret)
2551 goto fail;
2552
2553 /* set ERST count with the number of entries in the segment table */
2554 val = readl(&xhci->ir_set->erst_size);
2555 val &= ERST_SIZE_MASK;
2556 val |= ERST_NUM_SEGS;
2557 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2558 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2559 val);
2560 writel(val, &xhci->ir_set->erst_size);
2561
2562 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2563 "// Set ERST entries to point to event ring.");
2564 /* set the segment table base address */
2565 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2566 "// Set ERST base address for ir_set 0 = 0x%llx",
2567 (unsigned long long)xhci->erst.erst_dma_addr);
2568 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2569 val_64 &= ERST_PTR_MASK;
2570 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2571 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2572
2573 /* Set the event ring dequeue address */
2574 xhci_set_hc_event_deq(xhci);
2575 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2576 "Wrote ERST address to ir_set 0.");
2577
2578 /*
2579 * XXX: Might need to set the Interrupter Moderation Register to
2580 * something other than the default (~1ms minimum between interrupts).
2581 * See section 5.5.1.2.
2582 */
2583 for (i = 0; i < MAX_HC_SLOTS; i++)
2584 xhci->devs[i] = NULL;
2585 for (i = 0; i < USB_MAXCHILDREN; i++) {
2586 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2587 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2588 /* Only the USB 2.0 completions will ever be used. */
2589 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2590 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2591 }
2592
2593 if (scratchpad_alloc(xhci, flags))
2594 goto fail;
2595 if (xhci_setup_port_arrays(xhci, flags))
2596 goto fail;
2597
2598 /* Enable USB 3.0 device notifications for function remote wake, which
2599 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2600 * U3 (device suspend).
2601 */
2602 temp = readl(&xhci->op_regs->dev_notification);
2603 temp &= ~DEV_NOTE_MASK;
2604 temp |= DEV_NOTE_FWAKE;
2605 writel(temp, &xhci->op_regs->dev_notification);
2606
2607 return 0;
2608
2609 fail:
2610 xhci_halt(xhci);
2611 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2612 xhci_mem_cleanup(xhci);
2613 return -ENOMEM;
2614 }
2615