• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,gfp_t flags)28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 				struct xhci_segment *first)
80 {
81 	struct xhci_segment *seg;
82 
83 	seg = first->next;
84 	while (seg != first) {
85 		struct xhci_segment *next = seg->next;
86 		xhci_segment_free(xhci, seg);
87 		seg = next;
88 	}
89 	xhci_segment_free(xhci, first);
90 }
91 
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)99 static void xhci_link_segments(struct xhci_segment *prev,
100 			       struct xhci_segment *next,
101 			       enum xhci_ring_type type, bool chain_links)
102 {
103 	u32 val;
104 
105 	if (!prev || !next)
106 		return;
107 	prev->next = next;
108 	if (type != TYPE_EVENT) {
109 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 			cpu_to_le64(next->dma);
111 
112 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 		val &= ~TRB_TYPE_BITMASK;
115 		val |= TRB_TYPE(TRB_LINK);
116 		if (chain_links)
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 	bool chain_links;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 			 (ring->type == TYPE_ISOC &&
139 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
140 
141 	next = ring->enq_seg->next;
142 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 	xhci_link_segments(last, next, ring->type, chain_links);
144 	ring->num_segs += num_segs;
145 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146 
147 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 			&= ~cpu_to_le32(LINK_TOGGLE);
150 		last->trbs[TRBS_PER_SEGMENT-1].link.control
151 			|= cpu_to_le32(LINK_TOGGLE);
152 		ring->last_seg = last;
153 	}
154 }
155 
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *	0x10c90fff >> 10 = 0x43243
171  *	0x10c912c0 >> 10 = 0x43244
172  *	0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 		struct xhci_ring *ring,
189 		struct xhci_segment *seg,
190 		gfp_t mem_flags)
191 {
192 	unsigned long key;
193 	int ret;
194 
195 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 	/* Skip any segments that were already added. */
197 	if (radix_tree_lookup(trb_address_map, key))
198 		return 0;
199 
200 	ret = radix_tree_maybe_preload(mem_flags);
201 	if (ret)
202 		return ret;
203 	ret = radix_tree_insert(trb_address_map,
204 			key, ring);
205 	radix_tree_preload_end();
206 	return ret;
207 }
208 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 		struct xhci_segment *seg)
211 {
212 	unsigned long key;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	if (radix_tree_lookup(trb_address_map, key))
216 		radix_tree_delete(trb_address_map, key);
217 }
218 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)219 static int xhci_update_stream_segment_mapping(
220 		struct radix_tree_root *trb_address_map,
221 		struct xhci_ring *ring,
222 		struct xhci_segment *first_seg,
223 		struct xhci_segment *last_seg,
224 		gfp_t mem_flags)
225 {
226 	struct xhci_segment *seg;
227 	struct xhci_segment *failed_seg;
228 	int ret;
229 
230 	if (WARN_ON_ONCE(trb_address_map == NULL))
231 		return 0;
232 
233 	seg = first_seg;
234 	do {
235 		ret = xhci_insert_segment_mapping(trb_address_map,
236 				ring, seg, mem_flags);
237 		if (ret)
238 			goto remove_streams;
239 		if (seg == last_seg)
240 			return 0;
241 		seg = seg->next;
242 	} while (seg != first_seg);
243 
244 	return 0;
245 
246 remove_streams:
247 	failed_seg = seg;
248 	seg = first_seg;
249 	do {
250 		xhci_remove_segment_mapping(trb_address_map, seg);
251 		if (seg == failed_seg)
252 			return ret;
253 		seg = seg->next;
254 	} while (seg != first_seg);
255 
256 	return ret;
257 }
258 
xhci_remove_stream_mapping(struct xhci_ring * ring)259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 	struct xhci_segment *seg;
262 
263 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 		return;
265 
266 	seg = ring->first_seg;
267 	do {
268 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 		seg = seg->next;
270 	} while (seg != ring->first_seg);
271 }
272 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 			ring->first_seg, ring->last_seg, mem_flags);
277 }
278 
279 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 	if (!ring)
283 		return;
284 
285 	trace_xhci_ring_free(ring);
286 
287 	if (ring->first_seg) {
288 		if (ring->type == TYPE_STREAM)
289 			xhci_remove_stream_mapping(ring);
290 		xhci_free_segments_for_ring(xhci, ring->first_seg);
291 	}
292 
293 	kfree(ring);
294 }
295 
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 			       unsigned int cycle_state)
298 {
299 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
300 	ring->enqueue = ring->first_seg->trbs;
301 	ring->enq_seg = ring->first_seg;
302 	ring->dequeue = ring->enqueue;
303 	ring->deq_seg = ring->first_seg;
304 	/* The ring is initialized to 0. The producer must write 1 to the cycle
305 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 	 *
308 	 * New rings are initialized with cycle state equal to 1; if we are
309 	 * handling ring expansion, set the cycle state equal to the old ring.
310 	 */
311 	ring->cycle_state = cycle_state;
312 
313 	/*
314 	 * Each segment has a link TRB, and leave an extra TRB for SW
315 	 * accounting purpose
316 	 */
317 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319 
320 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 		struct xhci_segment **first, struct xhci_segment **last,
323 		unsigned int num_segs, unsigned int cycle_state,
324 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326 	struct xhci_segment *prev;
327 	bool chain_links;
328 
329 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 			 (type == TYPE_ISOC &&
332 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
333 
334 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 	if (!prev)
336 		return -ENOMEM;
337 	num_segs--;
338 
339 	*first = prev;
340 	while (num_segs > 0) {
341 		struct xhci_segment	*next;
342 
343 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 		if (!next) {
345 			prev = *first;
346 			while (prev) {
347 				next = prev->next;
348 				xhci_segment_free(xhci, prev);
349 				prev = next;
350 			}
351 			return -ENOMEM;
352 		}
353 		xhci_link_segments(prev, next, type, chain_links);
354 
355 		prev = next;
356 		num_segs--;
357 	}
358 	xhci_link_segments(prev, *first, type, chain_links);
359 	*last = prev;
360 
361 	return 0;
362 }
363 
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 		unsigned int num_segs, unsigned int cycle_state,
373 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 	struct xhci_ring	*ring;
376 	int ret;
377 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378 
379 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 	if (!ring)
381 		return NULL;
382 
383 	ring->num_segs = num_segs;
384 	ring->bounce_buf_len = max_packet;
385 	INIT_LIST_HEAD(&ring->td_list);
386 	ring->type = type;
387 	if (num_segs == 0)
388 		return ring;
389 
390 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 			&ring->last_seg, num_segs, cycle_state, type,
392 			max_packet, flags);
393 	if (ret)
394 		goto fail;
395 
396 	/* Only event ring does not use link TRB */
397 	if (type != TYPE_EVENT) {
398 		/* See section 4.9.2.1 and 6.4.4.1 */
399 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 			cpu_to_le32(LINK_TOGGLE);
401 	}
402 	xhci_initialize_ring_info(ring, cycle_state);
403 	trace_xhci_ring_alloc(ring);
404 	return ring;
405 
406 fail:
407 	kfree(ring);
408 	return NULL;
409 }
410 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 		struct xhci_virt_device *virt_dev,
413 		unsigned int ep_index)
414 {
415 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 	virt_dev->eps[ep_index].ring = NULL;
417 }
418 
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 				unsigned int num_trbs, gfp_t flags)
425 {
426 	struct xhci_segment	*first;
427 	struct xhci_segment	*last;
428 	unsigned int		num_segs;
429 	unsigned int		num_segs_needed;
430 	int			ret;
431 
432 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 				(TRBS_PER_SEGMENT - 1);
434 
435 	/* Allocate number of segments we needed, or double the ring size */
436 	num_segs = ring->num_segs > num_segs_needed ?
437 			ring->num_segs : num_segs_needed;
438 
439 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 			num_segs, ring->cycle_state, ring->type,
441 			ring->bounce_buf_len, flags);
442 	if (ret)
443 		return -ENOMEM;
444 
445 	if (ring->type == TYPE_STREAM)
446 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 						ring, first, last, flags);
448 	if (ret) {
449 		struct xhci_segment *next;
450 		do {
451 			next = first->next;
452 			xhci_segment_free(xhci, first);
453 			if (first == last)
454 				break;
455 			first = next;
456 		} while (true);
457 		return ret;
458 	}
459 
460 	xhci_link_rings(xhci, ring, first, last, num_segs);
461 	trace_xhci_ring_expansion(ring);
462 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 			"ring expansion succeed, now has %d segments",
464 			ring->num_segs);
465 
466 	return 0;
467 }
468 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 						    int type, gfp_t flags)
471 {
472 	struct xhci_container_ctx *ctx;
473 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474 
475 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 		return NULL;
477 
478 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479 	if (!ctx)
480 		return NULL;
481 
482 	ctx->type = type;
483 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 	if (type == XHCI_CTX_TYPE_INPUT)
485 		ctx->size += CTX_SIZE(xhci->hcc_params);
486 
487 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 	if (!ctx->bytes) {
489 		kfree(ctx);
490 		return NULL;
491 	}
492 	return ctx;
493 }
494 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 			     struct xhci_container_ctx *ctx)
497 {
498 	if (!ctx)
499 		return;
500 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 	kfree(ctx);
502 }
503 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 					      struct xhci_container_ctx *ctx)
506 {
507 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 		return NULL;
509 
510 	return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 					struct xhci_container_ctx *ctx)
515 {
516 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 		return (struct xhci_slot_ctx *)ctx->bytes;
518 
519 	return (struct xhci_slot_ctx *)
520 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 				    struct xhci_container_ctx *ctx,
525 				    unsigned int ep_index)
526 {
527 	/* increment ep index by offset of start of ep ctx array */
528 	ep_index++;
529 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 		ep_index++;
531 
532 	return (struct xhci_ep_ctx *)
533 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535 
536 
537 /***************** Streams structures manipulation *************************/
538 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 		unsigned int num_stream_ctxs,
541 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545 
546 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 		dma_free_coherent(dev, size,
548 				stream_ctx, dma);
549 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 		return dma_pool_free(xhci->small_streams_pool,
551 				stream_ctx, dma);
552 	else
553 		return dma_pool_free(xhci->medium_streams_pool,
554 				stream_ctx, dma);
555 }
556 
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 		unsigned int num_stream_ctxs, dma_addr_t *dma,
569 		gfp_t mem_flags)
570 {
571 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573 
574 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 		return dma_alloc_coherent(dev, size,
576 				dma, mem_flags);
577 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 		return dma_pool_alloc(xhci->small_streams_pool,
579 				mem_flags, dma);
580 	else
581 		return dma_pool_alloc(xhci->medium_streams_pool,
582 				mem_flags, dma);
583 }
584 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 		struct xhci_virt_ep *ep,
587 		u64 address)
588 {
589 	if (ep->ep_state & EP_HAS_STREAMS)
590 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 				address >> TRB_SEGMENT_SHIFT);
592 	return ep->ring;
593 }
594 
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)595 struct xhci_ring *xhci_stream_id_to_ring(
596 		struct xhci_virt_device *dev,
597 		unsigned int ep_index,
598 		unsigned int stream_id)
599 {
600 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
601 
602 	if (stream_id == 0)
603 		return ep->ring;
604 	if (!ep->stream_info)
605 		return NULL;
606 
607 	if (stream_id >= ep->stream_info->num_streams)
608 		return NULL;
609 	return ep->stream_info->stream_rings[stream_id];
610 }
611 
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 		unsigned int num_stream_ctxs,
623 		unsigned int num_streams,
624 		unsigned int max_packet, gfp_t mem_flags)
625 {
626 	struct xhci_stream_info *stream_info;
627 	u32 cur_stream;
628 	struct xhci_ring *cur_ring;
629 	u64 addr;
630 	int ret;
631 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632 
633 	xhci_dbg(xhci, "Allocating %u streams and %u "
634 			"stream context array entries.\n",
635 			num_streams, num_stream_ctxs);
636 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638 		return NULL;
639 	}
640 	xhci->cmd_ring_reserved_trbs++;
641 
642 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643 			dev_to_node(dev));
644 	if (!stream_info)
645 		goto cleanup_trbs;
646 
647 	stream_info->num_streams = num_streams;
648 	stream_info->num_stream_ctxs = num_stream_ctxs;
649 
650 	/* Initialize the array of virtual pointers to stream rings. */
651 	stream_info->stream_rings = kcalloc_node(
652 			num_streams, sizeof(struct xhci_ring *), mem_flags,
653 			dev_to_node(dev));
654 	if (!stream_info->stream_rings)
655 		goto cleanup_info;
656 
657 	/* Initialize the array of DMA addresses for stream rings for the HW. */
658 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 			num_stream_ctxs, &stream_info->ctx_array_dma,
660 			mem_flags);
661 	if (!stream_info->stream_ctx_array)
662 		goto cleanup_ring_array;
663 	memset(stream_info->stream_ctx_array, 0,
664 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665 
666 	/* Allocate everything needed to free the stream rings later */
667 	stream_info->free_streams_command =
668 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 	if (!stream_info->free_streams_command)
670 		goto cleanup_ctx;
671 
672 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673 
674 	/* Allocate rings for all the streams that the driver will use,
675 	 * and add their segment DMA addresses to the radix tree.
676 	 * Stream 0 is reserved.
677 	 */
678 
679 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 		stream_info->stream_rings[cur_stream] =
681 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682 					mem_flags);
683 		cur_ring = stream_info->stream_rings[cur_stream];
684 		if (!cur_ring)
685 			goto cleanup_rings;
686 		cur_ring->stream_id = cur_stream;
687 		cur_ring->trb_address_map = &stream_info->trb_address_map;
688 		/* Set deq ptr, cycle bit, and stream context type */
689 		addr = cur_ring->first_seg->dma |
690 			SCT_FOR_CTX(SCT_PRI_TR) |
691 			cur_ring->cycle_state;
692 		stream_info->stream_ctx_array[cur_stream].stream_ring =
693 			cpu_to_le64(addr);
694 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 				cur_stream, (unsigned long long) addr);
696 
697 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698 		if (ret) {
699 			xhci_ring_free(xhci, cur_ring);
700 			stream_info->stream_rings[cur_stream] = NULL;
701 			goto cleanup_rings;
702 		}
703 	}
704 	/* Leave the other unused stream ring pointers in the stream context
705 	 * array initialized to zero.  This will cause the xHC to give us an
706 	 * error if the device asks for a stream ID we don't have setup (if it
707 	 * was any other way, the host controller would assume the ring is
708 	 * "empty" and wait forever for data to be queued to that stream ID).
709 	 */
710 
711 	return stream_info;
712 
713 cleanup_rings:
714 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 		cur_ring = stream_info->stream_rings[cur_stream];
716 		if (cur_ring) {
717 			xhci_ring_free(xhci, cur_ring);
718 			stream_info->stream_rings[cur_stream] = NULL;
719 		}
720 	}
721 	xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723 	xhci_free_stream_ctx(xhci,
724 		stream_info->num_stream_ctxs,
725 		stream_info->stream_ctx_array,
726 		stream_info->ctx_array_dma);
727 cleanup_ring_array:
728 	kfree(stream_info->stream_rings);
729 cleanup_info:
730 	kfree(stream_info);
731 cleanup_trbs:
732 	xhci->cmd_ring_reserved_trbs--;
733 	return NULL;
734 }
735 /*
736  * Sets the MaxPStreams field and the Linear Stream Array field.
737  * Sets the dequeue pointer to the stream context array.
738  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)739 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
740 		struct xhci_ep_ctx *ep_ctx,
741 		struct xhci_stream_info *stream_info)
742 {
743 	u32 max_primary_streams;
744 	/* MaxPStreams is the number of stream context array entries, not the
745 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
746 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
747 	 */
748 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
749 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
750 			"Setting number of stream ctx array entries to %u",
751 			1 << (max_primary_streams + 1));
752 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
753 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
754 				       | EP_HAS_LSA);
755 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
756 }
757 
758 /*
759  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
760  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
761  * not at the beginning of the ring).
762  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)763 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
764 		struct xhci_virt_ep *ep)
765 {
766 	dma_addr_t addr;
767 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
768 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
769 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
770 }
771 
772 /* Frees all stream contexts associated with the endpoint,
773  *
774  * Caller should fix the endpoint context streams fields.
775  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)776 void xhci_free_stream_info(struct xhci_hcd *xhci,
777 		struct xhci_stream_info *stream_info)
778 {
779 	int cur_stream;
780 	struct xhci_ring *cur_ring;
781 
782 	if (!stream_info)
783 		return;
784 
785 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
786 			cur_stream++) {
787 		cur_ring = stream_info->stream_rings[cur_stream];
788 		if (cur_ring) {
789 			xhci_ring_free(xhci, cur_ring);
790 			stream_info->stream_rings[cur_stream] = NULL;
791 		}
792 	}
793 	xhci_free_command(xhci, stream_info->free_streams_command);
794 	xhci->cmd_ring_reserved_trbs--;
795 	if (stream_info->stream_ctx_array)
796 		xhci_free_stream_ctx(xhci,
797 				stream_info->num_stream_ctxs,
798 				stream_info->stream_ctx_array,
799 				stream_info->ctx_array_dma);
800 
801 	kfree(stream_info->stream_rings);
802 	kfree(stream_info);
803 }
804 
805 
806 /***************** Device context manipulation *************************/
807 
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)808 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
809 		struct xhci_virt_ep *ep)
810 {
811 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
812 		    0);
813 	ep->xhci = xhci;
814 }
815 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)816 static void xhci_free_tt_info(struct xhci_hcd *xhci,
817 		struct xhci_virt_device *virt_dev,
818 		int slot_id)
819 {
820 	struct list_head *tt_list_head;
821 	struct xhci_tt_bw_info *tt_info, *next;
822 	bool slot_found = false;
823 
824 	/* If the device never made it past the Set Address stage,
825 	 * it may not have the real_port set correctly.
826 	 */
827 	if (virt_dev->real_port == 0 ||
828 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
829 		xhci_dbg(xhci, "Bad real port.\n");
830 		return;
831 	}
832 
833 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
834 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
835 		/* Multi-TT hubs will have more than one entry */
836 		if (tt_info->slot_id == slot_id) {
837 			slot_found = true;
838 			list_del(&tt_info->tt_list);
839 			kfree(tt_info);
840 		} else if (slot_found) {
841 			break;
842 		}
843 	}
844 }
845 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)846 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
847 		struct xhci_virt_device *virt_dev,
848 		struct usb_device *hdev,
849 		struct usb_tt *tt, gfp_t mem_flags)
850 {
851 	struct xhci_tt_bw_info		*tt_info;
852 	unsigned int			num_ports;
853 	int				i, j;
854 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
855 
856 	if (!tt->multi)
857 		num_ports = 1;
858 	else
859 		num_ports = hdev->maxchild;
860 
861 	for (i = 0; i < num_ports; i++, tt_info++) {
862 		struct xhci_interval_bw_table *bw_table;
863 
864 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
865 				dev_to_node(dev));
866 		if (!tt_info)
867 			goto free_tts;
868 		INIT_LIST_HEAD(&tt_info->tt_list);
869 		list_add(&tt_info->tt_list,
870 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
871 		tt_info->slot_id = virt_dev->udev->slot_id;
872 		if (tt->multi)
873 			tt_info->ttport = i+1;
874 		bw_table = &tt_info->bw_table;
875 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
876 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
877 	}
878 	return 0;
879 
880 free_tts:
881 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
882 	return -ENOMEM;
883 }
884 
885 
886 /* All the xhci_tds in the ring's TD list should be freed at this point.
887  * Should be called with xhci->lock held if there is any chance the TT lists
888  * will be manipulated by the configure endpoint, allocate device, or update
889  * hub functions while this function is removing the TT entries from the list.
890  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)891 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
892 {
893 	struct xhci_virt_device *dev;
894 	int i;
895 	int old_active_eps = 0;
896 
897 	/* Slot ID 0 is reserved */
898 	if (slot_id == 0 || !xhci->devs[slot_id])
899 		return;
900 
901 	dev = xhci->devs[slot_id];
902 
903 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
904 	if (!dev)
905 		return;
906 
907 	trace_xhci_free_virt_device(dev);
908 
909 	if (dev->tt_info)
910 		old_active_eps = dev->tt_info->active_eps;
911 
912 	for (i = 0; i < 31; i++) {
913 		if (dev->eps[i].ring)
914 			xhci_ring_free(xhci, dev->eps[i].ring);
915 		if (dev->eps[i].stream_info)
916 			xhci_free_stream_info(xhci,
917 					dev->eps[i].stream_info);
918 		/*
919 		 * Endpoints are normally deleted from the bandwidth list when
920 		 * endpoints are dropped, before device is freed.
921 		 * If host is dying or being removed then endpoints aren't
922 		 * dropped cleanly, so delete the endpoint from list here.
923 		 * Only applicable for hosts with software bandwidth checking.
924 		 */
925 
926 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
927 			list_del_init(&dev->eps[i].bw_endpoint_list);
928 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
929 				 slot_id, i);
930 		}
931 	}
932 	/* If this is a hub, free the TT(s) from the TT list */
933 	xhci_free_tt_info(xhci, dev, slot_id);
934 	/* If necessary, update the number of active TTs on this root port */
935 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
936 
937 	if (dev->in_ctx)
938 		xhci_free_container_ctx(xhci, dev->in_ctx);
939 	if (dev->out_ctx)
940 		xhci_free_container_ctx(xhci, dev->out_ctx);
941 
942 	if (dev->udev && dev->udev->slot_id)
943 		dev->udev->slot_id = 0;
944 	kfree(xhci->devs[slot_id]);
945 	xhci->devs[slot_id] = NULL;
946 }
947 
948 /*
949  * Free a virt_device structure.
950  * If the virt_device added a tt_info (a hub) and has children pointing to
951  * that tt_info, then free the child first. Recursive.
952  * We can't rely on udev at this point to find child-parent relationships.
953  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)954 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
955 {
956 	struct xhci_virt_device *vdev;
957 	struct list_head *tt_list_head;
958 	struct xhci_tt_bw_info *tt_info, *next;
959 	int i;
960 
961 	vdev = xhci->devs[slot_id];
962 	if (!vdev)
963 		return;
964 
965 	if (vdev->real_port == 0 ||
966 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
967 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
968 		goto out;
969 	}
970 
971 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
972 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
973 		/* is this a hub device that added a tt_info to the tts list */
974 		if (tt_info->slot_id == slot_id) {
975 			/* are any devices using this tt_info? */
976 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
977 				vdev = xhci->devs[i];
978 				if (vdev && (vdev->tt_info == tt_info))
979 					xhci_free_virt_devices_depth_first(
980 						xhci, i);
981 			}
982 		}
983 	}
984 out:
985 	/* we are now at a leaf device */
986 	xhci_debugfs_remove_slot(xhci, slot_id);
987 	xhci_free_virt_device(xhci, slot_id);
988 }
989 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)990 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
991 		struct usb_device *udev, gfp_t flags)
992 {
993 	struct xhci_virt_device *dev;
994 	int i;
995 
996 	/* Slot ID 0 is reserved */
997 	if (slot_id == 0 || xhci->devs[slot_id]) {
998 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
999 		return 0;
1000 	}
1001 
1002 	dev = kzalloc(sizeof(*dev), flags);
1003 	if (!dev)
1004 		return 0;
1005 
1006 	dev->slot_id = slot_id;
1007 
1008 	/* Allocate the (output) device context that will be used in the HC. */
1009 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1010 	if (!dev->out_ctx)
1011 		goto fail;
1012 
1013 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1014 			(unsigned long long)dev->out_ctx->dma);
1015 
1016 	/* Allocate the (input) device context for address device command */
1017 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1018 	if (!dev->in_ctx)
1019 		goto fail;
1020 
1021 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1022 			(unsigned long long)dev->in_ctx->dma);
1023 
1024 	/* Initialize the cancellation list and watchdog timers for each ep */
1025 	for (i = 0; i < 31; i++) {
1026 		dev->eps[i].ep_index = i;
1027 		dev->eps[i].vdev = dev;
1028 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1029 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1030 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1031 	}
1032 
1033 	/* Allocate endpoint 0 ring */
1034 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1035 	if (!dev->eps[0].ring)
1036 		goto fail;
1037 
1038 	dev->udev = udev;
1039 
1040 	/* Point to output device context in dcbaa. */
1041 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1042 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1043 		 slot_id,
1044 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1045 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1046 
1047 	trace_xhci_alloc_virt_device(dev);
1048 
1049 	xhci->devs[slot_id] = dev;
1050 
1051 	return 1;
1052 fail:
1053 
1054 	if (dev->in_ctx)
1055 		xhci_free_container_ctx(xhci, dev->in_ctx);
1056 	if (dev->out_ctx)
1057 		xhci_free_container_ctx(xhci, dev->out_ctx);
1058 	kfree(dev);
1059 
1060 	return 0;
1061 }
1062 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1063 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1064 		struct usb_device *udev)
1065 {
1066 	struct xhci_virt_device *virt_dev;
1067 	struct xhci_ep_ctx	*ep0_ctx;
1068 	struct xhci_ring	*ep_ring;
1069 
1070 	virt_dev = xhci->devs[udev->slot_id];
1071 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1072 	ep_ring = virt_dev->eps[0].ring;
1073 	/*
1074 	 * FIXME we don't keep track of the dequeue pointer very well after a
1075 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1076 	 * host to our enqueue pointer.  This should only be called after a
1077 	 * configured device has reset, so all control transfers should have
1078 	 * been completed or cancelled before the reset.
1079 	 */
1080 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1081 							ep_ring->enqueue)
1082 				   | ep_ring->cycle_state);
1083 }
1084 
1085 /*
1086  * The xHCI roothub may have ports of differing speeds in any order in the port
1087  * status registers.
1088  *
1089  * The xHCI hardware wants to know the roothub port number that the USB device
1090  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1091  * know is the index of that port under either the USB 2.0 or the USB 3.0
1092  * roothub, but that doesn't give us the real index into the HW port status
1093  * registers. Call xhci_find_raw_port_number() to get real index.
1094  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1095 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1096 		struct usb_device *udev)
1097 {
1098 	struct usb_device *top_dev;
1099 	struct usb_hcd *hcd;
1100 
1101 	if (udev->speed >= USB_SPEED_SUPER)
1102 		hcd = xhci->shared_hcd;
1103 	else
1104 		hcd = xhci->main_hcd;
1105 
1106 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1107 			top_dev = top_dev->parent)
1108 		/* Found device below root hub */;
1109 
1110 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1111 }
1112 
1113 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1114 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1115 {
1116 	struct xhci_virt_device *dev;
1117 	struct xhci_ep_ctx	*ep0_ctx;
1118 	struct xhci_slot_ctx    *slot_ctx;
1119 	u32			port_num;
1120 	u32			max_packets;
1121 	struct usb_device *top_dev;
1122 
1123 	dev = xhci->devs[udev->slot_id];
1124 	/* Slot ID 0 is reserved */
1125 	if (udev->slot_id == 0 || !dev) {
1126 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1127 				udev->slot_id);
1128 		return -EINVAL;
1129 	}
1130 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1131 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1132 
1133 	/* 3) Only the control endpoint is valid - one endpoint context */
1134 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1135 	switch (udev->speed) {
1136 	case USB_SPEED_SUPER_PLUS:
1137 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1138 		max_packets = MAX_PACKET(512);
1139 		break;
1140 	case USB_SPEED_SUPER:
1141 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1142 		max_packets = MAX_PACKET(512);
1143 		break;
1144 	case USB_SPEED_HIGH:
1145 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1146 		max_packets = MAX_PACKET(64);
1147 		break;
1148 	/* USB core guesses at a 64-byte max packet first for FS devices */
1149 	case USB_SPEED_FULL:
1150 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1151 		max_packets = MAX_PACKET(64);
1152 		break;
1153 	case USB_SPEED_LOW:
1154 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1155 		max_packets = MAX_PACKET(8);
1156 		break;
1157 	case USB_SPEED_WIRELESS:
1158 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1159 		return -EINVAL;
1160 		break;
1161 	default:
1162 		/* Speed was set earlier, this shouldn't happen. */
1163 		return -EINVAL;
1164 	}
1165 	/* Find the root hub port this device is under */
1166 	port_num = xhci_find_real_port_number(xhci, udev);
1167 	if (!port_num)
1168 		return -EINVAL;
1169 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1170 	/* Set the port number in the virtual_device to the faked port number */
1171 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1172 			top_dev = top_dev->parent)
1173 		/* Found device below root hub */;
1174 	dev->fake_port = top_dev->portnum;
1175 	dev->real_port = port_num;
1176 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1177 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1178 
1179 	/* Find the right bandwidth table that this device will be a part of.
1180 	 * If this is a full speed device attached directly to a root port (or a
1181 	 * decendent of one), it counts as a primary bandwidth domain, not a
1182 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1183 	 * will never be created for the HS root hub.
1184 	 */
1185 	if (!udev->tt || !udev->tt->hub->parent) {
1186 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1187 	} else {
1188 		struct xhci_root_port_bw_info *rh_bw;
1189 		struct xhci_tt_bw_info *tt_bw;
1190 
1191 		rh_bw = &xhci->rh_bw[port_num - 1];
1192 		/* Find the right TT. */
1193 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1194 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1195 				continue;
1196 
1197 			if (!dev->udev->tt->multi ||
1198 					(udev->tt->multi &&
1199 					 tt_bw->ttport == dev->udev->ttport)) {
1200 				dev->bw_table = &tt_bw->bw_table;
1201 				dev->tt_info = tt_bw;
1202 				break;
1203 			}
1204 		}
1205 		if (!dev->tt_info)
1206 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1207 	}
1208 
1209 	/* Is this a LS/FS device under an external HS hub? */
1210 	if (udev->tt && udev->tt->hub->parent) {
1211 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1212 						(udev->ttport << 8));
1213 		if (udev->tt->multi)
1214 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1215 	}
1216 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1217 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1218 
1219 	/* Step 4 - ring already allocated */
1220 	/* Step 5 */
1221 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1222 
1223 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1224 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1225 					 max_packets);
1226 
1227 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1228 				   dev->eps[0].ring->cycle_state);
1229 
1230 	trace_xhci_setup_addressable_virt_device(dev);
1231 
1232 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1233 
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Convert interval expressed as 2^(bInterval - 1) == interval into
1239  * straight exponent value 2^n == interval.
1240  *
1241  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1242 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1243 		struct usb_host_endpoint *ep)
1244 {
1245 	unsigned int interval;
1246 
1247 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1248 	if (interval != ep->desc.bInterval - 1)
1249 		dev_warn(&udev->dev,
1250 			 "ep %#x - rounding interval to %d %sframes\n",
1251 			 ep->desc.bEndpointAddress,
1252 			 1 << interval,
1253 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1254 
1255 	if (udev->speed == USB_SPEED_FULL) {
1256 		/*
1257 		 * Full speed isoc endpoints specify interval in frames,
1258 		 * not microframes. We are using microframes everywhere,
1259 		 * so adjust accordingly.
1260 		 */
1261 		interval += 3;	/* 1 frame = 2^3 uframes */
1262 	}
1263 
1264 	return interval;
1265 }
1266 
1267 /*
1268  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1269  * microframes, rounded down to nearest power of 2.
1270  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1271 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1272 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1273 		unsigned int min_exponent, unsigned int max_exponent)
1274 {
1275 	unsigned int interval;
1276 
1277 	interval = fls(desc_interval) - 1;
1278 	interval = clamp_val(interval, min_exponent, max_exponent);
1279 	if ((1 << interval) != desc_interval)
1280 		dev_dbg(&udev->dev,
1281 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1282 			 ep->desc.bEndpointAddress,
1283 			 1 << interval,
1284 			 desc_interval);
1285 
1286 	return interval;
1287 }
1288 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1289 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1290 		struct usb_host_endpoint *ep)
1291 {
1292 	if (ep->desc.bInterval == 0)
1293 		return 0;
1294 	return xhci_microframes_to_exponent(udev, ep,
1295 			ep->desc.bInterval, 0, 15);
1296 }
1297 
1298 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1299 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1300 		struct usb_host_endpoint *ep)
1301 {
1302 	return xhci_microframes_to_exponent(udev, ep,
1303 			ep->desc.bInterval * 8, 3, 10);
1304 }
1305 
1306 /* Return the polling or NAK interval.
1307  *
1308  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1309  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1310  *
1311  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1312  * is set to 0.
1313  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1314 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1315 		struct usb_host_endpoint *ep)
1316 {
1317 	unsigned int interval = 0;
1318 
1319 	switch (udev->speed) {
1320 	case USB_SPEED_HIGH:
1321 		/* Max NAK rate */
1322 		if (usb_endpoint_xfer_control(&ep->desc) ||
1323 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1324 			interval = xhci_parse_microframe_interval(udev, ep);
1325 			break;
1326 		}
1327 		fallthrough;	/* SS and HS isoc/int have same decoding */
1328 
1329 	case USB_SPEED_SUPER_PLUS:
1330 	case USB_SPEED_SUPER:
1331 		if (usb_endpoint_xfer_int(&ep->desc) ||
1332 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1333 			interval = xhci_parse_exponent_interval(udev, ep);
1334 		}
1335 		break;
1336 
1337 	case USB_SPEED_FULL:
1338 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1339 			interval = xhci_parse_exponent_interval(udev, ep);
1340 			break;
1341 		}
1342 		/*
1343 		 * Fall through for interrupt endpoint interval decoding
1344 		 * since it uses the same rules as low speed interrupt
1345 		 * endpoints.
1346 		 */
1347 		fallthrough;
1348 
1349 	case USB_SPEED_LOW:
1350 		if (usb_endpoint_xfer_int(&ep->desc) ||
1351 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1352 
1353 			interval = xhci_parse_frame_interval(udev, ep);
1354 		}
1355 		break;
1356 
1357 	default:
1358 		BUG();
1359 	}
1360 	return interval;
1361 }
1362 
1363 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1364  * High speed endpoint descriptors can define "the number of additional
1365  * transaction opportunities per microframe", but that goes in the Max Burst
1366  * endpoint context field.
1367  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1368 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1369 		struct usb_host_endpoint *ep)
1370 {
1371 	if (udev->speed < USB_SPEED_SUPER ||
1372 			!usb_endpoint_xfer_isoc(&ep->desc))
1373 		return 0;
1374 	return ep->ss_ep_comp.bmAttributes;
1375 }
1376 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1377 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1378 				       struct usb_host_endpoint *ep)
1379 {
1380 	/* Super speed and Plus have max burst in ep companion desc */
1381 	if (udev->speed >= USB_SPEED_SUPER)
1382 		return ep->ss_ep_comp.bMaxBurst;
1383 
1384 	if (udev->speed == USB_SPEED_HIGH &&
1385 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1386 	     usb_endpoint_xfer_int(&ep->desc)))
1387 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1388 
1389 	return 0;
1390 }
1391 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1392 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1393 {
1394 	int in;
1395 
1396 	in = usb_endpoint_dir_in(&ep->desc);
1397 
1398 	switch (usb_endpoint_type(&ep->desc)) {
1399 	case USB_ENDPOINT_XFER_CONTROL:
1400 		return CTRL_EP;
1401 	case USB_ENDPOINT_XFER_BULK:
1402 		return in ? BULK_IN_EP : BULK_OUT_EP;
1403 	case USB_ENDPOINT_XFER_ISOC:
1404 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1405 	case USB_ENDPOINT_XFER_INT:
1406 		return in ? INT_IN_EP : INT_OUT_EP;
1407 	}
1408 	return 0;
1409 }
1410 
1411 /* Return the maximum endpoint service interval time (ESIT) payload.
1412  * Basically, this is the maxpacket size, multiplied by the burst size
1413  * and mult size.
1414  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1415 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1416 		struct usb_host_endpoint *ep)
1417 {
1418 	int max_burst;
1419 	int max_packet;
1420 
1421 	/* Only applies for interrupt or isochronous endpoints */
1422 	if (usb_endpoint_xfer_control(&ep->desc) ||
1423 			usb_endpoint_xfer_bulk(&ep->desc))
1424 		return 0;
1425 
1426 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1427 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1428 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1429 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1430 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1431 	else if (udev->speed >= USB_SPEED_SUPER)
1432 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1433 
1434 	max_packet = usb_endpoint_maxp(&ep->desc);
1435 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1436 	/* A 0 in max burst means 1 transfer per ESIT */
1437 	return max_packet * max_burst;
1438 }
1439 
1440 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1441  * Drivers will have to call usb_alloc_streams() to do that.
1442  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1443 int xhci_endpoint_init(struct xhci_hcd *xhci,
1444 		struct xhci_virt_device *virt_dev,
1445 		struct usb_device *udev,
1446 		struct usb_host_endpoint *ep,
1447 		gfp_t mem_flags)
1448 {
1449 	unsigned int ep_index;
1450 	struct xhci_ep_ctx *ep_ctx;
1451 	struct xhci_ring *ep_ring;
1452 	unsigned int max_packet;
1453 	enum xhci_ring_type ring_type;
1454 	u32 max_esit_payload;
1455 	u32 endpoint_type;
1456 	unsigned int max_burst;
1457 	unsigned int interval;
1458 	unsigned int mult;
1459 	unsigned int avg_trb_len;
1460 	unsigned int err_count = 0;
1461 
1462 	ep_index = xhci_get_endpoint_index(&ep->desc);
1463 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1464 
1465 	endpoint_type = xhci_get_endpoint_type(ep);
1466 	if (!endpoint_type)
1467 		return -EINVAL;
1468 
1469 	ring_type = usb_endpoint_type(&ep->desc);
1470 
1471 	/*
1472 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1473 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1474 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1475 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1476 	 */
1477 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1478 	interval = xhci_get_endpoint_interval(udev, ep);
1479 
1480 	/* Periodic endpoint bInterval limit quirk */
1481 	if (usb_endpoint_xfer_int(&ep->desc) ||
1482 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1483 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1484 		    udev->speed >= USB_SPEED_HIGH &&
1485 		    interval >= 7) {
1486 			interval = 6;
1487 		}
1488 	}
1489 
1490 	mult = xhci_get_endpoint_mult(udev, ep);
1491 	max_packet = usb_endpoint_maxp(&ep->desc);
1492 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1493 	avg_trb_len = max_esit_payload;
1494 
1495 	/* FIXME dig Mult and streams info out of ep companion desc */
1496 
1497 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1498 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1499 		err_count = 3;
1500 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1501 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1502 		if (udev->speed == USB_SPEED_HIGH)
1503 			max_packet = 512;
1504 		if (udev->speed == USB_SPEED_FULL) {
1505 			max_packet = rounddown_pow_of_two(max_packet);
1506 			max_packet = clamp_val(max_packet, 8, 64);
1507 		}
1508 	}
1509 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511 		avg_trb_len = 8;
1512 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1513 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1514 		mult = 0;
1515 
1516 	/* Set up the endpoint ring */
1517 	virt_dev->eps[ep_index].new_ring =
1518 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1519 	if (!virt_dev->eps[ep_index].new_ring)
1520 		return -ENOMEM;
1521 
1522 	virt_dev->eps[ep_index].skip = false;
1523 	ep_ring = virt_dev->eps[ep_index].new_ring;
1524 
1525 	/* Fill the endpoint context */
1526 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1527 				      EP_INTERVAL(interval) |
1528 				      EP_MULT(mult));
1529 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1530 				       MAX_PACKET(max_packet) |
1531 				       MAX_BURST(max_burst) |
1532 				       ERROR_COUNT(err_count));
1533 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1534 				  ep_ring->cycle_state);
1535 
1536 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1537 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1538 
1539 	return 0;
1540 }
1541 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1542 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1543 		struct xhci_virt_device *virt_dev,
1544 		struct usb_host_endpoint *ep)
1545 {
1546 	unsigned int ep_index;
1547 	struct xhci_ep_ctx *ep_ctx;
1548 
1549 	ep_index = xhci_get_endpoint_index(&ep->desc);
1550 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1551 
1552 	ep_ctx->ep_info = 0;
1553 	ep_ctx->ep_info2 = 0;
1554 	ep_ctx->deq = 0;
1555 	ep_ctx->tx_info = 0;
1556 	/* Don't free the endpoint ring until the set interface or configuration
1557 	 * request succeeds.
1558 	 */
1559 }
1560 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1561 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1562 {
1563 	bw_info->ep_interval = 0;
1564 	bw_info->mult = 0;
1565 	bw_info->num_packets = 0;
1566 	bw_info->max_packet_size = 0;
1567 	bw_info->type = 0;
1568 	bw_info->max_esit_payload = 0;
1569 }
1570 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1571 void xhci_update_bw_info(struct xhci_hcd *xhci,
1572 		struct xhci_container_ctx *in_ctx,
1573 		struct xhci_input_control_ctx *ctrl_ctx,
1574 		struct xhci_virt_device *virt_dev)
1575 {
1576 	struct xhci_bw_info *bw_info;
1577 	struct xhci_ep_ctx *ep_ctx;
1578 	unsigned int ep_type;
1579 	int i;
1580 
1581 	for (i = 1; i < 31; i++) {
1582 		bw_info = &virt_dev->eps[i].bw_info;
1583 
1584 		/* We can't tell what endpoint type is being dropped, but
1585 		 * unconditionally clearing the bandwidth info for non-periodic
1586 		 * endpoints should be harmless because the info will never be
1587 		 * set in the first place.
1588 		 */
1589 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1590 			/* Dropped endpoint */
1591 			xhci_clear_endpoint_bw_info(bw_info);
1592 			continue;
1593 		}
1594 
1595 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1596 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1597 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1598 
1599 			/* Ignore non-periodic endpoints */
1600 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1601 					ep_type != ISOC_IN_EP &&
1602 					ep_type != INT_IN_EP)
1603 				continue;
1604 
1605 			/* Added or changed endpoint */
1606 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1607 					le32_to_cpu(ep_ctx->ep_info));
1608 			/* Number of packets and mult are zero-based in the
1609 			 * input context, but we want one-based for the
1610 			 * interval table.
1611 			 */
1612 			bw_info->mult = CTX_TO_EP_MULT(
1613 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1614 			bw_info->num_packets = CTX_TO_MAX_BURST(
1615 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1616 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1617 					le32_to_cpu(ep_ctx->ep_info2));
1618 			bw_info->type = ep_type;
1619 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1620 					le32_to_cpu(ep_ctx->tx_info));
1621 		}
1622 	}
1623 }
1624 
1625 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1626  * Useful when you want to change one particular aspect of the endpoint and then
1627  * issue a configure endpoint command.
1628  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1629 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1630 		struct xhci_container_ctx *in_ctx,
1631 		struct xhci_container_ctx *out_ctx,
1632 		unsigned int ep_index)
1633 {
1634 	struct xhci_ep_ctx *out_ep_ctx;
1635 	struct xhci_ep_ctx *in_ep_ctx;
1636 
1637 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1638 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1639 
1640 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1641 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1642 	in_ep_ctx->deq = out_ep_ctx->deq;
1643 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1644 	if (xhci->quirks & XHCI_MTK_HOST) {
1645 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1646 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1647 	}
1648 }
1649 
1650 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1651  * Useful when you want to change one particular aspect of the endpoint and then
1652  * issue a configure endpoint command.  Only the context entries field matters,
1653  * but we'll copy the whole thing anyway.
1654  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1655 void xhci_slot_copy(struct xhci_hcd *xhci,
1656 		struct xhci_container_ctx *in_ctx,
1657 		struct xhci_container_ctx *out_ctx)
1658 {
1659 	struct xhci_slot_ctx *in_slot_ctx;
1660 	struct xhci_slot_ctx *out_slot_ctx;
1661 
1662 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1663 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1664 
1665 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1666 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1667 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1668 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1669 }
1670 
1671 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1672 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1673 {
1674 	int i;
1675 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1676 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1677 
1678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1679 			"Allocating %d scratchpad buffers", num_sp);
1680 
1681 	if (!num_sp)
1682 		return 0;
1683 
1684 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1685 				dev_to_node(dev));
1686 	if (!xhci->scratchpad)
1687 		goto fail_sp;
1688 
1689 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1690 				     num_sp * sizeof(u64),
1691 				     &xhci->scratchpad->sp_dma, flags);
1692 	if (!xhci->scratchpad->sp_array)
1693 		goto fail_sp2;
1694 
1695 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1696 					flags, dev_to_node(dev));
1697 	if (!xhci->scratchpad->sp_buffers)
1698 		goto fail_sp3;
1699 
1700 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1701 	for (i = 0; i < num_sp; i++) {
1702 		dma_addr_t dma;
1703 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1704 					       flags);
1705 		if (!buf)
1706 			goto fail_sp4;
1707 
1708 		xhci->scratchpad->sp_array[i] = dma;
1709 		xhci->scratchpad->sp_buffers[i] = buf;
1710 	}
1711 
1712 	return 0;
1713 
1714  fail_sp4:
1715 	for (i = i - 1; i >= 0; i--) {
1716 		dma_free_coherent(dev, xhci->page_size,
1717 				    xhci->scratchpad->sp_buffers[i],
1718 				    xhci->scratchpad->sp_array[i]);
1719 	}
1720 
1721 	kfree(xhci->scratchpad->sp_buffers);
1722 
1723  fail_sp3:
1724 	dma_free_coherent(dev, num_sp * sizeof(u64),
1725 			    xhci->scratchpad->sp_array,
1726 			    xhci->scratchpad->sp_dma);
1727 
1728  fail_sp2:
1729 	kfree(xhci->scratchpad);
1730 	xhci->scratchpad = NULL;
1731 
1732  fail_sp:
1733 	return -ENOMEM;
1734 }
1735 
scratchpad_free(struct xhci_hcd * xhci)1736 static void scratchpad_free(struct xhci_hcd *xhci)
1737 {
1738 	int num_sp;
1739 	int i;
1740 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1741 
1742 	if (!xhci->scratchpad)
1743 		return;
1744 
1745 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1746 
1747 	for (i = 0; i < num_sp; i++) {
1748 		dma_free_coherent(dev, xhci->page_size,
1749 				    xhci->scratchpad->sp_buffers[i],
1750 				    xhci->scratchpad->sp_array[i]);
1751 	}
1752 	kfree(xhci->scratchpad->sp_buffers);
1753 	dma_free_coherent(dev, num_sp * sizeof(u64),
1754 			    xhci->scratchpad->sp_array,
1755 			    xhci->scratchpad->sp_dma);
1756 	kfree(xhci->scratchpad);
1757 	xhci->scratchpad = NULL;
1758 }
1759 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1760 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1761 		bool allocate_completion, gfp_t mem_flags)
1762 {
1763 	struct xhci_command *command;
1764 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1765 
1766 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1767 	if (!command)
1768 		return NULL;
1769 
1770 	if (allocate_completion) {
1771 		command->completion =
1772 			kzalloc_node(sizeof(struct completion), mem_flags,
1773 				dev_to_node(dev));
1774 		if (!command->completion) {
1775 			kfree(command);
1776 			return NULL;
1777 		}
1778 		init_completion(command->completion);
1779 	}
1780 
1781 	command->status = 0;
1782 	INIT_LIST_HEAD(&command->cmd_list);
1783 	return command;
1784 }
1785 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1786 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1787 		bool allocate_completion, gfp_t mem_flags)
1788 {
1789 	struct xhci_command *command;
1790 
1791 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1792 	if (!command)
1793 		return NULL;
1794 
1795 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1796 						   mem_flags);
1797 	if (!command->in_ctx) {
1798 		kfree(command->completion);
1799 		kfree(command);
1800 		return NULL;
1801 	}
1802 	return command;
1803 }
1804 
xhci_urb_free_priv(struct urb_priv * urb_priv)1805 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1806 {
1807 	kfree(urb_priv);
1808 }
1809 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1810 void xhci_free_command(struct xhci_hcd *xhci,
1811 		struct xhci_command *command)
1812 {
1813 	xhci_free_container_ctx(xhci,
1814 			command->in_ctx);
1815 	kfree(command->completion);
1816 	kfree(command);
1817 }
1818 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1819 int xhci_alloc_erst(struct xhci_hcd *xhci,
1820 		    struct xhci_ring *evt_ring,
1821 		    struct xhci_erst *erst,
1822 		    gfp_t flags)
1823 {
1824 	size_t size;
1825 	unsigned int val;
1826 	struct xhci_segment *seg;
1827 	struct xhci_erst_entry *entry;
1828 
1829 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1830 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1831 					   size, &erst->erst_dma_addr, flags);
1832 	if (!erst->entries)
1833 		return -ENOMEM;
1834 
1835 	erst->num_entries = evt_ring->num_segs;
1836 
1837 	seg = evt_ring->first_seg;
1838 	for (val = 0; val < evt_ring->num_segs; val++) {
1839 		entry = &erst->entries[val];
1840 		entry->seg_addr = cpu_to_le64(seg->dma);
1841 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1842 		entry->rsvd = 0;
1843 		seg = seg->next;
1844 	}
1845 
1846 	return 0;
1847 }
1848 
xhci_free_erst(struct xhci_hcd * xhci,struct xhci_erst * erst)1849 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1850 {
1851 	size_t size;
1852 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1853 
1854 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1855 	if (erst->entries)
1856 		dma_free_coherent(dev, size,
1857 				erst->entries,
1858 				erst->erst_dma_addr);
1859 	erst->entries = NULL;
1860 }
1861 
xhci_mem_cleanup(struct xhci_hcd * xhci)1862 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863 {
1864 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1865 	int i, j, num_ports;
1866 
1867 	cancel_delayed_work_sync(&xhci->cmd_timer);
1868 
1869 	xhci_free_erst(xhci, &xhci->erst);
1870 
1871 	if (xhci->event_ring)
1872 		xhci_ring_free(xhci, xhci->event_ring);
1873 	xhci->event_ring = NULL;
1874 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1875 
1876 	if (xhci->lpm_command)
1877 		xhci_free_command(xhci, xhci->lpm_command);
1878 	xhci->lpm_command = NULL;
1879 	if (xhci->cmd_ring)
1880 		xhci_ring_free(xhci, xhci->cmd_ring);
1881 	xhci->cmd_ring = NULL;
1882 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1883 	xhci_cleanup_command_queue(xhci);
1884 
1885 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1886 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1887 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1888 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1889 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1890 			while (!list_empty(ep))
1891 				list_del_init(ep->next);
1892 		}
1893 	}
1894 
1895 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1896 		xhci_free_virt_devices_depth_first(xhci, i);
1897 
1898 	dma_pool_destroy(xhci->segment_pool);
1899 	xhci->segment_pool = NULL;
1900 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1901 
1902 	dma_pool_destroy(xhci->device_pool);
1903 	xhci->device_pool = NULL;
1904 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1905 
1906 	dma_pool_destroy(xhci->small_streams_pool);
1907 	xhci->small_streams_pool = NULL;
1908 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1909 			"Freed small stream array pool");
1910 
1911 	dma_pool_destroy(xhci->medium_streams_pool);
1912 	xhci->medium_streams_pool = NULL;
1913 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1914 			"Freed medium stream array pool");
1915 
1916 	if (xhci->dcbaa)
1917 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1918 				xhci->dcbaa, xhci->dcbaa->dma);
1919 	xhci->dcbaa = NULL;
1920 
1921 	scratchpad_free(xhci);
1922 
1923 	if (!xhci->rh_bw)
1924 		goto no_bw;
1925 
1926 	for (i = 0; i < num_ports; i++) {
1927 		struct xhci_tt_bw_info *tt, *n;
1928 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1929 			list_del(&tt->tt_list);
1930 			kfree(tt);
1931 		}
1932 	}
1933 
1934 no_bw:
1935 	xhci->cmd_ring_reserved_trbs = 0;
1936 	xhci->usb2_rhub.num_ports = 0;
1937 	xhci->usb3_rhub.num_ports = 0;
1938 	xhci->num_active_eps = 0;
1939 	kfree(xhci->usb2_rhub.ports);
1940 	kfree(xhci->usb3_rhub.ports);
1941 	kfree(xhci->hw_ports);
1942 	kfree(xhci->rh_bw);
1943 	kfree(xhci->ext_caps);
1944 	for (i = 0; i < xhci->num_port_caps; i++)
1945 		kfree(xhci->port_caps[i].psi);
1946 	kfree(xhci->port_caps);
1947 	xhci->num_port_caps = 0;
1948 
1949 	xhci->usb2_rhub.ports = NULL;
1950 	xhci->usb3_rhub.ports = NULL;
1951 	xhci->hw_ports = NULL;
1952 	xhci->rh_bw = NULL;
1953 	xhci->ext_caps = NULL;
1954 	xhci->port_caps = NULL;
1955 
1956 	xhci->page_size = 0;
1957 	xhci->page_shift = 0;
1958 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1959 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1960 }
1961 
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1962 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1963 		struct xhci_segment *input_seg,
1964 		union xhci_trb *start_trb,
1965 		union xhci_trb *end_trb,
1966 		dma_addr_t input_dma,
1967 		struct xhci_segment *result_seg,
1968 		char *test_name, int test_number)
1969 {
1970 	unsigned long long start_dma;
1971 	unsigned long long end_dma;
1972 	struct xhci_segment *seg;
1973 
1974 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1975 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1976 
1977 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1978 	if (seg != result_seg) {
1979 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1980 				test_name, test_number);
1981 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1982 				"input DMA 0x%llx\n",
1983 				input_seg,
1984 				(unsigned long long) input_dma);
1985 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1986 				"ending TRB %p (0x%llx DMA)\n",
1987 				start_trb, start_dma,
1988 				end_trb, end_dma);
1989 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1990 				result_seg, seg);
1991 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1992 			  true);
1993 		return -1;
1994 	}
1995 	return 0;
1996 }
1997 
1998 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)1999 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2000 {
2001 	struct {
2002 		dma_addr_t		input_dma;
2003 		struct xhci_segment	*result_seg;
2004 	} simple_test_vector [] = {
2005 		/* A zeroed DMA field should fail */
2006 		{ 0, NULL },
2007 		/* One TRB before the ring start should fail */
2008 		{ xhci->event_ring->first_seg->dma - 16, NULL },
2009 		/* One byte before the ring start should fail */
2010 		{ xhci->event_ring->first_seg->dma - 1, NULL },
2011 		/* Starting TRB should succeed */
2012 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2013 		/* Ending TRB should succeed */
2014 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2015 			xhci->event_ring->first_seg },
2016 		/* One byte after the ring end should fail */
2017 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2018 		/* One TRB after the ring end should fail */
2019 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2020 		/* An address of all ones should fail */
2021 		{ (dma_addr_t) (~0), NULL },
2022 	};
2023 	struct {
2024 		struct xhci_segment	*input_seg;
2025 		union xhci_trb		*start_trb;
2026 		union xhci_trb		*end_trb;
2027 		dma_addr_t		input_dma;
2028 		struct xhci_segment	*result_seg;
2029 	} complex_test_vector [] = {
2030 		/* Test feeding a valid DMA address from a different ring */
2031 		{	.input_seg = xhci->event_ring->first_seg,
2032 			.start_trb = xhci->event_ring->first_seg->trbs,
2033 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034 			.input_dma = xhci->cmd_ring->first_seg->dma,
2035 			.result_seg = NULL,
2036 		},
2037 		/* Test feeding a valid end TRB from a different ring */
2038 		{	.input_seg = xhci->event_ring->first_seg,
2039 			.start_trb = xhci->event_ring->first_seg->trbs,
2040 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2041 			.input_dma = xhci->cmd_ring->first_seg->dma,
2042 			.result_seg = NULL,
2043 		},
2044 		/* Test feeding a valid start and end TRB from a different ring */
2045 		{	.input_seg = xhci->event_ring->first_seg,
2046 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2047 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2048 			.input_dma = xhci->cmd_ring->first_seg->dma,
2049 			.result_seg = NULL,
2050 		},
2051 		/* TRB in this ring, but after this TD */
2052 		{	.input_seg = xhci->event_ring->first_seg,
2053 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2054 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2055 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2056 			.result_seg = NULL,
2057 		},
2058 		/* TRB in this ring, but before this TD */
2059 		{	.input_seg = xhci->event_ring->first_seg,
2060 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2061 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2062 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2063 			.result_seg = NULL,
2064 		},
2065 		/* TRB in this ring, but after this wrapped TD */
2066 		{	.input_seg = xhci->event_ring->first_seg,
2067 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2069 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2070 			.result_seg = NULL,
2071 		},
2072 		/* TRB in this ring, but before this wrapped TD */
2073 		{	.input_seg = xhci->event_ring->first_seg,
2074 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2075 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2076 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2077 			.result_seg = NULL,
2078 		},
2079 		/* TRB not in this ring, and we have a wrapped TD */
2080 		{	.input_seg = xhci->event_ring->first_seg,
2081 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2082 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2083 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2084 			.result_seg = NULL,
2085 		},
2086 	};
2087 
2088 	unsigned int num_tests;
2089 	int i, ret;
2090 
2091 	num_tests = ARRAY_SIZE(simple_test_vector);
2092 	for (i = 0; i < num_tests; i++) {
2093 		ret = xhci_test_trb_in_td(xhci,
2094 				xhci->event_ring->first_seg,
2095 				xhci->event_ring->first_seg->trbs,
2096 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2097 				simple_test_vector[i].input_dma,
2098 				simple_test_vector[i].result_seg,
2099 				"Simple", i);
2100 		if (ret < 0)
2101 			return ret;
2102 	}
2103 
2104 	num_tests = ARRAY_SIZE(complex_test_vector);
2105 	for (i = 0; i < num_tests; i++) {
2106 		ret = xhci_test_trb_in_td(xhci,
2107 				complex_test_vector[i].input_seg,
2108 				complex_test_vector[i].start_trb,
2109 				complex_test_vector[i].end_trb,
2110 				complex_test_vector[i].input_dma,
2111 				complex_test_vector[i].result_seg,
2112 				"Complex", i);
2113 		if (ret < 0)
2114 			return ret;
2115 	}
2116 	xhci_dbg(xhci, "TRB math tests passed.\n");
2117 	return 0;
2118 }
2119 
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2120 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2121 {
2122 	u64 temp;
2123 	dma_addr_t deq;
2124 
2125 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2126 			xhci->event_ring->dequeue);
2127 	if (deq == 0 && !in_interrupt())
2128 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2129 				"dequeue ptr.\n");
2130 	/* Update HC event ring dequeue pointer */
2131 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2132 	temp &= ERST_PTR_MASK;
2133 	/* Don't clear the EHB bit (which is RW1C) because
2134 	 * there might be more events to service.
2135 	 */
2136 	temp &= ~ERST_EHB;
2137 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2138 			"// Write event ring dequeue pointer, "
2139 			"preserving EHB bit");
2140 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2141 			&xhci->ir_set->erst_dequeue);
2142 }
2143 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2144 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2145 		__le32 __iomem *addr, int max_caps)
2146 {
2147 	u32 temp, port_offset, port_count;
2148 	int i;
2149 	u8 major_revision, minor_revision;
2150 	struct xhci_hub *rhub;
2151 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2152 	struct xhci_port_cap *port_cap;
2153 
2154 	temp = readl(addr);
2155 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2156 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2157 
2158 	if (major_revision == 0x03) {
2159 		rhub = &xhci->usb3_rhub;
2160 		/*
2161 		 * Some hosts incorrectly use sub-minor version for minor
2162 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2163 		 * for bcdUSB 0x310). Since there is no USB release with sub
2164 		 * minor version 0x301 to 0x309, we can assume that they are
2165 		 * incorrect and fix it here.
2166 		 */
2167 		if (minor_revision > 0x00 && minor_revision < 0x10)
2168 			minor_revision <<= 4;
2169 	} else if (major_revision <= 0x02) {
2170 		rhub = &xhci->usb2_rhub;
2171 	} else {
2172 		xhci_warn(xhci, "Ignoring unknown port speed, "
2173 				"Ext Cap %p, revision = 0x%x\n",
2174 				addr, major_revision);
2175 		/* Ignoring port protocol we can't understand. FIXME */
2176 		return;
2177 	}
2178 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2179 
2180 	if (rhub->min_rev < minor_revision)
2181 		rhub->min_rev = minor_revision;
2182 
2183 	/* Port offset and count in the third dword, see section 7.2 */
2184 	temp = readl(addr + 2);
2185 	port_offset = XHCI_EXT_PORT_OFF(temp);
2186 	port_count = XHCI_EXT_PORT_COUNT(temp);
2187 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2188 			"Ext Cap %p, port offset = %u, "
2189 			"count = %u, revision = 0x%x",
2190 			addr, port_offset, port_count, major_revision);
2191 	/* Port count includes the current port offset */
2192 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2193 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2194 		return;
2195 
2196 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2197 	if (xhci->num_port_caps > max_caps)
2198 		return;
2199 
2200 	port_cap->maj_rev = major_revision;
2201 	port_cap->min_rev = minor_revision;
2202 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2203 
2204 	if (port_cap->psi_count) {
2205 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2206 					     sizeof(*port_cap->psi),
2207 					     GFP_KERNEL, dev_to_node(dev));
2208 		if (!port_cap->psi)
2209 			port_cap->psi_count = 0;
2210 
2211 		port_cap->psi_uid_count++;
2212 		for (i = 0; i < port_cap->psi_count; i++) {
2213 			port_cap->psi[i] = readl(addr + 4 + i);
2214 
2215 			/* count unique ID values, two consecutive entries can
2216 			 * have the same ID if link is assymetric
2217 			 */
2218 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2219 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2220 				port_cap->psi_uid_count++;
2221 
2222 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2223 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2224 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2225 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2226 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2227 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2228 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2229 		}
2230 	}
2231 	/* cache usb2 port capabilities */
2232 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2233 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2234 
2235 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2236 		 (temp & XHCI_HLC)) {
2237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2238 			       "xHCI 1.0: support USB2 hardware lpm");
2239 		xhci->hw_lpm_support = 1;
2240 	}
2241 
2242 	port_offset--;
2243 	for (i = port_offset; i < (port_offset + port_count); i++) {
2244 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2245 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2246 		if (hw_port->rhub) {
2247 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2248 					" port %u\n", addr, i);
2249 			xhci_warn(xhci, "Port was marked as USB %u, "
2250 					"duplicated as USB %u\n",
2251 					hw_port->rhub->maj_rev, major_revision);
2252 			/* Only adjust the roothub port counts if we haven't
2253 			 * found a similar duplicate.
2254 			 */
2255 			if (hw_port->rhub != rhub &&
2256 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2257 				hw_port->rhub->num_ports--;
2258 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2259 			}
2260 			continue;
2261 		}
2262 		hw_port->rhub = rhub;
2263 		hw_port->port_cap = port_cap;
2264 		rhub->num_ports++;
2265 	}
2266 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2267 }
2268 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2269 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2270 					struct xhci_hub *rhub, gfp_t flags)
2271 {
2272 	int port_index = 0;
2273 	int i;
2274 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2275 
2276 	if (!rhub->num_ports)
2277 		return;
2278 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2279 			flags, dev_to_node(dev));
2280 	if (!rhub->ports)
2281 		return;
2282 
2283 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2284 		if (xhci->hw_ports[i].rhub != rhub ||
2285 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2286 			continue;
2287 		xhci->hw_ports[i].hcd_portnum = port_index;
2288 		rhub->ports[port_index] = &xhci->hw_ports[i];
2289 		port_index++;
2290 		if (port_index == rhub->num_ports)
2291 			break;
2292 	}
2293 }
2294 
2295 /*
2296  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2297  * specify what speeds each port is supposed to be.  We can't count on the port
2298  * speed bits in the PORTSC register being correct until a device is connected,
2299  * but we need to set up the two fake roothubs with the correct number of USB
2300  * 3.0 and USB 2.0 ports at host controller initialization time.
2301  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2302 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2303 {
2304 	void __iomem *base;
2305 	u32 offset;
2306 	unsigned int num_ports;
2307 	int i, j;
2308 	int cap_count = 0;
2309 	u32 cap_start;
2310 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2311 
2312 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2313 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2314 				flags, dev_to_node(dev));
2315 	if (!xhci->hw_ports)
2316 		return -ENOMEM;
2317 
2318 	for (i = 0; i < num_ports; i++) {
2319 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2320 			NUM_PORT_REGS * i;
2321 		xhci->hw_ports[i].hw_portnum = i;
2322 	}
2323 
2324 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2325 				   dev_to_node(dev));
2326 	if (!xhci->rh_bw)
2327 		return -ENOMEM;
2328 	for (i = 0; i < num_ports; i++) {
2329 		struct xhci_interval_bw_table *bw_table;
2330 
2331 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2332 		bw_table = &xhci->rh_bw[i].bw_table;
2333 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2334 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2335 	}
2336 	base = &xhci->cap_regs->hc_capbase;
2337 
2338 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2339 	if (!cap_start) {
2340 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2341 		return -ENODEV;
2342 	}
2343 
2344 	offset = cap_start;
2345 	/* count extended protocol capability entries for later caching */
2346 	while (offset) {
2347 		cap_count++;
2348 		offset = xhci_find_next_ext_cap(base, offset,
2349 						      XHCI_EXT_CAPS_PROTOCOL);
2350 	}
2351 
2352 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2353 				flags, dev_to_node(dev));
2354 	if (!xhci->ext_caps)
2355 		return -ENOMEM;
2356 
2357 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2358 				flags, dev_to_node(dev));
2359 	if (!xhci->port_caps)
2360 		return -ENOMEM;
2361 
2362 	offset = cap_start;
2363 
2364 	while (offset) {
2365 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2366 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2367 		    num_ports)
2368 			break;
2369 		offset = xhci_find_next_ext_cap(base, offset,
2370 						XHCI_EXT_CAPS_PROTOCOL);
2371 	}
2372 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2373 		xhci_warn(xhci, "No ports on the roothubs?\n");
2374 		return -ENODEV;
2375 	}
2376 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2377 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2378 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2379 
2380 	/* Place limits on the number of roothub ports so that the hub
2381 	 * descriptors aren't longer than the USB core will allocate.
2382 	 */
2383 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2384 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2385 				"Limiting USB 3.0 roothub ports to %u.",
2386 				USB_SS_MAXPORTS);
2387 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2388 	}
2389 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2390 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2391 				"Limiting USB 2.0 roothub ports to %u.",
2392 				USB_MAXCHILDREN);
2393 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2394 	}
2395 
2396 	/*
2397 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2398 	 * Not sure how the USB core will handle a hub with no ports...
2399 	 */
2400 
2401 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2402 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2403 
2404 	return 0;
2405 }
2406 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2407 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2408 {
2409 	dma_addr_t	dma;
2410 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2411 	unsigned int	val, val2;
2412 	u64		val_64;
2413 	u32		page_size, temp;
2414 	int		i, ret;
2415 
2416 	INIT_LIST_HEAD(&xhci->cmd_list);
2417 
2418 	/* init command timeout work */
2419 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2420 	init_completion(&xhci->cmd_ring_stop_completion);
2421 
2422 	page_size = readl(&xhci->op_regs->page_size);
2423 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424 			"Supported page size register = 0x%x", page_size);
2425 	for (i = 0; i < 16; i++) {
2426 		if ((0x1 & page_size) != 0)
2427 			break;
2428 		page_size = page_size >> 1;
2429 	}
2430 	if (i < 16)
2431 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2432 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2433 	else
2434 		xhci_warn(xhci, "WARN: no supported page size\n");
2435 	/* Use 4K pages, since that's common and the minimum the HC supports */
2436 	xhci->page_shift = 12;
2437 	xhci->page_size = 1 << xhci->page_shift;
2438 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439 			"HCD page size set to %iK", xhci->page_size / 1024);
2440 
2441 	/*
2442 	 * Program the Number of Device Slots Enabled field in the CONFIG
2443 	 * register with the max value of slots the HC can handle.
2444 	 */
2445 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2446 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2447 			"// xHC can handle at most %d device slots.", val);
2448 	val2 = readl(&xhci->op_regs->config_reg);
2449 	val |= (val2 & ~HCS_SLOTS_MASK);
2450 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2451 			"// Setting Max device slots reg = 0x%x.", val);
2452 	writel(val, &xhci->op_regs->config_reg);
2453 
2454 	/*
2455 	 * xHCI section 5.4.6 - doorbell array must be
2456 	 * "physically contiguous and 64-byte (cache line) aligned".
2457 	 */
2458 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2459 			flags);
2460 	if (!xhci->dcbaa)
2461 		goto fail;
2462 	xhci->dcbaa->dma = dma;
2463 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2464 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2465 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2466 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2467 
2468 	/*
2469 	 * Initialize the ring segment pool.  The ring must be a contiguous
2470 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2471 	 * however, the command ring segment needs 64-byte aligned segments
2472 	 * and our use of dma addresses in the trb_address_map radix tree needs
2473 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2474 	 */
2475 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2476 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2477 
2478 	/* See Table 46 and Note on Figure 55 */
2479 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2480 			2112, 64, xhci->page_size);
2481 	if (!xhci->segment_pool || !xhci->device_pool)
2482 		goto fail;
2483 
2484 	/* Linear stream context arrays don't have any boundary restrictions,
2485 	 * and only need to be 16-byte aligned.
2486 	 */
2487 	xhci->small_streams_pool =
2488 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2489 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2490 	xhci->medium_streams_pool =
2491 		dma_pool_create("xHCI 1KB stream ctx arrays",
2492 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2493 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2494 	 * will be allocated with dma_alloc_coherent()
2495 	 */
2496 
2497 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2498 		goto fail;
2499 
2500 	/* Set up the command ring to have one segments for now. */
2501 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2502 	if (!xhci->cmd_ring)
2503 		goto fail;
2504 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505 			"Allocated command ring at %p", xhci->cmd_ring);
2506 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2507 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2508 
2509 	/* Set the address in the Command Ring Control register */
2510 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2511 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2512 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2513 		xhci->cmd_ring->cycle_state;
2514 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515 			"// Setting command ring address to 0x%016llx", val_64);
2516 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2517 
2518 	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2519 	if (!xhci->lpm_command)
2520 		goto fail;
2521 
2522 	/* Reserve one command ring TRB for disabling LPM.
2523 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2524 	 * disabling LPM, we only need to reserve one TRB for all devices.
2525 	 */
2526 	xhci->cmd_ring_reserved_trbs++;
2527 
2528 	val = readl(&xhci->cap_regs->db_off);
2529 	val &= DBOFF_MASK;
2530 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531 			"// Doorbell array is located at offset 0x%x"
2532 			" from cap regs base addr", val);
2533 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2534 	/* Set ir_set to interrupt register set 0 */
2535 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2536 
2537 	/*
2538 	 * Event ring setup: Allocate a normal ring, but also setup
2539 	 * the event ring segment table (ERST).  Section 4.9.3.
2540 	 */
2541 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2542 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2543 					0, flags);
2544 	if (!xhci->event_ring)
2545 		goto fail;
2546 	if (xhci_check_trb_in_td_math(xhci) < 0)
2547 		goto fail;
2548 
2549 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2550 	if (ret)
2551 		goto fail;
2552 
2553 	/* set ERST count with the number of entries in the segment table */
2554 	val = readl(&xhci->ir_set->erst_size);
2555 	val &= ERST_SIZE_MASK;
2556 	val |= ERST_NUM_SEGS;
2557 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2558 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2559 			val);
2560 	writel(val, &xhci->ir_set->erst_size);
2561 
2562 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2563 			"// Set ERST entries to point to event ring.");
2564 	/* set the segment table base address */
2565 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2566 			"// Set ERST base address for ir_set 0 = 0x%llx",
2567 			(unsigned long long)xhci->erst.erst_dma_addr);
2568 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2569 	val_64 &= ERST_PTR_MASK;
2570 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2571 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2572 
2573 	/* Set the event ring dequeue address */
2574 	xhci_set_hc_event_deq(xhci);
2575 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2576 			"Wrote ERST address to ir_set 0.");
2577 
2578 	/*
2579 	 * XXX: Might need to set the Interrupter Moderation Register to
2580 	 * something other than the default (~1ms minimum between interrupts).
2581 	 * See section 5.5.1.2.
2582 	 */
2583 	for (i = 0; i < MAX_HC_SLOTS; i++)
2584 		xhci->devs[i] = NULL;
2585 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2586 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2587 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2588 		/* Only the USB 2.0 completions will ever be used. */
2589 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2590 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2591 	}
2592 
2593 	if (scratchpad_alloc(xhci, flags))
2594 		goto fail;
2595 	if (xhci_setup_port_arrays(xhci, flags))
2596 		goto fail;
2597 
2598 	/* Enable USB 3.0 device notifications for function remote wake, which
2599 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2600 	 * U3 (device suspend).
2601 	 */
2602 	temp = readl(&xhci->op_regs->dev_notification);
2603 	temp &= ~DEV_NOTE_MASK;
2604 	temp |= DEV_NOTE_FWAKE;
2605 	writel(temp, &xhci->op_regs->dev_notification);
2606 
2607 	return 0;
2608 
2609 fail:
2610 	xhci_halt(xhci);
2611 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2612 	xhci_mem_cleanup(xhci);
2613 	return -ENOMEM;
2614 }
2615